[PATCH 7/57][Arm][GAS] Add support for MVE instructions: vstr/vldr
[binutils-gdb.git] / gdb / dwarf2read.c
blob0e3f37ff742d91d6ab08ba6c90485cec783fc1ca
1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 return false;
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
201 int version = 0;
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
248 struct index_val
250 ULONGEST dwarf_tag;
251 struct attr
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return dwarf2_objfile_data_key.get (objfile);
287 /* Default names of the debugging sections. */
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
315 /* List of DWO/DWP sections. */
317 static const struct dwop_section_names
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
332 dwop_section_names =
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
348 /* local data types */
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
366 enum dwarf_unit_type unit_type;
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
394 /* The index of the method in the fieldlist. */
395 int index;
397 /* The name of the DIE. */
398 const char *name;
400 /* The DIE associated with this method. */
401 struct die_info *die;
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
441 const char *producer = nullptr;
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
568 bool processing_has_namespace_info : 1;
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
587 return nullptr;
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
594 struct stmt_list_hash
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
606 struct type_unit_group
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
644 /* These sections are what may appear in a (real or virtual) DWO file. */
646 struct dwo_sections
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
661 /* CUs/TUs in DWP/DWO files. */
663 struct dwo_unit
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
688 enum dwp_v2_section_ids
690 DW_SECT_MIN = 1
693 /* Data for one DWO file.
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
704 struct dwo_file
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
717 bfd *dbfd;
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
728 htab_t cus;
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
732 htab_t tus;
735 /* These sections are what may appear in a DWP file. */
737 struct dwp_sections
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
765 struct virtual_v1_dwo_sections
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
783 struct virtual_v2_dwo_sections
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
809 /* Contents of DWP hash tables. */
811 struct dwp_hash_table
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
816 union
818 struct
820 const gdb_byte *indices;
821 } v1;
822 struct
824 /* This is indexed by column number and gives the id of the section
825 in that column. */
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
836 } v2;
837 } section_pool;
840 /* Data for one DWP file. */
842 struct dwp_file
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
845 : name (name_),
846 dbfd (std::move (abfd))
850 /* Name of the file. */
851 const char *name;
853 /* File format version. */
854 int version = 0;
856 /* The bfd. */
857 gdb_bfd_ref_ptr dbfd;
859 /* Section info for this file. */
860 struct dwp_sections sections {};
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
878 /* This represents a '.dwz' file. */
880 struct dwz_file
882 dwz_file (gdb_bfd_ref_ptr &&bfd)
883 : dwz_bfd (std::move (bfd))
887 /* A dwz file can only contain a few sections. */
888 struct dwarf2_section_info abbrev {};
889 struct dwarf2_section_info info {};
890 struct dwarf2_section_info str {};
891 struct dwarf2_section_info line {};
892 struct dwarf2_section_info macro {};
893 struct dwarf2_section_info gdb_index {};
894 struct dwarf2_section_info debug_names {};
896 /* The dwz's BFD. */
897 gdb_bfd_ref_ptr dwz_bfd;
899 /* If we loaded the index from an external file, this contains the
900 resources associated to the open file, memory mapping, etc. */
901 std::unique_ptr<index_cache_resource> index_cache_res;
904 /* Struct used to pass misc. parameters to read_die_and_children, et
905 al. which are used for both .debug_info and .debug_types dies.
906 All parameters here are unchanging for the life of the call. This
907 struct exists to abstract away the constant parameters of die reading. */
909 struct die_reader_specs
911 /* The bfd of die_section. */
912 bfd* abfd;
914 /* The CU of the DIE we are parsing. */
915 struct dwarf2_cu *cu;
917 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
918 struct dwo_file *dwo_file;
920 /* The section the die comes from.
921 This is either .debug_info or .debug_types, or the .dwo variants. */
922 struct dwarf2_section_info *die_section;
924 /* die_section->buffer. */
925 const gdb_byte *buffer;
927 /* The end of the buffer. */
928 const gdb_byte *buffer_end;
930 /* The value of the DW_AT_comp_dir attribute. */
931 const char *comp_dir;
933 /* The abbreviation table to use when reading the DIEs. */
934 struct abbrev_table *abbrev_table;
937 /* Type of function passed to init_cutu_and_read_dies, et.al. */
938 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
939 const gdb_byte *info_ptr,
940 struct die_info *comp_unit_die,
941 int has_children,
942 void *data);
944 /* A 1-based directory index. This is a strong typedef to prevent
945 accidentally using a directory index as a 0-based index into an
946 array/vector. */
947 enum class dir_index : unsigned int {};
949 /* Likewise, a 1-based file name index. */
950 enum class file_name_index : unsigned int {};
952 struct file_entry
954 file_entry () = default;
956 file_entry (const char *name_, dir_index d_index_,
957 unsigned int mod_time_, unsigned int length_)
958 : name (name_),
959 d_index (d_index_),
960 mod_time (mod_time_),
961 length (length_)
964 /* Return the include directory at D_INDEX stored in LH. Returns
965 NULL if D_INDEX is out of bounds. */
966 const char *include_dir (const line_header *lh) const;
968 /* The file name. Note this is an observing pointer. The memory is
969 owned by debug_line_buffer. */
970 const char *name {};
972 /* The directory index (1-based). */
973 dir_index d_index {};
975 unsigned int mod_time {};
977 unsigned int length {};
979 /* True if referenced by the Line Number Program. */
980 bool included_p {};
982 /* The associated symbol table, if any. */
983 struct symtab *symtab {};
986 /* The line number information for a compilation unit (found in the
987 .debug_line section) begins with a "statement program header",
988 which contains the following information. */
989 struct line_header
991 line_header ()
992 : offset_in_dwz {}
995 /* Add an entry to the include directory table. */
996 void add_include_dir (const char *include_dir);
998 /* Add an entry to the file name table. */
999 void add_file_name (const char *name, dir_index d_index,
1000 unsigned int mod_time, unsigned int length);
1002 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1003 is out of bounds. */
1004 const char *include_dir_at (dir_index index) const
1006 /* Convert directory index number (1-based) to vector index
1007 (0-based). */
1008 size_t vec_index = to_underlying (index) - 1;
1010 if (vec_index >= include_dirs.size ())
1011 return NULL;
1012 return include_dirs[vec_index];
1015 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1016 is out of bounds. */
1017 file_entry *file_name_at (file_name_index index)
1019 /* Convert file name index number (1-based) to vector index
1020 (0-based). */
1021 size_t vec_index = to_underlying (index) - 1;
1023 if (vec_index >= file_names.size ())
1024 return NULL;
1025 return &file_names[vec_index];
1028 /* Offset of line number information in .debug_line section. */
1029 sect_offset sect_off {};
1031 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1032 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1034 unsigned int total_length {};
1035 unsigned short version {};
1036 unsigned int header_length {};
1037 unsigned char minimum_instruction_length {};
1038 unsigned char maximum_ops_per_instruction {};
1039 unsigned char default_is_stmt {};
1040 int line_base {};
1041 unsigned char line_range {};
1042 unsigned char opcode_base {};
1044 /* standard_opcode_lengths[i] is the number of operands for the
1045 standard opcode whose value is i. This means that
1046 standard_opcode_lengths[0] is unused, and the last meaningful
1047 element is standard_opcode_lengths[opcode_base - 1]. */
1048 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1050 /* The include_directories table. Note these are observing
1051 pointers. The memory is owned by debug_line_buffer. */
1052 std::vector<const char *> include_dirs;
1054 /* The file_names table. */
1055 std::vector<file_entry> file_names;
1057 /* The start and end of the statement program following this
1058 header. These point into dwarf2_per_objfile->line_buffer. */
1059 const gdb_byte *statement_program_start {}, *statement_program_end {};
1062 typedef std::unique_ptr<line_header> line_header_up;
1064 const char *
1065 file_entry::include_dir (const line_header *lh) const
1067 return lh->include_dir_at (d_index);
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info : public allocate_on_obstack
1074 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1076 /* Disable assign but still keep copy ctor, which is needed
1077 load_partial_dies. */
1078 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1080 /* Adjust the partial die before generating a symbol for it. This
1081 function may set the is_external flag or change the DIE's
1082 name. */
1083 void fixup (struct dwarf2_cu *cu);
1085 /* Read a minimal amount of information into the minimal die
1086 structure. */
1087 const gdb_byte *read (const struct die_reader_specs *reader,
1088 const struct abbrev_info &abbrev,
1089 const gdb_byte *info_ptr);
1091 /* Offset of this DIE. */
1092 const sect_offset sect_off;
1094 /* DWARF-2 tag for this DIE. */
1095 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1097 /* Assorted flags describing the data found in this DIE. */
1098 const unsigned int has_children : 1;
1100 unsigned int is_external : 1;
1101 unsigned int is_declaration : 1;
1102 unsigned int has_type : 1;
1103 unsigned int has_specification : 1;
1104 unsigned int has_pc_info : 1;
1105 unsigned int may_be_inlined : 1;
1107 /* This DIE has been marked DW_AT_main_subprogram. */
1108 unsigned int main_subprogram : 1;
1110 /* Flag set if the SCOPE field of this structure has been
1111 computed. */
1112 unsigned int scope_set : 1;
1114 /* Flag set if the DIE has a byte_size attribute. */
1115 unsigned int has_byte_size : 1;
1117 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1118 unsigned int has_const_value : 1;
1120 /* Flag set if any of the DIE's children are template arguments. */
1121 unsigned int has_template_arguments : 1;
1123 /* Flag set if fixup has been called on this die. */
1124 unsigned int fixup_called : 1;
1126 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1127 unsigned int is_dwz : 1;
1129 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1130 unsigned int spec_is_dwz : 1;
1132 /* The name of this DIE. Normally the value of DW_AT_name, but
1133 sometimes a default name for unnamed DIEs. */
1134 const char *name = nullptr;
1136 /* The linkage name, if present. */
1137 const char *linkage_name = nullptr;
1139 /* The scope to prepend to our children. This is generally
1140 allocated on the comp_unit_obstack, so will disappear
1141 when this compilation unit leaves the cache. */
1142 const char *scope = nullptr;
1144 /* Some data associated with the partial DIE. The tag determines
1145 which field is live. */
1146 union
1148 /* The location description associated with this DIE, if any. */
1149 struct dwarf_block *locdesc;
1150 /* The offset of an import, for DW_TAG_imported_unit. */
1151 sect_offset sect_off;
1152 } d {};
1154 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1155 CORE_ADDR lowpc = 0;
1156 CORE_ADDR highpc = 0;
1158 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1159 DW_AT_sibling, if any. */
1160 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1161 could return DW_AT_sibling values to its caller load_partial_dies. */
1162 const gdb_byte *sibling = nullptr;
1164 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1165 DW_AT_specification (or DW_AT_abstract_origin or
1166 DW_AT_extension). */
1167 sect_offset spec_offset {};
1169 /* Pointers to this DIE's parent, first child, and next sibling,
1170 if any. */
1171 struct partial_die_info *die_parent = nullptr;
1172 struct partial_die_info *die_child = nullptr;
1173 struct partial_die_info *die_sibling = nullptr;
1175 friend struct partial_die_info *
1176 dwarf2_cu::find_partial_die (sect_offset sect_off);
1178 private:
1179 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1180 partial_die_info (sect_offset sect_off)
1181 : partial_die_info (sect_off, DW_TAG_padding, 0)
1185 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1186 int has_children_)
1187 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1189 is_external = 0;
1190 is_declaration = 0;
1191 has_type = 0;
1192 has_specification = 0;
1193 has_pc_info = 0;
1194 may_be_inlined = 0;
1195 main_subprogram = 0;
1196 scope_set = 0;
1197 has_byte_size = 0;
1198 has_const_value = 0;
1199 has_template_arguments = 0;
1200 fixup_called = 0;
1201 is_dwz = 0;
1202 spec_is_dwz = 0;
1206 /* This data structure holds the information of an abbrev. */
1207 struct abbrev_info
1209 unsigned int number; /* number identifying abbrev */
1210 enum dwarf_tag tag; /* dwarf tag */
1211 unsigned short has_children; /* boolean */
1212 unsigned short num_attrs; /* number of attributes */
1213 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1214 struct abbrev_info *next; /* next in chain */
1217 struct attr_abbrev
1219 ENUM_BITFIELD(dwarf_attribute) name : 16;
1220 ENUM_BITFIELD(dwarf_form) form : 16;
1222 /* It is valid only if FORM is DW_FORM_implicit_const. */
1223 LONGEST implicit_const;
1226 /* Size of abbrev_table.abbrev_hash_table. */
1227 #define ABBREV_HASH_SIZE 121
1229 /* Top level data structure to contain an abbreviation table. */
1231 struct abbrev_table
1233 explicit abbrev_table (sect_offset off)
1234 : sect_off (off)
1236 m_abbrevs =
1237 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1238 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1241 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1243 /* Allocate space for a struct abbrev_info object in
1244 ABBREV_TABLE. */
1245 struct abbrev_info *alloc_abbrev ();
1247 /* Add an abbreviation to the table. */
1248 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1250 /* Look up an abbrev in the table.
1251 Returns NULL if the abbrev is not found. */
1253 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1256 /* Where the abbrev table came from.
1257 This is used as a sanity check when the table is used. */
1258 const sect_offset sect_off;
1260 /* Storage for the abbrev table. */
1261 auto_obstack abbrev_obstack;
1263 private:
1265 /* Hash table of abbrevs.
1266 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1267 It could be statically allocated, but the previous code didn't so we
1268 don't either. */
1269 struct abbrev_info **m_abbrevs;
1272 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1274 /* Attributes have a name and a value. */
1275 struct attribute
1277 ENUM_BITFIELD(dwarf_attribute) name : 16;
1278 ENUM_BITFIELD(dwarf_form) form : 15;
1280 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1281 field should be in u.str (existing only for DW_STRING) but it is kept
1282 here for better struct attribute alignment. */
1283 unsigned int string_is_canonical : 1;
1285 union
1287 const char *str;
1288 struct dwarf_block *blk;
1289 ULONGEST unsnd;
1290 LONGEST snd;
1291 CORE_ADDR addr;
1292 ULONGEST signature;
1297 /* This data structure holds a complete die structure. */
1298 struct die_info
1300 /* DWARF-2 tag for this DIE. */
1301 ENUM_BITFIELD(dwarf_tag) tag : 16;
1303 /* Number of attributes */
1304 unsigned char num_attrs;
1306 /* True if we're presently building the full type name for the
1307 type derived from this DIE. */
1308 unsigned char building_fullname : 1;
1310 /* True if this die is in process. PR 16581. */
1311 unsigned char in_process : 1;
1313 /* Abbrev number */
1314 unsigned int abbrev;
1316 /* Offset in .debug_info or .debug_types section. */
1317 sect_offset sect_off;
1319 /* The dies in a compilation unit form an n-ary tree. PARENT
1320 points to this die's parent; CHILD points to the first child of
1321 this node; and all the children of a given node are chained
1322 together via their SIBLING fields. */
1323 struct die_info *child; /* Its first child, if any. */
1324 struct die_info *sibling; /* Its next sibling, if any. */
1325 struct die_info *parent; /* Its parent, if any. */
1327 /* An array of attributes, with NUM_ATTRS elements. There may be
1328 zero, but it's not common and zero-sized arrays are not
1329 sufficiently portable C. */
1330 struct attribute attrs[1];
1333 /* Get at parts of an attribute structure. */
1335 #define DW_STRING(attr) ((attr)->u.str)
1336 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1337 #define DW_UNSND(attr) ((attr)->u.unsnd)
1338 #define DW_BLOCK(attr) ((attr)->u.blk)
1339 #define DW_SND(attr) ((attr)->u.snd)
1340 #define DW_ADDR(attr) ((attr)->u.addr)
1341 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1343 /* Blocks are a bunch of untyped bytes. */
1344 struct dwarf_block
1346 size_t size;
1348 /* Valid only if SIZE is not zero. */
1349 const gdb_byte *data;
1352 #ifndef ATTR_ALLOC_CHUNK
1353 #define ATTR_ALLOC_CHUNK 4
1354 #endif
1356 /* Allocate fields for structs, unions and enums in this size. */
1357 #ifndef DW_FIELD_ALLOC_CHUNK
1358 #define DW_FIELD_ALLOC_CHUNK 4
1359 #endif
1361 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1362 but this would require a corresponding change in unpack_field_as_long
1363 and friends. */
1364 static int bits_per_byte = 8;
1366 /* When reading a variant or variant part, we track a bit more
1367 information about the field, and store it in an object of this
1368 type. */
1370 struct variant_field
1372 /* If we see a DW_TAG_variant, then this will be the discriminant
1373 value. */
1374 ULONGEST discriminant_value;
1375 /* If we see a DW_TAG_variant, then this will be set if this is the
1376 default branch. */
1377 bool default_branch;
1378 /* While reading a DW_TAG_variant_part, this will be set if this
1379 field is the discriminant. */
1380 bool is_discriminant;
1383 struct nextfield
1385 int accessibility = 0;
1386 int virtuality = 0;
1387 /* Extra information to describe a variant or variant part. */
1388 struct variant_field variant {};
1389 struct field field {};
1392 struct fnfieldlist
1394 const char *name = nullptr;
1395 std::vector<struct fn_field> fnfields;
1398 /* The routines that read and process dies for a C struct or C++ class
1399 pass lists of data member fields and lists of member function fields
1400 in an instance of a field_info structure, as defined below. */
1401 struct field_info
1403 /* List of data member and baseclasses fields. */
1404 std::vector<struct nextfield> fields;
1405 std::vector<struct nextfield> baseclasses;
1407 /* Number of fields (including baseclasses). */
1408 int nfields = 0;
1410 /* Set if the accesibility of one of the fields is not public. */
1411 int non_public_fields = 0;
1413 /* Member function fieldlist array, contains name of possibly overloaded
1414 member function, number of overloaded member functions and a pointer
1415 to the head of the member function field chain. */
1416 std::vector<struct fnfieldlist> fnfieldlists;
1418 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1419 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1420 std::vector<struct decl_field> typedef_field_list;
1422 /* Nested types defined by this class and the number of elements in this
1423 list. */
1424 std::vector<struct decl_field> nested_types_list;
1427 /* One item on the queue of compilation units to read in full symbols
1428 for. */
1429 struct dwarf2_queue_item
1431 struct dwarf2_per_cu_data *per_cu;
1432 enum language pretend_language;
1433 struct dwarf2_queue_item *next;
1436 /* The current queue. */
1437 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1439 /* Loaded secondary compilation units are kept in memory until they
1440 have not been referenced for the processing of this many
1441 compilation units. Set this to zero to disable caching. Cache
1442 sizes of up to at least twenty will improve startup time for
1443 typical inter-CU-reference binaries, at an obvious memory cost. */
1444 static int dwarf_max_cache_age = 5;
1445 static void
1446 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c, const char *value)
1449 fprintf_filtered (file, _("The upper bound on the age of cached "
1450 "DWARF compilation units is %s.\n"),
1451 value);
1454 /* local function prototypes */
1456 static const char *get_section_name (const struct dwarf2_section_info *);
1458 static const char *get_section_file_name (const struct dwarf2_section_info *);
1460 static void dwarf2_find_base_address (struct die_info *die,
1461 struct dwarf2_cu *cu);
1463 static struct partial_symtab *create_partial_symtab
1464 (struct dwarf2_per_cu_data *per_cu, const char *name);
1466 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1467 const gdb_byte *info_ptr,
1468 struct die_info *type_unit_die,
1469 int has_children, void *data);
1471 static void dwarf2_build_psymtabs_hard
1472 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1474 static void scan_partial_symbols (struct partial_die_info *,
1475 CORE_ADDR *, CORE_ADDR *,
1476 int, struct dwarf2_cu *);
1478 static void add_partial_symbol (struct partial_die_info *,
1479 struct dwarf2_cu *);
1481 static void add_partial_namespace (struct partial_die_info *pdi,
1482 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1483 int set_addrmap, struct dwarf2_cu *cu);
1485 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1486 CORE_ADDR *highpc, int set_addrmap,
1487 struct dwarf2_cu *cu);
1489 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1490 struct dwarf2_cu *cu);
1492 static void add_partial_subprogram (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int need_pc, struct dwarf2_cu *cu);
1496 static void dwarf2_read_symtab (struct partial_symtab *,
1497 struct objfile *);
1499 static void psymtab_to_symtab_1 (struct partial_symtab *);
1501 static abbrev_table_up abbrev_table_read_table
1502 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1503 sect_offset);
1505 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1507 static struct partial_die_info *load_partial_dies
1508 (const struct die_reader_specs *, const gdb_byte *, int);
1510 static struct partial_die_info *find_partial_die (sect_offset, int,
1511 struct dwarf2_cu *);
1513 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1514 struct attribute *, struct attr_abbrev *,
1515 const gdb_byte *);
1517 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1519 static int read_1_signed_byte (bfd *, const gdb_byte *);
1521 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1523 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1524 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1526 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1528 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1530 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1531 unsigned int *);
1533 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1535 static LONGEST read_checked_initial_length_and_offset
1536 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1537 unsigned int *, unsigned int *);
1539 static LONGEST read_offset (bfd *, const gdb_byte *,
1540 const struct comp_unit_head *,
1541 unsigned int *);
1543 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1545 static sect_offset read_abbrev_offset
1546 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1547 struct dwarf2_section_info *, sect_offset);
1549 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1551 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1553 static const char *read_indirect_string
1554 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1555 const struct comp_unit_head *, unsigned int *);
1557 static const char *read_indirect_line_string
1558 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1559 const struct comp_unit_head *, unsigned int *);
1561 static const char *read_indirect_string_at_offset
1562 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1563 LONGEST str_offset);
1565 static const char *read_indirect_string_from_dwz
1566 (struct objfile *objfile, struct dwz_file *, LONGEST);
1568 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1570 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1571 const gdb_byte *,
1572 unsigned int *);
1574 static const char *read_str_index (const struct die_reader_specs *reader,
1575 ULONGEST str_index);
1577 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1579 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1580 struct dwarf2_cu *);
1582 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1583 unsigned int);
1585 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1586 struct dwarf2_cu *cu);
1588 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1589 struct dwarf2_cu *cu);
1591 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1593 static struct die_info *die_specification (struct die_info *die,
1594 struct dwarf2_cu **);
1596 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1597 struct dwarf2_cu *cu);
1599 static void dwarf_decode_lines (struct line_header *, const char *,
1600 struct dwarf2_cu *, struct partial_symtab *,
1601 CORE_ADDR, int decode_mapping);
1603 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1604 const char *);
1606 static struct symbol *new_symbol (struct die_info *, struct type *,
1607 struct dwarf2_cu *, struct symbol * = NULL);
1609 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1610 struct dwarf2_cu *);
1612 static void dwarf2_const_value_attr (const struct attribute *attr,
1613 struct type *type,
1614 const char *name,
1615 struct obstack *obstack,
1616 struct dwarf2_cu *cu, LONGEST *value,
1617 const gdb_byte **bytes,
1618 struct dwarf2_locexpr_baton **baton);
1620 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1622 static int need_gnat_info (struct dwarf2_cu *);
1624 static struct type *die_descriptive_type (struct die_info *,
1625 struct dwarf2_cu *);
1627 static void set_descriptive_type (struct type *, struct die_info *,
1628 struct dwarf2_cu *);
1630 static struct type *die_containing_type (struct die_info *,
1631 struct dwarf2_cu *);
1633 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1634 struct dwarf2_cu *);
1636 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1638 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1640 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1642 static char *typename_concat (struct obstack *obs, const char *prefix,
1643 const char *suffix, int physname,
1644 struct dwarf2_cu *cu);
1646 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1648 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1650 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1652 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1654 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1656 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1658 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *, struct partial_symtab *);
1661 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1662 values. Keep the items ordered with increasing constraints compliance. */
1663 enum pc_bounds_kind
1665 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1666 PC_BOUNDS_NOT_PRESENT,
1668 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1669 were present but they do not form a valid range of PC addresses. */
1670 PC_BOUNDS_INVALID,
1672 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1673 PC_BOUNDS_RANGES,
1675 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1676 PC_BOUNDS_HIGH_LOW,
1679 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1680 CORE_ADDR *, CORE_ADDR *,
1681 struct dwarf2_cu *,
1682 struct partial_symtab *);
1684 static void get_scope_pc_bounds (struct die_info *,
1685 CORE_ADDR *, CORE_ADDR *,
1686 struct dwarf2_cu *);
1688 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1689 CORE_ADDR, struct dwarf2_cu *);
1691 static void dwarf2_add_field (struct field_info *, struct die_info *,
1692 struct dwarf2_cu *);
1694 static void dwarf2_attach_fields_to_type (struct field_info *,
1695 struct type *, struct dwarf2_cu *);
1697 static void dwarf2_add_member_fn (struct field_info *,
1698 struct die_info *, struct type *,
1699 struct dwarf2_cu *);
1701 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1702 struct type *,
1703 struct dwarf2_cu *);
1705 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1707 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1709 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1711 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1713 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1715 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1717 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1719 static struct type *read_module_type (struct die_info *die,
1720 struct dwarf2_cu *cu);
1722 static const char *namespace_name (struct die_info *die,
1723 int *is_anonymous, struct dwarf2_cu *);
1725 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1727 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1729 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1730 struct dwarf2_cu *);
1732 static struct die_info *read_die_and_siblings_1
1733 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1734 struct die_info *);
1736 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1737 const gdb_byte *info_ptr,
1738 const gdb_byte **new_info_ptr,
1739 struct die_info *parent);
1741 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1742 struct die_info **, const gdb_byte *,
1743 int *, int);
1745 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1746 struct die_info **, const gdb_byte *,
1747 int *);
1749 static void process_die (struct die_info *, struct dwarf2_cu *);
1751 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1752 struct obstack *);
1754 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1756 static const char *dwarf2_full_name (const char *name,
1757 struct die_info *die,
1758 struct dwarf2_cu *cu);
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1763 static struct die_info *dwarf2_extension (struct die_info *die,
1764 struct dwarf2_cu **);
1766 static const char *dwarf_tag_name (unsigned int);
1768 static const char *dwarf_attr_name (unsigned int);
1770 static const char *dwarf_form_name (unsigned int);
1772 static const char *dwarf_bool_name (unsigned int);
1774 static const char *dwarf_type_encoding_name (unsigned int);
1776 static struct die_info *sibling_die (struct die_info *);
1778 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1780 static void dump_die_for_error (struct die_info *);
1782 static void dump_die_1 (struct ui_file *, int level, int max_level,
1783 struct die_info *);
1785 /*static*/ void dump_die (struct die_info *, int max_level);
1787 static void store_in_ref_table (struct die_info *,
1788 struct dwarf2_cu *);
1790 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1792 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1794 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1795 const struct attribute *,
1796 struct dwarf2_cu **);
1798 static struct die_info *follow_die_ref (struct die_info *,
1799 const struct attribute *,
1800 struct dwarf2_cu **);
1802 static struct die_info *follow_die_sig (struct die_info *,
1803 const struct attribute *,
1804 struct dwarf2_cu **);
1806 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1807 struct dwarf2_cu *);
1809 static struct type *get_DW_AT_signature_type (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu *);
1813 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1815 static void read_signatured_type (struct signatured_type *);
1817 static int attr_to_dynamic_prop (const struct attribute *attr,
1818 struct die_info *die, struct dwarf2_cu *cu,
1819 struct dynamic_prop *prop);
1821 /* memory allocation interface */
1823 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1825 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1827 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1829 static int attr_form_is_block (const struct attribute *);
1831 static int attr_form_is_section_offset (const struct attribute *);
1833 static int attr_form_is_constant (const struct attribute *);
1835 static int attr_form_is_ref (const struct attribute *);
1837 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1838 struct dwarf2_loclist_baton *baton,
1839 const struct attribute *attr);
1841 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1842 struct symbol *sym,
1843 struct dwarf2_cu *cu,
1844 int is_block);
1846 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1847 const gdb_byte *info_ptr,
1848 struct abbrev_info *abbrev);
1850 static hashval_t partial_die_hash (const void *item);
1852 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1854 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1855 (sect_offset sect_off, unsigned int offset_in_dwz,
1856 struct dwarf2_per_objfile *dwarf2_per_objfile);
1858 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1859 struct die_info *comp_unit_die,
1860 enum language pretend_language);
1862 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1866 static struct type *set_die_type (struct die_info *, struct type *,
1867 struct dwarf2_cu *);
1869 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1873 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1874 enum language);
1876 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1877 enum language);
1879 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1880 enum language);
1882 static void dwarf2_add_dependence (struct dwarf2_cu *,
1883 struct dwarf2_per_cu_data *);
1885 static void dwarf2_mark (struct dwarf2_cu *);
1887 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1889 static struct type *get_die_type_at_offset (sect_offset,
1890 struct dwarf2_per_cu_data *);
1892 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1894 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1895 enum language pretend_language);
1897 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1899 /* Class, the destructor of which frees all allocated queue entries. This
1900 will only have work to do if an error was thrown while processing the
1901 dwarf. If no error was thrown then the queue entries should have all
1902 been processed, and freed, as we went along. */
1904 class dwarf2_queue_guard
1906 public:
1907 dwarf2_queue_guard () = default;
1909 /* Free any entries remaining on the queue. There should only be
1910 entries left if we hit an error while processing the dwarf. */
1911 ~dwarf2_queue_guard ()
1913 struct dwarf2_queue_item *item, *last;
1915 item = dwarf2_queue;
1916 while (item)
1918 /* Anything still marked queued is likely to be in an
1919 inconsistent state, so discard it. */
1920 if (item->per_cu->queued)
1922 if (item->per_cu->cu != NULL)
1923 free_one_cached_comp_unit (item->per_cu);
1924 item->per_cu->queued = 0;
1927 last = item;
1928 item = item->next;
1929 xfree (last);
1932 dwarf2_queue = dwarf2_queue_tail = NULL;
1936 /* The return type of find_file_and_directory. Note, the enclosed
1937 string pointers are only valid while this object is valid. */
1939 struct file_and_directory
1941 /* The filename. This is never NULL. */
1942 const char *name;
1944 /* The compilation directory. NULL if not known. If we needed to
1945 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1946 points directly to the DW_AT_comp_dir string attribute owned by
1947 the obstack that owns the DIE. */
1948 const char *comp_dir;
1950 /* If we needed to build a new string for comp_dir, this is what
1951 owns the storage. */
1952 std::string comp_dir_storage;
1955 static file_and_directory find_file_and_directory (struct die_info *die,
1956 struct dwarf2_cu *cu);
1958 static char *file_full_name (int file, struct line_header *lh,
1959 const char *comp_dir);
1961 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1962 enum class rcuh_kind { COMPILE, TYPE };
1964 static const gdb_byte *read_and_check_comp_unit_head
1965 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1966 struct comp_unit_head *header,
1967 struct dwarf2_section_info *section,
1968 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1969 rcuh_kind section_kind);
1971 static void init_cutu_and_read_dies
1972 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1973 int use_existing_cu, int keep, bool skip_partial,
1974 die_reader_func_ftype *die_reader_func, void *data);
1976 static void init_cutu_and_read_dies_simple
1977 (struct dwarf2_per_cu_data *this_cu,
1978 die_reader_func_ftype *die_reader_func, void *data);
1980 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1982 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1984 static struct dwo_unit *lookup_dwo_unit_in_dwp
1985 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1986 struct dwp_file *dwp_file, const char *comp_dir,
1987 ULONGEST signature, int is_debug_types);
1989 static struct dwp_file *get_dwp_file
1990 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1992 static struct dwo_unit *lookup_dwo_comp_unit
1993 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1995 static struct dwo_unit *lookup_dwo_type_unit
1996 (struct signatured_type *, const char *, const char *);
1998 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2000 static void free_dwo_file (struct dwo_file *);
2002 /* A unique_ptr helper to free a dwo_file. */
2004 struct dwo_file_deleter
2006 void operator() (struct dwo_file *df) const
2008 free_dwo_file (df);
2012 /* A unique pointer to a dwo_file. */
2014 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2016 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2018 static void check_producer (struct dwarf2_cu *cu);
2020 static void free_line_header_voidp (void *arg);
2022 /* Various complaints about symbol reading that don't abort the process. */
2024 static void
2025 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2027 complaint (_("statement list doesn't fit in .debug_line section"));
2030 static void
2031 dwarf2_debug_line_missing_file_complaint (void)
2033 complaint (_(".debug_line section has line data without a file"));
2036 static void
2037 dwarf2_debug_line_missing_end_sequence_complaint (void)
2039 complaint (_(".debug_line section has line "
2040 "program sequence without an end"));
2043 static void
2044 dwarf2_complex_location_expr_complaint (void)
2046 complaint (_("location expression too complex"));
2049 static void
2050 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2051 int arg3)
2053 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2054 arg1, arg2, arg3);
2057 static void
2058 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2060 complaint (_("debug info runs off end of %s section"
2061 " [in module %s]"),
2062 get_section_name (section),
2063 get_section_file_name (section));
2066 static void
2067 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2069 complaint (_("macro debug info contains a "
2070 "malformed macro definition:\n`%s'"),
2071 arg1);
2074 static void
2075 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2077 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2078 arg1, arg2);
2081 /* Hash function for line_header_hash. */
2083 static hashval_t
2084 line_header_hash (const struct line_header *ofs)
2086 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2089 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2091 static hashval_t
2092 line_header_hash_voidp (const void *item)
2094 const struct line_header *ofs = (const struct line_header *) item;
2096 return line_header_hash (ofs);
2099 /* Equality function for line_header_hash. */
2101 static int
2102 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2104 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2105 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2107 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2108 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2113 /* Read the given attribute value as an address, taking the attribute's
2114 form into account. */
2116 static CORE_ADDR
2117 attr_value_as_address (struct attribute *attr)
2119 CORE_ADDR addr;
2121 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2122 && attr->form != DW_FORM_GNU_addr_index)
2124 /* Aside from a few clearly defined exceptions, attributes that
2125 contain an address must always be in DW_FORM_addr form.
2126 Unfortunately, some compilers happen to be violating this
2127 requirement by encoding addresses using other forms, such
2128 as DW_FORM_data4 for example. For those broken compilers,
2129 we try to do our best, without any guarantee of success,
2130 to interpret the address correctly. It would also be nice
2131 to generate a complaint, but that would require us to maintain
2132 a list of legitimate cases where a non-address form is allowed,
2133 as well as update callers to pass in at least the CU's DWARF
2134 version. This is more overhead than what we're willing to
2135 expand for a pretty rare case. */
2136 addr = DW_UNSND (attr);
2138 else
2139 addr = DW_ADDR (attr);
2141 return addr;
2144 /* See declaration. */
2146 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2147 const dwarf2_debug_sections *names)
2148 : objfile (objfile_)
2150 if (names == NULL)
2151 names = &dwarf2_elf_names;
2153 bfd *obfd = objfile->obfd;
2155 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2156 locate_sections (obfd, sec, *names);
2159 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2161 dwarf2_per_objfile::~dwarf2_per_objfile ()
2163 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2164 free_cached_comp_units ();
2166 if (quick_file_names_table)
2167 htab_delete (quick_file_names_table);
2169 if (line_header_hash)
2170 htab_delete (line_header_hash);
2172 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2173 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2175 for (signatured_type *sig_type : all_type_units)
2176 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2178 VEC_free (dwarf2_section_info_def, types);
2180 if (dwo_files != NULL)
2181 free_dwo_files (dwo_files, objfile);
2183 /* Everything else should be on the objfile obstack. */
2186 /* See declaration. */
2188 void
2189 dwarf2_per_objfile::free_cached_comp_units ()
2191 dwarf2_per_cu_data *per_cu = read_in_chain;
2192 dwarf2_per_cu_data **last_chain = &read_in_chain;
2193 while (per_cu != NULL)
2195 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2197 delete per_cu->cu;
2198 *last_chain = next_cu;
2199 per_cu = next_cu;
2203 /* A helper class that calls free_cached_comp_units on
2204 destruction. */
2206 class free_cached_comp_units
2208 public:
2210 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2211 : m_per_objfile (per_objfile)
2215 ~free_cached_comp_units ()
2217 m_per_objfile->free_cached_comp_units ();
2220 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2222 private:
2224 dwarf2_per_objfile *m_per_objfile;
2227 /* Try to locate the sections we need for DWARF 2 debugging
2228 information and return true if we have enough to do something.
2229 NAMES points to the dwarf2 section names, or is NULL if the standard
2230 ELF names are used. */
2233 dwarf2_has_info (struct objfile *objfile,
2234 const struct dwarf2_debug_sections *names)
2236 if (objfile->flags & OBJF_READNEVER)
2237 return 0;
2239 struct dwarf2_per_objfile *dwarf2_per_objfile
2240 = get_dwarf2_per_objfile (objfile);
2242 if (dwarf2_per_objfile == NULL)
2243 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2244 names);
2246 return (!dwarf2_per_objfile->info.is_virtual
2247 && dwarf2_per_objfile->info.s.section != NULL
2248 && !dwarf2_per_objfile->abbrev.is_virtual
2249 && dwarf2_per_objfile->abbrev.s.section != NULL);
2252 /* Return the containing section of virtual section SECTION. */
2254 static struct dwarf2_section_info *
2255 get_containing_section (const struct dwarf2_section_info *section)
2257 gdb_assert (section->is_virtual);
2258 return section->s.containing_section;
2261 /* Return the bfd owner of SECTION. */
2263 static struct bfd *
2264 get_section_bfd_owner (const struct dwarf2_section_info *section)
2266 if (section->is_virtual)
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2271 return section->s.section->owner;
2274 /* Return the bfd section of SECTION.
2275 Returns NULL if the section is not present. */
2277 static asection *
2278 get_section_bfd_section (const struct dwarf2_section_info *section)
2280 if (section->is_virtual)
2282 section = get_containing_section (section);
2283 gdb_assert (!section->is_virtual);
2285 return section->s.section;
2288 /* Return the name of SECTION. */
2290 static const char *
2291 get_section_name (const struct dwarf2_section_info *section)
2293 asection *sectp = get_section_bfd_section (section);
2295 gdb_assert (sectp != NULL);
2296 return bfd_section_name (get_section_bfd_owner (section), sectp);
2299 /* Return the name of the file SECTION is in. */
2301 static const char *
2302 get_section_file_name (const struct dwarf2_section_info *section)
2304 bfd *abfd = get_section_bfd_owner (section);
2306 return bfd_get_filename (abfd);
2309 /* Return the id of SECTION.
2310 Returns 0 if SECTION doesn't exist. */
2312 static int
2313 get_section_id (const struct dwarf2_section_info *section)
2315 asection *sectp = get_section_bfd_section (section);
2317 if (sectp == NULL)
2318 return 0;
2319 return sectp->id;
2322 /* Return the flags of SECTION.
2323 SECTION (or containing section if this is a virtual section) must exist. */
2325 static int
2326 get_section_flags (const struct dwarf2_section_info *section)
2328 asection *sectp = get_section_bfd_section (section);
2330 gdb_assert (sectp != NULL);
2331 return bfd_get_section_flags (sectp->owner, sectp);
2334 /* When loading sections, we look either for uncompressed section or for
2335 compressed section names. */
2337 static int
2338 section_is_p (const char *section_name,
2339 const struct dwarf2_section_names *names)
2341 if (names->normal != NULL
2342 && strcmp (section_name, names->normal) == 0)
2343 return 1;
2344 if (names->compressed != NULL
2345 && strcmp (section_name, names->compressed) == 0)
2346 return 1;
2347 return 0;
2350 /* See declaration. */
2352 void
2353 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2354 const dwarf2_debug_sections &names)
2356 flagword aflag = bfd_get_section_flags (abfd, sectp);
2358 if ((aflag & SEC_HAS_CONTENTS) == 0)
2361 else if (section_is_p (sectp->name, &names.info))
2363 this->info.s.section = sectp;
2364 this->info.size = bfd_get_section_size (sectp);
2366 else if (section_is_p (sectp->name, &names.abbrev))
2368 this->abbrev.s.section = sectp;
2369 this->abbrev.size = bfd_get_section_size (sectp);
2371 else if (section_is_p (sectp->name, &names.line))
2373 this->line.s.section = sectp;
2374 this->line.size = bfd_get_section_size (sectp);
2376 else if (section_is_p (sectp->name, &names.loc))
2378 this->loc.s.section = sectp;
2379 this->loc.size = bfd_get_section_size (sectp);
2381 else if (section_is_p (sectp->name, &names.loclists))
2383 this->loclists.s.section = sectp;
2384 this->loclists.size = bfd_get_section_size (sectp);
2386 else if (section_is_p (sectp->name, &names.macinfo))
2388 this->macinfo.s.section = sectp;
2389 this->macinfo.size = bfd_get_section_size (sectp);
2391 else if (section_is_p (sectp->name, &names.macro))
2393 this->macro.s.section = sectp;
2394 this->macro.size = bfd_get_section_size (sectp);
2396 else if (section_is_p (sectp->name, &names.str))
2398 this->str.s.section = sectp;
2399 this->str.size = bfd_get_section_size (sectp);
2401 else if (section_is_p (sectp->name, &names.line_str))
2403 this->line_str.s.section = sectp;
2404 this->line_str.size = bfd_get_section_size (sectp);
2406 else if (section_is_p (sectp->name, &names.addr))
2408 this->addr.s.section = sectp;
2409 this->addr.size = bfd_get_section_size (sectp);
2411 else if (section_is_p (sectp->name, &names.frame))
2413 this->frame.s.section = sectp;
2414 this->frame.size = bfd_get_section_size (sectp);
2416 else if (section_is_p (sectp->name, &names.eh_frame))
2418 this->eh_frame.s.section = sectp;
2419 this->eh_frame.size = bfd_get_section_size (sectp);
2421 else if (section_is_p (sectp->name, &names.ranges))
2423 this->ranges.s.section = sectp;
2424 this->ranges.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &names.rnglists))
2428 this->rnglists.s.section = sectp;
2429 this->rnglists.size = bfd_get_section_size (sectp);
2431 else if (section_is_p (sectp->name, &names.types))
2433 struct dwarf2_section_info type_section;
2435 memset (&type_section, 0, sizeof (type_section));
2436 type_section.s.section = sectp;
2437 type_section.size = bfd_get_section_size (sectp);
2439 VEC_safe_push (dwarf2_section_info_def, this->types,
2440 &type_section);
2442 else if (section_is_p (sectp->name, &names.gdb_index))
2444 this->gdb_index.s.section = sectp;
2445 this->gdb_index.size = bfd_get_section_size (sectp);
2447 else if (section_is_p (sectp->name, &names.debug_names))
2449 this->debug_names.s.section = sectp;
2450 this->debug_names.size = bfd_get_section_size (sectp);
2452 else if (section_is_p (sectp->name, &names.debug_aranges))
2454 this->debug_aranges.s.section = sectp;
2455 this->debug_aranges.size = bfd_get_section_size (sectp);
2458 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2459 && bfd_section_vma (abfd, sectp) == 0)
2460 this->has_section_at_zero = true;
2463 /* A helper function that decides whether a section is empty,
2464 or not present. */
2466 static int
2467 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2469 if (section->is_virtual)
2470 return section->size == 0;
2471 return section->s.section == NULL || section->size == 0;
2474 /* See dwarf2read.h. */
2476 void
2477 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2479 asection *sectp;
2480 bfd *abfd;
2481 gdb_byte *buf, *retbuf;
2483 if (info->readin)
2484 return;
2485 info->buffer = NULL;
2486 info->readin = 1;
2488 if (dwarf2_section_empty_p (info))
2489 return;
2491 sectp = get_section_bfd_section (info);
2493 /* If this is a virtual section we need to read in the real one first. */
2494 if (info->is_virtual)
2496 struct dwarf2_section_info *containing_section =
2497 get_containing_section (info);
2499 gdb_assert (sectp != NULL);
2500 if ((sectp->flags & SEC_RELOC) != 0)
2502 error (_("Dwarf Error: DWP format V2 with relocations is not"
2503 " supported in section %s [in module %s]"),
2504 get_section_name (info), get_section_file_name (info));
2506 dwarf2_read_section (objfile, containing_section);
2507 /* Other code should have already caught virtual sections that don't
2508 fit. */
2509 gdb_assert (info->virtual_offset + info->size
2510 <= containing_section->size);
2511 /* If the real section is empty or there was a problem reading the
2512 section we shouldn't get here. */
2513 gdb_assert (containing_section->buffer != NULL);
2514 info->buffer = containing_section->buffer + info->virtual_offset;
2515 return;
2518 /* If the section has relocations, we must read it ourselves.
2519 Otherwise we attach it to the BFD. */
2520 if ((sectp->flags & SEC_RELOC) == 0)
2522 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2523 return;
2526 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2527 info->buffer = buf;
2529 /* When debugging .o files, we may need to apply relocations; see
2530 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2531 We never compress sections in .o files, so we only need to
2532 try this when the section is not compressed. */
2533 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2534 if (retbuf != NULL)
2536 info->buffer = retbuf;
2537 return;
2540 abfd = get_section_bfd_owner (info);
2541 gdb_assert (abfd != NULL);
2543 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2544 || bfd_bread (buf, info->size, abfd) != info->size)
2546 error (_("Dwarf Error: Can't read DWARF data"
2547 " in section %s [in module %s]"),
2548 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2552 /* A helper function that returns the size of a section in a safe way.
2553 If you are positive that the section has been read before using the
2554 size, then it is safe to refer to the dwarf2_section_info object's
2555 "size" field directly. In other cases, you must call this
2556 function, because for compressed sections the size field is not set
2557 correctly until the section has been read. */
2559 static bfd_size_type
2560 dwarf2_section_size (struct objfile *objfile,
2561 struct dwarf2_section_info *info)
2563 if (!info->readin)
2564 dwarf2_read_section (objfile, info);
2565 return info->size;
2568 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2569 SECTION_NAME. */
2571 void
2572 dwarf2_get_section_info (struct objfile *objfile,
2573 enum dwarf2_section_enum sect,
2574 asection **sectp, const gdb_byte **bufp,
2575 bfd_size_type *sizep)
2577 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2578 struct dwarf2_section_info *info;
2580 /* We may see an objfile without any DWARF, in which case we just
2581 return nothing. */
2582 if (data == NULL)
2584 *sectp = NULL;
2585 *bufp = NULL;
2586 *sizep = 0;
2587 return;
2589 switch (sect)
2591 case DWARF2_DEBUG_FRAME:
2592 info = &data->frame;
2593 break;
2594 case DWARF2_EH_FRAME:
2595 info = &data->eh_frame;
2596 break;
2597 default:
2598 gdb_assert_not_reached ("unexpected section");
2601 dwarf2_read_section (objfile, info);
2603 *sectp = get_section_bfd_section (info);
2604 *bufp = info->buffer;
2605 *sizep = info->size;
2608 /* A helper function to find the sections for a .dwz file. */
2610 static void
2611 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2613 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2615 /* Note that we only support the standard ELF names, because .dwz
2616 is ELF-only (at the time of writing). */
2617 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2619 dwz_file->abbrev.s.section = sectp;
2620 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2624 dwz_file->info.s.section = sectp;
2625 dwz_file->info.size = bfd_get_section_size (sectp);
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2629 dwz_file->str.s.section = sectp;
2630 dwz_file->str.size = bfd_get_section_size (sectp);
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2634 dwz_file->line.s.section = sectp;
2635 dwz_file->line.size = bfd_get_section_size (sectp);
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2639 dwz_file->macro.s.section = sectp;
2640 dwz_file->macro.size = bfd_get_section_size (sectp);
2642 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2644 dwz_file->gdb_index.s.section = sectp;
2645 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2647 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2649 dwz_file->debug_names.s.section = sectp;
2650 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2654 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2655 there is no .gnu_debugaltlink section in the file. Error if there
2656 is such a section but the file cannot be found. */
2658 static struct dwz_file *
2659 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2661 const char *filename;
2662 bfd_size_type buildid_len_arg;
2663 size_t buildid_len;
2664 bfd_byte *buildid;
2666 if (dwarf2_per_objfile->dwz_file != NULL)
2667 return dwarf2_per_objfile->dwz_file.get ();
2669 bfd_set_error (bfd_error_no_error);
2670 gdb::unique_xmalloc_ptr<char> data
2671 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2672 &buildid_len_arg, &buildid));
2673 if (data == NULL)
2675 if (bfd_get_error () == bfd_error_no_error)
2676 return NULL;
2677 error (_("could not read '.gnu_debugaltlink' section: %s"),
2678 bfd_errmsg (bfd_get_error ()));
2681 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2683 buildid_len = (size_t) buildid_len_arg;
2685 filename = data.get ();
2687 std::string abs_storage;
2688 if (!IS_ABSOLUTE_PATH (filename))
2690 gdb::unique_xmalloc_ptr<char> abs
2691 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2693 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2694 filename = abs_storage.c_str ();
2697 /* First try the file name given in the section. If that doesn't
2698 work, try to use the build-id instead. */
2699 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2700 if (dwz_bfd != NULL)
2702 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2703 dwz_bfd.reset (nullptr);
2706 if (dwz_bfd == NULL)
2707 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2709 if (dwz_bfd == NULL)
2710 error (_("could not find '.gnu_debugaltlink' file for %s"),
2711 objfile_name (dwarf2_per_objfile->objfile));
2713 std::unique_ptr<struct dwz_file> result
2714 (new struct dwz_file (std::move (dwz_bfd)));
2716 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2717 result.get ());
2719 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2720 result->dwz_bfd.get ());
2721 dwarf2_per_objfile->dwz_file = std::move (result);
2722 return dwarf2_per_objfile->dwz_file.get ();
2725 /* DWARF quick_symbols_functions support. */
2727 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2728 unique line tables, so we maintain a separate table of all .debug_line
2729 derived entries to support the sharing.
2730 All the quick functions need is the list of file names. We discard the
2731 line_header when we're done and don't need to record it here. */
2732 struct quick_file_names
2734 /* The data used to construct the hash key. */
2735 struct stmt_list_hash hash;
2737 /* The number of entries in file_names, real_names. */
2738 unsigned int num_file_names;
2740 /* The file names from the line table, after being run through
2741 file_full_name. */
2742 const char **file_names;
2744 /* The file names from the line table after being run through
2745 gdb_realpath. These are computed lazily. */
2746 const char **real_names;
2749 /* When using the index (and thus not using psymtabs), each CU has an
2750 object of this type. This is used to hold information needed by
2751 the various "quick" methods. */
2752 struct dwarf2_per_cu_quick_data
2754 /* The file table. This can be NULL if there was no file table
2755 or it's currently not read in.
2756 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2757 struct quick_file_names *file_names;
2759 /* The corresponding symbol table. This is NULL if symbols for this
2760 CU have not yet been read. */
2761 struct compunit_symtab *compunit_symtab;
2763 /* A temporary mark bit used when iterating over all CUs in
2764 expand_symtabs_matching. */
2765 unsigned int mark : 1;
2767 /* True if we've tried to read the file table and found there isn't one.
