1 /* Target-dependent code for GNU/Linux, architecture independent.
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "linux-tdep.h"
25 #include "gdbthread.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
53 COREFILTER_ANON_PRIVATE
= 1 << 0,
54 COREFILTER_ANON_SHARED
= 1 << 1,
55 COREFILTER_MAPPED_PRIVATE
= 1 << 2,
56 COREFILTER_MAPPED_SHARED
= 1 << 3,
57 COREFILTER_ELF_HEADERS
= 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE
= 1 << 5,
59 COREFILTER_HUGETLB_SHARED
= 1 << 6,
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag
, filter_flags
);
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
72 unsigned int initialized_p
: 1;
74 /* Memory mapped I/O area (VM_IO, "io"). */
76 unsigned int io_page
: 1;
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
80 unsigned int uses_huge_tlb
: 1;
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
84 unsigned int exclude_coredump
: 1;
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
88 unsigned int shared_mapping
: 1;
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
94 static bool use_coredump_filter
= true;
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
99 static bool dump_excluded_mappings
= false;
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
143 LINUX_SIGSTKFLT
= 16,
153 LINUX_SIGVTALRM
= 26,
157 LINUX_SIGPOLL
= LINUX_SIGIO
,
160 LINUX_SIGUNUSED
= 31,
166 static struct gdbarch_data
*linux_gdbarch_data_handle
;
168 struct linux_gdbarch_data
170 struct type
*siginfo_type
;
174 init_linux_gdbarch_data (struct gdbarch
*gdbarch
)
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch
, struct linux_gdbarch_data
);
179 static struct linux_gdbarch_data
*
180 get_linux_gdbarch_data (struct gdbarch
*gdbarch
)
182 return ((struct linux_gdbarch_data
*)
183 gdbarch_data (gdbarch
, linux_gdbarch_data_handle
));
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range
{};
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p
= 0;
204 /* Per-inferior data key. */
205 static const struct inferior_key
<linux_info
> linux_inferior_data
;
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
211 invalidate_linux_cache_inf (struct inferior
*inf
)
213 linux_inferior_data
.clear (inf
);
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
219 static struct linux_info
*
220 get_linux_inferior_data (void)
222 struct linux_info
*info
;
223 struct inferior
*inf
= current_inferior ();
225 info
= linux_inferior_data
.get (inf
);
227 info
= linux_inferior_data
.emplace (inf
);
232 /* See linux-tdep.h. */
235 linux_get_siginfo_type_with_fields (struct gdbarch
*gdbarch
,
236 linux_siginfo_extra_fields extra_fields
)
238 struct linux_gdbarch_data
*linux_gdbarch_data
;
239 struct type
*int_type
, *uint_type
, *long_type
, *void_ptr_type
, *short_type
;
240 struct type
*uid_type
, *pid_type
;
241 struct type
*sigval_type
, *clock_type
;
242 struct type
*siginfo_type
, *sifields_type
;
245 linux_gdbarch_data
= get_linux_gdbarch_data (gdbarch
);
246 if (linux_gdbarch_data
->siginfo_type
!= NULL
)
247 return linux_gdbarch_data
->siginfo_type
;
249 int_type
= arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
251 uint_type
= arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
253 long_type
= arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
255 short_type
= arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
257 void_ptr_type
= lookup_pointer_type (builtin_type (gdbarch
)->builtin_void
);
260 sigval_type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_UNION
);
261 sigval_type
->set_name (xstrdup ("sigval_t"));
262 append_composite_type_field (sigval_type
, "sival_int", int_type
);
263 append_composite_type_field (sigval_type
, "sival_ptr", void_ptr_type
);
266 pid_type
= arch_type (gdbarch
, TYPE_CODE_TYPEDEF
,
267 TYPE_LENGTH (int_type
) * TARGET_CHAR_BIT
, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type
) = int_type
;
269 TYPE_TARGET_STUB (pid_type
) = 1;
272 uid_type
= arch_type (gdbarch
, TYPE_CODE_TYPEDEF
,
273 TYPE_LENGTH (uint_type
) * TARGET_CHAR_BIT
, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type
) = uint_type
;
275 TYPE_TARGET_STUB (uid_type
) = 1;
278 clock_type
= arch_type (gdbarch
, TYPE_CODE_TYPEDEF
,
279 TYPE_LENGTH (long_type
) * TARGET_CHAR_BIT
,
281 TYPE_TARGET_TYPE (clock_type
) = long_type
;
282 TYPE_TARGET_STUB (clock_type
) = 1;
285 sifields_type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_UNION
);
288 const int si_max_size
= 128;
290 int size_of_int
= gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
;
293 if (gdbarch_ptr_bit (gdbarch
) == 64)
294 si_pad_size
= (si_max_size
/ size_of_int
) - 4;
296 si_pad_size
= (si_max_size
/ size_of_int
) - 3;
297 append_composite_type_field (sifields_type
, "_pad",
298 init_vector_type (int_type
, si_pad_size
));
302 type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
303 append_composite_type_field (type
, "si_pid", pid_type
);
304 append_composite_type_field (type
, "si_uid", uid_type
);
305 append_composite_type_field (sifields_type
, "_kill", type
);
308 type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
309 append_composite_type_field (type
, "si_tid", int_type
);
310 append_composite_type_field (type
, "si_overrun", int_type
);
311 append_composite_type_field (type
, "si_sigval", sigval_type
);
312 append_composite_type_field (sifields_type
, "_timer", type
);
315 type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
316 append_composite_type_field (type
, "si_pid", pid_type
);
317 append_composite_type_field (type
, "si_uid", uid_type
);
318 append_composite_type_field (type
, "si_sigval", sigval_type
);
319 append_composite_type_field (sifields_type
, "_rt", type
);
322 type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
323 append_composite_type_field (type
, "si_pid", pid_type
);
324 append_composite_type_field (type
, "si_uid", uid_type
);
325 append_composite_type_field (type
, "si_status", int_type
);
326 append_composite_type_field (type
, "si_utime", clock_type
);
327 append_composite_type_field (type
, "si_stime", clock_type
);
328 append_composite_type_field (sifields_type
, "_sigchld", type
);
331 type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
332 append_composite_type_field (type
, "si_addr", void_ptr_type
);
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields
& LINUX_SIGINFO_FIELD_ADDR_BND
) != 0)
337 struct type
*sigfault_bnd_fields
;
339 append_composite_type_field (type
, "_addr_lsb", short_type
);
340 sigfault_bnd_fields
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
341 append_composite_type_field (sigfault_bnd_fields
, "_lower", void_ptr_type
);
342 append_composite_type_field (sigfault_bnd_fields
, "_upper", void_ptr_type
);
343 append_composite_type_field (type
, "_addr_bnd", sigfault_bnd_fields
);
345 append_composite_type_field (sifields_type
, "_sigfault", type
);
348 type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
349 append_composite_type_field (type
, "si_band", long_type
);
350 append_composite_type_field (type
, "si_fd", int_type
);
351 append_composite_type_field (sifields_type
, "_sigpoll", type
);
354 siginfo_type
= arch_composite_type (gdbarch
, NULL
, TYPE_CODE_STRUCT
);
355 siginfo_type
->set_name (xstrdup ("siginfo"));
356 append_composite_type_field (siginfo_type
, "si_signo", int_type
);
357 append_composite_type_field (siginfo_type
, "si_errno", int_type
);
358 append_composite_type_field (siginfo_type
, "si_code", int_type
);
359 append_composite_type_field_aligned (siginfo_type
,
360 "_sifields", sifields_type
,
361 TYPE_LENGTH (long_type
));
363 linux_gdbarch_data
->siginfo_type
= siginfo_type
;
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
372 linux_get_siginfo_type (struct gdbarch
*gdbarch
)
374 return linux_get_siginfo_type_with_fields (gdbarch
, 0);
377 /* Return true if the target is running on uClinux instead of normal
381 linux_is_uclinux (void)
385 return (target_auxv_search (current_top_target (), AT_NULL
, &dummy
) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ
