1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2024 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "extract-store-integer.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2/frame.h"
32 #include "cli/cli-cmds.h"
39 #include "arch-utils.h"
42 #include "target-descriptions.h"
44 /* To get entry_point_address. */
48 /* Nios II specific header. */
49 #include "nios2-tdep.h"
51 #include "features/nios2.c"
53 /* Control debugging information emitted in this file. */
55 static bool nios2_debug
= false;
57 /* The following structures are used in the cache for prologue
58 analysis; see the reg_value and reg_saved tables in
59 struct nios2_unwind_cache, respectively. */
61 /* struct reg_value is used to record that a register has reg's initial
62 value at the start of a function plus the given constant offset.
63 If reg == 0, then the value is just the offset.
64 If reg < 0, then the value is unknown. */
72 /* struct reg_saved is used to record that a register value has been saved at
73 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
74 that the register is not known to have been saved. Note that when
75 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
76 addr is an absolute address. */
84 struct nios2_unwind_cache
86 /* The frame's base, optionally used by the high-level debug info. */
89 /* The previous frame's inner most stack address. Used as this
90 frame ID's stack_addr. */
93 /* The address of the first instruction in this function. */
96 /* Which register holds the return address for the frame. */
99 /* Table indicating what changes have been made to each register. */
100 struct reg_value reg_value
[NIOS2_NUM_REGS
];
102 /* Table indicating where each register has been saved. */
103 struct reg_saved reg_saved
[NIOS2_NUM_REGS
];
107 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
109 static int nios2_dwarf2gdb_regno_map
[] =
118 NIOS2_GP_REGNUM
, /* 26 */
119 NIOS2_SP_REGNUM
, /* 27 */
120 NIOS2_FP_REGNUM
, /* 28 */
121 NIOS2_EA_REGNUM
, /* 29 */
122 NIOS2_BA_REGNUM
, /* 30 */
123 NIOS2_RA_REGNUM
, /* 31 */
124 NIOS2_PC_REGNUM
, /* 32 */
125 NIOS2_STATUS_REGNUM
, /* 33 */
126 NIOS2_ESTATUS_REGNUM
, /* 34 */
127 NIOS2_BSTATUS_REGNUM
, /* 35 */
128 NIOS2_IENABLE_REGNUM
, /* 36 */
129 NIOS2_IPENDING_REGNUM
, /* 37 */
130 NIOS2_CPUID_REGNUM
, /* 38 */
131 39, /* CTL6 */ /* 39 */
132 NIOS2_EXCEPTION_REGNUM
, /* 40 */
133 NIOS2_PTEADDR_REGNUM
, /* 41 */
134 NIOS2_TLBACC_REGNUM
, /* 42 */
135 NIOS2_TLBMISC_REGNUM
, /* 43 */
136 NIOS2_ECCINJ_REGNUM
, /* 44 */
137 NIOS2_BADADDR_REGNUM
, /* 45 */
138 NIOS2_CONFIG_REGNUM
, /* 46 */
139 NIOS2_MPUBASE_REGNUM
, /* 47 */
140 NIOS2_MPUACC_REGNUM
/* 48 */
143 static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map
) == NIOS2_NUM_REGS
);
145 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
148 nios2_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int dw_reg
)
150 if (dw_reg
< 0 || dw_reg
>= NIOS2_NUM_REGS
)
153 return nios2_dwarf2gdb_regno_map
[dw_reg
];
156 /* Canonical names for the 49 registers. */
158 static const char *const nios2_reg_names
[NIOS2_NUM_REGS
] =
160 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
163 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
165 "status", "estatus", "bstatus", "ienable",
166 "ipending", "cpuid", "ctl6", "exception",
167 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
168 "badaddr", "config", "mpubase", "mpuacc"
171 /* Implement the register_name gdbarch method. */
174 nios2_register_name (struct gdbarch
*gdbarch
, int regno
)
176 /* Use mnemonic aliases for GPRs. */
177 if (regno
< NIOS2_NUM_REGS
)
178 return nios2_reg_names
[regno
];
180 return tdesc_register_name (gdbarch
, regno
);
183 /* Implement the register_type gdbarch method. */
186 nios2_register_type (struct gdbarch
*gdbarch
, int regno
)
188 /* If the XML description has register information, use that to
189 determine the register type. */
190 if (tdesc_has_registers (gdbarch_target_desc (gdbarch
)))
191 return tdesc_register_type (gdbarch
, regno
);
193 if (regno
== NIOS2_PC_REGNUM
)
194 return builtin_type (gdbarch
)->builtin_func_ptr
;
195 else if (regno
== NIOS2_SP_REGNUM
)
196 return builtin_type (gdbarch
)->builtin_data_ptr
;
198 return builtin_type (gdbarch
)->builtin_uint32
;
201 /* Given a return value in REGCACHE with a type VALTYPE,
202 extract and copy its value into VALBUF. */
205 nios2_extract_return_value (struct gdbarch
*gdbarch
, struct type
*valtype
,
206 struct regcache
*regcache
, gdb_byte
*valbuf
)
208 int len
= valtype
->length ();
210 /* Return values of up to 8 bytes are returned in $r2 $r3. */
211 if (len
<= register_size (gdbarch
, NIOS2_R2_REGNUM
))
212 regcache
->cooked_read (NIOS2_R2_REGNUM
, valbuf
);
215 gdb_assert (len
<= (register_size (gdbarch
, NIOS2_R2_REGNUM
)
216 + register_size (gdbarch
, NIOS2_R3_REGNUM
)));
217 regcache
->cooked_read (NIOS2_R2_REGNUM
, valbuf
);
218 regcache
->cooked_read (NIOS2_R3_REGNUM
, valbuf
+ 4);
222 /* Write into appropriate registers a function return value
223 of type TYPE, given in virtual format. */
226 nios2_store_return_value (struct gdbarch
*gdbarch
, struct type
*valtype
,
227 struct regcache
*regcache
, const gdb_byte
*valbuf
)
229 int len
= valtype
->length ();
231 /* Return values of up to 8 bytes are returned in $r2 $r3. */
232 if (len
<= register_size (gdbarch
, NIOS2_R2_REGNUM
))
233 regcache
->cooked_write (NIOS2_R2_REGNUM
, valbuf
);
236 gdb_assert (len
<= (register_size (gdbarch
, NIOS2_R2_REGNUM
)
237 + register_size (gdbarch
, NIOS2_R3_REGNUM
)));
238 regcache
->cooked_write (NIOS2_R2_REGNUM
, valbuf
);
239 regcache
->cooked_write (NIOS2_R3_REGNUM
, valbuf
+ 4);
244 /* Set up the default values of the registers. */
247 nios2_setup_default (struct nios2_unwind_cache
*cache
)
251 for (i
= 0; i
< NIOS2_NUM_REGS
; i
++)
253 /* All registers start off holding their previous values. */
254 cache
->reg_value
[i
].reg
= i
;
255 cache
->reg_value
[i
].offset
= 0;
257 /* All registers start off not saved. */
258 cache
->reg_saved
[i
].basereg
= -1;
259 cache
->reg_saved
[i
].addr
= 0;
263 /* Initialize the unwind cache. */
266 nios2_init_cache (struct nios2_unwind_cache
*cache
, CORE_ADDR pc
)
271 cache
->return_regnum
= NIOS2_RA_REGNUM
;
272 nios2_setup_default (cache
);
275 /* Read and identify an instruction at PC. If INSNP is non-null,
276 store the instruction word into that location. Return the opcode
277 pointer or NULL if the memory couldn't be read or disassembled. */
279 static const struct nios2_opcode
*
280 nios2_fetch_insn (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
284 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
287 if (mach
== bfd_mach_nios2r2
)
289 if (!safe_read_memory_integer (pc
, NIOS2_OPCODE_SIZE
,
290 BFD_ENDIAN_LITTLE
, &memword
)
291 && !safe_read_memory_integer (pc
, NIOS2_CDX_OPCODE_SIZE
,
292 BFD_ENDIAN_LITTLE
, &memword
))
295 else if (!safe_read_memory_integer (pc
, NIOS2_OPCODE_SIZE
,
296 gdbarch_byte_order (gdbarch
), &memword
))
299 insn
= (unsigned int) memword
;
302 return nios2_find_opcode_hash (insn
, mach
);
306 /* Match and disassemble an ADD-type instruction, with 3 register operands.
307 Returns true on success, and fills in the operand pointers. */
310 nios2_match_add (uint32_t insn
, const struct nios2_opcode
*op
,
311 unsigned long mach
, int *ra
, int *rb
, int *rc
)
313 int is_r2
= (mach
== bfd_mach_nios2r2
);
315 if (!is_r2
&& (op
->match
== MATCH_R1_ADD
|| op
->match
== MATCH_R1_MOV
))
317 *ra
= GET_IW_R_A (insn
);
318 *rb
= GET_IW_R_B (insn
);
319 *rc
= GET_IW_R_C (insn
);
324 else if (op
->match
== MATCH_R2_ADD
|| op
->match
== MATCH_R2_MOV
)
326 *ra
= GET_IW_F3X6L5_A (insn
);
327 *rb
= GET_IW_F3X6L5_B (insn
);
328 *rc
= GET_IW_F3X6L5_C (insn
);
331 else if (op
->match
== MATCH_R2_ADD_N
)
333 *ra
= nios2_r2_reg3_mappings
[GET_IW_T3X1_A3 (insn
)];
334 *rb
= nios2_r2_reg3_mappings
[GET_IW_T3X1_B3 (insn
)];
335 *rc
= nios2_r2_reg3_mappings
[GET_IW_T3X1_C3 (insn
)];
338 else if (op
->match
== MATCH_R2_MOV_N
)
340 *ra
= GET_IW_F2_A (insn
);
342 *rc
= GET_IW_F2_B (insn
);
348 /* Match and disassemble a SUB-type instruction, with 3 register operands.