2768 There will be no point in trying to read it again next time. */
2769 unsigned int no_file_data : 1;
2772 /* Utility hash function for a stmt_list_hash. */
2774 static hashval_t
2775 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2777 hashval_t v = 0;
2779 if (stmt_list_hash->dwo_unit != NULL)
2780 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2781 v += to_underlying (stmt_list_hash->line_sect_off);
2782 return v;
2785 /* Utility equality function for a stmt_list_hash. */
2787 static int
2788 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2789 const struct stmt_list_hash *rhs)
2791 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2792 return 0;
2793 if (lhs->dwo_unit != NULL
2794 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2795 return 0;
2797 return lhs->line_sect_off == rhs->line_sect_off;
2800 /* Hash function for a quick_file_names. */
2802 static hashval_t
2803 hash_file_name_entry (const void *e)
2805 const struct quick_file_names *file_data
2806 = (const struct quick_file_names *) e;
2808 return hash_stmt_list_entry (&file_data->hash);
2811 /* Equality function for a quick_file_names. */
2813 static int
2814 eq_file_name_entry (const void *a, const void *b)
2816 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2817 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2819 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2822 /* Delete function for a quick_file_names. */
2824 static void
2825 delete_file_name_entry (void *e)
2827 struct quick_file_names *file_data = (struct quick_file_names *) e;
2828 int i;
2830 for (i = 0; i < file_data->num_file_names; ++i)
2832 xfree ((void*) file_data->file_names[i]);
2833 if (file_data->real_names)
2834 xfree ((void*) file_data->real_names[i]);
2837 /* The space for the struct itself lives on objfile_obstack,
2838 so we don't free it here. */
2841 /* Create a quick_file_names hash table. */
2843 static htab_t
2844 create_quick_file_names_table (unsigned int nr_initial_entries)
2846 return htab_create_alloc (nr_initial_entries,
2847 hash_file_name_entry, eq_file_name_entry,
2848 delete_file_name_entry, xcalloc, xfree);
2851 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2852 have to be created afterwards. You should call age_cached_comp_units after
2853 processing PER_CU->CU. dw2_setup must have been already called. */
2855 static void
2856 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2858 if (per_cu->is_debug_types)
2859 load_full_type_unit (per_cu);
2860 else
2861 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2863 if (per_cu->cu == NULL)
2864 return; /* Dummy CU. */
2866 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2869 /* Read in the symbols for PER_CU. */
2871 static void
2872 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2874 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2876 /* Skip type_unit_groups, reading the type units they contain
2877 is handled elsewhere. */
2878 if (IS_TYPE_UNIT_GROUP (per_cu))
2879 return;
2881 /* The destructor of dwarf2_queue_guard frees any entries left on
2882 the queue. After this point we're guaranteed to leave this function
2883 with the dwarf queue empty. */
2884 dwarf2_queue_guard q_guard;
2886 if (dwarf2_per_objfile->using_index
2887 ? per_cu->v.quick->compunit_symtab == NULL
2888 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2890 queue_comp_unit (per_cu, language_minimal);
2891 load_cu (per_cu, skip_partial);
2893 /* If we just loaded a CU from a DWO, and we're working with an index
2894 that may badly handle TUs, load all the TUs in that DWO as well.
2895 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2896 if (!per_cu->is_debug_types
2897 && per_cu->cu != NULL
2898 && per_cu->cu->dwo_unit != NULL
2899 && dwarf2_per_objfile->index_table != NULL
2900 && dwarf2_per_objfile->index_table->version <= 7
2901 /* DWP files aren't supported yet. */
2902 && get_dwp_file (dwarf2_per_objfile) == NULL)
2903 queue_and_load_all_dwo_tus (per_cu);
2906 process_queue (dwarf2_per_objfile);
2908 /* Age the cache, releasing compilation units that have not
2909 been used recently. */
2910 age_cached_comp_units (dwarf2_per_objfile);
2913 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2914 the objfile from which this CU came. Returns the resulting symbol
2915 table. */
2917 static struct compunit_symtab *
2918 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2920 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2922 gdb_assert (dwarf2_per_objfile->using_index);
2923 if (!per_cu->v.quick->compunit_symtab)
2925 free_cached_comp_units freer (dwarf2_per_objfile);
2926 scoped_restore decrementer = increment_reading_symtab ();
2927 dw2_do_instantiate_symtab (per_cu, skip_partial);
2928 process_cu_includes (dwarf2_per_objfile);
2931 return per_cu->v.quick->compunit_symtab;
2934 /* See declaration. */
2936 dwarf2_per_cu_data *
2937 dwarf2_per_objfile::get_cutu (int index)
2939 if (index >= this->all_comp_units.size ())
2941 index -= this->all_comp_units.size ();
2942 gdb_assert (index < this->all_type_units.size ());
2943 return &this->all_type_units[index]->per_cu;
2946 return this->all_comp_units[index];
2949 /* See declaration. */
2951 dwarf2_per_cu_data *
2952 dwarf2_per_objfile::get_cu (int index)
2954 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2956 return this->all_comp_units[index];
2959 /* See declaration. */
2961 signatured_type *
2962 dwarf2_per_objfile::get_tu (int index)
2964 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2966 return this->all_type_units[index];
2969 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2970 objfile_obstack, and constructed with the specified field
2971 values. */
2973 static dwarf2_per_cu_data *
2974 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2975 struct dwarf2_section_info *section,
2976 int is_dwz,
2977 sect_offset sect_off, ULONGEST length)
2979 struct objfile *objfile = dwarf2_per_objfile->objfile;
2980 dwarf2_per_cu_data *the_cu
2981 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2982 struct dwarf2_per_cu_data);
2983 the_cu->sect_off = sect_off;
2984 the_cu->length = length;
2985 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2986 the_cu->section = section;
2987 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2988 struct dwarf2_per_cu_quick_data);
2989 the_cu->is_dwz = is_dwz;
2990 return the_cu;
2993 /* A helper for create_cus_from_index that handles a given list of
2994 CUs. */
2996 static void
2997 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2998 const gdb_byte *cu_list, offset_type n_elements,
2999 struct dwarf2_section_info *section,
3000 int is_dwz)
3002 for (offset_type i = 0; i < n_elements; i += 2)
3004 gdb_static_assert (sizeof (ULONGEST) >= 8);
3006 sect_offset sect_off
3007 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3008 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3009 cu_list += 2 * 8;
3011 dwarf2_per_cu_data *per_cu
3012 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3013 sect_off, length);
3014 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3018 /* Read the CU list from the mapped index, and use it to create all
3019 the CU objects for this objfile. */
3021 static void
3022 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3023 const gdb_byte *cu_list, offset_type cu_list_elements,
3024 const gdb_byte *dwz_list, offset_type dwz_elements)
3026 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3027 dwarf2_per_objfile->all_comp_units.reserve
3028 ((cu_list_elements + dwz_elements) / 2);
3030 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3031 &dwarf2_per_objfile->info, 0);
3033 if (dwz_elements == 0)
3034 return;
3036 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3037 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3038 &dwz->info, 1);
3041 /* Create the signatured type hash table from the index. */
3043 static void
3044 create_signatured_type_table_from_index
3045 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3046 struct dwarf2_section_info *section,
3047 const gdb_byte *bytes,
3048 offset_type elements)
3050 struct objfile *objfile = dwarf2_per_objfile->objfile;
3052 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3053 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3055 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3057 for (offset_type i = 0; i < elements; i += 3)
3059 struct signatured_type *sig_type;
3060 ULONGEST signature;
3061 void **slot;
3062 cu_offset type_offset_in_tu;
3064 gdb_static_assert (sizeof (ULONGEST) >= 8);
3065 sect_offset sect_off
3066 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3067 type_offset_in_tu
3068 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3069 BFD_ENDIAN_LITTLE);
3070 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3071 bytes += 3 * 8;
3073 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3074 struct signatured_type);
3075 sig_type->signature = signature;
3076 sig_type->type_offset_in_tu = type_offset_in_tu;
3077 sig_type->per_cu.is_debug_types = 1;
3078 sig_type->per_cu.section = section;
3079 sig_type->per_cu.sect_off = sect_off;
3080 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3081 sig_type->per_cu.v.quick
3082 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3083 struct dwarf2_per_cu_quick_data);
3085 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3086 *slot = sig_type;
3088 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3091 dwarf2_per_objfile->signatured_types = sig_types_hash;
3094 /* Create the signatured type hash table from .debug_names. */
3096 static void
3097 create_signatured_type_table_from_debug_names
3098 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3099 const mapped_debug_names &map,
3100 struct dwarf2_section_info *section,
3101 struct dwarf2_section_info *abbrev_section)
3103 struct objfile *objfile = dwarf2_per_objfile->objfile;
3105 dwarf2_read_section (objfile, section);
3106 dwarf2_read_section (objfile, abbrev_section);
3108 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3109 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3111 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3113 for (uint32_t i = 0; i < map.tu_count; ++i)
3115 struct signatured_type *sig_type;
3116 void **slot;
3118 sect_offset sect_off
3119 = (sect_offset) (extract_unsigned_integer
3120 (map.tu_table_reordered + i * map.offset_size,
3121 map.offset_size,
3122 map.dwarf5_byte_order));
3124 comp_unit_head cu_header;
3125 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3126 abbrev_section,
3127 section->buffer + to_underlying (sect_off),
3128 rcuh_kind::TYPE);
3130 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3131 struct signatured_type);
3132 sig_type->signature = cu_header.signature;
3133 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3134 sig_type->per_cu.is_debug_types = 1;
3135 sig_type->per_cu.section = section;
3136 sig_type->per_cu.sect_off = sect_off;
3137 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3138 sig_type->per_cu.v.quick
3139 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3140 struct dwarf2_per_cu_quick_data);
3142 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3143 *slot = sig_type;
3145 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3148 dwarf2_per_objfile->signatured_types = sig_types_hash;
3151 /* Read the address map data from the mapped index, and use it to
3152 populate the objfile's psymtabs_addrmap. */
3154 static void
3155 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3156 struct mapped_index *index)
3158 struct objfile *objfile = dwarf2_per_objfile->objfile;
3159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3160 const gdb_byte *iter, *end;
3161 struct addrmap *mutable_map;
3162 CORE_ADDR baseaddr;
3164 auto_obstack temp_obstack;
3166 mutable_map = addrmap_create_mutable (&temp_obstack);
3168 iter = index->address_table.data ();
3169 end = iter + index->address_table.size ();
3171 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3173 while (iter < end)
3175 ULONGEST hi, lo, cu_index;
3176 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3177 iter += 8;
3178 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3179 iter += 8;
3180 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3181 iter += 4;
3183 if (lo > hi)
3185 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3186 hex_string (lo), hex_string (hi));
3187 continue;
3190 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3192 complaint (_(".gdb_index address table has invalid CU number %u"),
3193 (unsigned) cu_index);
3194 continue;
3197 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3198 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3199 addrmap_set_empty (mutable_map, lo, hi - 1,
3200 dwarf2_per_objfile->get_cu (cu_index));
3203 objfile->partial_symtabs->psymtabs_addrmap
3204 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3207 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3208 populate the objfile's psymtabs_addrmap. */
3210 static void
3211 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3212 struct dwarf2_section_info *section)
3214 struct objfile *objfile = dwarf2_per_objfile->objfile;
3215 bfd *abfd = objfile->obfd;
3216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3217 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3218 SECT_OFF_TEXT (objfile));
3220 auto_obstack temp_obstack;
3221 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3223 std::unordered_map<sect_offset,
3224 dwarf2_per_cu_data *,
3225 gdb::hash_enum<sect_offset>>
3226 debug_info_offset_to_per_cu;
3227 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3229 const auto insertpair
3230 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3231 if (!insertpair.second)
3233 warning (_("Section .debug_aranges in %s has duplicate "
3234 "debug_info_offset %s, ignoring .debug_aranges."),
3235 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3236 return;
3240 dwarf2_read_section (objfile, section);
3242 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3244 const gdb_byte *addr = section->buffer;
3246 while (addr < section->buffer + section->size)
3248 const gdb_byte *const entry_addr = addr;
3249 unsigned int bytes_read;
3251 const LONGEST entry_length = read_initial_length (abfd, addr,
3252 &bytes_read);
3253 addr += bytes_read;
3255 const gdb_byte *const entry_end = addr + entry_length;
3256 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3257 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3258 if (addr + entry_length > section->buffer + section->size)
3260 warning (_("Section .debug_aranges in %s entry at offset %zu "
3261 "length %s exceeds section length %s, "
3262 "ignoring .debug_aranges."),
3263 objfile_name (objfile), entry_addr - section->buffer,
3264 plongest (bytes_read + entry_length),
3265 pulongest (section->size));
3266 return;
3269 /* The version number. */
3270 const uint16_t version = read_2_bytes (abfd, addr);
3271 addr += 2;
3272 if (version != 2)
3274 warning (_("Section .debug_aranges in %s entry at offset %zu "
3275 "has unsupported version %d, ignoring .debug_aranges."),
3276 objfile_name (objfile), entry_addr - section->buffer,
3277 version);
3278 return;
3281 const uint64_t debug_info_offset
3282 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3283 addr += offset_size;
3284 const auto per_cu_it
3285 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3286 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "debug_info_offset %s does not exists, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 pulongest (debug_info_offset));
3293 return;
3295 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3297 const uint8_t address_size = *addr++;
3298 if (address_size < 1 || address_size > 8)
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "address_size %u is invalid, ignoring .debug_aranges."),
3302 objfile_name (objfile), entry_addr - section->buffer,
3303 address_size);
3304 return;
3307 const uint8_t segment_selector_size = *addr++;
3308 if (segment_selector_size != 0)
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "segment_selector_size %u is not supported, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 segment_selector_size);
3315 return;
3318 /* Must pad to an alignment boundary that is twice the address
3319 size. It is undocumented by the DWARF standard but GCC does
3320 use it. */
3321 for (size_t padding = ((-(addr - section->buffer))
3322 & (2 * address_size - 1));
3323 padding > 0; padding--)
3324 if (*addr++ != 0)
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "padding is not zero, ignoring .debug_aranges."),
3328 objfile_name (objfile), entry_addr - section->buffer);
3329 return;
3332 for (;;)
3334 if (addr + 2 * address_size > entry_end)
3336 warning (_("Section .debug_aranges in %s entry at offset %zu "
3337 "address list is not properly terminated, "
3338 "ignoring .debug_aranges."),
3339 objfile_name (objfile), entry_addr - section->buffer);
3340 return;
3342 ULONGEST start = extract_unsigned_integer (addr, address_size,
3343 dwarf5_byte_order);
3344 addr += address_size;
3345 ULONGEST length = extract_unsigned_integer (addr, address_size,
3346 dwarf5_byte_order);
3347 addr += address_size;
3348 if (start == 0 && length == 0)
3349 break;
3350 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3352 /* Symbol was eliminated due to a COMDAT group. */
3353 continue;
3355 ULONGEST end = start + length;
3356 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3357 - baseaddr);
3358 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3359 - baseaddr);
3360 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3364 objfile->partial_symtabs->psymtabs_addrmap
3365 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3368 /* Find a slot in the mapped index INDEX for the object named NAME.
3369 If NAME is found, set *VEC_OUT to point to the CU vector in the
3370 constant pool and return true. If NAME cannot be found, return
3371 false. */
3373 static bool
3374 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3375 offset_type **vec_out)
3377 offset_type hash;
3378 offset_type slot, step;
3379 int (*cmp) (const char *, const char *);
3381 gdb::unique_xmalloc_ptr<char> without_params;
3382 if (current_language->la_language == language_cplus
3383 || current_language->la_language == language_fortran
3384 || current_language->la_language == language_d)
3386 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3387 not contain any. */
3389 if (strchr (name, '(') != NULL)
3391 without_params = cp_remove_params (name);
3393 if (without_params != NULL)
3394 name = without_params.get ();
3398 /* Index version 4 did not support case insensitive searches. But the
3399 indices for case insensitive languages are built in lowercase, therefore
3400 simulate our NAME being searched is also lowercased. */
3401 hash = mapped_index_string_hash ((index->version == 4
3402 && case_sensitivity == case_sensitive_off
3403 ? 5 : index->version),
3404 name);
3406 slot = hash & (index->symbol_table.size () - 1);
3407 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3408 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3410 for (;;)
3412 const char *str;
3414 const auto &bucket = index->symbol_table[slot];
3415 if (bucket.name == 0 && bucket.vec == 0)
3416 return false;
3418 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3419 if (!cmp (name, str))
3421 *vec_out = (offset_type *) (index->constant_pool
3422 + MAYBE_SWAP (bucket.vec));
3423 return true;
3426 slot = (slot + step) & (index->symbol_table.size () - 1);
3430 /* A helper function that reads the .gdb_index from BUFFER and fills
3431 in MAP. FILENAME is the name of the file containing the data;
3432 it is used for error reporting. DEPRECATED_OK is true if it is
3433 ok to use deprecated sections.
3435 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3436 out parameters that are filled in with information about the CU and
3437 TU lists in the section.
3439 Returns true if all went well, false otherwise. */
3441 static bool
3442 read_gdb_index_from_buffer (struct objfile *objfile,
3443 const char *filename,
3444 bool deprecated_ok,
3445 gdb::array_view<const gdb_byte> buffer,
3446 struct mapped_index *map,
3447 const gdb_byte **cu_list,
3448 offset_type *cu_list_elements,
3449 const gdb_byte **types_list,
3450 offset_type *types_list_elements)
3452 const gdb_byte *addr = &buffer[0];
3454 /* Version check. */
3455 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3456 /* Versions earlier than 3 emitted every copy of a psymbol. This
3457 causes the index to behave very poorly for certain requests. Version 3
3458 contained incomplete addrmap. So, it seems better to just ignore such
3459 indices. */
3460 if (version < 4)
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3465 warning (_("Skipping obsolete .gdb_index section in %s."),
3466 filename);
3467 warning_printed = 1;
3469 return 0;
3471 /* Index version 4 uses a different hash function than index version
3472 5 and later.
3474 Versions earlier than 6 did not emit psymbols for inlined
3475 functions. Using these files will cause GDB not to be able to
3476 set breakpoints on inlined functions by name, so we ignore these
3477 indices unless the user has done
3478 "set use-deprecated-index-sections on". */
3479 if (version < 6 && !deprecated_ok)
3481 static int warning_printed = 0;
3482 if (!warning_printed)
3484 warning (_("\
3485 Skipping deprecated .gdb_index section in %s.\n\
3486 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3487 to use the section anyway."),
3488 filename);
3489 warning_printed = 1;
3491 return 0;
3493 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3494 of the TU (for symbols coming from TUs),
3495 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3496 Plus gold-generated indices can have duplicate entries for global symbols,
3497 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3498 These are just performance bugs, and we can't distinguish gdb-generated
3499 indices from gold-generated ones, so issue no warning here. */
3501 /* Indexes with higher version than the one supported by GDB may be no
3502 longer backward compatible. */
3503 if (version > 8)
3504 return 0;
3506 map->version = version;
3508 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3510 int i = 0;
3511 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3512 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3513 / 8);
3514 ++i;
3516 *types_list = addr + MAYBE_SWAP (metadata[i]);
3517 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3518 - MAYBE_SWAP (metadata[i]))
3519 / 8);
3520 ++i;
3522 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3523 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3524 map->address_table
3525 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3526 ++i;
3528 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3529 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3530 map->symbol_table
3531 = gdb::array_view<mapped_index::symbol_table_slot>
3532 ((mapped_index::symbol_table_slot *) symbol_table,
3533 (mapped_index::symbol_table_slot *) symbol_table_end);
3535 ++i;
3536 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3538 return 1;
3541 /* Callback types for dwarf2_read_gdb_index. */
3543 typedef gdb::function_view
3544 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3545 get_gdb_index_contents_ftype;
3546 typedef gdb::function_view
3547 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3548 get_gdb_index_contents_dwz_ftype;
3550 /* Read .gdb_index. If everything went ok, initialize the "quick"
3551 elements of all the CUs and return 1. Otherwise, return 0. */
3553 static int
3554 dwarf2_read_gdb_index
3555 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3556 get_gdb_index_contents_ftype get_gdb_index_contents,
3557 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3559 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3560 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3561 struct dwz_file *dwz;
3562 struct objfile *objfile = dwarf2_per_objfile->objfile;
3564 gdb::array_view<const gdb_byte> main_index_contents
3565 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3567 if (main_index_contents.empty ())
3568 return 0;
3570 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3571 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3572 use_deprecated_index_sections,
3573 main_index_contents, map.get (), &cu_list,
3574 &cu_list_elements, &types_list,
3575 &types_list_elements))
3576 return 0;
3578 /* Don't use the index if it's empty. */
3579 if (map->symbol_table.empty ())
3580 return 0;
3582 /* If there is a .dwz file, read it so we can get its CU list as
3583 well. */
3584 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3585 if (dwz != NULL)
3587 struct mapped_index dwz_map;
3588 const gdb_byte *dwz_types_ignore;
3589 offset_type dwz_types_elements_ignore;
3591 gdb::array_view<const gdb_byte> dwz_index_content
3592 = get_gdb_index_contents_dwz (objfile, dwz);
3594 if (dwz_index_content.empty ())
3595 return 0;
3597 if (!read_gdb_index_from_buffer (objfile,
3598 bfd_get_filename (dwz->dwz_bfd), 1,
3599 dwz_index_content, &dwz_map,
3600 &dwz_list, &dwz_list_elements,
3601 &dwz_types_ignore,
3602 &dwz_types_elements_ignore))
3604 warning (_("could not read '.gdb_index' section from %s; skipping"),
3605 bfd_get_filename (dwz->dwz_bfd));
3606 return 0;
3610 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3611 dwz_list, dwz_list_elements);
3613 if (types_list_elements)
3615 struct dwarf2_section_info *section;
3617 /* We can only handle a single .debug_types when we have an
3618 index. */
3619 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3620 return 0;
3622 section = VEC_index (dwarf2_section_info_def,
3623 dwarf2_per_objfile->types, 0);
3625 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3626 types_list, types_list_elements);
3629 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3631 dwarf2_per_objfile->index_table = std::move (map);
3632 dwarf2_per_objfile->using_index = 1;
3633 dwarf2_per_objfile->quick_file_names_table =
3634 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3636 return 1;
3639 /* die_reader_func for dw2_get_file_names. */
3641 static void
3642 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3643 const gdb_byte *info_ptr,
3644 struct die_info *comp_unit_die,
3645 int has_children,
3646 void *data)
3648 struct dwarf2_cu *cu = reader->cu;
3649 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3650 struct dwarf2_per_objfile *dwarf2_per_objfile
3651 = cu->per_cu->dwarf2_per_objfile;
3652 struct objfile *objfile = dwarf2_per_objfile->objfile;
3653 struct dwarf2_per_cu_data *lh_cu;
3654 struct attribute *attr;
3655 int i;
3656 void **slot;
3657 struct quick_file_names *qfn;
3659 gdb_assert (! this_cu->is_debug_types);
3661 /* Our callers never want to match partial units -- instead they
3662 will match the enclosing full CU. */
3663 if (comp_unit_die->tag == DW_TAG_partial_unit)
3665 this_cu->v.quick->no_file_data = 1;
3666 return;
3669 lh_cu = this_cu;
3670 slot = NULL;
3672 line_header_up lh;
3673 sect_offset line_offset {};
3675 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3676 if (attr)
3678 struct quick_file_names find_entry;
3680 line_offset = (sect_offset) DW_UNSND (attr);
3682 /* We may have already read in this line header (TU line header sharing).
3683 If we have we're done. */
3684 find_entry.hash.dwo_unit = cu->dwo_unit;
3685 find_entry.hash.line_sect_off = line_offset;
3686 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3687 &find_entry, INSERT);
3688 if (*slot != NULL)
3690 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3691 return;
3694 lh = dwarf_decode_line_header (line_offset, cu);
3696 if (lh == NULL)
3698 lh_cu->v.quick->no_file_data = 1;
3699 return;
3702 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3703 qfn->hash.dwo_unit = cu->dwo_unit;
3704 qfn->hash.line_sect_off = line_offset;
3705 gdb_assert (slot != NULL);
3706 *slot = qfn;
3708 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3710 qfn->num_file_names = lh->file_names.size ();
3711 qfn->file_names =
3712 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3713 for (i = 0; i < lh->file_names.size (); ++i)
3714 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3715 qfn->real_names = NULL;
3717 lh_cu->v.quick->file_names = qfn;
3720 /* A helper for the "quick" functions which attempts to read the line
3721 table for THIS_CU. */
3723 static struct quick_file_names *
3724 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3726 /* This should never be called for TUs. */
3727 gdb_assert (! this_cu->is_debug_types);
3728 /* Nor type unit groups. */
3729 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3731 if (this_cu->v.quick->file_names != NULL)
3732 return this_cu->v.quick->file_names;
3733 /* If we know there is no line data, no point in looking again. */
3734 if (this_cu->v.quick->no_file_data)
3735 return NULL;
3737 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3739 if (this_cu->v.quick->no_file_data)
3740 return NULL;
3741 return this_cu->v.quick->file_names;
3744 /* A helper for the "quick" functions which computes and caches the
3745 real path for a given file name from the line table. */
3747 static const char *
3748 dw2_get_real_path (struct objfile *objfile,
3749 struct quick_file_names *qfn, int index)
3751 if (qfn->real_names == NULL)
3752 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3753 qfn->num_file_names, const char *);
3755 if (qfn->real_names[index] == NULL)
3756 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3758 return qfn->real_names[index];
3761 static struct symtab *
3762 dw2_find_last_source_symtab (struct objfile *objfile)
3764 struct dwarf2_per_objfile *dwarf2_per_objfile
3765 = get_dwarf2_per_objfile (objfile);
3766 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3767 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3769 if (cust == NULL)
3770 return NULL;
3772 return compunit_primary_filetab (cust);
3775 /* Traversal function for dw2_forget_cached_source_info. */
3777 static int
3778 dw2_free_cached_file_names (void **slot, void *info)
3780 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3782 if (file_data->real_names)
3784 int i;
3786 for (i = 0; i < file_data->num_file_names; ++i)
3788 xfree ((void*) file_data->real_names[i]);
3789 file_data->real_names[i] = NULL;
3793 return 1;
3796 static void
3797 dw2_forget_cached_source_info (struct objfile *objfile)
3799 struct dwarf2_per_objfile *dwarf2_per_objfile
3800 = get_dwarf2_per_objfile (objfile);
3802 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3803 dw2_free_cached_file_names, NULL);
3806 /* Helper function for dw2_map_symtabs_matching_filename that expands
3807 the symtabs and calls the iterator. */
3809 static int
3810 dw2_map_expand_apply (struct objfile *objfile,
3811 struct dwarf2_per_cu_data *per_cu,
3812 const char *name, const char *real_path,
3813 gdb::function_view<bool (symtab *)> callback)
3815 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3817 /* Don't visit already-expanded CUs. */
3818 if (per_cu->v.quick->compunit_symtab)
3819 return 0;
3821 /* This may expand more than one symtab, and we want to iterate over
3822 all of them. */
3823 dw2_instantiate_symtab (per_cu, false);
3825 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3826 last_made, callback);
3829 /* Implementation of the map_symtabs_matching_filename method. */
3831 static bool
3832 dw2_map_symtabs_matching_filename
3833 (struct objfile *objfile, const char *name, const char *real_path,
3834 gdb::function_view<bool (symtab *)> callback)
3836 const char *name_basename = lbasename (name);
3837 struct dwarf2_per_objfile *dwarf2_per_objfile
3838 = get_dwarf2_per_objfile (objfile);
3840 /* The rule is CUs specify all the files, including those used by
3841 any TU, so there's no need to scan TUs here. */
3843 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3845 /* We only need to look at symtabs not already expanded. */
3846 if (per_cu->v.quick->compunit_symtab)
3847 continue;
3849 quick_file_names *file_data = dw2_get_file_names (per_cu);
3850 if (file_data == NULL)
3851 continue;
3853 for (int j = 0; j < file_data->num_file_names; ++j)
3855 const char *this_name = file_data->file_names[j];
3856 const char *this_real_name;
3858 if (compare_filenames_for_search (this_name, name))
3860 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3861 callback))
3862 return true;
3863 continue;
3866 /* Before we invoke realpath, which can get expensive when many
3867 files are involved, do a quick comparison of the basenames. */
3868 if (! basenames_may_differ
3869 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3870 continue;
3872 this_real_name = dw2_get_real_path (objfile, file_data, j);
3873 if (compare_filenames_for_search (this_real_name, name))
3875 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3876 callback))
3877 return true;
3878 continue;
3881 if (real_path != NULL)
3883 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3884 gdb_assert (IS_ABSOLUTE_PATH (name));
3885 if (this_real_name != NULL
3886 && FILENAME_CMP (real_path, this_real_name) == 0)
3888 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3889 callback))
3890 return true;
3891 continue;
3897 return false;
3900 /* Struct used to manage iterating over all CUs looking for a symbol. */
3902 struct dw2_symtab_iterator
3904 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3905 struct dwarf2_per_objfile *dwarf2_per_objfile;
3906 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3907 int want_specific_block;
3908 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3909 Unused if !WANT_SPECIFIC_BLOCK. */
3910 int block_index;
3911 /* The kind of symbol we're looking for. */
3912 domain_enum domain;
3913 /* The list of CUs from the index entry of the symbol,
3914 or NULL if not found. */
3915 offset_type *vec;
3916 /* The next element in VEC to look at. */
3917 int next;
3918 /* The number of elements in VEC, or zero if there is no match. */
3919 int length;
3920 /* Have we seen a global version of the symbol?
3921 If so we can ignore all further global instances.
3922 This is to work around gold/15646, inefficient gold-generated
3923 indices. */
3924 int global_seen;
3927 /* Initialize the index symtab iterator ITER.
3928 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3929 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3931 static void
3932 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3933 struct dwarf2_per_objfile *dwarf2_per_objfile,
3934 int want_specific_block,
3935 int block_index,
3936 domain_enum domain,
3937 const char *name)
3939 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3940 iter->want_specific_block = want_specific_block;
3941 iter->block_index = block_index;
3942 iter->domain = domain;
3943 iter->next = 0;
3944 iter->global_seen = 0;
3946 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3948 /* index is NULL if OBJF_READNOW. */
3949 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3950 iter->length = MAYBE_SWAP (*iter->vec);
3951 else
3953 iter->vec = NULL;
3954 iter->length = 0;
3958 /* Return the next matching CU or NULL if there are no more. */
3960 static struct dwarf2_per_cu_data *
3961 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3963 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3965 for ( ; iter->next < iter->length; ++iter->next)
3967 offset_type cu_index_and_attrs =
3968 MAYBE_SWAP (iter->vec[iter->next + 1]);
3969 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3970 int want_static = iter->block_index != GLOBAL_BLOCK;
3971 /* This value is only valid for index versions >= 7. */
3972 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3973 gdb_index_symbol_kind symbol_kind =
3974 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3975 /* Only check the symbol attributes if they're present.
3976 Indices prior to version 7 don't record them,
3977 and indices >= 7 may elide them for certain symbols
3978 (gold does this). */
3979 int attrs_valid =
3980 (dwarf2_per_objfile->index_table->version >= 7
3981 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3983 /* Don't crash on bad data. */
3984 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3985 + dwarf2_per_objfile->all_type_units.size ()))
3987 complaint (_(".gdb_index entry has bad CU index"
3988 " [in module %s]"),
3989 objfile_name (dwarf2_per_objfile->objfile));
3990 continue;
3993 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3995 /* Skip if already read in. */
3996 if (per_cu->v.quick->compunit_symtab)
3997 continue;
3999 /* Check static vs global. */
4000 if (attrs_valid)
4002 if (iter->want_specific_block
4003 && want_static != is_static)
4004 continue;
4005 /* Work around gold/15646. */
4006 if (!is_static && iter->global_seen)
4007 continue;
4008 if (!is_static)
4009 iter->global_seen = 1;
4012 /* Only check the symbol's kind if it has one. */
4013 if (attrs_valid)
4015 switch (iter->domain)
4017 case VAR_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4019 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4020 /* Some types are also in VAR_DOMAIN. */
4021 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4022 continue;
4023 break;
4024 case STRUCT_DOMAIN:
4025 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4026 continue;
4027 break;
4028 case LABEL_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4030 continue;
4031 break;
4032 default:
4033 break;
4037 ++iter->next;
4038 return per_cu;
4041 return NULL;
4044 static struct compunit_symtab *
4045 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4046 const char *name, domain_enum domain)
4048 struct compunit_symtab *stab_best = NULL;
4049 struct dwarf2_per_objfile *dwarf2_per_objfile
4050 = get_dwarf2_per_objfile (objfile);
4052 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4054 struct dw2_symtab_iterator iter;
4055 struct dwarf2_per_cu_data *per_cu;
4057 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4059 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4061 struct symbol *sym, *with_opaque = NULL;
4062 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4063 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4064 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4066 sym = block_find_symbol (block, name, domain,
4067 block_find_non_opaque_type_preferred,
4068 &with_opaque);
4070 /* Some caution must be observed with overloaded functions
4071 and methods, since the index will not contain any overload
4072 information (but NAME might contain it). */
4074 if (sym != NULL
4075 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4076 return stab;
4077 if (with_opaque != NULL
4078 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4079 stab_best = stab;
4081 /* Keep looking through other CUs. */
4084 return stab_best;
4087 static void
4088 dw2_print_stats (struct objfile *objfile)
4090 struct dwarf2_per_objfile *dwarf2_per_objfile
4091 = get_dwarf2_per_objfile (objfile);
4092 int total = (dwarf2_per_objfile->all_comp_units.size ()
4093 + dwarf2_per_objfile->all_type_units.size ());
4094 int count = 0;
4096 for (int i = 0; i < total; ++i)
4098 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4100 if (!per_cu->v.quick->compunit_symtab)
4101 ++count;
4103 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4104 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4107 /* This dumps minimal information about the index.
4108 It is called via "mt print objfiles".
4109 One use is to verify .gdb_index has been loaded by the
4110 gdb.dwarf2/gdb-index.exp testcase. */
4112 static void
4113 dw2_dump (struct objfile *objfile)
4115 struct dwarf2_per_objfile *dwarf2_per_objfile
4116 = get_dwarf2_per_objfile (objfile);
4118 gdb_assert (dwarf2_per_objfile->using_index);
4119 printf_filtered (".gdb_index:");
4120 if (dwarf2_per_objfile->index_table != NULL)
4122 printf_filtered (" version %d\n",
4123 dwarf2_per_objfile->index_table->version);
4125 else
4126 printf_filtered (" faked for \"readnow\"\n");
4127 printf_filtered ("\n");
4130 static void
4131 dw2_expand_symtabs_for_function (struct objfile *objfile,
4132 const char *func_name)
4134 struct dwarf2_per_objfile *dwarf2_per_objfile
4135 = get_dwarf2_per_objfile (objfile);
4137 struct dw2_symtab_iterator iter;
4138 struct dwarf2_per_cu_data *per_cu;
4140 /* Note: It doesn't matter what we pass for block_index here. */
4141 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4142 func_name);
4144 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4145 dw2_instantiate_symtab (per_cu, false);
4149 static void
4150 dw2_expand_all_symtabs (struct objfile *objfile)
4152 struct dwarf2_per_objfile *dwarf2_per_objfile
4153 = get_dwarf2_per_objfile (objfile);
4154 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4155 + dwarf2_per_objfile->all_type_units.size ());
4157 for (int i = 0; i < total_units; ++i)
4159 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4161 /* We don't want to directly expand a partial CU, because if we
4162 read it with the wrong language, then assertion failures can
4163 be triggered later on. See PR symtab/23010. So, tell
4164 dw2_instantiate_symtab to skip partial CUs -- any important
4165 partial CU will be read via DW_TAG_imported_unit anyway. */
4166 dw2_instantiate_symtab (per_cu, true);
4170 static void
4171 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4172 const char *fullname)
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4177 /* We don't need to consider type units here.
4178 This is only called for examining code, e.g. expand_line_sal.
4179 There can be an order of magnitude (or more) more type units
4180 than comp units, and we avoid them if we can. */
4182 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4184 /* We only need to look at symtabs not already expanded. */
4185 if (per_cu->v.quick->compunit_symtab)
4186 continue;
4188 quick_file_names *file_data = dw2_get_file_names (per_cu);
4189 if (file_data == NULL)
4190 continue;
4192 for (int j = 0; j < file_data->num_file_names; ++j)
4194 const char *this_fullname = file_data->file_names[j];
4196 if (filename_cmp (this_fullname, fullname) == 0)
4198 dw2_instantiate_symtab (per_cu, false);
4199 break;
4205 static void
4206 dw2_map_matching_symbols (struct objfile *objfile,
4207 const char * name, domain_enum domain,
4208 int global,
4209 int (*callback) (const struct block *,
4210 struct symbol *, void *),
4211 void *data, symbol_name_match_type match,
4212 symbol_compare_ftype *ordered_compare)
4214 /* Currently unimplemented; used for Ada. The function can be called if the
4215 current language is Ada for a non-Ada objfile using GNU index. As Ada
4216 does not look for non-Ada symbols this function should just return. */
4219 /* Symbol name matcher for .gdb_index names.
4221 Symbol names in .gdb_index have a few particularities:
4223 - There's no indication of which is the language of each symbol.
4225 Since each language has its own symbol name matching algorithm,
4226 and we don't know which language is the right one, we must match
4227 each symbol against all languages. This would be a potential
4228 performance problem if it were not mitigated by the
4229 mapped_index::name_components lookup table, which significantly
4230 reduces the number of times we need to call into this matcher,
4231 making it a non-issue.
4233 - Symbol names in the index have no overload (parameter)
4234 information. I.e., in C++, "foo(int)" and "foo(long)" both
4235 appear as "foo" in the index, for example.
4237 This means that the lookup names passed to the symbol name
4238 matcher functions must have no parameter information either
4239 because (e.g.) symbol search name "foo" does not match
4240 lookup-name "foo(int)" [while swapping search name for lookup
4241 name would match].
4243 class gdb_index_symbol_name_matcher
4245 public:
4246 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4247 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4249 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4250 Returns true if any matcher matches. */
4251 bool matches (const char *symbol_name);
4253 private:
4254 /* A reference to the lookup name we're matching against. */
4255 const lookup_name_info &m_lookup_name;
4257 /* A vector holding all the different symbol name matchers, for all
4258 languages. */
4259 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4262 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4263 (const lookup_name_info &lookup_name)
4264 : m_lookup_name (lookup_name)
4266 /* Prepare the vector of comparison functions upfront, to avoid
4267 doing the same work for each symbol. Care is taken to avoid
4268 matching with the same matcher more than once if/when multiple
4269 languages use the same matcher function. */
4270 auto &matchers = m_symbol_name_matcher_funcs;
4271 matchers.reserve (nr_languages);
4273 matchers.push_back (default_symbol_name_matcher);
4275 for (int i = 0; i < nr_languages; i++)
4277 const language_defn *lang = language_def ((enum language) i);
4278 symbol_name_matcher_ftype *name_matcher
4279 = get_symbol_name_matcher (lang, m_lookup_name);
4281 /* Don't insert the same comparison routine more than once.
4282 Note that we do this linear walk instead of a seemingly
4283 cheaper sorted insert, or use a std::set or something like
4284 that, because relative order of function addresses is not
4285 stable. This is not a problem in practice because the number
4286 of supported languages is low, and the cost here is tiny
4287 compared to the number of searches we'll do afterwards using
4288 this object. */
4289 if (name_matcher != default_symbol_name_matcher
4290 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4291 == matchers.end ()))
4292 matchers.push_back (name_matcher);
4296 bool
4297 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4299 for (auto matches_name : m_symbol_name_matcher_funcs)
4300 if (matches_name (symbol_name, m_lookup_name, NULL))
4301 return true;
4303 return false;
4306 /* Starting from a search name, return the string that finds the upper
4307 bound of all strings that start with SEARCH_NAME in a sorted name
4308 list. Returns the empty string to indicate that the upper bound is
4309 the end of the list. */
4311 static std::string
4312 make_sort_after_prefix_name (const char *search_name)
4314 /* When looking to complete "func", we find the upper bound of all
4315 symbols that start with "func" by looking for where we'd insert
4316 the closest string that would follow "func" in lexicographical
4317 order. Usually, that's "func"-with-last-character-incremented,
4318 i.e. "fund". Mind non-ASCII characters, though. Usually those
4319 will be UTF-8 multi-byte sequences, but we can't be certain.
4320 Especially mind the 0xff character, which is a valid character in
4321 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4322 rule out compilers allowing it in identifiers. Note that
4323 conveniently, strcmp/strcasecmp are specified to compare
4324 characters interpreted as unsigned char. So what we do is treat
4325 the whole string as a base 256 number composed of a sequence of
4326 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4327 to 0, and carries 1 to the following more-significant position.
4328 If the very first character in SEARCH_NAME ends up incremented
4329 and carries/overflows, then the upper bound is the end of the
4330 list. The string after the empty string is also the empty
4331 string.
4333 Some examples of this operation:
4335 SEARCH_NAME => "+1" RESULT
4337 "abc" => "abd"
4338 "ab\xff" => "ac"
4339 "\xff" "a" "\xff" => "\xff" "b"
4340 "\xff" => ""
4341 "\xff\xff" => ""
4342 "" => ""
4344 Then, with these symbols for example:
4346 func
4347 func1
4348 fund
4350 completing "func" looks for symbols between "func" and
4351 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4352 which finds "func" and "func1", but not "fund".
4354 And with:
4356 funcÿ (Latin1 'ÿ' [0xff])
4357 funcÿ1
4358 fund
4360 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4361 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4363 And with:
4365 ÿÿ (Latin1 'ÿ' [0xff])
4366 ÿÿ1
4368 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4369 the end of the list.
4371 std::string after = search_name;
4372 while (!after.empty () && (unsigned char) after.back () == 0xff)
4373 after.pop_back ();
4374 if (!after.empty ())
4375 after.back () = (unsigned char) after.back () + 1;
4376 return after;
4379 /* See declaration. */
4381 std::pair<std::vector<name_component>::const_iterator,
4382 std::vector<name_component>::const_iterator>
4383 mapped_index_base::find_name_components_bounds
4384 (const lookup_name_info &lookup_name_without_params) const
4386 auto *name_cmp
4387 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4389 const char *cplus
4390 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4392 /* Comparison function object for lower_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_lower = [&] (const name_component &elem,
4395 const char *name)
4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (elem_name, name) < 0;
4402 /* Comparison function object for upper_bound that matches against a
4403 given symbol name. */
4404 auto lookup_compare_upper = [&] (const char *name,
4405 const name_component &elem)
4407 const char *elem_qualified = this->symbol_name_at (elem.idx);
4408 const char *elem_name = elem_qualified + elem.name_offset;
4409 return name_cmp (name, elem_name) < 0;
4412 auto begin = this->name_components.begin ();
4413 auto end = this->name_components.end ();
4415 /* Find the lower bound. */
4416 auto lower = [&] ()
4418 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4419 return begin;
4420 else
4421 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4422 } ();
4424 /* Find the upper bound. */
4425 auto upper = [&] ()
4427 if (lookup_name_without_params.completion_mode ())
4429 /* In completion mode, we want UPPER to point past all
4430 symbols names that have the same prefix. I.e., with
4431 these symbols, and completing "func":
4433 function << lower bound
4434 function1
4435 other_function << upper bound
4437 We find the upper bound by looking for the insertion
4438 point of "func"-with-last-character-incremented,
4439 i.e. "fund". */
4440 std::string after = make_sort_after_prefix_name (cplus);
4441 if (after.empty ())
4442 return end;
4443 return std::lower_bound (lower, end, after.c_str (),
4444 lookup_compare_lower);
4446 else
4447 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4448 } ();
4450 return {lower, upper};
4453 /* See declaration. */
4455 void
4456 mapped_index_base::build_name_components ()
4458 if (!this->name_components.empty ())
4459 return;
4461 this->name_components_casing = case_sensitivity;
4462 auto *name_cmp
4463 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4465 /* The code below only knows how to break apart components of C++
4466 symbol names (and other languages that use '::' as
4467 namespace/module separator). If we add support for wild matching
4468 to some language that uses some other operator (E.g., Ada, Go and
4469 D use '.'), then we'll need to try splitting the symbol name
4470 according to that language too. Note that Ada does support wild
4471 matching, but doesn't currently support .gdb_index. */
4472 auto count = this->symbol_name_count ();
4473 for (offset_type idx = 0; idx < count; idx++)
4475 if (this->symbol_name_slot_invalid (idx))
4476 continue;
4478 const char *name = this->symbol_name_at (idx);
4480 /* Add each name component to the name component table. */
4481 unsigned int previous_len = 0;
4482 for (unsigned int current_len = cp_find_first_component (name);
4483 name[current_len] != '\0';
4484 current_len += cp_find_first_component (name + current_len))
4486 gdb_assert (name[current_len] == ':');
4487 this->name_components.push_back ({previous_len, idx});
4488 /* Skip the '::'. */
4489 current_len += 2;
4490 previous_len = current_len;
4492 this->name_components.push_back ({previous_len, idx});
4495 /* Sort name_components elements by name. */
4496 auto name_comp_compare = [&] (const name_component &left,
4497 const name_component &right)
4499 const char *left_qualified = this->symbol_name_at (left.idx);
4500 const char *right_qualified = this->symbol_name_at (right.idx);
4502 const char *left_name = left_qualified + left.name_offset;
4503 const char *right_name = right_qualified + right.name_offset;
4505 return name_cmp (left_name, right_name) < 0;
4508 std::sort (this->name_components.begin (),
4509 this->name_components.end (),
4510 name_comp_compare);
4513 /* Helper for dw2_expand_symtabs_matching that works with a
4514 mapped_index_base instead of the containing objfile. This is split
4515 to a separate function in order to be able to unit test the
4516 name_components matching using a mock mapped_index_base. For each
4517 symbol name that matches, calls MATCH_CALLBACK, passing it the
4518 symbol's index in the mapped_index_base symbol table. */
4520 static void
4521 dw2_expand_symtabs_matching_symbol
4522 (mapped_index_base &index,
4523 const lookup_name_info &lookup_name_in,
4524 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4525 enum search_domain kind,
4526 gdb::function_view<void (offset_type)> match_callback)
4528 lookup_name_info lookup_name_without_params
4529 = lookup_name_in.make_ignore_params ();
4530 gdb_index_symbol_name_matcher lookup_name_matcher
4531 (lookup_name_without_params);
4533 /* Build the symbol name component sorted vector, if we haven't
4534 yet. */
4535 index.build_name_components ();
4537 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4539 /* Now for each symbol name in range, check to see if we have a name
4540 match, and if so, call the MATCH_CALLBACK callback. */
4542 /* The same symbol may appear more than once in the range though.
