* Fix for PR 18665, from sky branch.
[binutils-gdb.git] / gdb / sparcl-stub.c
blobc7994fe5d52084659cf2d7a3837ac0f8e135d02d
1 /****************************************************************************
3 THIS SOFTWARE IS NOT COPYRIGHTED
5 HP offers the following for use in the public domain. HP makes no
6 warranty with regard to the software or it's performance and the
7 user accepts the software "AS IS" with all faults.
9 HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
10 TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
11 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
13 ****************************************************************************/
15 /****************************************************************************
16 * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
18 * Module name: remcom.c $
19 * Revision: 1.34 $
20 * Date: 91/03/09 12:29:49 $
21 * Contributor: Lake Stevens Instrument Division$
23 * Description: low level support for gdb debugger. $
25 * Considerations: only works on target hardware $
27 * Written by: Glenn Engel $
28 * ModuleState: Experimental $
30 * NOTES: See Below $
32 * Modified for SPARC by Stu Grossman, Cygnus Support.
33 * Based on sparc-stub.c, it's modified for SPARClite Debug Unit hardware
34 * breakpoint support to create sparclite-stub.c, by Kung Hsu, Cygnus Support.
36 * This code has been extensively tested on the Fujitsu SPARClite demo board.
38 * To enable debugger support, two things need to happen. One, a
39 * call to set_debug_traps() is necessary in order to allow any breakpoints
40 * or error conditions to be properly intercepted and reported to gdb.
41 * Two, a breakpoint needs to be generated to begin communication. This
42 * is most easily accomplished by a call to breakpoint(). Breakpoint()
43 * simulates a breakpoint by executing a trap #1.
45 *************
47 * The following gdb commands are supported:
49 * command function Return value
51 * g return the value of the CPU registers hex data or ENN
52 * G set the value of the CPU registers OK or ENN
54 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
55 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
57 * c Resume at current address SNN ( signal NN)
58 * cAA..AA Continue at address AA..AA SNN
60 * s Step one instruction SNN
61 * sAA..AA Step one instruction from AA..AA SNN
63 * k kill
65 * ? What was the last sigval ? SNN (signal NN)
67 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
68 * baud rate
70 * All commands and responses are sent with a packet which includes a
71 * checksum. A packet consists of
73 * $<packet info>#<checksum>.
75 * where
76 * <packet info> :: <characters representing the command or response>
77 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
79 * When a packet is received, it is first acknowledged with either '+' or '-'.
80 * '+' indicates a successful transfer. '-' indicates a failed transfer.
82 * Example:
84 * Host: Reply:
85 * $m0,10#2a +$00010203040506070809101112131415#42
87 ****************************************************************************/
89 #include <string.h>
90 #include <signal.h>
91 #include <sparclite.h>
93 /************************************************************************
95 * external low-level support routines
98 extern void putDebugChar (int c); /* write a single character */
99 extern int getDebugChar (void); /* read and return a single char */
101 /************************************************************************/
102 /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
103 /* at least NUMREGBYTES*2 are needed for register packets */
104 #define BUFMAX 2048
106 static int initialized = 0; /* !0 means we've been initialized */
108 extern void breakinst ();
109 static void set_mem_fault_trap (int enable);
110 static void get_in_break_mode (void);
112 static const char hexchars[]="0123456789abcdef";
114 #define NUMREGS 80
116 /* Number of bytes of registers. */
117 #define NUMREGBYTES (NUMREGS * 4)
118 enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
119 O0, O1, O2, O3, O4, O5, SP, O7,
120 L0, L1, L2, L3, L4, L5, L6, L7,
121 I0, I1, I2, I3, I4, I5, FP, I7,
123 F0, F1, F2, F3, F4, F5, F6, F7,
124 F8, F9, F10, F11, F12, F13, F14, F15,
125 F16, F17, F18, F19, F20, F21, F22, F23,
126 F24, F25, F26, F27, F28, F29, F30, F31,
127 Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR,
128 DIA1, DIA2, DDA1, DDA2, DDV1, DDV2, DCR, DSR };
130 /*************************** ASSEMBLY CODE MACROS *************************/
131 /* */
133 extern void trap_low();
135 /* Create private copies of common functions used by the stub. This prevents
136 nasty interactions between app code and the stub (for instance if user steps
137 into strlen, etc..) */
139 static int
140 strlen (const char *s)
142 const char *s1 = s;
144 while (*s1++ != '\000');
146 return s1 - s;
149 static char *
150 strcpy (char *dst, const char *src)
152 char *retval = dst;
154 while ((*dst++ = *src++) != '\000');
156 return retval;
159 static void *
160 memcpy (void *vdst, const void *vsrc, int n)
162 char *dst = vdst;
163 const char *src = vsrc;
164 char *retval = dst;
166 while (n-- > 0)
167 *dst++ = *src++;
169 return retval;
172 asm("
173 .reserve trapstack, 1000 * 4, \"bss\", 8
175 .data
176 .align 4
178 in_trap_handler:
179 .word 0
181 .text
182 .align 4
184 ! This function is called when any SPARC trap (except window overflow or
185 ! underflow) occurs. It makes sure that the invalid register window is still
186 ! available before jumping into C code. It will also restore the world if you
187 ! return from handle_exception.
