1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
67 #include <unordered_set>
72 static const char *i386_register_names
[] =
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
87 static const char *i386_zmm_names
[] =
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
93 static const char *i386_zmmh_names
[] =
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 static const char *i386_k_names
[] =
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
105 static const char *i386_ymm_names
[] =
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
111 static const char *i386_ymmh_names
[] =
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 static const char *i386_mpx_names
[] =
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 static const char* i386_pkeys_names
[] =
127 /* Register names for MPX pseudo-registers. */
129 static const char *i386_bnd_names
[] =
131 "bnd0", "bnd1", "bnd2", "bnd3"
134 /* Register names for MMX pseudo-registers. */
136 static const char *i386_mmx_names
[] =
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
142 /* Register names for byte pseudo-registers. */
144 static const char *i386_byte_names
[] =
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
150 /* Register names for word pseudo-registers. */
152 static const char *i386_word_names
[] =
154 "ax", "cx", "dx", "bx",
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
162 const int num_lower_zmm_regs
= 16;
167 i386_mmx_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
169 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
170 int mm0_regnum
= tdep
->mm0_regnum
;
175 regnum
-= mm0_regnum
;
176 return regnum
>= 0 && regnum
< tdep
->num_mmx_regs
;
182 i386_byte_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
184 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
186 regnum
-= tdep
->al_regnum
;
187 return regnum
>= 0 && regnum
< tdep
->num_byte_regs
;
193 i386_word_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
195 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
197 regnum
-= tdep
->ax_regnum
;
198 return regnum
>= 0 && regnum
< tdep
->num_word_regs
;
201 /* Dword register? */
204 i386_dword_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
206 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
207 int eax_regnum
= tdep
->eax_regnum
;
212 regnum
-= eax_regnum
;
213 return regnum
>= 0 && regnum
< tdep
->num_dword_regs
;
216 /* AVX512 register? */
219 i386_zmmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
221 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
222 int zmm0h_regnum
= tdep
->zmm0h_regnum
;
224 if (zmm0h_regnum
< 0)
227 regnum
-= zmm0h_regnum
;
228 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
232 i386_zmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
234 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
235 int zmm0_regnum
= tdep
->zmm0_regnum
;
240 regnum
-= zmm0_regnum
;
241 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
245 i386_k_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
247 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
248 int k0_regnum
= tdep
->k0_regnum
;
254 return regnum
>= 0 && regnum
< I387_NUM_K_REGS
;
258 i386_ymmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
260 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
261 int ymm0h_regnum
= tdep
->ymm0h_regnum
;
263 if (ymm0h_regnum
< 0)
266 regnum
-= ymm0h_regnum
;
267 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
273 i386_ymm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
275 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
276 int ymm0_regnum
= tdep
->ymm0_regnum
;
281 regnum
-= ymm0_regnum
;
282 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
286 i386_ymmh_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
288 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
289 int ymm16h_regnum
= tdep
->ymm16h_regnum
;
291 if (ymm16h_regnum
< 0)
294 regnum
-= ymm16h_regnum
;
295 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
299 i386_ymm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
301 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
302 int ymm16_regnum
= tdep
->ymm16_regnum
;
304 if (ymm16_regnum
< 0)
307 regnum
-= ymm16_regnum
;
308 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
314 i386_bnd_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
316 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
317 int bnd0_regnum
= tdep
->bnd0_regnum
;
322 regnum
-= bnd0_regnum
;
323 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
329 i386_xmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
331 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
332 int num_xmm_regs
= I387_NUM_XMM_REGS (tdep
);
334 if (num_xmm_regs
== 0)
337 regnum
-= I387_XMM0_REGNUM (tdep
);
338 return regnum
>= 0 && regnum
< num_xmm_regs
;
341 /* XMM_512 register? */
344 i386_xmm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
346 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
347 int num_xmm_avx512_regs
= I387_NUM_XMM_AVX512_REGS (tdep
);
349 if (num_xmm_avx512_regs
== 0)
352 regnum
-= I387_XMM16_REGNUM (tdep
);
353 return regnum
>= 0 && regnum
< num_xmm_avx512_regs
;
357 i386_mxcsr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
359 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
361 if (I387_NUM_XMM_REGS (tdep
) == 0)
364 return (regnum
== I387_MXCSR_REGNUM (tdep
));
370 i386_fp_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
372 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
374 if (I387_ST0_REGNUM (tdep
) < 0)
377 return (I387_ST0_REGNUM (tdep
) <= regnum
378 && regnum
< I387_FCTRL_REGNUM (tdep
));
382 i386_fpc_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
384 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
386 if (I387_ST0_REGNUM (tdep
) < 0)
389 return (I387_FCTRL_REGNUM (tdep
) <= regnum
390 && regnum
< I387_XMM0_REGNUM (tdep
));
393 /* BNDr (raw) register? */
396 i386_bndr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
398 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
400 if (I387_BND0R_REGNUM (tdep
) < 0)
403 regnum
-= tdep
->bnd0r_regnum
;
404 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
407 /* BND control register? */
410 i386_mpx_ctrl_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
412 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
414 if (I387_BNDCFGU_REGNUM (tdep
) < 0)
417 regnum
-= I387_BNDCFGU_REGNUM (tdep
);
418 return regnum
>= 0 && regnum
< I387_NUM_MPX_CTRL_REGS
;
424 i386_pkru_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
426 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
427 int pkru_regnum
= tdep
->pkru_regnum
;
432 regnum
-= pkru_regnum
;
433 return regnum
>= 0 && regnum
< I387_NUM_PKEYS_REGS
;
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
440 i386_register_name (struct gdbarch
*gdbarch
, int regnum
)
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch
, regnum
))
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch
, regnum
))
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch
, regnum
))
454 return tdesc_register_name (gdbarch
, regnum
);
457 /* Return the name of register REGNUM. */
460 i386_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
462 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
463 if (i386_bnd_regnum_p (gdbarch
, regnum
))
464 return i386_bnd_names
[regnum
- tdep
->bnd0_regnum
];
465 if (i386_mmx_regnum_p (gdbarch
, regnum
))
466 return i386_mmx_names
[regnum
- I387_MM0_REGNUM (tdep
)];
467 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
468 return i386_ymm_names
[regnum
- tdep
->ymm0_regnum
];
469 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
470 return i386_zmm_names
[regnum
- tdep
->zmm0_regnum
];
471 else if (i386_byte_regnum_p (gdbarch
, regnum
))
472 return i386_byte_names
[regnum
- tdep
->al_regnum
];
473 else if (i386_word_regnum_p (gdbarch
, regnum
))
474 return i386_word_names
[regnum
- tdep
->ax_regnum
];
476 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
483 i386_dbx_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
485 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
490 if (reg
>= 0 && reg
<= 7)
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
500 else if (reg
>= 12 && reg
<= 19)
502 /* Floating-point registers. */
503 return reg
- 12 + I387_ST0_REGNUM (tdep
);
505 else if (reg
>= 21 && reg
<= 28)
508 int ymm0_regnum
= tdep
->ymm0_regnum
;
511 && i386_xmm_regnum_p (gdbarch
, reg
))
512 return reg
- 21 + ymm0_regnum
;
514 return reg
- 21 + I387_XMM0_REGNUM (tdep
);
516 else if (reg
>= 29 && reg
<= 36)
519 return reg
- 29 + I387_MM0_REGNUM (tdep
);
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch
);
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
532 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg
>= 0 && reg
<= 9)
541 /* General-purpose registers. */
544 else if (reg
>= 11 && reg
<= 18)
546 /* Floating-point registers. */
547 return reg
- 11 + I387_ST0_REGNUM (tdep
);
549 else if (reg
>= 21 && reg
<= 36)
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch
, reg
);
557 case 37: return I387_FCTRL_REGNUM (tdep
);
558 case 38: return I387_FSTAT_REGNUM (tdep
);
559 case 39: return I387_MXCSR_REGNUM (tdep
);
560 case 40: return I386_ES_REGNUM
;
561 case 41: return I386_CS_REGNUM
;
562 case 42: return I386_SS_REGNUM
;
563 case 43: return I386_DS_REGNUM
;
564 case 44: return I386_FS_REGNUM
;
565 case 45: return I386_GS_REGNUM
;
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
575 i386_svr4_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
577 int regnum
= i386_svr4_dwarf_reg_to_regnum (gdbarch
, reg
);
580 return gdbarch_num_cooked_regs (gdbarch
);
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor
[] = "att";
589 static const char intel_flavor
[] = "intel";
590 static const char *const valid_flavors
[] =
596 static const char *disassembly_flavor
= att_flavor
;
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
608 This function is 64-bit safe. */
610 constexpr gdb_byte i386_break_insn
[] = { 0xcc }; /* int 3 */
612 typedef BP_MANIPULATION (i386_break_insn
) i386_breakpoint
;
615 /* Displaced instruction handling. */
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
624 i386_skip_prefixes (gdb_byte
*insn
, size_t max_len
)
626 gdb_byte
*end
= insn
+ max_len
;
632 case DATA_PREFIX_OPCODE
:
633 case ADDR_PREFIX_OPCODE
:
634 case CS_PREFIX_OPCODE
:
635 case DS_PREFIX_OPCODE
:
636 case ES_PREFIX_OPCODE
:
637 case FS_PREFIX_OPCODE
:
638 case GS_PREFIX_OPCODE
:
639 case SS_PREFIX_OPCODE
:
640 case LOCK_PREFIX_OPCODE
:
641 case REPE_PREFIX_OPCODE
:
642 case REPNE_PREFIX_OPCODE
:
654 i386_absolute_jmp_p (const gdb_byte
*insn
)
656 /* jmp far (absolute address in operand). */
662 /* jump near, absolute indirect (/4). */
663 if ((insn
[1] & 0x38) == 0x20)
666 /* jump far, absolute indirect (/5). */
667 if ((insn
[1] & 0x38) == 0x28)
674 /* Return non-zero if INSN is a jump, zero otherwise. */
677 i386_jmp_p (const gdb_byte
*insn
)
679 /* jump short, relative. */
683 /* jump near, relative. */
687 return i386_absolute_jmp_p (insn
);
691 i386_absolute_call_p (const gdb_byte
*insn
)
693 /* call far, absolute. */
699 /* Call near, absolute indirect (/2). */
700 if ((insn
[1] & 0x38) == 0x10)
703 /* Call far, absolute indirect (/3). */
704 if ((insn
[1] & 0x38) == 0x18)
712 i386_ret_p (const gdb_byte
*insn
)
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
729 i386_call_p (const gdb_byte
*insn
)
731 if (i386_absolute_call_p (insn
))
734 /* call near, relative. */
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
745 i386_syscall_p (const gdb_byte
*insn
, int *lengthp
)
747 /* Is it 'int $0x80'? */
748 if ((insn
[0] == 0xcd && insn
[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn
[0] == 0x0f && insn
[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn
[0] == 0x0f && insn
[1] == 0x05))
761 /* The gdbarch insn_is_call method. */
764 i386_insn_is_call (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
766 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
768 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
769 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
771 return i386_call_p (insn
);
774 /* The gdbarch insn_is_ret method. */
777 i386_insn_is_ret (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
779 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
781 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
782 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
784 return i386_ret_p (insn
);
787 /* The gdbarch insn_is_jump method. */
790 i386_insn_is_jump (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
792 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
794 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
795 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
797 return i386_jmp_p (insn
);
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
802 displaced_step_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
804 CORE_ADDR from
, CORE_ADDR to
,
805 struct regcache
*regs
)
807 size_t len
= gdbarch_max_insn_length (gdbarch
);
808 std::unique_ptr
<i386_displaced_step_closure
> closure
809 (new i386_displaced_step_closure (len
));
810 gdb_byte
*buf
= closure
->buf
.data ();
812 read_memory (from
, buf
, len
);
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
821 insn
= i386_skip_prefixes (buf
, len
);
822 if (insn
!= NULL
&& i386_syscall_p (insn
, &syscall_length
))
823 insn
[syscall_length
] = NOP_OPCODE
;
826 write_memory (to
, buf
, len
);
830 fprintf_unfiltered (gdb_stdlog
, "displaced: copy %s->%s: ",
831 paddress (gdbarch
, from
), paddress (gdbarch
, to
));
832 displaced_step_dump_bytes (gdb_stdlog
, buf
, len
);
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_closure_up (closure
.release ());
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
843 i386_displaced_step_fixup (struct gdbarch
*gdbarch
,
844 struct displaced_step_closure
*closure_
,
845 CORE_ADDR from
, CORE_ADDR to
,
846 struct regcache
*regs
)
848 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
854 ULONGEST insn_offset
= to
- from
;
856 i386_displaced_step_closure
*closure
857 = (i386_displaced_step_closure
*) closure_
;
858 gdb_byte
*insn
= closure
->buf
.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte
*insn_start
= insn
;
863 fprintf_unfiltered (gdb_stdlog
,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
873 /* Relocate the %eip, if necessary. */
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len
= gdbarch_max_insn_length (gdbarch
);
880 gdb_byte
*opcode
= i386_skip_prefixes (insn
, max_insn_len
);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn
)
893 && ! i386_absolute_call_p (insn
)
894 && ! i386_ret_p (insn
))
899 regcache_cooked_read_unsigned (regs
, I386_EIP_REGNUM
, &orig_eip
);
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
906 But most system calls don't, and we do need to relocate %eip.
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
915 if (i386_syscall_p (insn
, &insn_len
)
916 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
+ 1)
924 fprintf_unfiltered (gdb_stdlog
,
925 "displaced: syscall changed %%eip; "
930 ULONGEST eip
= (orig_eip
- insn_offset
) & 0xffffffffUL
;
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
936 regcache_cooked_write_unsigned (regs
, I386_EIP_REGNUM
, eip
);
939 fprintf_unfiltered (gdb_stdlog
,
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch
, orig_eip
),
943 paddress (gdbarch
, eip
));
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn
))
959 const ULONGEST retaddr_len
= 4;
961 regcache_cooked_read_unsigned (regs
, I386_ESP_REGNUM
, &esp
);
962 retaddr
= read_memory_unsigned_integer (esp
, retaddr_len
, byte_order
);
963 retaddr
= (retaddr
- insn_offset
) & 0xffffffffUL
;
964 write_memory_unsigned_integer (esp
, retaddr_len
, byte_order
, retaddr
);
967 fprintf_unfiltered (gdb_stdlog
,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch
, esp
),
970 paddress (gdbarch
, retaddr
));
975 append_insns (CORE_ADDR
*to
, ULONGEST len
, const gdb_byte
*buf
)
977 target_write_memory (*to
, buf
, len
);
982 i386_relocate_instruction (struct gdbarch
*gdbarch
,
983 CORE_ADDR
*to
, CORE_ADDR oldloc
)
985 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
986 gdb_byte buf
[I386_MAX_INSN_LEN
];
987 int offset
= 0, rel32
, newrel
;
989 gdb_byte
*insn
= buf
;
991 read_memory (oldloc
, buf
, I386_MAX_INSN_LEN
);
993 insn_length
= gdb_buffered_insn_length (gdbarch
, insn
,
994 I386_MAX_INSN_LEN
, oldloc
);
996 /* Get past the prefixes. */
997 insn
= i386_skip_prefixes (insn
, I386_MAX_INSN_LEN
);
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn
[0] == 0xe8)
1004 gdb_byte push_buf
[16];
1005 unsigned int ret_addr
;
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr
= oldloc
+ insn_length
;
1009 push_buf
[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf
[1], 4, byte_order
, ret_addr
);
1011 /* Push the push. */
1012 append_insns (to
, 5, push_buf
);
1014 /* Convert the relative call to a relative jump. */
1017 /* Adjust the destination offset. */
1018 rel32
= extract_signed_integer (insn
+ 1, 4, byte_order
);
1019 newrel
= (oldloc
- *to
) + rel32
;
1020 store_signed_integer (insn
+ 1, 4, byte_order
, newrel
);
1022 if (debug_displaced
)
1023 fprintf_unfiltered (gdb_stdlog
,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1027 hex_string (newrel
), paddress (gdbarch
, *to
));
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to
, 5, insn
);
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1036 if (insn
[0] == 0xe9)
1038 /* Adjust conditional jumps. */
1039 else if (insn
[0] == 0x0f && (insn
[1] & 0xf0) == 0x80)
1044 rel32
= extract_signed_integer (insn
+ offset
, 4, byte_order
);
1045 newrel
= (oldloc
- *to
) + rel32
;
1046 store_signed_integer (insn
+ offset
, 4, byte_order
, newrel
);
1047 if (debug_displaced
)
1048 fprintf_unfiltered (gdb_stdlog
,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1052 hex_string (newrel
), paddress (gdbarch
, *to
));
1055 /* Write the adjusted instructions into their displaced
1057 append_insns (to
, insn_length
, buf
);
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1073 struct i386_frame_cache
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs
[I386_NUM_SAVED_REGS
];
1087 /* Stack space reserved for local variables. */
1091 /* Allocate and initialize a frame cache. */
1093 static struct i386_frame_cache
*
1094 i386_alloc_frame_cache (void)
1096 struct i386_frame_cache
*cache
;
1099 cache
= FRAME_OBSTACK_ZALLOC (struct i386_frame_cache
);
1104 cache
->sp_offset
= -4;
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
1110 cache
->saved_regs
[i
] = -1;
1111 cache
->saved_sp
= 0;
1112 cache
->saved_sp_reg
= -1;
1113 cache
->pc_in_eax
= 0;
1115 /* Frameless until proven otherwise. */
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1125 i386_follow_jump (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1127 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1132 if (target_read_code (pc
, &op
, 1))
1139 op
= read_code_unsigned_integer (pc
+ 1, 1, byte_order
);
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1148 delta
= read_memory_integer (pc
+ 2, 2, byte_order
);
1150 /* Include the size of the jmp instruction (including the
1156 delta
= read_memory_integer (pc
+ 1, 4, byte_order
);
1158 /* Include the size of the jmp instruction. */
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta
= read_memory_integer (pc
+ data16
+ 1, 1, byte_order
);
1166 delta
+= data16
+ 2;
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1180 i386_analyze_struct_return (CORE_ADDR pc
, CORE_ADDR current_pc
,
1181 struct i386_frame_cache
*cache
)
1183 /* Functions that return a structure or union start with:
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1
[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2
[4] = { 0x87, 0x44, 0x24, 0x00 };
1198 if (current_pc
<= pc
)
1201 if (target_read_code (pc
, &op
, 1))
1204 if (op
!= 0x58) /* popl %eax */
1207 if (target_read_code (pc
+ 1, buf
, 4))
1210 if (memcmp (buf
, proto1
, 3) != 0 && memcmp (buf
, proto2
, 4) != 0)
1213 if (current_pc
== pc
)
1215 cache
->sp_offset
+= 4;
1219 if (current_pc
== pc
+ 1)
1221 cache
->pc_in_eax
= 1;
1225 if (buf
[1] == proto1
[1])
1232 i386_skip_probe (CORE_ADDR pc
)
1234 /* A function may start with
1248 if (target_read_code (pc
, &op
, 1))
1251 if (op
== 0x68 || op
== 0x6a)
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc
+ delta
, buf
, sizeof (buf
));
1265 if (buf
[0] == 0xe8 && buf
[6] == 0xc4 && buf
[7] == 0x4)
1266 pc
+= delta
+ sizeof (buf
);
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1279 i386_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
1280 struct i386_frame_cache
*cache
)
1282 /* There are 2 code sequences to re-align stack before the frame
1285 1. Use a caller-saved saved register:
1291 2. Use a callee-saved saved register:
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1306 int offset
, offset_and
;
1307 static int regnums
[8] = {
1308 I386_EAX_REGNUM
, /* %eax */
1309 I386_ECX_REGNUM
, /* %ecx */
1310 I386_EDX_REGNUM
, /* %edx */
1311 I386_EBX_REGNUM
, /* %ebx */
1312 I386_ESP_REGNUM
, /* %esp */
1313 I386_EBP_REGNUM
, /* %ebp */
1314 I386_ESI_REGNUM
, /* %esi */
1315 I386_EDI_REGNUM
/* %edi */
1318 if (target_read_code (pc
, buf
, sizeof buf
))
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf
[0] == 0x8d && buf
[2] == 0x24 && buf
[3] == 0x4)
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf
[1] & 0xc7) != 0x44)
1329 /* REG has register number. */
1330 reg
= (buf
[1] >> 3) & 7;
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf
[0] & 0xf8) != 0x50)
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf
[1] != 0x8d || buf
[3] != 0x24 || buf
[4] != 0x8)
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf
[2] & 0xc7) != 0x44)
1351 /* REG has register number. Registers in pushl and leal have to
1353 if (reg
!= ((buf
[2] >> 3) & 7))
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg
== 4 || reg
== 5)
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf
[offset
+ 1] != 0xe4
1365 || (buf
[offset
] != 0x81 && buf
[offset
] != 0x83))
1368 offset_and
= offset
;
1369 offset
+= buf
[offset
] == 0x81 ? 6 : 3;
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf
[offset
] != 0xff
1374 || buf
[offset
+ 2] != 0xfc
1375 || (buf
[offset
+ 1] & 0xf8) != 0x70)
1378 /* R/M has register. Registers in leal and pushl have to be the
1380 if (reg
!= (buf
[offset
+ 1] & 7))
1383 if (current_pc
> pc
+ offset_and
)
1384 cache
->saved_sp_reg
= regnums
[reg
];
1386 return std::min (pc
+ offset
+ 3, current_pc
);
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1392 /* Instruction description. */
1396 gdb_byte insn
[I386_MAX_MATCHED_INSN_LEN
];
1397 gdb_byte mask
[I386_MAX_MATCHED_INSN_LEN
];
1400 /* Return whether instruction at PC matches PATTERN. */
1403 i386_match_pattern (CORE_ADDR pc
, struct i386_insn pattern
)
1407 if (target_read_code (pc
, &op
, 1))
1410 if ((op
& pattern
.mask
[0]) == pattern
.insn
[0])
1412 gdb_byte buf
[I386_MAX_MATCHED_INSN_LEN
- 1];
1413 int insn_matched
= 1;
1416 gdb_assert (pattern
.len
> 1);
1417 gdb_assert (pattern
.len
<= I386_MAX_MATCHED_INSN_LEN
);
1419 if (target_read_code (pc
+ 1, buf
, pattern
.len
- 1))
1422 for (i
= 1; i
< pattern
.len
; i
++)
1424 if ((buf
[i
- 1] & pattern
.mask
[i
]) != pattern
.insn
[i
])
1427 return insn_matched
;
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1436 static struct i386_insn
*
1437 i386_match_insn (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1439 struct i386_insn
*pattern
;
1441 for (pattern
= insn_patterns
; pattern
->len
> 0; pattern
++)
1443 if (i386_match_pattern (pc
, *pattern
))
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1454 i386_match_insn_block (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1456 CORE_ADDR current_pc
;
1458 struct i386_insn
*insn
;
1460 insn
= i386_match_insn (pc
, insn_patterns
);
1465 ix
= insn
- insn_patterns
;
1466 for (i
= ix
- 1; i
>= 0; i
--)
1468 current_pc
-= insn_patterns
[i
].len
;
1470 if (!i386_match_pattern (current_pc
, insn_patterns
[i
]))
1474 current_pc
= pc
+ insn
->len
;
1475 for (insn
= insn_patterns
+ ix
+ 1; insn
->len
> 0; insn
++)
1477 if (!i386_match_pattern (current_pc
, *insn
))
1480 current_pc
+= insn
->len
;
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1492 struct i386_insn i386_frame_setup_skip_insns
[] =
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1496 ??? Should we handle 16-bit operand-sizes here? */
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1511 ??? Should we handle SIB addressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1542 /* Check whether PC points to a no-op instruction. */
1544 i386_skip_noop (CORE_ADDR pc
)
1549 if (target_read_code (pc
, &op
, 1))
1555 /* Ignore `nop' instruction. */
1559 if (target_read_code (pc
, &op
, 1))
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1574 else if (op
== 0x8b)
1576 if (target_read_code (pc
+ 1, &op
, 1))
1582 if (target_read_code (pc
, &op
, 1))
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1598 i386_analyze_frame_setup (struct gdbarch
*gdbarch
,
1599 CORE_ADDR pc
, CORE_ADDR limit
,
1600 struct i386_frame_cache
*cache
)
1602 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1603 struct i386_insn
*insn
;
1610 if (target_read_code (pc
, &op
, 1))
1613 if (op
== 0x55) /* pushl %ebp */
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
1618 cache
->sp_offset
+= 4;
1621 /* If that's all, return now. */
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of possibilities is sheer,
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc
+ skip
< limit
)
1635 insn
= i386_match_insn (pc
+ skip
, i386_frame_setup_skip_insns
);
1642 /* If that's all, return now. */
1643 if (limit
<= pc
+ skip
)
1646 if (target_read_code (pc
+ skip
, &op
, 1))
1649 /* The i386 prologue looks like
1655 and a different prologue can be generated for atom.
