1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "gdb_string.h"
35 /* Prototypes for exported functions. */
37 void _initialize_values
PARAMS ((void));
39 /* Prototypes for local functions. */
41 static value_ptr value_headof
PARAMS ((value_ptr
, struct type
*,
44 static void show_values
PARAMS ((char *, int));
46 static void show_convenience
PARAMS ((char *, int));
48 static int vb_match
PARAMS ((struct type
*, int, struct type
*));
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
56 #define VALUE_HISTORY_CHUNK 60
58 struct value_history_chunk
60 struct value_history_chunk
*next
;
61 value_ptr values
[VALUE_HISTORY_CHUNK
];
64 /* Chain of chunks now in use. */
66 static struct value_history_chunk
*value_history_chain
;
68 static int value_history_count
; /* Abs number of last entry stored */
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
74 static value_ptr all_values
;
76 /* Allocate a value that has the correct length for type TYPE. */
82 register value_ptr val
;
83 struct type
*atype
= check_typedef (type
);
85 val
= (struct value
*) xmalloc (sizeof (struct value
) + TYPE_LENGTH (atype
));
86 VALUE_NEXT (val
) = all_values
;
88 VALUE_TYPE (val
) = type
;
89 VALUE_ENCLOSING_TYPE (val
) = type
;
90 VALUE_LVAL (val
) = not_lval
;
91 VALUE_ADDRESS (val
) = 0;
92 VALUE_FRAME (val
) = 0;
93 VALUE_OFFSET (val
) = 0;
94 VALUE_BITPOS (val
) = 0;
95 VALUE_BITSIZE (val
) = 0;
96 VALUE_REGNO (val
) = -1;
98 VALUE_OPTIMIZED_OUT (val
) = 0;
99 VALUE_BFD_SECTION (val
) = NULL
;
100 VALUE_EMBEDDED_OFFSET (val
) = 0;
101 VALUE_POINTED_TO_OFFSET (val
) = 0;
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
110 allocate_repeat_value (type
, count
)
114 int low_bound
= current_language
->string_lower_bound
; /* ??? */
115 /* FIXME-type-allocation: need a way to free this type when we are
117 struct type
*range_type
118 = create_range_type ((struct type
*) NULL
, builtin_type_int
,
119 low_bound
, count
+ low_bound
- 1);
120 /* FIXME-type-allocation: need a way to free this type when we are
122 return allocate_value (create_array_type ((struct type
*) NULL
,
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
138 value_free_to_mark (mark
)
143 for (val
= all_values
; val
&& val
!= mark
; val
= next
)
145 next
= VALUE_NEXT (val
);
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
157 register value_ptr val
, next
;
159 for (val
= all_values
; val
; val
= next
)
161 next
= VALUE_NEXT (val
);
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
173 register value_ptr val
;
175 register value_ptr v
;
177 if (all_values
== val
)
179 all_values
= val
->next
;
183 for (v
= all_values
; v
; v
= v
->next
)
193 /* Release all values up to mark */
195 value_release_to_mark (mark
)
200 for (val
= next
= all_values
; next
; next
= VALUE_NEXT (next
))
201 if (VALUE_NEXT (next
) == mark
)
203 all_values
= VALUE_NEXT (next
);
204 VALUE_NEXT (next
) = 0;
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
219 register struct type
*encl_type
= VALUE_ENCLOSING_TYPE (arg
);
220 register value_ptr val
= allocate_value (encl_type
);
221 VALUE_TYPE (val
) = VALUE_TYPE (arg
);
222 VALUE_LVAL (val
) = VALUE_LVAL (arg
);
223 VALUE_ADDRESS (val
) = VALUE_ADDRESS (arg
);
224 VALUE_OFFSET (val
) = VALUE_OFFSET (arg
);
225 VALUE_BITPOS (val
) = VALUE_BITPOS (arg
);
226 VALUE_BITSIZE (val
) = VALUE_BITSIZE (arg
);
227 VALUE_FRAME (val
) = VALUE_FRAME (arg
);
228 VALUE_REGNO (val
) = VALUE_REGNO (arg
);
229 VALUE_LAZY (val
) = VALUE_LAZY (arg
);
230 VALUE_OPTIMIZED_OUT (val
) = VALUE_OPTIMIZED_OUT (arg
);
231 VALUE_EMBEDDED_OFFSET (val
) = VALUE_EMBEDDED_OFFSET (arg
);
232 VALUE_POINTED_TO_OFFSET (val
) = VALUE_POINTED_TO_OFFSET (arg
);
233 VALUE_BFD_SECTION (val
) = VALUE_BFD_SECTION (arg
);
234 val
->modifiable
= arg
->modifiable
;
235 if (!VALUE_LAZY (val
))
237 memcpy (VALUE_CONTENTS_ALL_RAW (val
), VALUE_CONTENTS_ALL_RAW (arg
),
238 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg
)));
244 /* Access to the value history. */
246 /* Record a new value in the value history.
247 Returns the absolute history index of the entry.
248 Result of -1 indicates the value was not saved; otherwise it is the
249 value history index of this new item. */
252 record_latest_value (val
)
257 /* We don't want this value to have anything to do with the inferior anymore.