189 ! On entry, trap_low expects l1 and l2 to contain pc and npc respectivly.
190 ! Register usage throughout the routine is as follows:
192 ! l0 - psr
193 ! l1 - pc
194 ! l2 - npc
195 ! l3 - wim
196 ! l4 - scratch and y reg
197 ! l5 - scratch and tbr
198 ! l6 - unused
199 ! l7 - unused
201 .globl _trap_low
202 _trap_low:
203 mov %psr, %l0
204 mov %wim, %l3
206 srl %l3, %l0, %l4 ! wim >> cwp
207 cmp %l4, 1
208 bne window_fine ! Branch if not in the invalid window
211 ! Handle window overflow
213 mov %g1, %l4 ! Save g1, we use it to hold the wim
214 srl %l3, 1, %g1 ! Rotate wim right
215 tst %g1
216 bg good_wim ! Branch if new wim is non-zero
219 ! At this point, we need to bring a 1 into the high order bit of the wim.
220 ! Since we don't want to make any assumptions about the number of register
221 ! windows, we figure it out dynamically so as to setup the wim correctly.
223 not %g1 ! Fill g1 with ones
224 mov %g1, %wim ! Fill the wim with ones
228 mov %wim, %g1 ! Read back the wim
229 inc %g1 ! Now g1 has 1 just to left of wim
230 srl %g1, 1, %g1 ! Now put 1 at top of wim
231 mov %g0, %wim ! Clear wim so that subsequent save
232 nop ! won't trap
236 good_wim:
237 save %g0, %g0, %g0 ! Slip into next window
238 mov %g1, %wim ! Install the new wim
240 std %l0, [%sp + 0 * 4] ! save L & I registers
241 std %l2, [%sp + 2 * 4]
242 std %l4, [%sp + 4 * 4]
243 std %l6, [%sp + 6 * 4]
245 std %i0, [%sp + 8 * 4]
246 std %i2, [%sp + 10 * 4]
247 std %i4, [%sp + 12 * 4]
248 std %i6, [%sp + 14 * 4]
250 restore ! Go back to trap window.
251 mov %l4, %g1 ! Restore %g1
253 window_fine:
254 sethi %hi(in_trap_handler), %l4
255 ld [%lo(in_trap_handler) + %l4], %l5
256 tst %l5
257 bg recursive_trap
258 inc %l5
260 set trapstack+1000*4, %sp ! Switch to trap stack
262 recursive_trap:
263 st %l5, [%lo(in_trap_handler) + %l4]
264 sub %sp,(16+1+6+1+80)*4,%sp ! Make room for input & locals
265 ! + hidden arg + arg spill
266 ! + doubleword alignment
267 ! + registers[72] local var
269 std %g0, [%sp + (24 + 0) * 4] ! registers[Gx]
270 std %g2, [%sp + (24 + 2) * 4]
271 std %g4, [%sp + (24 + 4) * 4]
272 std %g6, [%sp + (24 + 6) * 4]
274 std %i0, [%sp + (24 + 8) * 4] ! registers[Ox]
275 std %i2, [%sp + (24 + 10) * 4]
276 std %i4, [%sp + (24 + 12) * 4]
277 std %i6, [%sp + (24 + 14) * 4]
279 mov %y, %l4
280 mov %tbr, %l5
281 st %l4, [%sp + (24 + 64) * 4] ! Y
282 st %l0, [%sp + (24 + 65) * 4] ! PSR
283 st %l3, [%sp + (24 + 66) * 4] ! WIM
284 st %l5, [%sp + (24 + 67) * 4] ! TBR
285 st %l1, [%sp + (24 + 68) * 4] ! PC
286 st %l2, [%sp + (24 + 69) * 4] ! NPC
288 or %l0, 0xf20, %l4
289 mov %l4, %psr ! Turn on traps, disable interrupts
291 set 0x1000, %l1
292 btst %l1, %l0 ! FP enabled?
