Rename gdb/ChangeLog to gdb/ChangeLog-2021
[binutils-gdb.git] / gdb / arm-linux-nat.c
blob880ac0da0440e8ed34939ff6be5e9c88ea472e71
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2021 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
30 #include "aarch32-tdep.h"
31 #include "arm-tdep.h"
32 #include "arm-linux-tdep.h"
33 #include "aarch32-linux-nat.h"
35 #include <elf/common.h>
36 #include <sys/user.h>
37 #include "nat/gdb_ptrace.h"
38 #include <sys/utsname.h>
39 #include <sys/procfs.h>
41 #include "nat/linux-ptrace.h"
42 #include "linux-tdep.h"
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
47 /* Defines ps_err_e, struct ps_prochandle. */
48 #include "gdb_proc_service.h"
50 #ifndef PTRACE_GET_THREAD_AREA
51 #define PTRACE_GET_THREAD_AREA 22
52 #endif
54 #ifndef PTRACE_GETWMMXREGS
55 #define PTRACE_GETWMMXREGS 18
56 #define PTRACE_SETWMMXREGS 19
57 #endif
59 #ifndef PTRACE_GETVFPREGS
60 #define PTRACE_GETVFPREGS 27
61 #define PTRACE_SETVFPREGS 28
62 #endif
64 #ifndef PTRACE_GETHBPREGS
65 #define PTRACE_GETHBPREGS 29
66 #define PTRACE_SETHBPREGS 30
67 #endif
69 class arm_linux_nat_target final : public linux_nat_target
71 public:
72 /* Add our register access methods. */
73 void fetch_registers (struct regcache *, int) override;
74 void store_registers (struct regcache *, int) override;
76 /* Add our hardware breakpoint and watchpoint implementation. */
77 int can_use_hw_breakpoint (enum bptype, int, int) override;
79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86 struct expression *) override;
88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89 struct expression *) override;
90 bool stopped_by_watchpoint () override;
92 bool stopped_data_address (CORE_ADDR *) override;
94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
96 const struct target_desc *read_description () override;
98 /* Override linux_nat_target low methods. */
100 /* Handle thread creation and exit. */
101 void low_new_thread (struct lwp_info *lp) override;
102 void low_delete_thread (struct arch_lwp_info *lp) override;
103 void low_prepare_to_resume (struct lwp_info *lp) override;
105 /* Handle process creation and exit. */
106 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
107 void low_forget_process (pid_t pid) override;
110 static arm_linux_nat_target the_arm_linux_nat_target;
112 /* Get the whole floating point state of the process and store it
113 into regcache. */
115 static void
116 fetch_fpregs (struct regcache *regcache)
118 int ret, regno, tid;
119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
121 /* Get the thread id for the ptrace call. */
122 tid = regcache->ptid ().lwp ();
124 /* Read the floating point state. */
125 if (have_ptrace_getregset == TRIBOOL_TRUE)
127 struct iovec iov;
129 iov.iov_base = &fp;
130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
134 else
135 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
137 if (ret < 0)
138 perror_with_name (_("Unable to fetch the floating point registers."));
140 /* Fetch fpsr. */
141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
143 /* Fetch the floating point registers. */
144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145 supply_nwfpe_register (regcache, regno, fp);
148 /* Save the whole floating point state of the process using
149 the contents from regcache. */
151 static void
152 store_fpregs (const struct regcache *regcache)
154 int ret, regno, tid;
155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
157 /* Get the thread id for the ptrace call. */
158 tid = regcache->ptid ().lwp ();
160 /* Read the floating point state. */
161 if (have_ptrace_getregset == TRIBOOL_TRUE)
163 elf_fpregset_t fpregs;
164 struct iovec iov;
166 iov.iov_base = &fpregs;
167 iov.iov_len = sizeof (fpregs);
169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
171 else
172 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
174 if (ret < 0)
175 perror_with_name (_("Unable to fetch the floating point registers."));
177 /* Store fpsr. */
178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
181 /* Store the floating point registers. */
182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183 if (REG_VALID == regcache->get_register_status (regno))
184 collect_nwfpe_register (regcache, regno, fp);
186 if (have_ptrace_getregset == TRIBOOL_TRUE)
188 struct iovec iov;
190 iov.iov_base = &fp;
191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
195 else
196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
198 if (ret < 0)
199 perror_with_name (_("Unable to store floating point registers."));