349 Returns true on success, and fills in the operand pointers. */
352 nios2_match_sub (uint32_t insn
, const struct nios2_opcode
*op
,
353 unsigned long mach
, int *ra
, int *rb
, int *rc
)
355 int is_r2
= (mach
== bfd_mach_nios2r2
);
357 if (!is_r2
&& op
->match
== MATCH_R1_SUB
)
359 *ra
= GET_IW_R_A (insn
);
360 *rb
= GET_IW_R_B (insn
);
361 *rc
= GET_IW_R_C (insn
);
366 else if (op
->match
== MATCH_R2_SUB
)
368 *ra
= GET_IW_F3X6L5_A (insn
);
369 *rb
= GET_IW_F3X6L5_B (insn
);
370 *rc
= GET_IW_F3X6L5_C (insn
);
373 else if (op
->match
== MATCH_R2_SUB_N
)
375 *ra
= nios2_r2_reg3_mappings
[GET_IW_T3X1_A3 (insn
)];
376 *rb
= nios2_r2_reg3_mappings
[GET_IW_T3X1_B3 (insn
)];
377 *rc
= nios2_r2_reg3_mappings
[GET_IW_T3X1_C3 (insn
)];
383 /* Match and disassemble an ADDI-type instruction, with 2 register operands
384 and one immediate operand.
385 Returns true on success, and fills in the operand pointers. */
388 nios2_match_addi (uint32_t insn
, const struct nios2_opcode
*op
,
389 unsigned long mach
, int *ra
, int *rb
, int *imm
)
391 int is_r2
= (mach
== bfd_mach_nios2r2
);
393 if (!is_r2
&& op
->match
== MATCH_R1_ADDI
)
395 *ra
= GET_IW_I_A (insn
);
396 *rb
= GET_IW_I_B (insn
);
397 *imm
= (signed) (GET_IW_I_IMM16 (insn
) << 16) >> 16;
402 else if (op
->match
== MATCH_R2_ADDI
)
404 *ra
= GET_IW_F2I16_A (insn
);
405 *rb
= GET_IW_F2I16_B (insn
);
406 *imm
= (signed) (GET_IW_F2I16_IMM16 (insn
) << 16) >> 16;
409 else if (op
->match
== MATCH_R2_ADDI_N
|| op
->match
== MATCH_R2_SUBI_N
)
411 *ra
= nios2_r2_reg3_mappings
[GET_IW_T2X1I3_A3 (insn
)];
412 *rb
= nios2_r2_reg3_mappings
[GET_IW_T2X1I3_B3 (insn
)];
413 *imm
= nios2_r2_asi_n_mappings
[GET_IW_T2X1I3_IMM3 (insn
)];
414 if (op
->match
== MATCH_R2_SUBI_N
)
418 else if (op
->match
== MATCH_R2_SPADDI_N
)
420 *ra
= nios2_r2_reg3_mappings
[GET_IW_T1I7_A3 (insn
)];
421 *rb
= NIOS2_SP_REGNUM
;
422 *imm
= GET_IW_T1I7_IMM7 (insn
) << 2;
425 else if (op
->match
== MATCH_R2_SPINCI_N
|| op
->match
== MATCH_R2_SPDECI_N
)
427 *ra
= NIOS2_SP_REGNUM
;
428 *rb
= NIOS2_SP_REGNUM
;
429 *imm
= GET_IW_X1I7_IMM7 (insn
) << 2;
430 if (op
->match
== MATCH_R2_SPDECI_N
)
437 /* Match and disassemble an ORHI-type instruction, with 2 register operands
438 and one unsigned immediate operand.
439 Returns true on success, and fills in the operand pointers. */
442 nios2_match_orhi (uint32_t insn
, const struct nios2_opcode
*op
,
443 unsigned long mach
, int *ra
, int *rb
, unsigned int *uimm
)
445 int is_r2
= (mach
== bfd_mach_nios2r2
);
447 if (!is_r2
&& op
->match
== MATCH_R1_ORHI
)
449 *ra
= GET_IW_I_A (insn
);
450 *rb
= GET_IW_I_B (insn
);
451 *uimm
= GET_IW_I_IMM16 (insn
);
456 else if (op
->match
== MATCH_R2_ORHI
)
458 *ra
= GET_IW_F2I16_A (insn
);
459 *rb
= GET_IW_F2I16_B (insn
);
460 *uimm
= GET_IW_F2I16_IMM16 (insn
);
466 /* Match and disassemble a STW-type instruction, with 2 register operands
467 and one immediate operand.
468 Returns true on success, and fills in the operand pointers. */
471 nios2_match_stw (uint32_t insn
, const struct nios2_opcode
*op
,
472 unsigned long mach
, int *ra
, int *rb
, int *imm
)
474 int is_r2
= (mach
== bfd_mach_nios2r2
);
476 if (!is_r2
&& (op
->match
== MATCH_R1_STW
|| op
->match
== MATCH_R1_STWIO
))
478 *ra
= GET_IW_I_A (insn
);
479 *rb
= GET_IW_I_B (insn
);
480 *imm
= (signed) (GET_IW_I_IMM16 (insn
) << 16) >> 16;
485 else if (op
->match
== MATCH_R2_STW
)
487 *ra
= GET_IW_F2I16_A (insn
);
488 *rb
= GET_IW_F2I16_B (insn
);
489 *imm
= (signed) (GET_IW_F2I16_IMM16 (insn
) << 16) >> 16;
492 else if (op
->match
== MATCH_R2_STWIO
)
494 *ra
= GET_IW_F2X4I12_A (insn
);
495 *rb
= GET_IW_F2X4I12_B (insn
);
496 *imm
= (signed) (GET_IW_F2X4I12_IMM12 (insn
) << 20) >> 20;
499 else if (op
->match
== MATCH_R2_STW_N
)
501 *ra
= nios2_r2_reg3_mappings
[GET_IW_T2I4_A3 (insn
)];
502 *rb
= nios2_r2_reg3_mappings
[GET_IW_T2I4_B3 (insn
)];
503 *imm
= GET_IW_T2I4_IMM4 (insn
) << 2;
506 else if (op
->match
== MATCH_R2_STWSP_N
)
508 *ra
= NIOS2_SP_REGNUM
;
509 *rb
= GET_IW_F1I5_B (insn
);
510 *imm
= GET_IW_F1I5_IMM5 (insn
) << 2;
513 else if (op
->match
== MATCH_R2_STWZ_N
)
515 *ra
= nios2_r2_reg3_mappings
[GET_IW_T1X1I6_A3 (insn
)];
517 *imm
= GET_IW_T1X1I6_IMM6 (insn
) << 2;
523 /* Match and disassemble a LDW-type instruction, with 2 register operands
524 and one immediate operand.
525 Returns true on success, and fills in the operand pointers. */
528 nios2_match_ldw (uint32_t insn
, const struct nios2_opcode
*op
,
529 unsigned long mach
, int *ra
, int *rb
, int *imm
)
531 int is_r2
= (mach
== bfd_mach_nios2r2
);
533 if (!is_r2
&& (op
->match
== MATCH_R1_LDW
|| op
->match
== MATCH_R1_LDWIO
))
535 *ra
= GET_IW_I_A (insn
);
536 *rb
= GET_IW_I_B (insn
);
537 *imm
= (signed) (GET_IW_I_IMM16 (insn
) << 16) >> 16;
542 else if (op
->match
== MATCH_R2_LDW
)
544 *ra
= GET_IW_F2I16_A (insn
);
545 *rb
= GET_IW_F2I16_B (insn
);
546 *imm
= (signed) (GET_IW_F2I16_IMM16 (insn
) << 16) >> 16;
549 else if (op
->match
== MATCH_R2_LDWIO
)
551 *ra
= GET_IW_F2X4I12_A (insn
);
552 *rb
= GET_IW_F2X4I12_B (insn
);
553 *imm
= (signed) (GET_IW_F2X4I12_IMM12 (insn
) << 20) >> 20;
556 else if (op
->match
== MATCH_R2_LDW_N
)
558 *ra
= nios2_r2_reg3_mappings
[GET_IW_T2I4_A3 (insn
)];
559 *rb
= nios2_r2_reg3_mappings
[GET_IW_T2I4_B3 (insn
)];
560 *imm
= GET_IW_T2I4_IMM4 (insn
) << 2;
563 else if (op
->match
== MATCH_R2_LDWSP_N
)
565 *ra
= NIOS2_SP_REGNUM
;
566 *rb
= GET_IW_F1I5_B (insn
);
567 *imm
= GET_IW_F1I5_IMM5 (insn
) << 2;
573 /* Match and disassemble a RDCTL instruction, with 2 register operands.