293 be no_fpstore
296 ! Must save fsr first, to flush the FQ. This may cause a deferred fp trap, so
297 ! traps must be enabled to allow the trap handler to clean things up.
299 st %fsr, [%sp + (24 + 70) * 4]
301 std %f0, [%sp + (24 + 32) * 4]
302 std %f2, [%sp + (24 + 34) * 4]
303 std %f4, [%sp + (24 + 36) * 4]
304 std %f6, [%sp + (24 + 38) * 4]
305 std %f8, [%sp + (24 + 40) * 4]
306 std %f10, [%sp + (24 + 42) * 4]
307 std %f12, [%sp + (24 + 44) * 4]
308 std %f14, [%sp + (24 + 46) * 4]
309 std %f16, [%sp + (24 + 48) * 4]
310 std %f18, [%sp + (24 + 50) * 4]
311 std %f20, [%sp + (24 + 52) * 4]
312 std %f22, [%sp + (24 + 54) * 4]
313 std %f24, [%sp + (24 + 56) * 4]
314 std %f26, [%sp + (24 + 58) * 4]
315 std %f28, [%sp + (24 + 60) * 4]
316 std %f30, [%sp + (24 + 62) * 4]
317 no_fpstore:
319 call _handle_exception
320 add %sp, 24 * 4, %o0 ! Pass address of registers
322 ! Reload all of the registers that aren't on the stack
324 ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx]
325 ldd [%sp + (24 + 2) * 4], %g2
326 ldd [%sp + (24 + 4) * 4], %g4
327 ldd [%sp + (24 + 6) * 4], %g6
329 ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox]
330 ldd [%sp + (24 + 10) * 4], %i2
331 ldd [%sp + (24 + 12) * 4], %i4
332 ldd [%sp + (24 + 14) * 4], %i6
335 ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR
336 ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC
338 set 0x1000, %l5
339 btst %l5, %l1 ! FP enabled?
340 be no_fpreload
343 ldd [%sp + (24 + 32) * 4], %f0
344 ldd [%sp + (24 + 34) * 4], %f2
345 ldd [%sp + (24 + 36) * 4], %f4
346 ldd [%sp + (24 + 38) * 4], %f6
347 ldd [%sp + (24 + 40) * 4], %f8
348 ldd [%sp + (24 + 42) * 4], %f10
349 ldd [%sp + (24 + 44) * 4], %f12
350 ldd [%sp + (24 + 46) * 4], %f14
351 ldd [%sp + (24 + 48) * 4], %f16
352 ldd [%sp + (24 + 50) * 4], %f18
353 ldd [%sp + (24 + 52) * 4], %f20
354 ldd [%sp + (24 + 54) * 4], %f22
355 ldd [%sp + (24 + 56) * 4], %f24
356 ldd [%sp + (24 + 58) * 4], %f26
357 ldd [%sp + (24 + 60) * 4], %f28
358 ldd [%sp + (24 + 62) * 4], %f30
360 ld [%sp + (24 + 70) * 4], %fsr
361 no_fpreload:
363 restore ! Ensure that previous window is valid
364 save %g0, %g0, %g0 ! by causing a window_underflow trap
366 mov %l0, %y
367 mov %l1, %psr ! Make sure that traps are disabled
368 ! for rett
369 sethi %hi(in_trap_handler), %l4
370 ld [%lo(in_trap_handler) + %l4], %l5
371 dec %l5
372 st %l5, [%lo(in_trap_handler) + %l4]
374 jmpl %l2, %g0 ! Restore old PC
375 rett %l3 ! Restore old nPC
378 /* Convert ch from a hex digit to an int */
380 static int
381 hex(ch)
382 unsigned char ch;
