1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
4 Copyright (C) 2009-2024 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "extract-store-integer.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
30 #include "sim/sim-lm32.h"
31 #include "arch-utils.h"
33 #include "trad-frame.h"
34 #include "reggroups.h"
38 /* Make cgen names unique to prevent ODR conflicts with other targets. */
39 #define GDB_CGEN_REMAP_PREFIX lm32
40 #include "cgen-remap.h"
41 #include "opcodes/lm32-desc.h"
43 /* Macros to extract fields from an instruction. */
44 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
45 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
46 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
47 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
48 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
50 struct lm32_gdbarch_tdep
: gdbarch_tdep_base
52 /* gdbarch target dependent data here. Currently unused for LM32. */
55 struct lm32_frame_cache
57 /* The frame's base. Used when constructing a frame ID. */
62 /* Table indicating the location of each and every register. */
63 trad_frame_saved_reg
*saved_regs
;
66 /* Return whether a given register is in a given group. */
69 lm32_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
70 const struct reggroup
*group
)
72 if (group
== general_reggroup
)
73 return ((regnum
>= SIM_LM32_R0_REGNUM
) && (regnum
<= SIM_LM32_RA_REGNUM
))
74 || (regnum
== SIM_LM32_PC_REGNUM
);
75 else if (group
== system_reggroup
)
76 return ((regnum
>= SIM_LM32_BA_REGNUM
) && (regnum
<= SIM_LM32_EA_REGNUM
))
77 || ((regnum
>= SIM_LM32_EID_REGNUM
) && (regnum
<= SIM_LM32_IP_REGNUM
));
78 return default_register_reggroup_p (gdbarch
, regnum
, group
);
81 /* Return a name that corresponds to the given register number. */
84 lm32_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
86 static const char *register_names
[] = {
87 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
88 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
89 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
90 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
91 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
94 static_assert (ARRAY_SIZE (register_names
) == SIM_LM32_NUM_REGS
);
95 return register_names
[reg_nr
];
98 /* Return type of register. */
101 lm32_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
103 return builtin_type (gdbarch
)->builtin_int32
;
106 /* Return non-zero if a register can't be written. */
109 lm32_cannot_store_register (struct gdbarch
*gdbarch
, int regno
)
111 return (regno
== SIM_LM32_R0_REGNUM
) || (regno
== SIM_LM32_EID_REGNUM
);
114 /* Analyze a function's prologue. */
117 lm32_analyze_prologue (struct gdbarch
*gdbarch
,
118 CORE_ADDR pc
, CORE_ADDR limit
,
119 struct lm32_frame_cache
*info
)
121 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
122 unsigned long instruction
;
124 /* Keep reading though instructions, until we come across an instruction
125 that isn't likely to be part of the prologue. */
127 for (; pc
< limit
; pc
+= 4)
130 /* Read an instruction. */
131 instruction
= read_memory_integer (pc
, 4, byte_order
);
133 if ((LM32_OPCODE (instruction
) == OP_SW
)
134 && (LM32_REG0 (instruction
) == SIM_LM32_SP_REGNUM
))
136 /* Any stack displaced store is likely part of the prologue.
137 Record that the register is being saved, and the offset
139 info
->saved_regs
[LM32_REG1 (instruction
)].set_addr (LM32_IMM16 (instruction
));
141 else if ((LM32_OPCODE (instruction
) == OP_ADDI
)
142 && (LM32_REG1 (instruction
) == SIM_LM32_SP_REGNUM
))
144 /* An add to the SP is likely to be part of the prologue.
145 Adjust stack size by whatever the instruction adds to the sp. */
146 info
->size
-= LM32_IMM16 (instruction
);
148 else if ( /* add fp,fp,sp */
149 ((LM32_OPCODE (instruction
) == OP_ADD
)
150 && (LM32_REG2 (instruction
) == SIM_LM32_FP_REGNUM
)
151 && (LM32_REG0 (instruction
) == SIM_LM32_FP_REGNUM
)
152 && (LM32_REG1 (instruction
) == SIM_LM32_SP_REGNUM
))
154 || ((LM32_OPCODE (instruction
) == OP_ADDI
)
155 && (LM32_REG1 (instruction
) == SIM_LM32_FP_REGNUM
)
156 && (LM32_REG0 (instruction
) == SIM_LM32_R0_REGNUM
)))
158 /* Likely to be in the prologue for functions that require
163 /* Any other instruction is likely not to be part of the
172 /* Return PC of first non prologue instruction, for the function at the
173 specified address. */
176 lm32_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
178 CORE_ADDR func_addr
, limit_pc
;
179 struct lm32_frame_cache frame_info
;
180 trad_frame_saved_reg saved_regs
[SIM_LM32_NUM_REGS
];
182 /* See if we can determine the end of the prologue via the symbol table.