574 Returns true on success, and fills in the operand pointers. */
577 nios2_match_rdctl (uint32_t insn
, const struct nios2_opcode
*op
,
578 unsigned long mach
, int *ra
, int *rc
)
580 int is_r2
= (mach
== bfd_mach_nios2r2
);
582 if (!is_r2
&& (op
->match
== MATCH_R1_RDCTL
))
584 *ra
= GET_IW_R_IMM5 (insn
);
585 *rc
= GET_IW_R_C (insn
);
590 else if (op
->match
== MATCH_R2_RDCTL
)
592 *ra
= GET_IW_F3X6L5_IMM5 (insn
);
593 *rc
= GET_IW_F3X6L5_C (insn
);
599 /* Match and disassemble a PUSH.N or STWM instruction.
600 Returns true on success, and fills in the operand pointers. */
603 nios2_match_stwm (uint32_t insn
, const struct nios2_opcode
*op
,
604 unsigned long mach
, unsigned int *reglist
,
605 int *ra
, int *imm
, int *wb
, int *id
)
607 int is_r2
= (mach
== bfd_mach_nios2r2
);
611 else if (op
->match
== MATCH_R2_PUSH_N
)
614 if (GET_IW_L5I4X1_FP (insn
))
615 *reglist
|= (1 << 28);
616 if (GET_IW_L5I4X1_CS (insn
))
618 int val
= GET_IW_L5I4X1_REGRANGE (insn
);
619 *reglist
|= nios2_r2_reg_range_mappings
[val
];
621 *ra
= NIOS2_SP_REGNUM
;
622 *imm
= GET_IW_L5I4X1_IMM4 (insn
) << 2;
627 else if (op
->match
== MATCH_R2_STWM
)
629 unsigned int rawmask
= GET_IW_F1X4L17_REGMASK (insn
);
630 if (GET_IW_F1X4L17_RS (insn
))
632 *reglist
= ((rawmask
<< 14) & 0x00ffc000);
633 if (rawmask
& (1 << 10))
634 *reglist
|= (1 << 28);
635 if (rawmask
& (1 << 11))
636 *reglist
|= (1 << 31);
639 *reglist
= rawmask
<< 2;
640 *ra
= GET_IW_F1X4L17_A (insn
);
642 *wb
= GET_IW_F1X4L17_WB (insn
);
643 *id
= GET_IW_F1X4L17_ID (insn
);
649 /* Match and disassemble a POP.N or LDWM instruction.
650 Returns true on success, and fills in the operand pointers. */
653 nios2_match_ldwm (uint32_t insn
, const struct nios2_opcode
*op
,
654 unsigned long mach
, unsigned int *reglist
,
655 int *ra
, int *imm
, int *wb
, int *id
, int *ret
)
657 int is_r2
= (mach
== bfd_mach_nios2r2
);
661 else if (op
->match
== MATCH_R2_POP_N
)
664 if (GET_IW_L5I4X1_FP (insn
))
665 *reglist
|= (1 << 28);
666 if (GET_IW_L5I4X1_CS (insn
))
668 int val
= GET_IW_L5I4X1_REGRANGE (insn
);
669 *reglist
|= nios2_r2_reg_range_mappings
[val
];
671 *ra
= NIOS2_SP_REGNUM
;
672 *imm
= GET_IW_L5I4X1_IMM4 (insn
) << 2;
678 else if (op
->match
== MATCH_R2_LDWM
)
680 unsigned int rawmask
= GET_IW_F1X4L17_REGMASK (insn
);
681 if (GET_IW_F1X4L17_RS (insn
))
683 *reglist
= ((rawmask
<< 14) & 0x00ffc000);
684 if (rawmask
& (1 << 10))
685 *reglist
|= (1 << 28);
686 if (rawmask
& (1 << 11))
687 *reglist
|= (1 << 31);
690 *reglist
= rawmask
<< 2;
691 *ra
= GET_IW_F1X4L17_A (insn
);
693 *wb
= GET_IW_F1X4L17_WB (insn
);
694 *id
= GET_IW_F1X4L17_ID (insn
);
695 *ret
= GET_IW_F1X4L17_PC (insn
);
701 /* Match and disassemble a branch instruction, with (potentially)
702 2 register operands and one immediate operand.
703 Returns true on success, and fills in the operand pointers. */
705 enum branch_condition
{
716 nios2_match_branch (uint32_t insn
, const struct nios2_opcode
*op
,
717 unsigned long mach
, int *ra
, int *rb
, int *imm
,
718 enum branch_condition
*cond
)
720 int is_r2
= (mach
== bfd_mach_nios2r2
);
750 *imm
= (signed) (GET_IW_I_IMM16 (insn
) << 16) >> 16;
751 *ra
= GET_IW_I_A (insn
);
752 *rb
= GET_IW_I_B (insn
);
761 *ra
= NIOS2_Z_REGNUM
;
762 *rb
= NIOS2_Z_REGNUM
;
763 *imm
= (signed) ((GET_IW_I10_IMM10 (insn
) << 1) << 21) >> 21;
765 case MATCH_R2_BEQZ_N
:
767 *ra
= nios2_r2_reg3_mappings
[GET_IW_T1I7_A3 (insn
)];
768 *rb
= NIOS2_Z_REGNUM
;
769 *imm
= (signed) ((GET_IW_T1I7_IMM7 (insn
) << 1) << 24) >> 24;
771 case MATCH_R2_BNEZ_N
:
773 *ra
= nios2_r2_reg3_mappings
[GET_IW_T1I7_A3 (insn
)];
774 *rb
= NIOS2_Z_REGNUM
;
775 *imm
= (signed) ((GET_IW_T1I7_IMM7 (insn
) << 1) << 24) >> 24;
801 *ra
= GET_IW_F2I16_A (insn
);
802 *rb
= GET_IW_F2I16_B (insn
);
803 *imm
= (signed) (GET_IW_F2I16_IMM16 (insn
) << 16) >> 16;
809 /* Match and disassemble a direct jump instruction, with an
810 unsigned operand. Returns true on success, and fills in the operand
814 nios2_match_jmpi (uint32_t insn
, const struct nios2_opcode
*op
,
815 unsigned long mach
, unsigned int *uimm
)
817 int is_r2
= (mach
== bfd_mach_nios2r2
);
819 if (!is_r2
&& op
->match
== MATCH_R1_JMPI
)
821 *uimm
= GET_IW_J_IMM26 (insn
) << 2;
826 else if (op
->match
== MATCH_R2_JMPI
)
828 *uimm
= GET_IW_L26_IMM26 (insn
) << 2;
834 /* Match and disassemble a direct call instruction, with an
835 unsigned operand. Returns true on success, and fills in the operand
839 nios2_match_calli (uint32_t insn
, const struct nios2_opcode
*op
,
840 unsigned long mach
, unsigned int *uimm
)
842 int is_r2
= (mach
== bfd_mach_nios2r2
);
844 if (!is_r2
&& op
->match
== MATCH_R1_CALL
)
846 *uimm
= GET_IW_J_IMM26 (insn
) << 2;
851 else if (op
->match
== MATCH_R2_CALL
)
853 *uimm
= GET_IW_L26_IMM26 (insn
) << 2;
859 /* Match and disassemble an indirect jump instruction, with a
860 (possibly implicit) register operand. Returns true on success, and fills
861 in the operand pointer. */
864 nios2_match_jmpr (uint32_t insn
, const struct nios2_opcode
*op
,
865 unsigned long mach
, int *ra
)
867 int is_r2
= (mach
== bfd_mach_nios2r2
);
873 *ra
= GET_IW_I_A (insn
);
876 *ra
= NIOS2_RA_REGNUM
;
879 *ra
= NIOS2_EA_REGNUM
;
882 *ra
= NIOS2_BA_REGNUM
;
891 *ra
= GET_IW_F2I16_A (insn
);
893 case MATCH_R2_JMPR_N
:
894 *ra
= GET_IW_F1X1_A (insn
);
898 *ra
= NIOS2_RA_REGNUM
;
901 *ra
= NIOS2_EA_REGNUM
;
904 *ra
= NIOS2_BA_REGNUM
;
912 /* Match and disassemble an indirect call instruction, with a register
913 operand. Returns true on success, and fills in the operand pointer. */
916 nios2_match_callr (uint32_t insn
, const struct nios2_opcode
*op
,
917 unsigned long mach
, int *ra
)
919 int is_r2
= (mach
== bfd_mach_nios2r2
);
921 if (!is_r2
&& op
->match
== MATCH_R1_CALLR
)
923 *ra
= GET_IW_I_A (insn
);
928 else if (op
->match
== MATCH_R2_CALLR
)
930 *ra
= GET_IW_F2I16_A (insn
);
933 else if (op
->match
== MATCH_R2_CALLR_N
)
935 *ra
= GET_IW_F1X1_A (insn
);
941 /* Match and disassemble a break instruction, with an unsigned operand.
942 Returns true on success, and fills in the operand pointer. */
945 nios2_match_break (uint32_t insn
, const struct nios2_opcode
*op
,
946 unsigned long mach
, unsigned int *uimm
)
948 int is_r2
= (mach
== bfd_mach_nios2r2
);
950 if (!is_r2
&& op
->match
== MATCH_R1_BREAK
)
952 *uimm
= GET_IW_R_IMM5 (insn
);
957 else if (op
->match
== MATCH_R2_BREAK
)
959 *uimm
= GET_IW_F3X6L5_IMM5 (insn
);
962 else if (op
->match
== MATCH_R2_BREAK_N
)
964 *uimm
= GET_IW_X2L5_IMM5 (insn
);
970 /* Match and disassemble a trap instruction, with an unsigned operand.