384 if (ch >= 'a' && ch <= 'f')
385 return ch-'a'+10;
386 if (ch >= '0' && ch <= '9')
387 return ch-'0';
388 if (ch >= 'A' && ch <= 'F')
389 return ch-'A'+10;
390 return -1;
393 /* scan for the sequence $<data>#<checksum> */
395 static void
396 getpacket(buffer)
397 char *buffer;
399 unsigned char checksum;
400 unsigned char xmitcsum;
401 int i;
402 int count;
403 unsigned char ch;
407 /* wait around for the start character, ignore all other characters */
408 while ((ch = (getDebugChar() & 0x7f)) != '$') ;
410 checksum = 0;
411 xmitcsum = -1;
413 count = 0;
415 /* now, read until a # or end of buffer is found */
416 while (count < BUFMAX)
418 ch = getDebugChar() & 0x7f;
419 if (ch == '#')
420 break;
421 checksum = checksum + ch;
422 buffer[count] = ch;
423 count = count + 1;
426 if (count >= BUFMAX)
427 continue;
429 buffer[count] = 0;
431 if (ch == '#')
433 xmitcsum = hex(getDebugChar() & 0x7f) << 4;
434 xmitcsum |= hex(getDebugChar() & 0x7f);
435 #if 0
436 /* Humans shouldn't have to figure out checksums to type to it. */
437 putDebugChar ('+');
438 return;
439 #endif
440 if (checksum != xmitcsum)
441 putDebugChar('-'); /* failed checksum */
442 else
444 putDebugChar('+'); /* successful transfer */
445 /* if a sequence char is present, reply the sequence ID */
446 if (buffer[2] == ':')
448 putDebugChar(buffer[0]);
449 putDebugChar(buffer[1]);
450 /* remove sequence chars from buffer */
451 count = strlen(buffer);
452 for (i=3; i <= count; i++)
453 buffer[i-3] = buffer[i];
458 while (checksum != xmitcsum);
461 /* send the packet in buffer. */
463 static void
464 putpacket(buffer)
465 unsigned char *buffer;
467 unsigned char checksum;
468 int count;
469 unsigned char ch;
471 /* $<packet info>#<checksum>. */
474 putDebugChar('$');
475 checksum = 0;
476 count = 0;
478 while (ch = buffer[count])
480 putDebugChar (ch);
481 checksum += ch;
482 count += 1;
485 putDebugChar('#');
486 putDebugChar(hexchars[checksum >> 4]);
487 putDebugChar(hexchars[checksum & 0xf]);
490 while ((getDebugChar() & 0x7f) != '+');
493 static char remcomInBuffer[BUFMAX];
494 static char remcomOutBuffer[BUFMAX];
496 /* Indicate to caller of mem2hex or hex2mem that there has been an
497 error. */
498 static volatile int mem_err = 0;
500 /* Convert the memory pointed to by mem into hex, placing result in buf.
501 * Return a pointer to the last char put in buf (null), in case of mem fault,
502 * return 0.
503 * If MAY_FAULT is non-zero, then we will handle memory faults by returning
504 * a 0, else treat a fault like any other fault in the stub.