4543 E.g., if we're looking for symbols that complete "w", and we have
4544 a symbol named "w1::w2", we'll find the two name components for
4545 that same symbol in the range. To be sure we only call the
4546 callback once per symbol, we first collect the symbol name
4547 indexes that matched in a temporary vector and ignore
4548 duplicates. */
4549 std::vector<offset_type> matches;
4550 matches.reserve (std::distance (bounds.first, bounds.second));
4552 for (; bounds.first != bounds.second; ++bounds.first)
4554 const char *qualified = index.symbol_name_at (bounds.first->idx);
4556 if (!lookup_name_matcher.matches (qualified)
4557 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4558 continue;
4560 matches.push_back (bounds.first->idx);
4563 std::sort (matches.begin (), matches.end ());
4565 /* Finally call the callback, once per match. */
4566 ULONGEST prev = -1;
4567 for (offset_type idx : matches)
4569 if (prev != idx)
4571 match_callback (idx);
4572 prev = idx;
4576 /* Above we use a type wider than idx's for 'prev', since 0 and
4577 (offset_type)-1 are both possible values. */
4578 static_assert (sizeof (prev) > sizeof (offset_type), "");
4581 #if GDB_SELF_TEST
4583 namespace selftests { namespace dw2_expand_symtabs_matching {
4585 /* A mock .gdb_index/.debug_names-like name index table, enough to
4586 exercise dw2_expand_symtabs_matching_symbol, which works with the
4587 mapped_index_base interface. Builds an index from the symbol list
4588 passed as parameter to the constructor. */
4589 class mock_mapped_index : public mapped_index_base
4591 public:
4592 mock_mapped_index (gdb::array_view<const char *> symbols)
4593 : m_symbol_table (symbols)
4596 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4598 /* Return the number of names in the symbol table. */
4599 size_t symbol_name_count () const override
4601 return m_symbol_table.size ();
4604 /* Get the name of the symbol at IDX in the symbol table. */
4605 const char *symbol_name_at (offset_type idx) const override
4607 return m_symbol_table[idx];
4610 private:
4611 gdb::array_view<const char *> m_symbol_table;
4614 /* Convenience function that converts a NULL pointer to a "<null>"
4615 string, to pass to print routines. */
4617 static const char *
4618 string_or_null (const char *str)
4620 return str != NULL ? str : "<null>";
4623 /* Check if a lookup_name_info built from
4624 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4625 index. EXPECTED_LIST is the list of expected matches, in expected
4626 matching order. If no match expected, then an empty list is
4627 specified. Returns true on success. On failure prints a warning
4628 indicating the file:line that failed, and returns false. */
4630 static bool
4631 check_match (const char *file, int line,
4632 mock_mapped_index &mock_index,
4633 const char *name, symbol_name_match_type match_type,
4634 bool completion_mode,
4635 std::initializer_list<const char *> expected_list)
4637 lookup_name_info lookup_name (name, match_type, completion_mode);
4639 bool matched = true;
4641 auto mismatch = [&] (const char *expected_str,
4642 const char *got)
4644 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4645 "expected=\"%s\", got=\"%s\"\n"),
4646 file, line,
4647 (match_type == symbol_name_match_type::FULL
4648 ? "FULL" : "WILD"),
4649 name, string_or_null (expected_str), string_or_null (got));
4650 matched = false;
4653 auto expected_it = expected_list.begin ();
4654 auto expected_end = expected_list.end ();
4656 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4657 NULL, ALL_DOMAIN,
4658 [&] (offset_type idx)
4660 const char *matched_name = mock_index.symbol_name_at (idx);
4661 const char *expected_str
4662 = expected_it == expected_end ? NULL : *expected_it++;
4664 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4665 mismatch (expected_str, matched_name);
4668 const char *expected_str
4669 = expected_it == expected_end ? NULL : *expected_it++;
4670 if (expected_str != NULL)
4671 mismatch (expected_str, NULL);
4673 return matched;
4676 /* The symbols added to the mock mapped_index for testing (in
4677 canonical form). */
4678 static const char *test_symbols[] = {
4679 "function",
4680 "std::bar",
4681 "std::zfunction",
4682 "std::zfunction2",
4683 "w1::w2",
4684 "ns::foo<char*>",
4685 "ns::foo<int>",
4686 "ns::foo<long>",
4687 "ns2::tmpl<int>::foo2",
4688 "(anonymous namespace)::A::B::C",
4690 /* These are used to check that the increment-last-char in the
4691 matching algorithm for completion doesn't match "t1_fund" when
4692 completing "t1_func". */
4693 "t1_func",
4694 "t1_func1",
4695 "t1_fund",
4696 "t1_fund1",
4698 /* A UTF-8 name with multi-byte sequences to make sure that
4699 cp-name-parser understands this as a single identifier ("função"
4700 is "function" in PT). */
4701 u8"u8função",
4703 /* \377 (0xff) is Latin1 'ÿ'. */
4704 "yfunc\377",
4706 /* \377 (0xff) is Latin1 'ÿ'. */
4707 "\377",
4708 "\377\377123",
4710 /* A name with all sorts of complications. Starts with "z" to make
4711 it easier for the completion tests below. */
4712 #define Z_SYM_NAME \
4713 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4714 "::tuple<(anonymous namespace)::ui*, " \
4715 "std::default_delete<(anonymous namespace)::ui>, void>"
4717 Z_SYM_NAME
4720 /* Returns true if the mapped_index_base::find_name_component_bounds
4721 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4722 in completion mode. */
4724 static bool
4725 check_find_bounds_finds (mapped_index_base &index,
4726 const char *search_name,
4727 gdb::array_view<const char *> expected_syms)
4729 lookup_name_info lookup_name (search_name,
4730 symbol_name_match_type::FULL, true);
4732 auto bounds = index.find_name_components_bounds (lookup_name);
4734 size_t distance = std::distance (bounds.first, bounds.second);
4735 if (distance != expected_syms.size ())
4736 return false;
4738 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4740 auto nc_elem = bounds.first + exp_elem;
4741 const char *qualified = index.symbol_name_at (nc_elem->idx);
4742 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4743 return false;
4746 return true;
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method. */
4752 static void
4753 test_mapped_index_find_name_component_bounds ()
4755 mock_mapped_index mock_index (test_symbols);
4757 mock_index.build_name_components ();
4759 /* Test the lower-level mapped_index::find_name_component_bounds
4760 method in completion mode. */
4762 static const char *expected_syms[] = {
4763 "t1_func",
4764 "t1_func1",
4767 SELF_CHECK (check_find_bounds_finds (mock_index,
4768 "t1_func", expected_syms));
4771 /* Check that the increment-last-char in the name matching algorithm
4772 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4774 static const char *expected_syms1[] = {
4775 "\377",
4776 "\377\377123",
4778 SELF_CHECK (check_find_bounds_finds (mock_index,
4779 "\377", expected_syms1));
4781 static const char *expected_syms2[] = {
4782 "\377\377123",
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "\377\377", expected_syms2));
4789 /* Test dw2_expand_symtabs_matching_symbol. */
4791 static void
4792 test_dw2_expand_symtabs_matching_symbol ()
4794 mock_mapped_index mock_index (test_symbols);
4796 /* We let all tests run until the end even if some fails, for debug
4797 convenience. */
4798 bool any_mismatch = false;
4800 /* Create the expected symbols list (an initializer_list). Needed
4801 because lists have commas, and we need to pass them to CHECK,
4802 which is a macro. */
4803 #define EXPECT(...) { __VA_ARGS__ }
4805 /* Wrapper for check_match that passes down the current
4806 __FILE__/__LINE__. */
4807 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4808 any_mismatch |= !check_match (__FILE__, __LINE__, \
4809 mock_index, \
4810 NAME, MATCH_TYPE, COMPLETION_MODE, \
4811 EXPECTED_LIST)
4813 /* Identity checks. */
4814 for (const char *sym : test_symbols)
4816 /* Should be able to match all existing symbols. */
4817 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4818 EXPECT (sym));
4820 /* Should be able to match all existing symbols with
4821 parameters. */
4822 std::string with_params = std::string (sym) + "(int)";
4823 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4824 EXPECT (sym));
4826 /* Should be able to match all existing symbols with
4827 parameters and qualifiers. */
4828 with_params = std::string (sym) + " ( int ) const";
4829 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4830 EXPECT (sym));
4832 /* This should really find sym, but cp-name-parser.y doesn't
4833 know about lvalue/rvalue qualifiers yet. */
4834 with_params = std::string (sym) + " ( int ) &&";
4835 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4836 {});
4839 /* Check that the name matching algorithm for completion doesn't get
4840 confused with Latin1 'ÿ' / 0xff. */
4842 static const char str[] = "\377";
4843 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4844 EXPECT ("\377", "\377\377123"));
4847 /* Check that the increment-last-char in the matching algorithm for
4848 completion doesn't match "t1_fund" when completing "t1_func". */
4850 static const char str[] = "t1_func";
4851 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4852 EXPECT ("t1_func", "t1_func1"));
4855 /* Check that completion mode works at each prefix of the expected
4856 symbol name. */
4858 static const char str[] = "function(int)";
4859 size_t len = strlen (str);
4860 std::string lookup;
4862 for (size_t i = 1; i < len; i++)
4864 lookup.assign (str, i);
4865 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4866 EXPECT ("function"));
4870 /* While "w" is a prefix of both components, the match function
4871 should still only be called once. */
4873 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4874 EXPECT ("w1::w2"));
4875 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4876 EXPECT ("w1::w2"));
4879 /* Same, with a "complicated" symbol. */
4881 static const char str[] = Z_SYM_NAME;
4882 size_t len = strlen (str);
4883 std::string lookup;
4885 for (size_t i = 1; i < len; i++)
4887 lookup.assign (str, i);
4888 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4889 EXPECT (Z_SYM_NAME));
4893 /* In FULL mode, an incomplete symbol doesn't match. */
4895 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4896 {});
4899 /* A complete symbol with parameters matches any overload, since the
4900 index has no overload info. */
4902 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4903 EXPECT ("std::zfunction", "std::zfunction2"));
4904 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4905 EXPECT ("std::zfunction", "std::zfunction2"));
4906 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4907 EXPECT ("std::zfunction", "std::zfunction2"));
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list. */
4913 static const char expected[] = "ns::foo<int>";
4914 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4915 EXPECT (expected));
4916 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4917 EXPECT (expected));
4920 /* Check that whitespace is ignored appropriately. A symbol with a
4921 template argument list that includes a pointer. */
4923 static const char expected[] = "ns::foo<char*>";
4924 /* Try both completion and non-completion modes. */
4925 static const bool completion_mode[2] = {false, true};
4926 for (size_t i = 0; i < 2; i++)
4928 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4929 completion_mode[i], EXPECT (expected));
4930 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4931 completion_mode[i], EXPECT (expected));
4933 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4934 completion_mode[i], EXPECT (expected));
4935 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4936 completion_mode[i], EXPECT (expected));
4941 /* Check method qualifiers are ignored. */
4942 static const char expected[] = "ns::foo<char*>";
4943 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4944 symbol_name_match_type::FULL, true, EXPECT (expected));
4945 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4946 symbol_name_match_type::FULL, true, EXPECT (expected));
4947 CHECK_MATCH ("foo < char * > ( int ) const",
4948 symbol_name_match_type::WILD, true, EXPECT (expected));
4949 CHECK_MATCH ("foo < char * > ( int ) &&",
4950 symbol_name_match_type::WILD, true, EXPECT (expected));
4953 /* Test lookup names that don't match anything. */
4955 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4956 {});
4958 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4959 {});
4962 /* Some wild matching tests, exercising "(anonymous namespace)",
4963 which should not be confused with a parameter list. */
4965 static const char *syms[] = {
4966 "A::B::C",
4967 "B::C",
4968 "C",
4969 "A :: B :: C ( int )",
4970 "B :: C ( int )",
4971 "C ( int )",
4974 for (const char *s : syms)
4976 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4977 EXPECT ("(anonymous namespace)::A::B::C"));
4982 static const char expected[] = "ns2::tmpl<int>::foo2";
4983 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4984 EXPECT (expected));
4985 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4986 EXPECT (expected));
4989 SELF_CHECK (!any_mismatch);
4991 #undef EXPECT
4992 #undef CHECK_MATCH
4995 static void
4996 run_test ()
4998 test_mapped_index_find_name_component_bounds ();
4999 test_dw2_expand_symtabs_matching_symbol ();
5002 }} // namespace selftests::dw2_expand_symtabs_matching
5004 #endif /* GDB_SELF_TEST */
5006 /* If FILE_MATCHER is NULL or if PER_CU has
5007 dwarf2_per_cu_quick_data::MARK set (see
5008 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5009 EXPANSION_NOTIFY on it. */
5011 static void
5012 dw2_expand_symtabs_matching_one
5013 (struct dwarf2_per_cu_data *per_cu,
5014 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5015 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5017 if (file_matcher == NULL || per_cu->v.quick->mark)
5019 bool symtab_was_null
5020 = (per_cu->v.quick->compunit_symtab == NULL);
5022 dw2_instantiate_symtab (per_cu, false);
5024 if (expansion_notify != NULL
5025 && symtab_was_null
5026 && per_cu->v.quick->compunit_symtab != NULL)
5027 expansion_notify (per_cu->v.quick->compunit_symtab);
5031 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5032 matched, to expand corresponding CUs that were marked. IDX is the
5033 index of the symbol name that matched. */
5035 static void
5036 dw2_expand_marked_cus
5037 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5038 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5039 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5040 search_domain kind)
5042 offset_type *vec, vec_len, vec_idx;
5043 bool global_seen = false;
5044 mapped_index &index = *dwarf2_per_objfile->index_table;
5046 vec = (offset_type *) (index.constant_pool
5047 + MAYBE_SWAP (index.symbol_table[idx].vec));
5048 vec_len = MAYBE_SWAP (vec[0]);
5049 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5051 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5052 /* This value is only valid for index versions >= 7. */
5053 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5054 gdb_index_symbol_kind symbol_kind =
5055 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5056 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5057 /* Only check the symbol attributes if they're present.
5058 Indices prior to version 7 don't record them,
5059 and indices >= 7 may elide them for certain symbols
5060 (gold does this). */
5061 int attrs_valid =
5062 (index.version >= 7
5063 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5065 /* Work around gold/15646. */
5066 if (attrs_valid)
5068 if (!is_static && global_seen)
5069 continue;
5070 if (!is_static)
5071 global_seen = true;
5074 /* Only check the symbol's kind if it has one. */
5075 if (attrs_valid)
5077 switch (kind)
5079 case VARIABLES_DOMAIN:
5080 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5081 continue;
5082 break;
5083 case FUNCTIONS_DOMAIN:
5084 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5085 continue;
5086 break;
5087 case TYPES_DOMAIN:
5088 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5089 continue;
5090 break;
5091 default:
5092 break;
5096 /* Don't crash on bad data. */
5097 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5098 + dwarf2_per_objfile->all_type_units.size ()))
5100 complaint (_(".gdb_index entry has bad CU index"
5101 " [in module %s]"),
5102 objfile_name (dwarf2_per_objfile->objfile));
5103 continue;
5106 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5107 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5108 expansion_notify);
5112 /* If FILE_MATCHER is non-NULL, set all the
5113 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5114 that match FILE_MATCHER. */
5116 static void
5117 dw_expand_symtabs_matching_file_matcher
5118 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5119 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5121 if (file_matcher == NULL)
5122 return;
5124 objfile *const objfile = dwarf2_per_objfile->objfile;
5126 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5127 htab_eq_pointer,
5128 NULL, xcalloc, xfree));
5129 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5130 htab_eq_pointer,
5131 NULL, xcalloc, xfree));
5133 /* The rule is CUs specify all the files, including those used by
5134 any TU, so there's no need to scan TUs here. */
5136 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5138 QUIT;
5140 per_cu->v.quick->mark = 0;
5142 /* We only need to look at symtabs not already expanded. */
5143 if (per_cu->v.quick->compunit_symtab)
5144 continue;
5146 quick_file_names *file_data = dw2_get_file_names (per_cu);
5147 if (file_data == NULL)
5148 continue;
5150 if (htab_find (visited_not_found.get (), file_data) != NULL)
5151 continue;
5152 else if (htab_find (visited_found.get (), file_data) != NULL)
5154 per_cu->v.quick->mark = 1;
5155 continue;
5158 for (int j = 0; j < file_data->num_file_names; ++j)
5160 const char *this_real_name;
5162 if (file_matcher (file_data->file_names[j], false))
5164 per_cu->v.quick->mark = 1;
5165 break;
5168 /* Before we invoke realpath, which can get expensive when many
5169 files are involved, do a quick comparison of the basenames. */
5170 if (!basenames_may_differ
5171 && !file_matcher (lbasename (file_data->file_names[j]),
5172 true))
5173 continue;
5175 this_real_name = dw2_get_real_path (objfile, file_data, j);
5176 if (file_matcher (this_real_name, false))
5178 per_cu->v.quick->mark = 1;
5179 break;
5183 void **slot = htab_find_slot (per_cu->v.quick->mark
5184 ? visited_found.get ()
5185 : visited_not_found.get (),
5186 file_data, INSERT);
5187 *slot = file_data;
5191 static void
5192 dw2_expand_symtabs_matching
5193 (struct objfile *objfile,
5194 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5195 const lookup_name_info &lookup_name,
5196 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5197 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5198 enum search_domain kind)
5200 struct dwarf2_per_objfile *dwarf2_per_objfile
5201 = get_dwarf2_per_objfile (objfile);
5203 /* index_table is NULL if OBJF_READNOW. */
5204 if (!dwarf2_per_objfile->index_table)
5205 return;
5207 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5209 mapped_index &index = *dwarf2_per_objfile->index_table;
5211 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5212 symbol_matcher,
5213 kind, [&] (offset_type idx)
5215 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5216 expansion_notify, kind);
5220 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5221 symtab. */
5223 static struct compunit_symtab *
5224 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5225 CORE_ADDR pc)
5227 int i;
5229 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5230 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5231 return cust;
5233 if (cust->includes == NULL)
5234 return NULL;
5236 for (i = 0; cust->includes[i]; ++i)
5238 struct compunit_symtab *s = cust->includes[i];
5240 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5241 if (s != NULL)
5242 return s;
5245 return NULL;
5248 static struct compunit_symtab *
5249 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5250 struct bound_minimal_symbol msymbol,
5251 CORE_ADDR pc,
5252 struct obj_section *section,
5253 int warn_if_readin)
5255 struct dwarf2_per_cu_data *data;
5256 struct compunit_symtab *result;
5258 if (!objfile->partial_symtabs->psymtabs_addrmap)
5259 return NULL;
5261 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5262 SECT_OFF_TEXT (objfile));
5263 data = (struct dwarf2_per_cu_data *) addrmap_find
5264 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5265 if (!data)
5266 return NULL;
5268 if (warn_if_readin && data->v.quick->compunit_symtab)
5269 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5270 paddress (get_objfile_arch (objfile), pc));
5272 result
5273 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5274 false),
5275 pc);
5276 gdb_assert (result != NULL);
5277 return result;
5280 static void
5281 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5282 void *data, int need_fullname)
5284 struct dwarf2_per_objfile *dwarf2_per_objfile
5285 = get_dwarf2_per_objfile (objfile);
5287 if (!dwarf2_per_objfile->filenames_cache)
5289 dwarf2_per_objfile->filenames_cache.emplace ();
5291 htab_up visited (htab_create_alloc (10,
5292 htab_hash_pointer, htab_eq_pointer,
5293 NULL, xcalloc, xfree));
5295 /* The rule is CUs specify all the files, including those used
5296 by any TU, so there's no need to scan TUs here. We can
5297 ignore file names coming from already-expanded CUs. */
5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5301 if (per_cu->v.quick->compunit_symtab)
5303 void **slot = htab_find_slot (visited.get (),
5304 per_cu->v.quick->file_names,
5305 INSERT);
5307 *slot = per_cu->v.quick->file_names;
5311 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5313 /* We only need to look at symtabs not already expanded. */
5314 if (per_cu->v.quick->compunit_symtab)
5315 continue;
5317 quick_file_names *file_data = dw2_get_file_names (per_cu);
5318 if (file_data == NULL)
5319 continue;
5321 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5322 if (*slot)
5324 /* Already visited. */
5325 continue;
5327 *slot = file_data;
5329 for (int j = 0; j < file_data->num_file_names; ++j)
5331 const char *filename = file_data->file_names[j];
5332 dwarf2_per_objfile->filenames_cache->seen (filename);
5337 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5339 gdb::unique_xmalloc_ptr<char> this_real_name;
5341 if (need_fullname)
5342 this_real_name = gdb_realpath (filename);
5343 (*fun) (filename, this_real_name.get (), data);
5347 static int
5348 dw2_has_symbols (struct objfile *objfile)
5350 return 1;
5353 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5355 dw2_has_symbols,
5356 dw2_find_last_source_symtab,
5357 dw2_forget_cached_source_info,
5358 dw2_map_symtabs_matching_filename,
5359 dw2_lookup_symbol,
5360 dw2_print_stats,
5361 dw2_dump,
5362 dw2_expand_symtabs_for_function,
5363 dw2_expand_all_symtabs,
5364 dw2_expand_symtabs_with_fullname,
5365 dw2_map_matching_symbols,
5366 dw2_expand_symtabs_matching,
5367 dw2_find_pc_sect_compunit_symtab,
5368 NULL,
5369 dw2_map_symbol_filenames
5372 /* DWARF-5 debug_names reader. */
5374 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5375 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5377 /* A helper function that reads the .debug_names section in SECTION
5378 and fills in MAP. FILENAME is the name of the file containing the
5379 section; it is used for error reporting.
5381 Returns true if all went well, false otherwise. */
5383 static bool
5384 read_debug_names_from_section (struct objfile *objfile,
5385 const char *filename,
5386 struct dwarf2_section_info *section,
5387 mapped_debug_names &map)
5389 if (dwarf2_section_empty_p (section))
5390 return false;
5392 /* Older elfutils strip versions could keep the section in the main
5393 executable while splitting it for the separate debug info file. */
5394 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5395 return false;
5397 dwarf2_read_section (objfile, section);
5399 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5401 const gdb_byte *addr = section->buffer;
5403 bfd *const abfd = get_section_bfd_owner (section);
5405 unsigned int bytes_read;
5406 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5407 addr += bytes_read;
5409 map.dwarf5_is_dwarf64 = bytes_read != 4;
5410 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5411 if (bytes_read + length != section->size)
5413 /* There may be multiple per-CU indices. */
5414 warning (_("Section .debug_names in %s length %s does not match "
5415 "section length %s, ignoring .debug_names."),
5416 filename, plongest (bytes_read + length),
5417 pulongest (section->size));
5418 return false;
5421 /* The version number. */
5422 uint16_t version = read_2_bytes (abfd, addr);
5423 addr += 2;
5424 if (version != 5)
5426 warning (_("Section .debug_names in %s has unsupported version %d, "
5427 "ignoring .debug_names."),
5428 filename, version);
5429 return false;
5432 /* Padding. */
5433 uint16_t padding = read_2_bytes (abfd, addr);
5434 addr += 2;
5435 if (padding != 0)
5437 warning (_("Section .debug_names in %s has unsupported padding %d, "
5438 "ignoring .debug_names."),
5439 filename, padding);
5440 return false;
5443 /* comp_unit_count - The number of CUs in the CU list. */
5444 map.cu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5447 /* local_type_unit_count - The number of TUs in the local TU
5448 list. */
5449 map.tu_count = read_4_bytes (abfd, addr);
5450 addr += 4;
5452 /* foreign_type_unit_count - The number of TUs in the foreign TU
5453 list. */
5454 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 if (foreign_tu_count != 0)
5458 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5459 "ignoring .debug_names."),
5460 filename, static_cast<unsigned long> (foreign_tu_count));
5461 return false;
5464 /* bucket_count - The number of hash buckets in the hash lookup
5465 table. */
5466 map.bucket_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5469 /* name_count - The number of unique names in the index. */
5470 map.name_count = read_4_bytes (abfd, addr);
5471 addr += 4;
5473 /* abbrev_table_size - The size in bytes of the abbreviations
5474 table. */
5475 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5476 addr += 4;
5478 /* augmentation_string_size - The size in bytes of the augmentation
5479 string. This value is rounded up to a multiple of 4. */
5480 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5481 addr += 4;
5482 map.augmentation_is_gdb = ((augmentation_string_size
5483 == sizeof (dwarf5_augmentation))
5484 && memcmp (addr, dwarf5_augmentation,
5485 sizeof (dwarf5_augmentation)) == 0);
5486 augmentation_string_size += (-augmentation_string_size) & 3;
5487 addr += augmentation_string_size;
5489 /* List of CUs */
5490 map.cu_table_reordered = addr;
5491 addr += map.cu_count * map.offset_size;
5493 /* List of Local TUs */
5494 map.tu_table_reordered = addr;
5495 addr += map.tu_count * map.offset_size;
5497 /* Hash Lookup Table */
5498 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5499 addr += map.bucket_count * 4;
5500 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5501 addr += map.name_count * 4;
5503 /* Name Table */
5504 map.name_table_string_offs_reordered = addr;
5505 addr += map.name_count * map.offset_size;
5506 map.name_table_entry_offs_reordered = addr;
5507 addr += map.name_count * map.offset_size;
5509 const gdb_byte *abbrev_table_start = addr;
5510 for (;;)
5512 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5513 addr += bytes_read;
5514 if (index_num == 0)
5515 break;
5517 const auto insertpair
5518 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5519 if (!insertpair.second)
5521 warning (_("Section .debug_names in %s has duplicate index %s, "
5522 "ignoring .debug_names."),
5523 filename, pulongest (index_num));
5524 return false;
5526 mapped_debug_names::index_val &indexval = insertpair.first->second;
5527 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5528 addr += bytes_read;
5530 for (;;)
5532 mapped_debug_names::index_val::attr attr;
5533 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5534 addr += bytes_read;
5535 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5536 addr += bytes_read;
5537 if (attr.form == DW_FORM_implicit_const)
5539 attr.implicit_const = read_signed_leb128 (abfd, addr,
5540 &bytes_read);
5541 addr += bytes_read;
5543 if (attr.dw_idx == 0 && attr.form == 0)
5544 break;
5545 indexval.attr_vec.push_back (std::move (attr));
5548 if (addr != abbrev_table_start + abbrev_table_size)
5550 warning (_("Section .debug_names in %s has abbreviation_table "
5551 "of size %zu vs. written as %u, ignoring .debug_names."),
5552 filename, addr - abbrev_table_start, abbrev_table_size);
5553 return false;
5555 map.entry_pool = addr;
5557 return true;
5560 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5561 list. */
5563 static void
5564 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5565 const mapped_debug_names &map,
5566 dwarf2_section_info &section,
5567 bool is_dwz)
5569 sect_offset sect_off_prev;
5570 for (uint32_t i = 0; i <= map.cu_count; ++i)
5572 sect_offset sect_off_next;
5573 if (i < map.cu_count)
5575 sect_off_next
5576 = (sect_offset) (extract_unsigned_integer
5577 (map.cu_table_reordered + i * map.offset_size,
5578 map.offset_size,
5579 map.dwarf5_byte_order));
5581 else
5582 sect_off_next = (sect_offset) section.size;
5583 if (i >= 1)
5585 const ULONGEST length = sect_off_next - sect_off_prev;
5586 dwarf2_per_cu_data *per_cu
5587 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5588 sect_off_prev, length);
5589 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5591 sect_off_prev = sect_off_next;
5595 /* Read the CU list from the mapped index, and use it to create all
5596 the CU objects for this dwarf2_per_objfile. */
5598 static void
5599 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5600 const mapped_debug_names &map,
5601 const mapped_debug_names &dwz_map)
5603 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5604 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5606 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5607 dwarf2_per_objfile->info,
5608 false /* is_dwz */);
5610 if (dwz_map.cu_count == 0)
5611 return;
5613 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5614 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5615 true /* is_dwz */);
5618 /* Read .debug_names. If everything went ok, initialize the "quick"
5619 elements of all the CUs and return true. Otherwise, return false. */
5621 static bool
5622 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5624 std::unique_ptr<mapped_debug_names> map
5625 (new mapped_debug_names (dwarf2_per_objfile));
5626 mapped_debug_names dwz_map (dwarf2_per_objfile);
5627 struct objfile *objfile = dwarf2_per_objfile->objfile;
5629 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5630 &dwarf2_per_objfile->debug_names,
5631 *map))
5632 return false;
5634 /* Don't use the index if it's empty. */
5635 if (map->name_count == 0)
5636 return false;
5638 /* If there is a .dwz file, read it so we can get its CU list as
5639 well. */
5640 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5641 if (dwz != NULL)
5643 if (!read_debug_names_from_section (objfile,
5644 bfd_get_filename (dwz->dwz_bfd),
5645 &dwz->debug_names, dwz_map))
5647 warning (_("could not read '.debug_names' section from %s; skipping"),
5648 bfd_get_filename (dwz->dwz_bfd));
5649 return false;
5653 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5655 if (map->tu_count != 0)
5657 /* We can only handle a single .debug_types when we have an
5658 index. */
5659 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5660 return false;
5662 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5663 dwarf2_per_objfile->types, 0);
5665 create_signatured_type_table_from_debug_names
5666 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5669 create_addrmap_from_aranges (dwarf2_per_objfile,
5670 &dwarf2_per_objfile->debug_aranges);
5672 dwarf2_per_objfile->debug_names_table = std::move (map);
5673 dwarf2_per_objfile->using_index = 1;
5674 dwarf2_per_objfile->quick_file_names_table =
5675 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5677 return true;
5680 /* Type used to manage iterating over all CUs looking for a symbol for
5681 .debug_names. */
5683 class dw2_debug_names_iterator
5685 public:
5686 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5687 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5688 dw2_debug_names_iterator (const mapped_debug_names &map,
5689 bool want_specific_block,
5690 block_enum block_index, domain_enum domain,
5691 const char *name)
5692 : m_map (map), m_want_specific_block (want_specific_block),
5693 m_block_index (block_index), m_domain (domain),
5694 m_addr (find_vec_in_debug_names (map, name))
5697 dw2_debug_names_iterator (const mapped_debug_names &map,
5698 search_domain search, uint32_t namei)
5699 : m_map (map),
5700 m_search (search),
5701 m_addr (find_vec_in_debug_names (map, namei))
5704 /* Return the next matching CU or NULL if there are no more. */
5705 dwarf2_per_cu_data *next ();
5707 private:
5708 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5709 const char *name);
5710 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5711 uint32_t namei);
5713 /* The internalized form of .debug_names. */
5714 const mapped_debug_names &m_map;
5716 /* If true, only look for symbols that match BLOCK_INDEX. */
5717 const bool m_want_specific_block = false;
5719 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5720 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5721 value. */
5722 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5724 /* The kind of symbol we're looking for. */
5725 const domain_enum m_domain = UNDEF_DOMAIN;
5726 const search_domain m_search = ALL_DOMAIN;
5728 /* The list of CUs from the index entry of the symbol, or NULL if
5729 not found. */
5730 const gdb_byte *m_addr;
5733 const char *
5734 mapped_debug_names::namei_to_name (uint32_t namei) const
5736 const ULONGEST namei_string_offs
5737 = extract_unsigned_integer ((name_table_string_offs_reordered
5738 + namei * offset_size),
5739 offset_size,
5740 dwarf5_byte_order);
5741 return read_indirect_string_at_offset
5742 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5745 /* Find a slot in .debug_names for the object named NAME. If NAME is
5746 found, return pointer to its pool data. If NAME cannot be found,
5747 return NULL. */
5749 const gdb_byte *
5750 dw2_debug_names_iterator::find_vec_in_debug_names
5751 (const mapped_debug_names &map, const char *name)
5753 int (*cmp) (const char *, const char *);
5755 if (current_language->la_language == language_cplus
5756 || current_language->la_language == language_fortran
5757 || current_language->la_language == language_d)
5759 /* NAME is already canonical. Drop any qualifiers as
5760 .debug_names does not contain any. */
5762 if (strchr (name, '(') != NULL)
5764 gdb::unique_xmalloc_ptr<char> without_params
5765 = cp_remove_params (name);
5767 if (without_params != NULL)
5769 name = without_params.get();
5774 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5776 const uint32_t full_hash = dwarf5_djb_hash (name);
5777 uint32_t namei
5778 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5779 (map.bucket_table_reordered
5780 + (full_hash % map.bucket_count)), 4,
5781 map.dwarf5_byte_order);
5782 if (namei == 0)
5783 return NULL;
5784 --namei;
5785 if (namei >= map.name_count)
5787 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5788 "[in module %s]"),
5789 namei, map.name_count,
5790 objfile_name (map.dwarf2_per_objfile->objfile));
5791 return NULL;
5794 for (;;)
5796 const uint32_t namei_full_hash
5797 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5798 (map.hash_table_reordered + namei), 4,
5799 map.dwarf5_byte_order);
5800 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5801 return NULL;
5803 if (full_hash == namei_full_hash)
5805 const char *const namei_string = map.namei_to_name (namei);
5807 #if 0 /* An expensive sanity check. */
5808 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5810 complaint (_("Wrong .debug_names hash for string at index %u "
5811 "[in module %s]"),
5812 namei, objfile_name (dwarf2_per_objfile->objfile));
5813 return NULL;
5815 #endif
5817 if (cmp (namei_string, name) == 0)
5819 const ULONGEST namei_entry_offs
5820 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5821 + namei * map.offset_size),
5822 map.offset_size, map.dwarf5_byte_order);
5823 return map.entry_pool + namei_entry_offs;
5827 ++namei;
5828 if (namei >= map.name_count)
5829 return NULL;
5833 const gdb_byte *
5834 dw2_debug_names_iterator::find_vec_in_debug_names
5835 (const mapped_debug_names &map, uint32_t namei)
5837 if (namei >= map.name_count)
5839 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5840 "[in module %s]"),
5841 namei, map.name_count,
5842 objfile_name (map.dwarf2_per_objfile->objfile));
5843 return NULL;
5846 const ULONGEST namei_entry_offs
5847 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5848 + namei * map.offset_size),
5849 map.offset_size, map.dwarf5_byte_order);
5850 return map.entry_pool + namei_entry_offs;
5853 /* See dw2_debug_names_iterator. */
5855 dwarf2_per_cu_data *
5856 dw2_debug_names_iterator::next ()
5858 if (m_addr == NULL)
5859 return NULL;
5861 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5862 struct objfile *objfile = dwarf2_per_objfile->objfile;
5863 bfd *const abfd = objfile->obfd;
5865 again:
5867 unsigned int bytes_read;
5868 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5869 m_addr += bytes_read;
5870 if (abbrev == 0)
5871 return NULL;
5873 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5874 if (indexval_it == m_map.abbrev_map.cend ())
5876 complaint (_("Wrong .debug_names undefined abbrev code %s "
5877 "[in module %s]"),
5878 pulongest (abbrev), objfile_name (objfile));
5879 return NULL;
5881 const mapped_debug_names::index_val &indexval = indexval_it->second;
5882 bool have_is_static = false;
5883 bool is_static;
5884 dwarf2_per_cu_data *per_cu = NULL;
5885 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5887 ULONGEST ull;
5888 switch (attr.form)
5890 case DW_FORM_implicit_const:
5891 ull = attr.implicit_const;
5892 break;
5893 case DW_FORM_flag_present:
5894 ull = 1;
5895 break;
5896 case DW_FORM_udata:
5897 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5898 m_addr += bytes_read;
5899 break;
5900 default:
5901 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5902 dwarf_form_name (attr.form),
5903 objfile_name (objfile));
5904 return NULL;
5906 switch (attr.dw_idx)
5908 case DW_IDX_compile_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5912 complaint (_(".debug_names entry has bad CU index %s"
5913 " [in module %s]"),
5914 pulongest (ull),
5915 objfile_name (dwarf2_per_objfile->objfile));
5916 continue;
5918 per_cu = dwarf2_per_objfile->get_cutu (ull);
5919 break;
5920 case DW_IDX_type_unit:
5921 /* Don't crash on bad data. */
5922 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5924 complaint (_(".debug_names entry has bad TU index %s"
5925 " [in module %s]"),
5926 pulongest (ull),
5927 objfile_name (dwarf2_per_objfile->objfile));
5928 continue;
5930 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5931 break;
5932 case DW_IDX_GNU_internal:
5933 if (!m_map.augmentation_is_gdb)
5934 break;
5935 have_is_static = true;
5936 is_static = true;
5937 break;
5938 case DW_IDX_GNU_external:
5939 if (!m_map.augmentation_is_gdb)
5940 break;
5941 have_is_static = true;
5942 is_static = false;
5943 break;
5947 /* Skip if already read in. */
5948 if (per_cu->v.quick->compunit_symtab)
5949 goto again;
5951 /* Check static vs global. */
5952 if (have_is_static)
5954 const bool want_static = m_block_index != GLOBAL_BLOCK;
5955 if (m_want_specific_block && want_static != is_static)
5956 goto again;
5959 /* Match dw2_symtab_iter_next, symbol_kind
5960 and debug_names::psymbol_tag. */
5961 switch (m_domain)
5963 case VAR_DOMAIN:
5964 switch (indexval.dwarf_tag)
5966 case DW_TAG_variable:
5967 case DW_TAG_subprogram:
5968 /* Some types are also in VAR_DOMAIN. */
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5975 break;
5976 case STRUCT_DOMAIN:
5977 switch (indexval.dwarf_tag)
5979 case DW_TAG_typedef:
5980 case DW_TAG_structure_type:
5981 break;
5982 default:
5983 goto again;
5985 break;
5986 case LABEL_DOMAIN:
5987 switch (indexval.dwarf_tag)
5989 case 0:
5990 case DW_TAG_variable:
5991 break;
5992 default:
5993 goto again;
5995 break;
5996 default:
5997 break;
6000 /* Match dw2_expand_symtabs_matching, symbol_kind and
6001 debug_names::psymbol_tag. */
6002 switch (m_search)
6004 case VARIABLES_DOMAIN:
6005 switch (indexval.dwarf_tag)
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6012 break;
6013 case FUNCTIONS_DOMAIN:
6014 switch (indexval.dwarf_tag)
6016 case DW_TAG_subprogram:
6017 break;
6018 default:
6019 goto again;
6021 break;
6022 case TYPES_DOMAIN:
6023 switch (indexval.dwarf_tag)
6025 case DW_TAG_typedef:
6026 case DW_TAG_structure_type:
6027 break;
6028 default:
6029 goto again;
6031 break;
6032 default:
6033 break;
6036 return per_cu;
6039 static struct compunit_symtab *
6040 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6041 const char *name, domain_enum domain)
6043 const block_enum block_index = static_cast<block_enum> (block_index_int);
6044 struct dwarf2_per_objfile *dwarf2_per_objfile
6045 = get_dwarf2_per_objfile (objfile);
6047 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6048 if (!mapp)
6050 /* index is NULL if OBJF_READNOW. */
6051 return NULL;
6053 const auto &map = *mapp;
6055 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6056 block_index, domain, name);
6058 struct compunit_symtab *stab_best = NULL;
6059 struct dwarf2_per_cu_data *per_cu;
6060 while ((per_cu = iter.next ()) != NULL)
6062 struct symbol *sym, *with_opaque = NULL;
6063 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6064 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6065 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6067 sym = block_find_symbol (block, name, domain,
6068 block_find_non_opaque_type_preferred,
6069 &with_opaque);
6071 /* Some caution must be observed with overloaded functions and
6072 methods, since the index will not contain any overload
6073 information (but NAME might contain it). */
6075 if (sym != NULL
6076 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6077 return stab;
6078 if (with_opaque != NULL
6079 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6080 stab_best = stab;
6082 /* Keep looking through other CUs. */
6085 return stab_best;
6088 /* This dumps minimal information about .debug_names. It is called
6089 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6090 uses this to verify that .debug_names has been loaded. */
6092 static void
6093 dw2_debug_names_dump (struct objfile *objfile)
6095 struct dwarf2_per_objfile *dwarf2_per_objfile
6096 = get_dwarf2_per_objfile (objfile);
6098 gdb_assert (dwarf2_per_objfile->using_index);
6099 printf_filtered (".debug_names:");
6100 if (dwarf2_per_objfile->debug_names_table)
6101 printf_filtered (" exists\n");
6102 else
6103 printf_filtered (" faked for \"readnow\"\n");
6104 printf_filtered ("\n");
6107 static void
6108 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6109 const char *func_name)
6111 struct dwarf2_per_objfile *dwarf2_per_objfile
6112 = get_dwarf2_per_objfile (objfile);
6114 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6115 if (dwarf2_per_objfile->debug_names_table)
6117 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6119 /* Note: It doesn't matter what we pass for block_index here. */
6120 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6121 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6123 struct dwarf2_per_cu_data *per_cu;
6124 while ((per_cu = iter.next ()) != NULL)
6125 dw2_instantiate_symtab (per_cu, false);
6129 static void
6130 dw2_debug_names_expand_symtabs_matching
6131 (struct objfile *objfile,
6132 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6133 const lookup_name_info &lookup_name,
6134 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6135 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6136 enum search_domain kind)
6138 struct dwarf2_per_objfile *dwarf2_per_objfile
6139 = get_dwarf2_per_objfile (objfile);
6141 /* debug_names_table is NULL if OBJF_READNOW. */
6142 if (!dwarf2_per_objfile->debug_names_table)
6143 return;
6145 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6147 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6149 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6150 symbol_matcher,
6151 kind, [&] (offset_type namei)
6153 /* The name was matched, now expand corresponding CUs that were
6154 marked. */
6155 dw2_debug_names_iterator iter (map, kind, namei);
6157 struct dwarf2_per_cu_data *per_cu;
6158 while ((per_cu = iter.next ()) != NULL)
6159 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6160 expansion_notify);
6164 const struct quick_symbol_functions dwarf2_debug_names_functions =
6166 dw2_has_symbols,
6167 dw2_find_last_source_symtab,
6168 dw2_forget_cached_source_info,
6169 dw2_map_symtabs_matching_filename,
6170 dw2_debug_names_lookup_symbol,
6171 dw2_print_stats,
6172 dw2_debug_names_dump,
6173 dw2_debug_names_expand_symtabs_for_function,
6174 dw2_expand_all_symtabs,
6175 dw2_expand_symtabs_with_fullname,
6176 dw2_map_matching_symbols,
6177 dw2_debug_names_expand_symtabs_matching,
6178 dw2_find_pc_sect_compunit_symtab,
6179 NULL,
6180 dw2_map_symbol_filenames
6183 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6184 to either a dwarf2_per_objfile or dwz_file object. */
6186 template <typename T>
6187 static gdb::array_view<const gdb_byte>
6188 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6190 dwarf2_section_info *section = &section_owner->gdb_index;
6192 if (dwarf2_section_empty_p (section))
6193 return {};
6195 /* Older elfutils strip versions could keep the section in the main
6196 executable while splitting it for the separate debug info file. */
6197 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6198 return {};
6200 dwarf2_read_section (obj, section);
6202 /* dwarf2_section_info::size is a bfd_size_type, while
6203 gdb::array_view works with size_t. On 32-bit hosts, with
6204 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6205 is 32-bit. So we need an explicit narrowing conversion here.
6206 This is fine, because it's impossible to allocate or mmap an
6207 array/buffer larger than what size_t can represent. */
6208 return gdb::make_array_view (section->buffer, section->size);
6211 /* Lookup the index cache for the contents of the index associated to
6212 DWARF2_OBJ. */
6214 static gdb::array_view<const gdb_byte>
6215 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6217 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6218 if (build_id == nullptr)
6219 return {};
6221 return global_index_cache.lookup_gdb_index (build_id,
6222 &dwarf2_obj->index_cache_res);
6225 /* Same as the above, but for DWZ. */
6227 static gdb::array_view<const gdb_byte>
6228 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6230 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6231 if (build_id == nullptr)
6232 return {};
6234 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6237 /* See symfile.h. */
6239 bool
6240 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6242 struct dwarf2_per_objfile *dwarf2_per_objfile
6243 = get_dwarf2_per_objfile (objfile);
6245 /* If we're about to read full symbols, don't bother with the
6246 indices. In this case we also don't care if some other debug
6247 format is making psymtabs, because they are all about to be
6248 expanded anyway. */
6249 if ((objfile->flags & OBJF_READNOW))
6251 dwarf2_per_objfile->using_index = 1;
6252 create_all_comp_units (dwarf2_per_objfile);
6253 create_all_type_units (dwarf2_per_objfile);
6254 dwarf2_per_objfile->quick_file_names_table
6255 = create_quick_file_names_table
6256 (dwarf2_per_objfile->all_comp_units.size ());
6258 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6259 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6261 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6263 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6264 struct dwarf2_per_cu_quick_data);
6267 /* Return 1 so that gdb sees the "quick" functions. However,
6268 these functions will be no-ops because we will have expanded
6269 all symtabs. */
6270 *index_kind = dw_index_kind::GDB_INDEX;
6271 return true;
6274 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6276 *index_kind = dw_index_kind::DEBUG_NAMES;
6277 return true;
6280 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6281 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6282 get_gdb_index_contents_from_section<dwz_file>))
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6288 /* ... otherwise, try to find the index in the index cache. */
6289 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6290 get_gdb_index_contents_from_cache,
6291 get_gdb_index_contents_from_cache_dwz))
6293 global_index_cache.hit ();
6294 *index_kind = dw_index_kind::GDB_INDEX;
6295 return true;
6298 global_index_cache.miss ();
6299 return false;
6304 /* Build a partial symbol table. */
6306 void
6307 dwarf2_build_psymtabs (struct objfile *objfile)
6309 struct dwarf2_per_objfile *dwarf2_per_objfile
6310 = get_dwarf2_per_objfile (objfile);
6312 init_psymbol_list (objfile, 1024);
6316 /* This isn't really ideal: all the data we allocate on the
6317 objfile's obstack is still uselessly kept around. However,
6318 freeing it seems unsafe. */
6319 psymtab_discarder psymtabs (objfile);
6320 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6321 psymtabs.keep ();
6323 /* (maybe) store an index in the cache. */
6324 global_index_cache.store (dwarf2_per_objfile);
6326 catch (const gdb_exception_error &except)
6328 exception_print (gdb_stderr, except);
6332 /* Return the total length of the CU described by HEADER. */
6334 static unsigned int
6335 get_cu_length (const struct comp_unit_head *header)
6337 return header->initial_length_size + header->length;
6340 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6342 static inline bool
6343 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6345 sect_offset bottom = cu_header->sect_off;
6346 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6348 return sect_off >= bottom && sect_off < top;
6351 /* Find the base address of the compilation unit for range lists and
6352 location lists. It will normally be specified by DW_AT_low_pc.
6353 In DWARF-3 draft 4, the base address could be overridden by
6354 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6355 compilation units with discontinuous ranges. */
6357 static void
6358 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6360 struct attribute *attr;
6362 cu->base_known = 0;
6363 cu->base_address = 0;
6365 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6366 if (attr)
6368 cu->base_address = attr_value_as_address (attr);
6369 cu->base_known = 1;
6371 else
6373 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6374 if (attr)
6376 cu->base_address = attr_value_as_address (attr);
6377 cu->base_known = 1;
6382 /* Read in the comp unit header information from the debug_info at info_ptr.
6383 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6384 NOTE: This leaves members offset, first_die_offset to be filled in
6385 by the caller. */
6387 static const gdb_byte *
6388 read_comp_unit_head (struct comp_unit_head *cu_header,
6389 const gdb_byte *info_ptr,
6390 struct dwarf2_section_info *section,
6391 rcuh_kind section_kind)
6393 int signed_addr;
6394 unsigned int bytes_read;
6395 const char *filename = get_section_file_name (section);
6396 bfd *abfd = get_section_bfd_owner (section);
6398 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6399 cu_header->initial_length_size = bytes_read;
6400 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6401 info_ptr += bytes_read;
6402 cu_header->version = read_2_bytes (abfd, info_ptr);
6403 if (cu_header->version < 2 || cu_header->version > 5)
6404 error (_("Dwarf Error: wrong version in compilation unit header "
6405 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6406 cu_header->version, filename);
6407 info_ptr += 2;
6408 if (cu_header->version < 5)
6409 switch (section_kind)
6411 case rcuh_kind::COMPILE:
6412 cu_header->unit_type = DW_UT_compile;
6413 break;
6414 case rcuh_kind::TYPE:
6415 cu_header->unit_type = DW_UT_type;
6416 break;
6417 default:
6418 internal_error (__FILE__, __LINE__,
6419 _("read_comp_unit_head: invalid section_kind"));
6421 else
6423 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6424 (read_1_byte (abfd, info_ptr));
6425 info_ptr += 1;
6426 switch (cu_header->unit_type)
6428 case DW_UT_compile:
6429 if (section_kind != rcuh_kind::COMPILE)
6430 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6431 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6432 filename);
6433 break;
6434 case DW_UT_type:
6435 section_kind = rcuh_kind::TYPE;
6436 break;
6437 default:
6438 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6439 "(is %d, should be %d or %d) [in module %s]"),
6440 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6443 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6444 info_ptr += 1;
6446 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6447 cu_header,
6448 &bytes_read);
6449 info_ptr += bytes_read;
6450 if (cu_header->version < 5)
6452 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6453 info_ptr += 1;
6455 signed_addr = bfd_get_sign_extend_vma (abfd);
6456 if (signed_addr < 0)
6457 internal_error (__FILE__, __LINE__,
6458 _("read_comp_unit_head: dwarf from non elf file"));
6459 cu_header->signed_addr_p = signed_addr;
6461 if (section_kind == rcuh_kind::TYPE)
6463 LONGEST type_offset;
6465 cu_header->signature = read_8_bytes (abfd, info_ptr);
6466 info_ptr += 8;
6468 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6469 info_ptr += bytes_read;
6470 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6471 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6472 error (_("Dwarf Error: Too big type_offset in compilation unit "
6473 "header (is %s) [in module %s]"), plongest (type_offset),
6474 filename);
6477 return info_ptr;
6480 /* Helper function that returns the proper abbrev section for
6481 THIS_CU. */
6483 static struct dwarf2_section_info *
6484 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6486 struct dwarf2_section_info *abbrev;
6487 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6489 if (this_cu->is_dwz)
6490 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6491 else
6492 abbrev = &dwarf2_per_objfile->abbrev;
6494 return abbrev;
6497 /* Subroutine of read_and_check_comp_unit_head and
6498 read_and_check_type_unit_head to simplify them.
6499 Perform various error checking on the header. */
6501 static void
6502 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6503 struct comp_unit_head *header,
6504 struct dwarf2_section_info *section,
6505 struct dwarf2_section_info *abbrev_section)
6507 const char *filename = get_section_file_name (section);
6509 if (to_underlying (header->abbrev_sect_off)
6510 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6511 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6512 "(offset %s + 6) [in module %s]"),
6513 sect_offset_str (header->abbrev_sect_off),
6514 sect_offset_str (header->sect_off),
6515 filename);
6517 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6518 avoid potential 32-bit overflow. */
6519 if (((ULONGEST) header->sect_off + get_cu_length (header))
6520 > section->size)
6521 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6522 "(offset %s + 0) [in module %s]"),
6523 header->length, sect_offset_str (header->sect_off),
6524 filename);
6527 /* Read in a CU/TU header and perform some basic error checking.
6528 The contents of the header are stored in HEADER.
6529 The result is a pointer to the start of the first DIE. */
6531 static const gdb_byte *
6532 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6533 struct comp_unit_head *header,
6534 struct dwarf2_section_info *section,
6535 struct dwarf2_section_info *abbrev_section,
6536 const gdb_byte *info_ptr,
6537 rcuh_kind section_kind)
6539 const gdb_byte *beg_of_comp_unit = info_ptr;
6541 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6543 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6545 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6547 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6548 abbrev_section);
6550 return info_ptr;
6553 /* Fetch the abbreviation table offset from a comp or type unit header. */
6555 static sect_offset
6556 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6557 struct dwarf2_section_info *section,
6558 sect_offset sect_off)
6560 bfd *abfd = get_section_bfd_owner (section);
6561 const gdb_byte *info_ptr;
6562 unsigned int initial_length_size, offset_size;
6563 uint16_t version;
6565 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6566 info_ptr = section->buffer + to_underlying (sect_off);
6567 read_initial_length (abfd, info_ptr, &initial_length_size);
6568 offset_size = initial_length_size == 4 ? 4 : 8;
6569 info_ptr += initial_length_size;
6571 version = read_2_bytes (abfd, info_ptr);
6572 info_ptr += 2;
6573 if (version >= 5)
6575 /* Skip unit type and address size. */
6576 info_ptr += 2;
6579 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6582 /* Allocate a new partial symtab for file named NAME and mark this new
6583 partial symtab as being an include of PST. */
6585 static void
6586 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6587 struct objfile *objfile)
6589 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6591 if (!IS_ABSOLUTE_PATH (subpst->filename))
6593 /* It shares objfile->objfile_obstack. */
6594 subpst->dirname = pst->dirname;
6597 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6598 subpst->dependencies[0] = pst;
6599 subpst->number_of_dependencies = 1;
6601 subpst->read_symtab = pst->read_symtab;
6603 /* No private part is necessary for include psymtabs. This property
6604 can be used to differentiate between such include psymtabs and
6605 the regular ones. */
6606 subpst->read_symtab_private = NULL;
6609 /* Read the Line Number Program data and extract the list of files
6610 included by the source file represented by PST. Build an include
6611 partial symtab for each of these included files. */
6613 static void
6614 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6615 struct die_info *die,
6616 struct partial_symtab *pst)
6618 line_header_up lh;
6619 struct attribute *attr;
6621 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6622 if (attr)
6623 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6624 if (lh == NULL)
6625 return; /* No linetable, so no includes. */
6627 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6628 that we pass in the raw text_low here; that is ok because we're
6629 only decoding the line table to make include partial symtabs, and
6630 so the addresses aren't really used. */
6631 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6632 pst->raw_text_low (), 1);
6635 static hashval_t
6636 hash_signatured_type (const void *item)
6638 const struct signatured_type *sig_type
6639 = (const struct signatured_type *) item;
6641 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6642 return sig_type->signature;
6645 static int
6646 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6648 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6649 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6651 return lhs->signature == rhs->signature;
6654 /* Allocate a hash table for signatured types. */
6656 static htab_t
6657 allocate_signatured_type_table (struct objfile *objfile)
6659 return htab_create_alloc_ex (41,
6660 hash_signatured_type,
6661 eq_signatured_type,
6662 NULL,
6663 &objfile->objfile_obstack,
6664 hashtab_obstack_allocate,
6665 dummy_obstack_deallocate);
6668 /* A helper function to add a signatured type CU to a table. */
6670 static int
6671 add_signatured_type_cu_to_table (void **slot, void *datum)
6673 struct signatured_type *sigt = (struct signatured_type *) *slot;
6674 std::vector<signatured_type *> *all_type_units
6675 = (std::vector<signatured_type *> *) datum;
6677 all_type_units->push_back (sigt);
6679 return 1;
6682 /* A helper for create_debug_types_hash_table. Read types from SECTION
6683 and fill them into TYPES_HTAB. It will process only type units,
6684 therefore DW_UT_type. */
6686 static void
6687 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6688 struct dwo_file *dwo_file,
6689 dwarf2_section_info *section, htab_t &types_htab,
6690 rcuh_kind section_kind)
6692 struct objfile *objfile = dwarf2_per_objfile->objfile;
6693 struct dwarf2_section_info *abbrev_section;
6694 bfd *abfd;
6695 const gdb_byte *info_ptr, *end_ptr;
6697 abbrev_section = (dwo_file != NULL
6698 ? &dwo_file->sections.abbrev
6699 : &dwarf2_per_objfile->abbrev);
6701 if (dwarf_read_debug)
6702 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6703 get_section_name (section),
6704 get_section_file_name (abbrev_section));
6706 dwarf2_read_section (objfile, section);
6707 info_ptr = section->buffer;
6709 if (info_ptr == NULL)
6710 return;
6712 /* We can't set abfd until now because the section may be empty or
6713 not present, in which case the bfd is unknown. */
6714 abfd = get_section_bfd_owner (section);
6716 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6717 because we don't need to read any dies: the signature is in the
6718 header. */
6720 end_ptr = info_ptr + section->size;
6721 while (info_ptr < end_ptr)
6723 struct signatured_type *sig_type;
6724 struct dwo_unit *dwo_tu;
6725 void **slot;
6726 const gdb_byte *ptr = info_ptr;
6727 struct comp_unit_head header;
6728 unsigned int length;
6730 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6732 /* Initialize it due to a false compiler warning. */
6733 header.signature = -1;
6734 header.type_cu_offset_in_tu = (cu_offset) -1;
6736 /* We need to read the type's signature in order to build the hash
6737 table, but we don't need anything else just yet. */
6739 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6740 abbrev_section, ptr, section_kind);
6742 length = get_cu_length (&header);
6744 /* Skip dummy type units. */
6745 if (ptr >= info_ptr + length
6746 || peek_abbrev_code (abfd, ptr) == 0
6747 || header.unit_type != DW_UT_type)
6749 info_ptr += length;
6750 continue;
6753 if (types_htab == NULL)
6755 if (dwo_file)
6756 types_htab = allocate_dwo_unit_table (objfile);
6757 else
6758 types_htab = allocate_signatured_type_table (objfile);
6761 if (dwo_file)
6763 sig_type = NULL;
6764 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6765 struct dwo_unit);
6766 dwo_tu->dwo_file = dwo_file;
6767 dwo_tu->signature = header.signature;
6768 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6769 dwo_tu->section = section;
6770 dwo_tu->sect_off = sect_off;
6771 dwo_tu->length = length;
6773 else
6775 /* N.B.: type_offset is not usable if this type uses a DWO file.