, &dummy
) == 0);
390 linux_has_shared_address_space (struct gdbarch
*gdbarch
)
392 return linux_is_uclinux ();
395 /* This is how we want PTIDs from core files to be printed. */
398 linux_core_pid_to_str (struct gdbarch
*gdbarch
, ptid_t ptid
)
400 if (ptid
.lwp () != 0)
401 return string_printf ("LWP %ld", ptid
.lwp ());
403 return normal_pid_to_str (ptid
);
406 /* Service function for corefiles and info proc. */
409 read_mapping (const char *line
,
410 ULONGEST
*addr
, ULONGEST
*endaddr
,
411 const char **permissions
, size_t *permissions_len
,
413 const char **device
, size_t *device_len
,
415 const char **filename
)
417 const char *p
= line
;
419 *addr
= strtoulst (p
, &p
, 16);
422 *endaddr
= strtoulst (p
, &p
, 16);
426 while (*p
&& !isspace (*p
))
428 *permissions_len
= p
- *permissions
;
430 *offset
= strtoulst (p
, &p
, 16);
434 while (*p
&& !isspace (*p
))
436 *device_len
= p
- *device
;
438 *inode
= strtoulst (p
, &p
, 10);
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
454 decode_vmflags (char *p
, struct smaps_vmflags
*v
)
456 char *saveptr
= NULL
;
459 v
->initialized_p
= 1;
460 p
= skip_to_space (p
);
463 for (s
= strtok_r (p
, " ", &saveptr
);
465 s
= strtok_r (NULL
, " ", &saveptr
))
467 if (strcmp (s
, "io") == 0)
469 else if (strcmp (s
, "ht") == 0)
470 v
->uses_huge_tlb
= 1;
471 else if (strcmp (s
, "dd") == 0)
472 v
->exclude_coredump
= 1;
473 else if (strcmp (s
, "sh") == 0)
474 v
->shared_mapping
= 1;
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
481 struct mapping_regexes
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB
,
489 _("Could not compile regex to match /dev/zero filename")};
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB
,
497 _("Could not compile regex to match shmem filenames")};
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB
,
513 _("Could not compile regex to match '<file> (deleted)'")};
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
524 Then FILENAME will be "/path/to/file". */
527 mapping_is_anonymous_p (const char *filename
)
529 static gdb::optional
<mapping_regexes
> regexes
;
530 static int init_regex_p
= 0;
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
540 /* If we reached this point, then everything succeeded. */
544 if (init_regex_p
== -1)
546 const char deleted
[] = " (deleted)";
547 size_t del_len
= sizeof (deleted
) - 1;
548 size_t filename_len
= strlen (filename
);
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
555 return (filename_len
>= del_len
556 && strcmp (filename
+ filename_len
- del_len
, deleted
) == 0);
559 if (*filename
== '\0'
560 || regexes
->dev_zero
.exec (filename
, 0, NULL
, 0) == 0
561 || regexes
->shmem_file
.exec (filename
, 0, NULL
, 0) == 0
562 || regexes
->file_deleted
.exec (filename
, 0, NULL
, 0) == 0)
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
616 dump_mapping_p (filter_flags filterflags
, const struct smaps_vmflags
*v
,
617 int maybe_private_p
, int mapping_anon_p
, int mapping_file_p
,
618 const char *filename
, ULONGEST addr
, ULONGEST offset
)
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p
= maybe_private_p
;
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename
) == 0
634 || strcmp ("[vsyscall]", filename
) == 0)
637 if (v
->initialized_p
)
639 /* We never dump I/O mappings. */
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings
&& v
->exclude_coredump
)
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p
= !v
->shared_mapping
;
651 /* HugeTLB checking. */
652 if (v
->uses_huge_tlb
)
654 if ((private_p
&& (filterflags
& COREFILTER_HUGETLB_PRIVATE
))
655 || (!private_p
&& (filterflags
& COREFILTER_HUGETLB_SHARED
)))
664 if (mapping_anon_p
&& mapping_file_p
)
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
669 dump_p
= ((filterflags
& COREFILTER_ANON_PRIVATE
) != 0
670 || (filterflags
& COREFILTER_MAPPED_PRIVATE
) != 0);
672 else if (mapping_anon_p
)
673 dump_p
= (filterflags
& COREFILTER_ANON_PRIVATE
) != 0;
675 dump_p
= (filterflags
& COREFILTER_MAPPED_PRIVATE
) != 0;
679 if (mapping_anon_p
&& mapping_file_p
)
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
684 dump_p
= ((filterflags
& COREFILTER_ANON_SHARED
) != 0
685 || (filterflags
& COREFILTER_MAPPED_SHARED
) != 0);
687 else if (mapping_anon_p
)
688 dump_p
= (filterflags
& COREFILTER_ANON_SHARED
) != 0;
690 dump_p
= (filterflags
& COREFILTER_MAPPED_SHARED
) != 0;
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p
&& private_p
&& offset
== 0
702 && (filterflags
& COREFILTER_ELF_HEADERS
) != 0)
704 /* Useful define specifying the size of the ELF magical
710 /* Let's check if we have an ELF header. */
712 if (target_read_memory (addr
, h
, SELFMAG
) == 0)
714 /* The EI_MAG* and ELFMAG* constants come from
716 if (h
[EI_MAG0
] == ELFMAG0
&& h
[EI_MAG1
] == ELFMAG1
717 && h
[EI_MAG2
] == ELFMAG2
&& h
[EI_MAG3
] == ELFMAG3
)
719 /* This mapping contains an ELF header, so we
729 /* As above, but return true only when we should dump the NT_FILE
733 dump_note_entry_p (filter_flags filterflags
, const struct smaps_vmflags
*v
,
734 int maybe_private_p
, int mapping_anon_p
, int mapping_file_p
,
735 const char *filename
, ULONGEST addr
, ULONGEST offset
)
737 /* vDSO and vsyscall mappings will end up in the core file. Don't
738 put them in the NT_FILE note. */
739 if (strcmp ("[vdso]", filename
) == 0
740 || strcmp ("[vsyscall]", filename
) == 0)
743 /* Otherwise, any other file-based mapping should be placed in the
745 return filename
!= nullptr;
748 /* Implement the "info proc" command. */
751 linux_info_proc (struct gdbarch
*gdbarch
, const char *args
,
752 enum info_proc_what what
)
754 /* A long is used for pid instead of an int to avoid a loss of precision
755 compiler warning from the output of strtoul. */
757 int cmdline_f
= (what
== IP_MINIMAL
|| what
== IP_CMDLINE
|| what
== IP_ALL
);
758 int cwd_f
= (what
== IP_MINIMAL
|| what
== IP_CWD
|| what
== IP_ALL
);
759 int exe_f
= (what
== IP_MINIMAL
|| what
== IP_EXE
|| what
== IP_ALL
);
760 int mappings_f
= (what
== IP_MAPPINGS
|| what
== IP_ALL
);
761 int status_f
= (what
== IP_STATUS
|| what
== IP_ALL
);
762 int stat_f
= (what
== IP_STAT
|| what
== IP_ALL
);
766 if (args
&& isdigit (args
[0]))
770 pid
= strtoul (args
, &tem
, 10);
775 if (!target_has_execution
)
776 error (_("No current process: you must name one."));
777 if (current_inferior ()->fake_pid_p
)
778 error (_("Can't determine the current process's PID: you must name one."));
780 pid
= current_inferior ()->pid
;
783 args
= skip_spaces (args
);
785 error (_("Too many parameters: %s"), args
);
787 printf_filtered (_("process %ld\n"), pid
);
790 xsnprintf (filename
, sizeof filename
, "/proc/%ld/cmdline", pid
);
792 ssize_t len
= target_fileio_read_alloc (NULL
, filename
, &buffer
);
796 gdb::unique_xmalloc_ptr
<char> cmdline ((char *) buffer
);
799 for (pos
= 0; pos
< len
- 1; pos
++)
801 if (buffer
[pos
] == '\0')
804 buffer
[len
- 1] = '\0';
805 printf_filtered ("cmdline = '%s'\n", buffer
);
808 warning (_("unable to open /proc file '%s'"), filename
);
812 xsnprintf (filename
, sizeof filename
, "/proc/%ld/cwd", pid
);
813 gdb::optional
<std::string
> contents
814 = target_fileio_readlink (NULL
, filename
, &target_errno
);
815 if (contents
.has_value ())
816 printf_filtered ("cwd = '%s'\n", contents
->c_str ());
818 warning (_("unable to read link '%s'"), filename
);
822 xsnprintf (filename
, sizeof filename
, "/proc/%ld/exe", pid
);
823 gdb::optional
<std::string
> contents
824 = target_fileio_readlink (NULL
, filename
, &target_errno
);
825 if (contents
.has_value ())
826 printf_filtered ("exe = '%s'\n", contents
->c_str ());
828 warning (_("unable to read link '%s'"), filename
);
832 xsnprintf (filename
, sizeof filename
, "/proc/%ld/maps", pid
);
833 gdb::unique_xmalloc_ptr
<char> map
834 = target_fileio_read_stralloc (NULL
, filename
);
839 printf_filtered (_("Mapped address spaces:\n\n"));
840 if (gdbarch_addr_bit (gdbarch
) == 32)
842 printf_filtered ("\t%10s %10s %10s %10s %s\n",