258 In particular, "set $1 = 50" should not affect the variable from which
259 the value was taken, and fast watchpoints should be able to assume that
260 a value on the value history never changes. */
261 if (VALUE_LAZY (val
))
262 value_fetch_lazy (val
);
263 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
264 from. This is a bit dubious, because then *&$1 does not just return $1
265 but the current contents of that location. c'est la vie... */
269 /* Here we treat value_history_count as origin-zero
270 and applying to the value being stored now. */
272 i
= value_history_count
% VALUE_HISTORY_CHUNK
;
275 register struct value_history_chunk
*new
276 = (struct value_history_chunk
*)
277 xmalloc (sizeof (struct value_history_chunk
));
278 memset (new->values
, 0, sizeof new->values
);
279 new->next
= value_history_chain
;
280 value_history_chain
= new;
283 value_history_chain
->values
[i
] = val
;
285 /* Now we regard value_history_count as origin-one
286 and applying to the value just stored. */
288 return ++value_history_count
;
291 /* Return a copy of the value in the history with sequence number NUM. */
294 access_value_history (num
)
297 register struct value_history_chunk
*chunk
;
299 register int absnum
= num
;
302 absnum
+= value_history_count
;
307 error ("The history is empty.");
309 error ("There is only one value in the history.");
311 error ("History does not go back to $$%d.", -num
);
313 if (absnum
> value_history_count
)
314 error ("History has not yet reached $%d.", absnum
);
318 /* Now absnum is always absolute and origin zero. */
320 chunk
= value_history_chain
;
321 for (i
= (value_history_count
- 1) / VALUE_HISTORY_CHUNK
- absnum
/ VALUE_HISTORY_CHUNK
;
325 return value_copy (chunk
->values
[absnum
% VALUE_HISTORY_CHUNK
]);
328 /* Clear the value history entirely.
329 Must be done when new symbol tables are loaded,
330 because the type pointers become invalid. */
333 clear_value_history ()
335 register struct value_history_chunk
*next
;
337 register value_ptr val
;
339 while (value_history_chain
)
341 for (i
= 0; i
< VALUE_HISTORY_CHUNK
; i
++)
342 if ((val
= value_history_chain
->values
[i
]) != NULL
)
344 next
= value_history_chain
->next
;
345 free ((PTR
)value_history_chain
);
346 value_history_chain
= next
;
348 value_history_count
= 0;
352 show_values (num_exp
, from_tty
)
357 register value_ptr val
;
362 /* "info history +" should print from the stored position.
363 "info history <exp>" should print around value number <exp>. */
364 if (num_exp
[0] != '+' || num_exp
[1] != '\0')
365 num
= parse_and_eval_address (num_exp
) - 5;
369 /* "info history" means print the last 10 values. */
370 num
= value_history_count
- 9;
376 for (i
= num
; i
< num
+ 10 && i
<= value_history_count
; i
++)
378 val
= access_value_history (i
);
379 printf_filtered ("$%d = ", i
);
380 value_print (val
, gdb_stdout
, 0, Val_pretty_default
);
381 printf_filtered ("\n");
384 /* The next "info history +" should start after what we just printed. */
387 /* Hitting just return after this command should do the same thing as
388 "info history +". If num_exp is null, this is unnecessary, since
389 "info history +" is not useful after "info history". */
390 if (from_tty
&& num_exp
)
397 /* Internal variables. These are variables within the debugger
398 that hold values assigned by debugger commands.
399 The user refers to them with a '$' prefix
400 that does not appear in the variable names stored internally. */
402 static struct internalvar
*internalvars
;
404 /* Look up an internal variable with name NAME. NAME should not
405 normally include a dollar sign.
407 If the specified internal variable does not exist,
408 one is created, with a void value. */
411 lookup_internalvar (name
)
414 register struct internalvar
*var
;
416 for (var
= internalvars
; var
; var
= var
->next
)
417 if (STREQ (var
->name
, name
))
420 var
= (struct internalvar
*) xmalloc (sizeof (struct internalvar
));
421 var
->name
= concat (name
, NULL
);
422 var
->value
= allocate_value (builtin_type_void
);
423 release_value (var
->value
);
424 var
->next
= internalvars
;
430 value_of_internalvar (var
)
431 struct internalvar
*var
;
433 register value_ptr val
;
435 #ifdef IS_TRAPPED_INTERNALVAR
436 if (IS_TRAPPED_INTERNALVAR (var
->name
))
437 return VALUE_OF_TRAPPED_INTERNALVAR (var
);
440 val
= value_copy (var
->value
);
441 if (VALUE_LAZY (val
))
442 value_fetch_lazy (val
);
443 VALUE_LVAL (val
) = lval_internalvar
;
444 VALUE_INTERNALVAR (val
) = var
;
449 set_internalvar_component (var
, offset
, bitpos
, bitsize
, newval
)
450 struct internalvar
*var
;
451 int offset
, bitpos
, bitsize
;
454 register char *addr
= VALUE_CONTENTS (var
->value
) + offset
;
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var
->name
))
458 SET_TRAPPED_INTERNALVAR (var
, newval
, bitpos
, bitsize
, offset
);
462 modify_field (addr
, value_as_long (newval
),
465 memcpy (addr
, VALUE_CONTENTS (newval
), TYPE_LENGTH (VALUE_TYPE (newval
)));
469 set_internalvar (var
, val
)
470 struct internalvar
*var
;
475 #ifdef IS_TRAPPED_INTERNALVAR
476 if (IS_TRAPPED_INTERNALVAR (var
->name
))
477 SET_TRAPPED_INTERNALVAR (var
, val
, 0, 0, 0);
480 newval
= value_copy (val
);
481 newval
->modifiable
= 1;
483 /* Force the value to be fetched from the target now, to avoid problems
484 later when this internalvar is referenced and the target is gone or
486 if (VALUE_LAZY (newval
))
487 value_fetch_lazy (newval
);
489 /* Begin code which must not call error(). If var->value points to
490 something free'd, an error() obviously leaves a dangling pointer.