6776 The real type_offset is in the DWO file. */
6777 dwo_tu = NULL;
6778 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6779 struct signatured_type);
6780 sig_type->signature = header.signature;
6781 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6782 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6783 sig_type->per_cu.is_debug_types = 1;
6784 sig_type->per_cu.section = section;
6785 sig_type->per_cu.sect_off = sect_off;
6786 sig_type->per_cu.length = length;
6789 slot = htab_find_slot (types_htab,
6790 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6791 INSERT);
6792 gdb_assert (slot != NULL);
6793 if (*slot != NULL)
6795 sect_offset dup_sect_off;
6797 if (dwo_file)
6799 const struct dwo_unit *dup_tu
6800 = (const struct dwo_unit *) *slot;
6802 dup_sect_off = dup_tu->sect_off;
6804 else
6806 const struct signatured_type *dup_tu
6807 = (const struct signatured_type *) *slot;
6809 dup_sect_off = dup_tu->per_cu.sect_off;
6812 complaint (_("debug type entry at offset %s is duplicate to"
6813 " the entry at offset %s, signature %s"),
6814 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6815 hex_string (header.signature));
6817 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6819 if (dwarf_read_debug > 1)
6820 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6821 sect_offset_str (sect_off),
6822 hex_string (header.signature));
6824 info_ptr += length;
6828 /* Create the hash table of all entries in the .debug_types
6829 (or .debug_types.dwo) section(s).
6830 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6831 otherwise it is NULL.
6833 The result is a pointer to the hash table or NULL if there are no types.
6835 Note: This function processes DWO files only, not DWP files. */
6837 static void
6838 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6839 struct dwo_file *dwo_file,
6840 VEC (dwarf2_section_info_def) *types,
6841 htab_t &types_htab)
6843 int ix;
6844 struct dwarf2_section_info *section;
6846 if (VEC_empty (dwarf2_section_info_def, types))
6847 return;
6849 for (ix = 0;
6850 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6851 ++ix)
6852 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6853 types_htab, rcuh_kind::TYPE);
6856 /* Create the hash table of all entries in the .debug_types section,
6857 and initialize all_type_units.
6858 The result is zero if there is an error (e.g. missing .debug_types section),
6859 otherwise non-zero. */
6861 static int
6862 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6864 htab_t types_htab = NULL;
6866 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6867 &dwarf2_per_objfile->info, types_htab,
6868 rcuh_kind::COMPILE);
6869 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6870 dwarf2_per_objfile->types, types_htab);
6871 if (types_htab == NULL)
6873 dwarf2_per_objfile->signatured_types = NULL;
6874 return 0;
6877 dwarf2_per_objfile->signatured_types = types_htab;
6879 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6880 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6883 &dwarf2_per_objfile->all_type_units);
6885 return 1;
6888 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6889 If SLOT is non-NULL, it is the entry to use in the hash table.
6890 Otherwise we find one. */
6892 static struct signatured_type *
6893 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6894 void **slot)
6896 struct objfile *objfile = dwarf2_per_objfile->objfile;
6898 if (dwarf2_per_objfile->all_type_units.size ()
6899 == dwarf2_per_objfile->all_type_units.capacity ())
6900 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6902 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6903 struct signatured_type);
6905 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6906 sig_type->signature = sig;
6907 sig_type->per_cu.is_debug_types = 1;
6908 if (dwarf2_per_objfile->using_index)
6910 sig_type->per_cu.v.quick =
6911 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6912 struct dwarf2_per_cu_quick_data);
6915 if (slot == NULL)
6917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6918 sig_type, INSERT);
6920 gdb_assert (*slot == NULL);
6921 *slot = sig_type;
6922 /* The rest of sig_type must be filled in by the caller. */
6923 return sig_type;
6926 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6927 Fill in SIG_ENTRY with DWO_ENTRY. */
6929 static void
6930 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6931 struct signatured_type *sig_entry,
6932 struct dwo_unit *dwo_entry)
6934 /* Make sure we're not clobbering something we don't expect to. */
6935 gdb_assert (! sig_entry->per_cu.queued);
6936 gdb_assert (sig_entry->per_cu.cu == NULL);
6937 if (dwarf2_per_objfile->using_index)
6939 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6940 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6942 else
6943 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6944 gdb_assert (sig_entry->signature == dwo_entry->signature);
6945 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6946 gdb_assert (sig_entry->type_unit_group == NULL);
6947 gdb_assert (sig_entry->dwo_unit == NULL);
6949 sig_entry->per_cu.section = dwo_entry->section;
6950 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6951 sig_entry->per_cu.length = dwo_entry->length;
6952 sig_entry->per_cu.reading_dwo_directly = 1;
6953 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6954 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6955 sig_entry->dwo_unit = dwo_entry;
6958 /* Subroutine of lookup_signatured_type.
6959 If we haven't read the TU yet, create the signatured_type data structure
6960 for a TU to be read in directly from a DWO file, bypassing the stub.
6961 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6962 using .gdb_index, then when reading a CU we want to stay in the DWO file
6963 containing that CU. Otherwise we could end up reading several other DWO
6964 files (due to comdat folding) to process the transitive closure of all the
6965 mentioned TUs, and that can be slow. The current DWO file will have every
6966 type signature that it needs.
6967 We only do this for .gdb_index because in the psymtab case we already have
6968 to read all the DWOs to build the type unit groups. */
6970 static struct signatured_type *
6971 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6973 struct dwarf2_per_objfile *dwarf2_per_objfile
6974 = cu->per_cu->dwarf2_per_objfile;
6975 struct objfile *objfile = dwarf2_per_objfile->objfile;
6976 struct dwo_file *dwo_file;
6977 struct dwo_unit find_dwo_entry, *dwo_entry;
6978 struct signatured_type find_sig_entry, *sig_entry;
6979 void **slot;
6981 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6983 /* If TU skeletons have been removed then we may not have read in any
6984 TUs yet. */
6985 if (dwarf2_per_objfile->signatured_types == NULL)
6987 dwarf2_per_objfile->signatured_types
6988 = allocate_signatured_type_table (objfile);
6991 /* We only ever need to read in one copy of a signatured type.
6992 Use the global signatured_types array to do our own comdat-folding
6993 of types. If this is the first time we're reading this TU, and
6994 the TU has an entry in .gdb_index, replace the recorded data from
6995 .gdb_index with this TU. */
6997 find_sig_entry.signature = sig;
6998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6999 &find_sig_entry, INSERT);
7000 sig_entry = (struct signatured_type *) *slot;
7002 /* We can get here with the TU already read, *or* in the process of being
7003 read. Don't reassign the global entry to point to this DWO if that's
7004 the case. Also note that if the TU is already being read, it may not
7005 have come from a DWO, the program may be a mix of Fission-compiled
7006 code and non-Fission-compiled code. */
7008 /* Have we already tried to read this TU?
7009 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7010 needn't exist in the global table yet). */
7011 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7012 return sig_entry;
7014 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7015 dwo_unit of the TU itself. */
7016 dwo_file = cu->dwo_unit->dwo_file;
7018 /* Ok, this is the first time we're reading this TU. */
7019 if (dwo_file->tus == NULL)
7020 return NULL;
7021 find_dwo_entry.signature = sig;
7022 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7023 if (dwo_entry == NULL)
7024 return NULL;
7026 /* If the global table doesn't have an entry for this TU, add one. */
7027 if (sig_entry == NULL)
7028 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7030 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7031 sig_entry->per_cu.tu_read = 1;
7032 return sig_entry;
7035 /* Subroutine of lookup_signatured_type.
7036 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7037 then try the DWP file. If the TU stub (skeleton) has been removed then
7038 it won't be in .gdb_index. */
7040 static struct signatured_type *
7041 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7043 struct dwarf2_per_objfile *dwarf2_per_objfile
7044 = cu->per_cu->dwarf2_per_objfile;
7045 struct objfile *objfile = dwarf2_per_objfile->objfile;
7046 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7047 struct dwo_unit *dwo_entry;
7048 struct signatured_type find_sig_entry, *sig_entry;
7049 void **slot;
7051 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7052 gdb_assert (dwp_file != NULL);
7054 /* If TU skeletons have been removed then we may not have read in any
7055 TUs yet. */
7056 if (dwarf2_per_objfile->signatured_types == NULL)
7058 dwarf2_per_objfile->signatured_types
7059 = allocate_signatured_type_table (objfile);
7062 find_sig_entry.signature = sig;
7063 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7064 &find_sig_entry, INSERT);
7065 sig_entry = (struct signatured_type *) *slot;
7067 /* Have we already tried to read this TU?
7068 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7069 needn't exist in the global table yet). */
7070 if (sig_entry != NULL)
7071 return sig_entry;
7073 if (dwp_file->tus == NULL)
7074 return NULL;
7075 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7076 sig, 1 /* is_debug_types */);
7077 if (dwo_entry == NULL)
7078 return NULL;
7080 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7081 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7083 return sig_entry;
7086 /* Lookup a signature based type for DW_FORM_ref_sig8.
7087 Returns NULL if signature SIG is not present in the table.
7088 It is up to the caller to complain about this. */
7090 static struct signatured_type *
7091 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7093 struct dwarf2_per_objfile *dwarf2_per_objfile
7094 = cu->per_cu->dwarf2_per_objfile;
7096 if (cu->dwo_unit
7097 && dwarf2_per_objfile->using_index)
7099 /* We're in a DWO/DWP file, and we're using .gdb_index.
7100 These cases require special processing. */
7101 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7102 return lookup_dwo_signatured_type (cu, sig);
7103 else
7104 return lookup_dwp_signatured_type (cu, sig);
7106 else
7108 struct signatured_type find_entry, *entry;
7110 if (dwarf2_per_objfile->signatured_types == NULL)
7111 return NULL;
7112 find_entry.signature = sig;
7113 entry = ((struct signatured_type *)
7114 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7115 return entry;
7119 /* Low level DIE reading support. */
7121 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7123 static void
7124 init_cu_die_reader (struct die_reader_specs *reader,
7125 struct dwarf2_cu *cu,
7126 struct dwarf2_section_info *section,
7127 struct dwo_file *dwo_file,
7128 struct abbrev_table *abbrev_table)
7130 gdb_assert (section->readin && section->buffer != NULL);
7131 reader->abfd = get_section_bfd_owner (section);
7132 reader->cu = cu;
7133 reader->dwo_file = dwo_file;
7134 reader->die_section = section;
7135 reader->buffer = section->buffer;
7136 reader->buffer_end = section->buffer + section->size;
7137 reader->comp_dir = NULL;
7138 reader->abbrev_table = abbrev_table;
7141 /* Subroutine of init_cutu_and_read_dies to simplify it.
7142 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7143 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7144 already.
7146 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7147 from it to the DIE in the DWO. If NULL we are skipping the stub.
7148 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7149 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7150 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7151 STUB_COMP_DIR may be non-NULL.
7152 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7153 are filled in with the info of the DIE from the DWO file.
7154 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7155 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7156 kept around for at least as long as *RESULT_READER.
7158 The result is non-zero if a valid (non-dummy) DIE was found. */
7160 static int
7161 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7162 struct dwo_unit *dwo_unit,
7163 struct die_info *stub_comp_unit_die,
7164 const char *stub_comp_dir,
7165 struct die_reader_specs *result_reader,
7166 const gdb_byte **result_info_ptr,
7167 struct die_info **result_comp_unit_die,
7168 int *result_has_children,
7169 abbrev_table_up *result_dwo_abbrev_table)
7171 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7172 struct objfile *objfile = dwarf2_per_objfile->objfile;
7173 struct dwarf2_cu *cu = this_cu->cu;
7174 bfd *abfd;
7175 const gdb_byte *begin_info_ptr, *info_ptr;
7176 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7177 int i,num_extra_attrs;
7178 struct dwarf2_section_info *dwo_abbrev_section;
7179 struct attribute *attr;
7180 struct die_info *comp_unit_die;
7182 /* At most one of these may be provided. */
7183 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7185 /* These attributes aren't processed until later:
7186 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7187 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7188 referenced later. However, these attributes are found in the stub
7189 which we won't have later. In order to not impose this complication
7190 on the rest of the code, we read them here and copy them to the
7191 DWO CU/TU die. */
7193 stmt_list = NULL;
7194 low_pc = NULL;
7195 high_pc = NULL;
7196 ranges = NULL;
7197 comp_dir = NULL;
7199 if (stub_comp_unit_die != NULL)
7201 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7202 DWO file. */
7203 if (! this_cu->is_debug_types)
7204 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7205 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7206 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7207 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7208 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7210 /* There should be a DW_AT_addr_base attribute here (if needed).
7211 We need the value before we can process DW_FORM_GNU_addr_index
7212 or DW_FORM_addrx. */
7213 cu->addr_base = 0;
7214 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7215 if (attr)
7216 cu->addr_base = DW_UNSND (attr);
7218 /* There should be a DW_AT_ranges_base attribute here (if needed).
7219 We need the value before we can process DW_AT_ranges. */
7220 cu->ranges_base = 0;
7221 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7222 if (attr)
7223 cu->ranges_base = DW_UNSND (attr);
7225 else if (stub_comp_dir != NULL)
7227 /* Reconstruct the comp_dir attribute to simplify the code below. */
7228 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7229 comp_dir->name = DW_AT_comp_dir;
7230 comp_dir->form = DW_FORM_string;
7231 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7232 DW_STRING (comp_dir) = stub_comp_dir;
7235 /* Set up for reading the DWO CU/TU. */
7236 cu->dwo_unit = dwo_unit;
7237 dwarf2_section_info *section = dwo_unit->section;
7238 dwarf2_read_section (objfile, section);
7239 abfd = get_section_bfd_owner (section);
7240 begin_info_ptr = info_ptr = (section->buffer
7241 + to_underlying (dwo_unit->sect_off));
7242 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7244 if (this_cu->is_debug_types)
7246 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7248 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7249 &cu->header, section,
7250 dwo_abbrev_section,
7251 info_ptr, rcuh_kind::TYPE);
7252 /* This is not an assert because it can be caused by bad debug info. */
7253 if (sig_type->signature != cu->header.signature)
7255 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7256 " TU at offset %s [in module %s]"),
7257 hex_string (sig_type->signature),
7258 hex_string (cu->header.signature),
7259 sect_offset_str (dwo_unit->sect_off),
7260 bfd_get_filename (abfd));
7262 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7263 /* For DWOs coming from DWP files, we don't know the CU length
7264 nor the type's offset in the TU until now. */
7265 dwo_unit->length = get_cu_length (&cu->header);
7266 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7268 /* Establish the type offset that can be used to lookup the type.
7269 For DWO files, we don't know it until now. */
7270 sig_type->type_offset_in_section
7271 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7273 else
7275 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7276 &cu->header, section,
7277 dwo_abbrev_section,
7278 info_ptr, rcuh_kind::COMPILE);
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7285 *result_dwo_abbrev_table
7286 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7287 cu->header.abbrev_sect_off);
7288 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7289 result_dwo_abbrev_table->get ());
7291 /* Read in the die, but leave space to copy over the attributes
7292 from the stub. This has the benefit of simplifying the rest of
7293 the code - all the work to maintain the illusion of a single
7294 DW_TAG_{compile,type}_unit DIE is done here. */
7295 num_extra_attrs = ((stmt_list != NULL)
7296 + (low_pc != NULL)
7297 + (high_pc != NULL)
7298 + (ranges != NULL)
7299 + (comp_dir != NULL));
7300 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7301 result_has_children, num_extra_attrs);
7303 /* Copy over the attributes from the stub to the DIE we just read in. */
7304 comp_unit_die = *result_comp_unit_die;
7305 i = comp_unit_die->num_attrs;
7306 if (stmt_list != NULL)
7307 comp_unit_die->attrs[i++] = *stmt_list;
7308 if (low_pc != NULL)
7309 comp_unit_die->attrs[i++] = *low_pc;
7310 if (high_pc != NULL)
7311 comp_unit_die->attrs[i++] = *high_pc;
7312 if (ranges != NULL)
7313 comp_unit_die->attrs[i++] = *ranges;
7314 if (comp_dir != NULL)
7315 comp_unit_die->attrs[i++] = *comp_dir;
7316 comp_unit_die->num_attrs += num_extra_attrs;
7318 if (dwarf_die_debug)
7320 fprintf_unfiltered (gdb_stdlog,
7321 "Read die from %s@0x%x of %s:\n",
7322 get_section_name (section),
7323 (unsigned) (begin_info_ptr - section->buffer),
7324 bfd_get_filename (abfd));
7325 dump_die (comp_unit_die, dwarf_die_debug);
7328 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7329 TUs by skipping the stub and going directly to the entry in the DWO file.
7330 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7331 to get it via circuitous means. Blech. */
7332 if (comp_dir != NULL)
7333 result_reader->comp_dir = DW_STRING (comp_dir);
7335 /* Skip dummy compilation units. */
7336 if (info_ptr >= begin_info_ptr + dwo_unit->length
7337 || peek_abbrev_code (abfd, info_ptr) == 0)
7338 return 0;
7340 *result_info_ptr = info_ptr;
7341 return 1;
7344 /* Subroutine of init_cutu_and_read_dies to simplify it.
7345 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7346 Returns NULL if the specified DWO unit cannot be found. */
7348 static struct dwo_unit *
7349 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7350 struct die_info *comp_unit_die)
7352 struct dwarf2_cu *cu = this_cu->cu;
7353 ULONGEST signature;
7354 struct dwo_unit *dwo_unit;
7355 const char *comp_dir, *dwo_name;
7357 gdb_assert (cu != NULL);
7359 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7360 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7361 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7363 if (this_cu->is_debug_types)
7365 struct signatured_type *sig_type;
7367 /* Since this_cu is the first member of struct signatured_type,
7368 we can go from a pointer to one to a pointer to the other. */
7369 sig_type = (struct signatured_type *) this_cu;
7370 signature = sig_type->signature;
7371 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7373 else
7375 struct attribute *attr;
7377 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7378 if (! attr)
7379 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7380 " [in module %s]"),
7381 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7382 signature = DW_UNSND (attr);
7383 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7384 signature);
7387 return dwo_unit;
7390 /* Subroutine of init_cutu_and_read_dies to simplify it.
7391 See it for a description of the parameters.
7392 Read a TU directly from a DWO file, bypassing the stub. */
7394 static void
7395 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7396 int use_existing_cu, int keep,
7397 die_reader_func_ftype *die_reader_func,
7398 void *data)
7400 std::unique_ptr<dwarf2_cu> new_cu;
7401 struct signatured_type *sig_type;
7402 struct die_reader_specs reader;
7403 const gdb_byte *info_ptr;
7404 struct die_info *comp_unit_die;
7405 int has_children;
7406 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7408 /* Verify we can do the following downcast, and that we have the
7409 data we need. */
7410 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7411 sig_type = (struct signatured_type *) this_cu;
7412 gdb_assert (sig_type->dwo_unit != NULL);
7414 if (use_existing_cu && this_cu->cu != NULL)
7416 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7417 /* There's no need to do the rereading_dwo_cu handling that
7418 init_cutu_and_read_dies does since we don't read the stub. */
7420 else
7422 /* If !use_existing_cu, this_cu->cu must be NULL. */
7423 gdb_assert (this_cu->cu == NULL);
7424 new_cu.reset (new dwarf2_cu (this_cu));
7427 /* A future optimization, if needed, would be to use an existing
7428 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7429 could share abbrev tables. */
7431 /* The abbreviation table used by READER, this must live at least as long as
7432 READER. */
7433 abbrev_table_up dwo_abbrev_table;
7435 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7436 NULL /* stub_comp_unit_die */,
7437 sig_type->dwo_unit->dwo_file->comp_dir,
7438 &reader, &info_ptr,
7439 &comp_unit_die, &has_children,
7440 &dwo_abbrev_table) == 0)
7442 /* Dummy die. */
7443 return;
7446 /* All the "real" work is done here. */
7447 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7449 /* This duplicates the code in init_cutu_and_read_dies,
7450 but the alternative is making the latter more complex.
7451 This function is only for the special case of using DWO files directly:
7452 no point in overly complicating the general case just to handle this. */
7453 if (new_cu != NULL && keep)
7455 /* Link this CU into read_in_chain. */
7456 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7457 dwarf2_per_objfile->read_in_chain = this_cu;
7458 /* The chain owns it now. */
7459 new_cu.release ();
7463 /* Initialize a CU (or TU) and read its DIEs.
7464 If the CU defers to a DWO file, read the DWO file as well.
7466 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7467 Otherwise the table specified in the comp unit header is read in and used.
7468 This is an optimization for when we already have the abbrev table.
7470 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7471 Otherwise, a new CU is allocated with xmalloc.
7473 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7474 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7476 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7477 linker) then DIE_READER_FUNC will not get called. */
7479 static void
7480 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7481 struct abbrev_table *abbrev_table,
7482 int use_existing_cu, int keep,
7483 bool skip_partial,
7484 die_reader_func_ftype *die_reader_func,
7485 void *data)
7487 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7488 struct objfile *objfile = dwarf2_per_objfile->objfile;
7489 struct dwarf2_section_info *section = this_cu->section;
7490 bfd *abfd = get_section_bfd_owner (section);
7491 struct dwarf2_cu *cu;
7492 const gdb_byte *begin_info_ptr, *info_ptr;
7493 struct die_reader_specs reader;
7494 struct die_info *comp_unit_die;
7495 int has_children;
7496 struct attribute *attr;
7497 struct signatured_type *sig_type = NULL;
7498 struct dwarf2_section_info *abbrev_section;
7499 /* Non-zero if CU currently points to a DWO file and we need to
7500 reread it. When this happens we need to reread the skeleton die
7501 before we can reread the DWO file (this only applies to CUs, not TUs). */
7502 int rereading_dwo_cu = 0;
7504 if (dwarf_die_debug)
7505 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7506 this_cu->is_debug_types ? "type" : "comp",
7507 sect_offset_str (this_cu->sect_off));
7509 if (use_existing_cu)
7510 gdb_assert (keep);
7512 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7513 file (instead of going through the stub), short-circuit all of this. */
7514 if (this_cu->reading_dwo_directly)
7516 /* Narrow down the scope of possibilities to have to understand. */
7517 gdb_assert (this_cu->is_debug_types);
7518 gdb_assert (abbrev_table == NULL);
7519 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7520 die_reader_func, data);
7521 return;
7524 /* This is cheap if the section is already read in. */
7525 dwarf2_read_section (objfile, section);
7527 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7529 abbrev_section = get_abbrev_section_for_cu (this_cu);
7531 std::unique_ptr<dwarf2_cu> new_cu;
7532 if (use_existing_cu && this_cu->cu != NULL)
7534 cu = this_cu->cu;
7535 /* If this CU is from a DWO file we need to start over, we need to
7536 refetch the attributes from the skeleton CU.
7537 This could be optimized by retrieving those attributes from when we
7538 were here the first time: the previous comp_unit_die was stored in
7539 comp_unit_obstack. But there's no data yet that we need this
7540 optimization. */
7541 if (cu->dwo_unit != NULL)
7542 rereading_dwo_cu = 1;
7544 else
7546 /* If !use_existing_cu, this_cu->cu must be NULL. */
7547 gdb_assert (this_cu->cu == NULL);
7548 new_cu.reset (new dwarf2_cu (this_cu));
7549 cu = new_cu.get ();
7552 /* Get the header. */
7553 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7555 /* We already have the header, there's no need to read it in again. */
7556 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7558 else
7560 if (this_cu->is_debug_types)
7562 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7563 &cu->header, section,
7564 abbrev_section, info_ptr,
7565 rcuh_kind::TYPE);
7567 /* Since per_cu is the first member of struct signatured_type,
7568 we can go from a pointer to one to a pointer to the other. */
7569 sig_type = (struct signatured_type *) this_cu;
7570 gdb_assert (sig_type->signature == cu->header.signature);
7571 gdb_assert (sig_type->type_offset_in_tu
7572 == cu->header.type_cu_offset_in_tu);
7573 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7575 /* LENGTH has not been set yet for type units if we're
7576 using .gdb_index. */
7577 this_cu->length = get_cu_length (&cu->header);
7579 /* Establish the type offset that can be used to lookup the type. */
7580 sig_type->type_offset_in_section =
7581 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7583 this_cu->dwarf_version = cu->header.version;
7585 else
7587 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7588 &cu->header, section,
7589 abbrev_section,
7590 info_ptr,
7591 rcuh_kind::COMPILE);
7593 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7594 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7595 this_cu->dwarf_version = cu->header.version;
7599 /* Skip dummy compilation units. */
7600 if (info_ptr >= begin_info_ptr + this_cu->length
7601 || peek_abbrev_code (abfd, info_ptr) == 0)
7602 return;
7604 /* If we don't have them yet, read the abbrevs for this compilation unit.
7605 And if we need to read them now, make sure they're freed when we're
7606 done (own the table through ABBREV_TABLE_HOLDER). */
7607 abbrev_table_up abbrev_table_holder;
7608 if (abbrev_table != NULL)
7609 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7610 else
7612 abbrev_table_holder
7613 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7614 cu->header.abbrev_sect_off);
7615 abbrev_table = abbrev_table_holder.get ();
7618 /* Read the top level CU/TU die. */
7619 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7620 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7622 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7623 return;
7625 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7626 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7627 table from the DWO file and pass the ownership over to us. It will be
7628 referenced from READER, so we must make sure to free it after we're done
7629 with READER.
7631 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7632 DWO CU, that this test will fail (the attribute will not be present). */
7633 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7634 abbrev_table_up dwo_abbrev_table;
7635 if (attr)
7637 struct dwo_unit *dwo_unit;
7638 struct die_info *dwo_comp_unit_die;
7640 if (has_children)
7642 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7643 " has children (offset %s) [in module %s]"),
7644 sect_offset_str (this_cu->sect_off),
7645 bfd_get_filename (abfd));
7647 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7648 if (dwo_unit != NULL)
7650 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7651 comp_unit_die, NULL,
7652 &reader, &info_ptr,
7653 &dwo_comp_unit_die, &has_children,
7654 &dwo_abbrev_table) == 0)
7656 /* Dummy die. */
7657 return;
7659 comp_unit_die = dwo_comp_unit_die;
7661 else
7663 /* Yikes, we couldn't find the rest of the DIE, we only have
7664 the stub. A complaint has already been logged. There's
7665 not much more we can do except pass on the stub DIE to
7666 die_reader_func. We don't want to throw an error on bad
7667 debug info. */
7671 /* All of the above is setup for this call. Yikes. */
7672 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7674 /* Done, clean up. */
7675 if (new_cu != NULL && keep)
7677 /* Link this CU into read_in_chain. */
7678 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7679 dwarf2_per_objfile->read_in_chain = this_cu;
7680 /* The chain owns it now. */
7681 new_cu.release ();
7685 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7686 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7687 to have already done the lookup to find the DWO file).
7689 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7690 THIS_CU->is_debug_types, but nothing else.
7692 We fill in THIS_CU->length.
7694 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7695 linker) then DIE_READER_FUNC will not get called.
7697 THIS_CU->cu is always freed when done.
7698 This is done in order to not leave THIS_CU->cu in a state where we have
7699 to care whether it refers to the "main" CU or the DWO CU. */
7701 static void
7702 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7703 struct dwo_file *dwo_file,
7704 die_reader_func_ftype *die_reader_func,
7705 void *data)
7707 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7708 struct objfile *objfile = dwarf2_per_objfile->objfile;
7709 struct dwarf2_section_info *section = this_cu->section;
7710 bfd *abfd = get_section_bfd_owner (section);
7711 struct dwarf2_section_info *abbrev_section;
7712 const gdb_byte *begin_info_ptr, *info_ptr;
7713 struct die_reader_specs reader;
7714 struct die_info *comp_unit_die;
7715 int has_children;
7717 if (dwarf_die_debug)
7718 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7719 this_cu->is_debug_types ? "type" : "comp",
7720 sect_offset_str (this_cu->sect_off));
7722 gdb_assert (this_cu->cu == NULL);
7724 abbrev_section = (dwo_file != NULL
7725 ? &dwo_file->sections.abbrev
7726 : get_abbrev_section_for_cu (this_cu));
7728 /* This is cheap if the section is already read in. */
7729 dwarf2_read_section (objfile, section);
7731 struct dwarf2_cu cu (this_cu);
7733 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7734 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7735 &cu.header, section,
7736 abbrev_section, info_ptr,
7737 (this_cu->is_debug_types
7738 ? rcuh_kind::TYPE
7739 : rcuh_kind::COMPILE));
7741 this_cu->length = get_cu_length (&cu.header);
7743 /* Skip dummy compilation units. */
7744 if (info_ptr >= begin_info_ptr + this_cu->length
7745 || peek_abbrev_code (abfd, info_ptr) == 0)
7746 return;
7748 abbrev_table_up abbrev_table
7749 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7750 cu.header.abbrev_sect_off);
7752 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7753 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7755 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7758 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7759 does not lookup the specified DWO file.
7760 This cannot be used to read DWO files.
7762 THIS_CU->cu is always freed when done.
7763 This is done in order to not leave THIS_CU->cu in a state where we have
7764 to care whether it refers to the "main" CU or the DWO CU.
7765 We can revisit this if the data shows there's a performance issue. */
7767 static void
7768 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7769 die_reader_func_ftype *die_reader_func,
7770 void *data)
7772 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7775 /* Type Unit Groups.
7777 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7778 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7779 so that all types coming from the same compilation (.o file) are grouped
7780 together. A future step could be to put the types in the same symtab as
7781 the CU the types ultimately came from. */
7783 static hashval_t
7784 hash_type_unit_group (const void *item)
7786 const struct type_unit_group *tu_group
7787 = (const struct type_unit_group *) item;
7789 return hash_stmt_list_entry (&tu_group->hash);
7792 static int
7793 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7795 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7796 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7798 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7801 /* Allocate a hash table for type unit groups. */
7803 static htab_t
7804 allocate_type_unit_groups_table (struct objfile *objfile)
7806 return htab_create_alloc_ex (3,
7807 hash_type_unit_group,
7808 eq_type_unit_group,
7809 NULL,
7810 &objfile->objfile_obstack,
7811 hashtab_obstack_allocate,
7812 dummy_obstack_deallocate);
7815 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7816 partial symtabs. We combine several TUs per psymtab to not let the size
7817 of any one psymtab grow too big. */
7818 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7819 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7821 /* Helper routine for get_type_unit_group.
7822 Create the type_unit_group object used to hold one or more TUs. */
7824 static struct type_unit_group *
7825 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7827 struct dwarf2_per_objfile *dwarf2_per_objfile
7828 = cu->per_cu->dwarf2_per_objfile;
7829 struct objfile *objfile = dwarf2_per_objfile->objfile;
7830 struct dwarf2_per_cu_data *per_cu;
7831 struct type_unit_group *tu_group;
7833 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7834 struct type_unit_group);
7835 per_cu = &tu_group->per_cu;
7836 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7838 if (dwarf2_per_objfile->using_index)
7840 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7841 struct dwarf2_per_cu_quick_data);
7843 else
7845 unsigned int line_offset = to_underlying (line_offset_struct);
7846 struct partial_symtab *pst;
7847 std::string name;
7849 /* Give the symtab a useful name for debug purposes. */
7850 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7851 name = string_printf ("<type_units_%d>",
7852 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7853 else
7854 name = string_printf ("<type_units_at_0x%x>", line_offset);
7856 pst = create_partial_symtab (per_cu, name.c_str ());
7857 pst->anonymous = 1;
7860 tu_group->hash.dwo_unit = cu->dwo_unit;
7861 tu_group->hash.line_sect_off = line_offset_struct;
7863 return tu_group;
7866 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7867 STMT_LIST is a DW_AT_stmt_list attribute. */
7869 static struct type_unit_group *
7870 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7872 struct dwarf2_per_objfile *dwarf2_per_objfile
7873 = cu->per_cu->dwarf2_per_objfile;
7874 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7875 struct type_unit_group *tu_group;
7876 void **slot;
7877 unsigned int line_offset;
7878 struct type_unit_group type_unit_group_for_lookup;
7880 if (dwarf2_per_objfile->type_unit_groups == NULL)
7882 dwarf2_per_objfile->type_unit_groups =
7883 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7886 /* Do we need to create a new group, or can we use an existing one? */
7888 if (stmt_list)
7890 line_offset = DW_UNSND (stmt_list);
7891 ++tu_stats->nr_symtab_sharers;
7893 else
7895 /* Ugh, no stmt_list. Rare, but we have to handle it.
7896 We can do various things here like create one group per TU or
7897 spread them over multiple groups to split up the expansion work.
7898 To avoid worst case scenarios (too many groups or too large groups)
7899 we, umm, group them in bunches. */
7900 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7901 | (tu_stats->nr_stmt_less_type_units
7902 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7903 ++tu_stats->nr_stmt_less_type_units;
7906 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7907 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7908 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7909 &type_unit_group_for_lookup, INSERT);
7910 if (*slot != NULL)
7912 tu_group = (struct type_unit_group *) *slot;
7913 gdb_assert (tu_group != NULL);
7915 else
7917 sect_offset line_offset_struct = (sect_offset) line_offset;
7918 tu_group = create_type_unit_group (cu, line_offset_struct);
7919 *slot = tu_group;
7920 ++tu_stats->nr_symtabs;
7923 return tu_group;
7926 /* Partial symbol tables. */
7928 /* Create a psymtab named NAME and assign it to PER_CU.
7930 The caller must fill in the following details:
7931 dirname, textlow, texthigh. */
7933 static struct partial_symtab *
7934 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7936 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7937 struct partial_symtab *pst;
7939 pst = start_psymtab_common (objfile, name, 0);
7941 pst->psymtabs_addrmap_supported = 1;
7943 /* This is the glue that links PST into GDB's symbol API. */
7944 pst->read_symtab_private = per_cu;
7945 pst->read_symtab = dwarf2_read_symtab;
7946 per_cu->v.psymtab = pst;
7948 return pst;
7951 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7952 type. */
7954 struct process_psymtab_comp_unit_data
7956 /* True if we are reading a DW_TAG_partial_unit. */
7958 int want_partial_unit;
7960 /* The "pretend" language that is used if the CU doesn't declare a
7961 language. */
7963 enum language pretend_language;
7966 /* die_reader_func for process_psymtab_comp_unit. */
7968 static void
7969 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7970 const gdb_byte *info_ptr,
7971 struct die_info *comp_unit_die,
7972 int has_children,
7973 void *data)
7975 struct dwarf2_cu *cu = reader->cu;
7976 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7978 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7979 CORE_ADDR baseaddr;
7980 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7981 struct partial_symtab *pst;
7982 enum pc_bounds_kind cu_bounds_kind;
7983 const char *filename;
7984 struct process_psymtab_comp_unit_data *info
7985 = (struct process_psymtab_comp_unit_data *) data;
7987 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7988 return;
7990 gdb_assert (! per_cu->is_debug_types);
7992 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7994 /* Allocate a new partial symbol table structure. */
7995 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7996 if (filename == NULL)
7997 filename = "";
7999 pst = create_partial_symtab (per_cu, filename);
8001 /* This must be done before calling dwarf2_build_include_psymtabs. */
8002 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8006 dwarf2_find_base_address (comp_unit_die, cu);
8008 /* Possibly set the default values of LOWPC and HIGHPC from
8009 `DW_AT_ranges'. */
8010 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8011 &best_highpc, cu, pst);
8012 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8014 CORE_ADDR low
8015 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8016 - baseaddr);
8017 CORE_ADDR high
8018 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8019 - baseaddr - 1);
8020 /* Store the contiguous range if it is not empty; it can be
8021 empty for CUs with no code. */
8022 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8023 low, high, pst);
8026 /* Check if comp unit has_children.
8027 If so, read the rest of the partial symbols from this comp unit.
8028 If not, there's no more debug_info for this comp unit. */
8029 if (has_children)
8031 struct partial_die_info *first_die;
8032 CORE_ADDR lowpc, highpc;
8034 lowpc = ((CORE_ADDR) -1);
8035 highpc = ((CORE_ADDR) 0);
8037 first_die = load_partial_dies (reader, info_ptr, 1);
8039 scan_partial_symbols (first_die, &lowpc, &highpc,
8040 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8042 /* If we didn't find a lowpc, set it to highpc to avoid
8043 complaints from `maint check'. */
8044 if (lowpc == ((CORE_ADDR) -1))
8045 lowpc = highpc;
8047 /* If the compilation unit didn't have an explicit address range,
8048 then use the information extracted from its child dies. */
8049 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8051 best_lowpc = lowpc;
8052 best_highpc = highpc;
8055 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8056 best_lowpc + baseaddr)
8057 - baseaddr);
8058 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8059 best_highpc + baseaddr)
8060 - baseaddr);
8062 end_psymtab_common (objfile, pst);
8064 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8066 int i;
8067 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8068 struct dwarf2_per_cu_data *iter;
8070 /* Fill in 'dependencies' here; we fill in 'users' in a
8071 post-pass. */
8072 pst->number_of_dependencies = len;
8073 pst->dependencies
8074 = objfile->partial_symtabs->allocate_dependencies (len);
8075 for (i = 0;
8076 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8077 i, iter);
8078 ++i)
8079 pst->dependencies[i] = iter->v.psymtab;
8081 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8084 /* Get the list of files included in the current compilation unit,
8085 and build a psymtab for each of them. */
8086 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8088 if (dwarf_read_debug)
8089 fprintf_unfiltered (gdb_stdlog,
8090 "Psymtab for %s unit @%s: %s - %s"
8091 ", %d global, %d static syms\n",
8092 per_cu->is_debug_types ? "type" : "comp",
8093 sect_offset_str (per_cu->sect_off),
8094 paddress (gdbarch, pst->text_low (objfile)),
8095 paddress (gdbarch, pst->text_high (objfile)),
8096 pst->n_global_syms, pst->n_static_syms);
8099 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8100 Process compilation unit THIS_CU for a psymtab. */
8102 static void
8103 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8104 int want_partial_unit,
8105 enum language pretend_language)
8107 /* If this compilation unit was already read in, free the
8108 cached copy in order to read it in again. This is
8109 necessary because we skipped some symbols when we first
8110 read in the compilation unit (see load_partial_dies).
8111 This problem could be avoided, but the benefit is unclear. */
8112 if (this_cu->cu != NULL)
8113 free_one_cached_comp_unit (this_cu);
8115 if (this_cu->is_debug_types)
8116 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8117 build_type_psymtabs_reader, NULL);
8118 else
8120 process_psymtab_comp_unit_data info;
8121 info.want_partial_unit = want_partial_unit;
8122 info.pretend_language = pretend_language;
8123 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8124 process_psymtab_comp_unit_reader, &info);
8127 /* Age out any secondary CUs. */
8128 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8131 /* Reader function for build_type_psymtabs. */
8133 static void
8134 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8135 const gdb_byte *info_ptr,
8136 struct die_info *type_unit_die,
8137 int has_children,
8138 void *data)
8140 struct dwarf2_per_objfile *dwarf2_per_objfile
8141 = reader->cu->per_cu->dwarf2_per_objfile;
8142 struct objfile *objfile = dwarf2_per_objfile->objfile;
8143 struct dwarf2_cu *cu = reader->cu;
8144 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8145 struct signatured_type *sig_type;
8146 struct type_unit_group *tu_group;
8147 struct attribute *attr;
8148 struct partial_die_info *first_die;
8149 CORE_ADDR lowpc, highpc;
8150 struct partial_symtab *pst;
8152 gdb_assert (data == NULL);
8153 gdb_assert (per_cu->is_debug_types);
8154 sig_type = (struct signatured_type *) per_cu;
8156 if (! has_children)
8157 return;
8159 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8160 tu_group = get_type_unit_group (cu, attr);
8162 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8164 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8165 pst = create_partial_symtab (per_cu, "");
8166 pst->anonymous = 1;
8168 first_die = load_partial_dies (reader, info_ptr, 1);
8170 lowpc = (CORE_ADDR) -1;
8171 highpc = (CORE_ADDR) 0;
8172 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8174 end_psymtab_common (objfile, pst);
8177 /* Struct used to sort TUs by their abbreviation table offset. */
8179 struct tu_abbrev_offset
8181 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8182 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8185 signatured_type *sig_type;
8186 sect_offset abbrev_offset;
8189 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8191 static bool
8192 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8193 const struct tu_abbrev_offset &b)
8195 return a.abbrev_offset < b.abbrev_offset;
8198 /* Efficiently read all the type units.
8199 This does the bulk of the work for build_type_psymtabs.
8201 The efficiency is because we sort TUs by the abbrev table they use and
8202 only read each abbrev table once. In one program there are 200K TUs
8203 sharing 8K abbrev tables.
8205 The main purpose of this function is to support building the
8206 dwarf2_per_objfile->type_unit_groups table.
8207 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8208 can collapse the search space by grouping them by stmt_list.
8209 The savings can be significant, in the same program from above the 200K TUs
8210 share 8K stmt_list tables.
8212 FUNC is expected to call get_type_unit_group, which will create the
8213 struct type_unit_group if necessary and add it to
8214 dwarf2_per_objfile->type_unit_groups. */
8216 static void
8217 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8219 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8220 abbrev_table_up abbrev_table;
8221 sect_offset abbrev_offset;
8223 /* It's up to the caller to not call us multiple times. */
8224 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8226 if (dwarf2_per_objfile->all_type_units.empty ())
8227 return;
8229 /* TUs typically share abbrev tables, and there can be way more TUs than
8230 abbrev tables. Sort by abbrev table to reduce the number of times we
8231 read each abbrev table in.
8232 Alternatives are to punt or to maintain a cache of abbrev tables.
8233 This is simpler and efficient enough for now.
8235 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8236 symtab to use). Typically TUs with the same abbrev offset have the same
8237 stmt_list value too so in practice this should work well.
8239 The basic algorithm here is:
8241 sort TUs by abbrev table
8242 for each TU with same abbrev table:
8243 read abbrev table if first user
8244 read TU top level DIE
8245 [IWBN if DWO skeletons had DW_AT_stmt_list]
8246 call FUNC */
8248 if (dwarf_read_debug)
8249 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8251 /* Sort in a separate table to maintain the order of all_type_units
8252 for .gdb_index: TU indices directly index all_type_units. */
8253 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8254 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8256 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8257 sorted_by_abbrev.emplace_back
8258 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8259 sig_type->per_cu.section,
8260 sig_type->per_cu.sect_off));
8262 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8263 sort_tu_by_abbrev_offset);
8265 abbrev_offset = (sect_offset) ~(unsigned) 0;
8267 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8269 /* Switch to the next abbrev table if necessary. */
8270 if (abbrev_table == NULL
8271 || tu.abbrev_offset != abbrev_offset)
8273 abbrev_offset = tu.abbrev_offset;
8274 abbrev_table =
8275 abbrev_table_read_table (dwarf2_per_objfile,
8276 &dwarf2_per_objfile->abbrev,
8277 abbrev_offset);
8278 ++tu_stats->nr_uniq_abbrev_tables;
8281 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8282 0, 0, false, build_type_psymtabs_reader, NULL);
8286 /* Print collected type unit statistics. */
8288 static void
8289 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8294 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8295 dwarf2_per_objfile->all_type_units.size ());
8296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8297 tu_stats->nr_uniq_abbrev_tables);
8298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8299 tu_stats->nr_symtabs);
8300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8301 tu_stats->nr_symtab_sharers);
8302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8303 tu_stats->nr_stmt_less_type_units);
8304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8305 tu_stats->nr_all_type_units_reallocs);
8308 /* Traversal function for build_type_psymtabs. */
8310 static int
8311 build_type_psymtab_dependencies (void **slot, void *info)
8313 struct dwarf2_per_objfile *dwarf2_per_objfile
8314 = (struct dwarf2_per_objfile *) info;
8315 struct objfile *objfile = dwarf2_per_objfile->objfile;
8316 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8317 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8318 struct partial_symtab *pst = per_cu->v.psymtab;
8319 int len = VEC_length (sig_type_ptr, tu_group->tus);
8320 struct signatured_type *iter;
8321 int i;
8323 gdb_assert (len > 0);
8324 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8326 pst->number_of_dependencies = len;
8327 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8328 for (i = 0;
8329 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8330 ++i)
8332 gdb_assert (iter->per_cu.is_debug_types);
8333 pst->dependencies[i] = iter->per_cu.v.psymtab;
8334 iter->type_unit_group = tu_group;
8337 VEC_free (sig_type_ptr, tu_group->tus);
8339 return 1;
8342 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8343 Build partial symbol tables for the .debug_types comp-units. */
8345 static void
8346 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8348 if (! create_all_type_units (dwarf2_per_objfile))
8349 return;
8351 build_type_psymtabs_1 (dwarf2_per_objfile);
8354 /* Traversal function for process_skeletonless_type_unit.
8355 Read a TU in a DWO file and build partial symbols for it. */
8357 static int
8358 process_skeletonless_type_unit (void **slot, void *info)
8360 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8361 struct dwarf2_per_objfile *dwarf2_per_objfile
8362 = (struct dwarf2_per_objfile *) info;
8363 struct signatured_type find_entry, *entry;
8365 /* If this TU doesn't exist in the global table, add it and read it in. */
8367 if (dwarf2_per_objfile->signatured_types == NULL)
8369 dwarf2_per_objfile->signatured_types
8370 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8373 find_entry.signature = dwo_unit->signature;
8374 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8375 INSERT);
8376 /* If we've already seen this type there's nothing to do. What's happening
8377 is we're doing our own version of comdat-folding here. */
8378 if (*slot != NULL)
8379 return 1;
8381 /* This does the job that create_all_type_units would have done for
8382 this TU. */
8383 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8384 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8385 *slot = entry;
8387 /* This does the job that build_type_psymtabs_1 would have done. */
8388 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8389 build_type_psymtabs_reader, NULL);
8391 return 1;
8394 /* Traversal function for process_skeletonless_type_units. */
8396 static int
8397 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8399 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8401 if (dwo_file->tus != NULL)
8403 htab_traverse_noresize (dwo_file->tus,
8404 process_skeletonless_type_unit, info);
8407 return 1;
8410 /* Scan all TUs of DWO files, verifying we've processed them.
8411 This is needed in case a TU was emitted without its skeleton.
8412 Note: This can't be done until we know what all the DWO files are. */
8414 static void
8415 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8417 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8418 if (get_dwp_file (dwarf2_per_objfile) == NULL
8419 && dwarf2_per_objfile->dwo_files != NULL)
8421 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8422 process_dwo_file_for_skeletonless_type_units,
8423 dwarf2_per_objfile);
8427 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8429 static void
8430 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8432 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8434 struct partial_symtab *pst = per_cu->v.psymtab;
8436 if (pst == NULL)
8437 continue;
8439 for (int j = 0; j < pst->number_of_dependencies; ++j)
8441 /* Set the 'user' field only if it is not already set. */
8442 if (pst->dependencies[j]->user == NULL)
8443 pst->dependencies[j]->user = pst;
8448 /* Build the partial symbol table by doing a quick pass through the
8449 .debug_info and .debug_abbrev sections. */
8451 static void
8452 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8454 struct objfile *objfile = dwarf2_per_objfile->objfile;
8456 if (dwarf_read_debug)
8458 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8459 objfile_name (objfile));
8462 dwarf2_per_objfile->reading_partial_symbols = 1;
8464 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8466 /* Any cached compilation units will be linked by the per-objfile
8467 read_in_chain. Make sure to free them when we're done. */
8468 free_cached_comp_units freer (dwarf2_per_objfile);
8470 build_type_psymtabs (dwarf2_per_objfile);
8472 create_all_comp_units (dwarf2_per_objfile);
8474 /* Create a temporary address map on a temporary obstack. We later
8475 copy this to the final obstack. */
8476 auto_obstack temp_obstack;
8478 scoped_restore save_psymtabs_addrmap
8479 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8480 addrmap_create_mutable (&temp_obstack));
8482 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8483 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8485 /* This has to wait until we read the CUs, we need the list of DWOs. */
8486 process_skeletonless_type_units (dwarf2_per_objfile);
8488 /* Now that all TUs have been processed we can fill in the dependencies. */
8489 if (dwarf2_per_objfile->type_unit_groups != NULL)
8491 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8492 build_type_psymtab_dependencies, dwarf2_per_objfile);
8495 if (dwarf_read_debug)
8496 print_tu_stats (dwarf2_per_objfile);
8498 set_partial_user (dwarf2_per_objfile);
8500 objfile->partial_symtabs->psymtabs_addrmap
8501 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8502 objfile->partial_symtabs->obstack ());
8503 /* At this point we want to keep the address map. */
8504 save_psymtabs_addrmap.release ();
8506 if (dwarf_read_debug)
8507 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8508 objfile_name (objfile));
8511 /* die_reader_func for load_partial_comp_unit. */
8513 static void
8514 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8515 const gdb_byte *info_ptr,
8516 struct die_info *comp_unit_die,
8517 int has_children,
8518 void *data)
8520 struct dwarf2_cu *cu = reader->cu;
8522 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8524 /* Check if comp unit has_children.
8525 If so, read the rest of the partial symbols from this comp unit.
8526 If not, there's no more debug_info for this comp unit. */
8527 if (has_children)
8528 load_partial_dies (reader, info_ptr, 0);
8531 /* Load the partial DIEs for a secondary CU into memory.
8532 This is also used when rereading a primary CU with load_all_dies. */
8534 static void
8535 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8537 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8538 load_partial_comp_unit_reader, NULL);
8541 static void
8542 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8543 struct dwarf2_section_info *section,
8544 struct dwarf2_section_info *abbrev_section,
8545 unsigned int is_dwz)
8547 const gdb_byte *info_ptr;
8548 struct objfile *objfile = dwarf2_per_objfile->objfile;
8550 if (dwarf_read_debug)
8551 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8552 get_section_name (section),
8553 get_section_file_name (section));
8555 dwarf2_read_section (objfile, section);
8557 info_ptr = section->buffer;
8559 while (info_ptr < section->buffer + section->size)
8561 struct dwarf2_per_cu_data *this_cu;
8563 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8565 comp_unit_head cu_header;
8566 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8567 abbrev_section, info_ptr,
8568 rcuh_kind::COMPILE);
8570 /* Save the compilation unit for later lookup. */
8571 if (cu_header.unit_type != DW_UT_type)
8573 this_cu = XOBNEW (&objfile->objfile_obstack,
8574 struct dwarf2_per_cu_data);
8575 memset (this_cu, 0, sizeof (*this_cu));
8577 else
8579 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8580 struct signatured_type);
8581 memset (sig_type, 0, sizeof (*sig_type));
8582 sig_type->signature = cu_header.signature;
8583 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8584 this_cu = &sig_type->per_cu;
8586 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8587 this_cu->sect_off = sect_off;
8588 this_cu->length = cu_header.length + cu_header.initial_length_size;
8589 this_cu->is_dwz = is_dwz;
8590 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8591 this_cu->section = section;
8593 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8595 info_ptr = info_ptr + this_cu->length;
8599 /* Create a list of all compilation units in OBJFILE.