1659 lea -0x10(%esp),%esp
1661 We handle both of them here. */
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1667 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1673 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc
+ skip
+ 1, 2, byte_order
)
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1694 /* If that's all, return now. */
1698 /* Check for stack adjustment
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc
, &op
, 1))
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache
->locals
= read_code_integer (pc
+ 2, 1, byte_order
);
1720 else if (op
== 0x81)
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache
->locals
= read_code_integer (pc
+ 2, 4, byte_order
);
1731 else if (op
== 0x8d)
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0x64)
1736 /* 'lea' with 8-bit displacement. */
1737 cache
->locals
= -1 * read_code_integer (pc
+ 3, 1, byte_order
);
1742 /* Some instruction other than `subl' nor 'lea'. */
1746 else if (op
== 0xc8) /* enter */
1748 cache
->locals
= read_code_unsigned_integer (pc
+ 1, 2, byte_order
);
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1761 i386_analyze_register_saves (CORE_ADDR pc
, CORE_ADDR current_pc
,
1762 struct i386_frame_cache
*cache
)
1764 CORE_ADDR offset
= 0;
1768 if (cache
->locals
> 0)
1769 offset
-= cache
->locals
;
1770 for (i
= 0; i
< 8 && pc
< current_pc
; i
++)
1772 if (target_read_code (pc
, &op
, 1))
1774 if (op
< 0x50 || op
> 0x57)
1778 cache
->saved_regs
[op
- 0x50] = offset
;
1779 cache
->sp_offset
+= 4;
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1790 We handle these cases:
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1814 i386_analyze_prologue (struct gdbarch
*gdbarch
,
1815 CORE_ADDR pc
, CORE_ADDR current_pc
,
1816 struct i386_frame_cache
*cache
)
1818 pc
= i386_skip_noop (pc
);
1819 pc
= i386_follow_jump (gdbarch
, pc
);
1820 pc
= i386_analyze_struct_return (pc
, current_pc
, cache
);
1821 pc
= i386_skip_probe (pc
);
1822 pc
= i386_analyze_stack_align (pc
, current_pc
, cache
);
1823 pc
= i386_analyze_frame_setup (gdbarch
, pc
, current_pc
, cache
);
1824 return i386_analyze_register_saves (pc
, current_pc
, cache
);
1827 /* Return PC of first real instruction. */
1830 i386_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1832 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1834 static gdb_byte pic_pat
[6] =
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1839 struct i386_frame_cache cache
;
1843 CORE_ADDR func_addr
;
1845 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch
, func_addr
);
1849 struct compunit_symtab
*cust
= find_pc_compunit_symtab (func_addr
);
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang to emit usable
1854 if (post_prologue_pc
1856 && COMPUNIT_PRODUCER (cust
) != NULL
1857 && producer_is_llvm (COMPUNIT_PRODUCER (cust
))))
1858 return std::max (start_pc
, post_prologue_pc
);
1862 pc
= i386_analyze_prologue (gdbarch
, start_pc
, 0xffffffff, &cache
);
1863 if (cache
.locals
< 0)
1866 /* Found valid frame setup. */
1868 /* The native cc on SVR4 in -K PIC mode inserts the following code
1869 to get the address of the global offset table (GOT) into register
1874 movl %ebx,x(%ebp) (optional)
1877 This code is with the rest of the prologue (at the end of the
1878 function), so we have to skip it to get to the first real
1879 instruction at the start of the function. */
1881 for (i
= 0; i
< 6; i
++)
1883 if (target_read_code (pc
+ i
, &op
, 1))
1886 if (pic_pat
[i
] != op
)
1893 if (target_read_code (pc
+ delta
, &op
, 1))
1896 if (op
== 0x89) /* movl %ebx, x(%ebp) */
1898 op
= read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
);
1900 if (op
== 0x5d) /* One byte offset from %ebp. */
1902 else if (op
== 0x9d) /* Four byte offset from %ebp. */
1904 else /* Unexpected instruction. */
1907 if (target_read_code (pc
+ delta
, &op
, 1))
1912 if (delta
> 0 && op
== 0x81
1913 && read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
)
1920 /* If the function starts with a branch (to startup code at the end)
1921 the last instruction should bring us back to the first
1922 instruction of the real code. */
1923 if (i386_follow_jump (gdbarch
, start_pc
) != start_pc
)
1924 pc
= i386_follow_jump (gdbarch
, pc
);
1929 /* Check that the code pointed to by PC corresponds to a call to
1930 __main, skip it if so. Return PC otherwise. */
1933 i386_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1935 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1938 if (target_read_code (pc
, &op
, 1))
1944 if (target_read_code (pc
+ 1, buf
, sizeof buf
) == 0)
1946 /* Make sure address is computed correctly as a 32bit
1947 integer even if CORE_ADDR is 64 bit wide. */
1948 struct bound_minimal_symbol s
;
1949 CORE_ADDR call_dest
;
1951 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
1952 call_dest
= call_dest
& 0xffffffffU
;
1953 s
= lookup_minimal_symbol_by_pc (call_dest
);
1954 if (s
.minsym
!= NULL
1955 && s
.minsym
->linkage_name () != NULL
1956 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
1964 /* This function is 64-bit safe. */
1967 i386_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1971 frame_unwind_register (next_frame
, gdbarch_pc_regnum (gdbarch
), buf
);
1972 return extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
1976 /* Normal frames. */
1979 i386_frame_cache_1 (struct frame_info
*this_frame
,
1980 struct i386_frame_cache
*cache
)
1982 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1983 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1987 cache
->pc
= get_frame_func (this_frame
);
1989 /* In principle, for normal frames, %ebp holds the frame pointer,
1990 which holds the base address for the current stack frame.
1991 However, for functions that don't need it, the frame pointer is
1992 optional. For these "frameless" functions the frame pointer is
1993 actually the frame pointer of the calling frame. Signal
1994 trampolines are just a special case of a "frameless" function.
1995 They (usually) share their frame pointer with the frame that was
1996 in progress when the signal occurred. */
1998 get_frame_register (this_frame
, I386_EBP_REGNUM
, buf
);
1999 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
);
2000 if (cache
->base
== 0)
2006 /* For normal frames, %eip is stored at 4(%ebp). */
2007 cache
->saved_regs
[I386_EIP_REGNUM
] = 4;
2010 i386_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
2013 if (cache
->locals
< 0)
2015 /* We didn't find a valid frame, which means that CACHE->base
2016 currently holds the frame pointer for our calling frame. If
2017 we're at the start of a function, or somewhere half-way its
2018 prologue, the function's frame probably hasn't been fully
2019 setup yet. Try to reconstruct the base address for the stack
2020 frame by looking at the stack pointer. For truly "frameless"
2021 functions this might work too. */
2023 if (cache
->saved_sp_reg
!= -1)
2025 /* Saved stack pointer has been saved. */
2026 get_frame_register (this_frame
, cache
->saved_sp_reg
, buf
);
2027 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2029 /* We're halfway aligning the stack. */
2030 cache
->base
= ((cache
->saved_sp
- 4) & 0xfffffff0) - 4;
2031 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->saved_sp
- 4;
2033 /* This will be added back below. */
2034 cache
->saved_regs
[I386_EIP_REGNUM
] -= cache
->base
;
2036 else if (cache
->pc
!= 0
2037 || target_read_code (get_frame_pc (this_frame
), buf
, 1))
2039 /* We're in a known function, but did not find a frame
2040 setup. Assume that the function does not use %ebp.
2041 Alternatively, we may have jumped to an invalid
2042 address; in that case there is definitely no new
2044 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2045 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
)
2049 /* We're in an unknown function. We could not find the start
2050 of the function to analyze the prologue; our best option is
2051 to assume a typical frame layout with the caller's %ebp
2053 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
2056 if (cache
->saved_sp_reg
!= -1)
2058 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2059 register may be unavailable). */
2060 if (cache
->saved_sp
== 0
2061 && deprecated_frame_register_read (this_frame
,
2062 cache
->saved_sp_reg
, buf
))
2063 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2065 /* Now that we have the base address for the stack frame we can
2066 calculate the value of %esp in the calling frame. */
2067 else if (cache
->saved_sp
== 0)
2068 cache
->saved_sp
= cache
->base
+ 8;
2070 /* Adjust all the saved registers such that they contain addresses
2071 instead of offsets. */
2072 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
2073 if (cache
->saved_regs
[i
] != -1)
2074 cache
->saved_regs
[i
] += cache
->base
;
2079 static struct i386_frame_cache
*
2080 i386_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2082 struct i386_frame_cache
*cache
;
2085 return (struct i386_frame_cache
*) *this_cache
;
2087 cache
= i386_alloc_frame_cache ();
2088 *this_cache
= cache
;
2092 i386_frame_cache_1 (this_frame
, cache
);
2094 catch (const gdb_exception_error
&ex
)
2096 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2104 i386_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2105 struct frame_id
*this_id
)
2107 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2110 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2111 else if (cache
->base
== 0)
2113 /* This marks the outermost frame. */
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2126 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2129 return UNWIND_UNAVAILABLE
;
2131 /* This marks the outermost frame. */
2132 if (cache
->base
== 0)
2133 return UNWIND_OUTERMOST
;
2135 return UNWIND_NO_REASON
;
2138 static struct value
*
2139 i386_frame_prev_register (struct frame_info
*this_frame
, void **this_cache
,
2142 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2144 gdb_assert (regnum
>= 0);
2146 /* The System V ABI says that:
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2165 if (regnum
== I386_EFLAGS_REGNUM
)
2169 val
= get_frame_register_unsigned (this_frame
, regnum
);
2171 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2174 if (regnum
== I386_EIP_REGNUM
&& cache
->pc_in_eax
)
2175 return frame_unwind_got_register (this_frame
, regnum
, I386_EAX_REGNUM
);
2177 if (regnum
== I386_ESP_REGNUM
2178 && (cache
->saved_sp
!= 0 || cache
->saved_sp_reg
!= -1))
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache
->saved_sp
== 0)
2184 return frame_unwind_got_register (this_frame
, regnum
,
2185 cache
->saved_sp_reg
);
2187 return frame_unwind_got_constant (this_frame
, regnum
,
2191 if (regnum
< I386_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
2192 return frame_unwind_got_memory (this_frame
, regnum
,
2193 cache
->saved_regs
[regnum
]);
2195 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2198 static const struct frame_unwind i386_frame_unwind
=
2201 i386_frame_unwind_stop_reason
,
2203 i386_frame_prev_register
,
2205 default_frame_sniffer
2208 /* Normal frames, but in a function epilogue. */
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2217 i386_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2220 struct compunit_symtab
*cust
;
2222 cust
= find_pc_compunit_symtab (pc
);
2223 if (cust
!= NULL
&& COMPUNIT_EPILOGUE_UNWIND_VALID (cust
))
2226 if (target_read_memory (pc
, &insn
, 1))
2227 return 0; /* Can't read memory at pc. */
2229 if (insn
!= 0xc3) /* 'ret' instruction. */
2236 i386_epilogue_frame_sniffer (const struct frame_unwind
*self
,
2237 struct frame_info
*this_frame
,
2238 void **this_prologue_cache
)
2240 if (frame_relative_level (this_frame
) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame
),
2242 get_frame_pc (this_frame
));
2247 static struct i386_frame_cache
*
2248 i386_epilogue_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2250 struct i386_frame_cache
*cache
;
2254 return (struct i386_frame_cache
*) *this_cache
;
2256 cache
= i386_alloc_frame_cache ();
2257 *this_cache
= cache
;
2261 cache
->pc
= get_frame_func (this_frame
);
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2266 sp
= get_frame_register_unsigned (this_frame
, I386_ESP_REGNUM
);
2267 cache
->base
= sp
+ cache
->sp_offset
;
2268 cache
->saved_sp
= cache
->base
+ 8;
2269 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->base
+ 4;
2273 catch (const gdb_exception_error
&ex
)
2275 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2282 static enum unwind_stop_reason
2283 i386_epilogue_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2286 struct i386_frame_cache
*cache
=
2287 i386_epilogue_frame_cache (this_frame
, this_cache
);
2290 return UNWIND_UNAVAILABLE
;
2292 return UNWIND_NO_REASON
;
2296 i386_epilogue_frame_this_id (struct frame_info
*this_frame
,
2298 struct frame_id
*this_id
)
2300 struct i386_frame_cache
*cache
=
2301 i386_epilogue_frame_cache (this_frame
, this_cache
);
2304 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2306 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2309 static struct value
*
2310 i386_epilogue_frame_prev_register (struct frame_info
*this_frame
,
2311 void **this_cache
, int regnum
)
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame
, this_cache
);
2316 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2319 static const struct frame_unwind i386_epilogue_frame_unwind
=
2322 i386_epilogue_frame_unwind_stop_reason
,
2323 i386_epilogue_frame_this_id
,
2324 i386_epilogue_frame_prev_register
,
2326 i386_epilogue_frame_sniffer
2330 /* Stack-based trampolines. */
2332 /* These trampolines are used on cross x86 targets, when taking the
2333 address of a nested function. When executing these trampolines,
2334 no stack frame is set up, so we are in a similar situation as in
2335 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337 /* Static chain passed in register. */
2339 struct i386_insn i386_tramp_chain_in_reg_insns
[] =
2341 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2342 { 5, { 0xb8 }, { 0xfe } },
2345 { 5, { 0xe9 }, { 0xff } },
2350 /* Static chain passed on stack (when regparm=3). */
2352 struct i386_insn i386_tramp_chain_on_stack_insns
[] =
2355 { 5, { 0x68 }, { 0xff } },
2358 { 5, { 0xe9 }, { 0xff } },
2363 /* Return whether PC points inside a stack trampoline. */
2366 i386_in_stack_tramp_p (CORE_ADDR pc
)
2371 /* A stack trampoline is detected if no name is associated
2372 to the current pc and if it points inside a trampoline
2375 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2379 if (target_read_memory (pc
, &insn
, 1))
2382 if (!i386_match_insn_block (pc
, i386_tramp_chain_in_reg_insns
)
2383 && !i386_match_insn_block (pc
, i386_tramp_chain_on_stack_insns
))
2390 i386_stack_tramp_frame_sniffer (const struct frame_unwind
*self
,
2391 struct frame_info
*this_frame
,
2394 if (frame_relative_level (this_frame
) == 0)
2395 return i386_in_stack_tramp_p (get_frame_pc (this_frame
));
2400 static const struct frame_unwind i386_stack_tramp_frame_unwind
=
2403 i386_epilogue_frame_unwind_stop_reason
,
2404 i386_epilogue_frame_this_id
,
2405 i386_epilogue_frame_prev_register
,
2407 i386_stack_tramp_frame_sniffer
2410 /* Generate a bytecode expression to get the value of the saved PC. */
2413 i386_gen_return_address (struct gdbarch
*gdbarch
,
2414 struct agent_expr
*ax
, struct axs_value
*value
,
2417 /* The following sequence assumes the traditional use of the base
2419 ax_reg (ax
, I386_EBP_REGNUM
);
2421 ax_simple (ax
, aop_add
);
2422 value
->type
= register_type (gdbarch
, I386_EIP_REGNUM
);
2423 value
->kind
= axs_lvalue_memory
;
2427 /* Signal trampolines. */
2429 static struct i386_frame_cache
*
2430 i386_sigtramp_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2432 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2433 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2434 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2435 struct i386_frame_cache
*cache
;
2440 return (struct i386_frame_cache
*) *this_cache
;
2442 cache
= i386_alloc_frame_cache ();
2446 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2447 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
) - 4;
2449 addr
= tdep
->sigcontext_addr (this_frame
);
2450 if (tdep
->sc_reg_offset
)
2454 gdb_assert (tdep
->sc_num_regs
<= I386_NUM_SAVED_REGS
);
2456 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
2457 if (tdep
->sc_reg_offset
[i
] != -1)
2458 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
2462 cache
->saved_regs
[I386_EIP_REGNUM
] = addr
+ tdep
->sc_pc_offset
;
2463 cache
->saved_regs
[I386_ESP_REGNUM
] = addr
+ tdep
->sc_sp_offset
;
2468 catch (const gdb_exception_error
&ex
)
2470 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2474 *this_cache
= cache
;
2478 static enum unwind_stop_reason
2479 i386_sigtramp_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2482 struct i386_frame_cache
*cache
=
2483 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2486 return UNWIND_UNAVAILABLE
;
2488 return UNWIND_NO_REASON
;
2492 i386_sigtramp_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2493 struct frame_id
*this_id
)
2495 struct i386_frame_cache
*cache
=
2496 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2499 (*this_id
) = frame_id_build_unavailable_stack (get_frame_pc (this_frame
));
2502 /* See the end of i386_push_dummy_call. */
2503 (*this_id
) = frame_id_build (cache
->base
+ 8, get_frame_pc (this_frame
));
2507 static struct value
*
2508 i386_sigtramp_frame_prev_register (struct frame_info
*this_frame
,
2509 void **this_cache
, int regnum
)
2511 /* Make sure we've initialized the cache. */
2512 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2514 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2518 i386_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
2519 struct frame_info
*this_frame
,
2520 void **this_prologue_cache
)
2522 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
2524 /* We shouldn't even bother if we don't have a sigcontext_addr
2526 if (tdep
->sigcontext_addr
== NULL
)
2529 if (tdep
->sigtramp_p
!= NULL
)
2531 if (tdep
->sigtramp_p (this_frame
))
2535 if (tdep
->sigtramp_start
!= 0)
2537 CORE_ADDR pc
= get_frame_pc (this_frame
);
2539 gdb_assert (tdep
->sigtramp_end
!= 0);
2540 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
2547 static const struct frame_unwind i386_sigtramp_frame_unwind
=
2550 i386_sigtramp_frame_unwind_stop_reason
,
2551 i386_sigtramp_frame_this_id
,
2552 i386_sigtramp_frame_prev_register
,
2554 i386_sigtramp_frame_sniffer
2559 i386_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2561 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2566 static const struct frame_base i386_frame_base
=
2569 i386_frame_base_address
,
2570 i386_frame_base_address
,
2571 i386_frame_base_address
2574 static struct frame_id
2575 i386_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2579 fp
= get_frame_register_unsigned (this_frame
, I386_EBP_REGNUM
);
2581 /* See the end of i386_push_dummy_call. */
2582 return frame_id_build (fp
+ 8, get_frame_pc (this_frame
));
2585 /* _Decimal128 function return values need 16-byte alignment on the
2589 i386_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
2591 return sp
& -(CORE_ADDR
)16;
2595 /* Figure out where the longjmp will land. Slurp the args out of the
2596 stack. We expect the first arg to be a pointer to the jmp_buf
2597 structure from which we extract the address that we will land at.
2598 This address is copied into PC. This routine returns non-zero on
2602 i386_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
2605 CORE_ADDR sp
, jb_addr
;
2606 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2607 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2608 int jb_pc_offset
= gdbarch_tdep (gdbarch
)->jb_pc_offset
;
2610 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2611 longjmp will land. */
2612 if (jb_pc_offset
== -1)
2615 get_frame_register (frame
, I386_ESP_REGNUM
, buf
);
2616 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2617 if (target_read_memory (sp
+ 4, buf
, 4))
2620 jb_addr
= extract_unsigned_integer (buf
, 4, byte_order
);
2621 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, 4))
2624 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
2629 /* Check whether TYPE must be 16-byte-aligned when passed as a
2630 function argument. 16-byte vectors, _Decimal128 and structures or
2631 unions containing such types must be 16-byte-aligned; other
2632 arguments are 4-byte-aligned. */
2635 i386_16_byte_align_p (struct type
*type
)
2637 type
= check_typedef (type
);
2638 if ((type
->code () == TYPE_CODE_DECFLOAT
2639 || (type
->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type
)))
2640 && TYPE_LENGTH (type
) == 16)
2642 if (type
->code () == TYPE_CODE_ARRAY
)
2643 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type
));
2644 if (type
->code () == TYPE_CODE_STRUCT
2645 || type
->code () == TYPE_CODE_UNION
)
2648 for (i
= 0; i
< type
->num_fields (); i
++)
2650 if (i386_16_byte_align_p (type
->field (i
).type ()))
2657 /* Implementation for set_gdbarch_push_dummy_code. */
2660 i386_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
, CORE_ADDR funaddr
,
2661 struct value
**args
, int nargs
, struct type
*value_type
,
2662 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
2663 struct regcache
*regcache
)
2665 /* Use 0xcc breakpoint - 1 byte. */
2669 /* Keep the stack aligned. */
2673 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2674 calling convention. */
2677 i386_thiscall_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2678 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2679 int nargs
, struct value
**args
, CORE_ADDR sp
,
2680 function_call_return_method return_method
,
2681 CORE_ADDR struct_addr
, bool thiscall
)
2683 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2689 /* BND registers can be in arbitrary values at the moment of the
2690 inferior call. This can cause boundary violations that are not
2691 due to a real bug or even desired by the user. The best to be done
2692 is set the BND registers to allow access to the whole memory, INIT
2693 state, before pushing the inferior call. */
2694 i387_reset_bnd_regs (gdbarch
, regcache
);
2696 /* Determine the total space required for arguments and struct
2697 return address in a first pass (allowing for 16-byte-aligned
2698 arguments), then push arguments in a second pass. */
2700 for (write_pass
= 0; write_pass
< 2; write_pass
++)
2702 int args_space_used
= 0;
2704 if (return_method
== return_method_struct
)
2708 /* Push value address. */
2709 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
2710 write_memory (sp
, buf
, 4);
2711 args_space_used
+= 4;
2717 for (i
= thiscall
? 1 : 0; i
< nargs
; i
++)
2719 int len
= TYPE_LENGTH (value_enclosing_type (args
[i
]));
2723 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2724 args_space_used
= align_up (args_space_used
, 16);
2726 write_memory (sp
+ args_space_used
,
2727 value_contents_all (args
[i
]), len
);
2728 /* The System V ABI says that:
2730 "An argument's size is increased, if necessary, to make it a
2731 multiple of [32-bit] words. This may require tail padding,
2732 depending on the size of the argument."