491 But we also get a danling pointer if var->value points to
492 something in the value chain (i.e., before release_value is
493 called), because after the error free_all_values will get called before
495 free ((PTR
)var
->value
);
497 release_value (newval
);
498 /* End code which must not call error(). */
502 internalvar_name (var
)
503 struct internalvar
*var
;
508 /* Free all internalvars. Done when new symtabs are loaded,
509 because that makes the values invalid. */
512 clear_internalvars ()
514 register struct internalvar
*var
;
519 internalvars
= var
->next
;
520 free ((PTR
)var
->name
);
521 free ((PTR
)var
->value
);
527 show_convenience (ignore
, from_tty
)
531 register struct internalvar
*var
;
534 for (var
= internalvars
; var
; var
= var
->next
)
536 #ifdef IS_TRAPPED_INTERNALVAR
537 if (IS_TRAPPED_INTERNALVAR (var
->name
))
544 printf_filtered ("$%s = ", var
->name
);
545 value_print (var
->value
, gdb_stdout
, 0, Val_pretty_default
);
546 printf_filtered ("\n");
549 printf_unfiltered ("No debugger convenience variables now defined.\n\
550 Convenience variables have names starting with \"$\";\n\
551 use \"set\" as in \"set $foo = 5\" to define them.\n");
554 /* Extract a value as a C number (either long or double).
555 Knows how to convert fixed values to double, or
556 floating values to long.
557 Does not deallocate the value. */
561 register value_ptr val
;
563 /* This coerces arrays and functions, which is necessary (e.g.
564 in disassemble_command). It also dereferences references, which
565 I suspect is the most logical thing to do. */
567 return unpack_long (VALUE_TYPE (val
), VALUE_CONTENTS (val
));
571 value_as_double (val
)
572 register value_ptr val
;
577 foo
= unpack_double (VALUE_TYPE (val
), VALUE_CONTENTS (val
), &inv
);
579 error ("Invalid floating value found in program.");
582 /* Extract a value as a C pointer.
583 Does not deallocate the value. */
585 value_as_pointer (val
)
588 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
589 whether we want this to be true eventually. */
591 /* ADDR_BITS_REMOVE is wrong if we are being called for a
592 non-address (e.g. argument to "signal", "info break", etc.), or
593 for pointers to char, in which the low bits *are* significant. */
594 return ADDR_BITS_REMOVE(value_as_long (val
));
596 return value_as_long (val
);
600 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
601 as a long, or as a double, assuming the raw data is described
602 by type TYPE. Knows how to convert different sizes of values
603 and can convert between fixed and floating point. We don't assume
604 any alignment for the raw data. Return value is in host byte order.
606 If you want functions and arrays to be coerced to pointers, and
607 references to be dereferenced, call value_as_long() instead.
609 C++: It is assumed that the front-end has taken care of
610 all matters concerning pointers to members. A pointer
611 to member which reaches here is considered to be equivalent
612 to an INT (or some size). After all, it is only an offset. */
615 unpack_long (type
, valaddr
)
619 register enum type_code code
= TYPE_CODE (type
);
620 register int len
= TYPE_LENGTH (type
);
621 register int nosign
= TYPE_UNSIGNED (type
);
623 if (current_language
->la_language
== language_scm
624 && is_scmvalue_type (type
))
625 return scm_unpack (type
, valaddr
, TYPE_CODE_INT
);
629 case TYPE_CODE_TYPEDEF
:
630 return unpack_long (check_typedef (type
), valaddr
);
635 case TYPE_CODE_RANGE
:
637 return extract_unsigned_integer (valaddr
, len
);
639 return extract_signed_integer (valaddr
, len
);
642 return extract_floating (valaddr
, len
);
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
648 #ifdef GDB_TARGET_IS_D10V
650 return D10V_MAKE_DADDR(extract_address (valaddr
, len
));
652 return extract_address (valaddr
, len
);
654 case TYPE_CODE_MEMBER
:
655 error ("not implemented: member types in unpack_long");
658 error ("Value can't be converted to integer.");
660 return 0; /* Placate lint. */
663 /* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
670 unpack_double (type
, valaddr
, invp
)
679 *invp
= 0; /* Assume valid. */
680 CHECK_TYPEDEF (type
);
681 code
= TYPE_CODE (type
);
682 len
= TYPE_LENGTH (type
);
683 nosign
= TYPE_UNSIGNED (type
);
684 if (code
== TYPE_CODE_FLT
)
687 if (INVALID_FLOAT (valaddr
, len
))
690 return 1.234567891011121314;
693 return extract_floating (valaddr
, len
);
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698 #if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST
) unpack_long (type
, valaddr
);
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST
) unpack_long (type
, valaddr
);
703 #endif /* _MSC_VER */
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type
, valaddr
);
712 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
726 unpack_pointer (type
, valaddr
)
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type
, valaddr
);
735 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
738 value_static_field (type
, fieldno
)
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type
, fieldno
))
746 addr
= TYPE_FIELD_STATIC_PHYSADDR (type
, fieldno
);
751 char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (type
, fieldno
);
752 struct symbol
*sym
= lookup_symbol (phys_name
, 0, VAR_NAMESPACE
, 0, NULL
);
755 /* With some compilers, e.g. HP aCC, static data members are reported