507 static unsigned char *
508 mem2hex(mem, buf, count, may_fault)
509 unsigned char *mem;
510 unsigned char *buf;
511 int count;
512 int may_fault;
514 unsigned char ch;
516 set_mem_fault_trap(may_fault);
518 while (count-- > 0)
520 ch = *mem++;
521 if (mem_err)
522 return 0;
523 *buf++ = hexchars[ch >> 4];
524 *buf++ = hexchars[ch & 0xf];
527 *buf = 0;
529 set_mem_fault_trap(0);
531 return buf;
534 /* convert the hex array pointed to by buf into binary to be placed in mem
535 * return a pointer to the character AFTER the last byte written */
537 static char *
538 hex2mem(buf, mem, count, may_fault)
539 unsigned char *buf;
540 unsigned char *mem;
541 int count;
542 int may_fault;
544 int i;
545 unsigned char ch;
547 set_mem_fault_trap(may_fault);
549 for (i=0; i<count; i++)
551 ch = hex(*buf++) << 4;
552 ch |= hex(*buf++);
553 *mem++ = ch;
554 if (mem_err)
555 return 0;
558 set_mem_fault_trap(0);
560 return mem;
563 /* This table contains the mapping between SPARC hardware trap types, and
564 signals, which are primarily what GDB understands. It also indicates
565 which hardware traps we need to commandeer when initializing the stub. */
567 static struct hard_trap_info
569 unsigned char tt; /* Trap type code for SPARClite */
570 unsigned char signo; /* Signal that we map this trap into */
571 } hard_trap_info[] = {
572 {0x01, SIGSEGV}, /* instruction access error */
573 {0x02, SIGILL}, /* privileged instruction */
574 {0x03, SIGILL}, /* illegal instruction */
575 {0x04, SIGEMT}, /* fp disabled */
576 {0x07, SIGBUS}, /* mem address not aligned */
577 {0x09, SIGSEGV}, /* data access exception */
578 {0x0a, SIGEMT}, /* tag overflow */
579 {0x20, SIGBUS}, /* r register access error */
580 {0x21, SIGBUS}, /* instruction access error */
581 {0x24, SIGEMT}, /* cp disabled */
582 {0x29, SIGBUS}, /* data access error */
583 {0x2a, SIGFPE}, /* divide by zero */
584 {0x2b, SIGBUS}, /* data store error */
585 {0x80+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */
586 {0xff, SIGTRAP}, /* hardware breakpoint */
587 {0, 0} /* Must be last */
590 /* Set up exception handlers for tracing and breakpoints */
592 void
593 set_debug_traps()
595 struct hard_trap_info *ht;
597 /* Only setup fp traps if the FP is disabled. */
599 for (ht = hard_trap_info;
600 ht->tt != 0 && ht->signo != 0;
601 ht++)
602 if (ht->tt != 4 || ! (read_psr () & 0x1000))
603 exceptionHandler(ht->tt, trap_low);
605 /* In case GDB is started before us, ack any packets (presumably
606 "$?#xx") sitting there. */
608 putDebugChar ('+');
610 initialized = 1;
613 asm ("
614 ! Trap handler for memory errors. This just sets mem_err to be non-zero. It
615 ! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
616 ! 0 would ever contain code that could mem fault. This routine will skip
617 ! past the faulting instruction after setting mem_err.
619 .text
620 .align 4
622 _fltr_set_mem_err:
623 sethi %hi(_mem_err), %l0
624 st %l1, [%l0 + %lo(_mem_err)]
625 jmpl %l2, %g0
626 rett %l2+4
629 static void
630 set_mem_fault_trap(enable)
631 int enable;
633 extern void fltr_set_mem_err();
634 mem_err = 0;
636 if (enable)
637 exceptionHandler(9, fltr_set_mem_err);
638 else
639 exceptionHandler(9, trap_low);
642 asm ("
643 .text
644 .align 4
646 _dummy_hw_breakpoint:
647 jmpl %l2, %g0
648 rett %l2+4
653 static void
654 get_in_break_mode()
656 extern void dummy_hw_breakpoint();
658 exceptionHandler (255, dummy_hw_breakpoint);
660 asm ("ta 255");
662 exceptionHandler (255, trap_low);
665 /* Convert the SPARC hardware trap type code to a unix signal number. */
667 static int
668 computeSignal(tt)
669 int tt;
671 struct hard_trap_info *ht;
673 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
674 if (ht->tt == tt)
675 return ht->signo;
677 return SIGHUP; /* default for things we don't know about */
681 * While we find nice hex chars, build an int.
682 * Return number of chars processed.
685 static int
686 hexToInt(char **ptr, int *intValue)
688 int numChars = 0;
689 int hexValue;
691 *intValue = 0;
693 while (**ptr)
695 hexValue = hex(**ptr);
696 if (hexValue < 0)
697 break;
699 *intValue = (*intValue << 4) | hexValue;
700 numChars ++;
702 (*ptr)++;
705 return (numChars);
709 * This function does all command procesing for interfacing to gdb. It
710 * returns 1 if you should skip the instruction at the trap address, 0
711 * otherwise.