2734 This makes sure the stack stays word-aligned. */
2735 args_space_used
+= align_up (len
, 4);
2739 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2740 args_space
= align_up (args_space
, 16);
2741 args_space
+= align_up (len
, 4);
2749 /* The original System V ABI only requires word alignment,
2750 but modern incarnations need 16-byte alignment in order
2751 to support SSE. Since wasting a few bytes here isn't
2752 harmful we unconditionally enforce 16-byte alignment. */
2757 /* Store return address. */
2759 store_unsigned_integer (buf
, 4, byte_order
, bp_addr
);
2760 write_memory (sp
, buf
, 4);
2762 /* Finally, update the stack pointer... */
2763 store_unsigned_integer (buf
, 4, byte_order
, sp
);
2764 regcache
->cooked_write (I386_ESP_REGNUM
, buf
);
2766 /* ...and fake a frame pointer. */
2767 regcache
->cooked_write (I386_EBP_REGNUM
, buf
);
2769 /* The 'this' pointer needs to be in ECX. */
2771 regcache
->cooked_write (I386_ECX_REGNUM
, value_contents_all (args
[0]));
2773 /* MarkK wrote: This "+ 8" is all over the place:
2774 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2775 i386_dummy_id). It's there, since all frame unwinders for
2776 a given target have to agree (within a certain margin) on the
2777 definition of the stack address of a frame. Otherwise frame id
2778 comparison might not work correctly. Since DWARF2/GCC uses the
2779 stack address *before* the function call as a frame's CFA. On
2780 the i386, when %ebp is used as a frame pointer, the offset
2781 between the contents %ebp and the CFA as defined by GCC. */
2785 /* Implement the "push_dummy_call" gdbarch method. */
2788 i386_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2789 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
2790 struct value
**args
, CORE_ADDR sp
,
2791 function_call_return_method return_method
,
2792 CORE_ADDR struct_addr
)
2794 return i386_thiscall_push_dummy_call (gdbarch
, function
, regcache
, bp_addr
,
2795 nargs
, args
, sp
, return_method
,
2796 struct_addr
, false);
2799 /* These registers are used for returning integers (and on some
2800 targets also for returning `struct' and `union' values when their
2801 size and alignment match an integer type). */
2802 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2803 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2805 /* Read, for architecture GDBARCH, a function return value of TYPE
2806 from REGCACHE, and copy that into VALBUF. */
2809 i386_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2810 struct regcache
*regcache
, gdb_byte
*valbuf
)
2812 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2813 int len
= TYPE_LENGTH (type
);
2814 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2816 if (type
->code () == TYPE_CODE_FLT
)
2818 if (tdep
->st0_regnum
< 0)
2820 warning (_("Cannot find floating-point return value."));
2821 memset (valbuf
, 0, len
);
2825 /* Floating-point return values can be found in %st(0). Convert
2826 its contents to the desired type. This is probably not
2827 exactly how it would happen on the target itself, but it is
2828 the best we can do. */
2829 regcache
->raw_read (I386_ST0_REGNUM
, buf
);
2830 target_float_convert (buf
, i387_ext_type (gdbarch
), valbuf
, type
);
2834 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2835 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2837 if (len
<= low_size
)
2839 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2840 memcpy (valbuf
, buf
, len
);
2842 else if (len
<= (low_size
+ high_size
))
2844 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2845 memcpy (valbuf
, buf
, low_size
);
2846 regcache
->raw_read (HIGH_RETURN_REGNUM
, buf
);
2847 memcpy (valbuf
+ low_size
, buf
, len
- low_size
);
2850 internal_error (__FILE__
, __LINE__
,
2851 _("Cannot extract return value of %d bytes long."),
2856 /* Write, for architecture GDBARCH, a function return value of TYPE
2857 from VALBUF into REGCACHE. */
2860 i386_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2861 struct regcache
*regcache
, const gdb_byte
*valbuf
)
2863 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2864 int len
= TYPE_LENGTH (type
);
2866 if (type
->code () == TYPE_CODE_FLT
)
2869 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2871 if (tdep
->st0_regnum
< 0)
2873 warning (_("Cannot set floating-point return value."));
2877 /* Returning floating-point values is a bit tricky. Apart from
2878 storing the return value in %st(0), we have to simulate the
2879 state of the FPU at function return point. */
2881 /* Convert the value found in VALBUF to the extended
2882 floating-point format used by the FPU. This is probably
2883 not exactly how it would happen on the target itself, but
2884 it is the best we can do. */
2885 target_float_convert (valbuf
, type
, buf
, i387_ext_type (gdbarch
));
2886 regcache
->raw_write (I386_ST0_REGNUM
, buf
);
2888 /* Set the top of the floating-point register stack to 7. The
2889 actual value doesn't really matter, but 7 is what a normal
2890 function return would end up with if the program started out
2891 with a freshly initialized FPU. */
2892 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), &fstat
);
2894 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), fstat
);
2896 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2897 the floating-point register stack to 7, the appropriate value
2898 for the tag word is 0x3fff. */
2899 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM (tdep
), 0x3fff);
2903 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2904 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2906 if (len
<= low_size
)
2907 regcache
->raw_write_part (LOW_RETURN_REGNUM
, 0, len
, valbuf
);
2908 else if (len
<= (low_size
+ high_size
))
2910 regcache
->raw_write (LOW_RETURN_REGNUM
, valbuf
);
2911 regcache
->raw_write_part (HIGH_RETURN_REGNUM
, 0, len
- low_size
,
2915 internal_error (__FILE__
, __LINE__
,
2916 _("Cannot store return value of %d bytes long."), len
);
2921 /* This is the variable that is set with "set struct-convention", and
2922 its legitimate values. */
2923 static const char default_struct_convention
[] = "default";
2924 static const char pcc_struct_convention
[] = "pcc";
2925 static const char reg_struct_convention
[] = "reg";
2926 static const char *const valid_conventions
[] =
2928 default_struct_convention
,
2929 pcc_struct_convention
,
2930 reg_struct_convention
,
2933 static const char *struct_convention
= default_struct_convention
;
2935 /* Return non-zero if TYPE, which is assumed to be a structure,
2936 a union type, or an array type, should be returned in registers
2937 for architecture GDBARCH. */
2940 i386_reg_struct_return_p (struct gdbarch
*gdbarch
, struct type
*type
)
2942 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2943 enum type_code code
= type
->code ();
2944 int len
= TYPE_LENGTH (type
);
2946 gdb_assert (code
== TYPE_CODE_STRUCT
2947 || code
== TYPE_CODE_UNION
2948 || code
== TYPE_CODE_ARRAY
);
2950 if (struct_convention
== pcc_struct_convention
2951 || (struct_convention
== default_struct_convention
2952 && tdep
->struct_return
== pcc_struct_return
))
2955 /* Structures consisting of a single `float', `double' or 'long
2956 double' member are returned in %st(0). */
2957 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
2959 type
= check_typedef (type
->field (0).type ());
2960 if (type
->code () == TYPE_CODE_FLT
)
2961 return (len
== 4 || len
== 8 || len
== 12);
2964 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
2967 /* Determine, for architecture GDBARCH, how a return value of TYPE
2968 should be returned. If it is supposed to be returned in registers,
2969 and READBUF is non-zero, read the appropriate value from REGCACHE,
2970 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2971 from WRITEBUF into REGCACHE. */
2973 static enum return_value_convention
2974 i386_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
2975 struct type
*type
, struct regcache
*regcache
,
2976 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
2978 enum type_code code
= type
->code ();
2980 if (((code
== TYPE_CODE_STRUCT
2981 || code
== TYPE_CODE_UNION
2982 || code
== TYPE_CODE_ARRAY
)
2983 && !i386_reg_struct_return_p (gdbarch
, type
))
2984 /* Complex double and long double uses the struct return convention. */
2985 || (code
== TYPE_CODE_COMPLEX
&& TYPE_LENGTH (type
) == 16)
2986 || (code
== TYPE_CODE_COMPLEX
&& TYPE_LENGTH (type
) == 24)
2987 /* 128-bit decimal float uses the struct return convention. */
2988 || (code
== TYPE_CODE_DECFLOAT
&& TYPE_LENGTH (type
) == 16))
2990 /* The System V ABI says that:
2992 "A function that returns a structure or union also sets %eax
2993 to the value of the original address of the caller's area
2994 before it returns. Thus when the caller receives control
2995 again, the address of the returned object resides in register
2996 %eax and can be used to access the object."
2998 So the ABI guarantees that we can always find the return
2999 value just after the function has returned. */
3001 /* Note that the ABI doesn't mention functions returning arrays,
3002 which is something possible in certain languages such as Ada.
3003 In this case, the value is returned as if it was wrapped in
3004 a record, so the convention applied to records also applies
3011 regcache_raw_read_unsigned (regcache
, I386_EAX_REGNUM
, &addr
);
3012 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
3015 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
3018 /* This special case is for structures consisting of a single
3019 `float', `double' or 'long double' member. These structures are
3020 returned in %st(0). For these structures, we call ourselves
3021 recursively, changing TYPE into the type of the first member of
3022 the structure. Since that should work for all structures that
3023 have only one member, we don't bother to check the member's type
3025 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
3027 type
= check_typedef (type
->field (0).type ());
3028 return i386_return_value (gdbarch
, function
, type
, regcache
,
3033 i386_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
3035 i386_store_return_value (gdbarch
, type
, regcache
, writebuf
);
3037 return RETURN_VALUE_REGISTER_CONVENTION
;
3042 i387_ext_type (struct gdbarch
*gdbarch
)
3044 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3046 if (!tdep
->i387_ext_type
)
3048 tdep
->i387_ext_type
= tdesc_find_type (gdbarch
, "i387_ext");
3049 gdb_assert (tdep
->i387_ext_type
!= NULL
);
3052 return tdep
->i387_ext_type
;
3055 /* Construct type for pseudo BND registers. We can't use
3056 tdesc_find_type since a complement of one value has to be used
3057 to describe the upper bound. */
3059 static struct type
*
3060 i386_bnd_type (struct gdbarch
*gdbarch
)
3062 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3065 if (!tdep
->i386_bnd_type
)
3068 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3070 /* The type we're building is described bellow: */
3075 void *ubound
; /* One complement of raw ubound field. */
3079 t
= arch_composite_type (gdbarch
,
3080 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT
);
3082 append_composite_type_field (t
, "lbound", bt
->builtin_data_ptr
);
3083 append_composite_type_field (t
, "ubound", bt
->builtin_data_ptr
);
3085 t
->set_name ("builtin_type_bound128");
3086 tdep
->i386_bnd_type
= t
;
3089 return tdep
->i386_bnd_type
;
3092 /* Construct vector type for pseudo ZMM registers. We can't use
3093 tdesc_find_type since ZMM isn't described in target description. */
3095 static struct type
*
3096 i386_zmm_type (struct gdbarch
*gdbarch
)
3098 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3100 if (!tdep
->i386_zmm_type
)
3102 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3104 /* The type we're building is this: */
3106 union __gdb_builtin_type_vec512i
3108 int128_t v4_int128
[4];
3109 int64_t v8_int64
[8];
3110 int32_t v16_int32
[16];
3111 int16_t v32_int16
[32];
3112 int8_t v64_int8
[64];
3113 double v8_double
[8];
3114 float v16_float
[16];
3115 bfloat16_t v32_bfloat16
[32];
3121 t
= arch_composite_type (gdbarch
,
3122 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION
);
3123 append_composite_type_field (t
, "v32_bfloat16",
3124 init_vector_type (bt
->builtin_bfloat16
, 32));
3125 append_composite_type_field (t
, "v16_float",
3126 init_vector_type (bt
->builtin_float
, 16));
3127 append_composite_type_field (t
, "v8_double",
3128 init_vector_type (bt
->builtin_double
, 8));
3129 append_composite_type_field (t
, "v64_int8",
3130 init_vector_type (bt
->builtin_int8
, 64));
3131 append_composite_type_field (t
, "v32_int16",
3132 init_vector_type (bt
->builtin_int16
, 32));
3133 append_composite_type_field (t
, "v16_int32",
3134 init_vector_type (bt
->builtin_int32
, 16));
3135 append_composite_type_field (t
, "v8_int64",
3136 init_vector_type (bt
->builtin_int64
, 8));
3137 append_composite_type_field (t
, "v4_int128",
3138 init_vector_type (bt
->builtin_int128
, 4));
3140 TYPE_VECTOR (t
) = 1;
3141 t
->set_name ("builtin_type_vec512i");
3142 tdep
->i386_zmm_type
= t
;
3145 return tdep
->i386_zmm_type
;
3148 /* Construct vector type for pseudo YMM registers. We can't use
3149 tdesc_find_type since YMM isn't described in target description. */
3151 static struct type
*
3152 i386_ymm_type (struct gdbarch
*gdbarch
)
3154 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3156 if (!tdep
->i386_ymm_type
)
3158 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3160 /* The type we're building is this: */
3162 union __gdb_builtin_type_vec256i
3164 int128_t v2_int128
[2];
3165 int64_t v4_int64
[4];
3166 int32_t v8_int32
[8];
3167 int16_t v16_int16
[16];
3168 int8_t v32_int8
[32];
3169 double v4_double
[4];
3171 bfloat16_t v16_bfloat16
[16];
3177 t
= arch_composite_type (gdbarch
,
3178 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION
);
3179 append_composite_type_field (t
, "v16_bfloat16",
3180 init_vector_type (bt
->builtin_bfloat16
, 16));
3181 append_composite_type_field (t
, "v8_float",
3182 init_vector_type (bt
->builtin_float
, 8));
3183 append_composite_type_field (t
, "v4_double",
3184 init_vector_type (bt
->builtin_double
, 4));
3185 append_composite_type_field (t
, "v32_int8",
3186 init_vector_type (bt
->builtin_int8
, 32));
3187 append_composite_type_field (t
, "v16_int16",
3188 init_vector_type (bt
->builtin_int16
, 16));
3189 append_composite_type_field (t
, "v8_int32",
3190 init_vector_type (bt
->builtin_int32
, 8));
3191 append_composite_type_field (t
, "v4_int64",
3192 init_vector_type (bt
->builtin_int64
, 4));
3193 append_composite_type_field (t
, "v2_int128",
3194 init_vector_type (bt
->builtin_int128
, 2));
3196 TYPE_VECTOR (t
) = 1;
3197 t
->set_name ("builtin_type_vec256i");
3198 tdep
->i386_ymm_type
= t
;
3201 return tdep
->i386_ymm_type
;
3204 /* Construct vector type for MMX registers. */
3205 static struct type
*
3206 i386_mmx_type (struct gdbarch
*gdbarch
)
3208 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3210 if (!tdep
->i386_mmx_type
)
3212 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3214 /* The type we're building is this: */
3216 union __gdb_builtin_type_vec64i
3219 int32_t v2_int32
[2];
3220 int16_t v4_int16
[4];
3227 t
= arch_composite_type (gdbarch
,
3228 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION
);
3230 append_composite_type_field (t
, "uint64", bt
->builtin_int64
);
3231 append_composite_type_field (t
, "v2_int32",
3232 init_vector_type (bt
->builtin_int32
, 2));
3233 append_composite_type_field (t
, "v4_int16",
3234 init_vector_type (bt
->builtin_int16
, 4));
3235 append_composite_type_field (t
, "v8_int8",
3236 init_vector_type (bt
->builtin_int8
, 8));
3238 TYPE_VECTOR (t
) = 1;
3239 t
->set_name ("builtin_type_vec64i");
3240 tdep
->i386_mmx_type
= t
;
3243 return tdep
->i386_mmx_type
;
3246 /* Return the GDB type object for the "standard" data type of data in
3250 i386_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
3252 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3253 return i386_bnd_type (gdbarch
);
3254 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3255 return i386_mmx_type (gdbarch
);
3256 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3257 return i386_ymm_type (gdbarch
);
3258 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3259 return i386_ymm_type (gdbarch
);
3260 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3261 return i386_zmm_type (gdbarch
);
3264 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3265 if (i386_byte_regnum_p (gdbarch
, regnum
))
3266 return bt
->builtin_int8
;
3267 else if (i386_word_regnum_p (gdbarch
, regnum
))
3268 return bt
->builtin_int16
;
3269 else if (i386_dword_regnum_p (gdbarch
, regnum
))
3270 return bt
->builtin_int32
;
3271 else if (i386_k_regnum_p (gdbarch
, regnum
))
3272 return bt
->builtin_int64
;
3275 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3278 /* Map a cooked register onto a raw register or memory. For the i386,
3279 the MMX registers need to be mapped onto floating point registers. */
3282 i386_mmx_regnum_to_fp_regnum (readable_regcache
*regcache
, int regnum
)
3284 struct gdbarch_tdep
*tdep
= gdbarch_tdep (regcache
->arch ());
3289 mmxreg
= regnum
- tdep
->mm0_regnum
;
3290 regcache
->raw_read (I387_FSTAT_REGNUM (tdep
), &fstat
);
3291 tos
= (fstat
>> 11) & 0x7;
3292 fpreg
= (mmxreg
+ tos
) % 8;
3294 return (I387_ST0_REGNUM (tdep
) + fpreg
);
3297 /* A helper function for us by i386_pseudo_register_read_value and
3298 amd64_pseudo_register_read_value. It does all the work but reads
3299 the data into an already-allocated value. */
3302 i386_pseudo_register_read_into_value (struct gdbarch
*gdbarch
,
3303 readable_regcache
*regcache
,
3305 struct value
*result_value
)
3307 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3308 enum register_status status
;
3309 gdb_byte
*buf
= value_contents_raw (result_value
);
3311 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3313 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3315 /* Extract (always little endian). */
3316 status
= regcache
->raw_read (fpnum
, raw_buf
);
3317 if (status
!= REG_VALID
)
3318 mark_value_bytes_unavailable (result_value
, 0,
3319 TYPE_LENGTH (value_type (result_value
)));
3321 memcpy (buf
, raw_buf
, register_size (gdbarch
, regnum
));
3325 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3326 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3328 regnum
-= tdep
->bnd0_regnum
;
3330 /* Extract (always little endian). Read lower 128bits. */
3331 status
= regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3333 if (status
!= REG_VALID
)
3334 mark_value_bytes_unavailable (result_value
, 0, 16);
3337 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3338 LONGEST upper
, lower
;
3339 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
3341 lower
= extract_unsigned_integer (raw_buf
, 8, byte_order
);
3342 upper
= extract_unsigned_integer (raw_buf
+ 8, 8, byte_order
);
3345 memcpy (buf
, &lower
, size
);
3346 memcpy (buf
+ size
, &upper
, size
);
3349 else if (i386_k_regnum_p (gdbarch
, regnum
))
3351 regnum
-= tdep
->k0_regnum
;
3353 /* Extract (always little endian). */
3354 status
= regcache
->raw_read (tdep
->k0_regnum
+ regnum
, raw_buf
);
3355 if (status
!= REG_VALID
)
3356 mark_value_bytes_unavailable (result_value
, 0, 8);
3358 memcpy (buf
, raw_buf
, 8);
3360 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3362 regnum
-= tdep
->zmm0_regnum
;
3364 if (regnum
< num_lower_zmm_regs
)
3366 /* Extract (always little endian). Read lower 128bits. */
3367 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3369 if (status
!= REG_VALID
)
3370 mark_value_bytes_unavailable (result_value
, 0, 16);
3372 memcpy (buf
, raw_buf
, 16);
3374 /* Extract (always little endian). Read upper 128bits. */
3375 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3377 if (status
!= REG_VALID
)
3378 mark_value_bytes_unavailable (result_value
, 16, 16);
3380 memcpy (buf
+ 16, raw_buf
, 16);
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
3386 - num_lower_zmm_regs
,
3388 if (status
!= REG_VALID
)
3389 mark_value_bytes_unavailable (result_value
, 0, 16);
3391 memcpy (buf
, raw_buf
, 16);
3393 /* Extract (always little endian). Read upper 128bits. */
3394 status
= regcache
->raw_read (I387_YMM16H_REGNUM (tdep
) + regnum
3395 - num_lower_zmm_regs
,
3397 if (status
!= REG_VALID
)
3398 mark_value_bytes_unavailable (result_value
, 16, 16);
3400 memcpy (buf
+ 16, raw_buf
, 16);
3403 /* Read upper 256bits. */
3404 status
= regcache
->raw_read (tdep
->zmm0h_regnum
+ regnum
,
3406 if (status
!= REG_VALID
)
3407 mark_value_bytes_unavailable (result_value
, 32, 32);
3409 memcpy (buf
+ 32, raw_buf
, 32);
3411 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3413 regnum
-= tdep
->ymm0_regnum
;
3415 /* Extract (always little endian). Read lower 128bits. */
3416 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3418 if (status
!= REG_VALID
)
3419 mark_value_bytes_unavailable (result_value
, 0, 16);
3421 memcpy (buf
, raw_buf
, 16);
3422 /* Read upper 128bits. */
3423 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3425 if (status
!= REG_VALID
)
3426 mark_value_bytes_unavailable (result_value
, 16, 32);
3428 memcpy (buf
+ 16, raw_buf
, 16);
3430 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3432 regnum
-= tdep
->ymm16_regnum
;
3433 /* Extract (always little endian). Read lower 128bits. */
3434 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
,
3436 if (status
!= REG_VALID
)
3437 mark_value_bytes_unavailable (result_value
, 0, 16);
3439 memcpy (buf
, raw_buf
, 16);
3440 /* Read upper 128bits. */
3441 status
= regcache
->raw_read (tdep
->ymm16h_regnum
+ regnum
,
3443 if (status
!= REG_VALID
)
3444 mark_value_bytes_unavailable (result_value
, 16, 16);
3446 memcpy (buf
+ 16, raw_buf
, 16);
3448 else if (i386_word_regnum_p (gdbarch
, regnum
))
3450 int gpnum
= regnum
- tdep
->ax_regnum
;
3452 /* Extract (always little endian). */
3453 status
= regcache
->raw_read (gpnum
, raw_buf
);
3454 if (status
!= REG_VALID
)
3455 mark_value_bytes_unavailable (result_value
, 0,
3456 TYPE_LENGTH (value_type (result_value
)));
3458 memcpy (buf
, raw_buf
, 2);
3460 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3462 int gpnum
= regnum
- tdep
->al_regnum
;
3464 /* Extract (always little endian). We read both lower and
3466 status
= regcache
->raw_read (gpnum
% 4, raw_buf
);
3467 if (status
!= REG_VALID
)
3468 mark_value_bytes_unavailable (result_value
, 0,
3469 TYPE_LENGTH (value_type (result_value
)));
3470 else if (gpnum
>= 4)
3471 memcpy (buf
, raw_buf
+ 1, 1);
3473 memcpy (buf
, raw_buf
, 1);
3476 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3480 static struct value
*
3481 i386_pseudo_register_read_value (struct gdbarch
*gdbarch
,
3482 readable_regcache
*regcache
,
3485 struct value
*result
;
3487 result
= allocate_value (register_type (gdbarch
, regnum
));
3488 VALUE_LVAL (result
) = lval_register
;
3489 VALUE_REGNUM (result
) = regnum
;
3491 i386_pseudo_register_read_into_value (gdbarch
, regcache
, regnum
, result
);
3497 i386_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
3498 int regnum
, const gdb_byte
*buf
)
3500 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3502 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3504 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3507 regcache
->raw_read (fpnum
, raw_buf
);
3508 /* ... Modify ... (always little endian). */
3509 memcpy (raw_buf
, buf
, register_size (gdbarch
, regnum
));
3511 regcache
->raw_write (fpnum
, raw_buf
);
3515 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3517 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3519 ULONGEST upper
, lower
;
3520 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
3521 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3523 /* New values from input value. */
3524 regnum
-= tdep
->bnd0_regnum
;
3525 lower
= extract_unsigned_integer (buf
, size
, byte_order
);
3526 upper
= extract_unsigned_integer (buf
+ size
, size
, byte_order
);
3528 /* Fetching register buffer. */
3529 regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3534 /* Set register bits. */
3535 memcpy (raw_buf
, &lower
, 8);
3536 memcpy (raw_buf
+ 8, &upper
, 8);
3538 regcache
->raw_write (I387_BND0R_REGNUM (tdep
) + regnum
, raw_buf
);
3540 else if (i386_k_regnum_p (gdbarch
, regnum
))
3542 regnum
-= tdep
->k0_regnum
;
3544 regcache
->raw_write (tdep
->k0_regnum
+ regnum
, buf
);
3546 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3548 regnum
-= tdep
->zmm0_regnum
;
3550 if (regnum
< num_lower_zmm_regs
)
3552 /* Write lower 128bits. */
3553 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3554 /* Write upper 128bits. */
3555 regcache
->raw_write (I387_YMM0_REGNUM (tdep
) + regnum
, buf
+ 16);
3559 /* Write lower 128bits. */
3560 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
3561 - num_lower_zmm_regs
, buf
);
3562 /* Write upper 128bits. */
3563 regcache
->raw_write (I387_YMM16H_REGNUM (tdep
) + regnum
3564 - num_lower_zmm_regs
, buf
+ 16);
3566 /* Write upper 256bits. */
3567 regcache
->raw_write (tdep
->zmm0h_regnum
+ regnum
, buf
+ 32);
3569 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3571 regnum
-= tdep
->ymm0_regnum
;
3573 /* ... Write lower 128bits. */
3574 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3575 /* ... Write upper 128bits. */
3576 regcache
->raw_write (tdep
->ymm0h_regnum
+ regnum
, buf
+ 16);
3578 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3580 regnum
-= tdep
->ymm16_regnum
;
3582 /* ... Write lower 128bits. */
3583 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
, buf
);
3584 /* ... Write upper 128bits. */
3585 regcache
->raw_write (tdep
->ymm16h_regnum
+ regnum
, buf
+ 16);
3587 else if (i386_word_regnum_p (gdbarch
, regnum
))
3589 int gpnum
= regnum
- tdep
->ax_regnum
;
3592 regcache
->raw_read (gpnum
, raw_buf
);
3593 /* ... Modify ... (always little endian). */
3594 memcpy (raw_buf
, buf
, 2);
3596 regcache
->raw_write (gpnum
, raw_buf
);
3598 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3600 int gpnum
= regnum
- tdep
->al_regnum
;
3602 /* Read ... We read both lower and upper registers. */
3603 regcache
->raw_read (gpnum
% 4, raw_buf
);
3604 /* ... Modify ... (always little endian). */
3606 memcpy (raw_buf
+ 1, buf
, 1);
3608 memcpy (raw_buf
, buf