8600 This is only done for -readnow and building partial symtabs. */
8602 static void
8603 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8605 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8606 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8607 &dwarf2_per_objfile->abbrev, 0);
8609 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8610 if (dwz != NULL)
8611 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8615 /* Process all loaded DIEs for compilation unit CU, starting at
8616 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8617 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8618 DW_AT_ranges). See the comments of add_partial_subprogram on how
8619 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8621 static void
8622 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8623 CORE_ADDR *highpc, int set_addrmap,
8624 struct dwarf2_cu *cu)
8626 struct partial_die_info *pdi;
8628 /* Now, march along the PDI's, descending into ones which have
8629 interesting children but skipping the children of the other ones,
8630 until we reach the end of the compilation unit. */
8632 pdi = first_die;
8634 while (pdi != NULL)
8636 pdi->fixup (cu);
8638 /* Anonymous namespaces or modules have no name but have interesting
8639 children, so we need to look at them. Ditto for anonymous
8640 enums. */
8642 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8643 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8644 || pdi->tag == DW_TAG_imported_unit
8645 || pdi->tag == DW_TAG_inlined_subroutine)
8647 switch (pdi->tag)
8649 case DW_TAG_subprogram:
8650 case DW_TAG_inlined_subroutine:
8651 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8652 break;
8653 case DW_TAG_constant:
8654 case DW_TAG_variable:
8655 case DW_TAG_typedef:
8656 case DW_TAG_union_type:
8657 if (!pdi->is_declaration)
8659 add_partial_symbol (pdi, cu);
8661 break;
8662 case DW_TAG_class_type:
8663 case DW_TAG_interface_type:
8664 case DW_TAG_structure_type:
8665 if (!pdi->is_declaration)
8667 add_partial_symbol (pdi, cu);
8669 if ((cu->language == language_rust
8670 || cu->language == language_cplus) && pdi->has_children)
8671 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8672 set_addrmap, cu);
8673 break;
8674 case DW_TAG_enumeration_type:
8675 if (!pdi->is_declaration)
8676 add_partial_enumeration (pdi, cu);
8677 break;
8678 case DW_TAG_base_type:
8679 case DW_TAG_subrange_type:
8680 /* File scope base type definitions are added to the partial
8681 symbol table. */
8682 add_partial_symbol (pdi, cu);
8683 break;
8684 case DW_TAG_namespace:
8685 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8686 break;
8687 case DW_TAG_module:
8688 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8689 break;
8690 case DW_TAG_imported_unit:
8692 struct dwarf2_per_cu_data *per_cu;
8694 /* For now we don't handle imported units in type units. */
8695 if (cu->per_cu->is_debug_types)
8697 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8698 " supported in type units [in module %s]"),
8699 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8702 per_cu = dwarf2_find_containing_comp_unit
8703 (pdi->d.sect_off, pdi->is_dwz,
8704 cu->per_cu->dwarf2_per_objfile);
8706 /* Go read the partial unit, if needed. */
8707 if (per_cu->v.psymtab == NULL)
8708 process_psymtab_comp_unit (per_cu, 1, cu->language);
8710 VEC_safe_push (dwarf2_per_cu_ptr,
8711 cu->per_cu->imported_symtabs, per_cu);
8713 break;
8714 case DW_TAG_imported_declaration:
8715 add_partial_symbol (pdi, cu);
8716 break;
8717 default:
8718 break;
8722 /* If the die has a sibling, skip to the sibling. */
8724 pdi = pdi->die_sibling;
8728 /* Functions used to compute the fully scoped name of a partial DIE.
8730 Normally, this is simple. For C++, the parent DIE's fully scoped
8731 name is concatenated with "::" and the partial DIE's name.
8732 Enumerators are an exception; they use the scope of their parent
8733 enumeration type, i.e. the name of the enumeration type is not
8734 prepended to the enumerator.
8736 There are two complexities. One is DW_AT_specification; in this
8737 case "parent" means the parent of the target of the specification,
8738 instead of the direct parent of the DIE. The other is compilers
8739 which do not emit DW_TAG_namespace; in this case we try to guess
8740 the fully qualified name of structure types from their members'
8741 linkage names. This must be done using the DIE's children rather
8742 than the children of any DW_AT_specification target. We only need
8743 to do this for structures at the top level, i.e. if the target of
8744 any DW_AT_specification (if any; otherwise the DIE itself) does not
8745 have a parent. */
8747 /* Compute the scope prefix associated with PDI's parent, in
8748 compilation unit CU. The result will be allocated on CU's
8749 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8750 field. NULL is returned if no prefix is necessary. */
8751 static const char *
8752 partial_die_parent_scope (struct partial_die_info *pdi,
8753 struct dwarf2_cu *cu)
8755 const char *grandparent_scope;
8756 struct partial_die_info *parent, *real_pdi;
8758 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8759 then this means the parent of the specification DIE. */
8761 real_pdi = pdi;
8762 while (real_pdi->has_specification)
8763 real_pdi = find_partial_die (real_pdi->spec_offset,
8764 real_pdi->spec_is_dwz, cu);
8766 parent = real_pdi->die_parent;
8767 if (parent == NULL)
8768 return NULL;
8770 if (parent->scope_set)
8771 return parent->scope;
8773 parent->fixup (cu);
8775 grandparent_scope = partial_die_parent_scope (parent, cu);
8777 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8778 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8779 Work around this problem here. */
8780 if (cu->language == language_cplus
8781 && parent->tag == DW_TAG_namespace
8782 && strcmp (parent->name, "::") == 0
8783 && grandparent_scope == NULL)
8785 parent->scope = NULL;
8786 parent->scope_set = 1;
8787 return NULL;
8790 if (pdi->tag == DW_TAG_enumerator)
8791 /* Enumerators should not get the name of the enumeration as a prefix. */
8792 parent->scope = grandparent_scope;
8793 else if (parent->tag == DW_TAG_namespace
8794 || parent->tag == DW_TAG_module
8795 || parent->tag == DW_TAG_structure_type
8796 || parent->tag == DW_TAG_class_type
8797 || parent->tag == DW_TAG_interface_type
8798 || parent->tag == DW_TAG_union_type
8799 || parent->tag == DW_TAG_enumeration_type)
8801 if (grandparent_scope == NULL)
8802 parent->scope = parent->name;
8803 else
8804 parent->scope = typename_concat (&cu->comp_unit_obstack,
8805 grandparent_scope,
8806 parent->name, 0, cu);
8808 else
8810 /* FIXME drow/2004-04-01: What should we be doing with
8811 function-local names? For partial symbols, we should probably be
8812 ignoring them. */
8813 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8814 parent->tag, sect_offset_str (pdi->sect_off));
8815 parent->scope = grandparent_scope;
8818 parent->scope_set = 1;
8819 return parent->scope;
8822 /* Return the fully scoped name associated with PDI, from compilation unit
8823 CU. The result will be allocated with malloc. */
8825 static char *
8826 partial_die_full_name (struct partial_die_info *pdi,
8827 struct dwarf2_cu *cu)
8829 const char *parent_scope;
8831 /* If this is a template instantiation, we can not work out the
8832 template arguments from partial DIEs. So, unfortunately, we have
8833 to go through the full DIEs. At least any work we do building
8834 types here will be reused if full symbols are loaded later. */
8835 if (pdi->has_template_arguments)
8837 pdi->fixup (cu);
8839 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8841 struct die_info *die;
8842 struct attribute attr;
8843 struct dwarf2_cu *ref_cu = cu;
8845 /* DW_FORM_ref_addr is using section offset. */
8846 attr.name = (enum dwarf_attribute) 0;
8847 attr.form = DW_FORM_ref_addr;
8848 attr.u.unsnd = to_underlying (pdi->sect_off);
8849 die = follow_die_ref (NULL, &attr, &ref_cu);
8851 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8855 parent_scope = partial_die_parent_scope (pdi, cu);
8856 if (parent_scope == NULL)
8857 return NULL;
8858 else
8859 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8862 static void
8863 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8865 struct dwarf2_per_objfile *dwarf2_per_objfile
8866 = cu->per_cu->dwarf2_per_objfile;
8867 struct objfile *objfile = dwarf2_per_objfile->objfile;
8868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8869 CORE_ADDR addr = 0;
8870 const char *actual_name = NULL;
8871 CORE_ADDR baseaddr;
8872 char *built_actual_name;
8874 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8876 built_actual_name = partial_die_full_name (pdi, cu);
8877 if (built_actual_name != NULL)
8878 actual_name = built_actual_name;
8880 if (actual_name == NULL)
8881 actual_name = pdi->name;
8883 switch (pdi->tag)
8885 case DW_TAG_inlined_subroutine:
8886 case DW_TAG_subprogram:
8887 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8888 - baseaddr);
8889 if (pdi->is_external || cu->language == language_ada)
8891 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8892 of the global scope. But in Ada, we want to be able to access
8893 nested procedures globally. So all Ada subprograms are stored
8894 in the global scope. */
8895 add_psymbol_to_list (actual_name, strlen (actual_name),
8896 built_actual_name != NULL,
8897 VAR_DOMAIN, LOC_BLOCK,
8898 SECT_OFF_TEXT (objfile),
8899 psymbol_placement::GLOBAL,
8900 addr,
8901 cu->language, objfile);
8903 else
8905 add_psymbol_to_list (actual_name, strlen (actual_name),
8906 built_actual_name != NULL,
8907 VAR_DOMAIN, LOC_BLOCK,
8908 SECT_OFF_TEXT (objfile),
8909 psymbol_placement::STATIC,
8910 addr, cu->language, objfile);
8913 if (pdi->main_subprogram && actual_name != NULL)
8914 set_objfile_main_name (objfile, actual_name, cu->language);
8915 break;
8916 case DW_TAG_constant:
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8919 -1, (pdi->is_external
8920 ? psymbol_placement::GLOBAL
8921 : psymbol_placement::STATIC),
8922 0, cu->language, objfile);
8923 break;
8924 case DW_TAG_variable:
8925 if (pdi->d.locdesc)
8926 addr = decode_locdesc (pdi->d.locdesc, cu);
8928 if (pdi->d.locdesc
8929 && addr == 0
8930 && !dwarf2_per_objfile->has_section_at_zero)
8932 /* A global or static variable may also have been stripped
8933 out by the linker if unused, in which case its address
8934 will be nullified; do not add such variables into partial
8935 symbol table then. */
8937 else if (pdi->is_external)
8939 /* Global Variable.
8940 Don't enter into the minimal symbol tables as there is
8941 a minimal symbol table entry from the ELF symbols already.
8942 Enter into partial symbol table if it has a location
8943 descriptor or a type.
8944 If the location descriptor is missing, new_symbol will create
8945 a LOC_UNRESOLVED symbol, the address of the variable will then
8946 be determined from the minimal symbol table whenever the variable
8947 is referenced.
8948 The address for the partial symbol table entry is not
8949 used by GDB, but it comes in handy for debugging partial symbol
8950 table building. */
8952 if (pdi->d.locdesc || pdi->has_type)
8953 add_psymbol_to_list (actual_name, strlen (actual_name),
8954 built_actual_name != NULL,
8955 VAR_DOMAIN, LOC_STATIC,
8956 SECT_OFF_TEXT (objfile),
8957 psymbol_placement::GLOBAL,
8958 addr, cu->language, objfile);
8960 else
8962 int has_loc = pdi->d.locdesc != NULL;
8964 /* Static Variable. Skip symbols whose value we cannot know (those
8965 without location descriptors or constant values). */
8966 if (!has_loc && !pdi->has_const_value)
8968 xfree (built_actual_name);
8969 return;
8972 add_psymbol_to_list (actual_name, strlen (actual_name),
8973 built_actual_name != NULL,
8974 VAR_DOMAIN, LOC_STATIC,
8975 SECT_OFF_TEXT (objfile),
8976 psymbol_placement::STATIC,
8977 has_loc ? addr : 0,
8978 cu->language, objfile);
8980 break;
8981 case DW_TAG_typedef:
8982 case DW_TAG_base_type:
8983 case DW_TAG_subrange_type:
8984 add_psymbol_to_list (actual_name, strlen (actual_name),
8985 built_actual_name != NULL,
8986 VAR_DOMAIN, LOC_TYPEDEF, -1,
8987 psymbol_placement::STATIC,
8988 0, cu->language, objfile);
8989 break;
8990 case DW_TAG_imported_declaration:
8991 case DW_TAG_namespace:
8992 add_psymbol_to_list (actual_name, strlen (actual_name),
8993 built_actual_name != NULL,
8994 VAR_DOMAIN, LOC_TYPEDEF, -1,
8995 psymbol_placement::GLOBAL,
8996 0, cu->language, objfile);
8997 break;
8998 case DW_TAG_module:
8999 add_psymbol_to_list (actual_name, strlen (actual_name),
9000 built_actual_name != NULL,
9001 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9002 psymbol_placement::GLOBAL,
9003 0, cu->language, objfile);
9004 break;
9005 case DW_TAG_class_type:
9006 case DW_TAG_interface_type:
9007 case DW_TAG_structure_type:
9008 case DW_TAG_union_type:
9009 case DW_TAG_enumeration_type:
9010 /* Skip external references. The DWARF standard says in the section
9011 about "Structure, Union, and Class Type Entries": "An incomplete
9012 structure, union or class type is represented by a structure,
9013 union or class entry that does not have a byte size attribute
9014 and that has a DW_AT_declaration attribute." */
9015 if (!pdi->has_byte_size && pdi->is_declaration)
9017 xfree (built_actual_name);
9018 return;
9021 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9022 static vs. global. */
9023 add_psymbol_to_list (actual_name, strlen (actual_name),
9024 built_actual_name != NULL,
9025 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9026 cu->language == language_cplus
9027 ? psymbol_placement::GLOBAL
9028 : psymbol_placement::STATIC,
9029 0, cu->language, objfile);
9031 break;
9032 case DW_TAG_enumerator:
9033 add_psymbol_to_list (actual_name, strlen (actual_name),
9034 built_actual_name != NULL,
9035 VAR_DOMAIN, LOC_CONST, -1,
9036 cu->language == language_cplus
9037 ? psymbol_placement::GLOBAL
9038 : psymbol_placement::STATIC,
9039 0, cu->language, objfile);
9040 break;
9041 default:
9042 break;
9045 xfree (built_actual_name);
9048 /* Read a partial die corresponding to a namespace; also, add a symbol
9049 corresponding to that namespace to the symbol table. NAMESPACE is
9050 the name of the enclosing namespace. */
9052 static void
9053 add_partial_namespace (struct partial_die_info *pdi,
9054 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9055 int set_addrmap, struct dwarf2_cu *cu)
9057 /* Add a symbol for the namespace. */
9059 add_partial_symbol (pdi, cu);
9061 /* Now scan partial symbols in that namespace. */
9063 if (pdi->has_children)
9064 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9067 /* Read a partial die corresponding to a Fortran module. */
9069 static void
9070 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9071 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9073 /* Add a symbol for the namespace. */
9075 add_partial_symbol (pdi, cu);
9077 /* Now scan partial symbols in that module. */
9079 if (pdi->has_children)
9080 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9083 /* Read a partial die corresponding to a subprogram or an inlined
9084 subprogram and create a partial symbol for that subprogram.
9085 When the CU language allows it, this routine also defines a partial
9086 symbol for each nested subprogram that this subprogram contains.
9087 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9088 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9090 PDI may also be a lexical block, in which case we simply search
9091 recursively for subprograms defined inside that lexical block.
9092 Again, this is only performed when the CU language allows this
9093 type of definitions. */
9095 static void
9096 add_partial_subprogram (struct partial_die_info *pdi,
9097 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9098 int set_addrmap, struct dwarf2_cu *cu)
9100 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9102 if (pdi->has_pc_info)
9104 if (pdi->lowpc < *lowpc)
9105 *lowpc = pdi->lowpc;
9106 if (pdi->highpc > *highpc)
9107 *highpc = pdi->highpc;
9108 if (set_addrmap)
9110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9111 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9112 CORE_ADDR baseaddr;
9113 CORE_ADDR this_highpc;
9114 CORE_ADDR this_lowpc;
9116 baseaddr = ANOFFSET (objfile->section_offsets,
9117 SECT_OFF_TEXT (objfile));
9118 this_lowpc
9119 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9120 pdi->lowpc + baseaddr)
9121 - baseaddr);
9122 this_highpc
9123 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9124 pdi->highpc + baseaddr)
9125 - baseaddr);
9126 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9127 this_lowpc, this_highpc - 1,
9128 cu->per_cu->v.psymtab);
9132 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9134 if (!pdi->is_declaration)
9135 /* Ignore subprogram DIEs that do not have a name, they are
9136 illegal. Do not emit a complaint at this point, we will
9137 do so when we convert this psymtab into a symtab. */
9138 if (pdi->name)
9139 add_partial_symbol (pdi, cu);
9143 if (! pdi->has_children)
9144 return;
9146 if (cu->language == language_ada)
9148 pdi = pdi->die_child;
9149 while (pdi != NULL)
9151 pdi->fixup (cu);
9152 if (pdi->tag == DW_TAG_subprogram
9153 || pdi->tag == DW_TAG_inlined_subroutine
9154 || pdi->tag == DW_TAG_lexical_block)
9155 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9156 pdi = pdi->die_sibling;
9161 /* Read a partial die corresponding to an enumeration type. */
9163 static void
9164 add_partial_enumeration (struct partial_die_info *enum_pdi,
9165 struct dwarf2_cu *cu)
9167 struct partial_die_info *pdi;
9169 if (enum_pdi->name != NULL)
9170 add_partial_symbol (enum_pdi, cu);
9172 pdi = enum_pdi->die_child;
9173 while (pdi)
9175 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9176 complaint (_("malformed enumerator DIE ignored"));
9177 else
9178 add_partial_symbol (pdi, cu);
9179 pdi = pdi->die_sibling;
9183 /* Return the initial uleb128 in the die at INFO_PTR. */
9185 static unsigned int
9186 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9188 unsigned int bytes_read;
9190 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9193 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9194 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9196 Return the corresponding abbrev, or NULL if the number is zero (indicating
9197 an empty DIE). In either case *BYTES_READ will be set to the length of
9198 the initial number. */
9200 static struct abbrev_info *
9201 peek_die_abbrev (const die_reader_specs &reader,
9202 const gdb_byte *info_ptr, unsigned int *bytes_read)
9204 dwarf2_cu *cu = reader.cu;
9205 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9206 unsigned int abbrev_number
9207 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9209 if (abbrev_number == 0)
9210 return NULL;
9212 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9213 if (!abbrev)
9215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9216 " at offset %s [in module %s]"),
9217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9218 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9221 return abbrev;
9224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9225 Returns a pointer to the end of a series of DIEs, terminated by an empty
9226 DIE. Any children of the skipped DIEs will also be skipped. */
9228 static const gdb_byte *
9229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9231 while (1)
9233 unsigned int bytes_read;
9234 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9236 if (abbrev == NULL)
9237 return info_ptr + bytes_read;
9238 else
9239 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9243 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9244 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9245 abbrev corresponding to that skipped uleb128 should be passed in
9246 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9247 children. */
9249 static const gdb_byte *
9250 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9251 struct abbrev_info *abbrev)
9253 unsigned int bytes_read;
9254 struct attribute attr;
9255 bfd *abfd = reader->abfd;
9256 struct dwarf2_cu *cu = reader->cu;
9257 const gdb_byte *buffer = reader->buffer;
9258 const gdb_byte *buffer_end = reader->buffer_end;
9259 unsigned int form, i;
9261 for (i = 0; i < abbrev->num_attrs; i++)
9263 /* The only abbrev we care about is DW_AT_sibling. */
9264 if (abbrev->attrs[i].name == DW_AT_sibling)
9266 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9267 if (attr.form == DW_FORM_ref_addr)
9268 complaint (_("ignoring absolute DW_AT_sibling"));
9269 else
9271 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9272 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9274 if (sibling_ptr < info_ptr)
9275 complaint (_("DW_AT_sibling points backwards"));
9276 else if (sibling_ptr > reader->buffer_end)
9277 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9278 else
9279 return sibling_ptr;
9283 /* If it isn't DW_AT_sibling, skip this attribute. */
9284 form = abbrev->attrs[i].form;
9285 skip_attribute:
9286 switch (form)
9288 case DW_FORM_ref_addr:
9289 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9290 and later it is offset sized. */
9291 if (cu->header.version == 2)
9292 info_ptr += cu->header.addr_size;
9293 else
9294 info_ptr += cu->header.offset_size;
9295 break;
9296 case DW_FORM_GNU_ref_alt:
9297 info_ptr += cu->header.offset_size;
9298 break;
9299 case DW_FORM_addr:
9300 info_ptr += cu->header.addr_size;
9301 break;
9302 case DW_FORM_data1:
9303 case DW_FORM_ref1:
9304 case DW_FORM_flag:
9305 info_ptr += 1;
9306 break;
9307 case DW_FORM_flag_present:
9308 case DW_FORM_implicit_const:
9309 break;
9310 case DW_FORM_data2:
9311 case DW_FORM_ref2:
9312 info_ptr += 2;
9313 break;
9314 case DW_FORM_data4:
9315 case DW_FORM_ref4:
9316 info_ptr += 4;
9317 break;
9318 case DW_FORM_data8:
9319 case DW_FORM_ref8:
9320 case DW_FORM_ref_sig8:
9321 info_ptr += 8;
9322 break;
9323 case DW_FORM_data16:
9324 info_ptr += 16;
9325 break;
9326 case DW_FORM_string:
9327 read_direct_string (abfd, info_ptr, &bytes_read);
9328 info_ptr += bytes_read;
9329 break;
9330 case DW_FORM_sec_offset:
9331 case DW_FORM_strp:
9332 case DW_FORM_GNU_strp_alt:
9333 info_ptr += cu->header.offset_size;
9334 break;
9335 case DW_FORM_exprloc:
9336 case DW_FORM_block:
9337 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9338 info_ptr += bytes_read;
9339 break;
9340 case DW_FORM_block1:
9341 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9342 break;
9343 case DW_FORM_block2:
9344 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9345 break;
9346 case DW_FORM_block4:
9347 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9348 break;
9349 case DW_FORM_addrx:
9350 case DW_FORM_strx:
9351 case DW_FORM_sdata:
9352 case DW_FORM_udata:
9353 case DW_FORM_ref_udata:
9354 case DW_FORM_GNU_addr_index:
9355 case DW_FORM_GNU_str_index:
9356 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9357 break;
9358 case DW_FORM_indirect:
9359 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 /* We need to continue parsing from here, so just go back to
9362 the top. */
9363 goto skip_attribute;
9365 default:
9366 error (_("Dwarf Error: Cannot handle %s "
9367 "in DWARF reader [in module %s]"),
9368 dwarf_form_name (form),
9369 bfd_get_filename (abfd));
9373 if (abbrev->has_children)
9374 return skip_children (reader, info_ptr);
9375 else
9376 return info_ptr;
9379 /* Locate ORIG_PDI's sibling.
9380 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9382 static const gdb_byte *
9383 locate_pdi_sibling (const struct die_reader_specs *reader,
9384 struct partial_die_info *orig_pdi,
9385 const gdb_byte *info_ptr)
9387 /* Do we know the sibling already? */
9389 if (orig_pdi->sibling)
9390 return orig_pdi->sibling;
9392 /* Are there any children to deal with? */
9394 if (!orig_pdi->has_children)
9395 return info_ptr;
9397 /* Skip the children the long way. */
9399 return skip_children (reader, info_ptr);
9402 /* Expand this partial symbol table into a full symbol table. SELF is
9403 not NULL. */
9405 static void
9406 dwarf2_read_symtab (struct partial_symtab *self,
9407 struct objfile *objfile)
9409 struct dwarf2_per_objfile *dwarf2_per_objfile
9410 = get_dwarf2_per_objfile (objfile);
9412 if (self->readin)
9414 warning (_("bug: psymtab for %s is already read in."),
9415 self->filename);
9417 else
9419 if (info_verbose)
9421 printf_filtered (_("Reading in symbols for %s..."),
9422 self->filename);
9423 gdb_flush (gdb_stdout);
9426 /* If this psymtab is constructed from a debug-only objfile, the
9427 has_section_at_zero flag will not necessarily be correct. We
9428 can get the correct value for this flag by looking at the data
9429 associated with the (presumably stripped) associated objfile. */
9430 if (objfile->separate_debug_objfile_backlink)
9432 struct dwarf2_per_objfile *dpo_backlink
9433 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9435 dwarf2_per_objfile->has_section_at_zero
9436 = dpo_backlink->has_section_at_zero;
9439 dwarf2_per_objfile->reading_partial_symbols = 0;
9441 psymtab_to_symtab_1 (self);
9443 /* Finish up the debug error message. */
9444 if (info_verbose)
9445 printf_filtered (_("done.\n"));
9448 process_cu_includes (dwarf2_per_objfile);
9451 /* Reading in full CUs. */
9453 /* Add PER_CU to the queue. */
9455 static void
9456 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9457 enum language pretend_language)
9459 struct dwarf2_queue_item *item;
9461 per_cu->queued = 1;
9462 item = XNEW (struct dwarf2_queue_item);
9463 item->per_cu = per_cu;
9464 item->pretend_language = pretend_language;
9465 item->next = NULL;
9467 if (dwarf2_queue == NULL)
9468 dwarf2_queue = item;
9469 else
9470 dwarf2_queue_tail->next = item;
9472 dwarf2_queue_tail = item;
9475 /* If PER_CU is not yet queued, add it to the queue.
9476 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9477 dependency.
9478 The result is non-zero if PER_CU was queued, otherwise the result is zero
9479 meaning either PER_CU is already queued or it is already loaded.
9481 N.B. There is an invariant here that if a CU is queued then it is loaded.
9482 The caller is required to load PER_CU if we return non-zero. */
9484 static int
9485 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9486 struct dwarf2_per_cu_data *per_cu,
9487 enum language pretend_language)
9489 /* We may arrive here during partial symbol reading, if we need full
9490 DIEs to process an unusual case (e.g. template arguments). Do
9491 not queue PER_CU, just tell our caller to load its DIEs. */
9492 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9494 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9495 return 1;
9496 return 0;
9499 /* Mark the dependence relation so that we don't flush PER_CU
9500 too early. */
9501 if (dependent_cu != NULL)
9502 dwarf2_add_dependence (dependent_cu, per_cu);
9504 /* If it's already on the queue, we have nothing to do. */
9505 if (per_cu->queued)
9506 return 0;
9508 /* If the compilation unit is already loaded, just mark it as
9509 used. */
9510 if (per_cu->cu != NULL)
9512 per_cu->cu->last_used = 0;
9513 return 0;
9516 /* Add it to the queue. */
9517 queue_comp_unit (per_cu, pretend_language);
9519 return 1;
9522 /* Process the queue. */
9524 static void
9525 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9527 struct dwarf2_queue_item *item, *next_item;
9529 if (dwarf_read_debug)
9531 fprintf_unfiltered (gdb_stdlog,
9532 "Expanding one or more symtabs of objfile %s ...\n",
9533 objfile_name (dwarf2_per_objfile->objfile));
9536 /* The queue starts out with one item, but following a DIE reference
9537 may load a new CU, adding it to the end of the queue. */
9538 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9540 if ((dwarf2_per_objfile->using_index
9541 ? !item->per_cu->v.quick->compunit_symtab
9542 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9543 /* Skip dummy CUs. */
9544 && item->per_cu->cu != NULL)
9546 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9547 unsigned int debug_print_threshold;
9548 char buf[100];
9550 if (per_cu->is_debug_types)
9552 struct signatured_type *sig_type =
9553 (struct signatured_type *) per_cu;
9555 sprintf (buf, "TU %s at offset %s",
9556 hex_string (sig_type->signature),
9557 sect_offset_str (per_cu->sect_off));
9558 /* There can be 100s of TUs.
9559 Only print them in verbose mode. */
9560 debug_print_threshold = 2;
9562 else
9564 sprintf (buf, "CU at offset %s",
9565 sect_offset_str (per_cu->sect_off));
9566 debug_print_threshold = 1;
9569 if (dwarf_read_debug >= debug_print_threshold)
9570 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9572 if (per_cu->is_debug_types)
9573 process_full_type_unit (per_cu, item->pretend_language);
9574 else
9575 process_full_comp_unit (per_cu, item->pretend_language);
9577 if (dwarf_read_debug >= debug_print_threshold)
9578 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9581 item->per_cu->queued = 0;
9582 next_item = item->next;
9583 xfree (item);
9586 dwarf2_queue_tail = NULL;
9588 if (dwarf_read_debug)
9590 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9591 objfile_name (dwarf2_per_objfile->objfile));
9595 /* Read in full symbols for PST, and anything it depends on. */
9597 static void
9598 psymtab_to_symtab_1 (struct partial_symtab *pst)
9600 struct dwarf2_per_cu_data *per_cu;
9601 int i;
9603 if (pst->readin)
9604 return;
9606 for (i = 0; i < pst->number_of_dependencies; i++)
9607 if (!pst->dependencies[i]->readin
9608 && pst->dependencies[i]->user == NULL)
9610 /* Inform about additional files that need to be read in. */
9611 if (info_verbose)
9613 /* FIXME: i18n: Need to make this a single string. */
9614 fputs_filtered (" ", gdb_stdout);
9615 wrap_here ("");
9616 fputs_filtered ("and ", gdb_stdout);
9617 wrap_here ("");
9618 printf_filtered ("%s...", pst->dependencies[i]->filename);
9619 wrap_here (""); /* Flush output. */
9620 gdb_flush (gdb_stdout);
9622 psymtab_to_symtab_1 (pst->dependencies[i]);
9625 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9627 if (per_cu == NULL)
9629 /* It's an include file, no symbols to read for it.
9630 Everything is in the parent symtab. */
9631 pst->readin = 1;
9632 return;
9635 dw2_do_instantiate_symtab (per_cu, false);
9638 /* Trivial hash function for die_info: the hash value of a DIE
9639 is its offset in .debug_info for this objfile. */
9641 static hashval_t
9642 die_hash (const void *item)
9644 const struct die_info *die = (const struct die_info *) item;
9646 return to_underlying (die->sect_off);
9649 /* Trivial comparison function for die_info structures: two DIEs
9650 are equal if they have the same offset. */
9652 static int
9653 die_eq (const void *item_lhs, const void *item_rhs)
9655 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9656 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9658 return die_lhs->sect_off == die_rhs->sect_off;
9661 /* die_reader_func for load_full_comp_unit.
9662 This is identical to read_signatured_type_reader,
9663 but is kept separate for now. */
9665 static void
9666 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9667 const gdb_byte *info_ptr,
9668 struct die_info *comp_unit_die,
9669 int has_children,
9670 void *data)
9672 struct dwarf2_cu *cu = reader->cu;
9673 enum language *language_ptr = (enum language *) data;
9675 gdb_assert (cu->die_hash == NULL);
9676 cu->die_hash =
9677 htab_create_alloc_ex (cu->header.length / 12,
9678 die_hash,
9679 die_eq,
9680 NULL,
9681 &cu->comp_unit_obstack,
9682 hashtab_obstack_allocate,
9683 dummy_obstack_deallocate);
9685 if (has_children)
9686 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9687 &info_ptr, comp_unit_die);
9688 cu->dies = comp_unit_die;
9689 /* comp_unit_die is not stored in die_hash, no need. */
9691 /* We try not to read any attributes in this function, because not
9692 all CUs needed for references have been loaded yet, and symbol
9693 table processing isn't initialized. But we have to set the CU language,
9694 or we won't be able to build types correctly.
9695 Similarly, if we do not read the producer, we can not apply
9696 producer-specific interpretation. */
9697 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9700 /* Load the DIEs associated with PER_CU into memory. */
9702 static void
9703 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9704 bool skip_partial,
9705 enum language pretend_language)
9707 gdb_assert (! this_cu->is_debug_types);
9709 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9710 load_full_comp_unit_reader, &pretend_language);
9713 /* Add a DIE to the delayed physname list. */
9715 static void
9716 add_to_method_list (struct type *type, int fnfield_index, int index,
9717 const char *name, struct die_info *die,
9718 struct dwarf2_cu *cu)
9720 struct delayed_method_info mi;
9721 mi.type = type;
9722 mi.fnfield_index = fnfield_index;
9723 mi.index = index;
9724 mi.name = name;
9725 mi.die = die;
9726 cu->method_list.push_back (mi);
9729 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9730 "const" / "volatile". If so, decrements LEN by the length of the
9731 modifier and return true. Otherwise return false. */
9733 template<size_t N>
9734 static bool
9735 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9737 size_t mod_len = sizeof (mod) - 1;
9738 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9740 len -= mod_len;
9741 return true;
9743 return false;
9746 /* Compute the physnames of any methods on the CU's method list.
9748 The computation of method physnames is delayed in order to avoid the
9749 (bad) condition that one of the method's formal parameters is of an as yet
9750 incomplete type. */
9752 static void
9753 compute_delayed_physnames (struct dwarf2_cu *cu)
9755 /* Only C++ delays computing physnames. */
9756 if (cu->method_list.empty ())
9757 return;
9758 gdb_assert (cu->language == language_cplus);
9760 for (const delayed_method_info &mi : cu->method_list)
9762 const char *physname;
9763 struct fn_fieldlist *fn_flp
9764 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9765 physname = dwarf2_physname (mi.name, mi.die, cu);
9766 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9767 = physname ? physname : "";
9769 /* Since there's no tag to indicate whether a method is a
9770 const/volatile overload, extract that information out of the
9771 demangled name. */
9772 if (physname != NULL)
9774 size_t len = strlen (physname);
9776 while (1)
9778 if (physname[len] == ')') /* shortcut */
9779 break;
9780 else if (check_modifier (physname, len, " const"))
9781 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9782 else if (check_modifier (physname, len, " volatile"))
9783 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9784 else
9785 break;
9790 /* The list is no longer needed. */
9791 cu->method_list.clear ();
9794 /* Go objects should be embedded in a DW_TAG_module DIE,
9795 and it's not clear if/how imported objects will appear.
9796 To keep Go support simple until that's worked out,
9797 go back through what we've read and create something usable.
9798 We could do this while processing each DIE, and feels kinda cleaner,
9799 but that way is more invasive.
9800 This is to, for example, allow the user to type "p var" or "b main"
9801 without having to specify the package name, and allow lookups
9802 of module.object to work in contexts that use the expression
9803 parser. */
9805 static void
9806 fixup_go_packaging (struct dwarf2_cu *cu)
9808 char *package_name = NULL;
9809 struct pending *list;
9810 int i;
9812 for (list = *cu->get_builder ()->get_global_symbols ();
9813 list != NULL;
9814 list = list->next)
9816 for (i = 0; i < list->nsyms; ++i)
9818 struct symbol *sym = list->symbol[i];
9820 if (SYMBOL_LANGUAGE (sym) == language_go
9821 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9823 char *this_package_name = go_symbol_package_name (sym);
9825 if (this_package_name == NULL)
9826 continue;
9827 if (package_name == NULL)
9828 package_name = this_package_name;
9829 else
9831 struct objfile *objfile
9832 = cu->per_cu->dwarf2_per_objfile->objfile;
9833 if (strcmp (package_name, this_package_name) != 0)
9834 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9835 (symbol_symtab (sym) != NULL
9836 ? symtab_to_filename_for_display
9837 (symbol_symtab (sym))
9838 : objfile_name (objfile)),
9839 this_package_name, package_name);
9840 xfree (this_package_name);
9846 if (package_name != NULL)
9848 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9849 const char *saved_package_name
9850 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9851 package_name,
9852 strlen (package_name));
9853 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9854 saved_package_name);
9855 struct symbol *sym;
9857 sym = allocate_symbol (objfile);
9858 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9859 SYMBOL_SET_NAMES (sym, saved_package_name,
9860 strlen (saved_package_name), 0, objfile);
9861 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9862 e.g., "main" finds the "main" module and not C's main(). */
9863 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9864 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9865 SYMBOL_TYPE (sym) = type;
9867 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9869 xfree (package_name);
9873 /* Allocate a fully-qualified name consisting of the two parts on the
9874 obstack. */
9876 static const char *
9877 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9879 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9882 /* A helper that allocates a struct discriminant_info to attach to a
9883 union type. */
9885 static struct discriminant_info *
9886 alloc_discriminant_info (struct type *type, int discriminant_index,
9887 int default_index)
9889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9890 gdb_assert (discriminant_index == -1
9891 || (discriminant_index >= 0
9892 && discriminant_index < TYPE_NFIELDS (type)));
9893 gdb_assert (default_index == -1
9894 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9896 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9898 struct discriminant_info *disc
9899 = ((struct discriminant_info *)
9900 TYPE_ZALLOC (type,
9901 offsetof (struct discriminant_info, discriminants)
9902 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9903 disc->default_index = default_index;
9904 disc->discriminant_index = discriminant_index;
9906 struct dynamic_prop prop;
9907 prop.kind = PROP_UNDEFINED;
9908 prop.data.baton = disc;
9910 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9912 return disc;
9915 /* Some versions of rustc emitted enums in an unusual way.
9917 Ordinary enums were emitted as unions. The first element of each
9918 structure in the union was named "RUST$ENUM$DISR". This element
9919 held the discriminant.
9921 These versions of Rust also implemented the "non-zero"
9922 optimization. When the enum had two values, and one is empty and
9923 the other holds a pointer that cannot be zero, the pointer is used
9924 as the discriminant, with a zero value meaning the empty variant.
9925 Here, the union's first member is of the form
9926 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9927 where the fieldnos are the indices of the fields that should be
9928 traversed in order to find the field (which may be several fields deep)
9929 and the variantname is the name of the variant of the case when the
9930 field is zero.
9932 This function recognizes whether TYPE is of one of these forms,
9933 and, if so, smashes it to be a variant type. */
9935 static void
9936 quirk_rust_enum (struct type *type, struct objfile *objfile)
9938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9940 /* We don't need to deal with empty enums. */
9941 if (TYPE_NFIELDS (type) == 0)
9942 return;
9944 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9945 if (TYPE_NFIELDS (type) == 1
9946 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9948 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9950 /* Decode the field name to find the offset of the
9951 discriminant. */
9952 ULONGEST bit_offset = 0;
9953 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9954 while (name[0] >= '0' && name[0] <= '9')
9956 char *tail;
9957 unsigned long index = strtoul (name, &tail, 10);
9958 name = tail;
9959 if (*name != '$'
9960 || index >= TYPE_NFIELDS (field_type)
9961 || (TYPE_FIELD_LOC_KIND (field_type, index)
9962 != FIELD_LOC_KIND_BITPOS))
9964 complaint (_("Could not parse Rust enum encoding string \"%s\""
9965 "[in module %s]"),
9966 TYPE_FIELD_NAME (type, 0),
9967 objfile_name (objfile));
9968 return;
9970 ++name;
9972 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9973 field_type = TYPE_FIELD_TYPE (field_type, index);
9976 /* Make a union to hold the variants. */
9977 struct type *union_type = alloc_type (objfile);
9978 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9979 TYPE_NFIELDS (union_type) = 3;
9980 TYPE_FIELDS (union_type)
9981 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9982 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9983 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9985 /* Put the discriminant must at index 0. */
9986 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9987 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9988 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9989 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9991 /* The order of fields doesn't really matter, so put the real
9992 field at index 1 and the data-less field at index 2. */
9993 struct discriminant_info *disc
9994 = alloc_discriminant_info (union_type, 0, 1);
9995 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9996 TYPE_FIELD_NAME (union_type, 1)
9997 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9998 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9999 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10000 TYPE_FIELD_NAME (union_type, 1));
10002 const char *dataless_name
10003 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10004 name);
10005 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10006 dataless_name);
10007 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10008 /* NAME points into the original discriminant name, which
10009 already has the correct lifetime. */
10010 TYPE_FIELD_NAME (union_type, 2) = name;
10011 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10012 disc->discriminants[2] = 0;
10014 /* Smash this type to be a structure type. We have to do this
10015 because the type has already been recorded. */
10016 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10017 TYPE_NFIELDS (type) = 1;
10018 TYPE_FIELDS (type)
10019 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10021 /* Install the variant part. */
10022 TYPE_FIELD_TYPE (type, 0) = union_type;
10023 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10024 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10026 else if (TYPE_NFIELDS (type) == 1)
10028 /* We assume that a union with a single field is a univariant
10029 enum. */
10030 /* Smash this type to be a structure type. We have to do this
10031 because the type has already been recorded. */
10032 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10034 /* Make a union to hold the variants. */
10035 struct type *union_type = alloc_type (objfile);
10036 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10037 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10038 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10039 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10040 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10042 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10043 const char *variant_name
10044 = rust_last_path_segment (TYPE_NAME (field_type));
10045 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10046 TYPE_NAME (field_type)
10047 = rust_fully_qualify (&objfile->objfile_obstack,
10048 TYPE_NAME (type), variant_name);
10050 /* Install the union in the outer struct type. */
10051 TYPE_NFIELDS (type) = 1;
10052 TYPE_FIELDS (type)
10053 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10054 TYPE_FIELD_TYPE (type, 0) = union_type;
10055 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10056 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10058 alloc_discriminant_info (union_type, -1, 0);
10060 else
10062 struct type *disr_type = nullptr;
10063 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10065 disr_type = TYPE_FIELD_TYPE (type, i);
10067 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10069 /* All fields of a true enum will be structs. */
10070 return;
10072 else if (TYPE_NFIELDS (disr_type) == 0)
10074 /* Could be data-less variant, so keep going. */
10075 disr_type = nullptr;
10077 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10078 "RUST$ENUM$DISR") != 0)
10080 /* Not a Rust enum. */
10081 return;
10083 else
10085 /* Found one. */
10086 break;
10090 /* If we got here without a discriminant, then it's probably
10091 just a union. */
10092 if (disr_type == nullptr)
10093 return;
10095 /* Smash this type to be a structure type. We have to do this
10096 because the type has already been recorded. */
10097 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10099 /* Make a union to hold the variants. */
10100 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10101 struct type *union_type = alloc_type (objfile);
10102 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10103 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10104 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10105 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10106 TYPE_FIELDS (union_type)
10107 = (struct field *) TYPE_ZALLOC (union_type,
10108 (TYPE_NFIELDS (union_type)
10109 * sizeof (struct field)));
10111 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10112 TYPE_NFIELDS (type) * sizeof (struct field));
10114 /* Install the discriminant at index 0 in the union. */
10115 TYPE_FIELD (union_type, 0) = *disr_field;
10116 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10117 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10119 /* Install the union in the outer struct type. */
10120 TYPE_FIELD_TYPE (type, 0) = union_type;
10121 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10122 TYPE_NFIELDS (type) = 1;
10124 /* Set the size and offset of the union type. */
10125 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10127 /* We need a way to find the correct discriminant given a
10128 variant name. For convenience we build a map here. */
10129 struct type *enum_type = FIELD_TYPE (*disr_field);
10130 std::unordered_map<std::string, ULONGEST> discriminant_map;
10131 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10133 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10135 const char *name
10136 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10137 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10141 int n_fields = TYPE_NFIELDS (union_type);
10142 struct discriminant_info *disc
10143 = alloc_discriminant_info (union_type, 0, -1);
10144 /* Skip the discriminant here. */
10145 for (int i = 1; i < n_fields; ++i)
10147 /* Find the final word in the name of this variant's type.
10148 That name can be used to look up the correct
10149 discriminant. */
10150 const char *variant_name
10151 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10152 i)));
10154 auto iter = discriminant_map.find (variant_name);
10155 if (iter != discriminant_map.end ())
10156 disc->discriminants[i] = iter->second;
10158 /* Remove the discriminant field, if it exists. */
10159 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10160 if (TYPE_NFIELDS (sub_type) > 0)
10162 --TYPE_NFIELDS (sub_type);
10163 ++TYPE_FIELDS (sub_type);
10165 TYPE_FIELD_NAME (union_type, i) = variant_name;
10166 TYPE_NAME (sub_type)
10167 = rust_fully_qualify (&objfile->objfile_obstack,
10168 TYPE_NAME (type), variant_name);
10173 /* Rewrite some Rust unions to be structures with variants parts. */
10175 static void
10176 rust_union_quirks (struct dwarf2_cu *cu)
10178 gdb_assert (cu->language == language_rust);
10179 for (type *type_ : cu->rust_unions)
10180 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10181 /* We don't need this any more. */
10182 cu->rust_unions.clear ();
10185 /* Return the symtab for PER_CU. This works properly regardless of
10186 whether we're using the index or psymtabs. */
10188 static struct compunit_symtab *
10189 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10191 return (per_cu->dwarf2_per_objfile->using_index
10192 ? per_cu->v.quick->compunit_symtab
10193 : per_cu->v.psymtab->compunit_symtab);
10196 /* A helper function for computing the list of all symbol tables
10197 included by PER_CU. */
10199 static void
10200 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10201 htab_t all_children, htab_t all_type_symtabs,
10202 struct dwarf2_per_cu_data *per_cu,
10203 struct compunit_symtab *immediate_parent)
10205 void **slot;
10206 int ix;
10207 struct compunit_symtab *cust;
10208 struct dwarf2_per_cu_data *iter;
10210 slot = htab_find_slot (all_children, per_cu, INSERT);
10211 if (*slot != NULL)
10213 /* This inclusion and its children have been processed. */
10214 return;
10217 *slot = per_cu;
10218 /* Only add a CU if it has a symbol table. */
10219 cust = get_compunit_symtab (per_cu);
10220 if (cust != NULL)
10222 /* If this is a type unit only add its symbol table if we haven't
10223 seen it yet (type unit per_cu's can share symtabs). */
10224 if (per_cu->is_debug_types)
10226 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10227 if (*slot == NULL)
10229 *slot = cust;
10230 result->push_back (cust);
10231 if (cust->user == NULL)
10232 cust->user = immediate_parent;
10235 else
10237 result->push_back (cust);
10238 if (cust->user == NULL)
10239 cust->user = immediate_parent;
10243 for (ix = 0;
10244 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10245 ++ix)
10247 recursively_compute_inclusions (result, all_children,
10248 all_type_symtabs, iter, cust);
10252 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10253 PER_CU. */
10255 static void
10256 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10258 gdb_assert (! per_cu->is_debug_types);
10260 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10262 int ix, len;
10263 struct dwarf2_per_cu_data *per_cu_iter;
10264 std::vector<compunit_symtab *> result_symtabs;
10265 htab_t all_children, all_type_symtabs;
10266 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10268 /* If we don't have a symtab, we can just skip this case. */
10269 if (cust == NULL)
10270 return;
10272 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10273 NULL, xcalloc, xfree);
10274 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10275 NULL, xcalloc, xfree);
10277 for (ix = 0;
10278 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10279 ix, per_cu_iter);
10280 ++ix)
10282 recursively_compute_inclusions (&result_symtabs, all_children,
10283 all_type_symtabs, per_cu_iter,
10284 cust);
10287 /* Now we have a transitive closure of all the included symtabs. */
10288 len = result_symtabs.size ();
10289 cust->includes
10290 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10291 struct compunit_symtab *, len + 1);
10292 memcpy (cust->includes, result_symtabs.data (),
10293 len * sizeof (compunit_symtab *));
10294 cust->includes[len] = NULL;
10296 htab_delete (all_children);
10297 htab_delete (all_type_symtabs);
10301 /* Compute the 'includes' field for the symtabs of all the CUs we just
10302 read. */
10304 static void
10305 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10307 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10309 if (! iter->is_debug_types)
10310 compute_compunit_symtab_includes (iter);
10313 dwarf2_per_objfile->just_read_cus.clear ();
10316 /* Generate full symbol information for PER_CU, whose DIEs have
10317 already been loaded into memory. */
10319 static void
10320 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10321 enum language pretend_language)
10323 struct dwarf2_cu *cu = per_cu->cu;
10324 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10325 struct objfile *objfile = dwarf2_per_objfile->objfile;
10326 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10327 CORE_ADDR lowpc, highpc;
10328 struct compunit_symtab *cust;
10329 CORE_ADDR baseaddr;
10330 struct block *static_block;
10331 CORE_ADDR addr;
10333 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10335 /* Clear the list here in case something was left over. */
10336 cu->method_list.clear ();
10338 cu->language = pretend_language;
10339 cu->language_defn = language_def (cu->language);
10341 /* Do line number decoding in read_file_scope () */
10342 process_die (cu->dies, cu);
10344 /* For now fudge the Go package. */
10345 if (cu->language == language_go)
10346 fixup_go_packaging (cu);
10348 /* Now that we have processed all the DIEs in the CU, all the types
10349 should be complete, and it should now be safe to compute all of the
10350 physnames. */
10351 compute_delayed_physnames (cu);
10353 if (cu->language == language_rust)
10354 rust_union_quirks (cu);
10356 /* Some compilers don't define a DW_AT_high_pc attribute for the
10357 compilation unit. If the DW_AT_high_pc is missing, synthesize
10358 it, by scanning the DIE's below the compilation unit. */
10359 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10361 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10362 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10364 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10365 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10366 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10367 addrmap to help ensure it has an accurate map of pc values belonging to
10368 this comp unit. */
10369 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10371 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10372 SECT_OFF_TEXT (objfile),
10375 if (cust != NULL)
10377 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10379 /* Set symtab language to language from DW_AT_language. If the
10380 compilation is from a C file generated by language preprocessors, do
10381 not set the language if it was already deduced by start_subfile. */
10382 if (!(cu->language == language_c
10383 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10384 COMPUNIT_FILETABS (cust)->language = cu->language;
10386 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10387 produce DW_AT_location with location lists but it can be possibly
10388 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10389 there were bugs in prologue debug info, fixed later in GCC-4.5
10390 by "unwind info for epilogues" patch (which is not directly related).
10392 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10393 needed, it would be wrong due to missing DW_AT_producer there.
10395 Still one can confuse GDB by using non-standard GCC compilation
10396 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10398 if (cu->has_loclist && gcc_4_minor >= 5)
10399 cust->locations_valid = 1;
10401 if (gcc_4_minor >= 5)
10402 cust->epilogue_unwind_valid = 1;
10404 cust->call_site_htab = cu->call_site_htab;
10407 if (dwarf2_per_objfile->using_index)
10408 per_cu->v.quick->compunit_symtab = cust;
10409 else
10411 struct partial_symtab *pst = per_cu->v.psymtab;
10412 pst->compunit_symtab = cust;
10413 pst->readin = 1;
10416 /* Push it for inclusion processing later. */
10417 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10419 /* Not needed any more. */
10420 cu->reset_builder ();
10423 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10424 already been loaded into memory. */
10426 static void
10427 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10428 enum language pretend_language)
10430 struct dwarf2_cu *cu = per_cu->cu;
10431 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10432 struct objfile *objfile = dwarf2_per_objfile->objfile;
10433 struct compunit_symtab *cust;
10434 struct signatured_type *sig_type;
10436 gdb_assert (per_cu->is_debug_types);
10437 sig_type = (struct signatured_type *) per_cu;
10439 /* Clear the list here in case something was left over. */
10440 cu->method_list.clear ();
10442 cu->language = pretend_language;
10443 cu->language_defn = language_def (cu->language);
10445 /* The symbol tables are set up in read_type_unit_scope. */
10446 process_die (cu->dies, cu);
10448 /* For now fudge the Go package. */
10449 if (cu->language == language_go)
10450 fixup_go_packaging (cu);
10452 /* Now that we have processed all the DIEs in the CU, all the types
10453 should be complete, and it should now be safe to compute all of the
10454 physnames. */
10455 compute_delayed_physnames (cu);
10457 if (cu->language == language_rust)
10458 rust_union_quirks (cu);
10460 /* TUs share symbol tables.