971 Returns true on success, and fills in the operand pointer. */
974 nios2_match_trap (uint32_t insn
, const struct nios2_opcode
*op
,
975 unsigned long mach
, unsigned int *uimm
)
977 int is_r2
= (mach
== bfd_mach_nios2r2
);
979 if (!is_r2
&& op
->match
== MATCH_R1_TRAP
)
981 *uimm
= GET_IW_R_IMM5 (insn
);
986 else if (op
->match
== MATCH_R2_TRAP
)
988 *uimm
= GET_IW_F3X6L5_IMM5 (insn
);
991 else if (op
->match
== MATCH_R2_TRAP_N
)
993 *uimm
= GET_IW_X2L5_IMM5 (insn
);
999 /* Helper function to identify when we're in a function epilogue;
1000 that is, the part of the function from the point at which the
1001 stack adjustments are made, to the return or sibcall.
1002 Note that we may have several stack adjustment instructions, and
1003 this function needs to test whether the stack teardown has already
1004 started before current_pc, not whether it has completed. */
1007 nios2_in_epilogue_p (struct gdbarch
*gdbarch
,
1008 CORE_ADDR current_pc
,
1011 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
1012 int is_r2
= (mach
== bfd_mach_nios2r2
);
1013 /* Maximum number of possibly-epilogue instructions to check.
1014 Note that this number should not be too large, else we can
1015 potentially end up iterating through unmapped memory. */
1016 int ninsns
, max_insns
= 5;
1018 const struct nios2_opcode
*op
= NULL
;
1023 enum branch_condition cond
;
1026 /* There has to be a previous instruction in the function. */
1027 if (current_pc
<= start_pc
)
1030 /* Find the previous instruction before current_pc. For R2, it might
1031 be either a 16-bit or 32-bit instruction; the only way to know for
1032 sure is to scan through from the beginning of the function,
1033 disassembling as we go. */
1035 for (pc
= start_pc
; ; )
1037 op
= nios2_fetch_insn (gdbarch
, pc
, &insn
);
1040 if (pc
+ op
->size
< current_pc
)
1044 /* We can skip over insns to a forward branch target. Since
1045 the branch offset is relative to the next instruction,
1046 it's correct to do this after incrementing the pc above. */
1047 if (nios2_match_branch (insn
, op
, mach
, &ra
, &rb
, &imm
, &cond
)
1049 && pc
+ imm
< current_pc
)
1052 /* Otherwise just go back to the previous 32-bit insn. */
1054 pc
= current_pc
- NIOS2_OPCODE_SIZE
;
1056 /* Beginning with the previous instruction we just located, check whether
1057 we are in a sequence of at least one stack adjustment instruction.
1058 Possible instructions here include:
1064 LDWM {reglist}, (sp)++, wb */
1065 for (ninsns
= 0; ninsns
< max_insns
; ninsns
++)
1069 /* Fetch the insn at pc. */
1070 op
= nios2_fetch_insn (gdbarch
, pc
, &insn
);
1075 /* Was it a stack adjustment? */
1076 if (nios2_match_addi (insn
, op
, mach
, &ra
, &rb
, &imm
))
1077 ok
= (rb
== NIOS2_SP_REGNUM
);
1078 else if (nios2_match_add (insn
, op
, mach
, &ra
, &rb
, &rc
))
1079 ok
= (rc
== NIOS2_SP_REGNUM
);
1080 else if (nios2_match_ldw (insn
, op
, mach
, &ra
, &rb
, &imm
))
1081 ok
= (rb
== NIOS2_SP_REGNUM
);
1082 else if (nios2_match_ldwm (insn
, op
, mach
, &uimm
, &ra
,
1083 &imm
, &wb
, &ret
, &id
))
1084 ok
= (ra
== NIOS2_SP_REGNUM
&& wb
&& id
);
1089 /* No stack adjustments found. */
1093 /* We found more stack adjustments than we expect GCC to be generating.
1094 Since it looks like a stack unwind might be in progress tell GDB to
1095 treat it as such. */
1096 if (ninsns
== max_insns
)
1099 /* The next instruction following the stack adjustments must be a
1100 return, jump, or unconditional branch, or a CDX pop.n or ldwm
1101 that does an implicit return. */
1102 if (nios2_match_jmpr (insn
, op
, mach
, &ra
)
1103 || nios2_match_jmpi (insn
, op
, mach
, &uimm
)
1104 || (nios2_match_ldwm (insn
, op
, mach
, &uimm
, &ra
, &imm
, &wb
, &id
, &ret
)
1106 || (nios2_match_branch (insn
, op
, mach
, &ra
, &rb
, &imm
, &cond
)
1107 && cond
== branch_none
))
1113 /* Implement the stack_frame_destroyed_p gdbarch method. */
1116 nios2_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1118 CORE_ADDR func_addr
;
1120 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
1121 return nios2_in_epilogue_p (gdbarch
, pc
, func_addr
);
1126 /* Do prologue analysis, returning the PC of the first instruction
1127 after the function prologue. Assumes CACHE has already been
1128 initialized. THIS_FRAME can be null, in which case we are only
1129 interested in skipping the prologue. Otherwise CACHE is filled in
1130 from the frame information.
1132 The prologue may consist of the following parts:
1133 1) Profiling instrumentation. For non-PIC code it looks like:
1138 2) A stack adjustment and save of R4-R7 for varargs functions.
1139 For R2 CDX this is typically handled with a STWM, otherwise
1140 this is typically merged with item 3.
1142 3) A stack adjustment and save of the callee-saved registers.
1143 For R2 CDX these are typically handled with a PUSH.N or STWM,
1144 otherwise as an explicit SP decrement and individual register
1147 There may also be a stack switch here in an exception handler
1148 in place of a stack adjustment. It looks like:
1149 movhi rx, %hiadj(newstack)
1150 addhi rx, rx, %lo(newstack)
1151 stw sp, constant(rx)
1154 4) A frame pointer save, which can be either a MOV or ADDI.
1156 5) A further stack pointer adjustment. This is normally included
1157 adjustment in step 3 unless the total adjustment is too large
1158 to be done in one step.
1160 7) A stack overflow check, which can take either of these forms:
1164 bltu sp, rx, .Lstack_overflow
1169 Older versions of GCC emitted "break 3" instead of "trap 3" here,
1170 so we check for both cases.
1172 Older GCC versions emitted stack overflow checks after the SP
1173 adjustments in both steps 3 and 4. Starting with GCC 6, there is
1174 at most one overflow check, which is placed before the first
1175 stack adjustment for R2 CDX and after the first stack adjustment
1178 The prologue instructions may be combined or interleaved with other
1181 To cope with all this variability we decode all the instructions
1182 from the start of the prologue until we hit an instruction that
1183 cannot possibly be a prologue instruction, such as a branch, call,
1184 return, or epilogue instruction. The prologue is considered to end
1185 at the last instruction that can definitely be considered a
1186 prologue instruction. */
1189 nios2_analyze_prologue (struct gdbarch
*gdbarch
, const CORE_ADDR start_pc
,
1190 const CORE_ADDR current_pc
,
1191 struct nios2_unwind_cache
*cache
,
1192 const frame_info_ptr
&this_frame
)
1194 /* Maximum number of possibly-prologue instructions to check.