, 1);
3610 regcache
->raw_write (gpnum
% 4, raw_buf
);
3613 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3617 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3620 i386_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
3621 struct agent_expr
*ax
, int regnum
)
3623 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3625 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3627 /* MMX to FPU register mapping depends on current TOS. Let's just
3628 not care and collect everything... */
3631 ax_reg_mask (ax
, I387_FSTAT_REGNUM (tdep
));
3632 for (i
= 0; i
< 8; i
++)
3633 ax_reg_mask (ax
, I387_ST0_REGNUM (tdep
) + i
);
3636 else if (i386_bnd_regnum_p (gdbarch
, regnum
))
3638 regnum
-= tdep
->bnd0_regnum
;
3639 ax_reg_mask (ax
, I387_BND0R_REGNUM (tdep
) + regnum
);
3642 else if (i386_k_regnum_p (gdbarch
, regnum
))
3644 regnum
-= tdep
->k0_regnum
;
3645 ax_reg_mask (ax
, tdep
->k0_regnum
+ regnum
);
3648 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3650 regnum
-= tdep
->zmm0_regnum
;
3651 if (regnum
< num_lower_zmm_regs
)
3653 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3654 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3658 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
3659 - num_lower_zmm_regs
);
3660 ax_reg_mask (ax
, I387_YMM16H_REGNUM (tdep
) + regnum
3661 - num_lower_zmm_regs
);
3663 ax_reg_mask (ax
, tdep
->zmm0h_regnum
+ regnum
);
3666 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3668 regnum
-= tdep
->ymm0_regnum
;
3669 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3670 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3673 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3675 regnum
-= tdep
->ymm16_regnum
;
3676 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
);
3677 ax_reg_mask (ax
, tdep
->ymm16h_regnum
+ regnum
);
3680 else if (i386_word_regnum_p (gdbarch
, regnum
))
3682 int gpnum
= regnum
- tdep
->ax_regnum
;
3684 ax_reg_mask (ax
, gpnum
);
3687 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3689 int gpnum
= regnum
- tdep
->al_regnum
;
3691 ax_reg_mask (ax
, gpnum
% 4);
3695 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3700 /* Return the register number of the register allocated by GCC after
3701 REGNUM, or -1 if there is no such register. */
3704 i386_next_regnum (int regnum
)
3706 /* GCC allocates the registers in the order:
3708 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3710 Since storing a variable in %esp doesn't make any sense we return
3711 -1 for %ebp and for %esp itself. */
3712 static int next_regnum
[] =
3714 I386_EDX_REGNUM
, /* Slot for %eax. */
3715 I386_EBX_REGNUM
, /* Slot for %ecx. */
3716 I386_ECX_REGNUM
, /* Slot for %edx. */
3717 I386_ESI_REGNUM
, /* Slot for %ebx. */
3718 -1, -1, /* Slots for %esp and %ebp. */
3719 I386_EDI_REGNUM
, /* Slot for %esi. */
3720 I386_EBP_REGNUM
/* Slot for %edi. */
3723 if (regnum
>= 0 && regnum
< sizeof (next_regnum
) / sizeof (next_regnum
[0]))
3724 return next_regnum
[regnum
];
3729 /* Return nonzero if a value of type TYPE stored in register REGNUM
3730 needs any special handling. */
3733 i386_convert_register_p (struct gdbarch
*gdbarch
,
3734 int regnum
, struct type
*type
)
3736 int len
= TYPE_LENGTH (type
);
3738 /* Values may be spread across multiple registers. Most debugging
3739 formats aren't expressive enough to specify the locations, so
3740 some heuristics is involved. Right now we only handle types that
3741 have a length that is a multiple of the word size, since GCC
3742 doesn't seem to put any other types into registers. */
3743 if (len
> 4 && len
% 4 == 0)
3745 int last_regnum
= regnum
;
3749 last_regnum
= i386_next_regnum (last_regnum
);
3753 if (last_regnum
!= -1)
3757 return i387_convert_register_p (gdbarch
, regnum
, type
);
3760 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3761 return its contents in TO. */
3764 i386_register_to_value (struct frame_info
*frame
, int regnum
,
3765 struct type
*type
, gdb_byte
*to
,
3766 int *optimizedp
, int *unavailablep
)
3768 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3769 int len
= TYPE_LENGTH (type
);
3771 if (i386_fp_regnum_p (gdbarch
, regnum
))
3772 return i387_register_to_value (frame
, regnum
, type
, to
,
3773 optimizedp
, unavailablep
);
3775 /* Read a value spread across multiple registers. */
3777 gdb_assert (len
> 4 && len
% 4 == 0);
3781 gdb_assert (regnum
!= -1);
3782 gdb_assert (register_size (gdbarch
, regnum
) == 4);
3784 if (!get_frame_register_bytes (frame
, regnum
, 0,
3785 register_size (gdbarch
, regnum
),
3786 to
, optimizedp
, unavailablep
))
3789 regnum
= i386_next_regnum (regnum
);
3794 *optimizedp
= *unavailablep
= 0;
3798 /* Write the contents FROM of a value of type TYPE into register
3799 REGNUM in frame FRAME. */
3802 i386_value_to_register (struct frame_info
*frame
, int regnum
,
3803 struct type
*type
, const gdb_byte
*from
)
3805 int len
= TYPE_LENGTH (type
);
3807 if (i386_fp_regnum_p (get_frame_arch (frame
), regnum
))
3809 i387_value_to_register (frame
, regnum
, type
, from
);
3813 /* Write a value spread across multiple registers. */
3815 gdb_assert (len
> 4 && len
% 4 == 0);
3819 gdb_assert (regnum
!= -1);
3820 gdb_assert (register_size (get_frame_arch (frame
), regnum
) == 4);
3822 put_frame_register (frame
, regnum
, from
);
3823 regnum
= i386_next_regnum (regnum
);
3829 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3830 in the general-purpose register set REGSET to register cache
3831 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3834 i386_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
3835 int regnum
, const void *gregs
, size_t len
)
3837 struct gdbarch
*gdbarch
= regcache
->arch ();
3838 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3839 const gdb_byte
*regs
= (const gdb_byte
*) gregs
;
3842 gdb_assert (len
>= tdep
->sizeof_gregset
);
3844 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3846 if ((regnum
== i
|| regnum
== -1)
3847 && tdep
->gregset_reg_offset
[i
] != -1)
3848 regcache
->raw_supply (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3852 /* Collect register REGNUM from the register cache REGCACHE and store
3853 it in the buffer specified by GREGS and LEN as described by the
3854 general-purpose register set REGSET. If REGNUM is -1, do this for
3855 all registers in REGSET. */
3858 i386_collect_gregset (const struct regset
*regset
,
3859 const struct regcache
*regcache
,
3860 int regnum
, void *gregs
, size_t len
)
3862 struct gdbarch
*gdbarch
= regcache
->arch ();
3863 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3864 gdb_byte
*regs
= (gdb_byte
*) gregs
;
3867 gdb_assert (len
>= tdep
->sizeof_gregset
);
3869 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3871 if ((regnum
== i
|| regnum
== -1)
3872 && tdep
->gregset_reg_offset
[i
] != -1)
3873 regcache
->raw_collect (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3877 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3878 in the floating-point register set REGSET to register cache
3879 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3882 i386_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
3883 int regnum
, const void *fpregs
, size_t len
)
3885 struct gdbarch
*gdbarch
= regcache
->arch ();
3886 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3888 if (len
== I387_SIZEOF_FXSAVE
)
3890 i387_supply_fxsave (regcache
, regnum
, fpregs
);
3894 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3895 i387_supply_fsave (regcache
, regnum
, fpregs
);
3898 /* Collect register REGNUM from the register cache REGCACHE and store
3899 it in the buffer specified by FPREGS and LEN as described by the
3900 floating-point register set REGSET. If REGNUM is -1, do this for
3901 all registers in REGSET. */
3904 i386_collect_fpregset (const struct regset
*regset
,
3905 const struct regcache
*regcache
,
3906 int regnum
, void *fpregs
, size_t len
)
3908 struct gdbarch
*gdbarch
= regcache
->arch ();
3909 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3911 if (len
== I387_SIZEOF_FXSAVE
)
3913 i387_collect_fxsave (regcache
, regnum
, fpregs
);
3917 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3918 i387_collect_fsave (regcache
, regnum
, fpregs
);
3921 /* Register set definitions. */
3923 const struct regset i386_gregset
=
3925 NULL
, i386_supply_gregset
, i386_collect_gregset
3928 const struct regset i386_fpregset
=
3930 NULL
, i386_supply_fpregset
, i386_collect_fpregset
3933 /* Default iterator over core file register note sections. */
3936 i386_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
3937 iterate_over_regset_sections_cb
*cb
,
3939 const struct regcache
*regcache
)
3941 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3943 cb (".reg", tdep
->sizeof_gregset
, tdep
->sizeof_gregset
, &i386_gregset
, NULL
,
3945 if (tdep
->sizeof_fpregset
)
3946 cb (".reg2", tdep
->sizeof_fpregset
, tdep
->sizeof_fpregset
, tdep
->fpregset
,
3951 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3954 i386_pe_skip_trampoline_code (struct frame_info
*frame
,
3955 CORE_ADDR pc
, char *name
)
3957 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3958 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
3961 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
3963 unsigned long indirect
=
3964 read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
3965 struct minimal_symbol
*indsym
=
3966 indirect
? lookup_minimal_symbol_by_pc (indirect
).minsym
: 0;
3967 const char *symname
= indsym
? indsym
->linkage_name () : 0;
3971 if (startswith (symname
, "__imp_")
3972 || startswith (symname
, "_imp_"))
3974 read_memory_unsigned_integer (indirect
, 4, byte_order
);
3977 return 0; /* Not a trampoline. */
3981 /* Return whether the THIS_FRAME corresponds to a sigtramp
3985 i386_sigtramp_p (struct frame_info
*this_frame
)
3987 CORE_ADDR pc
= get_frame_pc (this_frame
);
3990 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
3991 return (name
&& strcmp ("_sigtramp", name
) == 0);
3995 /* We have two flavours of disassembly. The machinery on this page
3996 deals with switching between those. */
3999 i386_print_insn (bfd_vma pc
, struct disassemble_info
*info
)
4001 gdb_assert (disassembly_flavor
== att_flavor
4002 || disassembly_flavor
== intel_flavor
);
4004 info
->disassembler_options
= disassembly_flavor
;
4006 return default_print_insn (pc
, info
);
4010 /* There are a few i386 architecture variants that differ only
4011 slightly from the generic i386 target. For now, we don't give them
4012 their own source file, but include them here. As a consequence,
4013 they'll always be included. */
4015 /* System V Release 4 (SVR4). */
4017 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4021 i386_svr4_sigtramp_p (struct frame_info
*this_frame
)
4023 CORE_ADDR pc
= get_frame_pc (this_frame
);
4026 /* The origin of these symbols is currently unknown. */
4027 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
4028 return (name
&& (strcmp ("_sigreturn", name
) == 0
4029 || strcmp ("sigvechandler", name
) == 0));
4032 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4033 address of the associated sigcontext (ucontext) structure. */
4036 i386_svr4_sigcontext_addr (struct frame_info
*this_frame
)
4038 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
4039 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4043 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
4044 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
4046 return read_memory_unsigned_integer (sp
+ 8, 4, byte_order
);
4051 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4055 i386_stap_is_single_operand (struct gdbarch
*gdbarch
, const char *s
)
4057 return (*s
== '$' /* Literal number. */
4058 || (isdigit (*s
) && s
[1] == '(' && s
[2] == '%') /* Displacement. */
4059 || (*s
== '(' && s
[1] == '%') /* Register indirection. */
4060 || (*s
== '%' && isalpha (s
[1]))); /* Register access. */
4063 /* Helper function for i386_stap_parse_special_token.
4065 This function parses operands of the form `-8+3+1(%rbp)', which
4066 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4068 Return true if the operand was parsed successfully, false
4072 i386_stap_parse_special_token_triplet (struct gdbarch
*gdbarch
,
4073 struct stap_parse_info
*p
)
4075 const char *s
= p
->arg
;
4077 if (isdigit (*s
) || *s
== '-' || *s
== '+')
4081 long displacements
[3];
4088 got_minus
[0] = false;
4094 got_minus
[0] = true;
4097 if (!isdigit ((unsigned char) *s
))
4100 displacements
[0] = strtol (s
, &endp
, 10);
4103 if (*s
!= '+' && *s
!= '-')
4105 /* We are not dealing with a triplet. */
4109 got_minus
[1] = false;
4115 got_minus
[1] = true;
4118 if (!isdigit ((unsigned char) *s
))
4121 displacements
[1] = strtol (s
, &endp
, 10);
4124 if (*s
!= '+' && *s
!= '-')
4126 /* We are not dealing with a triplet. */
4130 got_minus
[2] = false;
4136 got_minus
[2] = true;
4139 if (!isdigit ((unsigned char) *s
))
4142 displacements
[2] = strtol (s
, &endp
, 10);
4145 if (*s
!= '(' || s
[1] != '%')
4151 while (isalnum (*s
))
4157 len
= s
- start
- 1;
4158 regname
= (char *) alloca (len
+ 1);
4160 strncpy (regname
, start
, len
);
4161 regname
[len
] = '\0';
4163 if (user_reg_map_name_to_regnum (gdbarch
, regname
, len
) == -1)
4164 error (_("Invalid register name `%s' on expression `%s'."),
4165 regname
, p
->saved_arg
);
4167 for (i
= 0; i
< 3; i
++)
4169 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4171 (&p
->pstate
, builtin_type (gdbarch
)->builtin_long
);
4172 write_exp_elt_longcst (&p
->pstate
, displacements
[i
]);
4173 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4175 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4178 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4181 write_exp_string (&p
->pstate
, str
);
4182 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4184 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4185 write_exp_elt_type (&p
->pstate
,
4186 builtin_type (gdbarch
)->builtin_data_ptr
);
4187 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4189 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4190 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4191 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4193 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4194 write_exp_elt_type (&p
->pstate
,
4195 lookup_pointer_type (p
->arg_type
));
4196 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4198 write_exp_elt_opcode (&p
->pstate
, UNOP_IND
);
4208 /* Helper function for i386_stap_parse_special_token.
4210 This function parses operands of the form `register base +
4211 (register index * size) + offset', as represented in
4212 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4214 Return true if the operand was parsed successfully, false
4218 i386_stap_parse_special_token_three_arg_disp (struct gdbarch
*gdbarch
,
4219 struct stap_parse_info
*p
)
4221 const char *s
= p
->arg
;
4223 if (isdigit (*s
) || *s
== '(' || *s
== '-' || *s
== '+')
4225 bool offset_minus
= false;
4227 bool size_minus
= false;
4234 struct stoken base_token
, index_token
;
4241 offset_minus
= true;
4244 if (offset_minus
&& !isdigit (*s
))
4251 offset
= strtol (s
, &endp
, 10);
4255 if (*s
!= '(' || s
[1] != '%')
4261 while (isalnum (*s
))
4264 if (*s
!= ',' || s
[1] != '%')
4267 len_base
= s
- start
;
4268 base
= (char *) alloca (len_base
+ 1);
4269 strncpy (base
, start
, len_base
);
4270 base
[len_base
] = '\0';
4272 if (user_reg_map_name_to_regnum (gdbarch
, base
, len_base
) == -1)
4273 error (_("Invalid register name `%s' on expression `%s'."),
4274 base
, p
->saved_arg
);
4279 while (isalnum (*s
))
4282 len_index
= s
- start
;
4283 index
= (char *) alloca (len_index
+ 1);
4284 strncpy (index
, start
, len_index
);
4285 index
[len_index
] = '\0';
4287 if (user_reg_map_name_to_regnum (gdbarch
, index
, len_index
) == -1)
4288 error (_("Invalid register name `%s' on expression `%s'."),
4289 index
, p
->saved_arg
);
4291 if (*s
!= ',' && *s
!= ')')
4307 size
= strtol (s
, &endp
, 10);
4318 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4319 write_exp_elt_type (&p
->pstate
,
4320 builtin_type (gdbarch
)->builtin_long
);
4321 write_exp_elt_longcst (&p
->pstate
, offset
);
4322 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4324 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4327 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4328 base_token
.ptr
= base
;
4329 base_token
.length
= len_base
;
4330 write_exp_string (&p
->pstate
, base_token
);
4331 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4334 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4336 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4337 index_token
.ptr
= index
;
4338 index_token
.length
= len_index
;
4339 write_exp_string (&p
->pstate
, index_token
);
4340 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4344 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4345 write_exp_elt_type (&p
->pstate
,
4346 builtin_type (gdbarch
)->builtin_long
);
4347 write_exp_elt_longcst (&p
->pstate
, size
);
4348 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4350 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4351 write_exp_elt_opcode (&p
->pstate
, BINOP_MUL
);
4354 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4356 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4357 write_exp_elt_type (&p
->pstate
,
4358 lookup_pointer_type (p
->arg_type
));
4359 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4361 write_exp_elt_opcode (&p
->pstate
, UNOP_IND
);
4371 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4375 i386_stap_parse_special_token (struct gdbarch
*gdbarch
,
4376 struct stap_parse_info
*p
)
4378 /* In order to parse special tokens, we use a state-machine that go
4379 through every known token and try to get a match. */
4383 THREE_ARG_DISPLACEMENT
,
4388 current_state
= TRIPLET
;
4390 /* The special tokens to be parsed here are:
4392 - `register base + (register index * size) + offset', as represented
4393 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4395 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4396 `*(-8 + 3 - 1 + (void *) $eax)'. */
4398 while (current_state
!= DONE
)
4400 switch (current_state
)
4403 if (i386_stap_parse_special_token_triplet (gdbarch
, p
))
4407 case THREE_ARG_DISPLACEMENT
:
4408 if (i386_stap_parse_special_token_three_arg_disp (gdbarch
, p
))
4413 /* Advancing to the next state. */
4420 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4424 i386_stap_adjust_register (struct gdbarch
*gdbarch
, struct stap_parse_info
*p
,
4425 const std::string
®name
, int regnum
)
4427 static const std::unordered_set
<std::string
> reg_assoc
4428 = { "ax", "bx", "cx", "dx",
4429 "si", "di", "bp", "sp" };
4431 /* If we are dealing with a register whose size is less than the size
4432 specified by the "[-]N@" prefix, and it is one of the registers that
4433 we know has an extended variant available, then use the extended
4434 version of the register instead. */
4435 if (register_size (gdbarch
, regnum
) < TYPE_LENGTH (p
->arg_type
)
4436 && reg_assoc
.find (regname
) != reg_assoc
.end ())
4437 return "e" + regname
;
4439 /* Otherwise, just use the requested register. */
4445 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4446 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4449 i386_gnu_triplet_regexp (struct gdbarch
*gdbarch
)
4451 return "(x86_64|i.86)";
4456 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4459 i386_in_indirect_branch_thunk (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4461 return x86_in_indirect_branch_thunk (pc
, i386_register_names
,
4462 I386_EAX_REGNUM
, I386_EIP_REGNUM
);
4468 i386_elf_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4470 static const char *const stap_integer_prefixes
[] = { "$", NULL
};
4471 static const char *const stap_register_prefixes
[] = { "%", NULL
};
4472 static const char *const stap_register_indirection_prefixes
[] = { "(",
4474 static const char *const stap_register_indirection_suffixes
[] = { ")",
4477 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4478 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
4480 /* Registering SystemTap handlers. */
4481 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
4482 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
4483 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
4484 stap_register_indirection_prefixes
);
4485 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
4486 stap_register_indirection_suffixes
);
4487 set_gdbarch_stap_is_single_operand (gdbarch
,
4488 i386_stap_is_single_operand
);
4489 set_gdbarch_stap_parse_special_token (gdbarch
,
4490 i386_stap_parse_special_token
);
4491 set_gdbarch_stap_adjust_register (gdbarch
,
4492 i386_stap_adjust_register
);
4494 set_gdbarch_in_indirect_branch_thunk (gdbarch
,
4495 i386_in_indirect_branch_thunk
);
4498 /* System V Release 4 (SVR4). */
4501 i386_svr4_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4503 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4505 /* System V Release 4 uses ELF. */
4506 i386_elf_init_abi (info
, gdbarch
);
4508 /* System V Release 4 has shared libraries. */
4509 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
4511 tdep
->sigtramp_p
= i386_svr4_sigtramp_p
;
4512 tdep
->sigcontext_addr
= i386_svr4_sigcontext_addr
;
4513 tdep
->sc_pc_offset
= 36 + 14 * 4;
4514 tdep
->sc_sp_offset
= 36 + 17 * 4;
4516 tdep
->jb_pc_offset
= 20;
4521 /* i386 register groups. In addition to the normal groups, add "mmx"
4524 static struct reggroup
*i386_sse_reggroup
;
4525 static struct reggroup
*i386_mmx_reggroup
;
4528 i386_init_reggroups (void)
4530 i386_sse_reggroup
= reggroup_new ("sse", USER_REGGROUP
);
4531 i386_mmx_reggroup
= reggroup_new ("mmx", USER_REGGROUP
);
4535 i386_add_reggroups (struct gdbarch
*gdbarch
)
4537 reggroup_add (gdbarch
, i386_sse_reggroup
);
4538 reggroup_add (gdbarch
, i386_mmx_reggroup
);
4539 reggroup_add (gdbarch
, general_reggroup
);
4540 reggroup_add (gdbarch
, float_reggroup
);
4541 reggroup_add (gdbarch
, all_reggroup
);
4542 reggroup_add (gdbarch
, save_reggroup
);
4543 reggroup_add (gdbarch
, restore_reggroup
);
4544 reggroup_add (gdbarch
, vector_reggroup
);
4545 reggroup_add (gdbarch
, system_reggroup
);
4549 i386_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
4550 struct reggroup
*group
)
4552 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4553 int fp_regnum_p
, mmx_regnum_p
, xmm_regnum_p
, mxcsr_regnum_p
,
4554 ymm_regnum_p
, ymmh_regnum_p
, ymm_avx512_regnum_p
, ymmh_avx512_regnum_p
,
4555 bndr_regnum_p
, bnd_regnum_p
, zmm_regnum_p
, zmmh_regnum_p
,
4556 mpx_ctrl_regnum_p
, xmm_avx512_regnum_p
,
4557 avx512_p
, avx_p
, sse_p
, pkru_regnum_p
;
4559 /* Don't include pseudo registers, except for MMX, in any register
4561 if (i386_byte_regnum_p (gdbarch
, regnum
))
4564 if (i386_word_regnum_p (gdbarch
, regnum
))
4567 if (i386_dword_regnum_p (gdbarch
, regnum
))
4570 mmx_regnum_p
= i386_mmx_regnum_p (gdbarch
, regnum
);
4571 if (group
== i386_mmx_reggroup
)
4572 return mmx_regnum_p
;
4574 pkru_regnum_p
= i386_pkru_regnum_p(gdbarch
, regnum
);
4575 xmm_regnum_p
= i386_xmm_regnum_p (gdbarch
, regnum
);
4576 xmm_avx512_regnum_p
= i386_xmm_avx512_regnum_p (gdbarch
, regnum
);
4577 mxcsr_regnum_p
= i386_mxcsr_regnum_p (gdbarch
, regnum
);
4578 if (group
== i386_sse_reggroup
)
4579 return xmm_regnum_p
|| xmm_avx512_regnum_p
|| mxcsr_regnum_p
;
4581 ymm_regnum_p
= i386_ymm_regnum_p (gdbarch
, regnum
);
4582 ymm_avx512_regnum_p
= i386_ymm_avx512_regnum_p (gdbarch
, regnum
);
4583 zmm_regnum_p
= i386_zmm_regnum_p (gdbarch
, regnum
);
4585 avx512_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4586 == X86_XSTATE_AVX_AVX512_MASK
);
4587 avx_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4588 == X86_XSTATE_AVX_MASK
) && !avx512_p
;
4589 sse_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4590 == X86_XSTATE_SSE_MASK
) && !avx512_p
&& ! avx_p
;
4592 if (group
== vector_reggroup
)
4593 return (mmx_regnum_p
4594 || (zmm_regnum_p
&& avx512_p
)
4595 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && avx_p
)
4596 || ((xmm_regnum_p
|| xmm_avx512_regnum_p
) && sse_p
)
4599 fp_regnum_p
= (i386_fp_regnum_p (gdbarch
, regnum
)
4600 || i386_fpc_regnum_p (gdbarch
, regnum
));
4601 if (group
== float_reggroup
)
4604 /* For "info reg all", don't include upper YMM registers nor XMM
4605 registers when AVX is supported. */
4606 ymmh_regnum_p
= i386_ymmh_regnum_p (gdbarch
, regnum
);
4607 ymmh_avx512_regnum_p
= i386_ymmh_avx512_regnum_p (gdbarch
, regnum
);
4608 zmmh_regnum_p
= i386_zmmh_regnum_p (gdbarch
, regnum
);
4609 if (group
== all_reggroup
4610 && (((xmm_regnum_p
|| xmm_avx512_regnum_p
) && !sse_p
)
4611 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && !avx_p
)
4613 || ymmh_avx512_regnum_p
4617 bnd_regnum_p
= i386_bnd_regnum_p (gdbarch
, regnum
);
4618 if (group
== all_reggroup
4619 && ((bnd_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4620 return bnd_regnum_p
;
4622 bndr_regnum_p
= i386_bndr_regnum_p (gdbarch
, regnum
);
4623 if (group
== all_reggroup
4624 && ((bndr_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4627 mpx_ctrl_regnum_p
= i386_mpx_ctrl_regnum_p (gdbarch
, regnum
);
4628 if (group
== all_reggroup
4629 && ((mpx_ctrl_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4630 return mpx_ctrl_regnum_p
;
4632 if (group
== general_reggroup
)
4633 return (!fp_regnum_p
4637 && !xmm_avx512_regnum_p
4640 && !ymm_avx512_regnum_p
4641 && !ymmh_avx512_regnum_p
4644 && !mpx_ctrl_regnum_p
4649 return default_register_reggroup_p (gdbarch
, regnum
, group
);
4653 /* Get the ARGIth function argument for the current function. */
4656 i386_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
4659 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4660 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4661 CORE_ADDR sp
= get_frame_register_unsigned (frame
, I386_ESP_REGNUM
);
4662 return read_memory_unsigned_integer (sp
+ (4 * (argi
+ 1)), 4, byte_order
);
4665 #define PREFIX_REPZ 0x01
4666 #define PREFIX_REPNZ 0x02
4667 #define PREFIX_LOCK 0x04
4668 #define PREFIX_DATA 0x08
4669 #define PREFIX_ADDR 0x10
4681 /* i386 arith/logic operations */
4694 struct i386_record_s
4696 struct gdbarch
*gdbarch
;
4697 struct regcache
*regcache
;
4698 CORE_ADDR orig_addr
;
4704 uint8_t mod
, reg
, rm
;
4713 /* Parse the "modrm" part of the memory address irp->addr points at.