756 as non-debuggable symbols */
757 struct minimal_symbol
* msym
= lookup_minimal_symbol (phys_name
, NULL
, NULL
);
762 addr
= SYMBOL_VALUE_ADDRESS (msym
);
763 sect
= SYMBOL_BFD_SECTION (msym
);
768 addr
= SYMBOL_VALUE_ADDRESS (sym
);
769 sect
= SYMBOL_BFD_SECTION (sym
);
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type
, fieldno
), addr
);
773 return value_at (TYPE_FIELD_TYPE (type
, fieldno
), addr
, sect
);
776 /* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
782 value_primitive_field (arg1
, offset
, fieldno
, arg_type
)
783 register value_ptr arg1
;
785 register int fieldno
;
786 register struct type
*arg_type
;
788 register value_ptr v
;
789 register struct type
*type
;
791 CHECK_TYPEDEF (arg_type
);
792 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
794 /* Handle packed fields */
796 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
))
798 v
= value_from_longest (type
,
799 unpack_field_as_long (arg_type
,
800 VALUE_CONTENTS (arg1
)
803 VALUE_BITPOS (v
) = TYPE_FIELD_BITPOS (arg_type
, fieldno
) % 8;
804 VALUE_BITSIZE (v
) = TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
806 else if (fieldno
< TYPE_N_BASECLASSES (arg_type
))
808 /* This field is actually a base subobject, so preserve the
809 entire object's contents for later references to virtual
811 v
= allocate_value (VALUE_ENCLOSING_TYPE (arg1
));
812 VALUE_TYPE (v
) = arg_type
;
813 if (VALUE_LAZY (arg1
))
816 memcpy (VALUE_CONTENTS_ALL_RAW (v
), VALUE_CONTENTS_ALL_RAW (arg1
),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1
)));
818 VALUE_OFFSET (v
) = VALUE_OFFSET (arg1
);
819 VALUE_EMBEDDED_OFFSET (v
)
821 VALUE_EMBEDDED_OFFSET (arg1
) +
822 TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
826 /* Plain old data member */
827 offset
+= TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
828 v
= allocate_value (type
);
829 if (VALUE_LAZY (arg1
))
832 memcpy (VALUE_CONTENTS_RAW (v
),
833 VALUE_CONTENTS_RAW (arg1
) + offset
,
835 VALUE_OFFSET (v
) = VALUE_OFFSET (arg1
) + offset
;
837 VALUE_LVAL (v
) = VALUE_LVAL (arg1
);
838 if (VALUE_LVAL (arg1
) == lval_internalvar
)
839 VALUE_LVAL (v
) = lval_internalvar_component
;
840 VALUE_ADDRESS (v
) = VALUE_ADDRESS (arg1
);
841 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
842 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
846 /* Given a value ARG1 of a struct or union type,
847 extract and return the value of one of its (non-static) fields.
848 FIELDNO says which field. */
851 value_field (arg1
, fieldno
)
852 register value_ptr arg1
;
853 register int fieldno
;
855 return value_primitive_field (arg1
, 0, fieldno
, VALUE_TYPE (arg1
));
858 /* Return a non-virtual function as a value.
859 F is the list of member functions which contains the desired method.
860 J is an index into F which provides the desired method. */
863 value_fn_field (arg1p
, f
, j
, type
, offset
)
870 register value_ptr v
;
871 register struct type
*ftype
= TYPE_FN_FIELD_TYPE (f
, j
);
874 sym
= lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f
, j
),
875 0, VAR_NAMESPACE
, 0, NULL
);
879 error ("Internal error: could not find physical method named %s",
880 TYPE_FN_FIELD_PHYSNAME (f, j));
883 v
= allocate_value (ftype
);
884 VALUE_ADDRESS (v
) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
885 VALUE_TYPE (v
) = ftype
;
889 if (type
!= VALUE_TYPE (*arg1p
))
890 *arg1p
= value_ind (value_cast (lookup_pointer_type (type
),
891 value_addr (*arg1p
)));
893 /* Move the `this' pointer according to the offset.
894 VALUE_OFFSET (*arg1p) += offset;
901 /* Return a virtual function as a value.
902 ARG1 is the object which provides the virtual function
903 table pointer. *ARG1P is side-effected in calling this function.
904 F is the list of member functions which contains the desired virtual
906 J is an index into F which provides the desired virtual function.
908 TYPE is the type in which F is located. */
910 value_virtual_fn_field (arg1p
, f
, j
, type
, offset
)
917 value_ptr arg1
= *arg1p
;
918 struct type
*type1
= check_typedef (VALUE_TYPE (arg1
));
920 if (TYPE_HAS_VTABLE (type
))
922 /* Deal with HP/Taligent runtime model for virtual functions */
924 value_ptr argp
; /* arg1 cast to base */
925 CORE_ADDR vfunc_addr
; /* address of virtual method */
926 CORE_ADDR coreptr
; /* pointer to target address */
927 int class_index
; /* which class segment pointer to use */
928 struct type
* ftype
= TYPE_FN_FIELD_TYPE (f
, j
); /* method type */
930 argp
= value_cast (type
, *arg1p
);
932 if (VALUE_ADDRESS (argp
) == 0)
933 error ("Address of object is null; object may not have been created.");
935 /* pai: FIXME -- 32x64 possible problem? */
936 /* First word (4 bytes) in object layout is the vtable pointer */
937 coreptr
= * (CORE_ADDR
*) (VALUE_CONTENTS (argp
)); /* pai: (temp) */
938 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
941 error ("Virtual table pointer is null for object; object may not have been created.");
944 * FIXME: The code here currently handles only
945 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
946 * is introduced, the condition for the "if" below will have to
947 * be changed to be a test for the RRBC case. */
951 /* Non-RRBC case; the virtual function pointers are stored at fixed
952 * offsets in the virtual table. */
954 /* Retrieve the offset in the virtual table from the debug
955 * info. The offset of the vfunc's entry is in words from