202 /* Fetch all general registers of the process and store into
203 regcache. */
205 static void
206 fetch_regs (struct regcache *regcache)
208 int ret, tid;
209 elf_gregset_t regs;
211 /* Get the thread id for the ptrace call. */
212 tid = regcache->ptid ().lwp ();
214 if (have_ptrace_getregset == TRIBOOL_TRUE)
216 struct iovec iov;
218 iov.iov_base = &regs;
219 iov.iov_len = sizeof (regs);
221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
223 else
224 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
226 if (ret < 0)
227 perror_with_name (_("Unable to fetch general registers."));
229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
232 static void
233 store_regs (const struct regcache *regcache)
235 int ret, tid;
236 elf_gregset_t regs;
238 /* Get the thread id for the ptrace call. */
239 tid = regcache->ptid ().lwp ();
241 /* Fetch the general registers. */
242 if (have_ptrace_getregset == TRIBOOL_TRUE)
244 struct iovec iov;
246 iov.iov_base = &regs;
247 iov.iov_len = sizeof (regs);
249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
251 else
252 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
254 if (ret < 0)
255 perror_with_name (_("Unable to fetch general registers."));
257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
259 if (have_ptrace_getregset == TRIBOOL_TRUE)
261 struct iovec iov;
263 iov.iov_base = &regs;
264 iov.iov_len = sizeof (regs);
266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
268 else
269 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
271 if (ret < 0)
272 perror_with_name (_("Unable to store general registers."));
275 /* Fetch all WMMX registers of the process and store into
276 regcache. */
278 static void
279 fetch_wmmx_regs (struct regcache *regcache)
281 char regbuf[IWMMXT_REGS_SIZE];
282 int ret, regno, tid;
284 /* Get the thread id for the ptrace call. */
285 tid = regcache->ptid ().lwp ();
287 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
288 if (ret < 0)
289 perror_with_name (_("Unable to fetch WMMX registers."));
291 for (regno = 0; regno < 16; regno++)
292 regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
294 for (regno = 0; regno < 2; regno++)
295 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
296 &regbuf[16 * 8 + regno * 4]);
298 for (regno = 0; regno < 4; regno++)
299 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
300 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
303 static void
304 store_wmmx_regs (const struct regcache *regcache)
306 char regbuf[IWMMXT_REGS_SIZE];
307 int ret, regno, tid;
309 /* Get the thread id for the ptrace call. */
310 tid = regcache->ptid ().lwp ();
312 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
313 if (ret < 0)
314 perror_with_name (_("Unable to fetch WMMX registers."));
316 for (regno = 0; regno < 16; regno++)
317 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
318 regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
320 for (regno = 0; regno < 2; regno++)
321 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
322 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
323 &regbuf[16 * 8 + regno * 4]);
325 for (regno = 0; regno < 4; regno++)
326 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
327 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
328 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
330 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
332 if (ret < 0)
333 perror_with_name (_("Unable to store WMMX registers."));
336 static void
337 fetch_vfp_regs (struct regcache *regcache)
339 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
340 int ret, tid;
341 struct gdbarch *gdbarch = regcache->arch ();
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 /* Get the thread id for the ptrace call. */
345 tid = regcache->ptid ().lwp ();
347 if (have_ptrace_getregset == TRIBOOL_TRUE)
349 struct iovec iov;
351 iov.iov_base = regbuf;
352 iov.iov_len = ARM_VFP3_REGS_SIZE;
353 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
355 else
356 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
358 if (ret < 0)
359 perror_with_name (_("Unable to fetch VFP registers."));
361 aarch32_vfp_regcache_supply (regcache, regbuf,
362 tdep->vfp_register_count);
365 static void
366 store_vfp_regs (const struct regcache *regcache)
368 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
369 int ret, tid;
370 struct gdbarch *gdbarch = regcache->arch ();
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 /* Get the thread id for the ptrace call. */
374 tid = regcache->ptid ().lwp ();
376 if (have_ptrace_getregset == TRIBOOL_TRUE)