1195 Note that this number should not be too large, else we can
1196 potentially end up iterating through unmapped memory. */
1197 int ninsns
, max_insns
= 50;
1198 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1199 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
1201 /* Does the frame set up the FP register? */
1204 struct reg_value
*value
= cache
->reg_value
;
1205 struct reg_value temp_value
[NIOS2_NUM_REGS
];
1207 /* Save the starting PC so we can correct the pc after running
1208 through the prolog, using symbol info. */
1209 CORE_ADDR pc
= start_pc
;
1211 /* Is this an exception handler? */
1212 int exception_handler
= 0;
1214 /* What was the original value of SP (or fake original value for
1215 functions which switch stacks? */
1216 CORE_ADDR frame_high
;
1218 /* The last definitely-prologue instruction seen. */
1219 CORE_ADDR prologue_end
;
1221 /* Is this the innermost function? */
1222 int innermost
= (this_frame
? (frame_relative_level (this_frame
) == 0) : 1);
1225 gdb_printf (gdb_stdlog
,
1226 "{ nios2_analyze_prologue start=%s, current=%s ",
1227 paddress (gdbarch
, start_pc
),
1228 paddress (gdbarch
, current_pc
));
1230 /* Set up the default values of the registers. */
1231 nios2_setup_default (cache
);
1233 /* Find the prologue instructions. */
1234 prologue_end
= start_pc
;
1235 for (ninsns
= 0; ninsns
< max_insns
; ninsns
++)
1237 /* Present instruction. */
1239 const struct nios2_opcode
*op
;
1240 int ra
, rb
, rc
, imm
;
1242 unsigned int reglist
;
1244 enum branch_condition cond
;
1246 if (pc
== current_pc
)
1248 /* When we reach the current PC we must save the current
1249 register state (for the backtrace) but keep analysing
1250 because there might be more to find out (eg. is this an
1251 exception handler). */
1252 memcpy (temp_value
, value
, sizeof (temp_value
));
1255 gdb_printf (gdb_stdlog
, "*");
1258 op
= nios2_fetch_insn (gdbarch
, pc
, &insn
);
1260 /* Unknown opcode? Stop scanning. */
1268 gdb_printf (gdb_stdlog
, "[%04X]", insn
& 0xffff);
1270 gdb_printf (gdb_stdlog
, "[%08X]", insn
);
1273 /* The following instructions can appear in the prologue. */
1275 if (nios2_match_add (insn
, op
, mach
, &ra
, &rb
, &rc
))
1277 /* ADD rc, ra, rb (also used for MOV) */
1278 if (rc
== NIOS2_SP_REGNUM
1280 && value
[ra
].reg
== cache
->reg_saved
[NIOS2_SP_REGNUM
].basereg
)
1282 /* If the previous value of SP is available somewhere
1283 near the new stack pointer value then this is a
1286 /* If any registers were saved on the stack before then
1287 we can't backtrace into them now. */
1288 for (int i
= 0 ; i
< NIOS2_NUM_REGS
; i
++)
1290 if (cache
->reg_saved
[i
].basereg
== NIOS2_SP_REGNUM
)
1291 cache
->reg_saved
[i
].basereg
= -1;
1292 if (value
[i
].reg
== NIOS2_SP_REGNUM
)
1296 /* Create a fake "high water mark" 4 bytes above where SP
1297 was stored and fake up the registers to be consistent
1299 value
[NIOS2_SP_REGNUM
].reg
= NIOS2_SP_REGNUM
;
1300 value
[NIOS2_SP_REGNUM
].offset
1302 - cache
->reg_saved
[NIOS2_SP_REGNUM
].addr
1304 cache
->reg_saved
[NIOS2_SP_REGNUM
].basereg
= NIOS2_SP_REGNUM
;
1305 cache
->reg_saved
[NIOS2_SP_REGNUM
].addr
= -4;
1308 else if (rc
== NIOS2_SP_REGNUM
&& ra
== NIOS2_FP_REGNUM
)
1309 /* This is setting SP from FP. This only happens in the
1310 function epilogue. */
1315 if (value
[rb
].reg
== 0)
1316 value
[rc
].reg
= value
[ra
].reg
;
1317 else if (value
[ra
].reg
== 0)
1318 value
[rc
].reg
= value
[rb
].reg
;
1321 value
[rc
].offset
= value
[ra
].offset
+ value
[rb
].offset
;
1324 /* The add/move is only considered a prologue instruction
1325 if the destination is SP or FP. */
1326 if (rc
== NIOS2_SP_REGNUM
|| rc
== NIOS2_FP_REGNUM
)
1330 else if (nios2_match_sub (insn
, op
, mach
, &ra
, &rb
, &rc
))
1332 /* SUB rc, ra, rb */
1333 if (rc
== NIOS2_SP_REGNUM
&& rb
== NIOS2_SP_REGNUM
1334 && value
[rc
].reg
!= 0)
1335 /* If we are decrementing the SP by a non-constant amount,
1336 this is alloca, not part of the prologue. */
1340 if (value
[rb
].reg
== 0)
1341 value
[rc
].reg
= value
[ra
].reg
;
1344 value
[rc
].offset
= value
[ra
].offset
- value
[rb
].offset
;
1348 else if (nios2_match_addi (insn
, op
, mach
, &ra
, &rb
, &imm
))
1350 /* ADDI rb, ra, imm */
1352 /* A positive stack adjustment has to be part of the epilogue. */
1353 if (rb
== NIOS2_SP_REGNUM
1354 && (imm
> 0 || value
[ra
].reg
!= NIOS2_SP_REGNUM
))
1357 /* Likewise restoring SP from FP. */
1358 else if (rb
== NIOS2_SP_REGNUM
&& ra
== NIOS2_FP_REGNUM
)
1363 value
[rb
].reg
= value
[ra
].reg
;
1364 value
[rb
].offset
= value
[ra
].offset
+ imm
;
1367 /* The add is only considered a prologue instruction
1368 if the destination is SP or FP. */
1369 if (rb
== NIOS2_SP_REGNUM
|| rb
== NIOS2_FP_REGNUM
)
1373 else if (nios2_match_orhi (insn
, op
, mach
, &ra
, &rb
, &uimm
))
1375 /* ORHI rb, ra, uimm (also used for MOVHI) */
1378 value
[rb
].reg
= (value
[ra
].reg
== 0) ? 0 : -1;
1379 value
[rb
].offset
= value
[ra
].offset
| (uimm
<< 16);
1383 else if (nios2_match_stw (insn
, op
, mach
, &ra
, &rb
, &imm
))
1385 /* STW rb, imm(ra) */
1387 /* Are we storing the original value of a register to the stack?
1388 For exception handlers the value of EA-4 (return
1389 address from interrupts etc) is sometimes stored. */
1390 int orig
= value
[rb
].reg
;
1392 && (value
[rb
].offset
== 0
1393 || (orig
== NIOS2_EA_REGNUM
&& value
[rb
].offset
== -4))
1394 && value
[ra
].reg
== NIOS2_SP_REGNUM
)
1396 if (pc
< current_pc
)
1398 /* Save off callee saved registers. */
1399 cache
->reg_saved
[orig
].basereg
= value
[ra
].reg
;
1400 cache
->reg_saved
[orig
].addr
= value
[ra
].offset
+ imm
;
1405 if (orig
== NIOS2_EA_REGNUM
|| orig
== NIOS2_ESTATUS_REGNUM
)
1406 exception_handler
= 1;
1409 /* Non-stack memory writes cannot appear in the prologue. */
1413 else if (nios2_match_stwm (insn
, op
, mach
,
1414 ®list
, &ra
, &imm
, &wb
, &id
))
1416 /* PUSH.N {reglist}, adjust
1418 STWM {reglist}, --(SP)[, writeback] */
1421 if (ra
!= NIOS2_SP_REGNUM
|| id
!= 0)
1422 /* This is a non-stack-push memory write and cannot be
1423 part of the prologue. */
1426 for (int i
= 31; i
>= 0; i
--)
1427 if (reglist
& (1 << i
))
1429 int orig
= value
[i
].reg
;
1432 if (orig
> 0 && value
[i
].offset
== 0 && pc
< current_pc
)
1434 cache
->reg_saved
[orig
].basereg
1435 = value
[NIOS2_SP_REGNUM
].reg
;
1436 cache
->reg_saved
[orig
].addr
1437 = value
[NIOS2_SP_REGNUM
].offset
- off
;
1442 value
[NIOS2_SP_REGNUM
].offset
-= off
;
1443 value
[NIOS2_SP_REGNUM
].offset
-= imm
;
1448 else if (nios2_match_rdctl (insn
, op
, mach
, &ra
, &rc
))
1451 This can appear in exception handlers in combination with
1452 a subsequent save to the stack frame. */
1455 value
[rc
].reg
= NIOS2_STATUS_REGNUM
+ ra
;
1456 value
[rc
].offset
= 0;
1460 else if (nios2_match_calli (insn
, op
, mach
, &uimm
))
1462 if (value
[8].reg
== NIOS2_RA_REGNUM
1463 && value
[8].offset
== 0
1464 && value
[NIOS2_SP_REGNUM
].reg
== NIOS2_SP_REGNUM
1465 && value
[NIOS2_SP_REGNUM
].offset
== 0)
1467 /* A CALL instruction. This is treated as a call to mcount
1468 if ra has been stored into r8 beforehand and if it's
1469 before the stack adjust.
1470 Note mcount corrupts r2-r3, r9-r15 & ra. */
1471 for (int i
= 2 ; i
<= 3 ; i
++)
1473 for (int i
= 9 ; i
<= 15 ; i
++)
1475 value
[NIOS2_RA_REGNUM
].reg
= -1;
1480 /* Other calls are not part of the prologue. */
1485 else if (nios2_match_branch (insn
, op
, mach
, &ra
, &rb
, &imm
, &cond
))
1487 /* Branches not involving a stack overflow check aren't part of
1489 if (ra
!= NIOS2_SP_REGNUM
)
1491 else if (cond
== branch_geu
)
1495 This instruction sequence is used in stack checking;
1496 we can ignore it. */
1497 unsigned int next_insn
;
1498 const struct nios2_opcode
*next_op
1499 = nios2_fetch_insn (gdbarch
, pc
, &next_insn
);
1501 && (nios2_match_trap (next_insn
, op
, mach
, &uimm
)
1502 || nios2_match_break (next_insn
, op
, mach
, &uimm
)))
1503 pc
+= next_op
->size
;
1507 else if (cond
== branch_ltu
)
1509 /* BLTU sp, rx, .Lstackoverflow
1510 If the location branched to holds a TRAP or BREAK
1511 instruction then this is also stack overflow detection. */
1512 unsigned int next_insn
;
1513 const struct nios2_opcode
*next_op
1514 = nios2_fetch_insn (gdbarch
, pc
+ imm
, &next_insn
);
1516 && (nios2_match_trap (next_insn
, op
, mach
, &uimm
)
1517 || nios2_match_break (next_insn
, op
, mach
, &uimm
)))
1526 /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1528 else if (nios2_match_callr (insn
, op
, mach
, &ra
)
1529 || nios2_match_jmpr (insn
, op
, mach
, &ra
)
1530 || nios2_match_jmpi (insn
, op
, mach
, &uimm
)
1531 || (nios2_match_ldwm (insn
, op
, mach
, ®list
, &ra
,
1532 &imm
, &wb
, &id
, &ret
)
1534 || nios2_match_trap (insn
, op
, mach
, &uimm
)
1535 || nios2_match_break (insn
, op
, mach
, &uimm
))
1539 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1540 and are only interested in the PROLOGUE_END value, so just
1541 return that now and skip over the cache updates, which depend
1542 on having frame information. */
1543 if (this_frame
== NULL
)
1544 return prologue_end
;
1546 /* If we are in the function epilogue and have already popped
1547 registers off the stack in preparation for returning, then we
1548 want to go back to the original register values. */
1549 if (innermost
&& nios2_in_epilogue_p (gdbarch
, current_pc
, start_pc
))
1550 nios2_setup_default (cache
);
1552 /* Exception handlers use a different return address register. */
1553 if (exception_handler
)
1554 cache
->return_regnum
= NIOS2_EA_REGNUM
;
1557 gdb_printf (gdb_stdlog
, "\n-> retreg=%d, ", cache
->return_regnum
);
1559 if (cache
->reg_value
[NIOS2_FP_REGNUM
].reg
== NIOS2_SP_REGNUM
)
1560 /* If the FP now holds an offset from the CFA then this is a
1561 normal frame which uses the frame pointer. */
1562 base_reg
= NIOS2_FP_REGNUM
;
1563 else if (cache
->reg_value
[NIOS2_SP_REGNUM
].reg
== NIOS2_SP_REGNUM
)
1564 /* FP doesn't hold an offset from the CFA. If SP still holds an
1565 offset from the CFA then we might be in a function which omits
1566 the frame pointer, or we might be partway through the prologue.