956 * the beginning of the vtable; but first we have to adjust
957 * by HP_ACC_VFUNC_START to account for other entries */
959 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
960 * which case the multiplier should be 8 and values should be long */
961 vp
= value_at (builtin_type_int
,
962 coreptr
+ 4 * (TYPE_FN_FIELD_VOFFSET (f
, j
) + HP_ACC_VFUNC_START
), NULL
);
964 coreptr
= * (CORE_ADDR
*) (VALUE_CONTENTS (vp
));
965 /* coreptr now contains the address of the virtual function */
966 /* (Actually, it contains the pointer to the plabel for the function. */
970 /* RRBC case; the virtual function pointers are found by double
971 * indirection through the class segment tables. */
973 /* Choose class segment depending on type we were passed */
974 class_index
= class_index_in_primary_list (type
);
976 /* Find class segment pointer. These are in the vtable slots after
977 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
978 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
979 * the multiplier below has to be 8 and value should be long. */
980 vp
= value_at (builtin_type_int
,
981 coreptr
+ 4 * (HP_ACC_VFUNC_START
+ class_index
), NULL
);
982 /* Indirect once more, offset by function index */
983 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
984 coreptr
= * (CORE_ADDR
*) (VALUE_CONTENTS (vp
) + 4 * TYPE_FN_FIELD_VOFFSET (f
, j
));
985 vp
= value_at (builtin_type_int
, coreptr
, NULL
);
986 coreptr
= * (CORE_ADDR
*) (VALUE_CONTENTS (vp
));
988 /* coreptr now contains the address of the virtual function */
989 /* (Actually, it contains the pointer to the plabel for the function.) */
994 error ("Address of virtual function is null; error in virtual table?");
996 /* Wrap this addr in a value and return pointer */
997 vp
= allocate_value (ftype
);
998 VALUE_TYPE (vp
) = ftype
;
999 VALUE_ADDRESS (vp
) = coreptr
;
1001 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1005 { /* Not using HP/Taligent runtime conventions; so try to
1006 * use g++ conventions for virtual table */
1008 struct type
*entry_type
;
1009 /* First, get the virtual function table pointer. That comes
1010 with a strange type, so cast it to type `pointer to long' (which
1011 should serve just fine as a function type). Then, index into
1012 the table, and convert final value to appropriate function type. */
1013 value_ptr entry
, vfn
, vtbl
;
1014 value_ptr vi
= value_from_longest (builtin_type_int
,
1015 (LONGEST
) TYPE_FN_FIELD_VOFFSET (f
, j
));
1016 struct type
*fcontext
= TYPE_FN_FIELD_FCONTEXT (f
, j
);
1017 struct type
*context
;
1018 if (fcontext
== NULL
)
1019 /* We don't have an fcontext (e.g. the program was compiled with
1020 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1021 This won't work right for multiple inheritance, but at least we
1022 should do as well as GDB 3.x did. */
1023 fcontext
= TYPE_VPTR_BASETYPE (type
);
1024 context
= lookup_pointer_type (fcontext
);
1025 /* Now context is a pointer to the basetype containing the vtbl. */
1026 if (TYPE_TARGET_TYPE (context
) != type1
)
1028 arg1
= value_ind (value_cast (context
, value_addr (arg1
)));
1029 type1
= check_typedef (VALUE_TYPE (arg1
));
1033 /* Now context is the basetype containing the vtbl. */
1035 /* This type may have been defined before its virtual function table
1036 was. If so, fill in the virtual function table entry for the
1038 if (TYPE_VPTR_FIELDNO (context
) < 0)
1039 fill_in_vptr_fieldno (context
);
1041 /* The virtual function table is now an array of structures
1042 which have the form { int16 offset, delta; void *pfn; }. */
1043 vtbl
= value_primitive_field (arg1
, 0, TYPE_VPTR_FIELDNO (context
),
1044 TYPE_VPTR_BASETYPE (context
));
1046 /* With older versions of g++, the vtbl field pointed to an array
1047 of structures. Nowadays it points directly to the structure. */
1048 if (TYPE_CODE (VALUE_TYPE (vtbl
)) == TYPE_CODE_PTR
1049 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl
))) == TYPE_CODE_ARRAY
)
1051 /* Handle the case where the vtbl field points to an
1052 array of structures. */
1053 vtbl
= value_ind (vtbl
);
1055 /* Index into the virtual function table. This is hard-coded because
1056 looking up a field is not cheap, and it may be important to save
1057 time, e.g. if the user has set a conditional breakpoint calling
1058 a virtual function. */
1059 entry
= value_subscript (vtbl
, vi
);
1063 /* Handle the case where the vtbl field points directly to a structure. */
1064 vtbl
= value_add (vtbl
, vi
);
1065 entry
= value_ind (vtbl
);
1068 entry_type
= check_typedef (VALUE_TYPE (entry
));
1070 if (TYPE_CODE (entry_type
) == TYPE_CODE_STRUCT
)
1072 /* Move the `this' pointer according to the virtual function table. */
1073 VALUE_OFFSET (arg1
) += value_as_long (value_field (entry
, 0));
1075 if (! VALUE_LAZY (arg1
))
1077 VALUE_LAZY (arg1
) = 1;
1078 value_fetch_lazy (arg1
);
1081 vfn
= value_field (entry
, 2);
1083 else if (TYPE_CODE (entry_type
) == TYPE_CODE_PTR
)
1086 error ("I'm confused: virtual function table has bad type");
1087 /* Reinstantiate the function pointer with the correct type. */
1088 VALUE_TYPE (vfn
) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f
, j
));
1095 /* ARG is a pointer to an object we know to be at least
1096 a DTYPE. BTYPE is the most derived basetype that has
1097 already been searched (and need not be searched again).