378 struct iovec iov;
380 iov.iov_base = regbuf;
381 iov.iov_len = ARM_VFP3_REGS_SIZE;
382 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
384 else
385 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
387 if (ret < 0)
388 perror_with_name (_("Unable to fetch VFP registers (for update)."));
390 aarch32_vfp_regcache_collect (regcache, regbuf,
391 tdep->vfp_register_count);
393 if (have_ptrace_getregset == TRIBOOL_TRUE)
395 struct iovec iov;
397 iov.iov_base = regbuf;
398 iov.iov_len = ARM_VFP3_REGS_SIZE;
399 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
401 else
402 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
404 if (ret < 0)
405 perror_with_name (_("Unable to store VFP registers."));
408 /* Fetch registers from the child process. Fetch all registers if
409 regno == -1, otherwise fetch all general registers or all floating
410 point registers depending upon the value of regno. */
412 void
413 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
415 struct gdbarch *gdbarch = regcache->arch ();
416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 if (-1 == regno)
420 fetch_regs (regcache);
421 if (tdep->have_wmmx_registers)
422 fetch_wmmx_regs (regcache);
423 if (tdep->vfp_register_count > 0)
424 fetch_vfp_regs (regcache);
425 if (tdep->have_fpa_registers)
426 fetch_fpregs (regcache);
428 else
430 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
431 fetch_regs (regcache);
432 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
433 fetch_fpregs (regcache);
434 else if (tdep->have_wmmx_registers
435 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
436 fetch_wmmx_regs (regcache);
437 else if (tdep->vfp_register_count > 0
438 && regno >= ARM_D0_REGNUM
439 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
440 || regno == ARM_FPSCR_REGNUM))
441 fetch_vfp_regs (regcache);
445 /* Store registers back into the inferior. Store all registers if
446 regno == -1, otherwise store all general registers or all floating
447 point registers depending upon the value of regno. */
449 void
450 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
452 struct gdbarch *gdbarch = regcache->arch ();
453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455 if (-1 == regno)
457 store_regs (regcache);
458 if (tdep->have_wmmx_registers)
459 store_wmmx_regs (regcache);
460 if (tdep->vfp_register_count > 0)
461 store_vfp_regs (regcache);
462 if (tdep->have_fpa_registers)
463 store_fpregs (regcache);
465 else
467 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
468 store_regs (regcache);
469 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
470 store_fpregs (regcache);
471 else if (tdep->have_wmmx_registers
472 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
473 store_wmmx_regs (regcache);
474 else if (tdep->vfp_register_count > 0
475 && regno >= ARM_D0_REGNUM
476 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
477 || regno == ARM_FPSCR_REGNUM))
478 store_vfp_regs (regcache);
482 /* Wrapper functions for the standard regset handling, used by
483 thread debugging. */
485 void
486 fill_gregset (const struct regcache *regcache,
487 gdb_gregset_t *gregsetp, int regno)
489 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
492 void
493 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
495 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
498 void
499 fill_fpregset (const struct regcache *regcache,
500 gdb_fpregset_t *fpregsetp, int regno)
502 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
505 /* Fill GDB's register array with the floating-point register values
506 in *fpregsetp. */
508 void
509 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
511 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
514 /* Fetch the thread-local storage pointer for libthread_db. */
516 ps_err_e
517 ps_get_thread_area (struct ps_prochandle *ph,
518 lwpid_t lwpid, int idx, void **base)
520 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
521 return PS_ERR;
523 /* IDX is the bias from the thread pointer to the beginning of the
524 thread descriptor. It has to be subtracted due to implementation
525 quirks in libthread_db. */
526 *base = (void *) ((char *)*base - idx);
528 return PS_OK;
531 const struct target_desc *
532 arm_linux_nat_target::read_description ()
534 CORE_ADDR arm_hwcap = linux_get_hwcap (this);
536 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
538 elf_gregset_t gpregs;
539 struct iovec iov;
540 int tid = inferior_ptid.pid ();
542 iov.iov_base = &gpregs;
543 iov.iov_len = sizeof (gpregs);
545 /* Check if PTRACE_GETREGSET works. */