1567 In both cases we can find the CFA using SP. */
1568 base_reg
= NIOS2_SP_REGNUM
;
1571 /* Somehow the stack pointer has been corrupted.
1574 gdb_printf (gdb_stdlog
, "<can't reach cfa> }\n");
1578 if (cache
->reg_value
[base_reg
].offset
== 0
1579 || cache
->reg_saved
[NIOS2_RA_REGNUM
].basereg
!= NIOS2_SP_REGNUM
1580 || cache
->reg_saved
[cache
->return_regnum
].basereg
!= NIOS2_SP_REGNUM
)
1582 /* If the frame didn't adjust the stack, didn't save RA or
1583 didn't save EA in an exception handler then it must either
1584 be a leaf function (doesn't call any other functions) or it
1585 can't return. If it has called another function then it
1586 can't be a leaf, so set base == 0 to indicate that we can't
1587 backtrace past it. */
1591 /* If it isn't the innermost function then it can't be a
1592 leaf, unless it was interrupted. Check whether RA for
1593 this frame is the same as PC. If so then it probably
1594 wasn't interrupted. */
1596 = get_frame_register_unsigned (this_frame
, NIOS2_RA_REGNUM
);
1598 if (ra
== current_pc
)
1603 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1604 paddress (gdbarch
, cache
->reg_value
[base_reg
].offset
),
1605 cache
->reg_saved
[NIOS2_RA_REGNUM
].basereg
,
1606 cache
->return_regnum
,
1607 cache
->reg_saved
[cache
->return_regnum
].basereg
);
1613 /* Get the value of whichever register we are using for the
1615 cache
->base
= get_frame_register_unsigned (this_frame
, base_reg
);
1617 /* What was the value of SP at the start of this function (or just
1618 after the stack switch). */
1619 frame_high
= cache
->base
- cache
->reg_value
[base_reg
].offset
;
1621 /* Adjust all the saved registers such that they contain addresses
1622 instead of offsets. */
1623 for (int i
= 0; i
< NIOS2_NUM_REGS
; i
++)
1624 if (cache
->reg_saved
[i
].basereg
== NIOS2_SP_REGNUM
)
1626 cache
->reg_saved
[i
].basereg
= NIOS2_Z_REGNUM
;
1627 cache
->reg_saved
[i
].addr
+= frame_high
;
1630 for (int i
= 0; i
< NIOS2_NUM_REGS
; i
++)
1631 if (cache
->reg_saved
[i
].basereg
== NIOS2_GP_REGNUM
)
1633 CORE_ADDR gp
= get_frame_register_unsigned (this_frame
,
1636 for ( ; i
< NIOS2_NUM_REGS
; i
++)
1637 if (cache
->reg_saved
[i
].basereg
== NIOS2_GP_REGNUM
)
1639 cache
->reg_saved
[i
].basereg
= NIOS2_Z_REGNUM
;
1640 cache
->reg_saved
[i
].addr
+= gp
;
1644 /* Work out what the value of SP was on the first instruction of
1645 this function. If we didn't switch stacks then this can be
1646 trivially computed from the base address. */
1647 if (cache
->reg_saved
[NIOS2_SP_REGNUM
].basereg
== NIOS2_Z_REGNUM
)
1649 = read_memory_unsigned_integer (cache
->reg_saved
[NIOS2_SP_REGNUM
].addr
,
1652 cache
->cfa
= frame_high
;
1654 /* Exception handlers restore ESTATUS into STATUS. */
1655 if (exception_handler
)
1657 cache
->reg_saved
[NIOS2_STATUS_REGNUM
]
1658 = cache
->reg_saved
[NIOS2_ESTATUS_REGNUM
];
1659 cache
->reg_saved
[NIOS2_ESTATUS_REGNUM
].basereg
= -1;
1663 gdb_printf (gdb_stdlog
, "cfa=%s }\n",
1664 paddress (gdbarch
, cache
->cfa
));
1666 return prologue_end
;
1669 /* Implement the skip_prologue gdbarch hook. */
1672 nios2_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1674 CORE_ADDR func_addr
;
1676 struct nios2_unwind_cache cache
;
1678 /* See if we can determine the end of the prologue via the symbol
1679 table. If so, then return either PC, or the PC after the
1680 prologue, whichever is greater. */
1681 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1683 CORE_ADDR post_prologue_pc
1684 = skip_prologue_using_sal (gdbarch
, func_addr
);
1686 if (post_prologue_pc
!= 0)
1687 return std::max (start_pc
, post_prologue_pc
);
1690 /* Prologue analysis does the rest.... */
1691 nios2_init_cache (&cache
, start_pc
);
1692 return nios2_analyze_prologue (gdbarch
, start_pc
, start_pc
, &cache
, NULL
);
1695 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1698 nios2_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
1700 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
1702 if (mach
== bfd_mach_nios2r2
)
1705 const struct nios2_opcode
*op
1706 = nios2_fetch_insn (gdbarch
, *pcptr
, &insn
);
1708 if (op
&& op
->size
== NIOS2_CDX_OPCODE_SIZE
)
1709 return NIOS2_CDX_OPCODE_SIZE
;
1711 return NIOS2_OPCODE_SIZE
;
1714 return NIOS2_OPCODE_SIZE
;
1717 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1719 static const gdb_byte
*
1720 nios2_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
1722 /* The Nios II ABI for Linux says: "Userspace programs should not use
1723 the break instruction and userspace debuggers should not insert
1724 one." and "Userspace breakpoints are accomplished using the trap
1725 instruction with immediate operand 31 (all ones)."