1098 After looking at the vtables between BTYPE and DTYPE,
1099 return the most derived type we find. The caller must
1100 be satisfied when the return value == DTYPE.
1102 FIXME-tiemann: should work with dossier entries as well. */
1105 value_headof (in_arg
, btype
, dtype
)
1107 struct type
*btype
, *dtype
;
1109 /* First collect the vtables we must look at for this object. */
1110 /* FIXME-tiemann: right now, just look at top-most vtable. */
1111 value_ptr arg
, vtbl
, entry
, best_entry
= 0;
1113 int offset
, best_offset
= 0;
1115 CORE_ADDR pc_for_sym
;
1116 char *demangled_name
;
1117 struct minimal_symbol
*msymbol
;
1119 btype
= TYPE_VPTR_BASETYPE (dtype
);
1120 CHECK_TYPEDEF (btype
);
1123 arg
= value_cast (lookup_pointer_type (btype
), arg
);
1124 vtbl
= value_ind (value_field (value_ind (arg
), TYPE_VPTR_FIELDNO (btype
)));
1126 /* Check that VTBL looks like it points to a virtual function table. */
1127 msymbol
= lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl
));
1129 || (demangled_name
= SYMBOL_NAME (msymbol
)) == NULL
1130 || !VTBL_PREFIX_P (demangled_name
))
1132 /* If we expected to find a vtable, but did not, let the user
1133 know that we aren't happy, but don't throw an error.
1134 FIXME: there has to be a better way to do this. */
1135 struct type
*error_type
= (struct type
*)xmalloc (sizeof (struct type
));
1136 memcpy (error_type
, VALUE_TYPE (in_arg
), sizeof (struct type
));
1137 TYPE_NAME (error_type
) = savestring ("suspicious *", sizeof ("suspicious *"));
1138 VALUE_TYPE (in_arg
) = error_type
;
1142 /* Now search through the virtual function table. */
1143 entry
= value_ind (vtbl
);
1144 nelems
= longest_to_int (value_as_long (value_field (entry
, 2)));
1145 for (i
= 1; i
<= nelems
; i
++)
1147 entry
= value_subscript (vtbl
, value_from_longest (builtin_type_int
,
1149 /* This won't work if we're using thunks. */
1150 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry
))) != TYPE_CODE_STRUCT
)
1152 offset
= longest_to_int (value_as_long (value_field (entry
, 0)));
1153 /* If we use '<=' we can handle single inheritance
1154 * where all offsets are zero - just use the first entry found. */
1155 if (offset
<= best_offset
)
1157 best_offset
= offset
;
1161 /* Move the pointer according to BEST_ENTRY's offset, and figure
1162 out what type we should return as the new pointer. */
1163 if (best_entry
== 0)
1165 /* An alternative method (which should no longer be necessary).
1166 * But we leave it in for future use, when we will hopefully
1167 * have optimizes the vtable to use thunks instead of offsets. */
1168 /* Use the name of vtable itself to extract a base type. */
1169 demangled_name
+= 4; /* Skip _vt$ prefix. */
1173 pc_for_sym
= value_as_pointer (value_field (best_entry
, 2));
1174 sym
= find_pc_function (pc_for_sym
);
1175 demangled_name
= cplus_demangle (SYMBOL_NAME (sym
), DMGL_ANSI
);
1176 *(strchr (demangled_name
, ':')) = '\0';
1178 sym
= lookup_symbol (demangled_name
, 0, VAR_NAMESPACE
, 0, 0);
1180 error ("could not find type declaration for `%s'", demangled_name
);
1183 free (demangled_name
);
1184 arg
= value_add (value_cast (builtin_type_int
, arg
),
1185 value_field (best_entry
, 0));
1188 VALUE_TYPE (arg
) = lookup_pointer_type (SYMBOL_TYPE (sym
));
1192 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1193 function tables, probe ARG's tables (including the vtables
1194 of its baseclasses) to figure out the most derived type that ARG
1195 could actually be a pointer to. */
1198 value_from_vtable_info (arg
, type
)
1202 /* Take care of preliminaries. */
1203 if (TYPE_VPTR_FIELDNO (type
) < 0)
1204 fill_in_vptr_fieldno (type
);
1205 if (TYPE_VPTR_FIELDNO (type
) < 0)
1208 return value_headof (arg
, 0, type
);
1211 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1212 pointer which is for the base class whose type is BASECLASS. */
1215 vb_match (type
, index
, basetype
)
1218 struct type
*basetype
;
1220 struct type
*fieldtype
;
1221 char *name
= TYPE_FIELD_NAME (type
, index
);
1222 char *field_class_name
= NULL
;
1226 /* gcc 2.4 uses _vb$. */
1227 if (name
[1] == 'v' && name
[2] == 'b' && is_cplus_marker (name
[3]))
1228 field_class_name
= name
+ 4;
1229 /* gcc 2.5 will use __vb_. */
1230 if (name
[1] == '_' && name
[2] == 'v' && name
[3] == 'b' && name
[4] == '_')
1231 field_class_name
= name
+ 5;
1233 if (field_class_name
== NULL
)
1234 /* This field is not a virtual base class pointer. */
1237 /* It's a virtual baseclass pointer, now we just need to find out whether
1238 it is for this baseclass. */
1239 fieldtype
= TYPE_FIELD_TYPE (type
, index
);
1240 if (fieldtype
== NULL
1241 || TYPE_CODE (fieldtype
) != TYPE_CODE_PTR
)
1242 /* "Can't happen". */
1245 /* What we check for is that either the types are equal (needed for
1246 nameless types) or have the same name. This is ugly, and a more
1247 elegant solution should be devised (which would probably just push
1248 the ugliness into symbol reading unless we change the stabs format). */
1249 if (TYPE_TARGET_TYPE (fieldtype
) == basetype
)
1252 if (TYPE_NAME (basetype
) != NULL
1253 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype
)) != NULL
1254 && STREQ (TYPE_NAME (basetype
),
1255 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype
))))
1260 /* Compute the offset of the baseclass which is
1261 the INDEXth baseclass of class TYPE,
1262 for value at VALADDR (in host) at ADDRESS (in target).