546 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
547 have_ptrace_getregset = TRIBOOL_FALSE;
548 else
549 have_ptrace_getregset = TRIBOOL_TRUE;
552 if (arm_hwcap & HWCAP_IWMMXT)
553 return arm_read_description (ARM_FP_TYPE_IWMMXT);
555 if (arm_hwcap & HWCAP_VFP)
557 /* Make sure that the kernel supports reading VFP registers. Support was
558 added in 2.6.30. */
559 int pid = inferior_ptid.pid ();
560 errno = 0;
561 char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE);
562 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO)
563 return nullptr;
565 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
566 Neon with VFPv3-D32. */
567 if (arm_hwcap & HWCAP_NEON)
568 return aarch32_read_description ();
569 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
570 return arm_read_description (ARM_FP_TYPE_VFPV3);
572 return arm_read_description (ARM_FP_TYPE_VFPV2);
575 return this->beneath ()->read_description ();
578 /* Information describing the hardware breakpoint capabilities. */
579 struct arm_linux_hwbp_cap
581 gdb_byte arch;
582 gdb_byte max_wp_length;
583 gdb_byte wp_count;
584 gdb_byte bp_count;
587 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
588 assume a maximum number of supported break-/watchpoints. */
589 #define MAX_BPTS 16
590 #define MAX_WPTS 16
592 /* Get hold of the Hardware Breakpoint information for the target we are
593 attached to. Returns NULL if the kernel doesn't support Hardware
594 breakpoints at all, or a pointer to the information structure. */
595 static const struct arm_linux_hwbp_cap *
596 arm_linux_get_hwbp_cap (void)
598 /* The info structure we return. */
599 static struct arm_linux_hwbp_cap info;
601 /* Is INFO in a good state? -1 means that no attempt has been made to
602 initialize INFO; 0 means an attempt has been made, but it failed; 1
603 means INFO is in an initialized state. */
604 static int available = -1;
606 if (available == -1)
608 int tid;
609 unsigned int val;
611 tid = inferior_ptid.lwp ();
612 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
613 available = 0;
614 else
616 info.arch = (gdb_byte)((val >> 24) & 0xff);
617 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
618 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
619 info.bp_count = (gdb_byte)(val & 0xff);
621 if (info.wp_count > MAX_WPTS)
623 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
624 supports %d"), MAX_WPTS, info.wp_count);
625 info.wp_count = MAX_WPTS;
628 if (info.bp_count > MAX_BPTS)
630 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
631 supports %d"), MAX_BPTS, info.bp_count);
632 info.bp_count = MAX_BPTS;
634 available = (info.arch != 0);
638 return available == 1 ? &info : NULL;
641 /* How many hardware breakpoints are available? */
642 static int
643 arm_linux_get_hw_breakpoint_count (void)
645 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
646 return cap != NULL ? cap->bp_count : 0;
649 /* How many hardware watchpoints are available? */
650 static int
651 arm_linux_get_hw_watchpoint_count (void)
653 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
654 return cap != NULL ? cap->wp_count : 0;
657 /* Have we got a free break-/watch-point available for use? Returns -1 if
658 there is not an appropriate resource available, otherwise returns 1. */
660 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
661 int cnt, int ot)
663 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
664 || type == bp_access_watchpoint || type == bp_watchpoint)
666 int count = arm_linux_get_hw_watchpoint_count ();
668 if (count == 0)
669 return 0;
670 else if (cnt + ot > count)
671 return -1;
673 else if (type == bp_hardware_breakpoint)
675 int count = arm_linux_get_hw_breakpoint_count ();
677 if (count == 0)
678 return 0;
679 else if (cnt > count)
680 return -1;
682 else
683 gdb_assert_not_reached ("unknown breakpoint type");
685 return 1;
688 /* Enum describing the different types of ARM hardware break-/watch-points. */
689 typedef enum
691 arm_hwbp_break = 0,
692 arm_hwbp_load = 1,
693 arm_hwbp_store = 2,
694 arm_hwbp_access = 3
695 } arm_hwbp_type;
697 /* Type describing an ARM Hardware Breakpoint Control register value. */
698 typedef unsigned int arm_hwbp_control_t;
700 /* Structure used to keep track of hardware break-/watch-points. */
701 struct arm_linux_hw_breakpoint
703 /* Address to break on, or being watched. */
704 unsigned int address;
705 /* Control register for break-/watch- point. */
706 arm_hwbp_control_t control;
709 /* Structure containing arrays of per process hardware break-/watchpoints
710 for caching address and control information.