845 " Size", " Offset", "objfile");
849 printf_filtered (" %18s %18s %10s %10s %s\n",
852 " Size", " Offset", "objfile");
856 for (line
= strtok_r (map
.get (), "\n", &saveptr
);
858 line
= strtok_r (NULL
, "\n", &saveptr
))
860 ULONGEST addr
, endaddr
, offset
, inode
;
861 const char *permissions
, *device
, *mapping_filename
;
862 size_t permissions_len
, device_len
;
864 read_mapping (line
, &addr
, &endaddr
,
865 &permissions
, &permissions_len
,
866 &offset
, &device
, &device_len
,
867 &inode
, &mapping_filename
);
869 if (gdbarch_addr_bit (gdbarch
) == 32)
871 printf_filtered ("\t%10s %10s %10s %10s %s\n",
872 paddress (gdbarch
, addr
),
873 paddress (gdbarch
, endaddr
),
874 hex_string (endaddr
- addr
),
876 *mapping_filename
? mapping_filename
: "");
880 printf_filtered (" %18s %18s %10s %10s %s\n",
881 paddress (gdbarch
, addr
),
882 paddress (gdbarch
, endaddr
),
883 hex_string (endaddr
- addr
),
885 *mapping_filename
? mapping_filename
: "");
890 warning (_("unable to open /proc file '%s'"), filename
);
894 xsnprintf (filename
, sizeof filename
, "/proc/%ld/status", pid
);
895 gdb::unique_xmalloc_ptr
<char> status
896 = target_fileio_read_stralloc (NULL
, filename
);
898 puts_filtered (status
.get ());
900 warning (_("unable to open /proc file '%s'"), filename
);
904 xsnprintf (filename
, sizeof filename
, "/proc/%ld/stat", pid
);
905 gdb::unique_xmalloc_ptr
<char> statstr
906 = target_fileio_read_stralloc (NULL
, filename
);
909 const char *p
= statstr
.get ();
911 printf_filtered (_("Process: %s\n"),
912 pulongest (strtoulst (p
, &p
, 10)));
917 /* ps command also relies on no trailing fields
919 const char *ep
= strrchr (p
, ')');
922 printf_filtered ("Exec file: %.*s\n",
923 (int) (ep
- p
- 1), p
+ 1);
930 printf_filtered (_("State: %c\n"), *p
++);
933 printf_filtered (_("Parent process: %s\n"),
934 pulongest (strtoulst (p
, &p
, 10)));
936 printf_filtered (_("Process group: %s\n"),
937 pulongest (strtoulst (p
, &p
, 10)));
939 printf_filtered (_("Session id: %s\n"),
940 pulongest (strtoulst (p
, &p
, 10)));
942 printf_filtered (_("TTY: %s\n"),
943 pulongest (strtoulst (p
, &p
, 10)));
945 printf_filtered (_("TTY owner process group: %s\n"),
946 pulongest (strtoulst (p
, &p
, 10)));
949 printf_filtered (_("Flags: %s\n"),
950 hex_string (strtoulst (p
, &p
, 10)));
952 printf_filtered (_("Minor faults (no memory page): %s\n"),
953 pulongest (strtoulst (p
, &p
, 10)));
955 printf_filtered (_("Minor faults, children: %s\n"),
956 pulongest (strtoulst (p
, &p
, 10)));
958 printf_filtered (_("Major faults (memory page faults): %s\n"),
959 pulongest (strtoulst (p
, &p
, 10)));
961 printf_filtered (_("Major faults, children: %s\n"),
962 pulongest (strtoulst (p
, &p
, 10)));
964 printf_filtered (_("utime: %s\n"),
965 pulongest (strtoulst (p
, &p
, 10)));
967 printf_filtered (_("stime: %s\n"),
968 pulongest (strtoulst (p
, &p
, 10)));
970 printf_filtered (_("utime, children: %s\n"),
971 pulongest (strtoulst (p
, &p
, 10)));
973 printf_filtered (_("stime, children: %s\n"),
974 pulongest (strtoulst (p
, &p
, 10)));
976 printf_filtered (_("jiffies remaining in current "
978 pulongest (strtoulst (p
, &p
, 10)));
980 printf_filtered (_("'nice' value: %s\n"),
981 pulongest (strtoulst (p
, &p
, 10)));
983 printf_filtered (_("jiffies until next timeout: %s\n"),
984 pulongest (strtoulst (p
, &p
, 10)));
986 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
987 pulongest (strtoulst (p
, &p
, 10)));
989 printf_filtered (_("start time (jiffies since "
990 "system boot): %s\n"),
991 pulongest (strtoulst (p
, &p
, 10)));
993 printf_filtered (_("Virtual memory size: %s\n"),
994 pulongest (strtoulst (p
, &p
, 10)));
996 printf_filtered (_("Resident set size: %s\n"),
997 pulongest (strtoulst (p
, &p
, 10)));
999 printf_filtered (_("rlim: %s\n"),
1000 pulongest (strtoulst (p
, &p
, 10)));
1002 printf_filtered (_("Start of text: %s\n"),
1003 hex_string (strtoulst (p
, &p
, 10)));
1005 printf_filtered (_("End of text: %s\n"),
1006 hex_string (strtoulst (p
, &p
, 10)));
1008 printf_filtered (_("Start of stack: %s\n"),
1009 hex_string (strtoulst (p
, &p
, 10)));
1010 #if 0 /* Don't know how architecture-dependent the rest is...
1011 Anyway the signal bitmap info is available from "status". */
1013 printf_filtered (_("Kernel stack pointer: %s\n"),
1014 hex_string (strtoulst (p
, &p
, 10)));
1016 printf_filtered (_("Kernel instr pointer: %s\n"),
1017 hex_string (strtoulst (p
, &p
, 10)));
1019 printf_filtered (_("Pending signals bitmap: %s\n"),
1020 hex_string (strtoulst (p
, &p
, 10)));
1022 printf_filtered (_("Blocked signals bitmap: %s\n"),
1023 hex_string (strtoulst (p
, &p
, 10)));
1025 printf_filtered (_("Ignored signals bitmap: %s\n"),
1026 hex_string (strtoulst (p
, &p
, 10)));
1028 printf_filtered (_("Catched signals bitmap: %s\n"),
1029 hex_string (strtoulst (p
, &p
, 10)));
1031 printf_filtered (_("wchan (system call): %s\n"),
1032 hex_string (strtoulst (p
, &p
, 10)));
1036 warning (_("unable to open /proc file '%s'"), filename
);
1040 /* Implementation of `gdbarch_read_core_file_mappings', as defined in
1043 This function reads the NT_FILE note (which BFD turns into the
1044 section ".note.linuxcore.file"). The format of this note / section
1045 is described as follows in the Linux kernel sources in
1048 long count -- how many files are mapped
1049 long page_size -- units for file_ofs
1050 array of [COUNT] elements of
1054 followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1056 CBFD is the BFD of the core file.
1058 PRE_LOOP_CB is the callback function to invoke prior to starting
1059 the loop which processes individual entries. This callback will
1060 only be executed after the note has been examined in enough
1061 detail to verify that it's not malformed in some way.
1063 LOOP_CB is the callback function that will be executed once
1064 for each mapping. */
1067 linux_read_core_file_mappings (struct gdbarch
*gdbarch
,
1069 gdb::function_view
<void (ULONGEST count
)>
1071 gdb::function_view
<void (int num
,
1075 const char *filename
,
1079 /* Ensure that ULONGEST is big enough for reading 64-bit core files. */
1080 gdb_static_assert (sizeof (ULONGEST
) >= 8);
1082 /* It's not required that the NT_FILE note exists, so return silently
1083 if it's not found. Beyond this point though, we'll complain
1084 if problems are found. */
1085 asection
*section
= bfd_get_section_by_name (cbfd
, ".note.linuxcore.file");
1086 if (section
== nullptr)
1089 unsigned int addr_size_bits
= gdbarch_addr_bit (gdbarch
);
1090 unsigned int addr_size
= addr_size_bits
/ 8;
1091 size_t note_size
= bfd_section_size (section
);
1093 if (note_size
< 2 * addr_size
)
1095 warning (_("malformed core note - too short for header"));
1099 gdb::def_vector
<gdb_byte
> contents (note_size
);
1100 if (!bfd_get_section_contents (core_bfd
, section
, contents
.data (),
1103 warning (_("could not get core note contents"));
1107 gdb_byte
*descdata
= contents
.data ();
1108 char *descend
= (char *) descdata
+ note_size
;
1110 if (descdata
[note_size
- 1] != '\0')
1112 warning (_("malformed note - does not end with \\0"));
1116 ULONGEST count
= bfd_get (addr_size_bits
, core_bfd
, descdata
);
1117 descdata
+= addr_size
;
1119 ULONGEST page_size
= bfd_get (addr_size_bits
, core_bfd
, descdata
);
1120 descdata
+= addr_size
;
1122 if (note_size
< 2 * addr_size
+ count
* 3 * addr_size
)
1124 warning (_("malformed note - too short for supplied file count"));
1128 char *filenames
= (char *) descdata
+ count
* 3 * addr_size
;
1130 /* Make sure that the correct number of filenames exist. Complain
1131 if there aren't enough or are too many. */
1132 char *f
= filenames
;
1133 for (int i
= 0; i
< count
; i
++)
1137 warning (_("malformed note - filename area is too small"));
1140 f
+= strnlen (f
, descend
- f
) + 1;
1142 /* Complain, but don't return early if the filename area is too big. */
1144 warning (_("malformed note - filename area is too big"));
1146 pre_loop_cb (count
);
1148 for (int i
= 0; i