4714 Returns -1 if something goes wrong, 0 otherwise. */
4717 i386_record_modrm (struct i386_record_s
*irp
)
4719 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4721 if (record_read_memory (gdbarch
, irp
->addr
, &irp
->modrm
, 1))
4725 irp
->mod
= (irp
->modrm
>> 6) & 3;
4726 irp
->reg
= (irp
->modrm
>> 3) & 7;
4727 irp
->rm
= irp
->modrm
& 7;
4732 /* Extract the memory address that the current instruction writes to,
4733 and return it in *ADDR. Return -1 if something goes wrong. */
4736 i386_record_lea_modrm_addr (struct i386_record_s
*irp
, uint64_t *addr
)
4738 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4739 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4744 if (irp
->aflag
|| irp
->regmap
[X86_RECORD_R8_REGNUM
])
4751 uint8_t base
= irp
->rm
;
4756 if (record_read_memory (gdbarch
, irp
->addr
, &byte
, 1))
4759 scale
= (byte
>> 6) & 3;
4760 index
= ((byte
>> 3) & 7) | irp
->rex_x
;
4768 if ((base
& 7) == 5)
4771 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4774 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4775 if (irp
->regmap
[X86_RECORD_R8_REGNUM
] && !havesib
)
4776 *addr
+= irp
->addr
+ irp
->rip_offset
;
4780 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4783 *addr
= (int8_t) buf
[0];
4786 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4788 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4796 if (base
== 4 && irp
->popl_esp_hack
)
4797 *addr
+= irp
->popl_esp_hack
;
4798 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[base
],
4801 if (irp
->aflag
== 2)
4806 *addr
= (uint32_t) (offset64
+ *addr
);
4808 if (havesib
&& (index
!= 4 || scale
!= 0))
4810 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[index
],
4812 if (irp
->aflag
== 2)
4813 *addr
+= offset64
<< scale
;
4815 *addr
= (uint32_t) (*addr
+ (offset64
<< scale
));
4820 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4821 address from 32-bit to 64-bit. */
4822 *addr
= (uint32_t) *addr
;
4833 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4836 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4842 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4845 *addr
= (int8_t) buf
[0];
4848 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4851 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4858 regcache_raw_read_unsigned (irp
->regcache
,
4859 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4861 *addr
= (uint32_t) (*addr
+ offset64
);
4862 regcache_raw_read_unsigned (irp
->regcache
,
4863 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4865 *addr
= (uint32_t) (*addr
+ offset64
);
4868 regcache_raw_read_unsigned (irp
->regcache
,
4869 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4871 *addr
= (uint32_t) (*addr
+ offset64
);
4872 regcache_raw_read_unsigned (irp
->regcache
,
4873 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4875 *addr
= (uint32_t) (*addr
+ offset64
);
4878 regcache_raw_read_unsigned (irp
->regcache
,
4879 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4881 *addr
= (uint32_t) (*addr
+ offset64
);
4882 regcache_raw_read_unsigned (irp
->regcache
,
4883 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4885 *addr
= (uint32_t) (*addr
+ offset64
);
4888 regcache_raw_read_unsigned (irp
->regcache
,
4889 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4891 *addr
= (uint32_t) (*addr
+ offset64
);
4892 regcache_raw_read_unsigned (irp
->regcache
,
4893 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4895 *addr
= (uint32_t) (*addr
+ offset64
);
4898 regcache_raw_read_unsigned (irp
->regcache
,
4899 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4901 *addr
= (uint32_t) (*addr
+ offset64
);
4904 regcache_raw_read_unsigned (irp
->regcache
,
4905 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4907 *addr
= (uint32_t) (*addr
+ offset64
);
4910 regcache_raw_read_unsigned (irp
->regcache
,
4911 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4913 *addr
= (uint32_t) (*addr
+ offset64
);
4916 regcache_raw_read_unsigned (irp
->regcache
,
4917 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4919 *addr
= (uint32_t) (*addr
+ offset64
);
4929 /* Record the address and contents of the memory that will be changed
4930 by the current instruction. Return -1 if something goes wrong, 0
4934 i386_record_lea_modrm (struct i386_record_s
*irp
)
4936 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4939 if (irp
->override
>= 0)
4941 if (record_full_memory_query
)
4944 Process record ignores the memory change of instruction at address %s\n\
4945 because it can't get the value of the segment register.\n\
4946 Do you want to stop the program?"),
4947 paddress (gdbarch
, irp
->orig_addr
)))
4954 if (i386_record_lea_modrm_addr (irp
, &addr
))
4957 if (record_full_arch_list_add_mem (addr
, 1 << irp
->ot
))
4963 /* Record the effects of a push operation. Return -1 if something
4964 goes wrong, 0 otherwise. */
4967 i386_record_push (struct i386_record_s
*irp
, int size
)
4971 if (record_full_arch_list_add_reg (irp
->regcache
,
4972 irp
->regmap
[X86_RECORD_RESP_REGNUM
]))
4974 regcache_raw_read_unsigned (irp
->regcache
,
4975 irp
->regmap
[X86_RECORD_RESP_REGNUM
],
4977 if (record_full_arch_list_add_mem ((CORE_ADDR
) addr
- size
, size
))
4984 /* Defines contents to record. */
4985 #define I386_SAVE_FPU_REGS 0xfffd
4986 #define I386_SAVE_FPU_ENV 0xfffe
4987 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4989 /* Record the values of the floating point registers which will be
4990 changed by the current instruction. Returns -1 if something is
4991 wrong, 0 otherwise. */
4993 static int i386_record_floats (struct gdbarch
*gdbarch
,
4994 struct i386_record_s
*ir
,
4997 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
5000 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5001 happen. Currently we store st0-st7 registers, but we need not store all
5002 registers all the time, in future we use ftag register and record only
5003 those who are not marked as an empty. */
5005 if (I386_SAVE_FPU_REGS
== iregnum
)
5007 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_ST0_REGNUM (tdep
) + 7; i
++)
5009 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5013 else if (I386_SAVE_FPU_ENV
== iregnum
)
5015 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5017 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5021 else if (I386_SAVE_FPU_ENV_REG_STACK
== iregnum
)
5023 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5025 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5029 else if ((iregnum
>= I387_ST0_REGNUM (tdep
)) &&
5030 (iregnum
<= I387_FOP_REGNUM (tdep
)))
5032 if (record_full_arch_list_add_reg (ir
->regcache
,iregnum
))
5037 /* Parameter error. */
5040 if(I386_SAVE_FPU_ENV
!= iregnum
)
5042 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5044 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5051 /* Parse the current instruction, and record the values of the
5052 registers and memory that will be changed by the current
5053 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5055 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5056 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5059 i386_process_record (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
5060 CORE_ADDR input_addr
)
5062 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5068 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
5069 struct i386_record_s ir
;
5070 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
5074 memset (&ir
, 0, sizeof (struct i386_record_s
));
5075 ir
.regcache
= regcache
;
5076 ir
.addr
= input_addr
;
5077 ir
.orig_addr
= input_addr
;
5081 ir
.popl_esp_hack
= 0;
5082 ir
.regmap
= tdep
->record_regmap
;
5083 ir
.gdbarch
= gdbarch
;
5085 if (record_debug
> 1)
5086 fprintf_unfiltered (gdb_stdlog
, "Process record: i386_process_record "
5088 paddress (gdbarch
, ir
.addr
));
5093 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5096 switch (opcode8
) /* Instruction prefixes */
5098 case REPE_PREFIX_OPCODE
:
5099 prefixes
|= PREFIX_REPZ
;
5101 case REPNE_PREFIX_OPCODE
:
5102 prefixes
|= PREFIX_REPNZ
;
5104 case LOCK_PREFIX_OPCODE
:
5105 prefixes
|= PREFIX_LOCK
;
5107 case CS_PREFIX_OPCODE
:
5108 ir
.override
= X86_RECORD_CS_REGNUM
;
5110 case SS_PREFIX_OPCODE
:
5111 ir
.override
= X86_RECORD_SS_REGNUM
;
5113 case DS_PREFIX_OPCODE
:
5114 ir
.override
= X86_RECORD_DS_REGNUM
;
5116 case ES_PREFIX_OPCODE
:
5117 ir
.override
= X86_RECORD_ES_REGNUM
;
5119 case FS_PREFIX_OPCODE
:
5120 ir
.override
= X86_RECORD_FS_REGNUM
;
5122 case GS_PREFIX_OPCODE
:
5123 ir
.override
= X86_RECORD_GS_REGNUM
;
5125 case DATA_PREFIX_OPCODE
:
5126 prefixes
|= PREFIX_DATA
;
5128 case ADDR_PREFIX_OPCODE
:
5129 prefixes
|= PREFIX_ADDR
;
5131 case 0x40: /* i386 inc %eax */
5132 case 0x41: /* i386 inc %ecx */
5133 case 0x42: /* i386 inc %edx */
5134 case 0x43: /* i386 inc %ebx */
5135 case 0x44: /* i386 inc %esp */
5136 case 0x45: /* i386 inc %ebp */
5137 case 0x46: /* i386 inc %esi */
5138 case 0x47: /* i386 inc %edi */
5139 case 0x48: /* i386 dec %eax */
5140 case 0x49: /* i386 dec %ecx */
5141 case 0x4a: /* i386 dec %edx */
5142 case 0x4b: /* i386 dec %ebx */
5143 case 0x4c: /* i386 dec %esp */
5144 case 0x4d: /* i386 dec %ebp */
5145 case 0x4e: /* i386 dec %esi */
5146 case 0x4f: /* i386 dec %edi */
5147 if (ir
.regmap
[X86_RECORD_R8_REGNUM
]) /* 64 bit target */
5150 rex_w
= (opcode8
>> 3) & 1;
5151 rex_r
= (opcode8
& 0x4) << 1;
5152 ir
.rex_x
= (opcode8
& 0x2) << 2;
5153 ir
.rex_b
= (opcode8
& 0x1) << 3;
5155 else /* 32 bit target */
5164 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && rex_w
== 1)
5170 if (prefixes
& PREFIX_DATA
)
5173 if (prefixes
& PREFIX_ADDR
)
5175 else if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5178 /* Now check op code. */
5179 opcode
= (uint32_t) opcode8
;
5184 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5187 opcode
= (uint32_t) opcode8
| 0x0f00;
5191 case 0x00: /* arith & logic */
5239 if (((opcode
>> 3) & 7) != OP_CMPL
)
5241 if ((opcode
& 1) == 0)
5244 ir
.ot
= ir
.dflag
+ OT_WORD
;
5246 switch ((opcode
>> 1) & 3)
5248 case 0: /* OP Ev, Gv */
5249 if (i386_record_modrm (&ir
))
5253 if (i386_record_lea_modrm (&ir
))
5259 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5264 case 1: /* OP Gv, Ev */
5265 if (i386_record_modrm (&ir
))
5268 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5272 case 2: /* OP A, Iv */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5280 case 0x80: /* GRP1 */
5284 if (i386_record_modrm (&ir
))
5287 if (ir
.reg
!= OP_CMPL
)
5289 if ((opcode
& 1) == 0)
5292 ir
.ot
= ir
.dflag
+ OT_WORD
;
5299 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5300 if (i386_record_lea_modrm (&ir
))
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5309 case 0x40: /* inc */
5318 case 0x48: /* dec */
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 7);
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5331 case 0xf6: /* GRP3 */
5333 if ((opcode
& 1) == 0)
5336 ir
.ot
= ir
.dflag
+ OT_WORD
;
5337 if (i386_record_modrm (&ir
))
5340 if (ir
.mod
!= 3 && ir
.reg
== 0)
5341 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5352 if (i386_record_lea_modrm (&ir
))
5358 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5362 if (ir
.reg
== 3) /* neg */
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5370 if (ir
.ot
!= OT_BYTE
)
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5376 opcode
= opcode
<< 8 | ir
.modrm
;
5382 case 0xfe: /* GRP4 */
5383 case 0xff: /* GRP5 */
5384 if (i386_record_modrm (&ir
))
5386 if (ir
.reg
>= 2 && opcode
== 0xfe)
5389 opcode
= opcode
<< 8 | ir
.modrm
;
5396 if ((opcode
& 1) == 0)
5399 ir
.ot
= ir
.dflag
+ OT_WORD
;
5402 if (i386_record_lea_modrm (&ir
))
5408 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5415 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5417 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
5423 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5432 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5434 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5439 opcode
= opcode
<< 8 | ir
.modrm
;
5445 case 0x84: /* test */
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5452 case 0x98: /* CWDE/CBW */
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5456 case 0x99: /* CDQ/CWD */
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5461 case 0x0faf: /* imul */
5464 ir
.ot
= ir
.dflag
+ OT_WORD
;
5465 if (i386_record_modrm (&ir
))
5468 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5469 else if (opcode
== 0x6b)
5472 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5478 case 0x0fc0: /* xadd */
5480 if ((opcode
& 1) == 0)
5483 ir
.ot
= ir
.dflag
+ OT_WORD
;
5484 if (i386_record_modrm (&ir
))
5489 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5492 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5498 if (i386_record_lea_modrm (&ir
))
5500 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5507 case 0x0fb0: /* cmpxchg */
5509 if ((opcode
& 1) == 0)
5512 ir
.ot
= ir
.dflag
+ OT_WORD
;
5513 if (i386_record_modrm (&ir
))
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5519 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5526 if (i386_record_lea_modrm (&ir
))
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5532 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5533 if (i386_record_modrm (&ir
))
5537 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5538 an extended opcode. rdrand has bits 110 (/6) and rdseed
5539 has bits 111 (/7). */
5540 if (ir
.reg
== 6 || ir
.reg
== 7)
5542 /* The storage register is described by the 3 R/M bits, but the
5543 REX.B prefix may be used to give access to registers
5544 R8~R15. In this case ir.rex_b + R/M will give us the register
5545 in the range R8~R15.
5547 REX.W may also be used to access 64-bit registers, but we
5548 already record entire registers and not just partial bits
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
+ ir
.rm
);
5551 /* These instructions also set conditional bits. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5557 /* We don't handle this particular instruction yet. */
5559 opcode
= opcode
<< 8 | ir
.modrm
;
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5565 if (i386_record_lea_modrm (&ir
))
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5570 case 0x50: /* push */
5580 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5582 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5586 case 0x06: /* push es */
5587 case 0x0e: /* push cs */
5588 case 0x16: /* push ss */
5589 case 0x1e: /* push ds */
5590 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5595 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5599 case 0x0fa0: /* push fs */
5600 case 0x0fa8: /* push gs */
5601 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5606 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5610 case 0x60: /* pusha */
5611 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5616 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 4)))
5620 case 0x58: /* pop */
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5632 case 0x61: /* popa */
5633 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5638 for (regnum
= X86_RECORD_REAX_REGNUM
;
5639 regnum
<= X86_RECORD_REDI_REGNUM
;
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5644 case 0x8f: /* pop */
5645 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5646 ir
.ot
= ir
.dflag
? OT_QUAD
: OT_WORD
;
5648 ir
.ot
= ir
.dflag
+ OT_WORD
;
5649 if (i386_record_modrm (&ir
))
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5655 ir
.popl_esp_hack
= 1 << ir
.ot
;
5656 if (i386_record_lea_modrm (&ir
))
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5662 case 0xc8: /* enter */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5664 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5666 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5670 case 0xc9: /* leave */
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5675 case 0x07: /* pop es */
5676 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM
);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5686 case 0x17: /* pop ss */
5687 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM
);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5697 case 0x1f: /* pop ds */
5698 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM
);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5708 case 0x0fa1: /* pop fs */
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM
);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5714 case 0x0fa9: /* pop gs */
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5720 case 0x88: /* mov */
5724 if ((opcode
& 1) == 0)
5727 ir
.ot
= ir
.dflag
+ OT_WORD
;
5729 if (i386_record_modrm (&ir
))
5734 if (opcode
== 0xc6 || opcode
== 0xc7)
5735 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5736 if (i386_record_lea_modrm (&ir
))
5741 if (opcode
== 0xc6 || opcode
== 0xc7)
5743 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5749 case 0x8a: /* mov */
5751 if ((opcode
& 1) == 0)
5754 ir
.ot
= ir
.dflag
+ OT_WORD
;
5755 if (i386_record_modrm (&ir
))
5758 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5763 case 0x8c: /* mov seg */
5764 if (i386_record_modrm (&ir
))
5769 opcode
= opcode
<< 8 | ir
.modrm
;
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5778 if (i386_record_lea_modrm (&ir
))
5783 case 0x8e: /* mov seg */
5784 if (i386_record_modrm (&ir
))
5789 regnum
= X86_RECORD_ES_REGNUM
;
5792 regnum
= X86_RECORD_SS_REGNUM
;
5795 regnum
= X86_RECORD_DS_REGNUM
;
5798 regnum
= X86_RECORD_FS_REGNUM
;
5801 regnum
= X86_RECORD_GS_REGNUM
;
5805 opcode
= opcode
<< 8 | ir
.modrm
;
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5813 case 0x0fb6: /* movzbS */
5814 case 0x0fb7: /* movzwS */
5815 case 0x0fbe: /* movsbS */
5816 case 0x0fbf: /* movswS */
5817 if (i386_record_modrm (&ir
))
5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5822 case 0x8d: /* lea */
5823 if (i386_record_modrm (&ir
))
5828 opcode
= opcode
<< 8 | ir
.modrm
;
5833 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5838 case 0xa0: /* mov EAX */
5841 case 0xd7: /* xlat */
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5845 case 0xa2: /* mov EAX */
5847 if (ir
.override
>= 0)
5849 if (record_full_memory_query
)
5852 Process record ignores the memory change of instruction at address %s\n\
5853 because it can't get the value of the segment register.\n\
5854 Do you want to stop the program?"),
5855 paddress (gdbarch
, ir
.orig_addr
)))
5861 if ((opcode
& 1) == 0)
5864 ir
.ot
= ir
.dflag
+ OT_WORD
;
5867 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 8))
5870 addr
= extract_unsigned_integer (buf
, 8, byte_order
);
5874 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 4))
5877 addr
= extract_unsigned_integer (buf
, 4, byte_order
);
5881 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 2))
5884 addr
= extract_unsigned_integer (buf
, 2, byte_order
);
5886 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
5891 case 0xb0: /* mov R, Ib */
5899 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir
.regmap
[X86_RECORD_R8_REGNUM
])
5900 ? ((opcode
& 0x7) | ir
.rex_b
)
5901 : ((opcode
& 0x7) & 0x3));
5904 case 0xb8: /* mov R, Iv */
5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5915 case 0x91: /* xchg R, EAX */
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 0x7);
5926 case 0x86: /* xchg Ev, Gv */
5928 if ((opcode
& 1) == 0)
5931 ir
.ot
= ir
.dflag
+ OT_WORD
;
5932 if (i386_record_modrm (&ir
))
5937 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5943 if (i386_record_lea_modrm (&ir
))
5947 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5952 case 0xc4: /* les Gv */
5953 case 0xc5: /* lds Gv */
5954 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5960 case 0x0fb2: /* lss Gv */
5961 case 0x0fb4: /* lfs Gv */
5962 case 0x0fb5: /* lgs Gv */
5963 if (i386_record_modrm (&ir
))
5971 opcode
= opcode
<< 8 | ir
.modrm
;
5976 case 0xc4: /* les Gv */
5977 regnum
= X86_RECORD_ES_REGNUM
;
5979 case 0xc5: /* lds Gv */
5980 regnum
= X86_RECORD_DS_REGNUM
;
5982 case 0x0fb2: /* lss Gv */
5983 regnum
= X86_RECORD_SS_REGNUM
;
5985 case 0x0fb4: /* lfs Gv */
5986 regnum
= X86_RECORD_FS_REGNUM
;
5988 case 0x0fb5: /* lgs Gv */
5989 regnum
= X86_RECORD_GS_REGNUM
;
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5997 case 0xc0: /* shifts */
6003 if ((opcode
& 1) == 0)
6006 ir
.ot
= ir
.dflag
+ OT_WORD
;
6007 if (i386_record_modrm (&ir
))
6009 if (ir
.mod
!= 3 && (opcode
== 0xd2 || opcode
== 0xd3))
6011 if (i386_record_lea_modrm (&ir
))
6017 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6028 if (i386_record_modrm (&ir
))
6032 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
))
6037 if (i386_record_lea_modrm (&ir
))
6042 case 0xd8: /* Floats. */
6050 if (i386_record_modrm (&ir
))
6052 ir
.reg
|= ((opcode
& 7) << 3);
6058 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6066 /* For fcom, ficom nothing to do. */
6072 /* For fcomp, ficomp pop FPU stack, store all. */
6073 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6100 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6101 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6102 of code, always affects st(0) register. */
6103 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6127 /* Handling fld, fild. */
6128 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6132 switch (ir
.reg
>> 4)
6135 if (record_full_arch_list_add_mem (addr64
, 4))
6139 if (record_full_arch_list_add_mem (addr64
, 8))
6145 if (record_full_arch_list_add_mem (addr64
, 2))
6151 switch (ir
.reg
>> 4)
6154 if (record_full_arch_list_add_mem (addr64
, 4))
6156 if (3 == (ir
.reg
& 7))
6158 /* For fstp m32fp. */
6159 if (i386_record_floats (gdbarch
, &ir
,
6160 I386_SAVE_FPU_REGS
))
6165 if (record_full_arch_list_add_mem (addr64
, 4))
6167 if ((3 == (ir
.reg
& 7))
6168 || (5 == (ir
.reg
& 7))
6169 || (7 == (ir
.reg
& 7)))
6171 /* For fstp insn. */
6172 if (i386_record_floats (gdbarch
, &ir
,
6173 I386_SAVE_FPU_REGS
))
6178 if (record_full_arch_list_add_mem (addr64
, 8))
6180 if (3 == (ir
.reg
& 7))
6182 /* For fstp m64fp. */
6183 if (i386_record_floats (gdbarch
, &ir
,
6184 I386_SAVE_FPU_REGS
))
6189 if ((3 <= (ir