1263 The result is the offset of the baseclass value relative
1264 to (the address of)(ARG) + OFFSET.
1266 -1 is returned on error. */
1269 baseclass_offset (type
, index
, valaddr
, address
)
1275 struct type
*basetype
= TYPE_BASECLASS (type
, index
);
1277 if (BASETYPE_VIA_VIRTUAL (type
, index
))
1279 /* Must hunt for the pointer to this virtual baseclass. */
1280 register int i
, len
= TYPE_NFIELDS (type
);
1281 register int n_baseclasses
= TYPE_N_BASECLASSES (type
);
1283 /* First look for the virtual baseclass pointer
1285 for (i
= n_baseclasses
; i
< len
; i
++)
1287 if (vb_match (type
, i
, basetype
))
1290 = unpack_pointer (TYPE_FIELD_TYPE (type
, i
),
1291 valaddr
+ (TYPE_FIELD_BITPOS (type
, i
) / 8));
1293 return addr
- (LONGEST
) address
;
1296 /* Not in the fields, so try looking through the baseclasses. */
1297 for (i
= index
+1; i
< n_baseclasses
; i
++)
1300 baseclass_offset (type
, i
, valaddr
, address
);
1308 /* Baseclass is easily computed. */
1309 return TYPE_BASECLASS_BITPOS (type
, index
) / 8;
1312 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1315 Extracting bits depends on endianness of the machine. Compute the
1316 number of least significant bits to discard. For big endian machines,
1317 we compute the total number of bits in the anonymous object, subtract
1318 off the bit count from the MSB of the object to the MSB of the
1319 bitfield, then the size of the bitfield, which leaves the LSB discard
1320 count. For little endian machines, the discard count is simply the
1321 number of bits from the LSB of the anonymous object to the LSB of the
1324 If the field is signed, we also do sign extension. */
1327 unpack_field_as_long (type
, valaddr
, fieldno
)
1334 int bitpos
= TYPE_FIELD_BITPOS (type
, fieldno
);
1335 int bitsize
= TYPE_FIELD_BITSIZE (type
, fieldno
);
1337 struct type
*field_type
;
1339 val
= extract_unsigned_integer (valaddr
+ bitpos
/ 8, sizeof (val
));
1340 field_type
= TYPE_FIELD_TYPE (type
, fieldno
);
1341 CHECK_TYPEDEF (field_type
);
1343 /* Extract bits. See comment above. */
1345 if (BITS_BIG_ENDIAN
)
1346 lsbcount
= (sizeof val
* 8 - bitpos
% 8 - bitsize
);
1348 lsbcount
= (bitpos
% 8);
1351 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1352 If the field is signed, and is negative, then sign extend. */
1354 if ((bitsize
> 0) && (bitsize
< 8 * (int) sizeof (val
)))
1356 valmask
= (((ULONGEST
) 1) << bitsize
) - 1;
1358 if (!TYPE_UNSIGNED (field_type
))
1360 if (val
& (valmask
^ (valmask
>> 1)))
1369 /* Modify the value of a bitfield. ADDR points to a block of memory in
1370 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1371 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1372 indicate which bits (in target bit order) comprise the bitfield. */
1375 modify_field (addr
, fieldval
, bitpos
, bitsize
)
1378 int bitpos
, bitsize
;
1382 /* If a negative fieldval fits in the field in question, chop
1383 off the sign extension bits. */
1384 if (bitsize
< (8 * (int) sizeof (fieldval
))
1385 && (~fieldval
& ~((1 << (bitsize
- 1)) - 1)) == 0)
1386 fieldval
= fieldval
& ((1 << bitsize
) - 1);
1388 /* Warn if value is too big to fit in the field in question. */
1389 if (bitsize
< (8 * (int) sizeof (fieldval
))
1390 && 0 != (fieldval
& ~((1<<bitsize
)-1)))
1392 /* FIXME: would like to include fieldval in the message, but
1393 we don't have a sprintf_longest. */
1394 warning ("Value does not fit in %d bits.", bitsize
);
1396 /* Truncate it, otherwise adjoining fields may be corrupted. */
1397 fieldval
= fieldval
& ((1 << bitsize
) - 1);
1400 oword
= extract_signed_integer (addr
, sizeof oword
);
1402 /* Shifting for bit field depends on endianness of the target machine. */
1403 if (BITS_BIG_ENDIAN
)
1404 bitpos
= sizeof (oword
) * 8 - bitpos
- bitsize
;
1406 /* Mask out old value, while avoiding shifts >= size of oword */
1407 if (bitsize
< 8 * (int) sizeof (oword
))
1408 oword
&= ~(((((ULONGEST
)1) << bitsize
) - 1) << bitpos
);
1410 oword
&= ~((~(ULONGEST
)0) << bitpos
);
1411 oword
|= fieldval
<< bitpos
;
1413 store_signed_integer (addr
, sizeof oword
, oword
);
1416 /* Convert C numbers into newly allocated values */
1419 value_from_longest (type
, num
)
1421 register LONGEST num
;
1423 register value_ptr val
= allocate_value (type
);
1424 register enum type_code code
;
1427 code
= TYPE_CODE (type
);
1428 len
= TYPE_LENGTH (type
);
1432 case TYPE_CODE_TYPEDEF
:
1433 type
= check_typedef (type
);
1436 case TYPE_CODE_CHAR
:
1437 case TYPE_CODE_ENUM
:
1438 case TYPE_CODE_BOOL
:
1439 case TYPE_CODE_RANGE
:
1440 store_signed_integer (VALUE_CONTENTS_RAW (val
), len
, num
);
1445 /* This assumes that all pointers of a given length
1446 have the same form. */
1447 store_address (VALUE_CONTENTS_RAW (val
), len
, (CORE_ADDR
) num
);
1451 error ("Unexpected type (%d) encountered for integer constant.", code
);
1457 value_from_double (type
, num
)
1461 register value_ptr val
= allocate_value (type
);
1462 struct type
*base_type
= check_typedef (type
);
1463 register enum type_code code
= TYPE_CODE (base_type
);
1464 register int len
= TYPE_LENGTH (base_type
);
1466 if (code
== TYPE_CODE_FLT
)
1468 store_floating (VALUE_CONTENTS_RAW (val
), len
, num
);
1471 error ("Unexpected type encountered for floating constant.");
1476 /* Deal with the value that is "about to be returned". */
1478 /* Return the value that a function returning now
1479 would be returning to its caller, assuming its type is VALTYPE.