< count
; i
++)
1150 ULONGEST start
= bfd_get (addr_size_bits
, core_bfd
, descdata
);
1151 descdata
+= addr_size
;
1152 ULONGEST end
= bfd_get (addr_size_bits
, core_bfd
, descdata
);
1153 descdata
+= addr_size
;
1155 = bfd_get (addr_size_bits
, core_bfd
, descdata
) * page_size
;
1156 descdata
+= addr_size
;
1157 char * filename
= filenames
;
1158 filenames
+= strlen ((char *) filenames
) + 1;
1160 loop_cb (i
, start
, end
, file_ofs
, filename
, nullptr);
1164 /* Implement "info proc mappings" for a corefile. */
1167 linux_core_info_proc_mappings (struct gdbarch
*gdbarch
, const char *args
)
1169 linux_read_core_file_mappings (gdbarch
, core_bfd
,
1170 [=] (ULONGEST count
)
1172 printf_filtered (_("Mapped address spaces:\n\n"));
1173 if (gdbarch_addr_bit (gdbarch
) == 32)
1175 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1178 " Size", " Offset", "objfile");
1182 printf_filtered (" %18s %18s %10s %10s %s\n",
1185 " Size", " Offset", "objfile");
1188 [=] (int num
, ULONGEST start
, ULONGEST end
, ULONGEST file_ofs
,
1189 const char *filename
, const void *other
)
1191 if (gdbarch_addr_bit (gdbarch
) == 32)
1192 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1193 paddress (gdbarch
, start
),
1194 paddress (gdbarch
, end
),
1195 hex_string (end
- start
),
1196 hex_string (file_ofs
),
1199 printf_filtered (" %18s %18s %10s %10s %s\n",
1200 paddress (gdbarch
, start
),
1201 paddress (gdbarch
, end
),
1202 hex_string (end
- start
),
1203 hex_string (file_ofs
),
1208 /* Implement "info proc" for a corefile. */
1211 linux_core_info_proc (struct gdbarch
*gdbarch
, const char *args
,
1212 enum info_proc_what what
)
1214 int exe_f
= (what
== IP_MINIMAL
|| what
== IP_EXE
|| what
== IP_ALL
);
1215 int mappings_f
= (what
== IP_MAPPINGS
|| what
== IP_ALL
);
1221 exe
= bfd_core_file_failing_command (core_bfd
);
1223 printf_filtered ("exe = '%s'\n", exe
);
1225 warning (_("unable to find command name in core file"));
1229 linux_core_info_proc_mappings (gdbarch
, args
);
1231 if (!exe_f
&& !mappings_f
)
1232 error (_("unable to handle request"));
1235 /* Read siginfo data from the core, if possible. Returns -1 on
1236 failure. Otherwise, returns the number of bytes read. READBUF,
1237 OFFSET, and LEN are all as specified by the to_xfer_partial
1241 linux_core_xfer_siginfo (struct gdbarch
*gdbarch
, gdb_byte
*readbuf
,
1242 ULONGEST offset
, ULONGEST len
)
1244 thread_section_name
section_name (".note.linuxcore.siginfo", inferior_ptid
);
1245 asection
*section
= bfd_get_section_by_name (core_bfd
, section_name
.c_str ());
1246 if (section
== NULL
)
1249 if (!bfd_get_section_contents (core_bfd
, section
, readbuf
, offset
, len
))
1255 typedef int linux_find_memory_region_ftype (ULONGEST vaddr
, ULONGEST size
,
1256 ULONGEST offset
, ULONGEST inode
,
1257 int read
, int write
,
1258 int exec
, int modified
,
1259 const char *filename
,
1262 typedef int linux_dump_mapping_p_ftype (filter_flags filterflags
,
1263 const struct smaps_vmflags
*v
,
1264 int maybe_private_p
,
1267 const char *filename
,
1271 /* List memory regions in the inferior for a corefile. */
1274 linux_find_memory_regions_full (struct gdbarch
*gdbarch
,
1275 linux_dump_mapping_p_ftype
*should_dump_mapping_p
,
1276 linux_find_memory_region_ftype
*func
,
1279 char mapsfilename
[100];
1280 char coredumpfilter_name
[100];
1282 /* Default dump behavior of coredump_filter (0x33), according to
1283 Documentation/filesystems/proc.txt from the Linux kernel
1285 filter_flags filterflags
= (COREFILTER_ANON_PRIVATE
1286 | COREFILTER_ANON_SHARED
1287 | COREFILTER_ELF_HEADERS
1288 | COREFILTER_HUGETLB_PRIVATE
);
1290 /* We need to know the real target PID to access /proc. */
1291 if (current_inferior ()->fake_pid_p
)
1294 pid
= current_inferior ()->pid
;
1296 if (use_coredump_filter
)
1298 xsnprintf (coredumpfilter_name
, sizeof (coredumpfilter_name
),
1299 "/proc/%d/coredump_filter", pid
);
1300 gdb::unique_xmalloc_ptr
<char> coredumpfilterdata
1301 = target_fileio_read_stralloc (NULL
, coredumpfilter_name
);
1302 if (coredumpfilterdata
!= NULL
)
1306 sscanf (coredumpfilterdata
.get (), "%x", &flags
);
1307 filterflags
= (enum filter_flag
) flags
;
1311 xsnprintf (mapsfilename
, sizeof mapsfilename
, "/proc/%d/smaps", pid
);
1312 gdb::unique_xmalloc_ptr
<char> data
1313 = target_fileio_read_stralloc (NULL
, mapsfilename
);
1316 /* Older Linux kernels did not support /proc/PID/smaps. */
1317 xsnprintf (mapsfilename
, sizeof mapsfilename
, "/proc/%d/maps", pid
);
1318 data
= target_fileio_read_stralloc (NULL
, mapsfilename
);
1325 line
= strtok_r (data
.get (), "\n", &t
);
1326 while (line
!= NULL
)
1328 ULONGEST addr
, endaddr
, offset
, inode
;
1329 const char *permissions
, *device
, *filename
;
1330 struct smaps_vmflags v
;
1331 size_t permissions_len
, device_len
;
1332 int read
, write
, exec
, priv
;
1333 int has_anonymous
= 0;
1334 int should_dump_p
= 0;
1338 memset (&v
, 0, sizeof (v
));
1339 read_mapping (line
, &addr
, &endaddr
, &permissions
, &permissions_len
,
1340 &offset
, &device
, &device_len
, &inode
, &filename
);
1341 mapping_anon_p
= mapping_is_anonymous_p (filename
);
1342 /* If the mapping is not anonymous, then we can consider it
1343 to be file-backed. These two states (anonymous or
1344 file-backed) seem to be exclusive, but they can actually
1345 coexist. For example, if a file-backed mapping has
1346 "Anonymous:" pages (see more below), then the Linux
1347 kernel will dump this mapping when the user specified
1348 that she only wants anonymous mappings in the corefile
1349 (*even* when she explicitly disabled the dumping of
1350 file-backed mappings). */
1351 mapping_file_p
= !mapping_anon_p
;
1353 /* Decode permissions. */
1354 read
= (memchr (permissions
, 'r', permissions_len
) != 0);
1355 write
= (memchr (permissions
, 'w', permissions_len
) != 0);
1356 exec
= (memchr (permissions
, 'x', permissions_len
) != 0);
1357 /* 'private' here actually means VM_MAYSHARE, and not
1358 VM_SHARED. In order to know if a mapping is really
1359 private or not, we must check the flag "sh" in the
1360 VmFlags field. This is done by decode_vmflags. However,
1361 if we are using a Linux kernel released before the commit
1362 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1363 not have the VmFlags there. In this case, there is
1364 really no way to know if we are dealing with VM_SHARED,
1365 so we just assume that VM_MAYSHARE is enough. */
1366 priv
= memchr (permissions
, 'p', permissions_len
) != 0;
1368 /* Try to detect if region should be dumped by parsing smaps
1370 for (line
= strtok_r (NULL
, "\n", &t
);
1371 line
!= NULL
&& line
[0] >= 'A' && line
[0] <= 'Z';
1372 line
= strtok_r (NULL
, "\n", &t
))
1374 char keyword
[64 + 1];
1376 if (sscanf (line
, "%64s", keyword
) != 1)
1378 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename
);
1382 if (strcmp (keyword
, "Anonymous:") == 0)
1384 /* Older Linux kernels did not support the
1385 "Anonymous:" counter. Check it here. */
1388 else if (strcmp (keyword
, "VmFlags:") == 0)
1389 decode_vmflags (line
, &v
);
1391 if (strcmp (keyword
, "AnonHugePages:") == 0
1392 || strcmp (keyword
, "Anonymous:") == 0)
1394 unsigned long number
;
1396 if (sscanf (line
, "%*s%lu", &number
) != 1)
1398 warning (_("Error parsing {s,}maps file '%s' number"),
1404 /* Even if we are dealing with a file-backed
1405 mapping, if it contains anonymous pages we
1406 consider it to be *also* an anonymous
1407 mapping, because this is what the Linux
1410 // Dump segments that have been written to.
1411 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1414 Note that if the mapping is already marked as
1415 file-backed (i.e., mapping_file_p is
1416 non-zero), then this is a special case, and
1417 this mapping will be dumped either when the
1418 user wants to dump file-backed *or* anonymous
1426 should_dump_p
= should_dump_mapping_p (filterflags
, &v
, priv
,
1429 filename
, addr
, offset
);
1432 /* Older Linux kernels did not support the "Anonymous:" counter.