10461 If this is the first TU to use this symtab, complete the construction
10462 of it with end_expandable_symtab. Otherwise, complete the addition of
10463 this TU's symbols to the existing symtab. */
10464 if (sig_type->type_unit_group->compunit_symtab == NULL)
10466 buildsym_compunit *builder = cu->get_builder ();
10467 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10468 sig_type->type_unit_group->compunit_symtab = cust;
10470 if (cust != NULL)
10472 /* Set symtab language to language from DW_AT_language. If the
10473 compilation is from a C file generated by language preprocessors,
10474 do not set the language if it was already deduced by
10475 start_subfile. */
10476 if (!(cu->language == language_c
10477 && COMPUNIT_FILETABS (cust)->language != language_c))
10478 COMPUNIT_FILETABS (cust)->language = cu->language;
10481 else
10483 cu->get_builder ()->augment_type_symtab ();
10484 cust = sig_type->type_unit_group->compunit_symtab;
10487 if (dwarf2_per_objfile->using_index)
10488 per_cu->v.quick->compunit_symtab = cust;
10489 else
10491 struct partial_symtab *pst = per_cu->v.psymtab;
10492 pst->compunit_symtab = cust;
10493 pst->readin = 1;
10496 /* Not needed any more. */
10497 cu->reset_builder ();
10500 /* Process an imported unit DIE. */
10502 static void
10503 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10505 struct attribute *attr;
10507 /* For now we don't handle imported units in type units. */
10508 if (cu->per_cu->is_debug_types)
10510 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10511 " supported in type units [in module %s]"),
10512 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10515 attr = dwarf2_attr (die, DW_AT_import, cu);
10516 if (attr != NULL)
10518 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10519 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10520 dwarf2_per_cu_data *per_cu
10521 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10522 cu->per_cu->dwarf2_per_objfile);
10524 /* If necessary, add it to the queue and load its DIEs. */
10525 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10526 load_full_comp_unit (per_cu, false, cu->language);
10528 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10529 per_cu);
10533 /* RAII object that represents a process_die scope: i.e.,
10534 starts/finishes processing a DIE. */
10535 class process_die_scope
10537 public:
10538 process_die_scope (die_info *die, dwarf2_cu *cu)
10539 : m_die (die), m_cu (cu)
10541 /* We should only be processing DIEs not already in process. */
10542 gdb_assert (!m_die->in_process);
10543 m_die->in_process = true;
10546 ~process_die_scope ()
10548 m_die->in_process = false;
10550 /* If we're done processing the DIE for the CU that owns the line
10551 header, we don't need the line header anymore. */
10552 if (m_cu->line_header_die_owner == m_die)
10554 delete m_cu->line_header;
10555 m_cu->line_header = NULL;
10556 m_cu->line_header_die_owner = NULL;
10560 private:
10561 die_info *m_die;
10562 dwarf2_cu *m_cu;
10565 /* Process a die and its children. */
10567 static void
10568 process_die (struct die_info *die, struct dwarf2_cu *cu)
10570 process_die_scope scope (die, cu);
10572 switch (die->tag)
10574 case DW_TAG_padding:
10575 break;
10576 case DW_TAG_compile_unit:
10577 case DW_TAG_partial_unit:
10578 read_file_scope (die, cu);
10579 break;
10580 case DW_TAG_type_unit:
10581 read_type_unit_scope (die, cu);
10582 break;
10583 case DW_TAG_subprogram:
10584 case DW_TAG_inlined_subroutine:
10585 read_func_scope (die, cu);
10586 break;
10587 case DW_TAG_lexical_block:
10588 case DW_TAG_try_block:
10589 case DW_TAG_catch_block:
10590 read_lexical_block_scope (die, cu);
10591 break;
10592 case DW_TAG_call_site:
10593 case DW_TAG_GNU_call_site:
10594 read_call_site_scope (die, cu);
10595 break;
10596 case DW_TAG_class_type:
10597 case DW_TAG_interface_type:
10598 case DW_TAG_structure_type:
10599 case DW_TAG_union_type:
10600 process_structure_scope (die, cu);
10601 break;
10602 case DW_TAG_enumeration_type:
10603 process_enumeration_scope (die, cu);
10604 break;
10606 /* These dies have a type, but processing them does not create
10607 a symbol or recurse to process the children. Therefore we can
10608 read them on-demand through read_type_die. */
10609 case DW_TAG_subroutine_type:
10610 case DW_TAG_set_type:
10611 case DW_TAG_array_type:
10612 case DW_TAG_pointer_type:
10613 case DW_TAG_ptr_to_member_type:
10614 case DW_TAG_reference_type:
10615 case DW_TAG_rvalue_reference_type:
10616 case DW_TAG_string_type:
10617 break;
10619 case DW_TAG_base_type:
10620 case DW_TAG_subrange_type:
10621 case DW_TAG_typedef:
10622 /* Add a typedef symbol for the type definition, if it has a
10623 DW_AT_name. */
10624 new_symbol (die, read_type_die (die, cu), cu);
10625 break;
10626 case DW_TAG_common_block:
10627 read_common_block (die, cu);
10628 break;
10629 case DW_TAG_common_inclusion:
10630 break;
10631 case DW_TAG_namespace:
10632 cu->processing_has_namespace_info = true;
10633 read_namespace (die, cu);
10634 break;
10635 case DW_TAG_module:
10636 cu->processing_has_namespace_info = true;
10637 read_module (die, cu);
10638 break;
10639 case DW_TAG_imported_declaration:
10640 cu->processing_has_namespace_info = true;
10641 if (read_namespace_alias (die, cu))
10642 break;
10643 /* The declaration is not a global namespace alias. */
10644 /* Fall through. */
10645 case DW_TAG_imported_module:
10646 cu->processing_has_namespace_info = true;
10647 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10648 || cu->language != language_fortran))
10649 complaint (_("Tag '%s' has unexpected children"),
10650 dwarf_tag_name (die->tag));
10651 read_import_statement (die, cu);
10652 break;
10654 case DW_TAG_imported_unit:
10655 process_imported_unit_die (die, cu);
10656 break;
10658 case DW_TAG_variable:
10659 read_variable (die, cu);
10660 break;
10662 default:
10663 new_symbol (die, NULL, cu);
10664 break;
10668 /* DWARF name computation. */
10670 /* A helper function for dwarf2_compute_name which determines whether DIE
10671 needs to have the name of the scope prepended to the name listed in the
10672 die. */
10674 static int
10675 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10677 struct attribute *attr;
10679 switch (die->tag)
10681 case DW_TAG_namespace:
10682 case DW_TAG_typedef:
10683 case DW_TAG_class_type:
10684 case DW_TAG_interface_type:
10685 case DW_TAG_structure_type:
10686 case DW_TAG_union_type:
10687 case DW_TAG_enumeration_type:
10688 case DW_TAG_enumerator:
10689 case DW_TAG_subprogram:
10690 case DW_TAG_inlined_subroutine:
10691 case DW_TAG_member:
10692 case DW_TAG_imported_declaration:
10693 return 1;
10695 case DW_TAG_variable:
10696 case DW_TAG_constant:
10697 /* We only need to prefix "globally" visible variables. These include
10698 any variable marked with DW_AT_external or any variable that
10699 lives in a namespace. [Variables in anonymous namespaces
10700 require prefixing, but they are not DW_AT_external.] */
10702 if (dwarf2_attr (die, DW_AT_specification, cu))
10704 struct dwarf2_cu *spec_cu = cu;
10706 return die_needs_namespace (die_specification (die, &spec_cu),
10707 spec_cu);
10710 attr = dwarf2_attr (die, DW_AT_external, cu);
10711 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10712 && die->parent->tag != DW_TAG_module)
10713 return 0;
10714 /* A variable in a lexical block of some kind does not need a
10715 namespace, even though in C++ such variables may be external
10716 and have a mangled name. */
10717 if (die->parent->tag == DW_TAG_lexical_block
10718 || die->parent->tag == DW_TAG_try_block
10719 || die->parent->tag == DW_TAG_catch_block
10720 || die->parent->tag == DW_TAG_subprogram)
10721 return 0;
10722 return 1;
10724 default:
10725 return 0;
10729 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10730 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10731 defined for the given DIE. */
10733 static struct attribute *
10734 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10736 struct attribute *attr;
10738 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10739 if (attr == NULL)
10740 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10742 return attr;
10745 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10746 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10747 defined for the given DIE. */
10749 static const char *
10750 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10752 const char *linkage_name;
10754 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10755 if (linkage_name == NULL)
10756 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10758 return linkage_name;
10761 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10762 compute the physname for the object, which include a method's:
10763 - formal parameters (C++),
10764 - receiver type (Go),
10766 The term "physname" is a bit confusing.
10767 For C++, for example, it is the demangled name.
10768 For Go, for example, it's the mangled name.
10770 For Ada, return the DIE's linkage name rather than the fully qualified
10771 name. PHYSNAME is ignored..
10773 The result is allocated on the objfile_obstack and canonicalized. */
10775 static const char *
10776 dwarf2_compute_name (const char *name,
10777 struct die_info *die, struct dwarf2_cu *cu,
10778 int physname)
10780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10782 if (name == NULL)
10783 name = dwarf2_name (die, cu);
10785 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10786 but otherwise compute it by typename_concat inside GDB.
10787 FIXME: Actually this is not really true, or at least not always true.
10788 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10789 Fortran names because there is no mangling standard. So new_symbol
10790 will set the demangled name to the result of dwarf2_full_name, and it is
10791 the demangled name that GDB uses if it exists. */
10792 if (cu->language == language_ada
10793 || (cu->language == language_fortran && physname))
10795 /* For Ada unit, we prefer the linkage name over the name, as
10796 the former contains the exported name, which the user expects
10797 to be able to reference. Ideally, we want the user to be able
10798 to reference this entity using either natural or linkage name,
10799 but we haven't started looking at this enhancement yet. */
10800 const char *linkage_name = dw2_linkage_name (die, cu);
10802 if (linkage_name != NULL)
10803 return linkage_name;
10806 /* These are the only languages we know how to qualify names in. */
10807 if (name != NULL
10808 && (cu->language == language_cplus
10809 || cu->language == language_fortran || cu->language == language_d
10810 || cu->language == language_rust))
10812 if (die_needs_namespace (die, cu))
10814 const char *prefix;
10815 const char *canonical_name = NULL;
10817 string_file buf;
10819 prefix = determine_prefix (die, cu);
10820 if (*prefix != '\0')
10822 char *prefixed_name = typename_concat (NULL, prefix, name,
10823 physname, cu);
10825 buf.puts (prefixed_name);
10826 xfree (prefixed_name);
10828 else
10829 buf.puts (name);
10831 /* Template parameters may be specified in the DIE's DW_AT_name, or
10832 as children with DW_TAG_template_type_param or
10833 DW_TAG_value_type_param. If the latter, add them to the name
10834 here. If the name already has template parameters, then
10835 skip this step; some versions of GCC emit both, and
10836 it is more efficient to use the pre-computed name.
10838 Something to keep in mind about this process: it is very
10839 unlikely, or in some cases downright impossible, to produce
10840 something that will match the mangled name of a function.
10841 If the definition of the function has the same debug info,
10842 we should be able to match up with it anyway. But fallbacks
10843 using the minimal symbol, for instance to find a method
10844 implemented in a stripped copy of libstdc++, will not work.
10845 If we do not have debug info for the definition, we will have to
10846 match them up some other way.
10848 When we do name matching there is a related problem with function
10849 templates; two instantiated function templates are allowed to
10850 differ only by their return types, which we do not add here. */
10852 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10854 struct attribute *attr;
10855 struct die_info *child;
10856 int first = 1;
10858 die->building_fullname = 1;
10860 for (child = die->child; child != NULL; child = child->sibling)
10862 struct type *type;
10863 LONGEST value;
10864 const gdb_byte *bytes;
10865 struct dwarf2_locexpr_baton *baton;
10866 struct value *v;
10868 if (child->tag != DW_TAG_template_type_param
10869 && child->tag != DW_TAG_template_value_param)
10870 continue;
10872 if (first)
10874 buf.puts ("<");
10875 first = 0;
10877 else
10878 buf.puts (", ");
10880 attr = dwarf2_attr (child, DW_AT_type, cu);
10881 if (attr == NULL)
10883 complaint (_("template parameter missing DW_AT_type"));
10884 buf.puts ("UNKNOWN_TYPE");
10885 continue;
10887 type = die_type (child, cu);
10889 if (child->tag == DW_TAG_template_type_param)
10891 c_print_type (type, "", &buf, -1, 0, cu->language,
10892 &type_print_raw_options);
10893 continue;
10896 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10897 if (attr == NULL)
10899 complaint (_("template parameter missing "
10900 "DW_AT_const_value"));
10901 buf.puts ("UNKNOWN_VALUE");
10902 continue;
10905 dwarf2_const_value_attr (attr, type, name,
10906 &cu->comp_unit_obstack, cu,
10907 &value, &bytes, &baton);
10909 if (TYPE_NOSIGN (type))
10910 /* GDB prints characters as NUMBER 'CHAR'. If that's
10911 changed, this can use value_print instead. */
10912 c_printchar (value, type, &buf);
10913 else
10915 struct value_print_options opts;
10917 if (baton != NULL)
10918 v = dwarf2_evaluate_loc_desc (type, NULL,
10919 baton->data,
10920 baton->size,
10921 baton->per_cu);
10922 else if (bytes != NULL)
10924 v = allocate_value (type);
10925 memcpy (value_contents_writeable (v), bytes,
10926 TYPE_LENGTH (type));
10928 else
10929 v = value_from_longest (type, value);
10931 /* Specify decimal so that we do not depend on
10932 the radix. */
10933 get_formatted_print_options (&opts, 'd');
10934 opts.raw = 1;
10935 value_print (v, &buf, &opts);
10936 release_value (v);
10940 die->building_fullname = 0;
10942 if (!first)
10944 /* Close the argument list, with a space if necessary
10945 (nested templates). */
10946 if (!buf.empty () && buf.string ().back () == '>')
10947 buf.puts (" >");
10948 else
10949 buf.puts (">");
10953 /* For C++ methods, append formal parameter type
10954 information, if PHYSNAME. */
10956 if (physname && die->tag == DW_TAG_subprogram
10957 && cu->language == language_cplus)
10959 struct type *type = read_type_die (die, cu);
10961 c_type_print_args (type, &buf, 1, cu->language,
10962 &type_print_raw_options);
10964 if (cu->language == language_cplus)
10966 /* Assume that an artificial first parameter is
10967 "this", but do not crash if it is not. RealView
10968 marks unnamed (and thus unused) parameters as
10969 artificial; there is no way to differentiate
10970 the two cases. */
10971 if (TYPE_NFIELDS (type) > 0
10972 && TYPE_FIELD_ARTIFICIAL (type, 0)
10973 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10974 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10975 0))))
10976 buf.puts (" const");
10980 const std::string &intermediate_name = buf.string ();
10982 if (cu->language == language_cplus)
10983 canonical_name
10984 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10985 &objfile->per_bfd->storage_obstack);
10987 /* If we only computed INTERMEDIATE_NAME, or if
10988 INTERMEDIATE_NAME is already canonical, then we need to
10989 copy it to the appropriate obstack. */
10990 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10991 name = ((const char *)
10992 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10993 intermediate_name.c_str (),
10994 intermediate_name.length ()));
10995 else
10996 name = canonical_name;
11000 return name;
11003 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11004 If scope qualifiers are appropriate they will be added. The result
11005 will be allocated on the storage_obstack, or NULL if the DIE does
11006 not have a name. NAME may either be from a previous call to
11007 dwarf2_name or NULL.
11009 The output string will be canonicalized (if C++). */
11011 static const char *
11012 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11014 return dwarf2_compute_name (name, die, cu, 0);
11017 /* Construct a physname for the given DIE in CU. NAME may either be
11018 from a previous call to dwarf2_name or NULL. The result will be
11019 allocated on the objfile_objstack or NULL if the DIE does not have a
11020 name.
11022 The output string will be canonicalized (if C++). */
11024 static const char *
11025 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11028 const char *retval, *mangled = NULL, *canon = NULL;
11029 int need_copy = 1;
11031 /* In this case dwarf2_compute_name is just a shortcut not building anything
11032 on its own. */
11033 if (!die_needs_namespace (die, cu))
11034 return dwarf2_compute_name (name, die, cu, 1);
11036 mangled = dw2_linkage_name (die, cu);
11038 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11039 See https://github.com/rust-lang/rust/issues/32925. */
11040 if (cu->language == language_rust && mangled != NULL
11041 && strchr (mangled, '{') != NULL)
11042 mangled = NULL;
11044 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11045 has computed. */
11046 gdb::unique_xmalloc_ptr<char> demangled;
11047 if (mangled != NULL)
11050 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11052 /* Do nothing (do not demangle the symbol name). */
11054 else if (cu->language == language_go)
11056 /* This is a lie, but we already lie to the caller new_symbol.
11057 new_symbol assumes we return the mangled name.
11058 This just undoes that lie until things are cleaned up. */
11060 else
11062 /* Use DMGL_RET_DROP for C++ template functions to suppress
11063 their return type. It is easier for GDB users to search
11064 for such functions as `name(params)' than `long name(params)'.
11065 In such case the minimal symbol names do not match the full
11066 symbol names but for template functions there is never a need
11067 to look up their definition from their declaration so
11068 the only disadvantage remains the minimal symbol variant
11069 `long name(params)' does not have the proper inferior type. */
11070 demangled.reset (gdb_demangle (mangled,
11071 (DMGL_PARAMS | DMGL_ANSI
11072 | DMGL_RET_DROP)));
11074 if (demangled)
11075 canon = demangled.get ();
11076 else
11078 canon = mangled;
11079 need_copy = 0;
11083 if (canon == NULL || check_physname)
11085 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11087 if (canon != NULL && strcmp (physname, canon) != 0)
11089 /* It may not mean a bug in GDB. The compiler could also
11090 compute DW_AT_linkage_name incorrectly. But in such case
11091 GDB would need to be bug-to-bug compatible. */
11093 complaint (_("Computed physname <%s> does not match demangled <%s> "
11094 "(from linkage <%s>) - DIE at %s [in module %s]"),
11095 physname, canon, mangled, sect_offset_str (die->sect_off),
11096 objfile_name (objfile));
11098 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11099 is available here - over computed PHYSNAME. It is safer
11100 against both buggy GDB and buggy compilers. */
11102 retval = canon;
11104 else
11106 retval = physname;
11107 need_copy = 0;
11110 else
11111 retval = canon;
11113 if (need_copy)
11114 retval = ((const char *)
11115 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11116 retval, strlen (retval)));
11118 return retval;
11121 /* Inspect DIE in CU for a namespace alias. If one exists, record
11122 a new symbol for it.
11124 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11126 static int
11127 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11129 struct attribute *attr;
11131 /* If the die does not have a name, this is not a namespace
11132 alias. */
11133 attr = dwarf2_attr (die, DW_AT_name, cu);
11134 if (attr != NULL)
11136 int num;
11137 struct die_info *d = die;
11138 struct dwarf2_cu *imported_cu = cu;
11140 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11141 keep inspecting DIEs until we hit the underlying import. */
11142 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11143 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11145 attr = dwarf2_attr (d, DW_AT_import, cu);
11146 if (attr == NULL)
11147 break;
11149 d = follow_die_ref (d, attr, &imported_cu);
11150 if (d->tag != DW_TAG_imported_declaration)
11151 break;
11154 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11156 complaint (_("DIE at %s has too many recursively imported "
11157 "declarations"), sect_offset_str (d->sect_off));
11158 return 0;
11161 if (attr != NULL)
11163 struct type *type;
11164 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11166 type = get_die_type_at_offset (sect_off, cu->per_cu);
11167 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11169 /* This declaration is a global namespace alias. Add
11170 a symbol for it whose type is the aliased namespace. */
11171 new_symbol (die, type, cu);
11172 return 1;
11177 return 0;
11180 /* Return the using directives repository (global or local?) to use in the
11181 current context for CU.
11183 For Ada, imported declarations can materialize renamings, which *may* be
11184 global. However it is impossible (for now?) in DWARF to distinguish
11185 "external" imported declarations and "static" ones. As all imported
11186 declarations seem to be static in all other languages, make them all CU-wide
11187 global only in Ada. */
11189 static struct using_direct **
11190 using_directives (struct dwarf2_cu *cu)
11192 if (cu->language == language_ada
11193 && cu->get_builder ()->outermost_context_p ())
11194 return cu->get_builder ()->get_global_using_directives ();
11195 else
11196 return cu->get_builder ()->get_local_using_directives ();
11199 /* Read the import statement specified by the given die and record it. */
11201 static void
11202 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11204 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11205 struct attribute *import_attr;
11206 struct die_info *imported_die, *child_die;
11207 struct dwarf2_cu *imported_cu;
11208 const char *imported_name;
11209 const char *imported_name_prefix;
11210 const char *canonical_name;
11211 const char *import_alias;
11212 const char *imported_declaration = NULL;
11213 const char *import_prefix;
11214 std::vector<const char *> excludes;
11216 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11217 if (import_attr == NULL)
11219 complaint (_("Tag '%s' has no DW_AT_import"),
11220 dwarf_tag_name (die->tag));
11221 return;
11224 imported_cu = cu;
11225 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11226 imported_name = dwarf2_name (imported_die, imported_cu);
11227 if (imported_name == NULL)
11229 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11231 The import in the following code:
11232 namespace A
11234 typedef int B;
11237 int main ()
11239 using A::B;
11240 B b;
11241 return b;
11245 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11246 <52> DW_AT_decl_file : 1
11247 <53> DW_AT_decl_line : 6
11248 <54> DW_AT_import : <0x75>
11249 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11250 <59> DW_AT_name : B
11251 <5b> DW_AT_decl_file : 1
11252 <5c> DW_AT_decl_line : 2
11253 <5d> DW_AT_type : <0x6e>
11255 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11256 <76> DW_AT_byte_size : 4
11257 <77> DW_AT_encoding : 5 (signed)
11259 imports the wrong die ( 0x75 instead of 0x58 ).
11260 This case will be ignored until the gcc bug is fixed. */
11261 return;
11264 /* Figure out the local name after import. */
11265 import_alias = dwarf2_name (die, cu);
11267 /* Figure out where the statement is being imported to. */
11268 import_prefix = determine_prefix (die, cu);
11270 /* Figure out what the scope of the imported die is and prepend it
11271 to the name of the imported die. */
11272 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11274 if (imported_die->tag != DW_TAG_namespace
11275 && imported_die->tag != DW_TAG_module)
11277 imported_declaration = imported_name;
11278 canonical_name = imported_name_prefix;
11280 else if (strlen (imported_name_prefix) > 0)
11281 canonical_name = obconcat (&objfile->objfile_obstack,
11282 imported_name_prefix,
11283 (cu->language == language_d ? "." : "::"),
11284 imported_name, (char *) NULL);
11285 else
11286 canonical_name = imported_name;
11288 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11289 for (child_die = die->child; child_die && child_die->tag;
11290 child_die = sibling_die (child_die))
11292 /* DWARF-4: A Fortran use statement with a “rename list” may be
11293 represented by an imported module entry with an import attribute
11294 referring to the module and owned entries corresponding to those
11295 entities that are renamed as part of being imported. */
11297 if (child_die->tag != DW_TAG_imported_declaration)
11299 complaint (_("child DW_TAG_imported_declaration expected "
11300 "- DIE at %s [in module %s]"),
11301 sect_offset_str (child_die->sect_off),
11302 objfile_name (objfile));
11303 continue;
11306 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11307 if (import_attr == NULL)
11309 complaint (_("Tag '%s' has no DW_AT_import"),
11310 dwarf_tag_name (child_die->tag));
11311 continue;
11314 imported_cu = cu;
11315 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11316 &imported_cu);
11317 imported_name = dwarf2_name (imported_die, imported_cu);
11318 if (imported_name == NULL)
11320 complaint (_("child DW_TAG_imported_declaration has unknown "
11321 "imported name - DIE at %s [in module %s]"),
11322 sect_offset_str (child_die->sect_off),
11323 objfile_name (objfile));
11324 continue;
11327 excludes.push_back (imported_name);
11329 process_die (child_die, cu);
11332 add_using_directive (using_directives (cu),
11333 import_prefix,
11334 canonical_name,
11335 import_alias,
11336 imported_declaration,
11337 excludes,
11339 &objfile->objfile_obstack);
11342 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11343 types, but gives them a size of zero. Starting with version 14,
11344 ICC is compatible with GCC. */
11346 static bool
11347 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11349 if (!cu->checked_producer)
11350 check_producer (cu);
11352 return cu->producer_is_icc_lt_14;
11355 /* ICC generates a DW_AT_type for C void functions. This was observed on
11356 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11357 which says that void functions should not have a DW_AT_type. */
11359 static bool
11360 producer_is_icc (struct dwarf2_cu *cu)
11362 if (!cu->checked_producer)
11363 check_producer (cu);
11365 return cu->producer_is_icc;
11368 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11369 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11370 this, it was first present in GCC release 4.3.0. */
11372 static bool
11373 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11375 if (!cu->checked_producer)
11376 check_producer (cu);
11378 return cu->producer_is_gcc_lt_4_3;
11381 static file_and_directory
11382 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11384 file_and_directory res;
11386 /* Find the filename. Do not use dwarf2_name here, since the filename
11387 is not a source language identifier. */
11388 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11389 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11391 if (res.comp_dir == NULL
11392 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11393 && IS_ABSOLUTE_PATH (res.name))
11395 res.comp_dir_storage = ldirname (res.name);
11396 if (!res.comp_dir_storage.empty ())
11397 res.comp_dir = res.comp_dir_storage.c_str ();
11399 if (res.comp_dir != NULL)
11401 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11402 directory, get rid of it. */
11403 const char *cp = strchr (res.comp_dir, ':');
11405 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11406 res.comp_dir = cp + 1;
11409 if (res.name == NULL)
11410 res.name = "<unknown>";
11412 return res;
11415 /* Handle DW_AT_stmt_list for a compilation unit.
11416 DIE is the DW_TAG_compile_unit die for CU.
11417 COMP_DIR is the compilation directory. LOWPC is passed to
11418 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11420 static void
11421 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11422 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11424 struct dwarf2_per_objfile *dwarf2_per_objfile
11425 = cu->per_cu->dwarf2_per_objfile;
11426 struct objfile *objfile = dwarf2_per_objfile->objfile;
11427 struct attribute *attr;
11428 struct line_header line_header_local;
11429 hashval_t line_header_local_hash;
11430 void **slot;
11431 int decode_mapping;
11433 gdb_assert (! cu->per_cu->is_debug_types);
11435 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11436 if (attr == NULL)
11437 return;
11439 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11441 /* The line header hash table is only created if needed (it exists to
11442 prevent redundant reading of the line table for partial_units).
11443 If we're given a partial_unit, we'll need it. If we're given a
11444 compile_unit, then use the line header hash table if it's already
11445 created, but don't create one just yet. */
11447 if (dwarf2_per_objfile->line_header_hash == NULL
11448 && die->tag == DW_TAG_partial_unit)
11450 dwarf2_per_objfile->line_header_hash
11451 = htab_create_alloc_ex (127, line_header_hash_voidp,
11452 line_header_eq_voidp,
11453 free_line_header_voidp,
11454 &objfile->objfile_obstack,
11455 hashtab_obstack_allocate,
11456 dummy_obstack_deallocate);
11459 line_header_local.sect_off = line_offset;
11460 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11461 line_header_local_hash = line_header_hash (&line_header_local);
11462 if (dwarf2_per_objfile->line_header_hash != NULL)
11464 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11465 &line_header_local,
11466 line_header_local_hash, NO_INSERT);
11468 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11469 is not present in *SLOT (since if there is something in *SLOT then
11470 it will be for a partial_unit). */
11471 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11473 gdb_assert (*slot != NULL);
11474 cu->line_header = (struct line_header *) *slot;
11475 return;
11479 /* dwarf_decode_line_header does not yet provide sufficient information.
11480 We always have to call also dwarf_decode_lines for it. */
11481 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11482 if (lh == NULL)
11483 return;
11485 cu->line_header = lh.release ();
11486 cu->line_header_die_owner = die;
11488 if (dwarf2_per_objfile->line_header_hash == NULL)
11489 slot = NULL;
11490 else
11492 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11493 &line_header_local,
11494 line_header_local_hash, INSERT);
11495 gdb_assert (slot != NULL);
11497 if (slot != NULL && *slot == NULL)
11499 /* This newly decoded line number information unit will be owned
11500 by line_header_hash hash table. */
11501 *slot = cu->line_header;
11502 cu->line_header_die_owner = NULL;
11504 else
11506 /* We cannot free any current entry in (*slot) as that struct line_header
11507 may be already used by multiple CUs. Create only temporary decoded
11508 line_header for this CU - it may happen at most once for each line
11509 number information unit. And if we're not using line_header_hash
11510 then this is what we want as well. */
11511 gdb_assert (die->tag != DW_TAG_partial_unit);
11513 decode_mapping = (die->tag != DW_TAG_partial_unit);
11514 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11515 decode_mapping);
11519 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11521 static void
11522 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11524 struct dwarf2_per_objfile *dwarf2_per_objfile
11525 = cu->per_cu->dwarf2_per_objfile;
11526 struct objfile *objfile = dwarf2_per_objfile->objfile;
11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11528 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11529 CORE_ADDR highpc = ((CORE_ADDR) 0);
11530 struct attribute *attr;
11531 struct die_info *child_die;
11532 CORE_ADDR baseaddr;
11534 prepare_one_comp_unit (cu, die, cu->language);
11535 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11537 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11539 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11540 from finish_block. */
11541 if (lowpc == ((CORE_ADDR) -1))
11542 lowpc = highpc;
11543 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11545 file_and_directory fnd = find_file_and_directory (die, cu);
11547 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11548 standardised yet. As a workaround for the language detection we fall
11549 back to the DW_AT_producer string. */
11550 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11551 cu->language = language_opencl;
11553 /* Similar hack for Go. */
11554 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11555 set_cu_language (DW_LANG_Go, cu);
11557 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11559 /* Decode line number information if present. We do this before
11560 processing child DIEs, so that the line header table is available
11561 for DW_AT_decl_file. */
11562 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11564 /* Process all dies in compilation unit. */
11565 if (die->child != NULL)
11567 child_die = die->child;
11568 while (child_die && child_die->tag)
11570 process_die (child_die, cu);
11571 child_die = sibling_die (child_die);
11575 /* Decode macro information, if present. Dwarf 2 macro information
11576 refers to information in the line number info statement program
11577 header, so we can only read it if we've read the header
11578 successfully. */
11579 attr = dwarf2_attr (die, DW_AT_macros, cu);
11580 if (attr == NULL)
11581 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11582 if (attr && cu->line_header)
11584 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11585 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11587 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11589 else
11591 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11592 if (attr && cu->line_header)
11594 unsigned int macro_offset = DW_UNSND (attr);
11596 dwarf_decode_macros (cu, macro_offset, 0);
11601 void
11602 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11604 struct type_unit_group *tu_group;
11605 int first_time;
11606 struct attribute *attr;
11607 unsigned int i;
11608 struct signatured_type *sig_type;
11610 gdb_assert (per_cu->is_debug_types);
11611 sig_type = (struct signatured_type *) per_cu;
11613 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11615 /* If we're using .gdb_index (includes -readnow) then
11616 per_cu->type_unit_group may not have been set up yet. */
11617 if (sig_type->type_unit_group == NULL)
11618 sig_type->type_unit_group = get_type_unit_group (this, attr);
11619 tu_group = sig_type->type_unit_group;
11621 /* If we've already processed this stmt_list there's no real need to
11622 do it again, we could fake it and just recreate the part we need
11623 (file name,index -> symtab mapping). If data shows this optimization
11624 is useful we can do it then. */
11625 first_time = tu_group->compunit_symtab == NULL;
11627 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11628 debug info. */
11629 line_header_up lh;
11630 if (attr != NULL)
11632 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11633 lh = dwarf_decode_line_header (line_offset, this);
11635 if (lh == NULL)
11637 if (first_time)
11638 start_symtab ("", NULL, 0);
11639 else
11641 gdb_assert (tu_group->symtabs == NULL);
11642 gdb_assert (m_builder == nullptr);
11643 struct compunit_symtab *cust = tu_group->compunit_symtab;
11644 m_builder.reset (new struct buildsym_compunit
11645 (COMPUNIT_OBJFILE (cust), "",
11646 COMPUNIT_DIRNAME (cust),
11647 compunit_language (cust),
11648 0, cust));
11650 return;
11653 line_header = lh.release ();
11654 line_header_die_owner = die;
11656 if (first_time)
11658 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11660 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11661 still initializing it, and our caller (a few levels up)
11662 process_full_type_unit still needs to know if this is the first
11663 time. */
11665 tu_group->num_symtabs = line_header->file_names.size ();
11666 tu_group->symtabs = XNEWVEC (struct symtab *,
11667 line_header->file_names.size ());
11669 for (i = 0; i < line_header->file_names.size (); ++i)
11671 file_entry &fe = line_header->file_names[i];
11673 dwarf2_start_subfile (this, fe.name,
11674 fe.include_dir (line_header));
11675 buildsym_compunit *b = get_builder ();
11676 if (b->get_current_subfile ()->symtab == NULL)
11678 /* NOTE: start_subfile will recognize when it's been
11679 passed a file it has already seen. So we can't
11680 assume there's a simple mapping from
11681 cu->line_header->file_names to subfiles, plus
11682 cu->line_header->file_names may contain dups. */
11683 b->get_current_subfile ()->symtab
11684 = allocate_symtab (cust, b->get_current_subfile ()->name);
11687 fe.symtab = b->get_current_subfile ()->symtab;
11688 tu_group->symtabs[i] = fe.symtab;
11691 else
11693 gdb_assert (m_builder == nullptr);
11694 struct compunit_symtab *cust = tu_group->compunit_symtab;
11695 m_builder.reset (new struct buildsym_compunit
11696 (COMPUNIT_OBJFILE (cust), "",
11697 COMPUNIT_DIRNAME (cust),
11698 compunit_language (cust),
11699 0, cust));
11701 for (i = 0; i < line_header->file_names.size (); ++i)
11703 file_entry &fe = line_header->file_names[i];
11705 fe.symtab = tu_group->symtabs[i];
11709 /* The main symtab is allocated last. Type units don't have DW_AT_name
11710 so they don't have a "real" (so to speak) symtab anyway.
11711 There is later code that will assign the main symtab to all symbols
11712 that don't have one. We need to handle the case of a symbol with a
11713 missing symtab (DW_AT_decl_file) anyway. */
11716 /* Process DW_TAG_type_unit.
11717 For TUs we want to skip the first top level sibling if it's not the
11718 actual type being defined by this TU. In this case the first top
11719 level sibling is there to provide context only. */
11721 static void
11722 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11724 struct die_info *child_die;
11726 prepare_one_comp_unit (cu, die, language_minimal);
11728 /* Initialize (or reinitialize) the machinery for building symtabs.
11729 We do this before processing child DIEs, so that the line header table
11730 is available for DW_AT_decl_file. */
11731 cu->setup_type_unit_groups (die);
11733 if (die->child != NULL)
11735 child_die = die->child;
11736 while (child_die && child_die->tag)
11738 process_die (child_die, cu);
11739 child_die = sibling_die (child_die);
11744 /* DWO/DWP files.
11746 http://gcc.gnu.org/wiki/DebugFission
11747 http://gcc.gnu.org/wiki/DebugFissionDWP
11749 To simplify handling of both DWO files ("object" files with the DWARF info)
11750 and DWP files (a file with the DWOs packaged up into one file), we treat
11751 DWP files as having a collection of virtual DWO files. */
11753 static hashval_t
11754 hash_dwo_file (const void *item)
11756 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11757 hashval_t hash;
11759 hash = htab_hash_string (dwo_file->dwo_name);
11760 if (dwo_file->comp_dir != NULL)
11761 hash += htab_hash_string (dwo_file->comp_dir);
11762 return hash;
11765 static int
11766 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11768 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11769 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11771 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11772 return 0;
11773 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11774 return lhs->comp_dir == rhs->comp_dir;
11775 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11778 /* Allocate a hash table for DWO files. */
11780 static htab_t
11781 allocate_dwo_file_hash_table (struct objfile *objfile)
11783 return htab_create_alloc_ex (41,
11784 hash_dwo_file,
11785 eq_dwo_file,
11786 NULL,
11787 &objfile->objfile_obstack,
11788 hashtab_obstack_allocate,
11789 dummy_obstack_deallocate);
11792 /* Lookup DWO file DWO_NAME. */
11794 static void **
11795 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11796 const char *dwo_name,
11797 const char *comp_dir)
11799 struct dwo_file find_entry;
11800 void **slot;
11802 if (dwarf2_per_objfile->dwo_files == NULL)
11803 dwarf2_per_objfile->dwo_files
11804 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11806 memset (&find_entry, 0, sizeof (find_entry));
11807 find_entry.dwo_name = dwo_name;
11808 find_entry.comp_dir = comp_dir;
11809 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11811 return slot;
11814 static hashval_t
11815 hash_dwo_unit (const void *item)
11817 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11819 /* This drops the top 32 bits of the id, but is ok for a hash. */
11820 return dwo_unit->signature;
11823 static int
11824 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11826 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11827 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11829 /* The signature is assumed to be unique within the DWO file.
11830 So while object file CU dwo_id's always have the value zero,
11831 that's OK, assuming each object file DWO file has only one CU,
11832 and that's the rule for now. */
11833 return lhs->signature == rhs->signature;
11836 /* Allocate a hash table for DWO CUs,TUs.
11837 There is one of these tables for each of CUs,TUs for each DWO file. */
11839 static htab_t
11840 allocate_dwo_unit_table (struct objfile *objfile)
11842 /* Start out with a pretty small number.
11843 Generally DWO files contain only one CU and maybe some TUs. */
11844 return htab_create_alloc_ex (3,
11845 hash_dwo_unit,
11846 eq_dwo_unit,
11847 NULL,
11848 &objfile->objfile_obstack,
11849 hashtab_obstack_allocate,
11850 dummy_obstack_deallocate);
11853 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11855 struct create_dwo_cu_data
11857 struct dwo_file *dwo_file;
11858 struct dwo_unit dwo_unit;
11861 /* die_reader_func for create_dwo_cu. */
11863 static void
11864 create_dwo_cu_reader (const struct die_reader_specs *reader,
11865 const gdb_byte *info_ptr,
11866 struct die_info *comp_unit_die,
11867 int has_children,
11868 void *datap)
11870 struct dwarf2_cu *cu = reader->cu;
11871 sect_offset sect_off = cu->per_cu->sect_off;
11872 struct dwarf2_section_info *section = cu->per_cu->section;
11873 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11874 struct dwo_file *dwo_file = data->dwo_file;
11875 struct dwo_unit *dwo_unit = &data->dwo_unit;
11876 struct attribute *attr;
11878 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11879 if (attr == NULL)
11881 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11882 " its dwo_id [in module %s]"),
11883 sect_offset_str (sect_off), dwo_file->dwo_name);
11884 return;
11887 dwo_unit->dwo_file = dwo_file;
11888 dwo_unit->signature = DW_UNSND (attr);
11889 dwo_unit->section = section;
11890 dwo_unit->sect_off = sect_off;
11891 dwo_unit->length = cu->per_cu->length;
11893 if (dwarf_read_debug)
11894 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11895 sect_offset_str (sect_off),
11896 hex_string (dwo_unit->signature));
11899 /* Create the dwo_units for the CUs in a DWO_FILE.
11900 Note: This function processes DWO files only, not DWP files. */
11902 static void
11903 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11904 struct dwo_file &dwo_file, dwarf2_section_info &section,
11905 htab_t &cus_htab)
11907 struct objfile *objfile = dwarf2_per_objfile->objfile;
11908 const gdb_byte *info_ptr, *end_ptr;
11910 dwarf2_read_section (objfile, &section);
11911 info_ptr = section.buffer;
11913 if (info_ptr == NULL)
11914 return;
11916 if (dwarf_read_debug)
11918 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11919 get_section_name (&section),
11920 get_section_file_name (&section));
11923 end_ptr = info_ptr + section.size;
11924 while (info_ptr < end_ptr)
11926 struct dwarf2_per_cu_data per_cu;
11927 struct create_dwo_cu_data create_dwo_cu_data;
11928 struct dwo_unit *dwo_unit;
11929 void **slot;
11930 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11932 memset (&create_dwo_cu_data.dwo_unit, 0,
11933 sizeof (create_dwo_cu_data.dwo_unit));
11934 memset (&per_cu, 0, sizeof (per_cu));
11935 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11936 per_cu.is_debug_types = 0;
11937 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11938 per_cu.section = &section;
11939 create_dwo_cu_data.dwo_file = &dwo_file;
11941 init_cutu_and_read_dies_no_follow (
11942 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11943 info_ptr += per_cu.length;
11945 // If the unit could not be parsed, skip it.
11946 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11947 continue;
11949 if (cus_htab == NULL)
11950 cus_htab = allocate_dwo_unit_table (objfile);
11952 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11953 *dwo_unit = create_dwo_cu_data.dwo_unit;
11954 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11955 gdb_assert (slot != NULL);
11956 if (*slot != NULL)
11958 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11959 sect_offset dup_sect_off = dup_cu->sect_off;
11961 complaint (_("debug cu entry at offset %s is duplicate to"
11962 " the entry at offset %s, signature %s"),
11963 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11964 hex_string (dwo_unit->signature));
11966 *slot = (void *)dwo_unit;
11970 /* DWP file .debug_{cu,tu}_index section format:
11971 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11973 DWP Version 1:
11975 Both index sections have the same format, and serve to map a 64-bit
11976 signature to a set of section numbers. Each section begins with a header,
11977 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11978 indexes, and a pool of 32-bit section numbers. The index sections will be
11979 aligned at 8-byte boundaries in the file.
11981 The index section header consists of:
11983 V, 32 bit version number
11984 -, 32 bits unused
11985 N, 32 bit number of compilation units or type units in the index
11986 M, 32 bit number of slots in the hash table
11988 Numbers are recorded using the byte order of the application binary.
11990 The hash table begins at offset 16 in the section, and consists of an array
11991 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11992 order of the application binary). Unused slots in the hash table are 0.
11993 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11995 The parallel table begins immediately after the hash table
11996 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11997 array of 32-bit indexes (using the byte order of the application binary),
11998 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11999 table contains a 32-bit index into the pool of section numbers. For unused
12000 hash table slots, the corresponding entry in the parallel table will be 0.
12002 The pool of section numbers begins immediately following the hash table
12003 (at offset 16 + 12 * M from the beginning of the section). The pool of
12004 section numbers consists of an array of 32-bit words (using the byte order
12005 of the application binary). Each item in the array is indexed starting
12006 from 0. The hash table entry provides the index of the first section
12007 number in the set. Additional section numbers in the set follow, and the
12008 set is terminated by a 0 entry (section number 0 is not used in ELF).
12010 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12011 section must be the first entry in the set, and the .debug_abbrev.dwo must
12012 be the second entry. Other members of the set may follow in any order.
12016 DWP Version 2:
12018 DWP Version 2 combines all the .debug_info, etc. sections into one,
12019 and the entries in the index tables are now offsets into these sections.
12020 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12021 section.
12023 Index Section Contents:
12024 Header
12025 Hash Table of Signatures dwp_hash_table.hash_table
12026 Parallel Table of Indices dwp_hash_table.unit_table
12027 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12028 Table of Section Sizes dwp_hash_table.v2.sizes
12030 The index section header consists of:
12032 V, 32 bit version number
12033 L, 32 bit number of columns in the table of section offsets
12034 N, 32 bit number of compilation units or type units in the index
12035 M, 32 bit number of slots in the hash table
12037 Numbers are recorded using the byte order of the application binary.
12039 The hash table has the same format as version 1.
12040 The parallel table of indices has the same format as version 1,
12041 except that the entries are origin-1 indices into the table of sections
12042 offsets and the table of section sizes.
12044 The table of offsets begins immediately following the parallel table
12045 (at offset 16 + 12 * M from the beginning of the section). The table is
12046 a two-dimensional array of 32-bit words (using the byte order of the
12047 application binary), with L columns and N+1 rows, in row-major order.
12048 Each row in the array is indexed starting from 0. The first row provides
12049 a key to the remaining rows: each column in this row provides an identifier
12050 for a debug section, and the offsets in the same column of subsequent rows
12051 refer to that section. The section identifiers are:
12053 DW_SECT_INFO 1 .debug_info.dwo
12054 DW_SECT_TYPES 2 .debug_types.dwo
12055 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12056 DW_SECT_LINE 4 .debug_line.dwo
12057 DW_SECT_LOC 5 .debug_loc.dwo
12058 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12059 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12060 DW_SECT_MACRO 8 .debug_macro.dwo
12062 The offsets provided by the CU and TU index sections are the base offsets
12063 for the contributions made by each CU or TU to the corresponding section
12064 in the package file. Each CU and TU header contains an abbrev_offset
12065 field, used to find the abbreviations table for that CU or TU within the
12066 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12067 be interpreted as relative to the base offset given in the index section.
12068 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12069 should be interpreted as relative to the base offset for .debug_line.dwo,
12070 and offsets into other debug sections obtained from DWARF attributes should
12071 also be interpreted as relative to the corresponding base offset.
12073 The table of sizes begins immediately following the table of offsets.
12074 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12075 with L columns and N rows, in row-major order. Each row in the array is
12076 indexed starting from 1 (row 0 is shared by the two tables).
12080 Hash table lookup is handled the same in version 1 and 2:
12082 We assume that N and M will not exceed 2^32 - 1.
12083 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12085 Given a 64-bit compilation unit signature or a type signature S, an entry
12086 in the hash table is located as follows:
12088 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12089 the low-order k bits all set to 1.
12091 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12093 3) If the hash table entry at index H matches the signature, use that
12094 entry. If the hash table entry at index H is unused (all zeroes),
12095 terminate the search: the signature is not present in the table.
12097 4) Let H = (H + H') modulo M. Repeat at Step 3.
12099 Because M > N and H' and M are relatively prime, the search is guaranteed
12100 to stop at an unused slot or find the match. */
12102 /* Create a hash table to map DWO IDs to their CU/TU entry in
12103 .debug_{info,types}.dwo in DWP_FILE.
12104 Returns NULL if there isn't one.
12105 Note: This function processes DWP files only, not DWO files. */
12107 static struct dwp_hash_table *
12108 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12109 struct dwp_file *dwp_file, int is_debug_types)
12111 struct objfile *objfile = dwarf2_per_objfile->objfile;
12112 bfd *dbfd = dwp_file->dbfd.get ();
12113 const gdb_byte *index_ptr, *index_end;
12114 struct dwarf2_section_info *index;
12115 uint32_t version, nr_columns, nr_units, nr_slots;
12116 struct dwp_hash_table *htab;
12118 if (is_debug_types)
12119 index = &dwp_file->sections.tu_index;
12120 else
12121 index = &dwp_file->sections.cu_index;
12123 if (dwarf2_section_empty_p (index))
12124 return NULL;
12125 dwarf2_read_section (objfile, index);
12127 index_ptr = index->buffer;
12128 index_end = index_ptr + index->size;
12130 version = read_4_bytes (dbfd, index_ptr);
12131 index_ptr += 4;
12132 if (version == 2)
12133 nr_columns = read_4_bytes (dbfd, index_ptr);
12134 else
12135 nr_columns = 0;
12136 index_ptr += 4;
12137 nr_units = read_4_bytes (dbfd, index_ptr);
12138 index_ptr += 4;
12139 nr_slots = read_4_bytes (dbfd, index_ptr);
12140 index_ptr += 4;
12142 if (version != 1 && version != 2)
12144 error (_("Dwarf Error: unsupported DWP file version (%s)"
12145 " [in module %s]"),
12146 pulongest (version), dwp_file->name);
12148 if (nr_slots != (nr_slots & -nr_slots))
12150 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12151 " is not power of 2 [in module %s]"),
12152 pulongest (nr_slots), dwp_file->name);
12155 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12156 htab->version = version;
12157 htab->nr_columns = nr_columns;
12158 htab->nr_units = nr_units;
12159 htab->nr_slots = nr_slots;
12160 htab->hash_table = index_ptr;
12161 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12163 /* Exit early if the table is empty. */
12164 if (nr_slots == 0 || nr_units == 0
12165 || (version == 2 && nr_columns == 0))
12167 /* All must be zero. */
12168 if (nr_slots != 0 || nr_units != 0
12169 || (version == 2 && nr_columns != 0))
12171 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12172 " all zero [in modules %s]"),
12173 dwp_file->name);
12175 return htab;
12178 if (version == 1)
12180 htab->section_pool.v1.indices =
12181 htab->unit_table + sizeof (uint32_t) * nr_slots;
12182 /* It's harder to decide whether the section is too small in v1.
12183 V1 is deprecated anyway so we punt. */
12185 else
12187 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12188 int *ids = htab->section_pool.v2.section_ids;
12189 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12190 /* Reverse map for error checking. */
12191 int ids_seen[DW_SECT_MAX + 1];
12192 int i;
12194 if (nr_columns < 2)
12196 error (_("Dwarf Error: bad DWP hash table, too few columns"
12197 " in section table [in module %s]"),
12198 dwp_file->name);
12200 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12202 error (_("Dwarf Error: bad DWP hash table, too many columns"
12203 " in section table [in module %s]"),
12204 dwp_file->name);
12206 memset (ids, 255, sizeof_ids);
12207 memset (ids_seen, 255, sizeof (ids_seen));
12208 for (i = 0; i < nr_columns; ++i)
12210 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12212 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12214 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12215 " in section table [in module %s]"),
12216 id, dwp_file->name);
12218 if (ids_seen[id] != -1)
12220 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12221 " id %d in section table [in module %s]"),
12222 id, dwp_file->name);
12224 ids_seen[id] = i;
12225 ids[i] = id;
12227 /* Must have exactly one info or types section. */
12228 if (((ids_seen[DW_SECT_INFO] != -1)
12229 + (ids_seen[DW_SECT_TYPES] != -1))
12230 != 1)
12232 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12233 " DWO info/types section [in module %s]"),
12234 dwp_file->name);
12236 /* Must have an abbrev section. */
12237 if (ids_seen[DW_SECT_ABBREV] == -1)
12239 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12240 " section [in module %s]"),
12241 dwp_file->name);
12243 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12244 htab->section_pool.v2.sizes =
12245 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12246 * nr_units * nr_columns);
12247 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12248 * nr_units * nr_columns))
12249 > index_end)
12251 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12252 " [in module %s]"),
12253 dwp_file->name);
12257 return htab;
12260 /* Update SECTIONS with the data from SECTP.
12262 This function is like the other "locate" section routines that are
12263 passed to bfd_map_over_sections, but in this context the sections to
12264 read comes from the DWP V1 hash table, not the full ELF section table.