1480 RETBUF is where we look for what ought to be the contents
1481 of the registers (in raw form). This is because it is often
1482 desirable to restore old values to those registers
1483 after saving the contents of interest, and then call
1484 this function using the saved values.
1485 struct_return is non-zero when the function in question is
1486 using the structure return conventions on the machine in question;
1487 0 when it is using the value returning conventions (this often
1488 means returning pointer to where structure is vs. returning value). */
1491 value_being_returned (valtype
, retbuf
, struct_return
)
1492 register struct type
*valtype
;
1493 char retbuf
[REGISTER_BYTES
];
1497 register value_ptr val
;
1500 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1501 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1502 if (struct_return
) {
1503 addr
= EXTRACT_STRUCT_VALUE_ADDRESS (retbuf
);
1505 error ("Function return value unknown");
1506 return value_at (valtype
, addr
, NULL
);
1510 val
= allocate_value (valtype
);
1511 CHECK_TYPEDEF (valtype
);
1512 EXTRACT_RETURN_VALUE (valtype
, retbuf
, VALUE_CONTENTS_RAW (val
));
1517 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1518 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1519 and TYPE is the type (which is known to be struct, union or array).
1521 On most machines, the struct convention is used unless we are
1522 using gcc and the type is of a special size. */
1523 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1524 native compiler. GCC 2.3.3 was the last release that did it the
1525 old way. Since gcc2_compiled was not changed, we have no
1526 way to correctly win in all cases, so we just do the right thing
1527 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1528 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1529 would cause more chaos than dealing with some struct returns being
1533 generic_use_struct_convention (gcc_p
, value_type
)
1535 struct type
*value_type
;
1537 return !((gcc_p
== 1)
1538 && (TYPE_LENGTH (value_type
) == 1
1539 || TYPE_LENGTH (value_type
) == 2
1540 || TYPE_LENGTH (value_type
) == 4
1541 || TYPE_LENGTH (value_type
) == 8));
1544 #ifndef USE_STRUCT_CONVENTION
1545 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1548 /* Some fundamental types (such as long double) are returned on the stack for
1549 certain architectures. This macro should return true for any type besides
1550 struct, union or array that gets returned on the stack. */
1552 #ifndef RETURN_VALUE_ON_STACK
1553 #define RETURN_VALUE_ON_STACK(TYPE) 0
1556 /* Return true if the function specified is using the structure returning
1557 convention on this machine to return arguments, or 0 if it is using
1558 the value returning convention. FUNCTION is the value representing
1559 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1560 is the type returned by the function. GCC_P is nonzero if compiled
1564 using_struct_return (function
, funcaddr
, value_type
, gcc_p
)
1567 struct type
*value_type
;
1571 register enum type_code code
= TYPE_CODE (value_type
);
1573 if (code
== TYPE_CODE_ERROR
)
1574 error ("Function return type unknown.");
1576 if (code
== TYPE_CODE_STRUCT
1577 || code
== TYPE_CODE_UNION
1578 || code
== TYPE_CODE_ARRAY
1579 || RETURN_VALUE_ON_STACK (value_type
))
1580 return USE_STRUCT_CONVENTION (gcc_p
, value_type
);
1585 /* Store VAL so it will be returned if a function returns now.
1586 Does not verify that VAL's type matches what the current
1587 function wants to return. */
1590 set_return_value (val
)
1593 struct type
*type
= check_typedef (VALUE_TYPE (val
));
1594 register enum type_code code
= TYPE_CODE (type
);
1596 if (code
== TYPE_CODE_ERROR
)
1597 error ("Function return type unknown.");
1599 if ( code
== TYPE_CODE_STRUCT
1600 || code
== TYPE_CODE_UNION
) /* FIXME, implement struct return. */
1601 error ("GDB does not support specifying a struct or union return value.");
1603 STORE_RETURN_VALUE (type
, VALUE_CONTENTS (val
));
1607 _initialize_values ()
1609 add_cmd ("convenience", no_class
, show_convenience
,
1610 "Debugger convenience (\"$foo\") variables.\n\
1611 These variables are created when you assign them values;\n\
1612 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1613 A few convenience variables are given values automatically:\n\
1614 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1615 \"$__\" holds the contents of the last address examined with \"x\".",
1618 add_cmd ("values", no_class
, show_values
,
1619 "Elements of value history around item number IDX (or last ten).",