183 If so, then return either PC, or the PC after the prologue, whichever
185 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
187 CORE_ADDR post_prologue_pc
188 = skip_prologue_using_sal (gdbarch
, func_addr
);
189 if (post_prologue_pc
!= 0)
190 return std::max (pc
, post_prologue_pc
);
193 /* Can't determine prologue from the symbol table, need to examine
196 /* Find an upper limit on the function prologue using the debug
197 information. If the debug information could not be used to provide
198 that bound, then use an arbitrary large number as the upper bound. */
199 limit_pc
= skip_prologue_using_sal (gdbarch
, pc
);
201 limit_pc
= pc
+ 100; /* Magic. */
203 frame_info
.saved_regs
= saved_regs
;
204 return lm32_analyze_prologue (gdbarch
, pc
, limit_pc
, &frame_info
);
207 /* Create a breakpoint instruction. */
208 constexpr gdb_byte lm32_break_insn
[4] = { OP_RAISE
<< 2, 0, 0, 2 };
210 typedef BP_MANIPULATION (lm32_break_insn
) lm32_breakpoint
;
213 /* Setup registers and stack for faking a call to a function in the
217 lm32_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
218 struct regcache
*regcache
, CORE_ADDR bp_addr
,
219 int nargs
, struct value
**args
, CORE_ADDR sp
,
220 function_call_return_method return_method
,
221 CORE_ADDR struct_addr
)
223 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
224 int first_arg_reg
= SIM_LM32_R1_REGNUM
;
225 int num_arg_regs
= 8;
228 /* Set the return address. */
229 regcache_cooked_write_signed (regcache
, SIM_LM32_RA_REGNUM
, bp_addr
);
231 /* If we're returning a large struct, a pointer to the address to
232 store it at is passed as a first hidden parameter. */
233 if (return_method
== return_method_struct
)
235 regcache_cooked_write_unsigned (regcache
, first_arg_reg
, struct_addr
);
241 /* Setup parameters. */
242 for (i
= 0; i
< nargs
; i
++)
244 struct value
*arg
= args
[i
];
245 struct type
*arg_type
= check_typedef (arg
->type ());
249 /* Promote small integer types to int. */
250 switch (arg_type
->code ())
255 case TYPE_CODE_RANGE
:
257 if (arg_type
->length () < 4)
259 arg_type
= builtin_type (gdbarch
)->builtin_int32
;
260 arg
= value_cast (arg_type
, arg
);
265 /* FIXME: Handle structures. */
267 contents
= (gdb_byte
*) arg
->contents ().data ();
268 val
= extract_unsigned_integer (contents
, arg_type
->length (),
271 /* First num_arg_regs parameters are passed by registers,
272 and the rest are passed on the stack. */
273 if (i
< num_arg_regs
)
274 regcache_cooked_write_unsigned (regcache
, first_arg_reg
+ i
, val
);
277 write_memory_unsigned_integer (sp
, arg_type
->length (), byte_order
,
283 /* Update stack pointer. */
284 regcache_cooked_write_signed (regcache
, SIM_LM32_SP_REGNUM
, sp
);
286 /* Return adjusted stack pointer. */
290 /* Extract return value after calling a function in the inferior. */
293 lm32_extract_return_value (struct type
*type
, struct regcache
*regcache
,
296 struct gdbarch
*gdbarch
= regcache
->arch ();
297 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
299 CORE_ADDR return_buffer
;
301 if (type
->code () != TYPE_CODE_STRUCT
302 && type
->code () != TYPE_CODE_UNION
303 && type
->code () != TYPE_CODE_ARRAY
&& type
->length () <= 4)
305 /* Return value is returned in a single register. */
306 regcache_cooked_read_unsigned (regcache
, SIM_LM32_R1_REGNUM
, &l
);
307 store_unsigned_integer (valbuf
, type
->length (), byte_order
, l
);
309 else if ((type
->code () == TYPE_CODE_INT
) && (type
->length () == 8))