712 The Linux ptrace interface to hardware break-/watch-points presents the
713 values in a vector centred around 0 (which is used fo generic information).
714 Positive indicies refer to breakpoint addresses/control registers, negative
715 indices to watchpoint addresses/control registers.
717 The Linux vector is indexed as follows:
718 -((i << 1) + 2): Control register for watchpoint i.
719 -((i << 1) + 1): Address register for watchpoint i.
720 0: Information register.
721 ((i << 1) + 1): Address register for breakpoint i.
722 ((i << 1) + 2): Control register for breakpoint i.
724 This structure is used as a per-thread cache of the state stored by the
725 kernel, so that we don't need to keep calling into the kernel to find a
726 free breakpoint.
728 We treat break-/watch-points with their enable bit clear as being deleted.
730 struct arm_linux_debug_reg_state
732 /* Hardware breakpoints for this process. */
733 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
734 /* Hardware watchpoints for this process. */
735 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
738 /* Per-process arch-specific data we want to keep. */
739 struct arm_linux_process_info
741 /* Linked list. */
742 struct arm_linux_process_info *next;
743 /* The process identifier. */
744 pid_t pid;
745 /* Hardware break-/watchpoints state information. */
746 struct arm_linux_debug_reg_state state;
750 /* Per-thread arch-specific data we want to keep. */
751 struct arch_lwp_info
753 /* Non-zero if our copy differs from what's recorded in the thread. */
754 char bpts_changed[MAX_BPTS];
755 char wpts_changed[MAX_WPTS];
758 static struct arm_linux_process_info *arm_linux_process_list = NULL;
760 /* Find process data for process PID. */
762 static struct arm_linux_process_info *
763 arm_linux_find_process_pid (pid_t pid)
765 struct arm_linux_process_info *proc;
767 for (proc = arm_linux_process_list; proc; proc = proc->next)
768 if (proc->pid == pid)
769 return proc;
771 return NULL;
774 /* Add process data for process PID. Returns newly allocated info
775 object. */
777 static struct arm_linux_process_info *
778 arm_linux_add_process (pid_t pid)
780 struct arm_linux_process_info *proc;
782 proc = XCNEW (struct arm_linux_process_info);
783 proc->pid = pid;
785 proc->next = arm_linux_process_list;
786 arm_linux_process_list = proc;
788 return proc;
791 /* Get data specific info for process PID, creating it if necessary.
792 Never returns NULL. */
794 static struct arm_linux_process_info *
795 arm_linux_process_info_get (pid_t pid)
797 struct arm_linux_process_info *proc;
799 proc = arm_linux_find_process_pid (pid);
800 if (proc == NULL)
801 proc = arm_linux_add_process (pid);
803 return proc;
806 /* Called whenever GDB is no longer debugging process PID. It deletes
807 data structures that keep track of debug register state. */
809 void
810 arm_linux_nat_target::low_forget_process (pid_t pid)
812 struct arm_linux_process_info *proc, **proc_link;
814 proc = arm_linux_process_list;
815 proc_link = &arm_linux_process_list;
817 while (proc != NULL)
819 if (proc->pid == pid)
821 *proc_link = proc->next;
823 xfree (proc);
824 return;
827 proc_link = &proc->next;
828 proc = *proc_link;
832 /* Get hardware break-/watchpoint state for process PID. */
834 static struct arm_linux_debug_reg_state *
835 arm_linux_get_debug_reg_state (pid_t pid)
837 return &arm_linux_process_info_get (pid)->state;
840 /* Initialize an ARM hardware break-/watch-point control register value.