1433 If it is missing, we can't be sure - dump all the pages. */
1437 /* Invoke the callback function to create the corefile segment. */
1439 func (addr
, endaddr
- addr
, offset
, inode
,
1440 read
, write
, exec
, 1, /* MODIFIED is true because we
1441 want to dump the mapping. */
1451 /* A structure for passing information through
1452 linux_find_memory_regions_full. */
1454 struct linux_find_memory_regions_data
1456 /* The original callback. */
1458 find_memory_region_ftype func
;
1460 /* The original datum. */
1465 /* A callback for linux_find_memory_regions that converts between the
1466 "full"-style callback and find_memory_region_ftype. */
1469 linux_find_memory_regions_thunk (ULONGEST vaddr
, ULONGEST size
,
1470 ULONGEST offset
, ULONGEST inode
,
1471 int read
, int write
, int exec
, int modified
,
1472 const char *filename
, void *arg
)
1474 struct linux_find_memory_regions_data
*data
1475 = (struct linux_find_memory_regions_data
*) arg
;
1477 return data
->func (vaddr
, size
, read
, write
, exec
, modified
, data
->obfd
);
1480 /* A variant of linux_find_memory_regions_full that is suitable as the
1481 gdbarch find_memory_regions method. */
1484 linux_find_memory_regions (struct gdbarch
*gdbarch
,
1485 find_memory_region_ftype func
, void *obfd
)
1487 struct linux_find_memory_regions_data data
;
1492 return linux_find_memory_regions_full (gdbarch
,
1494 linux_find_memory_regions_thunk
,
1498 /* This is used to pass information from
1499 linux_make_mappings_corefile_notes through
1500 linux_find_memory_regions_full. */
1502 struct linux_make_mappings_data
1504 /* Number of files mapped. */
1505 ULONGEST file_count
;
1507 /* The obstack for the main part of the data. */
1508 struct obstack
*data_obstack
;
1510 /* The filename obstack. */
1511 struct obstack
*filename_obstack
;
1513 /* The architecture's "long" type. */
1514 struct type
*long_type
;
1517 static linux_find_memory_region_ftype linux_make_mappings_callback
;
1519 /* A callback for linux_find_memory_regions_full that updates the
1520 mappings data for linux_make_mappings_corefile_notes. */
1523 linux_make_mappings_callback (ULONGEST vaddr
, ULONGEST size
,
1524 ULONGEST offset
, ULONGEST inode
,
1525 int read
, int write
, int exec
, int modified
,
1526 const char *filename
, void *data
)
1528 struct linux_make_mappings_data
*map_data
1529 = (struct linux_make_mappings_data
*) data
;
1530 gdb_byte buf
[sizeof (ULONGEST
)];
1532 if (*filename
== '\0' || inode
== 0)
1535 ++map_data
->file_count
;
1537 pack_long (buf
, map_data
->long_type
, vaddr
);
1538 obstack_grow (map_data
->data_obstack
, buf
, TYPE_LENGTH (map_data
->long_type
));
1539 pack_long (buf
, map_data
->long_type
, vaddr
+ size
);
1540 obstack_grow (map_data
->data_obstack
, buf
, TYPE_LENGTH (map_data
->long_type
));
1541 pack_long (buf
, map_data
->long_type
, offset
);
1542 obstack_grow (map_data
->data_obstack
, buf
, TYPE_LENGTH (map_data
->long_type
));
1544 obstack_grow_str0 (map_data
->filename_obstack
, filename
);
1549 /* Write the file mapping data to the core file, if possible. OBFD is
1550 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1551 is a pointer to the note size. Returns the new NOTE_DATA and
1552 updates NOTE_SIZE. */
1555 linux_make_mappings_corefile_notes (struct gdbarch
*gdbarch
, bfd
*obfd
,
1556 char *note_data
, int *note_size
)
1558 struct linux_make_mappings_data mapping_data
;
1559 struct type
*long_type
1560 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
), 0, "long");
1561 gdb_byte buf
[sizeof (ULONGEST
)];
1563 auto_obstack data_obstack
, filename_obstack
;
1565 mapping_data
.file_count
= 0;
1566 mapping_data
.data_obstack
= &data_obstack
;
1567 mapping_data
.filename_obstack
= &filename_obstack
;
1568 mapping_data
.long_type
= long_type
;
1570 /* Reserve space for the count. */
1571 obstack_blank (&data_obstack
, TYPE_LENGTH (long_type
));
1572 /* We always write the page size as 1 since we have no good way to
1573 determine the correct value. */
1574 pack_long (buf
, long_type
, 1);
1575 obstack_grow (&data_obstack
, buf
, TYPE_LENGTH (long_type
));
1577 linux_find_memory_regions_full (gdbarch
,
1579 linux_make_mappings_callback
,
1582 if (mapping_data
.file_count
!= 0)
1584 /* Write the count to the obstack. */
1585 pack_long ((gdb_byte
*) obstack_base (&data_obstack
),
1586 long_type
, mapping_data
.file_count
);
1588 /* Copy the filenames to the data obstack. */
1589 int size
= obstack_object_size (&filename_obstack
);
1590 obstack_grow (&data_obstack
, obstack_base (&filename_obstack
),
1593 note_data
= elfcore_write_note (obfd
, note_data
, note_size
,
1595 obstack_base (&data_obstack
),
1596 obstack_object_size (&data_obstack
));
1602 /* Structure for passing information from
1603 linux_collect_thread_registers via an iterator to
1604 linux_collect_regset_section_cb. */
1606 struct linux_collect_regset_section_cb_data
1608 struct gdbarch
*gdbarch
;
1609 const struct regcache
*regcache
;
1614 enum gdb_signal stop_signal
;
1615 int abort_iteration
;
1618 /* Callback for iterate_over_regset_sections that records a single
1619 regset in the corefile note section. */
1622 linux_collect_regset_section_cb (const char *sect_name
, int supply_size
,
1623 int collect_size
, const struct regset
*regset
,
1624 const char *human_name
, void *cb_data
)
1626 struct linux_collect_regset_section_cb_data
*data
1627 = (struct linux_collect_regset_section_cb_data
*) cb_data
;
1628 bool variable_size_section
= (regset
!= NULL
1629 && regset
->flags
& REGSET_VARIABLE_SIZE
);
1631 if (!variable_size_section
)
1632 gdb_assert (supply_size
== collect_size
);
1634 if (data
->abort_iteration
)
1637 gdb_assert (regset
&& regset
->collect_regset
);
1639 /* This is intentionally zero-initialized by using std::vector, so
1640 that any padding bytes in the core file will show as 0. */
1641 std::vector
<gdb_byte
> buf (collect_size
);
1643 regset
->collect_regset (regset
, data
->regcache
, -1, buf
.data (),
1646 /* PRSTATUS still needs to be treated specially. */
1647 if (strcmp (sect_name
, ".reg") == 0)
1648 data
->note_data
= (char *) elfcore_write_prstatus
1649 (data
->obfd
, data
->note_data
, data
->note_size
, data
->lwp
,
1650 gdb_signal_to_host (data
->stop_signal
), buf
.data ());
1652 data
->note_data
= (char *) elfcore_write_register_note
1653 (data
->obfd
, data
->note_data
, data
->note_size
,
1654 sect_name
, buf
.data (), collect_size
);
1656 if (data
->note_data
== NULL
)
1657 data
->abort_iteration
= 1;
1660 /* Records the thread's register state for the corefile note
1664 linux_collect_thread_registers (const struct regcache
*regcache
,
1665 ptid_t ptid
, bfd
*obfd
,
1666 char *note_data
, int *note_size
,
1667 enum gdb_signal stop_signal
)
1669 struct gdbarch
*gdbarch
= regcache
->arch ();
1670 struct linux_collect_regset_section_cb_data data
;
1672 data
.gdbarch
= gdbarch
;
1673 data
.regcache
= regcache
;
1675 data
.note_data
= note_data
;
1676 data
.note_size
= note_size
;
1677 data
.stop_signal
= stop_signal
;
1678 data
.abort_iteration
= 0;
1680 /* For remote targets the LWP may not be available, so use the TID. */
1681 data
.lwp
= ptid
.lwp ();
1683 data
.lwp
= ptid
.tid ();
1685 gdbarch_iterate_over_regset_sections (gdbarch
,
1686 linux_collect_regset_section_cb
,
1688 return data
.note_data
;
1691 /* Fetch the siginfo data for the specified thread, if it exists. If
1692 there is no data, or we could not read it, return an empty
1695 static gdb::byte_vector
1696 linux_get_siginfo_data (thread_info
*thread
, struct gdbarch
*gdbarch
)
1698 struct type
*siginfo_type
;
1701 if (!gdbarch_get_siginfo_type_p (gdbarch
))
1702 return gdb::byte_vector ();
1704 scoped_restore_current_thread save_current_thread
;
1705 switch_to_thread (thread
);
1707 siginfo_type
= gdbarch_get_siginfo_type (gdbarch
);
1709 gdb::byte_vector
buf (TYPE_LENGTH (siginfo_type
));
1711 bytes_read
= target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO
, NULL
,
1712 buf
.data (), 0, TYPE_LENGTH (siginfo_type
));
1713 if (bytes_read
!= TYPE_LENGTH (siginfo_type
))
1719 struct linux_corefile_thread_data
1721 struct gdbarch
*gdbarch
;
1725 enum gdb_signal stop_signal
;
1728 /* Records the thread's register state for the corefile note
1732 linux_corefile_thread (struct thread_info
*info
,
1733 struct linux_corefile_thread_data
*args
)
1735 struct regcache
*regcache
;
1737 regcache
= get_thread_arch_regcache (info
->inf
->process_target (),
1738 info
->ptid
, args
->gdbarch
);
1740 target_fetch_registers (regcache
, -1);
1741 gdb::byte_vector siginfo_data
= linux_get_siginfo_data (info
, args
->gdbarch
);
1743 args
->note_data
= linux_collect_thread_registers
1744 (regcache
, info
->ptid
, args
->obfd
, args
->note_data
,
1745 args
->note_size
, args
->stop_signal
);
1747 /* Don't return anything if we got no register information above,
1748 such a core file is useless. */
1749 if (args
->note_data
!= NULL
)
1750 if (!siginfo_data
.empty ())
1751 args
->note_data
= elfcore_write_note (args
->obfd
,
1755 siginfo_data
.data (),
1756 siginfo_data
.size ());
1759 /* Fill the PRPSINFO structure with information about the process being
1760 debugged. Returns 1 in case of success, 0 for failures. Please note that
1761 even if the structure cannot be entirely filled (e.g., GDB was unable to
1762 gather information about the process UID/GID), this function will still
1763 return 1 since some information was already recorded. It will only return
1764 0 iff nothing can be gathered. */
1767 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo
*p
)
1769 /* The filename which we will use to obtain some info about the process.