714 static void
715 handle_exception (registers)
716 unsigned long *registers;
718 int tt; /* Trap type */
719 int sigval;
720 int addr;
721 int length;
722 char *ptr;
723 unsigned long *sp;
724 unsigned long dsr;
726 /* First, we must force all of the windows to be spilled out */
728 asm(" save %sp, -64, %sp
729 save %sp, -64, %sp
730 save %sp, -64, %sp
731 save %sp, -64, %sp
732 save %sp, -64, %sp
733 save %sp, -64, %sp
734 save %sp, -64, %sp
735 save %sp, -64, %sp
736 restore
737 restore
738 restore
739 restore
740 restore
741 restore
742 restore
743 restore
746 get_in_break_mode (); /* Enable DSU register writes */
748 registers[DIA1] = read_asi (1, 0xff00);
749 registers[DIA2] = read_asi (1, 0xff04);
750 registers[DDA1] = read_asi (1, 0xff08);
751 registers[DDA2] = read_asi (1, 0xff0c);
752 registers[DDV1] = read_asi (1, 0xff10);
753 registers[DDV2] = read_asi (1, 0xff14);
754 registers[DCR] = read_asi (1, 0xff18);
755 registers[DSR] = read_asi (1, 0xff1c);
757 if (registers[PC] == (unsigned long)breakinst)
759 registers[PC] = registers[NPC];
760 registers[NPC] += 4;
762 sp = (unsigned long *)registers[SP];
764 dsr = (unsigned long)registers[DSR];
765 if (dsr & 0x3c)
766 tt = 255;
767 else
768 tt = (registers[TBR] >> 4) & 0xff;
770 /* reply to host that an exception has occurred */
771 sigval = computeSignal(tt);
772 ptr = remcomOutBuffer;
774 *ptr++ = 'T';
775 *ptr++ = hexchars[sigval >> 4];
776 *ptr++ = hexchars[sigval & 0xf];
778 *ptr++ = hexchars[PC >> 4];
779 *ptr++ = hexchars[PC & 0xf];
780 *ptr++ = ':';
781 ptr = mem2hex((char *)&registers[PC], ptr, 4, 0);
782 *ptr++ = ';';
784 *ptr++ = hexchars[FP >> 4];
785 *ptr++ = hexchars[FP & 0xf];
786 *ptr++ = ':';
787 ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */
788 *ptr++ = ';';
790 *ptr++ = hexchars[SP >> 4];
791 *ptr++ = hexchars[SP & 0xf];
792 *ptr++ = ':';
793 ptr = mem2hex((char *)&sp, ptr, 4, 0);
794 *ptr++ = ';';
796 *ptr++ = hexchars[NPC >> 4];
797 *ptr++ = hexchars[NPC & 0xf];
798 *ptr++ = ':';
799 ptr = mem2hex((char *)&registers[NPC], ptr, 4, 0);
800 *ptr++ = ';';
802 *ptr++ = hexchars[O7 >> 4];
803 *ptr++ = hexchars[O7 & 0xf];
804 *ptr++ = ':';
805 ptr = mem2hex((char *)&registers[O7], ptr, 4, 0);
806 *ptr++ = ';';
808 *ptr++ = 0;
810 putpacket(remcomOutBuffer);
812 while (1)
814 remcomOutBuffer[0] = 0;
816 getpacket(remcomInBuffer);
817 switch (remcomInBuffer[0])
819 case '?':
820 remcomOutBuffer[0] = 'S';
821 remcomOutBuffer[1] = hexchars[sigval >> 4];
822 remcomOutBuffer[2] = hexchars[sigval & 0xf];
823 remcomOutBuffer[3] = 0;
824 break;
826 case 'd':
827 /* toggle debug flag */
828 break;
830 case 'g': /* return the value of the CPU registers */
831 memcpy (&registers[L0], sp, 16 * 4); /* Copy L & I regs from stack */
832 mem2hex ((char *)registers, remcomOutBuffer, NUMREGBYTES, 0);
833 break;
835 case 'G': /* Set the value of all registers */
836 case 'P': /* Set the value of one register */
838 unsigned long *newsp, psr;
840 psr = registers[PSR];
842 ptr = &remcomInBuffer[1];
844 if (remcomInBuffer[0] == 'P')
846 int regno;
848 if (hexToInt (&ptr, &regno)
849 && *ptr++ == '=')
850 if (regno >= L0 && regno <= I7)
851 hex2mem (ptr, sp + regno - L0, 4, 0);
852 else
853 hex2mem (ptr, (char *)&registers[regno], 4, 0);
854 else
856 strcpy (remcomOutBuffer, "P01");
857 break;
860 else
862 hex2mem (ptr, (char *)registers, NUMREGBYTES, 0);
863 memcpy (sp, &registers[L0], 16 * 4); /* Copy L & I regs to stack */
866 /* See if the stack pointer has moved. If so, then copy the saved