311 /* 64-bit values are returned in a register pair. */
312 regcache_cooked_read_unsigned (regcache
, SIM_LM32_R1_REGNUM
, &l
);
313 memcpy (valbuf
, &l
, 4);
314 regcache_cooked_read_unsigned (regcache
, SIM_LM32_R2_REGNUM
, &l
);
315 memcpy (valbuf
+ 4, &l
, 4);
319 /* Aggregate types greater than a single register are returned
320 in memory. FIXME: Unless they are only 2 regs?. */
321 regcache_cooked_read_unsigned (regcache
, SIM_LM32_R1_REGNUM
, &l
);
323 read_memory (return_buffer
, valbuf
, type
->length ());
327 /* Write into appropriate registers a function return value of type
328 TYPE, given in virtual format. */
330 lm32_store_return_value (struct type
*type
, struct regcache
*regcache
,
331 const gdb_byte
*valbuf
)
333 struct gdbarch
*gdbarch
= regcache
->arch ();
334 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
336 int len
= type
->length ();
340 val
= extract_unsigned_integer (valbuf
, len
, byte_order
);
341 regcache_cooked_write_unsigned (regcache
, SIM_LM32_R1_REGNUM
, val
);
345 val
= extract_unsigned_integer (valbuf
, 4, byte_order
);
346 regcache_cooked_write_unsigned (regcache
, SIM_LM32_R1_REGNUM
, val
);
347 val
= extract_unsigned_integer (valbuf
+ 4, len
- 4, byte_order
);
348 regcache_cooked_write_unsigned (regcache
, SIM_LM32_R2_REGNUM
, val
);
351 error (_("lm32_store_return_value: type length too large."));
354 /* Determine whether a functions return value is in a register or memory. */
355 static enum return_value_convention
356 lm32_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
357 struct type
*valtype
, struct regcache
*regcache
,
358 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
360 enum type_code code
= valtype
->code ();
362 if (code
== TYPE_CODE_STRUCT
363 || code
== TYPE_CODE_UNION
364 || code
== TYPE_CODE_ARRAY
|| valtype
->length () > 8)
365 return RETURN_VALUE_STRUCT_CONVENTION
;
368 lm32_extract_return_value (valtype
, regcache
, readbuf
);
370 lm32_store_return_value (valtype
, regcache
, writebuf
);
372 return RETURN_VALUE_REGISTER_CONVENTION
;
375 /* Put here the code to store, into fi->saved_regs, the addresses of
376 the saved registers of frame described by FRAME_INFO. This
377 includes special registers such as pc and fp saved in special ways
378 in the stack frame. sp is even more special: the address we return
379 for it IS the sp for the next frame. */
381 static struct lm32_frame_cache
*
382 lm32_frame_cache (const frame_info_ptr
&this_frame
, void **this_prologue_cache
)
384 CORE_ADDR current_pc
;
387 struct lm32_frame_cache
*info
;
390 if ((*this_prologue_cache
))
391 return (struct lm32_frame_cache
*) (*this_prologue_cache
);
393 info
= FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache
);
394 (*this_prologue_cache
) = info
;
395 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
397 info
->pc
= get_frame_func (this_frame
);
398 current_pc
= get_frame_pc (this_frame
);
399 lm32_analyze_prologue (get_frame_arch (this_frame
),
400 info
->pc
, current_pc
, info
);
402 /* Compute the frame's base, and the previous frame's SP. */
403 this_base
= get_frame_register_unsigned (this_frame
, SIM_LM32_SP_REGNUM
);
404 prev_sp
= this_base
+ info
->size
;
405 info
->base
= this_base
;
407 /* Convert callee save offsets into addresses. */
408 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
410 if (info
->saved_regs
[i
].is_addr ())
411 info
->saved_regs
[i
].set_addr (this_base
+ info
->saved_regs
[i
].addr ());
414 /* The call instruction moves the caller's PC in the callee's RA register.