1770 We will basically use this to store the `/proc/PID/FILENAME' file. */
1772 /* The basename of the executable. */
1773 const char *basename
;
1774 const char *infargs
;
1775 /* Temporary buffer. */
1777 /* The valid states of a process, according to the Linux kernel. */
1778 const char valid_states
[] = "RSDTZW";
1779 /* The program state. */
1780 const char *prog_state
;
1781 /* The state of the process. */
1783 /* The PID of the program which generated the corefile. */
1785 /* Process flags. */
1786 unsigned int pr_flag
;
1787 /* Process nice value. */
1789 /* The number of fields read by `sscanf'. */
1792 gdb_assert (p
!= NULL
);
1794 /* Obtaining PID and filename. */
1795 pid
= inferior_ptid
.pid ();
1796 xsnprintf (filename
, sizeof (filename
), "/proc/%d/cmdline", (int) pid
);
1797 /* The full name of the program which generated the corefile. */
1798 gdb::unique_xmalloc_ptr
<char> fname
1799 = target_fileio_read_stralloc (NULL
, filename
);
1801 if (fname
== NULL
|| fname
.get ()[0] == '\0')
1803 /* No program name was read, so we won't be able to retrieve more
1804 information about the process. */
1808 memset (p
, 0, sizeof (*p
));
1810 /* Defining the PID. */
1813 /* Copying the program name. Only the basename matters. */
1814 basename
= lbasename (fname
.get ());
1815 strncpy (p
->pr_fname
, basename
, sizeof (p
->pr_fname
) - 1);
1816 p
->pr_fname
[sizeof (p
->pr_fname
) - 1] = '\0';
1818 infargs
= get_inferior_args ();
1820 /* The arguments of the program. */
1821 std::string psargs
= fname
.get ();
1822 if (infargs
!= NULL
)
1823 psargs
= psargs
+ " " + infargs
;
1825 strncpy (p
->pr_psargs
, psargs
.c_str (), sizeof (p
->pr_psargs
) - 1);
1826 p
->pr_psargs
[sizeof (p
->pr_psargs
) - 1] = '\0';
1828 xsnprintf (filename
, sizeof (filename
), "/proc/%d/stat", (int) pid
);
1829 /* The contents of `/proc/PID/stat'. */
1830 gdb::unique_xmalloc_ptr
<char> proc_stat_contents
1831 = target_fileio_read_stralloc (NULL
, filename
);
1832 char *proc_stat
= proc_stat_contents
.get ();
1834 if (proc_stat
== NULL
|| *proc_stat
== '\0')
1836 /* Despite being unable to read more information about the
1837 process, we return 1 here because at least we have its
1838 command line, PID and arguments. */
1842 /* Ok, we have the stats. It's time to do a little parsing of the
1843 contents of the buffer, so that we end up reading what we want.
1845 The following parsing mechanism is strongly based on the
1846 information generated by the `fs/proc/array.c' file, present in
1847 the Linux kernel tree. More details about how the information is
1848 displayed can be obtained by seeing the manpage of proc(5),
1849 specifically under the entry of `/proc/[pid]/stat'. */
1851 /* Getting rid of the PID, since we already have it. */
1852 while (isdigit (*proc_stat
))
1855 proc_stat
= skip_spaces (proc_stat
);
1857 /* ps command also relies on no trailing fields ever contain ')'. */
1858 proc_stat
= strrchr (proc_stat
, ')');
1859 if (proc_stat
== NULL
)
1863 proc_stat
= skip_spaces (proc_stat
);
1865 n_fields
= sscanf (proc_stat
,
1866 "%c" /* Process state. */
1867 "%d%d%d" /* Parent PID, group ID, session ID. */
1868 "%*d%*d" /* tty_nr, tpgid (not used). */
1870 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1871 cmajflt (not used). */
1872 "%*s%*s%*s%*s" /* utime, stime, cutime,
1873 cstime (not used). */
1874 "%*s" /* Priority (not used). */
1877 &p
->pr_ppid
, &p
->pr_pgrp
, &p
->pr_sid
,
1883 /* Again, we couldn't read the complementary information about
1884 the process state. However, we already have minimal
1885 information, so we just return 1 here. */
1889 /* Filling the structure fields. */
1890 prog_state
= strchr (valid_states
, pr_sname
);
1891 if (prog_state
!= NULL
)
1892 p
->pr_state
= prog_state
- valid_states
;
1895 /* Zero means "Running". */
1899 p
->pr_sname
= p
->pr_state
> 5 ? '.' : pr_sname
;
1900 p
->pr_zomb
= p
->pr_sname
== 'Z';
1901 p
->pr_nice
= pr_nice
;
1902 p
->pr_flag
= pr_flag
;
1904 /* Finally, obtaining the UID and GID. For that, we read and parse the
1905 contents of the `/proc/PID/status' file. */
1906 xsnprintf (filename
, sizeof (filename
), "/proc/%d/status", (int) pid
);
1907 /* The contents of `/proc/PID/status'. */
1908 gdb::unique_xmalloc_ptr
<char> proc_status_contents
1909 = target_fileio_read_stralloc (NULL
, filename
);
1910 char *proc_status
= proc_status_contents
.get ();
1912 if (proc_status
== NULL
|| *proc_status
== '\0')
1914 /* Returning 1 since we already have a bunch of information. */
1918 /* Extracting the UID. */
1919 tmpstr
= strstr (proc_status
, "Uid:");
1922 /* Advancing the pointer to the beginning of the UID. */
1923 tmpstr
+= sizeof ("Uid:");
1924 while (*tmpstr
!= '\0' && !isdigit (*tmpstr
))
1927 if (isdigit (*tmpstr
))
1928 p
->pr_uid
= strtol (tmpstr
, &tmpstr
, 10);
1931 /* Extracting the GID. */
1932 tmpstr
= strstr (proc_status
, "Gid:");
1935 /* Advancing the pointer to the beginning of the GID. */
1936 tmpstr
+= sizeof ("Gid:");
1937 while (*tmpstr
!= '\0' && !isdigit (*tmpstr
))
1940 if (isdigit (*tmpstr
))
1941 p
->pr_gid
= strtol (tmpstr
, &tmpstr
, 10);
1947 /* Find the signalled thread. In case there's more than one signalled
1948 thread, prefer the current thread, if it is signalled. If no
1949 thread was signalled, default to the current thread, unless it has
1950 exited, in which case return NULL. */
1952 static thread_info
*
1953 find_signalled_thread ()
1955 thread_info
*curr_thr
= inferior_thread ();
1956 if (curr_thr
->state
!= THREAD_EXITED
1957 && curr_thr
->suspend
.stop_signal
!= GDB_SIGNAL_0
)
1960 for (thread_info
*thr
: current_inferior ()->non_exited_threads ())
1961 if (thr
->suspend
.stop_signal
!= GDB_SIGNAL_0
)
1964 /* Default to the current thread, unless it has exited. */
1965 if (curr_thr
->state
!= THREAD_EXITED
)
1971 /* Build the note section for a corefile, and return it in a malloc
1975 linux_make_corefile_notes (struct gdbarch
*gdbarch
, bfd
*obfd
, int *note_size
)
1977 struct linux_corefile_thread_data thread_args
;
1978 struct elf_internal_linux_prpsinfo prpsinfo
;
1979 char *note_data
= NULL
;
1981 if (! gdbarch_iterate_over_regset_sections_p (gdbarch
))
1984 if (linux_fill_prpsinfo (&prpsinfo
))
1986 if (gdbarch_ptr_bit (gdbarch
) == 64)
1987 note_data
= elfcore_write_linux_prpsinfo64 (obfd
,
1988 note_data
, note_size
,
1991 note_data
= elfcore_write_linux_prpsinfo32 (obfd
,
1992 note_data
, note_size
,
1996 /* Thread register information. */
1999 update_thread_list ();
2001 catch (const gdb_exception_error
&e
)
2003 exception_print (gdb_stderr
, e
);
2006 /* Like the kernel, prefer dumping the signalled thread first.