12266 The result is non-zero for success, or zero if an error was found. */
12268 static int
12269 locate_v1_virtual_dwo_sections (asection *sectp,
12270 struct virtual_v1_dwo_sections *sections)
12272 const struct dwop_section_names *names = &dwop_section_names;
12274 if (section_is_p (sectp->name, &names->abbrev_dwo))
12276 /* There can be only one. */
12277 if (sections->abbrev.s.section != NULL)
12278 return 0;
12279 sections->abbrev.s.section = sectp;
12280 sections->abbrev.size = bfd_get_section_size (sectp);
12282 else if (section_is_p (sectp->name, &names->info_dwo)
12283 || section_is_p (sectp->name, &names->types_dwo))
12285 /* There can be only one. */
12286 if (sections->info_or_types.s.section != NULL)
12287 return 0;
12288 sections->info_or_types.s.section = sectp;
12289 sections->info_or_types.size = bfd_get_section_size (sectp);
12291 else if (section_is_p (sectp->name, &names->line_dwo))
12293 /* There can be only one. */
12294 if (sections->line.s.section != NULL)
12295 return 0;
12296 sections->line.s.section = sectp;
12297 sections->line.size = bfd_get_section_size (sectp);
12299 else if (section_is_p (sectp->name, &names->loc_dwo))
12301 /* There can be only one. */
12302 if (sections->loc.s.section != NULL)
12303 return 0;
12304 sections->loc.s.section = sectp;
12305 sections->loc.size = bfd_get_section_size (sectp);
12307 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12309 /* There can be only one. */
12310 if (sections->macinfo.s.section != NULL)
12311 return 0;
12312 sections->macinfo.s.section = sectp;
12313 sections->macinfo.size = bfd_get_section_size (sectp);
12315 else if (section_is_p (sectp->name, &names->macro_dwo))
12317 /* There can be only one. */
12318 if (sections->macro.s.section != NULL)
12319 return 0;
12320 sections->macro.s.section = sectp;
12321 sections->macro.size = bfd_get_section_size (sectp);
12323 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12325 /* There can be only one. */
12326 if (sections->str_offsets.s.section != NULL)
12327 return 0;
12328 sections->str_offsets.s.section = sectp;
12329 sections->str_offsets.size = bfd_get_section_size (sectp);
12331 else
12333 /* No other kind of section is valid. */
12334 return 0;
12337 return 1;
12340 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12341 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12342 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12343 This is for DWP version 1 files. */
12345 static struct dwo_unit *
12346 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12347 struct dwp_file *dwp_file,
12348 uint32_t unit_index,
12349 const char *comp_dir,
12350 ULONGEST signature, int is_debug_types)
12352 struct objfile *objfile = dwarf2_per_objfile->objfile;
12353 const struct dwp_hash_table *dwp_htab =
12354 is_debug_types ? dwp_file->tus : dwp_file->cus;
12355 bfd *dbfd = dwp_file->dbfd.get ();
12356 const char *kind = is_debug_types ? "TU" : "CU";
12357 struct dwo_file *dwo_file;
12358 struct dwo_unit *dwo_unit;
12359 struct virtual_v1_dwo_sections sections;
12360 void **dwo_file_slot;
12361 int i;
12363 gdb_assert (dwp_file->version == 1);
12365 if (dwarf_read_debug)
12367 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12368 kind,
12369 pulongest (unit_index), hex_string (signature),
12370 dwp_file->name);
12373 /* Fetch the sections of this DWO unit.
12374 Put a limit on the number of sections we look for so that bad data
12375 doesn't cause us to loop forever. */
12377 #define MAX_NR_V1_DWO_SECTIONS \
12378 (1 /* .debug_info or .debug_types */ \
12379 + 1 /* .debug_abbrev */ \
12380 + 1 /* .debug_line */ \
12381 + 1 /* .debug_loc */ \
12382 + 1 /* .debug_str_offsets */ \
12383 + 1 /* .debug_macro or .debug_macinfo */ \
12384 + 1 /* trailing zero */)
12386 memset (&sections, 0, sizeof (sections));
12388 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12390 asection *sectp;
12391 uint32_t section_nr =
12392 read_4_bytes (dbfd,
12393 dwp_htab->section_pool.v1.indices
12394 + (unit_index + i) * sizeof (uint32_t));
12396 if (section_nr == 0)
12397 break;
12398 if (section_nr >= dwp_file->num_sections)
12400 error (_("Dwarf Error: bad DWP hash table, section number too large"
12401 " [in module %s]"),
12402 dwp_file->name);
12405 sectp = dwp_file->elf_sections[section_nr];
12406 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12408 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12409 " [in module %s]"),
12410 dwp_file->name);
12414 if (i < 2
12415 || dwarf2_section_empty_p (&sections.info_or_types)
12416 || dwarf2_section_empty_p (&sections.abbrev))
12418 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12419 " [in module %s]"),
12420 dwp_file->name);
12422 if (i == MAX_NR_V1_DWO_SECTIONS)
12424 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12425 " [in module %s]"),
12426 dwp_file->name);
12429 /* It's easier for the rest of the code if we fake a struct dwo_file and
12430 have dwo_unit "live" in that. At least for now.
12432 The DWP file can be made up of a random collection of CUs and TUs.
12433 However, for each CU + set of TUs that came from the same original DWO
12434 file, we can combine them back into a virtual DWO file to save space
12435 (fewer struct dwo_file objects to allocate). Remember that for really
12436 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12438 std::string virtual_dwo_name =
12439 string_printf ("virtual-dwo/%d-%d-%d-%d",
12440 get_section_id (&sections.abbrev),
12441 get_section_id (&sections.line),
12442 get_section_id (&sections.loc),
12443 get_section_id (&sections.str_offsets));
12444 /* Can we use an existing virtual DWO file? */
12445 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12446 virtual_dwo_name.c_str (),
12447 comp_dir);
12448 /* Create one if necessary. */
12449 if (*dwo_file_slot == NULL)
12451 if (dwarf_read_debug)
12453 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12454 virtual_dwo_name.c_str ());
12456 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12457 dwo_file->dwo_name
12458 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12459 virtual_dwo_name.c_str (),
12460 virtual_dwo_name.size ());
12461 dwo_file->comp_dir = comp_dir;
12462 dwo_file->sections.abbrev = sections.abbrev;
12463 dwo_file->sections.line = sections.line;
12464 dwo_file->sections.loc = sections.loc;
12465 dwo_file->sections.macinfo = sections.macinfo;
12466 dwo_file->sections.macro = sections.macro;
12467 dwo_file->sections.str_offsets = sections.str_offsets;
12468 /* The "str" section is global to the entire DWP file. */
12469 dwo_file->sections.str = dwp_file->sections.str;
12470 /* The info or types section is assigned below to dwo_unit,
12471 there's no need to record it in dwo_file.
12472 Also, we can't simply record type sections in dwo_file because
12473 we record a pointer into the vector in dwo_unit. As we collect more
12474 types we'll grow the vector and eventually have to reallocate space
12475 for it, invalidating all copies of pointers into the previous
12476 contents. */
12477 *dwo_file_slot = dwo_file;
12479 else
12481 if (dwarf_read_debug)
12483 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12484 virtual_dwo_name.c_str ());
12486 dwo_file = (struct dwo_file *) *dwo_file_slot;
12489 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12490 dwo_unit->dwo_file = dwo_file;
12491 dwo_unit->signature = signature;
12492 dwo_unit->section =
12493 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12494 *dwo_unit->section = sections.info_or_types;
12495 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12497 return dwo_unit;
12500 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12501 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12502 piece within that section used by a TU/CU, return a virtual section
12503 of just that piece. */
12505 static struct dwarf2_section_info
12506 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12507 struct dwarf2_section_info *section,
12508 bfd_size_type offset, bfd_size_type size)
12510 struct dwarf2_section_info result;
12511 asection *sectp;
12513 gdb_assert (section != NULL);
12514 gdb_assert (!section->is_virtual);
12516 memset (&result, 0, sizeof (result));
12517 result.s.containing_section = section;
12518 result.is_virtual = 1;
12520 if (size == 0)
12521 return result;
12523 sectp = get_section_bfd_section (section);
12525 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12526 bounds of the real section. This is a pretty-rare event, so just
12527 flag an error (easier) instead of a warning and trying to cope. */
12528 if (sectp == NULL
12529 || offset + size > bfd_get_section_size (sectp))
12531 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12532 " in section %s [in module %s]"),
12533 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12534 objfile_name (dwarf2_per_objfile->objfile));
12537 result.virtual_offset = offset;
12538 result.size = size;
12539 return result;
12542 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12543 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12544 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12545 This is for DWP version 2 files. */
12547 static struct dwo_unit *
12548 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12549 struct dwp_file *dwp_file,
12550 uint32_t unit_index,
12551 const char *comp_dir,
12552 ULONGEST signature, int is_debug_types)
12554 struct objfile *objfile = dwarf2_per_objfile->objfile;
12555 const struct dwp_hash_table *dwp_htab =
12556 is_debug_types ? dwp_file->tus : dwp_file->cus;
12557 bfd *dbfd = dwp_file->dbfd.get ();
12558 const char *kind = is_debug_types ? "TU" : "CU";
12559 struct dwo_file *dwo_file;
12560 struct dwo_unit *dwo_unit;
12561 struct virtual_v2_dwo_sections sections;
12562 void **dwo_file_slot;
12563 int i;
12565 gdb_assert (dwp_file->version == 2);
12567 if (dwarf_read_debug)
12569 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12570 kind,
12571 pulongest (unit_index), hex_string (signature),
12572 dwp_file->name);
12575 /* Fetch the section offsets of this DWO unit. */
12577 memset (&sections, 0, sizeof (sections));
12579 for (i = 0; i < dwp_htab->nr_columns; ++i)
12581 uint32_t offset = read_4_bytes (dbfd,
12582 dwp_htab->section_pool.v2.offsets
12583 + (((unit_index - 1) * dwp_htab->nr_columns
12584 + i)
12585 * sizeof (uint32_t)));
12586 uint32_t size = read_4_bytes (dbfd,
12587 dwp_htab->section_pool.v2.sizes
12588 + (((unit_index - 1) * dwp_htab->nr_columns
12589 + i)
12590 * sizeof (uint32_t)));
12592 switch (dwp_htab->section_pool.v2.section_ids[i])
12594 case DW_SECT_INFO:
12595 case DW_SECT_TYPES:
12596 sections.info_or_types_offset = offset;
12597 sections.info_or_types_size = size;
12598 break;
12599 case DW_SECT_ABBREV:
12600 sections.abbrev_offset = offset;
12601 sections.abbrev_size = size;
12602 break;
12603 case DW_SECT_LINE:
12604 sections.line_offset = offset;
12605 sections.line_size = size;
12606 break;
12607 case DW_SECT_LOC:
12608 sections.loc_offset = offset;
12609 sections.loc_size = size;
12610 break;
12611 case DW_SECT_STR_OFFSETS:
12612 sections.str_offsets_offset = offset;
12613 sections.str_offsets_size = size;
12614 break;
12615 case DW_SECT_MACINFO:
12616 sections.macinfo_offset = offset;
12617 sections.macinfo_size = size;
12618 break;
12619 case DW_SECT_MACRO:
12620 sections.macro_offset = offset;
12621 sections.macro_size = size;
12622 break;
12626 /* It's easier for the rest of the code if we fake a struct dwo_file and
12627 have dwo_unit "live" in that. At least for now.
12629 The DWP file can be made up of a random collection of CUs and TUs.
12630 However, for each CU + set of TUs that came from the same original DWO
12631 file, we can combine them back into a virtual DWO file to save space
12632 (fewer struct dwo_file objects to allocate). Remember that for really
12633 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12635 std::string virtual_dwo_name =
12636 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12637 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12638 (long) (sections.line_size ? sections.line_offset : 0),
12639 (long) (sections.loc_size ? sections.loc_offset : 0),
12640 (long) (sections.str_offsets_size
12641 ? sections.str_offsets_offset : 0));
12642 /* Can we use an existing virtual DWO file? */
12643 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12644 virtual_dwo_name.c_str (),
12645 comp_dir);
12646 /* Create one if necessary. */
12647 if (*dwo_file_slot == NULL)
12649 if (dwarf_read_debug)
12651 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12652 virtual_dwo_name.c_str ());
12654 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12655 dwo_file->dwo_name
12656 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12657 virtual_dwo_name.c_str (),
12658 virtual_dwo_name.size ());
12659 dwo_file->comp_dir = comp_dir;
12660 dwo_file->sections.abbrev =
12661 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12662 sections.abbrev_offset, sections.abbrev_size);
12663 dwo_file->sections.line =
12664 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12665 sections.line_offset, sections.line_size);
12666 dwo_file->sections.loc =
12667 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12668 sections.loc_offset, sections.loc_size);
12669 dwo_file->sections.macinfo =
12670 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12671 sections.macinfo_offset, sections.macinfo_size);
12672 dwo_file->sections.macro =
12673 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12674 sections.macro_offset, sections.macro_size);
12675 dwo_file->sections.str_offsets =
12676 create_dwp_v2_section (dwarf2_per_objfile,
12677 &dwp_file->sections.str_offsets,
12678 sections.str_offsets_offset,
12679 sections.str_offsets_size);
12680 /* The "str" section is global to the entire DWP file. */
12681 dwo_file->sections.str = dwp_file->sections.str;
12682 /* The info or types section is assigned below to dwo_unit,
12683 there's no need to record it in dwo_file.
12684 Also, we can't simply record type sections in dwo_file because
12685 we record a pointer into the vector in dwo_unit. As we collect more
12686 types we'll grow the vector and eventually have to reallocate space
12687 for it, invalidating all copies of pointers into the previous
12688 contents. */
12689 *dwo_file_slot = dwo_file;
12691 else
12693 if (dwarf_read_debug)
12695 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12696 virtual_dwo_name.c_str ());
12698 dwo_file = (struct dwo_file *) *dwo_file_slot;
12701 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12702 dwo_unit->dwo_file = dwo_file;
12703 dwo_unit->signature = signature;
12704 dwo_unit->section =
12705 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12706 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12707 is_debug_types
12708 ? &dwp_file->sections.types
12709 : &dwp_file->sections.info,
12710 sections.info_or_types_offset,
12711 sections.info_or_types_size);
12712 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12714 return dwo_unit;
12717 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12718 Returns NULL if the signature isn't found. */
12720 static struct dwo_unit *
12721 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12722 struct dwp_file *dwp_file, const char *comp_dir,
12723 ULONGEST signature, int is_debug_types)
12725 const struct dwp_hash_table *dwp_htab =
12726 is_debug_types ? dwp_file->tus : dwp_file->cus;
12727 bfd *dbfd = dwp_file->dbfd.get ();
12728 uint32_t mask = dwp_htab->nr_slots - 1;
12729 uint32_t hash = signature & mask;
12730 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12731 unsigned int i;
12732 void **slot;
12733 struct dwo_unit find_dwo_cu;
12735 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12736 find_dwo_cu.signature = signature;
12737 slot = htab_find_slot (is_debug_types
12738 ? dwp_file->loaded_tus
12739 : dwp_file->loaded_cus,
12740 &find_dwo_cu, INSERT);
12742 if (*slot != NULL)
12743 return (struct dwo_unit *) *slot;
12745 /* Use a for loop so that we don't loop forever on bad debug info. */
12746 for (i = 0; i < dwp_htab->nr_slots; ++i)
12748 ULONGEST signature_in_table;
12750 signature_in_table =
12751 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12752 if (signature_in_table == signature)
12754 uint32_t unit_index =
12755 read_4_bytes (dbfd,
12756 dwp_htab->unit_table + hash * sizeof (uint32_t));
12758 if (dwp_file->version == 1)
12760 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12761 dwp_file, unit_index,
12762 comp_dir, signature,
12763 is_debug_types);
12765 else
12767 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12768 dwp_file, unit_index,
12769 comp_dir, signature,
12770 is_debug_types);
12772 return (struct dwo_unit *) *slot;
12774 if (signature_in_table == 0)
12775 return NULL;
12776 hash = (hash + hash2) & mask;
12779 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12780 " [in module %s]"),
12781 dwp_file->name);
12784 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12785 Open the file specified by FILE_NAME and hand it off to BFD for
12786 preliminary analysis. Return a newly initialized bfd *, which
12787 includes a canonicalized copy of FILE_NAME.
12788 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12789 SEARCH_CWD is true if the current directory is to be searched.
12790 It will be searched before debug-file-directory.
12791 If successful, the file is added to the bfd include table of the
12792 objfile's bfd (see gdb_bfd_record_inclusion).
12793 If unable to find/open the file, return NULL.
12794 NOTE: This function is derived from symfile_bfd_open. */
12796 static gdb_bfd_ref_ptr
12797 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12798 const char *file_name, int is_dwp, int search_cwd)
12800 int desc;
12801 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12802 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12803 to debug_file_directory. */
12804 const char *search_path;
12805 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12807 gdb::unique_xmalloc_ptr<char> search_path_holder;
12808 if (search_cwd)
12810 if (*debug_file_directory != '\0')
12812 search_path_holder.reset (concat (".", dirname_separator_string,
12813 debug_file_directory,
12814 (char *) NULL));
12815 search_path = search_path_holder.get ();
12817 else
12818 search_path = ".";
12820 else
12821 search_path = debug_file_directory;
12823 openp_flags flags = OPF_RETURN_REALPATH;
12824 if (is_dwp)
12825 flags |= OPF_SEARCH_IN_PATH;
12827 gdb::unique_xmalloc_ptr<char> absolute_name;
12828 desc = openp (search_path, flags, file_name,
12829 O_RDONLY | O_BINARY, &absolute_name);
12830 if (desc < 0)
12831 return NULL;
12833 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12834 gnutarget, desc));
12835 if (sym_bfd == NULL)
12836 return NULL;
12837 bfd_set_cacheable (sym_bfd.get (), 1);
12839 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12840 return NULL;
12842 /* Success. Record the bfd as having been included by the objfile's bfd.
12843 This is important because things like demangled_names_hash lives in the
12844 objfile's per_bfd space and may have references to things like symbol
12845 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12846 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12848 return sym_bfd;
12851 /* Try to open DWO file FILE_NAME.
12852 COMP_DIR is the DW_AT_comp_dir attribute.
12853 The result is the bfd handle of the file.
12854 If there is a problem finding or opening the file, return NULL.
12855 Upon success, the canonicalized path of the file is stored in the bfd,
12856 same as symfile_bfd_open. */
12858 static gdb_bfd_ref_ptr
12859 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12860 const char *file_name, const char *comp_dir)
12862 if (IS_ABSOLUTE_PATH (file_name))
12863 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12864 0 /*is_dwp*/, 0 /*search_cwd*/);
12866 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12868 if (comp_dir != NULL)
12870 char *path_to_try = concat (comp_dir, SLASH_STRING,
12871 file_name, (char *) NULL);
12873 /* NOTE: If comp_dir is a relative path, this will also try the
12874 search path, which seems useful. */
12875 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12876 path_to_try,
12877 0 /*is_dwp*/,
12878 1 /*search_cwd*/));
12879 xfree (path_to_try);
12880 if (abfd != NULL)
12881 return abfd;
12884 /* That didn't work, try debug-file-directory, which, despite its name,
12885 is a list of paths. */
12887 if (*debug_file_directory == '\0')
12888 return NULL;
12890 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12891 0 /*is_dwp*/, 1 /*search_cwd*/);
12894 /* This function is mapped across the sections and remembers the offset and
12895 size of each of the DWO debugging sections we are interested in. */
12897 static void
12898 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12900 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12901 const struct dwop_section_names *names = &dwop_section_names;
12903 if (section_is_p (sectp->name, &names->abbrev_dwo))
12905 dwo_sections->abbrev.s.section = sectp;
12906 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12908 else if (section_is_p (sectp->name, &names->info_dwo))
12910 dwo_sections->info.s.section = sectp;
12911 dwo_sections->info.size = bfd_get_section_size (sectp);
12913 else if (section_is_p (sectp->name, &names->line_dwo))
12915 dwo_sections->line.s.section = sectp;
12916 dwo_sections->line.size = bfd_get_section_size (sectp);
12918 else if (section_is_p (sectp->name, &names->loc_dwo))
12920 dwo_sections->loc.s.section = sectp;
12921 dwo_sections->loc.size = bfd_get_section_size (sectp);
12923 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12925 dwo_sections->macinfo.s.section = sectp;
12926 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12928 else if (section_is_p (sectp->name, &names->macro_dwo))
12930 dwo_sections->macro.s.section = sectp;
12931 dwo_sections->macro.size = bfd_get_section_size (sectp);
12933 else if (section_is_p (sectp->name, &names->str_dwo))
12935 dwo_sections->str.s.section = sectp;
12936 dwo_sections->str.size = bfd_get_section_size (sectp);
12938 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12940 dwo_sections->str_offsets.s.section = sectp;
12941 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12943 else if (section_is_p (sectp->name, &names->types_dwo))
12945 struct dwarf2_section_info type_section;
12947 memset (&type_section, 0, sizeof (type_section));
12948 type_section.s.section = sectp;
12949 type_section.size = bfd_get_section_size (sectp);
12950 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12951 &type_section);
12955 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12956 by PER_CU. This is for the non-DWP case.
12957 The result is NULL if DWO_NAME can't be found. */
12959 static struct dwo_file *
12960 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12961 const char *dwo_name, const char *comp_dir)
12963 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12964 struct objfile *objfile = dwarf2_per_objfile->objfile;
12966 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12967 if (dbfd == NULL)
12969 if (dwarf_read_debug)
12970 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12971 return NULL;
12974 /* We use a unique pointer here, despite the obstack allocation,
12975 because a dwo_file needs some cleanup if it is abandoned. */
12976 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12977 struct dwo_file));
12978 dwo_file->dwo_name = dwo_name;
12979 dwo_file->comp_dir = comp_dir;
12980 dwo_file->dbfd = dbfd.release ();
12982 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12983 &dwo_file->sections);
12985 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12986 dwo_file->cus);
12988 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12989 dwo_file->sections.types, dwo_file->tus);
12991 if (dwarf_read_debug)
12992 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12994 return dwo_file.release ();
12997 /* This function is mapped across the sections and remembers the offset and
12998 size of each of the DWP debugging sections common to version 1 and 2 that
12999 we are interested in. */
13001 static void
13002 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13003 void *dwp_file_ptr)
13005 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13006 const struct dwop_section_names *names = &dwop_section_names;
13007 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13009 /* Record the ELF section number for later lookup: this is what the
13010 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13011 gdb_assert (elf_section_nr < dwp_file->num_sections);
13012 dwp_file->elf_sections[elf_section_nr] = sectp;
13014 /* Look for specific sections that we need. */
13015 if (section_is_p (sectp->name, &names->str_dwo))
13017 dwp_file->sections.str.s.section = sectp;
13018 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13020 else if (section_is_p (sectp->name, &names->cu_index))
13022 dwp_file->sections.cu_index.s.section = sectp;
13023 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13025 else if (section_is_p (sectp->name, &names->tu_index))
13027 dwp_file->sections.tu_index.s.section = sectp;
13028 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13032 /* This function is mapped across the sections and remembers the offset and
13033 size of each of the DWP version 2 debugging sections that we are interested
13034 in. This is split into a separate function because we don't know if we
13035 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13037 static void
13038 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13040 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13041 const struct dwop_section_names *names = &dwop_section_names;
13042 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13044 /* Record the ELF section number for later lookup: this is what the
13045 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13046 gdb_assert (elf_section_nr < dwp_file->num_sections);
13047 dwp_file->elf_sections[elf_section_nr] = sectp;
13049 /* Look for specific sections that we need. */
13050 if (section_is_p (sectp->name, &names->abbrev_dwo))
13052 dwp_file->sections.abbrev.s.section = sectp;
13053 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13055 else if (section_is_p (sectp->name, &names->info_dwo))
13057 dwp_file->sections.info.s.section = sectp;
13058 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13060 else if (section_is_p (sectp->name, &names->line_dwo))
13062 dwp_file->sections.line.s.section = sectp;
13063 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13065 else if (section_is_p (sectp->name, &names->loc_dwo))
13067 dwp_file->sections.loc.s.section = sectp;
13068 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13070 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13072 dwp_file->sections.macinfo.s.section = sectp;
13073 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13075 else if (section_is_p (sectp->name, &names->macro_dwo))
13077 dwp_file->sections.macro.s.section = sectp;
13078 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13080 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13082 dwp_file->sections.str_offsets.s.section = sectp;
13083 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13085 else if (section_is_p (sectp->name, &names->types_dwo))
13087 dwp_file->sections.types.s.section = sectp;
13088 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13092 /* Hash function for dwp_file loaded CUs/TUs. */
13094 static hashval_t
13095 hash_dwp_loaded_cutus (const void *item)
13097 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13099 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13100 return dwo_unit->signature;
13103 /* Equality function for dwp_file loaded CUs/TUs. */
13105 static int
13106 eq_dwp_loaded_cutus (const void *a, const void *b)
13108 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13109 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13111 return dua->signature == dub->signature;
13114 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13116 static htab_t
13117 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13119 return htab_create_alloc_ex (3,
13120 hash_dwp_loaded_cutus,
13121 eq_dwp_loaded_cutus,
13122 NULL,
13123 &objfile->objfile_obstack,
13124 hashtab_obstack_allocate,
13125 dummy_obstack_deallocate);
13128 /* Try to open DWP file FILE_NAME.
13129 The result is the bfd handle of the file.
13130 If there is a problem finding or opening the file, return NULL.
13131 Upon success, the canonicalized path of the file is stored in the bfd,
13132 same as symfile_bfd_open. */
13134 static gdb_bfd_ref_ptr
13135 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13136 const char *file_name)
13138 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13139 1 /*is_dwp*/,
13140 1 /*search_cwd*/));
13141 if (abfd != NULL)
13142 return abfd;
13144 /* Work around upstream bug 15652.
13145 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13146 [Whether that's a "bug" is debatable, but it is getting in our way.]
13147 We have no real idea where the dwp file is, because gdb's realpath-ing
13148 of the executable's path may have discarded the needed info.
13149 [IWBN if the dwp file name was recorded in the executable, akin to
13150 .gnu_debuglink, but that doesn't exist yet.]
13151 Strip the directory from FILE_NAME and search again. */
13152 if (*debug_file_directory != '\0')
13154 /* Don't implicitly search the current directory here.
13155 If the user wants to search "." to handle this case,
13156 it must be added to debug-file-directory. */
13157 return try_open_dwop_file (dwarf2_per_objfile,
13158 lbasename (file_name), 1 /*is_dwp*/,
13159 0 /*search_cwd*/);
13162 return NULL;
13165 /* Initialize the use of the DWP file for the current objfile.
13166 By convention the name of the DWP file is ${objfile}.dwp.
13167 The result is NULL if it can't be found. */
13169 static std::unique_ptr<struct dwp_file>
13170 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13172 struct objfile *objfile = dwarf2_per_objfile->objfile;
13174 /* Try to find first .dwp for the binary file before any symbolic links
13175 resolving. */
13177 /* If the objfile is a debug file, find the name of the real binary
13178 file and get the name of dwp file from there. */
13179 std::string dwp_name;
13180 if (objfile->separate_debug_objfile_backlink != NULL)
13182 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13183 const char *backlink_basename = lbasename (backlink->original_name);
13185 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13187 else
13188 dwp_name = objfile->original_name;
13190 dwp_name += ".dwp";
13192 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13193 if (dbfd == NULL
13194 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13196 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13197 dwp_name = objfile_name (objfile);
13198 dwp_name += ".dwp";
13199 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13202 if (dbfd == NULL)
13204 if (dwarf_read_debug)
13205 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13206 return std::unique_ptr<dwp_file> ();
13209 const char *name = bfd_get_filename (dbfd.get ());
13210 std::unique_ptr<struct dwp_file> dwp_file
13211 (new struct dwp_file (name, std::move (dbfd)));
13213 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13214 dwp_file->elf_sections =
13215 OBSTACK_CALLOC (&objfile->objfile_obstack,
13216 dwp_file->num_sections, asection *);
13218 bfd_map_over_sections (dwp_file->dbfd.get (),
13219 dwarf2_locate_common_dwp_sections,
13220 dwp_file.get ());
13222 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13225 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13228 /* The DWP file version is stored in the hash table. Oh well. */
13229 if (dwp_file->cus && dwp_file->tus
13230 && dwp_file->cus->version != dwp_file->tus->version)
13232 /* Technically speaking, we should try to limp along, but this is
13233 pretty bizarre. We use pulongest here because that's the established
13234 portability solution (e.g, we cannot use %u for uint32_t). */
13235 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13236 " TU version %s [in DWP file %s]"),
13237 pulongest (dwp_file->cus->version),
13238 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13241 if (dwp_file->cus)
13242 dwp_file->version = dwp_file->cus->version;
13243 else if (dwp_file->tus)
13244 dwp_file->version = dwp_file->tus->version;
13245 else
13246 dwp_file->version = 2;
13248 if (dwp_file->version == 2)
13249 bfd_map_over_sections (dwp_file->dbfd.get (),
13250 dwarf2_locate_v2_dwp_sections,
13251 dwp_file.get ());
13253 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13254 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13256 if (dwarf_read_debug)
13258 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13259 fprintf_unfiltered (gdb_stdlog,
13260 " %s CUs, %s TUs\n",
13261 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13262 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13265 return dwp_file;
13268 /* Wrapper around open_and_init_dwp_file, only open it once. */
13270 static struct dwp_file *
13271 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13273 if (! dwarf2_per_objfile->dwp_checked)
13275 dwarf2_per_objfile->dwp_file
13276 = open_and_init_dwp_file (dwarf2_per_objfile);
13277 dwarf2_per_objfile->dwp_checked = 1;
13279 return dwarf2_per_objfile->dwp_file.get ();
13282 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13283 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13284 or in the DWP file for the objfile, referenced by THIS_UNIT.
13285 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13286 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13288 This is called, for example, when wanting to read a variable with a
13289 complex location. Therefore we don't want to do file i/o for every call.
13290 Therefore we don't want to look for a DWO file on every call.
13291 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13292 then we check if we've already seen DWO_NAME, and only THEN do we check
13293 for a DWO file.
13295 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13296 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13298 static struct dwo_unit *
13299 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13300 const char *dwo_name, const char *comp_dir,
13301 ULONGEST signature, int is_debug_types)
13303 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13304 struct objfile *objfile = dwarf2_per_objfile->objfile;
13305 const char *kind = is_debug_types ? "TU" : "CU";
13306 void **dwo_file_slot;
13307 struct dwo_file *dwo_file;
13308 struct dwp_file *dwp_file;
13310 /* First see if there's a DWP file.
13311 If we have a DWP file but didn't find the DWO inside it, don't
13312 look for the original DWO file. It makes gdb behave differently
13313 depending on whether one is debugging in the build tree. */
13315 dwp_file = get_dwp_file (dwarf2_per_objfile);
13316 if (dwp_file != NULL)
13318 const struct dwp_hash_table *dwp_htab =
13319 is_debug_types ? dwp_file->tus : dwp_file->cus;
13321 if (dwp_htab != NULL)
13323 struct dwo_unit *dwo_cutu =
13324 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13325 signature, is_debug_types);
13327 if (dwo_cutu != NULL)
13329 if (dwarf_read_debug)
13331 fprintf_unfiltered (gdb_stdlog,
13332 "Virtual DWO %s %s found: @%s\n",
13333 kind, hex_string (signature),
13334 host_address_to_string (dwo_cutu));
13336 return dwo_cutu;
13340 else
13342 /* No DWP file, look for the DWO file. */
13344 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13345 dwo_name, comp_dir);
13346 if (*dwo_file_slot == NULL)
13348 /* Read in the file and build a table of the CUs/TUs it contains. */
13349 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13351 /* NOTE: This will be NULL if unable to open the file. */
13352 dwo_file = (struct dwo_file *) *dwo_file_slot;
13354 if (dwo_file != NULL)
13356 struct dwo_unit *dwo_cutu = NULL;
13358 if (is_debug_types && dwo_file->tus)
13360 struct dwo_unit find_dwo_cutu;
13362 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13363 find_dwo_cutu.signature = signature;
13364 dwo_cutu
13365 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13367 else if (!is_debug_types && dwo_file->cus)
13369 struct dwo_unit find_dwo_cutu;
13371 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13372 find_dwo_cutu.signature = signature;
13373 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13374 &find_dwo_cutu);
13377 if (dwo_cutu != NULL)
13379 if (dwarf_read_debug)
13381 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13382 kind, dwo_name, hex_string (signature),
13383 host_address_to_string (dwo_cutu));
13385 return dwo_cutu;
13390 /* We didn't find it. This could mean a dwo_id mismatch, or
13391 someone deleted the DWO/DWP file, or the search path isn't set up
13392 correctly to find the file. */
13394 if (dwarf_read_debug)
13396 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13397 kind, dwo_name, hex_string (signature));
13400 /* This is a warning and not a complaint because it can be caused by
13401 pilot error (e.g., user accidentally deleting the DWO). */
13403 /* Print the name of the DWP file if we looked there, helps the user
13404 better diagnose the problem. */
13405 std::string dwp_text;
13407 if (dwp_file != NULL)
13408 dwp_text = string_printf (" [in DWP file %s]",
13409 lbasename (dwp_file->name));
13411 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13412 " [in module %s]"),
13413 kind, dwo_name, hex_string (signature),
13414 dwp_text.c_str (),
13415 this_unit->is_debug_types ? "TU" : "CU",
13416 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13418 return NULL;
13421 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13422 See lookup_dwo_cutu_unit for details. */
13424 static struct dwo_unit *
13425 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13426 const char *dwo_name, const char *comp_dir,
13427 ULONGEST signature)
13429 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13432 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13433 See lookup_dwo_cutu_unit for details. */
13435 static struct dwo_unit *
13436 lookup_dwo_type_unit (struct signatured_type *this_tu,
13437 const char *dwo_name, const char *comp_dir)
13439 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13442 /* Traversal function for queue_and_load_all_dwo_tus. */
13444 static int
13445 queue_and_load_dwo_tu (void **slot, void *info)
13447 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13448 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13449 ULONGEST signature = dwo_unit->signature;
13450 struct signatured_type *sig_type =
13451 lookup_dwo_signatured_type (per_cu->cu, signature);
13453 if (sig_type != NULL)
13455 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13457 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13458 a real dependency of PER_CU on SIG_TYPE. That is detected later
13459 while processing PER_CU. */
13460 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13461 load_full_type_unit (sig_cu);
13462 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13465 return 1;
13468 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13469 The DWO may have the only definition of the type, though it may not be
13470 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13471 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13473 static void
13474 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13476 struct dwo_unit *dwo_unit;
13477 struct dwo_file *dwo_file;
13479 gdb_assert (!per_cu->is_debug_types);
13480 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13481 gdb_assert (per_cu->cu != NULL);
13483 dwo_unit = per_cu->cu->dwo_unit;
13484 gdb_assert (dwo_unit != NULL);
13486 dwo_file = dwo_unit->dwo_file;
13487 if (dwo_file->tus != NULL)
13488 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13491 /* Free all resources associated with DWO_FILE.
13492 Close the DWO file and munmap the sections. */
13494 static void
13495 free_dwo_file (struct dwo_file *dwo_file)
13497 /* Note: dbfd is NULL for virtual DWO files. */
13498 gdb_bfd_unref (dwo_file->dbfd);
13500 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13503 /* Traversal function for free_dwo_files. */
13505 static int
13506 free_dwo_file_from_slot (void **slot, void *info)
13508 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13510 free_dwo_file (dwo_file);
13512 return 1;
13515 /* Free all resources associated with DWO_FILES. */
13517 static void
13518 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13520 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13523 /* Read in various DIEs. */
13525 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13526 Inherit only the children of the DW_AT_abstract_origin DIE not being
13527 already referenced by DW_AT_abstract_origin from the children of the
13528 current DIE. */
13530 static void
13531 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13533 struct die_info *child_die;
13534 sect_offset *offsetp;
13535 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13536 struct die_info *origin_die;
13537 /* Iterator of the ORIGIN_DIE children. */
13538 struct die_info *origin_child_die;
13539 struct attribute *attr;
13540 struct dwarf2_cu *origin_cu;
13541 struct pending **origin_previous_list_in_scope;
13543 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13544 if (!attr)
13545 return;
13547 /* Note that following die references may follow to a die in a
13548 different cu. */
13550 origin_cu = cu;
13551 origin_die = follow_die_ref (die, attr, &origin_cu);
13553 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13554 symbols in. */
13555 origin_previous_list_in_scope = origin_cu->list_in_scope;
13556 origin_cu->list_in_scope = cu->list_in_scope;
13558 if (die->tag != origin_die->tag
13559 && !(die->tag == DW_TAG_inlined_subroutine
13560 && origin_die->tag == DW_TAG_subprogram))
13561 complaint (_("DIE %s and its abstract origin %s have different tags"),
13562 sect_offset_str (die->sect_off),
13563 sect_offset_str (origin_die->sect_off));
13565 std::vector<sect_offset> offsets;
13567 for (child_die = die->child;
13568 child_die && child_die->tag;
13569 child_die = sibling_die (child_die))
13571 struct die_info *child_origin_die;
13572 struct dwarf2_cu *child_origin_cu;
13574 /* We are trying to process concrete instance entries:
13575 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13576 it's not relevant to our analysis here. i.e. detecting DIEs that are
13577 present in the abstract instance but not referenced in the concrete
13578 one. */
13579 if (child_die->tag == DW_TAG_call_site
13580 || child_die->tag == DW_TAG_GNU_call_site)
13581 continue;
13583 /* For each CHILD_DIE, find the corresponding child of
13584 ORIGIN_DIE. If there is more than one layer of
13585 DW_AT_abstract_origin, follow them all; there shouldn't be,
13586 but GCC versions at least through 4.4 generate this (GCC PR
13587 40573). */
13588 child_origin_die = child_die;
13589 child_origin_cu = cu;
13590 while (1)
13592 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13593 child_origin_cu);
13594 if (attr == NULL)
13595 break;
13596 child_origin_die = follow_die_ref (child_origin_die, attr,
13597 &child_origin_cu);
13600 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13601 counterpart may exist. */
13602 if (child_origin_die != child_die)
13604 if (child_die->tag != child_origin_die->tag
13605 && !(child_die->tag == DW_TAG_inlined_subroutine
13606 && child_origin_die->tag == DW_TAG_subprogram))
13607 complaint (_("Child DIE %s and its abstract origin %s have "
13608 "different tags"),
13609 sect_offset_str (child_die->sect_off),
13610 sect_offset_str (child_origin_die->sect_off));
13611 if (child_origin_die->parent != origin_die)
13612 complaint (_("Child DIE %s and its abstract origin %s have "
13613 "different parents"),
13614 sect_offset_str (child_die->sect_off),
13615 sect_offset_str (child_origin_die->sect_off));
13616 else
13617 offsets.push_back (child_origin_die->sect_off);
13620 std::sort (offsets.begin (), offsets.end ());
13621 sect_offset *offsets_end = offsets.data () + offsets.size ();
13622 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13623 if (offsetp[-1] == *offsetp)
13624 complaint (_("Multiple children of DIE %s refer "
13625 "to DIE %s as their abstract origin"),
13626 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13628 offsetp = offsets.data ();
13629 origin_child_die = origin_die->child;
13630 while (origin_child_die && origin_child_die->tag)
13632 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13633 while (offsetp < offsets_end
13634 && *offsetp < origin_child_die->sect_off)
13635 offsetp++;
13636 if (offsetp >= offsets_end
13637 || *offsetp > origin_child_die->sect_off)
13639 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13640 Check whether we're already processing ORIGIN_CHILD_DIE.
13641 This can happen with mutually referenced abstract_origins.
13642 PR 16581. */
13643 if (!origin_child_die->in_process)
13644 process_die (origin_child_die, origin_cu);
13646 origin_child_die = sibling_die (origin_child_die);
13648 origin_cu->list_in_scope = origin_previous_list_in_scope;
13651 static void
13652 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13654 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13655 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13656 struct context_stack *newobj;
13657 CORE_ADDR lowpc;
13658 CORE_ADDR highpc;
13659 struct die_info *child_die;
13660 struct attribute *attr, *call_line, *call_file;
13661 const char *name;
13662 CORE_ADDR baseaddr;
13663 struct block *block;
13664 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13665 std::vector<struct symbol *> template_args;
13666 struct template_symbol *templ_func = NULL;
13668 if (inlined_func)
13670 /* If we do not have call site information, we can't show the
13671 caller of this inlined function. That's too confusing, so
13672 only use the scope for local variables. */
13673 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13674 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13675 if (call_line == NULL || call_file == NULL)
13677 read_lexical_block_scope (die, cu);
13678 return;
13682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13684 name = dwarf2_name (die, cu);
13686 /* Ignore functions with missing or empty names. These are actually
13687 illegal according to the DWARF standard. */
13688 if (name == NULL)
13690 complaint (_("missing name for subprogram DIE at %s"),
13691 sect_offset_str (die->sect_off));
13692 return;
13695 /* Ignore functions with missing or invalid low and high pc attributes. */
13696 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13697 <= PC_BOUNDS_INVALID)
13699 attr = dwarf2_attr (die, DW_AT_external, cu);
13700 if (!attr || !DW_UNSND (attr))
13701 complaint (_("cannot get low and high bounds "
13702 "for subprogram DIE at %s"),
13703 sect_offset_str (die->sect_off));
13704 return;
13707 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13708 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13710 /* If we have any template arguments, then we must allocate a
13711 different sort of symbol. */
13712 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13714 if (child_die->tag == DW_TAG_template_type_param
13715 || child_die->tag == DW_TAG_template_value_param)
13717 templ_func = allocate_template_symbol (objfile);
13718 templ_func->subclass = SYMBOL_TEMPLATE;
13719 break;
13723 newobj = cu->get_builder ()->push_context (0, lowpc);
13724 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13725 (struct symbol *) templ_func);
13727 /* If there is a location expression for DW_AT_frame_base, record
13728 it. */
13729 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13730 if (attr)
13731 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13733 /* If there is a location for the static link, record it. */
13734 newobj->static_link = NULL;
13735 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13736 if (attr)
13738 newobj->static_link
13739 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13740 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13743 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13745 if (die->child != NULL)
13747 child_die = die->child;
13748 while (child_die && child_die->tag)
13750 if (child_die->tag == DW_TAG_template_type_param
13751 || child_die->tag == DW_TAG_template_value_param)
13753 struct symbol *arg = new_symbol (child_die, NULL, cu);
13755 if (arg != NULL)
13756 template_args.push_back (arg);
13758 else
13759 process_die (child_die, cu);
13760 child_die = sibling_die (child_die);
13764 inherit_abstract_dies (die, cu);
13766 /* If we have a DW_AT_specification, we might need to import using
13767 directives from the context of the specification DIE. See the
13768 comment in determine_prefix. */
13769 if (cu->language == language_cplus
13770 && dwarf2_attr (die, DW_AT_specification, cu))
13772 struct dwarf2_cu *spec_cu = cu;
13773 struct die_info *spec_die = die_specification (die, &spec_cu);
13775 while (spec_die)
13777 child_die = spec_die->child;
13778 while (child_die && child_die->tag)
13780 if (child_die->tag == DW_TAG_imported_module)
13781 process_die (child_die, spec_cu);
13782 child_die = sibling_die (child_die);
13785 /* In some cases, GCC generates specification DIEs that
13786 themselves contain DW_AT_specification attributes. */
13787 spec_die = die_specification (spec_die, &spec_cu);
13791 struct context_stack cstk = cu->get_builder ()->pop_context ();
13792 /* Make a block for the local symbols within. */
13793 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13794 cstk.static_link, lowpc, highpc);
13796 /* For C++, set the block's scope. */
13797 if ((cu->language == language_cplus
13798 || cu->language == language_fortran
13799 || cu->language == language_d
13800 || cu->language == language_rust)
13801 && cu->processing_has_namespace_info)
13802 block_set_scope (block, determine_prefix (die, cu),
13803 &objfile->objfile_obstack);
13805 /* If we have address ranges, record them. */
13806 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13808 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13810 /* Attach template arguments to function. */
13811 if (!template_args.empty ())
13813 gdb_assert (templ_func != NULL);
13815 templ_func->n_template_arguments = template_args.size ();
13816 templ_func->template_arguments
13817 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13818 templ_func->n_template_arguments);
13819 memcpy (templ_func->template_arguments,
13820 template_args.data (),
13821 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13823 /* Make sure that the symtab is set on the new symbols. Even
13824 though they don't appear in this symtab directly, other parts
13825 of gdb assume that symbols do, and this is reasonably
13826 true. */
13827 for (symbol *sym : template_args)
13828 symbol_set_symtab (sym, symbol_symtab (templ_func));
13831 /* In C++, we can have functions nested inside functions (e.g., when
13832 a function declares a class that has methods). This means that
13833 when we finish processing a function scope, we may need to go
13834 back to building a containing block's symbol lists. */
13835 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13836 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13838 /* If we've finished processing a top-level function, subsequent
13839 symbols go in the file symbol list. */
13840 if (cu->get_builder ()->outermost_context_p ())
13841 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13844 /* Process all the DIES contained within a lexical block scope. Start
13845 a new scope, process the dies, and then close the scope. */
13847 static void
13848 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13850 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13852 CORE_ADDR lowpc, highpc;
13853 struct die_info *child_die;
13854 CORE_ADDR baseaddr;
13856 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13858 /* Ignore blocks with missing or invalid low and high pc attributes. */
13859 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13860 as multiple lexical blocks? Handling children in a sane way would
13861 be nasty. Might be easier to properly extend generic blocks to
13862 describe ranges. */
13863 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13865 case PC_BOUNDS_NOT_PRESENT:
13866 /* DW_TAG_lexical_block has no attributes, process its children as if
13867 there was no wrapping by that DW_TAG_lexical_block.
13868 GCC does no longer produces such DWARF since GCC r224161. */
13869 for (child_die = die->child;
13870 child_die != NULL && child_die->tag;
13871 child_die = sibling_die (child_die))
13872 process_die (child_die, cu);
13873 return;
13874 case PC_BOUNDS_INVALID:
13875 return;
13877 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13878 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13880 cu->get_builder ()->push_context (0, lowpc);
13881 if (die->child != NULL)
13883 child_die = die->child;
13884 while (child_die && child_die->tag)
13886 process_die (child_die, cu);
13887 child_die = sibling_die (child_die);
13890 inherit_abstract_dies (die, cu);
13891 struct context_stack cstk = cu->get_builder ()->pop_context ();
13893 if (*cu->get_builder ()->get_local_symbols () != NULL
13894 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13896 struct block *block
13897 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13898 cstk.start_addr, highpc);
13900 /* Note that recording ranges after traversing children, as we
13901 do here, means that recording a parent's ranges entails
13902 walking across all its children's ranges as they appear in
13903 the address map, which is quadratic behavior.
13905 It would be nicer to record the parent's ranges before
13906 traversing its children, simply overriding whatever you find
13907 there. But since we don't even decide whether to create a
13908 block until after we've traversed its children, that's hard
13909 to do. */
13910 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13912 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13913 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13916 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13918 static void
13919 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13922 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13923 CORE_ADDR pc, baseaddr;
13924 struct attribute *attr;
13925 struct call_site *call_site, call_site_local;
13926 void **slot;
13927 int nparams;
13928 struct die_info *child_die;
13930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13932 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13933 if (attr == NULL)
13935 /* This was a pre-DWARF-5 GNU extension alias
13936 for DW_AT_call_return_pc. */
13937 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13939 if (!attr)
13941 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13942 "DIE %s [in module %s]"),
13943 sect_offset_str (die->sect_off), objfile_name (objfile));
13944 return;
13946 pc = attr_value_as_address (attr) + baseaddr;
13947 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13949 if (cu->call_site_htab == NULL)
13950 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13951 NULL, &objfile->objfile_obstack,
13952 hashtab_obstack_allocate, NULL);
13953 call_site_local.pc = pc;
13954 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13955 if (*slot != NULL)
13957 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13958 "DIE %s [in module %s]"),
13959 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13960 objfile_name (objfile));
13961 return;
13964 /* Count parameters at the caller. */
13966 nparams = 0;
13967 for (child_die = die->child; child_die && child_die->tag;
13968 child_die = sibling_die (child_die))
13970 if (child_die->tag != DW_TAG_call_site_parameter
13971 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13973 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13974 "DW_TAG_call_site child DIE %s [in module %s]"),
13975 child_die->tag, sect_offset_str (child_die->sect_off),
13976 objfile_name (objfile));
13977 continue;
13980 nparams++;
13983 call_site
13984 = ((struct call_site *)
13985 obstack_alloc (&objfile->objfile_obstack,
13986 sizeof (*call_site)
13987 + (sizeof (*call_site->parameter) * (nparams - 1))));
13988 *slot = call_site;
13989 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13990 call_site->pc = pc;
13992 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13993 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13995 struct die_info *func_die;
13997 /* Skip also over DW_TAG_inlined_subroutine. */
13998 for (func_die = die->parent;
13999 func_die && func_die->tag != DW_TAG_subprogram
14000 && func_die->tag != DW_TAG_subroutine_type;
14001 func_die = func_die->parent);
14003 /* DW_AT_call_all_calls is a superset
14004 of DW_AT_call_all_tail_calls. */
14005 if (func_die
14006 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14007 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14008 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14009 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14011 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14012 not complete. But keep CALL_SITE for look ups via call_site_htab,
14013 both the initial caller containing the real return address PC and
14014 the final callee containing the current PC of a chain of tail
14015 calls do not need to have the tail call list complete. But any
14016 function candidate for a virtual tail call frame searched via
14017 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14018 determined unambiguously. */
14020 else
14022 struct type *func_type = NULL;
14024 if (func_die)
14025 func_type = get_die_type (func_die, cu);
14026 if (func_type != NULL)
14028 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14030 /* Enlist this call site to the function. */
14031 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14032 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14034 else
14035 complaint (_("Cannot find function owning DW_TAG_call_site "
14036 "DIE %s [in module %s]"),
14037 sect_offset_str (die->sect_off), objfile_name (objfile));
14041 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14042 if (attr == NULL)
14043 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14044 if (attr == NULL)
14045 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14046 if (attr == NULL)
14048 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14049 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14051 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14052 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14053 /* Keep NULL DWARF_BLOCK. */;
14054 else if (attr_form_is_block (attr))
14056 struct dwarf2_locexpr_baton *dlbaton;
14058 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14059 dlbaton->data = DW_BLOCK (attr)->data;
14060 dlbaton->size = DW_BLOCK (attr)->size;
14061 dlbaton->per_cu = cu->per_cu;
14063 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14065 else if (attr_form_is_ref (attr))
14067 struct dwarf2_cu *target_cu = cu;
14068 struct die_info *target_die;
14070 target_die = follow_die_ref (die, attr, &target_cu);
14071 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14072 if (die_is_declaration (target_die, target_cu))
14074 const char *target_physname;
14076 /* Prefer the mangled name; otherwise compute the demangled one. */
14077 target_physname = dw2_linkage_name (target_die, target_cu);
14078 if (target_physname == NULL)
14079 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14080 if (target_physname == NULL)
14081 complaint (_("DW_AT_call_target target DIE has invalid "
14082 "physname, for referencing DIE %s [in module %s]"),
14083 sect_offset_str (die->sect_off), objfile_name (objfile));
14084 else
14085 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14087 else
14089 CORE_ADDR lowpc;
14091 /* DW_AT_entry_pc should be preferred. */
14092 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14093 <= PC_BOUNDS_INVALID)
14094 complaint (_("DW_AT_call_target target DIE has invalid "
14095 "low pc, for referencing DIE %s [in module %s]"),
14096 sect_offset_str (die->sect_off), objfile_name (objfile));
14097 else
14099 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14100 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14104 else
14105 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14106 "block nor reference, for DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
14109 call_site->per_cu = cu->per_cu;
14111 for (child_die = die->child;
14112 child_die && child_die->tag;
14113 child_die = sibling_die (child_die))
14115 struct call_site_parameter *parameter;
14116 struct attribute *loc, *origin;
14118 if (child_die->tag != DW_TAG_call_site_parameter
14119 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14121 /* Already printed the complaint above. */
14122 continue;
14125 gdb_assert (call_site->parameter_count < nparams);
14126 parameter = &call_site->parameter[call_site->parameter_count];
14128 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14129 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14130 register is contained in DW_AT_call_value. */
14132 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14133 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14134 if (origin == NULL)
14136 /* This was a pre-DWARF-5 GNU extension alias
14137 for DW_AT_call_parameter. */
14138 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14140 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14142 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14144 sect_offset sect_off
14145 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14146 if (!offset_in_cu_p (&cu->header, sect_off))
14148 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14149 binding can be done only inside one CU. Such referenced DIE
14150 therefore cannot be even moved to DW_TAG_partial_unit. */
14151 complaint (_("DW_AT_call_parameter offset is not in CU for "
14152 "DW_TAG_call_site child DIE %s [in module %s]"),
14153 sect_offset_str (child_die->sect_off),
14154 objfile_name (objfile));
14155 continue;
14157 parameter->u.param_cu_off
14158 = (cu_offset) (sect_off - cu->header.sect_off);
14160 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14162 complaint (_("No DW_FORM_block* DW_AT_location for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14165 continue;
14167 else
14169 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14170 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14171 if (parameter->u.dwarf_reg != -1)
14172 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14173 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14174 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14175 &parameter->u.fb_offset))
14176 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14177 else
14179 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14180 "for DW_FORM_block* DW_AT_location is supported for "
14181 "DW_TAG_call_site child DIE %s "
14182 "[in module %s]"),
14183 sect_offset_str (child_die->sect_off),
14184 objfile_name (objfile));
14185 continue;
14189 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14190 if (attr == NULL)
14191 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14192 if (!attr_form_is_block (attr))
14194 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14195 "DW_TAG_call_site child DIE %s [in module %s]"),
14196 sect_offset_str (child_die->sect_off),
14197 objfile_name (objfile));
14198 continue;
14200 parameter->value = DW_BLOCK (attr)->data;
14201 parameter->value_size = DW_BLOCK (attr)->size;
14203 /* Parameters are not pre-cleared by memset above. */
14204 parameter->data_value = NULL;
14205 parameter->data_value_size = 0;
14206 call_site->parameter_count++;
14208 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14209 if (attr == NULL)
14210 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14211 if (attr)
14213 if (!attr_form_is_block (attr))
14214 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14215 "DW_TAG_call_site child DIE %s [in module %s]"),
14216 sect_offset_str (child_die->sect_off),
14217 objfile_name (objfile));
14218 else
14220 parameter->data_value = DW_BLOCK (attr)->data;
14221 parameter->data_value_size = DW_BLOCK (attr)->size;
14227 /* Helper function for read_variable. If DIE represents a virtual
14228 table, then return the type of the concrete object that is
14229 associated with the virtual table. Otherwise, return NULL. */
14231 static struct type *
14232 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14234 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14235 if (attr == NULL)
14236 return NULL;
14238 /* Find the type DIE. */
14239 struct die_info *type_die = NULL;
14240 struct dwarf2_cu *type_cu = cu;
14242 if (attr_form_is_ref (attr))
14243 type_die = follow_die_ref (die, attr, &type_cu);
14244 if (type_die == NULL)
14245 return NULL;
14247 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14248 return NULL;
14249 return die_containing_type (type_die, type_cu);
14252 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14254 static void
14255 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14257 struct rust_vtable_symbol *storage = NULL;
14259 if (cu->language == language_rust)
14261 struct type *containing_type = rust_containing_type (die, cu);
14263 if (containing_type != NULL)
14265 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14267 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14268 struct rust_vtable_symbol);
14269 initialize_objfile_symbol (storage);
14270 storage->concrete_type = containing_type;
14271 storage->subclass = SYMBOL_RUST_VTABLE;
14275 struct symbol *res = new_symbol (die, NULL, cu, storage);
14276 struct attribute *abstract_origin
14277 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14278 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14279 if (res == NULL && loc && abstract_origin)
14281 /* We have a variable without a name, but with a location and an abstract
14282 origin. This may be a concrete instance of an abstract variable
14283 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14284 later. */
14285 struct dwarf2_cu *origin_cu = cu;
14286 struct die_info *origin_die
14287 = follow_die_ref (die, abstract_origin, &origin_cu);
14288 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14289 dpo->abstract_to_concrete[origin_die].push_back (die);
14293 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14294 reading .debug_rnglists.