1727 So, we use "trap 31" consistently as the breakpoint on bare-metal
1728 as well as Linux targets. */
1730 /* R2 trap encoding:
1731 ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1733 CDX trap.n encoding:
1734 ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1736 Note that code is always little-endian on R2. */
1739 if (kind
== NIOS2_CDX_OPCODE_SIZE
)
1741 static const gdb_byte cdx_breakpoint_le
[] = {0xc9, 0xd7};
1743 return cdx_breakpoint_le
;
1747 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
1749 if (mach
== bfd_mach_nios2r2
)
1751 static const gdb_byte r2_breakpoint_le
[] = {0x20, 0x00, 0xfd, 0xb7};
1753 return r2_breakpoint_le
;
1757 enum bfd_endian byte_order_for_code
1758 = gdbarch_byte_order_for_code (gdbarch
);
1759 /* R1 trap encoding:
1760 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1762 static const gdb_byte r1_breakpoint_le
[] = {0xfa, 0x6f, 0x3b, 0x0};
1763 static const gdb_byte r1_breakpoint_be
[] = {0x0, 0x3b, 0x6f, 0xfa};
1765 if (byte_order_for_code
== BFD_ENDIAN_BIG
)
1766 return r1_breakpoint_be
;
1768 return r1_breakpoint_le
;
1773 /* Implement the frame_align gdbarch method. */
1776 nios2_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
1778 return align_down (addr
, 4);
1782 /* Implement the return_value gdbarch method. */
1784 static enum return_value_convention
1785 nios2_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
1786 struct type
*type
, struct regcache
*regcache
,
1787 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1789 if (type
->length () > 8)
1790 return RETURN_VALUE_STRUCT_CONVENTION
;
1793 nios2_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
1795 nios2_store_return_value (gdbarch
, type
, regcache
, writebuf
);
1797 return RETURN_VALUE_REGISTER_CONVENTION
;
1800 /* Implement the push_dummy_call gdbarch method. */
1803 nios2_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1804 struct regcache
*regcache
, CORE_ADDR bp_addr
,
1805 int nargs
, struct value
**args
, CORE_ADDR sp
,
1806 function_call_return_method return_method
,
1807 CORE_ADDR struct_addr
)
1812 int stack_offset
= 0;
1813 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1815 /* Set the return address register to point to the entry point of
1816 the program, where a breakpoint lies in wait. */
1817 regcache_cooked_write_signed (regcache
, NIOS2_RA_REGNUM
, bp_addr
);
1819 /* Now make space on the stack for the args. */
1820 for (argnum
= 0; argnum
< nargs
; argnum
++)
1821 arg_space
+= align_up (args
[argnum
]->type ()->length (), 4);
1824 /* Initialize the register pointer. */
1825 argreg
= NIOS2_FIRST_ARGREG
;
1827 /* The struct_return pointer occupies the first parameter-passing
1829 if (return_method
== return_method_struct
)
1830 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
1832 /* Now load as many as possible of the first arguments into
1833 registers, and push the rest onto the stack. Loop through args
1834 from first to last. */
1835 for (argnum
= 0; argnum
< nargs
; argnum
++)
1837 const gdb_byte
*val
;
1838 struct value
*arg
= args
[argnum
];
1839 struct type
*arg_type
= check_typedef (arg
->type ());
1840 int len
= arg_type
->length ();
1842 val
= arg
->contents ().data ();
1844 /* Copy the argument to general registers or the stack in
1845 register-sized pieces. Large arguments are split between
1846 registers and stack. */
1849 int partial_len
= (len
< 4 ? len
: 4);
1851 if (argreg
<= NIOS2_LAST_ARGREG
)
1853 /* The argument is being passed in a register. */
1854 CORE_ADDR regval
= extract_unsigned_integer (val
, partial_len
,
1857 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
1862 /* The argument is being passed on the stack. */
1863 CORE_ADDR addr
= sp
+ stack_offset
;
1865 write_memory (addr
, val
, partial_len
);
1866 stack_offset
+= align_up (partial_len
, 4);
1874 regcache_cooked_write_signed (regcache
, NIOS2_SP_REGNUM
, sp
);
1876 /* Return adjusted stack pointer. */
1880 /* Implement the unwind_pc gdbarch method. */
1883 nios2_unwind_pc (struct gdbarch
*gdbarch
, const frame_info_ptr
&next_frame
)
1887 frame_unwind_register (next_frame
, NIOS2_PC_REGNUM
, buf
);
1888 return extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
1891 /* Use prologue analysis to fill in the register cache
1892 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1893 *THIS_PROLOGUE_CACHE first. */
1895 static struct nios2_unwind_cache
*
1896 nios2_frame_unwind_cache (const frame_info_ptr
&this_frame
,
1897 void **this_prologue_cache
)
1899 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1900 CORE_ADDR current_pc
;
1901 struct nios2_unwind_cache
*cache
;
1903 if (*this_prologue_cache
)
1904 return (struct nios2_unwind_cache
*) *this_prologue_cache
;
1906 cache
= FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache
);
1907 *this_prologue_cache
= cache
;
1909 /* Zero all fields. */
1910 nios2_init_cache (cache
, get_frame_func (this_frame
));
1912 /* Prologue analysis does the rest... */
1913 current_pc
= get_frame_pc (this_frame
);
1915 nios2_analyze_prologue (gdbarch
, cache
->pc
, current_pc
, cache
, this_frame
);
1920 /* Implement the this_id function for the normal unwinder. */
1923 nios2_frame_this_id (const frame_info_ptr
&this_frame
, void **this_cache
,
1924 struct frame_id
*this_id
)
1926 struct nios2_unwind_cache
*cache
=
1927 nios2_frame_unwind_cache (this_frame
, this_cache
);
1929 /* This marks the outermost frame. */
1930 if (cache
->base
== 0)
1933 *this_id
= frame_id_build (cache
->cfa
, cache
->pc
);
1936 /* Implement the prev_register function for the normal unwinder. */
1938 static struct value
*
1939 nios2_frame_prev_register (const frame_info_ptr
&this_frame
, void **this_cache
,
1942 struct nios2_unwind_cache
*cache
=
1943 nios2_frame_unwind_cache (this_frame
, this_cache
);
1945 gdb_assert (regnum
>= 0 && regnum
< NIOS2_NUM_REGS
);
1947 /* The PC of the previous frame is stored in the RA register of
1948 the current frame. Frob regnum so that we pull the value from
1949 the correct place. */
1950 if (regnum
== NIOS2_PC_REGNUM
)
1951 regnum
= cache
->return_regnum
;
1953 if (regnum
== NIOS2_SP_REGNUM
&& cache
->cfa
)
1954 return frame_unwind_got_constant (this_frame
, regnum
, cache
->cfa
);
1956 /* If we've worked out where a register is stored then load it from
1958 if (cache
->reg_saved
[regnum
].basereg
== NIOS2_Z_REGNUM
)
1959 return frame_unwind_got_memory (this_frame
, regnum
,
1960 cache
->reg_saved
[regnum
].addr
);
1962 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1965 /* Implement the this_base, this_locals, and this_args hooks
1966 for the normal unwinder. */
1969 nios2_frame_base_address (const frame_info_ptr
&this_frame
, void **this_cache
)
1971 struct nios2_unwind_cache
*info
1972 = nios2_frame_unwind_cache (this_frame
, this_cache
);
1977 /* Data structures for the normal prologue-analysis-based
1980 static const struct frame_unwind nios2_frame_unwind
=
1984 default_frame_unwind_stop_reason
,
1985 nios2_frame_this_id
,
1986 nios2_frame_prev_register
,
1988 default_frame_sniffer
1991 static const struct frame_base nios2_frame_base
=
1993 &nios2_frame_unwind
,
1994 nios2_frame_base_address
,
1995 nios2_frame_base_address
,
1996 nios2_frame_base_address
1999 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2000 in the stub unwinder. */
2002 static struct trad_frame_cache
*
2003 nios2_stub_frame_cache (const frame_info_ptr
&this_frame
, void **this_cache
)
2006 CORE_ADDR start_addr
;
2007 CORE_ADDR stack_addr
;
2008 struct trad_frame_cache
*this_trad_cache
;
2009 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2011 if (*this_cache
!= NULL
)
2012 return (struct trad_frame_cache
*) *this_cache
;
2013 this_trad_cache
= trad_frame_cache_zalloc (this_frame
);
2014 *this_cache
= this_trad_cache
;
2016 /* The return address is in the link register. */
2017 trad_frame_set_reg_realreg (this_trad_cache
,
2018 gdbarch_pc_regnum (gdbarch
),
2021 /* Frame ID, since it's a frameless / stackless function, no stack
2022 space is allocated and SP on entry is the current SP. */
2023 pc
= get_frame_pc (this_frame
);
2024 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
2025 stack_addr
= get_frame_register_unsigned (this_frame
, NIOS2_SP_REGNUM
);
2026 trad_frame_set_id (this_trad_cache
, frame_id_build (start_addr
, stack_addr
));
2027 /* Assume that the frame's base is the same as the stack pointer. */
2028 trad_frame_set_this_base (this_trad_cache
, stack_addr
);
2030 return this_trad_cache
;
2033 /* Implement the this_id function for the stub unwinder. */
2036 nios2_stub_frame_this_id (const frame_info_ptr
&this_frame
, void **this_cache
,
2037 struct frame_id
*this_id
)
2039 struct trad_frame_cache
*this_trad_cache
2040 = nios2_stub_frame_cache (this_frame
, this_cache
);
2042 trad_frame_get_id (this_trad_cache
, this_id
);
2045 /* Implement the prev_register function for the stub unwinder. */
2047 static struct value
*
2048 nios2_stub_frame_prev_register (const frame_info_ptr
&this_frame
,
2049 void **this_cache
, int regnum
)
2051 struct trad_frame_cache
*this_trad_cache
2052 = nios2_stub_frame_cache (this_frame
, this_cache
);
2054 return trad_frame_get_register (this_trad_cache
, this_frame
, regnum
);
2057 /* Implement the sniffer function for the stub unwinder.