2007 "First thread" is what tools use to infer the signalled
2009 thread_info
*signalled_thr
= find_signalled_thread ();
2011 thread_args
.gdbarch
= gdbarch
;
2012 thread_args
.obfd
= obfd
;
2013 thread_args
.note_data
= note_data
;
2014 thread_args
.note_size
= note_size
;
2015 if (signalled_thr
!= nullptr)
2016 thread_args
.stop_signal
= signalled_thr
->suspend
.stop_signal
;
2018 thread_args
.stop_signal
= GDB_SIGNAL_0
;
2020 if (signalled_thr
!= nullptr)
2021 linux_corefile_thread (signalled_thr
, &thread_args
);
2022 for (thread_info
*thr
: current_inferior ()->non_exited_threads ())
2024 if (thr
== signalled_thr
)
2027 linux_corefile_thread (thr
, &thread_args
);
2030 note_data
= thread_args
.note_data
;
2034 /* Auxillary vector. */
2035 gdb::optional
<gdb::byte_vector
> auxv
=
2036 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV
, NULL
);
2037 if (auxv
&& !auxv
->empty ())
2039 note_data
= elfcore_write_note (obfd
, note_data
, note_size
,
2040 "CORE", NT_AUXV
, auxv
->data (),
2047 /* File mappings. */
2048 note_data
= linux_make_mappings_corefile_notes (gdbarch
, obfd
,
2049 note_data
, note_size
);
2054 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2055 gdbarch.h. This function is not static because it is exported to
2056 other -tdep files. */
2059 linux_gdb_signal_from_target (struct gdbarch
*gdbarch
, int signal
)
2064 return GDB_SIGNAL_0
;
2067 return GDB_SIGNAL_HUP
;
2070 return GDB_SIGNAL_INT
;
2073 return GDB_SIGNAL_QUIT
;
2076 return GDB_SIGNAL_ILL
;
2079 return GDB_SIGNAL_TRAP
;
2082 return GDB_SIGNAL_ABRT
;
2085 return GDB_SIGNAL_BUS
;
2088 return GDB_SIGNAL_FPE
;
2091 return GDB_SIGNAL_KILL
;
2094 return GDB_SIGNAL_USR1
;
2097 return GDB_SIGNAL_SEGV
;
2100 return GDB_SIGNAL_USR2
;
2103 return GDB_SIGNAL_PIPE
;
2106 return GDB_SIGNAL_ALRM
;
2109 return GDB_SIGNAL_TERM
;
2112 return GDB_SIGNAL_CHLD
;
2115 return GDB_SIGNAL_CONT
;
2118 return GDB_SIGNAL_STOP
;
2121 return GDB_SIGNAL_TSTP
;
2124 return GDB_SIGNAL_TTIN
;
2127 return GDB_SIGNAL_TTOU
;
2130 return GDB_SIGNAL_URG
;
2133 return GDB_SIGNAL_XCPU
;
2136 return GDB_SIGNAL_XFSZ
;
2138 case LINUX_SIGVTALRM
:
2139 return GDB_SIGNAL_VTALRM
;
2142 return GDB_SIGNAL_PROF
;
2144 case LINUX_SIGWINCH
:
2145 return GDB_SIGNAL_WINCH
;
2147 /* No way to differentiate between SIGIO and SIGPOLL.
2148 Therefore, we just handle the first one. */
2150 return GDB_SIGNAL_IO
;
2153 return GDB_SIGNAL_PWR
;
2156 return GDB_SIGNAL_SYS
;
2158 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2159 therefore we have to handle them here. */
2160 case LINUX_SIGRTMIN
:
2161 return GDB_SIGNAL_REALTIME_32
;
2163 case LINUX_SIGRTMAX
:
2164 return GDB_SIGNAL_REALTIME_64
;
2167 if (signal
>= LINUX_SIGRTMIN
+ 1 && signal
<= LINUX_SIGRTMAX
- 1)
2169 int offset
= signal
- LINUX_SIGRTMIN
+ 1;
2171 return (enum gdb_signal
) ((int) GDB_SIGNAL_REALTIME_33
+ offset
);
2174 return GDB_SIGNAL_UNKNOWN
;
2177 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2178 gdbarch.h. This function is not static because it is exported to
2179 other -tdep files. */
2182 linux_gdb_signal_to_target (struct gdbarch
*gdbarch
,
2183 enum gdb_signal signal
)
2190 case GDB_SIGNAL_HUP
:
2191 return LINUX_SIGHUP
;
2193 case GDB_SIGNAL_INT
:
2194 return LINUX_SIGINT
;
2196 case GDB_SIGNAL_QUIT
:
2197 return LINUX_SIGQUIT
;
2199 case GDB_SIGNAL_ILL
:
2200 return LINUX_SIGILL
;
2202 case GDB_SIGNAL_TRAP
:
2203 return LINUX_SIGTRAP
;
2205 case GDB_SIGNAL_ABRT
:
2206 return LINUX_SIGABRT
;
2208 case GDB_SIGNAL_FPE
:
2209 return LINUX_SIGFPE
;
2211 case GDB_SIGNAL_KILL
:
2212 return LINUX_SIGKILL
;
2214 case GDB_SIGNAL_BUS
:
2215 return LINUX_SIGBUS
;
2217 case GDB_SIGNAL_SEGV
:
2218 return LINUX_SIGSEGV
;
2220 case GDB_SIGNAL_SYS
:
2221 return LINUX_SIGSYS
;
2223 case GDB_SIGNAL_PIPE
:
2224 return LINUX_SIGPIPE
;
2226 case GDB_SIGNAL_ALRM
:
2227 return LINUX_SIGALRM
;
2229 case GDB_SIGNAL_TERM
:
2230 return LINUX_SIGTERM
;
2232 case GDB_SIGNAL_URG
:
2233 return LINUX_SIGURG
;
2235 case GDB_SIGNAL_STOP
:
2236 return LINUX_SIGSTOP
;
2238 case GDB_SIGNAL_TSTP
:
2239 return LINUX_SIGTSTP
;
2241 case GDB_SIGNAL_CONT
:
2242 return LINUX_SIGCONT
;
2244 case GDB_SIGNAL_CHLD
:
2245 return LINUX_SIGCHLD
;
2247 case GDB_SIGNAL_TTIN
:
2248 return LINUX_SIGTTIN
;
2250 case GDB_SIGNAL_TTOU
:
2251 return LINUX_SIGTTOU
;
2256 case GDB_SIGNAL_XCPU
:
2257 return LINUX_SIGXCPU
;
2259 case GDB_SIGNAL_XFSZ
:
2260 return LINUX_SIGXFSZ
;
2262 case GDB_SIGNAL_VTALRM
:
2263 return LINUX_SIGVTALRM
;
2265 case GDB_SIGNAL_PROF
:
2266 return LINUX_SIGPROF
;
2268 case GDB_SIGNAL_WINCH
:
2269 return LINUX_SIGWINCH
;
2271 case GDB_SIGNAL_USR1
:
2272 return LINUX_SIGUSR1
;
2274 case GDB_SIGNAL_USR2
:
2275 return LINUX_SIGUSR2
;
2277 case GDB_SIGNAL_PWR
:
2278 return LINUX_SIGPWR
;
2280 case GDB_SIGNAL_POLL
:
2281 return LINUX_SIGPOLL
;
2283 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2284 therefore we have to handle it here. */
2285 case GDB_SIGNAL_REALTIME_32
:
2286 return LINUX_SIGRTMIN
;
2288 /* Same comment applies to _64. */
2289 case GDB_SIGNAL_REALTIME_64
:
2290 return LINUX_SIGRTMAX
;
2293 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2294 if (signal
>= GDB_SIGNAL_REALTIME_33
2295 && signal
<= GDB_SIGNAL_REALTIME_63
)
2297 int offset
= signal
- GDB_SIGNAL_REALTIME_33
;
2299 return LINUX_SIGRTMIN
+ 1 + offset
;
2305 /* Helper for linux_vsyscall_range that does the real work of finding
2306 the vsyscall's address range. */
2309 linux_vsyscall_range_raw (struct gdbarch
*gdbarch
, struct mem_range
*range
)
2314 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR
, &range
->start
) <= 0)
2317 /* It doesn't make sense to access the host's /proc when debugging a
2318 core file. Instead, look for the PT_LOAD segment that matches
2320 if (!target_has_execution
)
2325 phdrs_size
= bfd_get_elf_phdr_upper_bound (core_bfd
);
2326 if (phdrs_size
== -1)
2329 gdb::unique_xmalloc_ptr
<Elf_Internal_Phdr
>
2330 phdrs ((Elf_Internal_Phdr
*) xmalloc (phdrs_size
));
2331 num_phdrs
= bfd_get_elf_phdrs (core_bfd
, phdrs
.get ());
2332 if (num_phdrs
== -1)
2335 for (i
= 0; i
< num_phdrs
; i
++)
2336 if (phdrs
.get ()[i
].p_type
== PT_LOAD
2337 && phdrs
.get ()[i
].p_vaddr
== range
->start
)
2339 range
->length
= phdrs
.get ()[i
].p_memsz
;
2346 /* We need to know the real target PID to access /proc. */
2347 if (current_inferior ()->fake_pid_p
)
2350 pid
= current_inferior ()->pid
;
2352 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2353 reading /proc/PID/maps (2). The later identifies thread stacks
2354 in the output, which requires scanning every thread in the thread
2355 group to check whether a VMA is actually a thread's stack. With
2356 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2357 a few thousand threads, (1) takes a few miliseconds, while (2)
2358 takes several seconds. Also note that "smaps", what we read for
2359 determining core dump mappings, is even slower than "maps". */
2360 xsnprintf (filename
, sizeof filename
, "/proc/%ld/task/%ld/maps", pid
, pid
);
2361 gdb::unique_xmalloc_ptr
<char> data
2362 = target_fileio_read_stralloc (NULL
, filename
);
2366 char *saveptr
= NULL
;
2368 for (line
= strtok_r (data
.get (), "\n", &saveptr
);
2370 line
= strtok_r (NULL
, "\n", &saveptr
))
2372 ULONGEST addr
, endaddr
;
2373 const char *p
= line
;
2375 addr
= strtoulst (p
, &p
, 16);
2376 if (addr
== range
->start
)
2380 endaddr
= strtoulst (p
, &p
, 16);
2381 range
->length
= endaddr
- addr
;
2387 warning (_("unable to open /proc file '%s'"), filename
);
2392 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2393 caching, and defers the real work to linux_vsyscall_range_raw. */
2396 linux_vsyscall_range (struct gdbarch
*gdbarch
, struct mem_range
*range
)
2398 struct linux_info
*info
= get_linux_inferior_data ();
2400 if (info
->vsyscall_range_p
== 0)
2402 if (linux_vsyscall_range_raw (gdbarch
, &info
->vsyscall_range
))
2403 info
->vsyscall_range_p
= 1;
2405 info
->vsyscall_range_p
= -1;
2408 if (info
->vsyscall_range_p
< 0)
2411 *range
= info
->vsyscall_range
;
2415 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2416 definitions would be dependent on compilation host. */
2417 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2418 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2420 /* See gdbarch.sh 'infcall_mmap'. */
2423 linux_infcall_mmap (CORE_ADDR size
, unsigned prot
)
2425 struct objfile
*objf
;
2426 /* Do there still exist any Linux systems without "mmap64"?