867 locals and ins to the new location. This keeps the window
868 overflow and underflow routines happy. */
870 newsp = (unsigned long *)registers[SP];
871 if (sp != newsp)
872 sp = memcpy(newsp, sp, 16 * 4);
874 /* Don't allow CWP to be modified. */
876 if (psr != registers[PSR])
877 registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
879 strcpy(remcomOutBuffer,"OK");
881 break;
883 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
884 /* Try to read %x,%x. */
886 ptr = &remcomInBuffer[1];
888 if (hexToInt(&ptr, &addr)
889 && *ptr++ == ','
890 && hexToInt(&ptr, &length))
892 if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
893 break;
895 strcpy (remcomOutBuffer, "E03");
897 else
898 strcpy(remcomOutBuffer,"E01");
899 break;
901 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
902 /* Try to read '%x,%x:'. */
904 ptr = &remcomInBuffer[1];
906 if (hexToInt(&ptr, &addr)
907 && *ptr++ == ','
908 && hexToInt(&ptr, &length)
909 && *ptr++ == ':')
911 if (hex2mem(ptr, (char *)addr, length, 1))
912 strcpy(remcomOutBuffer, "OK");
913 else
914 strcpy(remcomOutBuffer, "E03");
916 else
917 strcpy(remcomOutBuffer, "E02");
918 break;
920 case 'c': /* cAA..AA Continue at address AA..AA(optional) */
921 /* try to read optional parameter, pc unchanged if no parm */
923 ptr = &remcomInBuffer[1];
924 if (hexToInt(&ptr, &addr))
926 registers[PC] = addr;
927 registers[NPC] = addr + 4;
930 /* Need to flush the instruction cache here, as we may have deposited a
931 breakpoint, and the icache probably has no way of knowing that a data ref to
932 some location may have changed something that is in the instruction cache.
935 flush_i_cache ();
937 if (!(registers[DSR] & 0x1) /* DSU enabled? */
938 && !(registers[DCR] & 0x200)) /* Are we in break state? */
939 { /* Yes, set the DSU regs */
940 write_asi (1, 0xff00, registers[DIA1]);
941 write_asi (1, 0xff04, registers[DIA2]);
942 write_asi (1, 0xff08, registers[DDA1]);
943 write_asi (1, 0xff0c, registers[DDA2]);
944 write_asi (1, 0xff10, registers[DDV1]);
945 write_asi (1, 0xff14, registers[DDV2]);
946 write_asi (1, 0xff1c, registers[DSR]);
947 write_asi (1, 0xff18, registers[DCR] | 0x200); /* Clear break */
950 return;
952 /* kill the program */
953 case 'k' : /* do nothing */
954 break;
955 #if 0
956 case 't': /* Test feature */
957 asm (" std %f30,[%sp]");
958 break;
959 #endif
960 case 'r': /* Reset */
961 asm ("call 0
962 nop ");
963 break;
965 #if 0
966 Disabled until we can unscrew this properly
968 case 'b': /* bBB... Set baud rate to BB... */
970 int baudrate;
971 extern void set_timer_3();
973 ptr = &remcomInBuffer[1];
974 if (!hexToInt(&ptr, &baudrate))
976 strcpy(remcomOutBuffer,"B01");
977 break;
980 /* Convert baud rate to uart clock divider */
981 switch (baudrate)
983 case 38400:
984 baudrate = 16;
985 break;
986 case 19200:
987 baudrate = 33;
988 break;
989 case 9600:
990 baudrate = 65;
991 break;
992 default:
993 strcpy(remcomOutBuffer,"B02");
994 goto x1;
997 putpacket("OK"); /* Ack before changing speed */
998 set_timer_3(baudrate); /* Set it */
1000 x1: break;
1001 #endif
1002 } /* switch */
1004 /* reply to the request */
1005 putpacket(remcomOutBuffer);
1009 /* This function will generate a breakpoint exception. It is used at the
1010 beginning of a program to sync up with a debugger and can be used
1011 otherwise as a quick means to stop program execution and "break" into
1012 the debugger. */
1014 void
1015 breakpoint()
1017 if (!initialized)
1018 return;
1020 asm(" .globl _breakinst
1022 _breakinst: ta 1