841 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
842 type of break-/watch-point; ENABLE indicates whether the point is enabled.
844 static arm_hwbp_control_t
845 arm_hwbp_control_initialize (unsigned byte_address_select,
846 arm_hwbp_type hwbp_type,
847 int enable)
849 gdb_assert ((byte_address_select & ~0xffU) == 0);
850 gdb_assert (hwbp_type != arm_hwbp_break
851 || ((byte_address_select & 0xfU) != 0));
853 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
856 /* Does the breakpoint control value CONTROL have the enable bit set? */
857 static int
858 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
860 return control & 0x1;
863 /* Change a breakpoint control word so that it is in the disabled state. */
864 static arm_hwbp_control_t
865 arm_hwbp_control_disable (arm_hwbp_control_t control)
867 return control & ~0x1;
870 /* Initialise the hardware breakpoint structure P. The breakpoint will be
871 enabled, and will point to the placed address of BP_TGT. */
872 static void
873 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
874 struct bp_target_info *bp_tgt,
875 struct arm_linux_hw_breakpoint *p)
877 unsigned mask;
878 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
880 /* We have to create a mask for the control register which says which bits
881 of the word pointed to by address to break on. */
882 if (arm_pc_is_thumb (gdbarch, address))
884 mask = 0x3;
885 address &= ~1;
887 else
889 mask = 0xf;
890 address &= ~3;
893 p->address = (unsigned int) address;
894 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
897 /* Get the ARM hardware breakpoint type from the TYPE value we're
898 given when asked to set a watchpoint. */
899 static arm_hwbp_type
900 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
902 if (type == hw_read)
903 return arm_hwbp_load;
904 else if (type == hw_write)
905 return arm_hwbp_store;
906 else
907 return arm_hwbp_access;
910 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
911 to LEN. The type of watchpoint is given in RW. */
912 static void
913 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
914 enum target_hw_bp_type type,
915 struct arm_linux_hw_breakpoint *p)
917 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
918 unsigned mask;
920 gdb_assert (cap != NULL);
921 gdb_assert (cap->max_wp_length != 0);
923 mask = (1 << len) - 1;
925 p->address = (unsigned int) addr;
926 p->control = arm_hwbp_control_initialize (mask,
927 arm_linux_get_hwbp_type (type), 1);
930 /* Are two break-/watch-points equal? */
931 static int
932 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
933 const struct arm_linux_hw_breakpoint *p2)
935 return p1->address == p2->address && p1->control == p2->control;
938 /* Callback to mark a watch-/breakpoint to be updated in all threads of
939 the current process. */
941 static int
942 update_registers_callback (struct lwp_info *lwp, int watch, int index)
944 if (lwp->arch_private == NULL)
945 lwp->arch_private = XCNEW (struct arch_lwp_info);
947 /* The actual update is done later just before resuming the lwp,
948 we just mark that the registers need updating. */
949 if (watch)
950 lwp->arch_private->wpts_changed[index] = 1;
951 else
952 lwp->arch_private->bpts_changed[index] = 1;
954 /* If the lwp isn't stopped, force it to momentarily pause, so
955 we can update its breakpoint registers. */
956 if (!lwp->stopped)
957 linux_stop_lwp (lwp);
959 return 0;
962 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
963 =1) BPT for thread TID. */
964 static void
965 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
966 int watchpoint)
968 int pid;
969 ptid_t pid_ptid;
970 gdb_byte count, i;
971 struct arm_linux_hw_breakpoint* bpts;
973 pid = inferior_ptid.pid ();
974 pid_ptid = ptid_t (pid);
976 if (watchpoint)
978 count = arm_linux_get_hw_watchpoint_count ();
979 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
981 else
983 count = arm_linux_get_hw_breakpoint_count ();
984 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
987 for (i = 0; i < count; ++i)
988 if (!arm_hwbp_control_is_enabled (bpts[i].control))
990 bpts[i] = *bpt;