2427 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2428 struct value
*mmap_val
= find_function_in_inferior ("mmap64", &objf
);
2429 struct value
*addr_val
;
2430 struct gdbarch
*gdbarch
= objf
->arch ();
2434 ARG_ADDR
, ARG_LENGTH
, ARG_PROT
, ARG_FLAGS
, ARG_FD
, ARG_OFFSET
, ARG_LAST
2436 struct value
*arg
[ARG_LAST
];
2438 arg
[ARG_ADDR
] = value_from_pointer (builtin_type (gdbarch
)->builtin_data_ptr
,
2440 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2441 arg
[ARG_LENGTH
] = value_from_ulongest
2442 (builtin_type (gdbarch
)->builtin_unsigned_long
, size
);
2443 gdb_assert ((prot
& ~(GDB_MMAP_PROT_READ
| GDB_MMAP_PROT_WRITE
2444 | GDB_MMAP_PROT_EXEC
))
2446 arg
[ARG_PROT
] = value_from_longest (builtin_type (gdbarch
)->builtin_int
, prot
);
2447 arg
[ARG_FLAGS
] = value_from_longest (builtin_type (gdbarch
)->builtin_int
,
2448 GDB_MMAP_MAP_PRIVATE
2449 | GDB_MMAP_MAP_ANONYMOUS
);
2450 arg
[ARG_FD
] = value_from_longest (builtin_type (gdbarch
)->builtin_int
, -1);
2451 arg
[ARG_OFFSET
] = value_from_longest (builtin_type (gdbarch
)->builtin_int64
,
2453 addr_val
= call_function_by_hand (mmap_val
, NULL
, arg
);
2454 retval
= value_as_address (addr_val
);
2455 if (retval
== (CORE_ADDR
) -1)
2456 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2461 /* See gdbarch.sh 'infcall_munmap'. */
2464 linux_infcall_munmap (CORE_ADDR addr
, CORE_ADDR size
)
2466 struct objfile
*objf
;
2467 struct value
*munmap_val
= find_function_in_inferior ("munmap", &objf
);
2468 struct value
*retval_val
;
2469 struct gdbarch
*gdbarch
= objf
->arch ();
2473 ARG_ADDR
, ARG_LENGTH
, ARG_LAST
2475 struct value
*arg
[ARG_LAST
];
2477 arg
[ARG_ADDR
] = value_from_pointer (builtin_type (gdbarch
)->builtin_data_ptr
,
2479 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2480 arg
[ARG_LENGTH
] = value_from_ulongest
2481 (builtin_type (gdbarch
)->builtin_unsigned_long
, size
);
2482 retval_val
= call_function_by_hand (munmap_val
, NULL
, arg
);
2483 retval
= value_as_long (retval_val
);
2485 warning (_("Failed inferior munmap call at %s for %s bytes, "
2486 "errno is changed."),
2487 hex_string (addr
), pulongest (size
));
2490 /* See linux-tdep.h. */
2493 linux_displaced_step_location (struct gdbarch
*gdbarch
)
2498 /* Determine entry point from target auxiliary vector. This avoids
2499 the need for symbols. Also, when debugging a stand-alone SPU
2500 executable, entry_point_address () will point to an SPU
2501 local-store address and is thus not usable as displaced stepping
2502 location. The auxiliary vector gets us the PowerPC-side entry
2503 point address instead. */
2504 if (target_auxv_search (current_top_target (), AT_ENTRY
, &addr
) <= 0)
2505 throw_error (NOT_SUPPORTED_ERROR
,
2506 _("Cannot find AT_ENTRY auxiliary vector entry."));
2508 /* Make certain that the address points at real code, and not a
2509 function descriptor. */
2510 addr
= gdbarch_convert_from_func_ptr_addr (gdbarch
, addr
,
2511 current_top_target ());
2513 /* Inferior calls also use the entry point as a breakpoint location.
2514 We don't want displaced stepping to interfere with those
2515 breakpoints, so leave space. */
2516 gdbarch_breakpoint_from_pc (gdbarch
, &addr
, &bp_len
);
2522 /* See linux-tdep.h. */
2525 linux_get_hwcap (struct target_ops
*target
)
2528 if (target_auxv_search (target
, AT_HWCAP
, &field
) != 1)
2533 /* See linux-tdep.h. */
2536 linux_get_hwcap2 (struct target_ops
*target
)
2539 if (target_auxv_search (target
, AT_HWCAP2
, &field
) != 1)
2544 /* Display whether the gcore command is using the
2545 /proc/PID/coredump_filter file. */
2548 show_use_coredump_filter (struct ui_file
*file
, int from_tty
,
2549 struct cmd_list_element
*c
, const char *value
)
2551 fprintf_filtered (file
, _("Use of /proc/PID/coredump_filter file to generate"
2552 " corefiles is %s.\n"), value
);
2555 /* Display whether the gcore command is dumping mappings marked with
2556 the VM_DONTDUMP flag. */
2559 show_dump_excluded_mappings (struct ui_file
*file
, int from_tty
,
2560 struct cmd_list_element
*c
, const char *value
)
2562 fprintf_filtered (file
, _("Dumping of mappings marked with the VM_DONTDUMP"
2563 " flag is %s.\n"), value
);
2566 /* To be called from the various GDB_OSABI_LINUX handlers for the
2567 various GNU/Linux architectures and machine types. */
2570 linux_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
2572 set_gdbarch_core_pid_to_str (gdbarch
, linux_core_pid_to_str
);
2573 set_gdbarch_info_proc (gdbarch
, linux_info_proc
);
2574 set_gdbarch_core_info_proc (gdbarch
, linux_core_info_proc
);
2575 set_gdbarch_core_xfer_siginfo (gdbarch
, linux_core_xfer_siginfo
);
2576 set_gdbarch_read_core_file_mappings (gdbarch
, linux_read_core_file_mappings
);
2577 set_gdbarch_find_memory_regions (gdbarch
, linux_find_memory_regions
);
2578 set_gdbarch_make_corefile_notes (gdbarch
, linux_make_corefile_notes
);
2579 set_gdbarch_has_shared_address_space (gdbarch
,
2580 linux_has_shared_address_space
);
2581 set_gdbarch_gdb_signal_from_target (gdbarch
,
2582 linux_gdb_signal_from_target
);
2583 set_gdbarch_gdb_signal_to_target (gdbarch
,
2584 linux_gdb_signal_to_target
);
2585 set_gdbarch_vsyscall_range (gdbarch
, linux_vsyscall_range
);
2586 set_gdbarch_infcall_mmap (gdbarch
, linux_infcall_mmap
);
2587 set_gdbarch_infcall_munmap (gdbarch
, linux_infcall_munmap
);
2588 set_gdbarch_get_siginfo_type (gdbarch
, linux_get_siginfo_type
);
2591 void _initialize_linux_tdep ();
2593 _initialize_linux_tdep ()
2595 linux_gdbarch_data_handle
=
2596 gdbarch_data_register_post_init (init_linux_gdbarch_data
);
2598 /* Observers used to invalidate the cache when needed. */
2599 gdb::observers::inferior_exit
.attach (invalidate_linux_cache_inf
);
2600 gdb::observers::inferior_appeared
.attach (invalidate_linux_cache_inf
);
2602 add_setshow_boolean_cmd ("use-coredump-filter", class_files
,
2603 &use_coredump_filter
, _("\
2604 Set whether gcore should consider /proc/PID/coredump_filter."),
2606 Show whether gcore should consider /proc/PID/coredump_filter."),
2608 Use this command to set whether gcore should consider the contents\n\
2609 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2610 about this file, refer to the manpage of core(5)."),
2611 NULL
, show_use_coredump_filter
,
2612 &setlist
, &showlist
);
2614 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files
,
2615 &dump_excluded_mappings
, _("\
2616 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2618 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2620 Use this command to set whether gcore should dump mappings marked with the\n\
2621 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2622 more information about this file, refer to the manpage of proc(5) and core(5)."),
2623 NULL
, show_dump_excluded_mappings
,
2624 &setlist
, &showlist
);