.reg
& 7)) && (6 <= (ir
.reg
& 7)))
6191 /* For fistp, fbld, fild, fbstp. */
6192 if (i386_record_floats (gdbarch
, &ir
,
6193 I386_SAVE_FPU_REGS
))
6198 if (record_full_arch_list_add_mem (addr64
, 2))
6207 if (i386_record_floats (gdbarch
, &ir
,
6208 I386_SAVE_FPU_ENV_REG_STACK
))
6213 if (i386_record_floats (gdbarch
, &ir
, I387_FCTRL_REGNUM (tdep
)))
6218 if (i386_record_floats (gdbarch
, &ir
,
6219 I386_SAVE_FPU_ENV_REG_STACK
))
6225 if (record_full_arch_list_add_mem (addr64
, 28))
6230 if (record_full_arch_list_add_mem (addr64
, 14))
6236 if (record_full_arch_list_add_mem (addr64
, 2))
6238 /* Insn fstp, fbstp. */
6239 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6244 if (record_full_arch_list_add_mem (addr64
, 10))
6250 if (record_full_arch_list_add_mem (addr64
, 28))
6256 if (record_full_arch_list_add_mem (addr64
, 14))
6260 if (record_full_arch_list_add_mem (addr64
, 80))
6263 if (i386_record_floats (gdbarch
, &ir
,
6264 I386_SAVE_FPU_ENV_REG_STACK
))
6268 if (record_full_arch_list_add_mem (addr64
, 8))
6271 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6276 opcode
= opcode
<< 8 | ir
.modrm
;
6281 /* Opcode is an extension of modR/M byte. */
6287 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6291 if (0x0c == (ir
.modrm
>> 4))
6293 if ((ir
.modrm
& 0x0f) <= 7)
6295 if (i386_record_floats (gdbarch
, &ir
,
6296 I386_SAVE_FPU_REGS
))
6301 if (i386_record_floats (gdbarch
, &ir
,
6302 I387_ST0_REGNUM (tdep
)))
6304 /* If only st(0) is changing, then we have already
6306 if ((ir
.modrm
& 0x0f) - 0x08)
6308 if (i386_record_floats (gdbarch
, &ir
,
6309 I387_ST0_REGNUM (tdep
) +
6310 ((ir
.modrm
& 0x0f) - 0x08)))
6328 if (i386_record_floats (gdbarch
, &ir
,
6329 I387_ST0_REGNUM (tdep
)))
6347 if (i386_record_floats (gdbarch
, &ir
,
6348 I386_SAVE_FPU_REGS
))
6352 if (i386_record_floats (gdbarch
, &ir
,
6353 I387_ST0_REGNUM (tdep
)))
6355 if (i386_record_floats (gdbarch
, &ir
,
6356 I387_ST0_REGNUM (tdep
) + 1))
6363 if (0xe9 == ir
.modrm
)
6365 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6368 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6370 if (i386_record_floats (gdbarch
, &ir
,
6371 I387_ST0_REGNUM (tdep
)))
6373 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6375 if (i386_record_floats (gdbarch
, &ir
,
6376 I387_ST0_REGNUM (tdep
) +
6380 else if ((ir
.modrm
& 0x0f) - 0x08)
6382 if (i386_record_floats (gdbarch
, &ir
,
6383 I387_ST0_REGNUM (tdep
) +
6384 ((ir
.modrm
& 0x0f) - 0x08)))
6390 if (0xe3 == ir
.modrm
)
6392 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_ENV
))
6395 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6397 if (i386_record_floats (gdbarch
, &ir
,
6398 I387_ST0_REGNUM (tdep
)))
6400 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6402 if (i386_record_floats (gdbarch
, &ir
,
6403 I387_ST0_REGNUM (tdep
) +
6407 else if ((ir
.modrm
& 0x0f) - 0x08)
6409 if (i386_record_floats (gdbarch
, &ir
,
6410 I387_ST0_REGNUM (tdep
) +
6411 ((ir
.modrm
& 0x0f) - 0x08)))
6417 if ((0x0c == ir
.modrm
>> 4)
6418 || (0x0d == ir
.modrm
>> 4)
6419 || (0x0f == ir
.modrm
>> 4))
6421 if ((ir
.modrm
& 0x0f) <= 7)
6423 if (i386_record_floats (gdbarch
, &ir
,
6424 I387_ST0_REGNUM (tdep
) +
6430 if (i386_record_floats (gdbarch
, &ir
,
6431 I387_ST0_REGNUM (tdep
) +
6432 ((ir
.modrm
& 0x0f) - 0x08)))
6438 if (0x0c == ir
.modrm
>> 4)
6440 if (i386_record_floats (gdbarch
, &ir
,
6441 I387_FTAG_REGNUM (tdep
)))
6444 else if ((0x0d == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6446 if ((ir
.modrm
& 0x0f) <= 7)
6448 if (i386_record_floats (gdbarch
, &ir
,
6449 I387_ST0_REGNUM (tdep
) +
6455 if (i386_record_floats (gdbarch
, &ir
,
6456 I386_SAVE_FPU_REGS
))
6462 if ((0x0c == ir
.modrm
>> 4)
6463 || (0x0e == ir
.modrm
>> 4)
6464 || (0x0f == ir
.modrm
>> 4)
6465 || (0xd9 == ir
.modrm
))
6467 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6472 if (0xe0 == ir
.modrm
)
6474 if (record_full_arch_list_add_reg (ir
.regcache
,
6478 else if ((0x0f == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6480 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6488 case 0xa4: /* movsS */
6490 case 0xaa: /* stosS */
6492 case 0x6c: /* insS */
6494 regcache_raw_read_unsigned (ir
.regcache
,
6495 ir
.regmap
[X86_RECORD_RECX_REGNUM
],
6501 if ((opcode
& 1) == 0)
6504 ir
.ot
= ir
.dflag
+ OT_WORD
;
6505 regcache_raw_read_unsigned (ir
.regcache
,
6506 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
6509 regcache_raw_read_unsigned (ir
.regcache
,
6510 ir
.regmap
[X86_RECORD_ES_REGNUM
],
6512 regcache_raw_read_unsigned (ir
.regcache
,
6513 ir
.regmap
[X86_RECORD_DS_REGNUM
],
6515 if (ir
.aflag
&& (es
!= ds
))
6517 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6518 if (record_full_memory_query
)
6521 Process record ignores the memory change of instruction at address %s\n\
6522 because it can't get the value of the segment register.\n\
6523 Do you want to stop the program?"),
6524 paddress (gdbarch
, ir
.orig_addr
)))
6530 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
6534 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6536 if (opcode
== 0xa4 || opcode
== 0xa5)
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6543 case 0xa6: /* cmpsS */
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6547 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6552 case 0xac: /* lodsS */
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6556 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6561 case 0xae: /* scasS */
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6564 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6569 case 0x6e: /* outsS */
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6572 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6577 case 0xe4: /* port I/O */
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6592 case 0xc2: /* ret im */
6593 case 0xc3: /* ret */
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6598 case 0xca: /* lret im */
6599 case 0xcb: /* lret */
6600 case 0xcf: /* iret */
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6606 case 0xe8: /* call im */
6607 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6609 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6613 case 0x9a: /* lcall im */
6614 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6620 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6624 case 0xe9: /* jmp im */
6625 case 0xea: /* ljmp im */
6626 case 0xeb: /* jmp Jb */
6627 case 0x70: /* jcc Jb */
6643 case 0x0f80: /* jcc Jv */
6661 case 0x0f90: /* setcc Gv */
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6679 if (i386_record_modrm (&ir
))
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
? (ir
.rm
| ir
.rex_b
)
6686 if (i386_record_lea_modrm (&ir
))
6691 case 0x0f40: /* cmov Gv, Ev */
6707 if (i386_record_modrm (&ir
))
6710 if (ir
.dflag
== OT_BYTE
)
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
6716 case 0x9c: /* pushf */
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6718 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6720 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6724 case 0x9d: /* popf */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6729 case 0x9e: /* sahf */
6730 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6736 case 0xf5: /* cmc */
6737 case 0xf8: /* clc */
6738 case 0xf9: /* stc */
6739 case 0xfc: /* cld */
6740 case 0xfd: /* std */
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6744 case 0x9f: /* lahf */
6745 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6754 /* bit operations */
6755 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6756 ir
.ot
= ir
.dflag
+ OT_WORD
;
6757 if (i386_record_modrm (&ir
))
6762 opcode
= opcode
<< 8 | ir
.modrm
;
6768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6771 if (i386_record_lea_modrm (&ir
))
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6778 case 0x0fa3: /* bt Gv, Ev */
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6782 case 0x0fab: /* bts */
6783 case 0x0fb3: /* btr */
6784 case 0x0fbb: /* btc */
6785 ir
.ot
= ir
.dflag
+ OT_WORD
;
6786 if (i386_record_modrm (&ir
))
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6793 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6795 regcache_raw_read_unsigned (ir
.regcache
,
6796 ir
.regmap
[ir
.reg
| rex_r
],
6801 addr64
+= ((int16_t) addr
>> 4) << 4;
6804 addr64
+= ((int32_t) addr
>> 5) << 5;
6807 addr64
+= ((int64_t) addr
>> 6) << 6;
6810 if (record_full_arch_list_add_mem (addr64
, 1 << ir
.ot
))
6812 if (i386_record_lea_modrm (&ir
))
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6818 case 0x0fbc: /* bsf */
6819 case 0x0fbd: /* bsr */
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6825 case 0x27: /* daa */
6826 case 0x2f: /* das */
6827 case 0x37: /* aaa */
6828 case 0x3f: /* aas */
6829 case 0xd4: /* aam */
6830 case 0xd5: /* aad */
6831 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6841 case 0x90: /* nop */
6842 if (prefixes
& PREFIX_LOCK
)
6849 case 0x9b: /* fwait */
6850 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
6852 opcode
= (uint32_t) opcode8
;
6858 case 0xcc: /* int3 */
6859 printf_unfiltered (_("Process record does not support instruction "
6866 case 0xcd: /* int */
6870 if (record_read_memory (gdbarch
, ir
.addr
, &interrupt
, 1))
6873 if (interrupt
!= 0x80
6874 || tdep
->i386_intx80_record
== NULL
)
6876 printf_unfiltered (_("Process record does not support "
6877 "instruction int 0x%02x.\n"),
6882 ret
= tdep
->i386_intx80_record (ir
.regcache
);
6889 case 0xce: /* into */
6890 printf_unfiltered (_("Process record does not support "
6891 "instruction into.\n"));
6896 case 0xfa: /* cli */
6897 case 0xfb: /* sti */
6900 case 0x62: /* bound */
6901 printf_unfiltered (_("Process record does not support "
6902 "instruction bound.\n"));
6907 case 0x0fc8: /* bswap reg */
6915 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 7) | ir
.rex_b
);
6918 case 0xd6: /* salc */
6919 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6928 case 0xe0: /* loopnz */
6929 case 0xe1: /* loopz */
6930 case 0xe2: /* loop */
6931 case 0xe3: /* jecxz */
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6936 case 0x0f30: /* wrmsr */
6937 printf_unfiltered (_("Process record does not support "
6938 "instruction wrmsr.\n"));
6943 case 0x0f32: /* rdmsr */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction rdmsr.\n"));
6950 case 0x0f31: /* rdtsc */
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
6955 case 0x0f34: /* sysenter */
6958 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6963 if (tdep
->i386_sysenter_record
== NULL
)
6965 printf_unfiltered (_("Process record does not support "
6966 "instruction sysenter.\n"));
6970 ret
= tdep
->i386_sysenter_record (ir
.regcache
);
6976 case 0x0f35: /* sysexit */
6977 printf_unfiltered (_("Process record does not support "
6978 "instruction sysexit.\n"));
6983 case 0x0f05: /* syscall */
6986 if (tdep
->i386_syscall_record
== NULL
)
6988 printf_unfiltered (_("Process record does not support "
6989 "instruction syscall.\n"));
6993 ret
= tdep
->i386_syscall_record (ir
.regcache
);
6999 case 0x0f07: /* sysret */
7000 printf_unfiltered (_("Process record does not support "
7001 "instruction sysret.\n"));
7006 case 0x0fa2: /* cpuid */
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7013 case 0xf4: /* hlt */
7014 printf_unfiltered (_("Process record does not support "
7015 "instruction hlt.\n"));
7021 if (i386_record_modrm (&ir
))
7028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7032 if (i386_record_lea_modrm (&ir
))
7041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7045 opcode
= opcode
<< 8 | ir
.modrm
;
7052 if (i386_record_modrm (&ir
))
7063 opcode
= opcode
<< 8 | ir
.modrm
;
7066 if (ir
.override
>= 0)
7068 if (record_full_memory_query
)
7071 Process record ignores the memory change of instruction at address %s\n\
7072 because it can't get the value of the segment register.\n\
7073 Do you want to stop the program?"),
7074 paddress (gdbarch
, ir
.orig_addr
)))
7080 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7082 if (record_full_arch_list_add_mem (addr64
, 2))
7085 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7087 if (record_full_arch_list_add_mem (addr64
, 8))
7092 if (record_full_arch_list_add_mem (addr64
, 4))
7103 case 0: /* monitor */
7106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7110 opcode
= opcode
<< 8 | ir
.modrm
;
7118 if (ir
.override
>= 0)
7120 if (record_full_memory_query
)
7123 Process record ignores the memory change of instruction at address %s\n\
7124 because it can't get the value of the segment register.\n\
7125 Do you want to stop the program?"),
7126 paddress (gdbarch
, ir
.orig_addr
)))
7134 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7136 if (record_full_arch_list_add_mem (addr64
, 2))
7139 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7141 if (record_full_arch_list_add_mem (addr64
, 8))
7146 if (record_full_arch_list_add_mem (addr64
, 4))
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7163 else if (ir
.rm
== 1)
7171 opcode
= opcode
<< 8 | ir
.modrm
;
7178 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
| ir
.rex_b
))
7184 if (i386_record_lea_modrm (&ir
))
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7192 case 7: /* invlpg */
7195 if (ir
.rm
== 0 && ir
.regmap
[X86_RECORD_R8_REGNUM
])
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
7200 opcode
= opcode
<< 8 | ir
.modrm
;
7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7209 opcode
= opcode
<< 8 | ir
.modrm
;
7215 case 0x0f08: /* invd */
7216 case 0x0f09: /* wbinvd */
7219 case 0x63: /* arpl */
7220 if (i386_record_modrm (&ir
))
7222 if (ir
.mod
== 3 || ir
.regmap
[X86_RECORD_R8_REGNUM
])
7224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.regmap
[X86_RECORD_R8_REGNUM
]
7225 ? (ir
.reg
| rex_r
) : ir
.rm
);
7229 ir
.ot
= ir
.dflag
? OT_LONG
: OT_WORD
;
7230 if (i386_record_lea_modrm (&ir
))
7233 if (!ir
.regmap
[X86_RECORD_R8_REGNUM
])
7234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7237 case 0x0f02: /* lar */
7238 case 0x0f03: /* lsl */
7239 if (i386_record_modrm (&ir
))
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7246 if (i386_record_modrm (&ir
))
7248 if (ir
.mod
== 3 && ir
.reg
== 3)
7251 opcode
= opcode
<< 8 | ir
.modrm
;
7263 /* nop (multi byte) */
7266 case 0x0f20: /* mov reg, crN */
7267 case 0x0f22: /* mov crN, reg */
7268 if (i386_record_modrm (&ir
))
7270 if ((ir
.modrm
& 0xc0) != 0xc0)
7273 opcode
= opcode
<< 8 | ir
.modrm
;
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7290 opcode
= opcode
<< 8 | ir
.modrm
;
7296 case 0x0f21: /* mov reg, drN */
7297 case 0x0f23: /* mov drN, reg */
7298 if (i386_record_modrm (&ir
))
7300 if ((ir
.modrm
& 0xc0) != 0xc0 || ir
.reg
== 4
7301 || ir
.reg
== 5 || ir
.reg
>= 8)
7304 opcode
= opcode
<< 8 | ir
.modrm
;
7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7313 case 0x0f06: /* clts */
7314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7317 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7319 case 0x0f0d: /* 3DNow! prefetch */
7322 case 0x0f0e: /* 3DNow! femms */
7323 case 0x0f77: /* emms */
7324 if (i386_fpc_regnum_p (gdbarch
, I387_FTAG_REGNUM(tdep
)))
7326 record_full_arch_list_add_reg (ir
.regcache
, I387_FTAG_REGNUM(tdep
));
7329 case 0x0f0f: /* 3DNow! data */
7330 if (i386_record_modrm (&ir
))
7332 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7337 case 0x0c: /* 3DNow! pi2fw */
7338 case 0x0d: /* 3DNow! pi2fd */
7339 case 0x1c: /* 3DNow! pf2iw */
7340 case 0x1d: /* 3DNow! pf2id */
7341 case 0x8a: /* 3DNow! pfnacc */
7342 case 0x8e: /* 3DNow! pfpnacc */
7343 case 0x90: /* 3DNow! pfcmpge */
7344 case 0x94: /* 3DNow! pfmin */
7345 case 0x96: /* 3DNow! pfrcp */
7346 case 0x97: /* 3DNow! pfrsqrt */
7347 case 0x9a: /* 3DNow! pfsub */
7348 case 0x9e: /* 3DNow! pfadd */
7349 case 0xa0: /* 3DNow! pfcmpgt */
7350 case 0xa4: /* 3DNow! pfmax */
7351 case 0xa6: /* 3DNow! pfrcpit1 */
7352 case 0xa7: /* 3DNow! pfrsqit1 */
7353 case 0xaa: /* 3DNow! pfsubr */
7354 case 0xae: /* 3DNow! pfacc */
7355 case 0xb0: /* 3DNow! pfcmpeq */
7356 case 0xb4: /* 3DNow! pfmul */
7357 case 0xb6: /* 3DNow! pfrcpit2 */
7358 case 0xb7: /* 3DNow! pmulhrw */
7359 case 0xbb: /* 3DNow! pswapd */
7360 case 0xbf: /* 3DNow! pavgusb */
7361 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7362 goto no_support_3dnow_data
;
7363 record_full_arch_list_add_reg (ir
.regcache
, ir
.reg
);
7367 no_support_3dnow_data
:
7368 opcode
= (opcode
<< 8) | opcode8
;
7374 case 0x0faa: /* rsm */
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
7387 if (i386_record_modrm (&ir
))
7391 case 0: /* fxsave */
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7396 if (i386_record_lea_modrm_addr (&ir
, &tmpu64
))
7398 if (record_full_arch_list_add_mem (tmpu64
, 512))
7403 case 1: /* fxrstor */
7407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7409 for (i
= I387_MM0_REGNUM (tdep
);
7410 i386_mmx_regnum_p (gdbarch
, i
); i
++)
7411 record_full_arch_list_add_reg (ir
.regcache
, i
);
7413 for (i
= I387_XMM0_REGNUM (tdep
);
7414 i386_xmm_regnum_p (gdbarch
, i
); i
++)
7415 record_full_arch_list_add_reg (ir
.regcache
, i
);
7417 if (i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7418 record_full_arch_list_add_reg (ir
.regcache
,
7419 I387_MXCSR_REGNUM(tdep
));
7421 for (i
= I387_ST0_REGNUM (tdep
);
7422 i386_fp_regnum_p (gdbarch
, i
); i
++)
7423 record_full_arch_list_add_reg (ir
.regcache
, i
);
7425 for (i
= I387_FCTRL_REGNUM (tdep
);
7426 i386_fpc_regnum_p (gdbarch
, i
); i
++)
7427 record_full_arch_list_add_reg (ir
.regcache
, i
);
7431 case 2: /* ldmxcsr */
7432 if (!i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7434 record_full_arch_list_add_reg (ir
.regcache
, I387_MXCSR_REGNUM(tdep
));
7437 case 3: /* stmxcsr */
7439 if (i386_record_lea_modrm (&ir
))
7443 case 5: /* lfence */
7444 case 6: /* mfence */
7445 case 7: /* sfence clflush */
7449 opcode
= (opcode
<< 8) | ir
.modrm
;
7455 case 0x0fc3: /* movnti */
7456 ir
.ot
= (ir
.dflag
== 2) ? OT_QUAD
: OT_LONG
;
7457 if (i386_record_modrm (&ir
))
7462 if (i386_record_lea_modrm (&ir
))
7466 /* Add prefix to opcode. */
7581 /* Mask out PREFIX_ADDR. */
7582 switch ((prefixes
& ~PREFIX_ADDR
))
7594 reswitch_prefix_add
:
7602 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7605 opcode
= (uint32_t) opcode8
| opcode
<< 8;
7606 goto reswitch_prefix_add
;
7609 case 0x0f10: /* movups */
7610 case 0x660f10: /* movupd */
7611 case 0xf30f10: /* movss */
7612 case 0xf20f10: /* movsd */
7613 case 0x0f12: /* movlps */
7614 case 0x660f12: /* movlpd */
7615 case 0xf30f12: /* movsldup */
7616 case 0xf20f12: /* movddup */
7617 case 0x0f14: /* unpcklps */
7618 case 0x660f14: /* unpcklpd */
7619 case 0x0f15: /* unpckhps */
7620 case 0x660f15: /* unpckhpd */
7621 case 0x0f16: /* movhps */
7622 case 0x660f16: /* movhpd */
7623 case 0xf30f16: /* movshdup */
7624 case 0x0f28: /* movaps */
7625 case 0x660f28: /* movapd */
7626 case 0x0f2a: /* cvtpi2ps */
7627 case 0x660f2a: /* cvtpi2pd */
7628 case 0xf30f2a: /* cvtsi2ss */
7629 case 0xf20f2a: /* cvtsi2sd */
7630 case 0x0f2c: /* cvttps2pi */
7631 case 0x660f2c: /* cvttpd2pi */
7632 case 0x0f2d: /* cvtps2pi */
7633 case 0x660f2d: /* cvtpd2pi */
7634 case 0x660f3800: /* pshufb */
7635 case 0x660f3801: /* phaddw */
7636 case 0x660f3802: /* phaddd */
7637 case 0x660f3803: /* phaddsw */
7638 case 0x660f3804: /* pmaddubsw */
7639 case 0x660f3805: /* phsubw */
7640 case 0x660f3806: /* phsubd */
7641 case 0x660f3807: /* phsubsw */
7642 case 0x660f3808: /* psignb */
7643 case 0x660f3809: /* psignw */
7644 case 0x660f380a: /* psignd */
7645 case 0x660f380b: /* pmulhrsw */
7646 case 0x660f3810: /* pblendvb */
7647 case 0x660f3814: /* blendvps */
7648 case 0x660f3815: /* blendvpd */
7649 case 0x660f381c: /* pabsb */
7650 case 0x660f381d: /* pabsw */
7651 case 0x660f381e: /* pabsd */
7652 case 0x660f3820: /* pmovsxbw */
7653 case 0x660f3821: /* pmovsxbd */
7654 case 0x660f3822: /* pmovsxbq */
7655 case 0x660f3823: /* pmovsxwd */
7656 case 0x660f3824: /* pmovsxwq */
7657 case 0x660f3825: /* pmovsxdq */
7658 case 0x660f3828: /* pmuldq */
7659 case 0x660f3829: /* pcmpeqq */
7660 case 0x660f382a: /* movntdqa */
7661 case 0x660f3a08: /* roundps */
7662 case 0x660f3a09: /* roundpd */
7663 case 0x660f3a0a: /* roundss */
7664 case 0x660f3a0b: /* roundsd */
7665 case 0x660f3a0c: /* blendps */
7666 case 0x660f3a0d: /* blendpd */
7667 case 0x660f3a0e: /* pblendw */
7668 case 0x660f3a0f: /* palignr */
7669 case 0x660f3a20: /* pinsrb */
7670 case 0x660f3a21: /* insertps */
7671 case 0x660f3a22: /* pinsrd pinsrq */
7672 case 0x660f3a40: /* dpps */
7673 case 0x660f3a41: /* dppd */
7674 case 0x660f3a42: /* mpsadbw */
7675 case 0x660f3a60: /* pcmpestrm */
7676 case 0x660f3a61: /* pcmpestri */
7677 case 0x660f3a62: /* pcmpistrm */
7678 case 0x660f3a63: /* pcmpistri */
7679 case 0x0f51: /* sqrtps */
7680 case 0x660f51: /* sqrtpd */
7681 case 0xf20f51: /* sqrtsd */
7682 case 0xf30f51: /* sqrtss */
7683 case 0x0f52: /* rsqrtps */
7684 case 0xf30f52: /* rsqrtss */
7685 case 0x0f53: /* rcpps */
7686 case 0xf30f53: /* rcpss */
7687 case 0x0f54: /* andps */
7688 case 0x660f54: /* andpd */
7689 case 0x0f55: /* andnps */
7690 case 0x660f55: /* andnpd */
7691 case 0x0f56: /* orps */
7692 case 0x660f56: /* orpd */
7693 case 0x0f57: /* xorps */
7694 case 0x660f57: /* xorpd */
7695 case 0x0f58: /* addps */
7696 case 0x660f58: /* addpd */
7697 case 0xf20f58: /* addsd */
7698 case 0xf30f58: /* addss */
7699 case 0x0f59: /* mulps */
7700 case 0x660f59: /* mulpd */
7701 case 0xf20f59: /* mulsd */
7702 case 0xf30f59: /* mulss */
7703 case 0x0f5a: /* cvtps2pd */
7704 case 0x660f5a: /* cvtpd2ps */
7705 case 0xf20f5a: /* cvtsd2ss */
7706 case 0xf30f5a: /* cvtss2sd */
7707 case 0x0f5b: /* cvtdq2ps */
7708 case 0x660f5b: /* cvtps2dq */
7709 case 0xf30f5b: /* cvttps2dq */
7710 case 0x0f5c: /* subps */
7711 case 0x660f5c: /* subpd */
7712 case 0xf20f5c: /* subsd */
7713 case 0xf30f5c: /* subss */
7714 case 0x0f5d: /* minps */
7715 case 0x660f5d: /* minpd */
7716 case 0xf20f5d: /* minsd */
7717 case 0xf30f5d: /* minss */
7718 case 0x0f5e: /* divps */
7719 case 0x660f5e: /* divpd */
7720 case 0xf20f5e: /* divsd */
7721 case 0xf30f5e: /* divss */