991 iterate_over_lwps (pid_ptid,
992 [=] (struct lwp_info *info)
994 return update_registers_callback (info, watchpoint,
997 break;
1000 gdb_assert (i != count);
1003 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1004 (WATCHPOINT = 1) BPT for thread TID. */
1005 static void
1006 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1007 int watchpoint)
1009 int pid;
1010 gdb_byte count, i;
1011 ptid_t pid_ptid;
1012 struct arm_linux_hw_breakpoint* bpts;
1014 pid = inferior_ptid.pid ();
1015 pid_ptid = ptid_t (pid);
1017 if (watchpoint)
1019 count = arm_linux_get_hw_watchpoint_count ();
1020 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1022 else
1024 count = arm_linux_get_hw_breakpoint_count ();
1025 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1028 for (i = 0; i < count; ++i)
1029 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1031 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1032 iterate_over_lwps (pid_ptid,
1033 [=] (struct lwp_info *info)
1035 return update_registers_callback (info, watchpoint,
1038 break;
1041 gdb_assert (i != count);
1044 /* Insert a Hardware breakpoint. */
1046 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1047 struct bp_target_info *bp_tgt)
1049 struct arm_linux_hw_breakpoint p;
1051 if (arm_linux_get_hw_breakpoint_count () == 0)
1052 return -1;
1054 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1056 arm_linux_insert_hw_breakpoint1 (&p, 0);
1058 return 0;
1061 /* Remove a hardware breakpoint. */
1063 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1064 struct bp_target_info *bp_tgt)
1066 struct arm_linux_hw_breakpoint p;
1068 if (arm_linux_get_hw_breakpoint_count () == 0)
1069 return -1;
1071 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1073 arm_linux_remove_hw_breakpoint1 (&p, 0);
1075 return 0;
1078 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1079 ADDR? */
1081 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1083 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1084 CORE_ADDR max_wp_length, aligned_addr;
1086 /* Can not set watchpoints for zero or negative lengths. */
1087 if (len <= 0)
1088 return 0;
1090 /* Need to be able to use the ptrace interface. */
1091 if (cap == NULL || cap->wp_count == 0)
1092 return 0;
1094 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1095 range covered by a watchpoint. */
1096 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1097 aligned_addr = addr & ~(max_wp_length - 1);
1099 if (aligned_addr + max_wp_length < addr + len)
1100 return 0;
1102 /* The current ptrace interface can only handle watchpoints that are a
1103 power of 2. */
1104 if ((len & (len - 1)) != 0)
1105 return 0;
1107 /* All tests passed so we must be able to set a watchpoint. */
1108 return 1;
1111 /* Insert a Hardware breakpoint. */
1113 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1114 enum target_hw_bp_type rw,
1115 struct expression *cond)
1117 struct arm_linux_hw_breakpoint p;
1119 if (arm_linux_get_hw_watchpoint_count () == 0)
1120 return -1;
1122 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1124 arm_linux_insert_hw_breakpoint1 (&p, 1);
1126 return 0;
1129 /* Remove a hardware breakpoint. */
1131 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1132 int len, enum target_hw_bp_type rw,
1133 struct expression *cond)
1135 struct arm_linux_hw_breakpoint p;
1137 if (arm_linux_get_hw_watchpoint_count () == 0)
1138 return -1;
1140 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1142 arm_linux_remove_hw_breakpoint1 (&p, 1);
1144 return 0;
1147 /* What was the data address the target was stopped on accessing. */
1148 bool
1149 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1151 siginfo_t siginfo;
1152 int slot;
1154 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1155 return false;
1157 /* This must be a hardware breakpoint. */
1158 if (siginfo.si_signo != SIGTRAP
1159 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1160 return false;
1162 /* We must be able to set hardware watchpoints. */
1163 if (arm_linux_get_hw_watchpoint_count () == 0)
1164 return 0;
1166 slot = siginfo.si_errno;