2058 This unwinder is used for cases where the normal
2059 prologue-analysis-based unwinder can't work,
2060 such as PLT stubs. */
2063 nios2_stub_frame_sniffer (const struct frame_unwind
*self
,
2064 const frame_info_ptr
&this_frame
, void **cache
)
2067 CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
2069 /* Use the stub unwinder for unreadable code. */
2070 if (target_read_memory (get_frame_pc (this_frame
), dummy
, 4) != 0)
2073 if (in_plt_section (pc
))
2079 /* Define the data structures for the stub unwinder. */
2081 static const struct frame_unwind nios2_stub_frame_unwind
=
2085 default_frame_unwind_stop_reason
,
2086 nios2_stub_frame_this_id
,
2087 nios2_stub_frame_prev_register
,
2089 nios2_stub_frame_sniffer
2094 /* Determine where to set a single step breakpoint while considering
2095 branch prediction. */
2098 nios2_get_next_pc (struct regcache
*regcache
, CORE_ADDR pc
)
2100 struct gdbarch
*gdbarch
= regcache
->arch ();
2101 nios2_gdbarch_tdep
*tdep
= gdbarch_tdep
<nios2_gdbarch_tdep
> (gdbarch
);
2102 unsigned long mach
= gdbarch_bfd_arch_info (gdbarch
)->mach
;
2104 const struct nios2_opcode
*op
= nios2_fetch_insn (gdbarch
, pc
, &insn
);
2110 enum branch_condition cond
;
2112 /* Do something stupid if we can't disassemble the insn at pc. */
2114 return pc
+ NIOS2_OPCODE_SIZE
;
2116 if (nios2_match_branch (insn
, op
, mach
, &ra
, &rb
, &imm
, &cond
))
2118 int ras
= regcache_raw_get_signed (regcache
, ra
);
2119 int rbs
= regcache_raw_get_signed (regcache
, rb
);
2120 unsigned int rau
= regcache_raw_get_unsigned (regcache
, ra
);
2121 unsigned int rbu
= regcache_raw_get_unsigned (regcache
, rb
);
2158 else if (nios2_match_jmpi (insn
, op
, mach
, &uimm
))
2159 pc
= (pc
& 0xf0000000) | uimm
;
2160 else if (nios2_match_calli (insn
, op
, mach
, &uimm
))
2162 CORE_ADDR callto
= (pc
& 0xf0000000) | uimm
;
2163 if (tdep
->is_kernel_helper
!= NULL
2164 && tdep
->is_kernel_helper (callto
))
2165 /* Step over call to kernel helper, which we cannot debug
2172 else if (nios2_match_jmpr (insn
, op
, mach
, &ra
))
2173 pc
= regcache_raw_get_unsigned (regcache
, ra
);
2174 else if (nios2_match_callr (insn
, op
, mach
, &ra
))
2176 CORE_ADDR callto
= regcache_raw_get_unsigned (regcache
, ra
);
2177 if (tdep
->is_kernel_helper
!= NULL
2178 && tdep
->is_kernel_helper (callto
))
2179 /* Step over call to kernel helper. */
2185 else if (nios2_match_ldwm (insn
, op
, mach
, &uimm
, &ra
, &imm
, &wb
, &id
, &ret
)
2188 /* If ra is in the reglist, we have to use the value saved in the
2189 stack frame rather than the current value. */
2190 if (uimm
& (1 << NIOS2_RA_REGNUM
))
2191 pc
= nios2_unwind_pc (gdbarch
, get_current_frame ());
2193 pc
= regcache_raw_get_unsigned (regcache
, NIOS2_RA_REGNUM
);
2196 else if (nios2_match_trap (insn
, op
, mach
, &uimm
) && uimm
== 0)
2198 if (tdep
->syscall_next_pc
!= NULL
)
2199 return tdep
->syscall_next_pc (get_current_frame (), op
);
2208 /* Implement the software_single_step gdbarch method. */
2210 static std::vector
<CORE_ADDR
>
2211 nios2_software_single_step (struct regcache
*regcache
)
2213 CORE_ADDR next_pc
= nios2_get_next_pc (regcache
, regcache_read_pc (regcache
));
2218 /* Implement the get_longjump_target gdbarch method. */
2221 nios2_get_longjmp_target (const frame_info_ptr
&frame
, CORE_ADDR
*pc
)
2223 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2224 nios2_gdbarch_tdep
*tdep
= gdbarch_tdep
<nios2_gdbarch_tdep
> (gdbarch
);
2225 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2226 CORE_ADDR jb_addr
= get_frame_register_unsigned (frame
, NIOS2_R4_REGNUM
);
2229 if (target_read_memory (jb_addr
+ (tdep
->jb_pc
* 4), buf
, 4))
2232 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
2236 /* Implement the type_align gdbarch function. */
2239 nios2_type_align (struct gdbarch
*gdbarch
, struct type
*type
)
2241 switch (type
->code ())
2244 case TYPE_CODE_FUNC
:
2245 case TYPE_CODE_FLAGS
:
2247 case TYPE_CODE_RANGE
:
2249 case TYPE_CODE_ENUM
:
2251 case TYPE_CODE_RVALUE_REF
:
2252 case TYPE_CODE_CHAR
:
2253 case TYPE_CODE_BOOL
:
2254 case TYPE_CODE_DECFLOAT
:
2255 case TYPE_CODE_METHODPTR
:
2256 case TYPE_CODE_MEMBERPTR
:
2257 type
= check_typedef (type
);
2258 return std::min
<ULONGEST
> (4, type
->length ());
2264 /* Implement the gcc_target_options gdbarch method. */
2266 nios2_gcc_target_options (struct gdbarch
*gdbarch
)
2268 /* GCC doesn't know "-m32". */
2272 /* Initialize the Nios II gdbarch. */
2274 static struct gdbarch
*
2275 nios2_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2278 tdesc_arch_data_up tdesc_data
;
2279 const struct target_desc
*tdesc
= info
.target_desc
;
2281 if (!tdesc_has_registers (tdesc
))
2282 /* Pick a default target description. */
2283 tdesc
= tdesc_nios2
;
2285 /* Check any target description for validity. */
2286 if (tdesc_has_registers (tdesc
))
2288 const struct tdesc_feature
*feature
;
2291 feature
= tdesc_find_feature (tdesc
, "org.gnu.gdb.nios2.cpu");
2292 if (feature
== NULL
)
2295 tdesc_data
= tdesc_data_alloc ();
2299 for (i
= 0; i
< NIOS2_NUM_REGS
; i
++)
2300 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
.get (), i
,
2301 nios2_reg_names
[i
]);
2307 /* Find a candidate among the list of pre-declared architectures. */
2308 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2310 return arches
->gdbarch
;
2312 /* None found, create a new architecture from the information
2315 = gdbarch_alloc (&info
, gdbarch_tdep_up (new nios2_gdbarch_tdep
));
2316 nios2_gdbarch_tdep
*tdep
= gdbarch_tdep
<nios2_gdbarch_tdep
> (gdbarch
);
2318 /* longjmp support not enabled by default. */
2321 /* Data type sizes. */
2322 set_gdbarch_ptr_bit (gdbarch
, 32);
2323 set_gdbarch_addr_bit (gdbarch
, 32);
2324 set_gdbarch_short_bit (gdbarch
, 16);
2325 set_gdbarch_int_bit (gdbarch
, 32);
2326 set_gdbarch_long_bit (gdbarch
, 32);
2327 set_gdbarch_long_long_bit (gdbarch
, 64);
2328 set_gdbarch_float_bit (gdbarch
, 32);
2329 set_gdbarch_double_bit (gdbarch
, 64);
2331 set_gdbarch_type_align (gdbarch
, nios2_type_align
);
2333 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
2334 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
2336 /* The register set. */
2337 set_gdbarch_num_regs (gdbarch
, NIOS2_NUM_REGS
);
2338 set_gdbarch_sp_regnum (gdbarch
, NIOS2_SP_REGNUM
);
2339 set_gdbarch_pc_regnum (gdbarch
, NIOS2_PC_REGNUM
); /* Pseudo register PC */
2341 set_gdbarch_register_name (gdbarch
, nios2_register_name
);
2342 set_gdbarch_register_type (gdbarch
, nios2_register_type
);
2344 /* Provide register mappings for stabs and dwarf2. */
2345 set_gdbarch_stab_reg_to_regnum (gdbarch
, nios2_dwarf_reg_to_regnum
);
2346 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, nios2_dwarf_reg_to_regnum
);
2348 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2350 /* Call dummy code. */
2351 set_gdbarch_frame_align (gdbarch
, nios2_frame_align
);
2353 set_gdbarch_return_value (gdbarch
, nios2_return_value
);
2355 set_gdbarch_skip_prologue (gdbarch
, nios2_skip_prologue
);
2356 set_gdbarch_stack_frame_destroyed_p (gdbarch
, nios2_stack_frame_destroyed_p
);
2357 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, nios2_breakpoint_kind_from_pc
);
2358 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, nios2_sw_breakpoint_from_kind
);
2360 set_gdbarch_unwind_pc (gdbarch
, nios2_unwind_pc
);
2362 /* The dwarf2 unwinder will normally produce the best results if
2363 the debug information is available, so register it first. */
2364 dwarf2_append_unwinders (gdbarch
);
2365 frame_unwind_append_unwinder (gdbarch
, &nios2_stub_frame_unwind
);
2366 frame_unwind_append_unwinder (gdbarch
, &nios2_frame_unwind
);
2368 /* Single stepping. */
2369 set_gdbarch_software_single_step (gdbarch
, nios2_software_single_step
);
2371 /* Target options for compile. */
2372 set_gdbarch_gcc_target_options (gdbarch
, nios2_gcc_target_options
);
2374 /* Hook in ABI-specific overrides, if they have been registered. */
2375 gdbarch_init_osabi (info
, gdbarch
);
2377 if (tdep
->jb_pc
>= 0)
2378 set_gdbarch_get_longjmp_target (gdbarch
, nios2_get_longjmp_target
);
2380 frame_base_set_default (gdbarch
, &nios2_frame_base
);
2382 /* Enable inferior call support. */
2383 set_gdbarch_push_dummy_call (gdbarch
, nios2_push_dummy_call
);
2385 if (tdesc_data
!= nullptr)
2386 tdesc_use_registers (gdbarch
, tdesc
, std::move (tdesc_data
));
2391 void _initialize_nios2_tdep ();
2393 _initialize_nios2_tdep ()
2395 gdbarch_register (bfd_arch_nios2
, nios2_gdbarch_init
, NULL
);
2396 initialize_tdesc_nios2 ();
2398 /* Allow debugging this file's internals. */
2399 add_setshow_boolean_cmd ("nios2", class_maintenance
, &nios2_debug
,
2400 _("Set Nios II debugging."),
2401 _("Show Nios II debugging."),
2402 _("When on, Nios II specific debugging is enabled."),
2405 &setdebuglist
, &showdebuglist
);