7722 case 0x0f5f: /* maxps */
7723 case 0x660f5f: /* maxpd */
7724 case 0xf20f5f: /* maxsd */
7725 case 0xf30f5f: /* maxss */
7726 case 0x660f60: /* punpcklbw */
7727 case 0x660f61: /* punpcklwd */
7728 case 0x660f62: /* punpckldq */
7729 case 0x660f63: /* packsswb */
7730 case 0x660f64: /* pcmpgtb */
7731 case 0x660f65: /* pcmpgtw */
7732 case 0x660f66: /* pcmpgtd */
7733 case 0x660f67: /* packuswb */
7734 case 0x660f68: /* punpckhbw */
7735 case 0x660f69: /* punpckhwd */
7736 case 0x660f6a: /* punpckhdq */
7737 case 0x660f6b: /* packssdw */
7738 case 0x660f6c: /* punpcklqdq */
7739 case 0x660f6d: /* punpckhqdq */
7740 case 0x660f6e: /* movd */
7741 case 0x660f6f: /* movdqa */
7742 case 0xf30f6f: /* movdqu */
7743 case 0x660f70: /* pshufd */
7744 case 0xf20f70: /* pshuflw */
7745 case 0xf30f70: /* pshufhw */
7746 case 0x660f74: /* pcmpeqb */
7747 case 0x660f75: /* pcmpeqw */
7748 case 0x660f76: /* pcmpeqd */
7749 case 0x660f7c: /* haddpd */
7750 case 0xf20f7c: /* haddps */
7751 case 0x660f7d: /* hsubpd */
7752 case 0xf20f7d: /* hsubps */
7753 case 0xf30f7e: /* movq */
7754 case 0x0fc2: /* cmpps */
7755 case 0x660fc2: /* cmppd */
7756 case 0xf20fc2: /* cmpsd */
7757 case 0xf30fc2: /* cmpss */
7758 case 0x660fc4: /* pinsrw */
7759 case 0x0fc6: /* shufps */
7760 case 0x660fc6: /* shufpd */
7761 case 0x660fd0: /* addsubpd */
7762 case 0xf20fd0: /* addsubps */
7763 case 0x660fd1: /* psrlw */
7764 case 0x660fd2: /* psrld */
7765 case 0x660fd3: /* psrlq */
7766 case 0x660fd4: /* paddq */
7767 case 0x660fd5: /* pmullw */
7768 case 0xf30fd6: /* movq2dq */
7769 case 0x660fd8: /* psubusb */
7770 case 0x660fd9: /* psubusw */
7771 case 0x660fda: /* pminub */
7772 case 0x660fdb: /* pand */
7773 case 0x660fdc: /* paddusb */
7774 case 0x660fdd: /* paddusw */
7775 case 0x660fde: /* pmaxub */
7776 case 0x660fdf: /* pandn */
7777 case 0x660fe0: /* pavgb */
7778 case 0x660fe1: /* psraw */
7779 case 0x660fe2: /* psrad */
7780 case 0x660fe3: /* pavgw */
7781 case 0x660fe4: /* pmulhuw */
7782 case 0x660fe5: /* pmulhw */
7783 case 0x660fe6: /* cvttpd2dq */
7784 case 0xf20fe6: /* cvtpd2dq */
7785 case 0xf30fe6: /* cvtdq2pd */
7786 case 0x660fe8: /* psubsb */
7787 case 0x660fe9: /* psubsw */
7788 case 0x660fea: /* pminsw */
7789 case 0x660feb: /* por */
7790 case 0x660fec: /* paddsb */
7791 case 0x660fed: /* paddsw */
7792 case 0x660fee: /* pmaxsw */
7793 case 0x660fef: /* pxor */
7794 case 0xf20ff0: /* lddqu */
7795 case 0x660ff1: /* psllw */
7796 case 0x660ff2: /* pslld */
7797 case 0x660ff3: /* psllq */
7798 case 0x660ff4: /* pmuludq */
7799 case 0x660ff5: /* pmaddwd */
7800 case 0x660ff6: /* psadbw */
7801 case 0x660ff8: /* psubb */
7802 case 0x660ff9: /* psubw */
7803 case 0x660ffa: /* psubd */
7804 case 0x660ffb: /* psubq */
7805 case 0x660ffc: /* paddb */
7806 case 0x660ffd: /* paddw */
7807 case 0x660ffe: /* paddd */
7808 if (i386_record_modrm (&ir
))
7811 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.reg
))
7813 record_full_arch_list_add_reg (ir
.regcache
,
7814 I387_XMM0_REGNUM (tdep
) + ir
.reg
);
7815 if ((opcode
& 0xfffffffc) == 0x660f3a60)
7816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7819 case 0x0f11: /* movups */
7820 case 0x660f11: /* movupd */
7821 case 0xf30f11: /* movss */
7822 case 0xf20f11: /* movsd */
7823 case 0x0f13: /* movlps */
7824 case 0x660f13: /* movlpd */
7825 case 0x0f17: /* movhps */
7826 case 0x660f17: /* movhpd */
7827 case 0x0f29: /* movaps */
7828 case 0x660f29: /* movapd */
7829 case 0x660f3a14: /* pextrb */
7830 case 0x660f3a15: /* pextrw */
7831 case 0x660f3a16: /* pextrd pextrq */
7832 case 0x660f3a17: /* extractps */
7833 case 0x660f7f: /* movdqa */
7834 case 0xf30f7f: /* movdqu */
7835 if (i386_record_modrm (&ir
))
7839 if (opcode
== 0x0f13 || opcode
== 0x660f13
7840 || opcode
== 0x0f17 || opcode
== 0x660f17)
7843 if (!i386_xmm_regnum_p (gdbarch
,
7844 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
7846 record_full_arch_list_add_reg (ir
.regcache
,
7847 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
7869 if (i386_record_lea_modrm (&ir
))
7874 case 0x0f2b: /* movntps */
7875 case 0x660f2b: /* movntpd */
7876 case 0x0fe7: /* movntq */
7877 case 0x660fe7: /* movntdq */
7880 if (opcode
== 0x0fe7)
7884 if (i386_record_lea_modrm (&ir
))
7888 case 0xf30f2c: /* cvttss2si */
7889 case 0xf20f2c: /* cvttsd2si */
7890 case 0xf30f2d: /* cvtss2si */
7891 case 0xf20f2d: /* cvtsd2si */
7892 case 0xf20f38f0: /* crc32 */
7893 case 0xf20f38f1: /* crc32 */
7894 case 0x0f50: /* movmskps */
7895 case 0x660f50: /* movmskpd */
7896 case 0x0fc5: /* pextrw */
7897 case 0x660fc5: /* pextrw */
7898 case 0x0fd7: /* pmovmskb */
7899 case 0x660fd7: /* pmovmskb */
7900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7903 case 0x0f3800: /* pshufb */
7904 case 0x0f3801: /* phaddw */
7905 case 0x0f3802: /* phaddd */
7906 case 0x0f3803: /* phaddsw */
7907 case 0x0f3804: /* pmaddubsw */
7908 case 0x0f3805: /* phsubw */
7909 case 0x0f3806: /* phsubd */
7910 case 0x0f3807: /* phsubsw */
7911 case 0x0f3808: /* psignb */
7912 case 0x0f3809: /* psignw */
7913 case 0x0f380a: /* psignd */
7914 case 0x0f380b: /* pmulhrsw */
7915 case 0x0f381c: /* pabsb */
7916 case 0x0f381d: /* pabsw */
7917 case 0x0f381e: /* pabsd */
7918 case 0x0f382b: /* packusdw */
7919 case 0x0f3830: /* pmovzxbw */
7920 case 0x0f3831: /* pmovzxbd */
7921 case 0x0f3832: /* pmovzxbq */
7922 case 0x0f3833: /* pmovzxwd */
7923 case 0x0f3834: /* pmovzxwq */
7924 case 0x0f3835: /* pmovzxdq */
7925 case 0x0f3837: /* pcmpgtq */
7926 case 0x0f3838: /* pminsb */
7927 case 0x0f3839: /* pminsd */
7928 case 0x0f383a: /* pminuw */
7929 case 0x0f383b: /* pminud */
7930 case 0x0f383c: /* pmaxsb */
7931 case 0x0f383d: /* pmaxsd */
7932 case 0x0f383e: /* pmaxuw */
7933 case 0x0f383f: /* pmaxud */
7934 case 0x0f3840: /* pmulld */
7935 case 0x0f3841: /* phminposuw */
7936 case 0x0f3a0f: /* palignr */
7937 case 0x0f60: /* punpcklbw */
7938 case 0x0f61: /* punpcklwd */
7939 case 0x0f62: /* punpckldq */
7940 case 0x0f63: /* packsswb */
7941 case 0x0f64: /* pcmpgtb */
7942 case 0x0f65: /* pcmpgtw */
7943 case 0x0f66: /* pcmpgtd */
7944 case 0x0f67: /* packuswb */
7945 case 0x0f68: /* punpckhbw */
7946 case 0x0f69: /* punpckhwd */
7947 case 0x0f6a: /* punpckhdq */
7948 case 0x0f6b: /* packssdw */
7949 case 0x0f6e: /* movd */
7950 case 0x0f6f: /* movq */
7951 case 0x0f70: /* pshufw */
7952 case 0x0f74: /* pcmpeqb */
7953 case 0x0f75: /* pcmpeqw */
7954 case 0x0f76: /* pcmpeqd */
7955 case 0x0fc4: /* pinsrw */
7956 case 0x0fd1: /* psrlw */
7957 case 0x0fd2: /* psrld */
7958 case 0x0fd3: /* psrlq */
7959 case 0x0fd4: /* paddq */
7960 case 0x0fd5: /* pmullw */
7961 case 0xf20fd6: /* movdq2q */
7962 case 0x0fd8: /* psubusb */
7963 case 0x0fd9: /* psubusw */
7964 case 0x0fda: /* pminub */
7965 case 0x0fdb: /* pand */
7966 case 0x0fdc: /* paddusb */
7967 case 0x0fdd: /* paddusw */
7968 case 0x0fde: /* pmaxub */
7969 case 0x0fdf: /* pandn */
7970 case 0x0fe0: /* pavgb */
7971 case 0x0fe1: /* psraw */
7972 case 0x0fe2: /* psrad */
7973 case 0x0fe3: /* pavgw */
7974 case 0x0fe4: /* pmulhuw */
7975 case 0x0fe5: /* pmulhw */
7976 case 0x0fe8: /* psubsb */
7977 case 0x0fe9: /* psubsw */
7978 case 0x0fea: /* pminsw */
7979 case 0x0feb: /* por */
7980 case 0x0fec: /* paddsb */
7981 case 0x0fed: /* paddsw */
7982 case 0x0fee: /* pmaxsw */
7983 case 0x0fef: /* pxor */
7984 case 0x0ff1: /* psllw */
7985 case 0x0ff2: /* pslld */
7986 case 0x0ff3: /* psllq */
7987 case 0x0ff4: /* pmuludq */
7988 case 0x0ff5: /* pmaddwd */
7989 case 0x0ff6: /* psadbw */
7990 case 0x0ff8: /* psubb */
7991 case 0x0ff9: /* psubw */
7992 case 0x0ffa: /* psubd */
7993 case 0x0ffb: /* psubq */
7994 case 0x0ffc: /* paddb */
7995 case 0x0ffd: /* paddw */
7996 case 0x0ffe: /* paddd */
7997 if (i386_record_modrm (&ir
))
7999 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
8001 record_full_arch_list_add_reg (ir
.regcache
,
8002 I387_MM0_REGNUM (tdep
) + ir
.reg
);
8005 case 0x0f71: /* psllw */
8006 case 0x0f72: /* pslld */
8007 case 0x0f73: /* psllq */
8008 if (i386_record_modrm (&ir
))
8010 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8012 record_full_arch_list_add_reg (ir
.regcache
,
8013 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8016 case 0x660f71: /* psllw */
8017 case 0x660f72: /* pslld */
8018 case 0x660f73: /* psllq */
8019 if (i386_record_modrm (&ir
))
8022 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8024 record_full_arch_list_add_reg (ir
.regcache
,
8025 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8028 case 0x0f7e: /* movd */
8029 case 0x660f7e: /* movd */
8030 if (i386_record_modrm (&ir
))
8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
8040 if (i386_record_lea_modrm (&ir
))
8045 case 0x0f7f: /* movq */
8046 if (i386_record_modrm (&ir
))
8050 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8052 record_full_arch_list_add_reg (ir
.regcache
,
8053 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8058 if (i386_record_lea_modrm (&ir
))
8063 case 0xf30fb8: /* popcnt */
8064 if (i386_record_modrm (&ir
))
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8070 case 0x660fd6: /* movq */
8071 if (i386_record_modrm (&ir
))
8076 if (!i386_xmm_regnum_p (gdbarch
,
8077 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8079 record_full_arch_list_add_reg (ir
.regcache
,
8080 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8085 if (i386_record_lea_modrm (&ir
))
8090 case 0x660f3817: /* ptest */
8091 case 0x0f2e: /* ucomiss */
8092 case 0x660f2e: /* ucomisd */
8093 case 0x0f2f: /* comiss */
8094 case 0x660f2f: /* comisd */
8095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8098 case 0x0ff7: /* maskmovq */
8099 regcache_raw_read_unsigned (ir
.regcache
,
8100 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8102 if (record_full_arch_list_add_mem (addr
, 64))
8106 case 0x660ff7: /* maskmovdqu */
8107 regcache_raw_read_unsigned (ir
.regcache
,
8108 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8110 if (record_full_arch_list_add_mem (addr
, 128))
8125 /* In the future, maybe still need to deal with need_dasm. */
8126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM
);
8127 if (record_full_arch_list_add_end ())
8133 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8134 "at address %s.\n"),
8135 (unsigned int) (opcode
),
8136 paddress (gdbarch
, ir
.orig_addr
));
8140 static const int i386_record_regmap
[] =
8142 I386_EAX_REGNUM
, I386_ECX_REGNUM
, I386_EDX_REGNUM
, I386_EBX_REGNUM
,
8143 I386_ESP_REGNUM
, I386_EBP_REGNUM
, I386_ESI_REGNUM
, I386_EDI_REGNUM
,
8144 0, 0, 0, 0, 0, 0, 0, 0,
8145 I386_EIP_REGNUM
, I386_EFLAGS_REGNUM
, I386_CS_REGNUM
, I386_SS_REGNUM
,
8146 I386_DS_REGNUM
, I386_ES_REGNUM
, I386_FS_REGNUM
, I386_GS_REGNUM
8149 /* Check that the given address appears suitable for a fast
8150 tracepoint, which on x86-64 means that we need an instruction of at
8151 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8152 jump and not have to worry about program jumps to an address in the
8153 middle of the tracepoint jump. On x86, it may be possible to use
8154 4-byte jumps with a 2-byte offset to a trampoline located in the
8155 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8156 of instruction to replace, and 0 if not, plus an explanatory
8160 i386_fast_tracepoint_valid_at (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
8165 /* Ask the target for the minimum instruction length supported. */
8166 jumplen
= target_get_min_fast_tracepoint_insn_len ();
8170 /* If the target does not support the get_min_fast_tracepoint_insn_len
8171 operation, assume that fast tracepoints will always be implemented
8172 using 4-byte relative jumps on both x86 and x86-64. */
8175 else if (jumplen
== 0)
8177 /* If the target does support get_min_fast_tracepoint_insn_len but
8178 returns zero, then the IPA has not loaded yet. In this case,
8179 we optimistically assume that truncated 2-byte relative jumps
8180 will be available on x86, and compensate later if this assumption
8181 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8182 jumps will always be used. */
8183 jumplen
= (register_size (gdbarch
, 0) == 8) ? 5 : 4;
8186 /* Check for fit. */
8187 len
= gdb_insn_length (gdbarch
, addr
);
8191 /* Return a bit of target-specific detail to add to the caller's
8192 generic failure message. */
8194 *msg
= string_printf (_("; instruction is only %d bytes long, "
8195 "need at least %d bytes for the jump"),
8207 /* Return a floating-point format for a floating-point variable of
8208 length LEN in bits. If non-NULL, NAME is the name of its type.
8209 If no suitable type is found, return NULL. */
8211 static const struct floatformat
**
8212 i386_floatformat_for_type (struct gdbarch
*gdbarch
,
8213 const char *name
, int len
)
8215 if (len
== 128 && name
)
8216 if (strcmp (name
, "__float128") == 0
8217 || strcmp (name
, "_Float128") == 0
8218 || strcmp (name
, "complex _Float128") == 0
8219 || strcmp (name
, "complex(kind=16)") == 0
8220 || strcmp (name
, "quad complex") == 0
8221 || strcmp (name
, "real(kind=16)") == 0
8222 || strcmp (name
, "real*16") == 0)
8223 return floatformats_ia64_quad
;
8225 return default_floatformat_for_type (gdbarch
, name
, len
);
8229 i386_validate_tdesc_p (struct gdbarch_tdep
*tdep
,
8230 struct tdesc_arch_data
*tdesc_data
)
8232 const struct target_desc
*tdesc
= tdep
->tdesc
;
8233 const struct tdesc_feature
*feature_core
;
8235 const struct tdesc_feature
*feature_sse
, *feature_avx
, *feature_mpx
,
8236 *feature_avx512
, *feature_pkeys
, *feature_segments
;
8237 int i
, num_regs
, valid_p
;
8239 if (! tdesc_has_registers (tdesc
))
8242 /* Get core registers. */
8243 feature_core
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.core");
8244 if (feature_core
== NULL
)
8247 /* Get SSE registers. */
8248 feature_sse
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.sse");
8250 /* Try AVX registers. */
8251 feature_avx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx");
8253 /* Try MPX registers. */
8254 feature_mpx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx");
8256 /* Try AVX512 registers. */
8257 feature_avx512
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx512");
8259 /* Try segment base registers. */
8260 feature_segments
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.segments");
8263 feature_pkeys
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.pkeys");
8267 /* The XCR0 bits. */
8270 /* AVX512 register description requires AVX register description. */
8274 tdep
->xcr0
= X86_XSTATE_AVX_AVX512_MASK
;
8276 /* It may have been set by OSABI initialization function. */
8277 if (tdep
->k0_regnum
< 0)
8279 tdep
->k_register_names
= i386_k_names
;
8280 tdep
->k0_regnum
= I386_K0_REGNUM
;
8283 for (i
= 0; i
< I387_NUM_K_REGS
; i
++)
8284 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8285 tdep
->k0_regnum
+ i
,
8288 if (tdep
->num_zmm_regs
== 0)
8290 tdep
->zmmh_register_names
= i386_zmmh_names
;
8291 tdep
->num_zmm_regs
= 8;
8292 tdep
->zmm0h_regnum
= I386_ZMM0H_REGNUM
;
8295 for (i
= 0; i
< tdep
->num_zmm_regs
; i
++)
8296 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8297 tdep
->zmm0h_regnum
+ i
,
8298 tdep
->zmmh_register_names
[i
]);
8300 for (i
= 0; i
< tdep
->num_xmm_avx512_regs
; i
++)
8301 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8302 tdep
->xmm16_regnum
+ i
,
8303 tdep
->xmm_avx512_register_names
[i
]);
8305 for (i
= 0; i
< tdep
->num_ymm_avx512_regs
; i
++)
8306 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8307 tdep
->ymm16h_regnum
+ i
,
8308 tdep
->ymm16h_register_names
[i
]);
8312 /* AVX register description requires SSE register description. */
8316 if (!feature_avx512
)
8317 tdep
->xcr0
= X86_XSTATE_AVX_MASK
;
8319 /* It may have been set by OSABI initialization function. */
8320 if (tdep
->num_ymm_regs
== 0)
8322 tdep
->ymmh_register_names
= i386_ymmh_names
;
8323 tdep
->num_ymm_regs
= 8;
8324 tdep
->ymm0h_regnum
= I386_YMM0H_REGNUM
;
8327 for (i
= 0; i
< tdep
->num_ymm_regs
; i
++)
8328 valid_p
&= tdesc_numbered_register (feature_avx
, tdesc_data
,
8329 tdep
->ymm0h_regnum
+ i
,
8330 tdep
->ymmh_register_names
[i
]);
8332 else if (feature_sse
)
8333 tdep
->xcr0
= X86_XSTATE_SSE_MASK
;
8336 tdep
->xcr0
= X86_XSTATE_X87_MASK
;
8337 tdep
->num_xmm_regs
= 0;
8340 num_regs
= tdep
->num_core_regs
;
8341 for (i
= 0; i
< num_regs
; i
++)
8342 valid_p
&= tdesc_numbered_register (feature_core
, tdesc_data
, i
,
8343 tdep
->register_names
[i
]);
8347 /* Need to include %mxcsr, so add one. */
8348 num_regs
+= tdep
->num_xmm_regs
+ 1;
8349 for (; i
< num_regs
; i
++)
8350 valid_p
&= tdesc_numbered_register (feature_sse
, tdesc_data
, i
,
8351 tdep
->register_names
[i
]);
8356 tdep
->xcr0
|= X86_XSTATE_MPX_MASK
;
8358 if (tdep
->bnd0r_regnum
< 0)
8360 tdep
->mpx_register_names
= i386_mpx_names
;
8361 tdep
->bnd0r_regnum
= I386_BND0R_REGNUM
;
8362 tdep
->bndcfgu_regnum
= I386_BNDCFGU_REGNUM
;
8365 for (i
= 0; i
< I387_NUM_MPX_REGS
; i
++)
8366 valid_p
&= tdesc_numbered_register (feature_mpx
, tdesc_data
,
8367 I387_BND0R_REGNUM (tdep
) + i
,
8368 tdep
->mpx_register_names
[i
]);
8371 if (feature_segments
)
8373 if (tdep
->fsbase_regnum
< 0)
8374 tdep
->fsbase_regnum
= I386_FSBASE_REGNUM
;
8375 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8376 tdep
->fsbase_regnum
, "fs_base");
8377 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8378 tdep
->fsbase_regnum
+ 1, "gs_base");
8383 tdep
->xcr0
|= X86_XSTATE_PKRU
;
8384 if (tdep
->pkru_regnum
< 0)
8386 tdep
->pkeys_register_names
= i386_pkeys_names
;
8387 tdep
->pkru_regnum
= I386_PKRU_REGNUM
;
8388 tdep
->num_pkeys_regs
= 1;
8391 for (i
= 0; i
< I387_NUM_PKEYS_REGS
; i
++)
8392 valid_p
&= tdesc_numbered_register (feature_pkeys
, tdesc_data
,
8393 I387_PKRU_REGNUM (tdep
) + i
,
8394 tdep
->pkeys_register_names
[i
]);
8402 /* Implement the type_align gdbarch function. */
8405 i386_type_align (struct gdbarch
*gdbarch
, struct type
*type
)
8407 type
= check_typedef (type
);
8409 if (gdbarch_ptr_bit (gdbarch
) == 32)
8411 if ((type
->code () == TYPE_CODE_INT
8412 || type
->code () == TYPE_CODE_FLT
)
8413 && TYPE_LENGTH (type
) > 4)
8416 /* Handle x86's funny long double. */
8417 if (type
->code () == TYPE_CODE_FLT
8418 && gdbarch_long_double_bit (gdbarch
) == TYPE_LENGTH (type
) * 8)
8426 /* Note: This is called for both i386 and amd64. */
8428 static struct gdbarch
*
8429 i386_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
8431 struct gdbarch_tdep
*tdep
;
8432 struct gdbarch
*gdbarch
;
8433 struct tdesc_arch_data
*tdesc_data
;
8434 const struct target_desc
*tdesc
;
8440 /* If there is already a candidate, use it. */
8441 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
8443 return arches
->gdbarch
;
8445 /* Allocate space for the new architecture. Assume i386 for now. */
8446 tdep
= XCNEW (struct gdbarch_tdep
);
8447 gdbarch
= gdbarch_alloc (&info
, tdep
);
8449 /* General-purpose registers. */
8450 tdep
->gregset_reg_offset
= NULL
;
8451 tdep
->gregset_num_regs
= I386_NUM_GREGS
;
8452 tdep
->sizeof_gregset
= 0;
8454 /* Floating-point registers. */
8455 tdep
->sizeof_fpregset
= I387_SIZEOF_FSAVE
;
8456 tdep
->fpregset
= &i386_fpregset
;
8458 /* The default settings include the FPU registers, the MMX registers
8459 and the SSE registers. This can be overridden for a specific ABI
8460 by adjusting the members `st0_regnum', `mm0_regnum' and
8461 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8462 will show up in the output of "info all-registers". */
8464 tdep
->st0_regnum
= I386_ST0_REGNUM
;
8466 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8467 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
8469 tdep
->jb_pc_offset
= -1;
8470 tdep
->struct_return
= pcc_struct_return
;
8471 tdep
->sigtramp_start
= 0;
8472 tdep
->sigtramp_end
= 0;
8473 tdep
->sigtramp_p
= i386_sigtramp_p
;
8474 tdep
->sigcontext_addr
= NULL
;
8475 tdep
->sc_reg_offset
= NULL
;
8476 tdep
->sc_pc_offset
= -1;
8477 tdep
->sc_sp_offset
= -1;
8479 tdep
->xsave_xcr0_offset
= -1;
8481 tdep
->record_regmap
= i386_record_regmap
;
8483 set_gdbarch_type_align (gdbarch
, i386_type_align
);
8485 /* The format used for `long double' on almost all i386 targets is
8486 the i387 extended floating-point format. In fact, of all targets
8487 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8488 on having a `long double' that's not `long' at all. */
8489 set_gdbarch_long_double_format (gdbarch
, floatformats_i387_ext
);
8491 /* Although the i387 extended floating-point has only 80 significant
8492 bits, a `long double' actually takes up 96, probably to enforce
8494 set_gdbarch_long_double_bit (gdbarch
, 96);
8496 /* Support of bfloat16 format. */
8497 set_gdbarch_bfloat16_format (gdbarch
, floatformats_bfloat16
);
8499 /* Support for floating-point data type variants. */
8500 set_gdbarch_floatformat_for_type (gdbarch
, i386_floatformat_for_type
);
8502 /* Register numbers of various important registers. */
8503 set_gdbarch_sp_regnum (gdbarch
, I386_ESP_REGNUM
); /* %esp */
8504 set_gdbarch_pc_regnum (gdbarch
, I386_EIP_REGNUM
); /* %eip */
8505 set_gdbarch_ps_regnum (gdbarch
, I386_EFLAGS_REGNUM
); /* %eflags */
8506 set_gdbarch_fp0_regnum (gdbarch
, I386_ST0_REGNUM
); /* %st(0) */
8508 /* NOTE: kettenis/20040418: GCC does have two possible register
8509 numbering schemes on the i386: dbx and SVR4. These schemes
8510 differ in how they number %ebp, %esp, %eflags, and the
8511 floating-point registers, and are implemented by the arrays
8512 dbx_register_map[] and svr4_dbx_register_map in
8513 gcc/config/i386.c. GCC also defines a third numbering scheme in
8514 gcc/config/i386.c, which it designates as the "default" register
8515 map used in 64bit mode. This last register numbering scheme is
8516 implemented in dbx64_register_map, and is used for AMD64; see
8519 Currently, each GCC i386 target always uses the same register
8520 numbering scheme across all its supported debugging formats
8521 i.e. SDB (COFF), stabs and DWARF 2. This is because
8522 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8523 DBX_REGISTER_NUMBER macro which is defined by each target's
8524 respective config header in a manner independent of the requested
8525 output debugging format.