415 Since this is an unwind, do the reverse. Copy the location of RA register
416 into PC (the address / regnum) so that a request for PC will be
417 converted into a request for the RA register. */
418 info
->saved_regs
[SIM_LM32_PC_REGNUM
] = info
->saved_regs
[SIM_LM32_RA_REGNUM
];
420 /* The previous frame's SP needed to be computed. Save the computed
422 info
->saved_regs
[SIM_LM32_SP_REGNUM
].set_value (prev_sp
);
428 lm32_frame_this_id (const frame_info_ptr
&this_frame
, void **this_cache
,
429 struct frame_id
*this_id
)
431 struct lm32_frame_cache
*cache
= lm32_frame_cache (this_frame
, this_cache
);
433 /* This marks the outermost frame. */
434 if (cache
->base
== 0)
437 (*this_id
) = frame_id_build (cache
->base
, cache
->pc
);
440 static struct value
*
441 lm32_frame_prev_register (const frame_info_ptr
&this_frame
,
442 void **this_prologue_cache
, int regnum
)
444 struct lm32_frame_cache
*info
;
446 info
= lm32_frame_cache (this_frame
, this_prologue_cache
);
447 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
450 static const struct frame_unwind lm32_frame_unwind
= {
453 default_frame_unwind_stop_reason
,
455 lm32_frame_prev_register
,
457 default_frame_sniffer
461 lm32_frame_base_address (const frame_info_ptr
&this_frame
, void **this_cache
)
463 struct lm32_frame_cache
*info
= lm32_frame_cache (this_frame
, this_cache
);
468 static const struct frame_base lm32_frame_base
= {
470 lm32_frame_base_address
,
471 lm32_frame_base_address
,
472 lm32_frame_base_address
476 lm32_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
478 /* Align to the size of an instruction (so that they can safely be
479 pushed onto the stack. */
483 static struct gdbarch
*
484 lm32_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
486 /* If there is already a candidate, use it. */
487 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
489 return arches
->gdbarch
;
491 /* None found, create a new architecture from the information provided. */
493 = gdbarch_alloc (&info
, gdbarch_tdep_up (new lm32_gdbarch_tdep
));
496 set_gdbarch_short_bit (gdbarch
, 16);
497 set_gdbarch_int_bit (gdbarch
, 32);
498 set_gdbarch_long_bit (gdbarch
, 32);
499 set_gdbarch_long_long_bit (gdbarch
, 64);
500 set_gdbarch_float_bit (gdbarch
, 32);
501 set_gdbarch_double_bit (gdbarch
, 64);
502 set_gdbarch_long_double_bit (gdbarch
, 64);
503 set_gdbarch_ptr_bit (gdbarch
, 32);
506 set_gdbarch_num_regs (gdbarch
, SIM_LM32_NUM_REGS
);
507 set_gdbarch_sp_regnum (gdbarch
, SIM_LM32_SP_REGNUM
);
508 set_gdbarch_pc_regnum (gdbarch
, SIM_LM32_PC_REGNUM
);
509 set_gdbarch_register_name (gdbarch
, lm32_register_name
);
510 set_gdbarch_register_type (gdbarch
, lm32_register_type
);
511 set_gdbarch_cannot_store_register (gdbarch
, lm32_cannot_store_register
);
514 set_gdbarch_skip_prologue (gdbarch
, lm32_skip_prologue
);
515 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
516 set_gdbarch_decr_pc_after_break (gdbarch
, 0);
517 set_gdbarch_frame_args_skip (gdbarch
, 0);
519 /* Frame unwinding. */
520 set_gdbarch_frame_align (gdbarch
, lm32_frame_align
);
521 frame_base_set_default (gdbarch
, &lm32_frame_base
);
522 frame_unwind_append_unwinder (gdbarch
, &lm32_frame_unwind
);
525 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, lm32_breakpoint::kind_from_pc
);
526 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, lm32_breakpoint::bp_from_kind
);
527 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
529 /* Calling functions in the inferior. */
530 set_gdbarch_push_dummy_call (gdbarch
, lm32_push_dummy_call
);
531 set_gdbarch_return_value (gdbarch
, lm32_return_value
);
533 set_gdbarch_register_reggroup_p (gdbarch
, lm32_register_reggroup_p
);
538 void _initialize_lm32_tdep ();
540 _initialize_lm32_tdep ()
542 gdbarch_register (bfd_arch_lm32
, lm32_gdbarch_init
);