1168 /* If we are in a positive slot then we're looking at a breakpoint and not
1169 a watchpoint. */
1170 if (slot >= 0)
1171 return false;
1173 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1174 return true;
1177 /* Has the target been stopped by hitting a watchpoint? */
1178 bool
1179 arm_linux_nat_target::stopped_by_watchpoint ()
1181 CORE_ADDR addr;
1182 return stopped_data_address (&addr);
1185 bool
1186 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1187 CORE_ADDR start,
1188 int length)
1190 return start <= addr && start + length - 1 >= addr;
1193 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1194 in the parent thread to the child thread. */
1195 void
1196 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1198 int i;
1199 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1201 /* Mark that all the hardware breakpoint/watchpoint register pairs
1202 for this thread need to be initialized. */
1204 for (i = 0; i < MAX_BPTS; i++)
1206 info->bpts_changed[i] = 1;
1207 info->wpts_changed[i] = 1;
1210 lp->arch_private = info;
1213 /* Function to call when a thread is being deleted. */
1215 void
1216 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1218 xfree (arch_lwp);
1221 /* Called when resuming a thread.
1222 The hardware debug registers are updated when there is any change. */
1224 void
1225 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1227 int pid, i;
1228 struct arm_linux_hw_breakpoint *bpts, *wpts;
1229 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1231 pid = lwp->ptid.lwp ();
1232 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1233 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1235 /* NULL means this is the main thread still going through the shell,
1236 or, no watchpoint has been set yet. In that case, there's
1237 nothing to do. */
1238 if (arm_lwp_info == NULL)
1239 return;
1241 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1242 if (arm_lwp_info->bpts_changed[i])
1244 errno = 0;
1245 if (arm_hwbp_control_is_enabled (bpts[i].control))
1246 if (ptrace (PTRACE_SETHBPREGS, pid,
1247 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1248 perror_with_name (_("Unexpected error setting breakpoint"));
1250 if (bpts[i].control != 0)
1251 if (ptrace (PTRACE_SETHBPREGS, pid,
1252 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1253 perror_with_name (_("Unexpected error setting breakpoint"));
1255 arm_lwp_info->bpts_changed[i] = 0;
1258 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1259 if (arm_lwp_info->wpts_changed[i])
1261 errno = 0;
1262 if (arm_hwbp_control_is_enabled (wpts[i].control))
1263 if (ptrace (PTRACE_SETHBPREGS, pid,
1264 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1265 perror_with_name (_("Unexpected error setting watchpoint"));
1267 if (wpts[i].control != 0)
1268 if (ptrace (PTRACE_SETHBPREGS, pid,
1269 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1270 perror_with_name (_("Unexpected error setting watchpoint"));
1272 arm_lwp_info->wpts_changed[i] = 0;
1276 /* linux_nat_new_fork hook. */
1278 void
1279 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1281 pid_t parent_pid;
1282 struct arm_linux_debug_reg_state *parent_state;
1283 struct arm_linux_debug_reg_state *child_state;
1285 /* NULL means no watchpoint has ever been set in the parent. In
1286 that case, there's nothing to do. */
1287 if (parent->arch_private == NULL)
1288 return;
1290 /* GDB core assumes the child inherits the watchpoints/hw
1291 breakpoints of the parent, and will remove them all from the
1292 forked off process. Copy the debug registers mirrors into the
1293 new process so that all breakpoints and watchpoints can be
1294 removed together. */
1296 parent_pid = parent->ptid.pid ();
1297 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1298 child_state = arm_linux_get_debug_reg_state (child_pid);
1299 *child_state = *parent_state;
1302 void _initialize_arm_linux_nat ();
1303 void
1304 _initialize_arm_linux_nat ()
1306 /* Register the target. */
1307 linux_target = &the_arm_linux_nat_target;
1308 add_inf_child_target (&the_arm_linux_nat_target);