8527 This does not match the arrangement below, which presumes that
8528 the SDB and stabs numbering schemes differ from the DWARF and
8529 DWARF 2 ones. The reason for this arrangement is that it is
8530 likely to get the numbering scheme for the target's
8531 default/native debug format right. For targets where GCC is the
8532 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8533 targets where the native toolchain uses a different numbering
8534 scheme for a particular debug format (stabs-in-ELF on Solaris)
8535 the defaults below will have to be overridden, like
8536 i386_elf_init_abi() does. */
8538 /* Use the dbx register numbering scheme for stabs and COFF. */
8539 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8540 set_gdbarch_sdb_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8542 /* Use the SVR4 register numbering scheme for DWARF 2. */
8543 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, i386_svr4_dwarf_reg_to_regnum
);
8545 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8546 be in use on any of the supported i386 targets. */
8548 set_gdbarch_print_float_info (gdbarch
, i387_print_float_info
);
8550 set_gdbarch_get_longjmp_target (gdbarch
, i386_get_longjmp_target
);
8552 /* Call dummy code. */
8553 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
8554 set_gdbarch_push_dummy_code (gdbarch
, i386_push_dummy_code
);
8555 set_gdbarch_push_dummy_call (gdbarch
, i386_push_dummy_call
);
8556 set_gdbarch_frame_align (gdbarch
, i386_frame_align
);
8558 set_gdbarch_convert_register_p (gdbarch
, i386_convert_register_p
);
8559 set_gdbarch_register_to_value (gdbarch
, i386_register_to_value
);
8560 set_gdbarch_value_to_register (gdbarch
, i386_value_to_register
);
8562 set_gdbarch_return_value (gdbarch
, i386_return_value
);
8564 set_gdbarch_skip_prologue (gdbarch
, i386_skip_prologue
);
8566 /* Stack grows downward. */
8567 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
8569 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, i386_breakpoint::kind_from_pc
);
8570 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, i386_breakpoint::bp_from_kind
);
8572 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
8573 set_gdbarch_max_insn_length (gdbarch
, I386_MAX_INSN_LEN
);
8575 set_gdbarch_frame_args_skip (gdbarch
, 8);
8577 set_gdbarch_print_insn (gdbarch
, i386_print_insn
);
8579 set_gdbarch_dummy_id (gdbarch
, i386_dummy_id
);
8581 set_gdbarch_unwind_pc (gdbarch
, i386_unwind_pc
);
8583 /* Add the i386 register groups. */
8584 i386_add_reggroups (gdbarch
);
8585 tdep
->register_reggroup_p
= i386_register_reggroup_p
;
8587 /* Helper for function argument information. */
8588 set_gdbarch_fetch_pointer_argument (gdbarch
, i386_fetch_pointer_argument
);
8590 /* Hook the function epilogue frame unwinder. This unwinder is
8591 appended to the list first, so that it supercedes the DWARF
8592 unwinder in function epilogues (where the DWARF unwinder
8593 currently fails). */
8594 frame_unwind_append_unwinder (gdbarch
, &i386_epilogue_frame_unwind
);
8596 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8597 to the list before the prologue-based unwinders, so that DWARF
8598 CFI info will be used if it is available. */
8599 dwarf2_append_unwinders (gdbarch
);
8601 frame_base_set_default (gdbarch
, &i386_frame_base
);
8603 /* Pseudo registers may be changed by amd64_init_abi. */
8604 set_gdbarch_pseudo_register_read_value (gdbarch
,
8605 i386_pseudo_register_read_value
);
8606 set_gdbarch_pseudo_register_write (gdbarch
, i386_pseudo_register_write
);
8607 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
8608 i386_ax_pseudo_register_collect
);
8610 set_tdesc_pseudo_register_type (gdbarch
, i386_pseudo_register_type
);
8611 set_tdesc_pseudo_register_name (gdbarch
, i386_pseudo_register_name
);
8613 /* Override the normal target description method to make the AVX
8614 upper halves anonymous. */
8615 set_gdbarch_register_name (gdbarch
, i386_register_name
);
8617 /* Even though the default ABI only includes general-purpose registers,
8618 floating-point registers and the SSE registers, we have to leave a
8619 gap for the upper AVX, MPX and AVX512 registers. */
8620 set_gdbarch_num_regs (gdbarch
, I386_NUM_REGS
);
8622 set_gdbarch_gnu_triplet_regexp (gdbarch
, i386_gnu_triplet_regexp
);
8624 /* Get the x86 target description from INFO. */
8625 tdesc
= info
.target_desc
;
8626 if (! tdesc_has_registers (tdesc
))
8627 tdesc
= i386_target_description (X86_XSTATE_SSE_MASK
, false);
8628 tdep
->tdesc
= tdesc
;
8630 tdep
->num_core_regs
= I386_NUM_GREGS
+ I387_NUM_REGS
;
8631 tdep
->register_names
= i386_register_names
;
8633 /* No upper YMM registers. */
8634 tdep
->ymmh_register_names
= NULL
;
8635 tdep
->ymm0h_regnum
= -1;
8637 /* No upper ZMM registers. */
8638 tdep
->zmmh_register_names
= NULL
;
8639 tdep
->zmm0h_regnum
= -1;
8641 /* No high XMM registers. */
8642 tdep
->xmm_avx512_register_names
= NULL
;
8643 tdep
->xmm16_regnum
= -1;
8645 /* No upper YMM16-31 registers. */
8646 tdep
->ymm16h_register_names
= NULL
;
8647 tdep
->ymm16h_regnum
= -1;
8649 tdep
->num_byte_regs
= 8;
8650 tdep
->num_word_regs
= 8;
8651 tdep
->num_dword_regs
= 0;
8652 tdep
->num_mmx_regs
= 8;
8653 tdep
->num_ymm_regs
= 0;
8655 /* No MPX registers. */
8656 tdep
->bnd0r_regnum
= -1;
8657 tdep
->bndcfgu_regnum
= -1;
8659 /* No AVX512 registers. */
8660 tdep
->k0_regnum
= -1;
8661 tdep
->num_zmm_regs
= 0;
8662 tdep
->num_ymm_avx512_regs
= 0;
8663 tdep
->num_xmm_avx512_regs
= 0;
8665 /* No PKEYS registers */
8666 tdep
->pkru_regnum
= -1;
8667 tdep
->num_pkeys_regs
= 0;
8669 /* No segment base registers. */
8670 tdep
->fsbase_regnum
= -1;
8672 tdesc_data
= tdesc_data_alloc ();
8674 set_gdbarch_relocate_instruction (gdbarch
, i386_relocate_instruction
);
8676 set_gdbarch_gen_return_address (gdbarch
, i386_gen_return_address
);
8678 set_gdbarch_insn_is_call (gdbarch
, i386_insn_is_call
);
8679 set_gdbarch_insn_is_ret (gdbarch
, i386_insn_is_ret
);
8680 set_gdbarch_insn_is_jump (gdbarch
, i386_insn_is_jump
);
8682 /* Hook in ABI-specific overrides, if they have been registered.
8683 Note: If INFO specifies a 64 bit arch, this is where we turn
8684 a 32-bit i386 into a 64-bit amd64. */
8685 info
.tdesc_data
= tdesc_data
;
8686 gdbarch_init_osabi (info
, gdbarch
);
8688 if (!i386_validate_tdesc_p (tdep
, tdesc_data
))
8690 tdesc_data_cleanup (tdesc_data
);
8692 gdbarch_free (gdbarch
);
8696 num_bnd_cooked
= (tdep
->bnd0r_regnum
> 0 ? I387_NUM_BND_REGS
: 0);
8698 /* Wire in pseudo registers. Number of pseudo registers may be
8700 set_gdbarch_num_pseudo_regs (gdbarch
, (tdep
->num_byte_regs
8701 + tdep
->num_word_regs
8702 + tdep
->num_dword_regs
8703 + tdep
->num_mmx_regs
8704 + tdep
->num_ymm_regs
8706 + tdep
->num_ymm_avx512_regs
8707 + tdep
->num_zmm_regs
));
8709 /* Target description may be changed. */
8710 tdesc
= tdep
->tdesc
;
8712 tdesc_use_registers (gdbarch
, tdesc
, tdesc_data
);
8714 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8715 set_gdbarch_register_reggroup_p (gdbarch
, tdep
->register_reggroup_p
);
8717 /* Make %al the first pseudo-register. */
8718 tdep
->al_regnum
= gdbarch_num_regs (gdbarch
);
8719 tdep
->ax_regnum
= tdep
->al_regnum
+ tdep
->num_byte_regs
;
8721 ymm0_regnum
= tdep
->ax_regnum
+ tdep
->num_word_regs
;
8722 if (tdep
->num_dword_regs
)
8724 /* Support dword pseudo-register if it hasn't been disabled. */
8725 tdep
->eax_regnum
= ymm0_regnum
;
8726 ymm0_regnum
+= tdep
->num_dword_regs
;
8729 tdep
->eax_regnum
= -1;
8731 mm0_regnum
= ymm0_regnum
;
8732 if (tdep
->num_ymm_regs
)
8734 /* Support YMM pseudo-register if it is available. */
8735 tdep
->ymm0_regnum
= ymm0_regnum
;
8736 mm0_regnum
+= tdep
->num_ymm_regs
;
8739 tdep
->ymm0_regnum
= -1;
8741 if (tdep
->num_ymm_avx512_regs
)
8743 /* Support YMM16-31 pseudo registers if available. */
8744 tdep
->ymm16_regnum
= mm0_regnum
;
8745 mm0_regnum
+= tdep
->num_ymm_avx512_regs
;
8748 tdep
->ymm16_regnum
= -1;
8750 if (tdep
->num_zmm_regs
)
8752 /* Support ZMM pseudo-register if it is available. */
8753 tdep
->zmm0_regnum
= mm0_regnum
;
8754 mm0_regnum
+= tdep
->num_zmm_regs
;
8757 tdep
->zmm0_regnum
= -1;
8759 bnd0_regnum
= mm0_regnum
;
8760 if (tdep
->num_mmx_regs
!= 0)
8762 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8763 tdep
->mm0_regnum
= mm0_regnum
;
8764 bnd0_regnum
+= tdep
->num_mmx_regs
;
8767 tdep
->mm0_regnum
= -1;
8769 if (tdep
->bnd0r_regnum
> 0)
8770 tdep
->bnd0_regnum
= bnd0_regnum
;
8772 tdep
-> bnd0_regnum
= -1;
8774 /* Hook in the legacy prologue-based unwinders last (fallback). */
8775 frame_unwind_append_unwinder (gdbarch
, &i386_stack_tramp_frame_unwind
);
8776 frame_unwind_append_unwinder (gdbarch
, &i386_sigtramp_frame_unwind
);
8777 frame_unwind_append_unwinder (gdbarch
, &i386_frame_unwind
);
8779 /* If we have a register mapping, enable the generic core file
8780 support, unless it has already been enabled. */
8781 if (tdep
->gregset_reg_offset
8782 && !gdbarch_iterate_over_regset_sections_p (gdbarch
))
8783 set_gdbarch_iterate_over_regset_sections
8784 (gdbarch
, i386_iterate_over_regset_sections
);
8786 set_gdbarch_fast_tracepoint_valid_at (gdbarch
,
8787 i386_fast_tracepoint_valid_at
);
8794 /* Return the target description for a specified XSAVE feature mask. */
8796 const struct target_desc
*
8797 i386_target_description (uint64_t xcr0
, bool segments
)
8799 static target_desc
*i386_tdescs \
8800 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8801 target_desc
**tdesc
;
8803 tdesc
= &i386_tdescs
[(xcr0
& X86_XSTATE_SSE
) ? 1 : 0]
8804 [(xcr0
& X86_XSTATE_AVX
) ? 1 : 0]
8805 [(xcr0
& X86_XSTATE_MPX
) ? 1 : 0]
8806 [(xcr0
& X86_XSTATE_AVX512
) ? 1 : 0]
8807 [(xcr0
& X86_XSTATE_PKRU
) ? 1 : 0]
8811 *tdesc
= i386_create_target_description (xcr0
, false, segments
);
8816 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8818 /* Find the bound directory base address. */
8820 static unsigned long
8821 i386_mpx_bd_base (void)
8823 struct regcache
*rcache
;
8824 struct gdbarch_tdep
*tdep
;
8826 enum register_status regstatus
;
8828 rcache
= get_current_regcache ();
8829 tdep
= gdbarch_tdep (rcache
->arch ());
8831 regstatus
= regcache_raw_read_unsigned (rcache
, tdep
->bndcfgu_regnum
, &ret
);
8833 if (regstatus
!= REG_VALID
)
8834 error (_("BNDCFGU register invalid, read status %d."), regstatus
);
8836 return ret
& MPX_BASE_MASK
;
8840 i386_mpx_enabled (void)
8842 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_current_arch ());
8843 const struct target_desc
*tdesc
= tdep
->tdesc
;
8845 return (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx") != NULL
);
8848 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8849 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8850 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8851 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8853 /* Find the bound table entry given the pointer location and the base
8854 address of the table. */
8857 i386_mpx_get_bt_entry (CORE_ADDR ptr
, CORE_ADDR bd_base
)
8861 CORE_ADDR mpx_bd_mask
, bd_ptr_r_shift
, bd_ptr_l_shift
;
8862 CORE_ADDR bt_mask
, bt_select_r_shift
, bt_select_l_shift
;
8863 CORE_ADDR bd_entry_addr
;
8866 struct gdbarch
*gdbarch
= get_current_arch ();
8867 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8870 if (gdbarch_ptr_bit (gdbarch
) == 64)
8872 mpx_bd_mask
= (CORE_ADDR
) MPX_BD_MASK
;
8873 bd_ptr_r_shift
= 20;
8875 bt_select_r_shift
= 3;
8876 bt_select_l_shift
= 5;
8877 bt_mask
= (CORE_ADDR
) MPX_BT_MASK
;
8879 if ( sizeof (CORE_ADDR
) == 4)
8880 error (_("bound table examination not supported\
8881 for 64-bit process with 32-bit GDB"));
8885 mpx_bd_mask
= MPX_BD_MASK_32
;
8886 bd_ptr_r_shift
= 12;
8888 bt_select_r_shift
= 2;
8889 bt_select_l_shift
= 4;
8890 bt_mask
= MPX_BT_MASK_32
;
8893 offset1
= ((ptr
& mpx_bd_mask
) >> bd_ptr_r_shift
) << bd_ptr_l_shift
;
8894 bd_entry_addr
= bd_base
+ offset1
;
8895 bd_entry
= read_memory_typed_address (bd_entry_addr
, data_ptr_type
);
8897 if ((bd_entry
& 0x1) == 0)
8898 error (_("Invalid bounds directory entry at %s."),
8899 paddress (get_current_arch (), bd_entry_addr
));
8901 /* Clearing status bit. */
8903 bt_addr
= bd_entry
& ~bt_select_r_shift
;
8904 offset2
= ((ptr
& bt_mask
) >> bt_select_r_shift
) << bt_select_l_shift
;
8906 return bt_addr
+ offset2
;
8909 /* Print routine for the mpx bounds. */
8912 i386_mpx_print_bounds (const CORE_ADDR bt_entry
[4])
8914 struct ui_out
*uiout
= current_uiout
;
8916 struct gdbarch
*gdbarch
= get_current_arch ();
8917 CORE_ADDR onecompl
= ~((CORE_ADDR
) 0);
8918 int bounds_in_map
= ((~bt_entry
[1] == 0 && bt_entry
[0] == onecompl
) ? 1 : 0);
8920 if (bounds_in_map
== 1)
8922 uiout
->text ("Null bounds on map:");
8923 uiout
->text (" pointer value = ");
8924 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8930 uiout
->text ("{lbound = ");
8931 uiout
->field_core_addr ("lower-bound", gdbarch
, bt_entry
[0]);
8932 uiout
->text (", ubound = ");
8934 /* The upper bound is stored in 1's complement. */
8935 uiout
->field_core_addr ("upper-bound", gdbarch
, ~bt_entry
[1]);
8936 uiout
->text ("}: pointer value = ");
8937 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8939 if (gdbarch_ptr_bit (gdbarch
) == 64)
8940 size
= ( (~(int64_t) bt_entry
[1]) - (int64_t) bt_entry
[0]);
8942 size
= ( ~((int32_t) bt_entry
[1]) - (int32_t) bt_entry
[0]);
8944 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8945 -1 represents in this sense full memory access, and there is no need
8948 size
= (size
> -1 ? size
+ 1 : size
);
8949 uiout
->text (", size = ");
8950 uiout
->field_string ("size", plongest (size
));
8952 uiout
->text (", metadata = ");
8953 uiout
->field_core_addr ("metadata", gdbarch
, bt_entry
[3]);
8958 /* Implement the command "show mpx bound". */
8961 i386_mpx_info_bounds (const char *args
, int from_tty
)
8963 CORE_ADDR bd_base
= 0;
8965 CORE_ADDR bt_entry_addr
= 0;
8966 CORE_ADDR bt_entry
[4];
8968 struct gdbarch
*gdbarch
= get_current_arch ();
8969 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8971 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
8972 || !i386_mpx_enabled ())
8974 printf_unfiltered (_("Intel Memory Protection Extensions not "
8975 "supported on this target.\n"));
8981 printf_unfiltered (_("Address of pointer variable expected.\n"));
8985 addr
= parse_and_eval_address (args
);
8987 bd_base
= i386_mpx_bd_base ();
8988 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
8990 memset (bt_entry
, 0, sizeof (bt_entry
));
8992 for (i
= 0; i
< 4; i
++)
8993 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
8994 + i
* TYPE_LENGTH (data_ptr_type
),
8997 i386_mpx_print_bounds (bt_entry
);
9000 /* Implement the command "set mpx bound". */
9003 i386_mpx_set_bounds (const char *args
, int from_tty
)
9005 CORE_ADDR bd_base
= 0;
9006 CORE_ADDR addr
, lower
, upper
;
9007 CORE_ADDR bt_entry_addr
= 0;
9008 CORE_ADDR bt_entry
[2];
9009 const char *input
= args
;
9011 struct gdbarch
*gdbarch
= get_current_arch ();
9012 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
9013 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
9015 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
9016 || !i386_mpx_enabled ())
9017 error (_("Intel Memory Protection Extensions not supported\
9021 error (_("Pointer value expected."));
9023 addr
= value_as_address (parse_to_comma_and_eval (&input
));
9025 if (input
[0] == ',')
9027 if (input
[0] == '\0')
9028 error (_("wrong number of arguments: missing lower and upper bound."));
9029 lower
= value_as_address (parse_to_comma_and_eval (&input
));
9031 if (input
[0] == ',')
9033 if (input
[0] == '\0')
9034 error (_("Wrong number of arguments; Missing upper bound."));
9035 upper
= value_as_address (parse_to_comma_and_eval (&input
));
9037 bd_base
= i386_mpx_bd_base ();
9038 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9039 for (i
= 0; i
< 2; i
++)
9040 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9041 + i
* TYPE_LENGTH (data_ptr_type
),
9043 bt_entry
[0] = (uint64_t) lower
;
9044 bt_entry
[1] = ~(uint64_t) upper
;
9046 for (i
= 0; i
< 2; i
++)
9047 write_memory_unsigned_integer (bt_entry_addr
9048 + i
* TYPE_LENGTH (data_ptr_type
),
9049 TYPE_LENGTH (data_ptr_type
), byte_order
,
9053 static struct cmd_list_element
*mpx_set_cmdlist
, *mpx_show_cmdlist
;
9055 void _initialize_i386_tdep ();
9057 _initialize_i386_tdep ()
9059 register_gdbarch_init (bfd_arch_i386
, i386_gdbarch_init
);
9061 /* Add the variable that controls the disassembly flavor. */
9062 add_setshow_enum_cmd ("disassembly-flavor", no_class
, valid_flavors
,
9063 &disassembly_flavor
, _("\
9064 Set the disassembly flavor."), _("\
9065 Show the disassembly flavor."), _("\
9066 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9068 NULL
, /* FIXME: i18n: */
9069 &setlist
, &showlist
);
9071 /* Add the variable that controls the convention for returning
9073 add_setshow_enum_cmd ("struct-convention", no_class
, valid_conventions
,
9074 &struct_convention
, _("\
9075 Set the convention for returning small structs."), _("\
9076 Show the convention for returning small structs."), _("\
9077 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9080 NULL
, /* FIXME: i18n: */
9081 &setlist
, &showlist
);
9083 /* Add "mpx" prefix for the set commands. */
9085 add_basic_prefix_cmd ("mpx", class_support
, _("\
9086 Set Intel Memory Protection Extensions specific variables."),
9087 &mpx_set_cmdlist
, "set mpx ",
9088 0 /* allow-unknown */, &setlist
);
9090 /* Add "mpx" prefix for the show commands. */
9092 add_show_prefix_cmd ("mpx", class_support
, _("\
9093 Show Intel Memory Protection Extensions specific variables."),
9094 &mpx_show_cmdlist
, "show mpx ",
9095 0 /* allow-unknown */, &showlist
);
9097 /* Add "bound" command for the show mpx commands list. */
9099 add_cmd ("bound", no_class
, i386_mpx_info_bounds
,
9100 "Show the memory bounds for a given array/pointer storage\
9101 in the bound table.",
9104 /* Add "bound" command for the set mpx commands list. */
9106 add_cmd ("bound", no_class
, i386_mpx_set_bounds
,
9107 "Set the memory bounds for a given array/pointer storage\
9108 in the bound table.",
9111 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_SVR4
,
9112 i386_svr4_init_abi
);
9114 /* Initialize the i386-specific register groups. */
9115 i386_init_reggroups ();
9117 /* Tell remote stub that we support XML target description. */
9118 register_remote_support_xml ("i386");