14295 Callback's type should be:
14296 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14297 Return true if the attributes are present and valid, otherwise,
14298 return false. */
14300 template <typename Callback>
14301 static bool
14302 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14303 Callback &&callback)
14305 struct dwarf2_per_objfile *dwarf2_per_objfile
14306 = cu->per_cu->dwarf2_per_objfile;
14307 struct objfile *objfile = dwarf2_per_objfile->objfile;
14308 bfd *obfd = objfile->obfd;
14309 /* Base address selection entry. */
14310 CORE_ADDR base;
14311 int found_base;
14312 const gdb_byte *buffer;
14313 CORE_ADDR baseaddr;
14314 bool overflow = false;
14316 found_base = cu->base_known;
14317 base = cu->base_address;
14319 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14320 if (offset >= dwarf2_per_objfile->rnglists.size)
14322 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14323 offset);
14324 return false;
14326 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14328 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14330 while (1)
14332 /* Initialize it due to a false compiler warning. */
14333 CORE_ADDR range_beginning = 0, range_end = 0;
14334 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14335 + dwarf2_per_objfile->rnglists.size);
14336 unsigned int bytes_read;
14338 if (buffer == buf_end)
14340 overflow = true;
14341 break;
14343 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14344 switch (rlet)
14346 case DW_RLE_end_of_list:
14347 break;
14348 case DW_RLE_base_address:
14349 if (buffer + cu->header.addr_size > buf_end)
14351 overflow = true;
14352 break;
14354 base = read_address (obfd, buffer, cu, &bytes_read);
14355 found_base = 1;
14356 buffer += bytes_read;
14357 break;
14358 case DW_RLE_start_length:
14359 if (buffer + cu->header.addr_size > buf_end)
14361 overflow = true;
14362 break;
14364 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14365 buffer += bytes_read;
14366 range_end = (range_beginning
14367 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14368 buffer += bytes_read;
14369 if (buffer > buf_end)
14371 overflow = true;
14372 break;
14374 break;
14375 case DW_RLE_offset_pair:
14376 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14377 buffer += bytes_read;
14378 if (buffer > buf_end)
14380 overflow = true;
14381 break;
14383 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14384 buffer += bytes_read;
14385 if (buffer > buf_end)
14387 overflow = true;
14388 break;
14390 break;
14391 case DW_RLE_start_end:
14392 if (buffer + 2 * cu->header.addr_size > buf_end)
14394 overflow = true;
14395 break;
14397 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14398 buffer += bytes_read;
14399 range_end = read_address (obfd, buffer, cu, &bytes_read);
14400 buffer += bytes_read;
14401 break;
14402 default:
14403 complaint (_("Invalid .debug_rnglists data (no base address)"));
14404 return false;
14406 if (rlet == DW_RLE_end_of_list || overflow)
14407 break;
14408 if (rlet == DW_RLE_base_address)
14409 continue;
14411 if (!found_base)
14413 /* We have no valid base address for the ranges
14414 data. */
14415 complaint (_("Invalid .debug_rnglists data (no base address)"));
14416 return false;
14419 if (range_beginning > range_end)
14421 /* Inverted range entries are invalid. */
14422 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14423 return false;
14426 /* Empty range entries have no effect. */
14427 if (range_beginning == range_end)
14428 continue;
14430 range_beginning += base;
14431 range_end += base;
14433 /* A not-uncommon case of bad debug info.
14434 Don't pollute the addrmap with bad data. */
14435 if (range_beginning + baseaddr == 0
14436 && !dwarf2_per_objfile->has_section_at_zero)
14438 complaint (_(".debug_rnglists entry has start address of zero"
14439 " [in module %s]"), objfile_name (objfile));
14440 continue;
14443 callback (range_beginning, range_end);
14446 if (overflow)
14448 complaint (_("Offset %d is not terminated "
14449 "for DW_AT_ranges attribute"),
14450 offset);
14451 return false;
14454 return true;
14457 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14458 Callback's type should be:
14459 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14460 Return 1 if the attributes are present and valid, otherwise, return 0. */
14462 template <typename Callback>
14463 static int
14464 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14465 Callback &&callback)
14467 struct dwarf2_per_objfile *dwarf2_per_objfile
14468 = cu->per_cu->dwarf2_per_objfile;
14469 struct objfile *objfile = dwarf2_per_objfile->objfile;
14470 struct comp_unit_head *cu_header = &cu->header;
14471 bfd *obfd = objfile->obfd;
14472 unsigned int addr_size = cu_header->addr_size;
14473 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14474 /* Base address selection entry. */
14475 CORE_ADDR base;
14476 int found_base;
14477 unsigned int dummy;
14478 const gdb_byte *buffer;
14479 CORE_ADDR baseaddr;
14481 if (cu_header->version >= 5)
14482 return dwarf2_rnglists_process (offset, cu, callback);
14484 found_base = cu->base_known;
14485 base = cu->base_address;
14487 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14488 if (offset >= dwarf2_per_objfile->ranges.size)
14490 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14491 offset);
14492 return 0;
14494 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14496 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14498 while (1)
14500 CORE_ADDR range_beginning, range_end;
14502 range_beginning = read_address (obfd, buffer, cu, &dummy);
14503 buffer += addr_size;
14504 range_end = read_address (obfd, buffer, cu, &dummy);
14505 buffer += addr_size;
14506 offset += 2 * addr_size;
14508 /* An end of list marker is a pair of zero addresses. */
14509 if (range_beginning == 0 && range_end == 0)
14510 /* Found the end of list entry. */
14511 break;
14513 /* Each base address selection entry is a pair of 2 values.
14514 The first is the largest possible address, the second is
14515 the base address. Check for a base address here. */
14516 if ((range_beginning & mask) == mask)
14518 /* If we found the largest possible address, then we already
14519 have the base address in range_end. */
14520 base = range_end;
14521 found_base = 1;
14522 continue;
14525 if (!found_base)
14527 /* We have no valid base address for the ranges
14528 data. */
14529 complaint (_("Invalid .debug_ranges data (no base address)"));
14530 return 0;
14533 if (range_beginning > range_end)
14535 /* Inverted range entries are invalid. */
14536 complaint (_("Invalid .debug_ranges data (inverted range)"));
14537 return 0;
14540 /* Empty range entries have no effect. */
14541 if (range_beginning == range_end)
14542 continue;
14544 range_beginning += base;
14545 range_end += base;
14547 /* A not-uncommon case of bad debug info.
14548 Don't pollute the addrmap with bad data. */
14549 if (range_beginning + baseaddr == 0
14550 && !dwarf2_per_objfile->has_section_at_zero)
14552 complaint (_(".debug_ranges entry has start address of zero"
14553 " [in module %s]"), objfile_name (objfile));
14554 continue;
14557 callback (range_beginning, range_end);
14560 return 1;
14563 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14564 Return 1 if the attributes are present and valid, otherwise, return 0.
14565 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14567 static int
14568 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14569 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14570 struct partial_symtab *ranges_pst)
14572 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14573 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14574 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14575 SECT_OFF_TEXT (objfile));
14576 int low_set = 0;
14577 CORE_ADDR low = 0;
14578 CORE_ADDR high = 0;
14579 int retval;
14581 retval = dwarf2_ranges_process (offset, cu,
14582 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14584 if (ranges_pst != NULL)
14586 CORE_ADDR lowpc;
14587 CORE_ADDR highpc;
14589 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14590 range_beginning + baseaddr)
14591 - baseaddr);
14592 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14593 range_end + baseaddr)
14594 - baseaddr);
14595 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14596 lowpc, highpc - 1, ranges_pst);
14599 /* FIXME: This is recording everything as a low-high
14600 segment of consecutive addresses. We should have a
14601 data structure for discontiguous block ranges
14602 instead. */
14603 if (! low_set)
14605 low = range_beginning;
14606 high = range_end;
14607 low_set = 1;
14609 else
14611 if (range_beginning < low)
14612 low = range_beginning;
14613 if (range_end > high)
14614 high = range_end;
14617 if (!retval)
14618 return 0;
14620 if (! low_set)
14621 /* If the first entry is an end-of-list marker, the range
14622 describes an empty scope, i.e. no instructions. */
14623 return 0;
14625 if (low_return)
14626 *low_return = low;
14627 if (high_return)
14628 *high_return = high;
14629 return 1;
14632 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14633 definition for the return value. *LOWPC and *HIGHPC are set iff
14634 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14636 static enum pc_bounds_kind
14637 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14638 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14639 struct partial_symtab *pst)
14641 struct dwarf2_per_objfile *dwarf2_per_objfile
14642 = cu->per_cu->dwarf2_per_objfile;
14643 struct attribute *attr;
14644 struct attribute *attr_high;
14645 CORE_ADDR low = 0;
14646 CORE_ADDR high = 0;
14647 enum pc_bounds_kind ret;
14649 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14650 if (attr_high)
14652 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14653 if (attr)
14655 low = attr_value_as_address (attr);
14656 high = attr_value_as_address (attr_high);
14657 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14658 high += low;
14660 else
14661 /* Found high w/o low attribute. */
14662 return PC_BOUNDS_INVALID;
14664 /* Found consecutive range of addresses. */
14665 ret = PC_BOUNDS_HIGH_LOW;
14667 else
14669 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14670 if (attr != NULL)
14672 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14673 We take advantage of the fact that DW_AT_ranges does not appear
14674 in DW_TAG_compile_unit of DWO files. */
14675 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14676 unsigned int ranges_offset = (DW_UNSND (attr)
14677 + (need_ranges_base
14678 ? cu->ranges_base
14679 : 0));
14681 /* Value of the DW_AT_ranges attribute is the offset in the
14682 .debug_ranges section. */
14683 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14684 return PC_BOUNDS_INVALID;
14685 /* Found discontinuous range of addresses. */
14686 ret = PC_BOUNDS_RANGES;
14688 else
14689 return PC_BOUNDS_NOT_PRESENT;
14692 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14693 if (high <= low)
14694 return PC_BOUNDS_INVALID;
14696 /* When using the GNU linker, .gnu.linkonce. sections are used to
14697 eliminate duplicate copies of functions and vtables and such.
14698 The linker will arbitrarily choose one and discard the others.
14699 The AT_*_pc values for such functions refer to local labels in
14700 these sections. If the section from that file was discarded, the
14701 labels are not in the output, so the relocs get a value of 0.
14702 If this is a discarded function, mark the pc bounds as invalid,
14703 so that GDB will ignore it. */
14704 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14705 return PC_BOUNDS_INVALID;
14707 *lowpc = low;
14708 if (highpc)
14709 *highpc = high;
14710 return ret;
14713 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14714 its low and high PC addresses. Do nothing if these addresses could not
14715 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14716 and HIGHPC to the high address if greater than HIGHPC. */
14718 static void
14719 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14720 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14721 struct dwarf2_cu *cu)
14723 CORE_ADDR low, high;
14724 struct die_info *child = die->child;
14726 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14728 *lowpc = std::min (*lowpc, low);
14729 *highpc = std::max (*highpc, high);
14732 /* If the language does not allow nested subprograms (either inside
14733 subprograms or lexical blocks), we're done. */
14734 if (cu->language != language_ada)
14735 return;
14737 /* Check all the children of the given DIE. If it contains nested
14738 subprograms, then check their pc bounds. Likewise, we need to
14739 check lexical blocks as well, as they may also contain subprogram
14740 definitions. */
14741 while (child && child->tag)
14743 if (child->tag == DW_TAG_subprogram
14744 || child->tag == DW_TAG_lexical_block)
14745 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14746 child = sibling_die (child);
14750 /* Get the low and high pc's represented by the scope DIE, and store
14751 them in *LOWPC and *HIGHPC. If the correct values can't be
14752 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14754 static void
14755 get_scope_pc_bounds (struct die_info *die,
14756 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14757 struct dwarf2_cu *cu)
14759 CORE_ADDR best_low = (CORE_ADDR) -1;
14760 CORE_ADDR best_high = (CORE_ADDR) 0;
14761 CORE_ADDR current_low, current_high;
14763 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14764 >= PC_BOUNDS_RANGES)
14766 best_low = current_low;
14767 best_high = current_high;
14769 else
14771 struct die_info *child = die->child;
14773 while (child && child->tag)
14775 switch (child->tag) {
14776 case DW_TAG_subprogram:
14777 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14778 break;
14779 case DW_TAG_namespace:
14780 case DW_TAG_module:
14781 /* FIXME: carlton/2004-01-16: Should we do this for
14782 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14783 that current GCC's always emit the DIEs corresponding
14784 to definitions of methods of classes as children of a
14785 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14786 the DIEs giving the declarations, which could be
14787 anywhere). But I don't see any reason why the
14788 standards says that they have to be there. */
14789 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14791 if (current_low != ((CORE_ADDR) -1))
14793 best_low = std::min (best_low, current_low);
14794 best_high = std::max (best_high, current_high);
14796 break;
14797 default:
14798 /* Ignore. */
14799 break;
14802 child = sibling_die (child);
14806 *lowpc = best_low;
14807 *highpc = best_high;
14810 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14811 in DIE. */
14813 static void
14814 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14815 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14817 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14819 struct attribute *attr;
14820 struct attribute *attr_high;
14822 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14823 if (attr_high)
14825 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14826 if (attr)
14828 CORE_ADDR low = attr_value_as_address (attr);
14829 CORE_ADDR high = attr_value_as_address (attr_high);
14831 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14832 high += low;
14834 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14835 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14836 cu->get_builder ()->record_block_range (block, low, high - 1);
14840 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14841 if (attr)
14843 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14844 We take advantage of the fact that DW_AT_ranges does not appear
14845 in DW_TAG_compile_unit of DWO files. */
14846 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14848 /* The value of the DW_AT_ranges attribute is the offset of the
14849 address range list in the .debug_ranges section. */
14850 unsigned long offset = (DW_UNSND (attr)
14851 + (need_ranges_base ? cu->ranges_base : 0));
14853 std::vector<blockrange> blockvec;
14854 dwarf2_ranges_process (offset, cu,
14855 [&] (CORE_ADDR start, CORE_ADDR end)
14857 start += baseaddr;
14858 end += baseaddr;
14859 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14860 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14861 cu->get_builder ()->record_block_range (block, start, end - 1);
14862 blockvec.emplace_back (start, end);
14865 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14869 /* Check whether the producer field indicates either of GCC < 4.6, or the
14870 Intel C/C++ compiler, and cache the result in CU. */
14872 static void
14873 check_producer (struct dwarf2_cu *cu)
14875 int major, minor;
14877 if (cu->producer == NULL)
14879 /* For unknown compilers expect their behavior is DWARF version
14880 compliant.
14882 GCC started to support .debug_types sections by -gdwarf-4 since
14883 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14884 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14885 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14886 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14888 else if (producer_is_gcc (cu->producer, &major, &minor))
14890 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14891 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14893 else if (producer_is_icc (cu->producer, &major, &minor))
14895 cu->producer_is_icc = true;
14896 cu->producer_is_icc_lt_14 = major < 14;
14898 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14899 cu->producer_is_codewarrior = true;
14900 else
14902 /* For other non-GCC compilers, expect their behavior is DWARF version
14903 compliant. */
14906 cu->checked_producer = true;
14909 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14910 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14911 during 4.6.0 experimental. */
14913 static bool
14914 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14916 if (!cu->checked_producer)
14917 check_producer (cu);
14919 return cu->producer_is_gxx_lt_4_6;
14923 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14924 with incorrect is_stmt attributes. */
14926 static bool
14927 producer_is_codewarrior (struct dwarf2_cu *cu)
14929 if (!cu->checked_producer)
14930 check_producer (cu);
14932 return cu->producer_is_codewarrior;
14935 /* Return the default accessibility type if it is not overriden by
14936 DW_AT_accessibility. */
14938 static enum dwarf_access_attribute
14939 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14941 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14943 /* The default DWARF 2 accessibility for members is public, the default
14944 accessibility for inheritance is private. */
14946 if (die->tag != DW_TAG_inheritance)
14947 return DW_ACCESS_public;
14948 else
14949 return DW_ACCESS_private;
14951 else
14953 /* DWARF 3+ defines the default accessibility a different way. The same
14954 rules apply now for DW_TAG_inheritance as for the members and it only
14955 depends on the container kind. */
14957 if (die->parent->tag == DW_TAG_class_type)
14958 return DW_ACCESS_private;
14959 else
14960 return DW_ACCESS_public;
14964 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14965 offset. If the attribute was not found return 0, otherwise return
14966 1. If it was found but could not properly be handled, set *OFFSET
14967 to 0. */
14969 static int
14970 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14971 LONGEST *offset)
14973 struct attribute *attr;
14975 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14976 if (attr != NULL)
14978 *offset = 0;
14980 /* Note that we do not check for a section offset first here.
14981 This is because DW_AT_data_member_location is new in DWARF 4,
14982 so if we see it, we can assume that a constant form is really
14983 a constant and not a section offset. */
14984 if (attr_form_is_constant (attr))
14985 *offset = dwarf2_get_attr_constant_value (attr, 0);
14986 else if (attr_form_is_section_offset (attr))
14987 dwarf2_complex_location_expr_complaint ();
14988 else if (attr_form_is_block (attr))
14989 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14990 else
14991 dwarf2_complex_location_expr_complaint ();
14993 return 1;
14996 return 0;
14999 /* Add an aggregate field to the field list. */
15001 static void
15002 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15003 struct dwarf2_cu *cu)
15005 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15006 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15007 struct nextfield *new_field;
15008 struct attribute *attr;
15009 struct field *fp;
15010 const char *fieldname = "";
15012 if (die->tag == DW_TAG_inheritance)
15014 fip->baseclasses.emplace_back ();
15015 new_field = &fip->baseclasses.back ();
15017 else
15019 fip->fields.emplace_back ();
15020 new_field = &fip->fields.back ();
15023 fip->nfields++;
15025 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15026 if (attr)
15027 new_field->accessibility = DW_UNSND (attr);
15028 else
15029 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15030 if (new_field->accessibility != DW_ACCESS_public)
15031 fip->non_public_fields = 1;
15033 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15034 if (attr)
15035 new_field->virtuality = DW_UNSND (attr);
15036 else
15037 new_field->virtuality = DW_VIRTUALITY_none;
15039 fp = &new_field->field;
15041 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15043 LONGEST offset;
15045 /* Data member other than a C++ static data member. */
15047 /* Get type of field. */
15048 fp->type = die_type (die, cu);
15050 SET_FIELD_BITPOS (*fp, 0);
15052 /* Get bit size of field (zero if none). */
15053 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15054 if (attr)
15056 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15058 else
15060 FIELD_BITSIZE (*fp) = 0;
15063 /* Get bit offset of field. */
15064 if (handle_data_member_location (die, cu, &offset))
15065 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15066 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15067 if (attr)
15069 if (gdbarch_bits_big_endian (gdbarch))
15071 /* For big endian bits, the DW_AT_bit_offset gives the
15072 additional bit offset from the MSB of the containing
15073 anonymous object to the MSB of the field. We don't
15074 have to do anything special since we don't need to
15075 know the size of the anonymous object. */
15076 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15078 else
15080 /* For little endian bits, compute the bit offset to the
15081 MSB of the anonymous object, subtract off the number of
15082 bits from the MSB of the field to the MSB of the
15083 object, and then subtract off the number of bits of
15084 the field itself. The result is the bit offset of
15085 the LSB of the field. */
15086 int anonymous_size;
15087 int bit_offset = DW_UNSND (attr);
15089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15090 if (attr)
15092 /* The size of the anonymous object containing
15093 the bit field is explicit, so use the
15094 indicated size (in bytes). */
15095 anonymous_size = DW_UNSND (attr);
15097 else
15099 /* The size of the anonymous object containing
15100 the bit field must be inferred from the type
15101 attribute of the data member containing the
15102 bit field. */
15103 anonymous_size = TYPE_LENGTH (fp->type);
15105 SET_FIELD_BITPOS (*fp,
15106 (FIELD_BITPOS (*fp)
15107 + anonymous_size * bits_per_byte
15108 - bit_offset - FIELD_BITSIZE (*fp)));
15111 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15112 if (attr != NULL)
15113 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15114 + dwarf2_get_attr_constant_value (attr, 0)));
15116 /* Get name of field. */
15117 fieldname = dwarf2_name (die, cu);
15118 if (fieldname == NULL)
15119 fieldname = "";
15121 /* The name is already allocated along with this objfile, so we don't
15122 need to duplicate it for the type. */
15123 fp->name = fieldname;
15125 /* Change accessibility for artificial fields (e.g. virtual table
15126 pointer or virtual base class pointer) to private. */
15127 if (dwarf2_attr (die, DW_AT_artificial, cu))
15129 FIELD_ARTIFICIAL (*fp) = 1;
15130 new_field->accessibility = DW_ACCESS_private;
15131 fip->non_public_fields = 1;
15134 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15136 /* C++ static member. */
15138 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15139 is a declaration, but all versions of G++ as of this writing
15140 (so through at least 3.2.1) incorrectly generate
15141 DW_TAG_variable tags. */
15143 const char *physname;
15145 /* Get name of field. */
15146 fieldname = dwarf2_name (die, cu);
15147 if (fieldname == NULL)
15148 return;
15150 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15151 if (attr
15152 /* Only create a symbol if this is an external value.
15153 new_symbol checks this and puts the value in the global symbol
15154 table, which we want. If it is not external, new_symbol
15155 will try to put the value in cu->list_in_scope which is wrong. */
15156 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15158 /* A static const member, not much different than an enum as far as
15159 we're concerned, except that we can support more types. */
15160 new_symbol (die, NULL, cu);
15163 /* Get physical name. */
15164 physname = dwarf2_physname (fieldname, die, cu);
15166 /* The name is already allocated along with this objfile, so we don't
15167 need to duplicate it for the type. */
15168 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15169 FIELD_TYPE (*fp) = die_type (die, cu);
15170 FIELD_NAME (*fp) = fieldname;
15172 else if (die->tag == DW_TAG_inheritance)
15174 LONGEST offset;
15176 /* C++ base class field. */
15177 if (handle_data_member_location (die, cu, &offset))
15178 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15179 FIELD_BITSIZE (*fp) = 0;
15180 FIELD_TYPE (*fp) = die_type (die, cu);
15181 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15183 else if (die->tag == DW_TAG_variant_part)
15185 /* process_structure_scope will treat this DIE as a union. */
15186 process_structure_scope (die, cu);
15188 /* The variant part is relative to the start of the enclosing
15189 structure. */
15190 SET_FIELD_BITPOS (*fp, 0);
15191 fp->type = get_die_type (die, cu);
15192 fp->artificial = 1;
15193 fp->name = "<<variant>>";
15195 /* Normally a DW_TAG_variant_part won't have a size, but our
15196 representation requires one, so set it to the maximum of the
15197 child sizes. */
15198 if (TYPE_LENGTH (fp->type) == 0)
15200 unsigned max = 0;
15201 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15202 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15203 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15204 TYPE_LENGTH (fp->type) = max;
15207 else
15208 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15211 /* Can the type given by DIE define another type? */
15213 static bool
15214 type_can_define_types (const struct die_info *die)
15216 switch (die->tag)
15218 case DW_TAG_typedef:
15219 case DW_TAG_class_type:
15220 case DW_TAG_structure_type:
15221 case DW_TAG_union_type:
15222 case DW_TAG_enumeration_type:
15223 return true;
15225 default:
15226 return false;
15230 /* Add a type definition defined in the scope of the FIP's class. */
15232 static void
15233 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15234 struct dwarf2_cu *cu)
15236 struct decl_field fp;
15237 memset (&fp, 0, sizeof (fp));
15239 gdb_assert (type_can_define_types (die));
15241 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15242 fp.name = dwarf2_name (die, cu);
15243 fp.type = read_type_die (die, cu);
15245 /* Save accessibility. */
15246 enum dwarf_access_attribute accessibility;
15247 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15248 if (attr != NULL)
15249 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15250 else
15251 accessibility = dwarf2_default_access_attribute (die, cu);
15252 switch (accessibility)
15254 case DW_ACCESS_public:
15255 /* The assumed value if neither private nor protected. */
15256 break;
15257 case DW_ACCESS_private:
15258 fp.is_private = 1;
15259 break;
15260 case DW_ACCESS_protected:
15261 fp.is_protected = 1;
15262 break;
15263 default:
15264 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15267 if (die->tag == DW_TAG_typedef)
15268 fip->typedef_field_list.push_back (fp);
15269 else
15270 fip->nested_types_list.push_back (fp);
15273 /* Create the vector of fields, and attach it to the type. */
15275 static void
15276 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15277 struct dwarf2_cu *cu)
15279 int nfields = fip->nfields;
15281 /* Record the field count, allocate space for the array of fields,
15282 and create blank accessibility bitfields if necessary. */
15283 TYPE_NFIELDS (type) = nfields;
15284 TYPE_FIELDS (type) = (struct field *)
15285 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15287 if (fip->non_public_fields && cu->language != language_ada)
15289 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15291 TYPE_FIELD_PRIVATE_BITS (type) =
15292 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15293 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15295 TYPE_FIELD_PROTECTED_BITS (type) =
15296 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15297 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15299 TYPE_FIELD_IGNORE_BITS (type) =
15300 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15301 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15304 /* If the type has baseclasses, allocate and clear a bit vector for
15305 TYPE_FIELD_VIRTUAL_BITS. */
15306 if (!fip->baseclasses.empty () && cu->language != language_ada)
15308 int num_bytes = B_BYTES (fip->baseclasses.size ());
15309 unsigned char *pointer;
15311 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15312 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15313 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15314 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15315 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15318 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15320 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15322 for (int index = 0; index < nfields; ++index)
15324 struct nextfield &field = fip->fields[index];
15326 if (field.variant.is_discriminant)
15327 di->discriminant_index = index;
15328 else if (field.variant.default_branch)
15329 di->default_index = index;
15330 else
15331 di->discriminants[index] = field.variant.discriminant_value;
15335 /* Copy the saved-up fields into the field vector. */
15336 for (int i = 0; i < nfields; ++i)
15338 struct nextfield &field
15339 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15340 : fip->fields[i - fip->baseclasses.size ()]);
15342 TYPE_FIELD (type, i) = field.field;
15343 switch (field.accessibility)
15345 case DW_ACCESS_private:
15346 if (cu->language != language_ada)
15347 SET_TYPE_FIELD_PRIVATE (type, i);
15348 break;
15350 case DW_ACCESS_protected:
15351 if (cu->language != language_ada)
15352 SET_TYPE_FIELD_PROTECTED (type, i);
15353 break;
15355 case DW_ACCESS_public:
15356 break;
15358 default:
15359 /* Unknown accessibility. Complain and treat it as public. */
15361 complaint (_("unsupported accessibility %d"),
15362 field.accessibility);
15364 break;
15366 if (i < fip->baseclasses.size ())
15368 switch (field.virtuality)
15370 case DW_VIRTUALITY_virtual:
15371 case DW_VIRTUALITY_pure_virtual:
15372 if (cu->language == language_ada)
15373 error (_("unexpected virtuality in component of Ada type"));
15374 SET_TYPE_FIELD_VIRTUAL (type, i);
15375 break;
15381 /* Return true if this member function is a constructor, false
15382 otherwise. */
15384 static int
15385 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15387 const char *fieldname;
15388 const char *type_name;
15389 int len;
15391 if (die->parent == NULL)
15392 return 0;
15394 if (die->parent->tag != DW_TAG_structure_type
15395 && die->parent->tag != DW_TAG_union_type
15396 && die->parent->tag != DW_TAG_class_type)
15397 return 0;
15399 fieldname = dwarf2_name (die, cu);
15400 type_name = dwarf2_name (die->parent, cu);
15401 if (fieldname == NULL || type_name == NULL)
15402 return 0;
15404 len = strlen (fieldname);
15405 return (strncmp (fieldname, type_name, len) == 0
15406 && (type_name[len] == '\0' || type_name[len] == '<'));
15409 /* Add a member function to the proper fieldlist. */
15411 static void
15412 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15413 struct type *type, struct dwarf2_cu *cu)
15415 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15416 struct attribute *attr;
15417 int i;
15418 struct fnfieldlist *flp = nullptr;
15419 struct fn_field *fnp;
15420 const char *fieldname;
15421 struct type *this_type;
15422 enum dwarf_access_attribute accessibility;
15424 if (cu->language == language_ada)
15425 error (_("unexpected member function in Ada type"));
15427 /* Get name of member function. */
15428 fieldname = dwarf2_name (die, cu);
15429 if (fieldname == NULL)
15430 return;
15432 /* Look up member function name in fieldlist. */
15433 for (i = 0; i < fip->fnfieldlists.size (); i++)
15435 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15437 flp = &fip->fnfieldlists[i];
15438 break;
15442 /* Create a new fnfieldlist if necessary. */
15443 if (flp == nullptr)
15445 fip->fnfieldlists.emplace_back ();
15446 flp = &fip->fnfieldlists.back ();
15447 flp->name = fieldname;
15448 i = fip->fnfieldlists.size () - 1;
15451 /* Create a new member function field and add it to the vector of
15452 fnfieldlists. */
15453 flp->fnfields.emplace_back ();
15454 fnp = &flp->fnfields.back ();
15456 /* Delay processing of the physname until later. */
15457 if (cu->language == language_cplus)
15458 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15459 die, cu);
15460 else
15462 const char *physname = dwarf2_physname (fieldname, die, cu);
15463 fnp->physname = physname ? physname : "";
15466 fnp->type = alloc_type (objfile);
15467 this_type = read_type_die (die, cu);
15468 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15470 int nparams = TYPE_NFIELDS (this_type);
15472 /* TYPE is the domain of this method, and THIS_TYPE is the type
15473 of the method itself (TYPE_CODE_METHOD). */
15474 smash_to_method_type (fnp->type, type,
15475 TYPE_TARGET_TYPE (this_type),
15476 TYPE_FIELDS (this_type),
15477 TYPE_NFIELDS (this_type),
15478 TYPE_VARARGS (this_type));
15480 /* Handle static member functions.
15481 Dwarf2 has no clean way to discern C++ static and non-static
15482 member functions. G++ helps GDB by marking the first
15483 parameter for non-static member functions (which is the this
15484 pointer) as artificial. We obtain this information from
15485 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15486 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15487 fnp->voffset = VOFFSET_STATIC;
15489 else
15490 complaint (_("member function type missing for '%s'"),
15491 dwarf2_full_name (fieldname, die, cu));
15493 /* Get fcontext from DW_AT_containing_type if present. */
15494 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15495 fnp->fcontext = die_containing_type (die, cu);
15497 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15498 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15500 /* Get accessibility. */
15501 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15502 if (attr)
15503 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15504 else
15505 accessibility = dwarf2_default_access_attribute (die, cu);
15506 switch (accessibility)
15508 case DW_ACCESS_private:
15509 fnp->is_private = 1;
15510 break;
15511 case DW_ACCESS_protected:
15512 fnp->is_protected = 1;
15513 break;
15516 /* Check for artificial methods. */
15517 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15518 if (attr && DW_UNSND (attr) != 0)
15519 fnp->is_artificial = 1;
15521 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15523 /* Get index in virtual function table if it is a virtual member
15524 function. For older versions of GCC, this is an offset in the
15525 appropriate virtual table, as specified by DW_AT_containing_type.
15526 For everyone else, it is an expression to be evaluated relative
15527 to the object address. */
15529 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15530 if (attr)
15532 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15534 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15536 /* Old-style GCC. */
15537 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15539 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15540 || (DW_BLOCK (attr)->size > 1
15541 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15542 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15544 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15545 if ((fnp->voffset % cu->header.addr_size) != 0)
15546 dwarf2_complex_location_expr_complaint ();
15547 else
15548 fnp->voffset /= cu->header.addr_size;
15549 fnp->voffset += 2;
15551 else
15552 dwarf2_complex_location_expr_complaint ();
15554 if (!fnp->fcontext)
15556 /* If there is no `this' field and no DW_AT_containing_type,
15557 we cannot actually find a base class context for the
15558 vtable! */
15559 if (TYPE_NFIELDS (this_type) == 0
15560 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15562 complaint (_("cannot determine context for virtual member "
15563 "function \"%s\" (offset %s)"),
15564 fieldname, sect_offset_str (die->sect_off));
15566 else
15568 fnp->fcontext
15569 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15573 else if (attr_form_is_section_offset (attr))
15575 dwarf2_complex_location_expr_complaint ();
15577 else
15579 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15580 fieldname);
15583 else
15585 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15586 if (attr && DW_UNSND (attr))
15588 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15589 complaint (_("Member function \"%s\" (offset %s) is virtual "
15590 "but the vtable offset is not specified"),
15591 fieldname, sect_offset_str (die->sect_off));
15592 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15593 TYPE_CPLUS_DYNAMIC (type) = 1;
15598 /* Create the vector of member function fields, and attach it to the type. */
15600 static void
15601 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15602 struct dwarf2_cu *cu)
15604 if (cu->language == language_ada)
15605 error (_("unexpected member functions in Ada type"));
15607 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15608 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15609 TYPE_ALLOC (type,
15610 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15612 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15614 struct fnfieldlist &nf = fip->fnfieldlists[i];
15615 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15617 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15618 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15619 fn_flp->fn_fields = (struct fn_field *)
15620 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15622 for (int k = 0; k < nf.fnfields.size (); ++k)
15623 fn_flp->fn_fields[k] = nf.fnfields[k];
15626 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15629 /* Returns non-zero if NAME is the name of a vtable member in CU's
15630 language, zero otherwise. */
15631 static int
15632 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15634 static const char vptr[] = "_vptr";
15636 /* Look for the C++ form of the vtable. */
15637 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15638 return 1;
15640 return 0;
15643 /* GCC outputs unnamed structures that are really pointers to member
15644 functions, with the ABI-specified layout. If TYPE describes
15645 such a structure, smash it into a member function type.
15647 GCC shouldn't do this; it should just output pointer to member DIEs.
15648 This is GCC PR debug/28767. */
15650 static void
15651 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15653 struct type *pfn_type, *self_type, *new_type;
15655 /* Check for a structure with no name and two children. */
15656 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15657 return;
15659 /* Check for __pfn and __delta members. */
15660 if (TYPE_FIELD_NAME (type, 0) == NULL
15661 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15662 || TYPE_FIELD_NAME (type, 1) == NULL
15663 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15664 return;
15666 /* Find the type of the method. */
15667 pfn_type = TYPE_FIELD_TYPE (type, 0);
15668 if (pfn_type == NULL
15669 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15670 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15671 return;
15673 /* Look for the "this" argument. */
15674 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15675 if (TYPE_NFIELDS (pfn_type) == 0
15676 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15677 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15678 return;
15680 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15681 new_type = alloc_type (objfile);
15682 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15683 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15684 TYPE_VARARGS (pfn_type));
15685 smash_to_methodptr_type (type, new_type);
15688 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15689 appropriate error checking and issuing complaints if there is a
15690 problem. */
15692 static ULONGEST
15693 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15695 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15697 if (attr == nullptr)
15698 return 0;
15700 if (!attr_form_is_constant (attr))
15702 complaint (_("DW_AT_alignment must have constant form"
15703 " - DIE at %s [in module %s]"),
15704 sect_offset_str (die->sect_off),
15705 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15706 return 0;
15709 ULONGEST align;
15710 if (attr->form == DW_FORM_sdata)
15712 LONGEST val = DW_SND (attr);
15713 if (val < 0)
15715 complaint (_("DW_AT_alignment value must not be negative"
15716 " - DIE at %s [in module %s]"),
15717 sect_offset_str (die->sect_off),
15718 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15719 return 0;
15721 align = val;
15723 else
15724 align = DW_UNSND (attr);
15726 if (align == 0)
15728 complaint (_("DW_AT_alignment value must not be zero"
15729 " - DIE at %s [in module %s]"),
15730 sect_offset_str (die->sect_off),
15731 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15732 return 0;
15734 if ((align & (align - 1)) != 0)
15736 complaint (_("DW_AT_alignment value must be a power of 2"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15740 return 0;
15743 return align;
15746 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15747 the alignment for TYPE. */
15749 static void
15750 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15751 struct type *type)
15753 if (!set_type_align (type, get_alignment (cu, die)))
15754 complaint (_("DW_AT_alignment value too large"
15755 " - DIE at %s [in module %s]"),
15756 sect_offset_str (die->sect_off),
15757 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15760 /* Called when we find the DIE that starts a structure or union scope
15761 (definition) to create a type for the structure or union. Fill in
15762 the type's name and general properties; the members will not be
15763 processed until process_structure_scope. A symbol table entry for
15764 the type will also not be done until process_structure_scope (assuming
15765 the type has a name).
15767 NOTE: we need to call these functions regardless of whether or not the
15768 DIE has a DW_AT_name attribute, since it might be an anonymous
15769 structure or union. This gets the type entered into our set of
15770 user defined types. */
15772 static struct type *
15773 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15775 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15776 struct type *type;
15777 struct attribute *attr;
15778 const char *name;
15780 /* If the definition of this type lives in .debug_types, read that type.
15781 Don't follow DW_AT_specification though, that will take us back up
15782 the chain and we want to go down. */
15783 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15784 if (attr)
15786 type = get_DW_AT_signature_type (die, attr, cu);
15788 /* The type's CU may not be the same as CU.
15789 Ensure TYPE is recorded with CU in die_type_hash. */
15790 return set_die_type (die, type, cu);
15793 type = alloc_type (objfile);
15794 INIT_CPLUS_SPECIFIC (type);
15796 name = dwarf2_name (die, cu);
15797 if (name != NULL)
15799 if (cu->language == language_cplus
15800 || cu->language == language_d
15801 || cu->language == language_rust)
15803 const char *full_name = dwarf2_full_name (name, die, cu);
15805 /* dwarf2_full_name might have already finished building the DIE's
15806 type. If so, there is no need to continue. */
15807 if (get_die_type (die, cu) != NULL)
15808 return get_die_type (die, cu);
15810 TYPE_NAME (type) = full_name;
15812 else
15814 /* The name is already allocated along with this objfile, so
15815 we don't need to duplicate it for the type. */
15816 TYPE_NAME (type) = name;
15820 if (die->tag == DW_TAG_structure_type)
15822 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15824 else if (die->tag == DW_TAG_union_type)
15826 TYPE_CODE (type) = TYPE_CODE_UNION;
15828 else if (die->tag == DW_TAG_variant_part)
15830 TYPE_CODE (type) = TYPE_CODE_UNION;
15831 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15833 else
15835 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15838 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15839 TYPE_DECLARED_CLASS (type) = 1;
15841 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15842 if (attr)
15844 if (attr_form_is_constant (attr))
15845 TYPE_LENGTH (type) = DW_UNSND (attr);
15846 else
15848 /* For the moment, dynamic type sizes are not supported
15849 by GDB's struct type. The actual size is determined
15850 on-demand when resolving the type of a given object,
15851 so set the type's length to zero for now. Otherwise,
15852 we record an expression as the length, and that expression
15853 could lead to a very large value, which could eventually
15854 lead to us trying to allocate that much memory when creating
15855 a value of that type. */
15856 TYPE_LENGTH (type) = 0;
15859 else
15861 TYPE_LENGTH (type) = 0;
15864 maybe_set_alignment (cu, die, type);
15866 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15868 /* ICC<14 does not output the required DW_AT_declaration on
15869 incomplete types, but gives them a size of zero. */
15870 TYPE_STUB (type) = 1;
15872 else
15873 TYPE_STUB_SUPPORTED (type) = 1;
15875 if (die_is_declaration (die, cu))
15876 TYPE_STUB (type) = 1;
15877 else if (attr == NULL && die->child == NULL
15878 && producer_is_realview (cu->producer))
15879 /* RealView does not output the required DW_AT_declaration
15880 on incomplete types. */
15881 TYPE_STUB (type) = 1;
15883 /* We need to add the type field to the die immediately so we don't
15884 infinitely recurse when dealing with pointers to the structure
15885 type within the structure itself. */
15886 set_die_type (die, type, cu);
15888 /* set_die_type should be already done. */
15889 set_descriptive_type (type, die, cu);
15891 return type;
15894 /* A helper for process_structure_scope that handles a single member
15895 DIE. */
15897 static void
15898 handle_struct_member_die (struct die_info *child_die, struct type *type,
15899 struct field_info *fi,
15900 std::vector<struct symbol *> *template_args,
15901 struct dwarf2_cu *cu)
15903 if (child_die->tag == DW_TAG_member
15904 || child_die->tag == DW_TAG_variable
15905 || child_die->tag == DW_TAG_variant_part)
15907 /* NOTE: carlton/2002-11-05: A C++ static data member
15908 should be a DW_TAG_member that is a declaration, but
15909 all versions of G++ as of this writing (so through at
15910 least 3.2.1) incorrectly generate DW_TAG_variable
15911 tags for them instead. */
15912 dwarf2_add_field (fi, child_die, cu);
15914 else if (child_die->tag == DW_TAG_subprogram)
15916 /* Rust doesn't have member functions in the C++ sense.
15917 However, it does emit ordinary functions as children
15918 of a struct DIE. */
15919 if (cu->language == language_rust)
15920 read_func_scope (child_die, cu);
15921 else
15923 /* C++ member function. */
15924 dwarf2_add_member_fn (fi, child_die, type, cu);
15927 else if (child_die->tag == DW_TAG_inheritance)
15929 /* C++ base class field. */
15930 dwarf2_add_field (fi, child_die, cu);
15932 else if (type_can_define_types (child_die))
15933 dwarf2_add_type_defn (fi, child_die, cu);
15934 else if (child_die->tag == DW_TAG_template_type_param
15935 || child_die->tag == DW_TAG_template_value_param)
15937 struct symbol *arg = new_symbol (child_die, NULL, cu);
15939 if (arg != NULL)
15940 template_args->push_back (arg);
15942 else if (child_die->tag == DW_TAG_variant)
15944 /* In a variant we want to get the discriminant and also add a
15945 field for our sole member child. */
15946 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15948 for (die_info *variant_child = child_die->child;
15949 variant_child != NULL;
15950 variant_child = sibling_die (variant_child))
15952 if (variant_child->tag == DW_TAG_member)
15954 handle_struct_member_die (variant_child, type, fi,
15955 template_args, cu);
15956 /* Only handle the one. */
15957 break;
15961 /* We don't handle this but we might as well report it if we see
15962 it. */
15963 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15964 complaint (_("DW_AT_discr_list is not supported yet"
15965 " - DIE at %s [in module %s]"),
15966 sect_offset_str (child_die->sect_off),
15967 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15969 /* The first field was just added, so we can stash the
15970 discriminant there. */
15971 gdb_assert (!fi->fields.empty ());
15972 if (discr == NULL)
15973 fi->fields.back ().variant.default_branch = true;
15974 else
15975 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15979 /* Finish creating a structure or union type, including filling in
15980 its members and creating a symbol for it. */
15982 static void
15983 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15985 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15986 struct die_info *child_die;
15987 struct type *type;
15989 type = get_die_type (die, cu);
15990 if (type == NULL)
15991 type = read_structure_type (die, cu);
15993 /* When reading a DW_TAG_variant_part, we need to notice when we
15994 read the discriminant member, so we can record it later in the
15995 discriminant_info. */
15996 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15997 sect_offset discr_offset;
15998 bool has_template_parameters = false;
16000 if (is_variant_part)
16002 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16003 if (discr == NULL)
16005 /* Maybe it's a univariant form, an extension we support.
16006 In this case arrange not to check the offset. */
16007 is_variant_part = false;
16009 else if (attr_form_is_ref (discr))
16011 struct dwarf2_cu *target_cu = cu;
16012 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16014 discr_offset = target_die->sect_off;
16016 else
16018 complaint (_("DW_AT_discr does not have DIE reference form"
16019 " - DIE at %s [in module %s]"),
16020 sect_offset_str (die->sect_off),
16021 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16022 is_variant_part = false;
16026 if (die->child != NULL && ! die_is_declaration (die, cu))
16028 struct field_info fi;
16029 std::vector<struct symbol *> template_args;
16031 child_die = die->child;
16033 while (child_die && child_die->tag)
16035 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16037 if (is_variant_part && discr_offset == child_die->sect_off)
16038 fi.fields.back ().variant.is_discriminant = true;
16040 child_die = sibling_die (child_die);
16043 /* Attach template arguments to type. */
16044 if (!template_args.empty ())
16046 has_template_parameters = true;
16047 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16048 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16049 TYPE_TEMPLATE_ARGUMENTS (type)
16050 = XOBNEWVEC (&objfile->objfile_obstack,
16051 struct symbol *,
16052 TYPE_N_TEMPLATE_ARGUMENTS (type));
16053 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16054 template_args.data (),
16055 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16056 * sizeof (struct symbol *)));
16059 /* Attach fields and member functions to the type. */
16060 if (fi.nfields)
16061 dwarf2_attach_fields_to_type (&fi, type, cu);
16062 if (!fi.fnfieldlists.empty ())
16064 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16066 /* Get the type which refers to the base class (possibly this
16067 class itself) which contains the vtable pointer for the current
16068 class from the DW_AT_containing_type attribute. This use of
16069 DW_AT_containing_type is a GNU extension. */
16071 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16073 struct type *t = die_containing_type (die, cu);
16075 set_type_vptr_basetype (type, t);
16076 if (type == t)
16078 int i;
16080 /* Our own class provides vtbl ptr. */
16081 for (i = TYPE_NFIELDS (t) - 1;
16082 i >= TYPE_N_BASECLASSES (t);
16083 --i)
16085 const char *fieldname = TYPE_FIELD_NAME (t, i);
16087 if (is_vtable_name (fieldname, cu))
16089 set_type_vptr_fieldno (type, i);
16090 break;
16094 /* Complain if virtual function table field not found. */
16095 if (i < TYPE_N_BASECLASSES (t))
16096 complaint (_("virtual function table pointer "
16097 "not found when defining class '%s'"),
16098 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16100 else
16102 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16105 else if (cu->producer
16106 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16108 /* The IBM XLC compiler does not provide direct indication
16109 of the containing type, but the vtable pointer is
16110 always named __vfp. */
16112 int i;
16114 for (i = TYPE_NFIELDS (type) - 1;
16115 i >= TYPE_N_BASECLASSES (type);
16116 --i)
16118 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16120 set_type_vptr_fieldno (type, i);
16121 set_type_vptr_basetype (type, type);
16122 break;
16128 /* Copy fi.typedef_field_list linked list elements content into the
16129 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16130 if (!fi.typedef_field_list.empty ())
16132 int count = fi.typedef_field_list.size ();
16134 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16135 TYPE_TYPEDEF_FIELD_ARRAY (type)
16136 = ((struct decl_field *)
16137 TYPE_ALLOC (type,
16138 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16139 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16141 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16142 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16145 /* Copy fi.nested_types_list linked list elements content into the
16146 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16147 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16149 int count = fi.nested_types_list.size ();
16151 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16152 TYPE_NESTED_TYPES_ARRAY (type)
16153 = ((struct decl_field *)
16154 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16155 TYPE_NESTED_TYPES_COUNT (type) = count;
16157 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16158 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16162 quirk_gcc_member_function_pointer (type, objfile);
16163 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16164 cu->rust_unions.push_back (type);
16166 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16167 snapshots) has been known to create a die giving a declaration
16168 for a class that has, as a child, a die giving a definition for a
16169 nested class. So we have to process our children even if the
16170 current die is a declaration. Normally, of course, a declaration
16171 won't have any children at all. */
16173 child_die = die->child;
16175 while (child_die != NULL && child_die->tag)
16177 if (child_die->tag == DW_TAG_member
16178 || child_die->tag == DW_TAG_variable
16179 || child_die->tag == DW_TAG_inheritance
16180 || child_die->tag == DW_TAG_template_value_param
16181 || child_die->tag == DW_TAG_template_type_param)
16183 /* Do nothing. */
16185 else
16186 process_die (child_die, cu);
16188 child_die = sibling_die (child_die);
16191 /* Do not consider external references. According to the DWARF standard,
16192 these DIEs are identified by the fact that they have no byte_size
16193 attribute, and a declaration attribute. */
16194 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16195 || !die_is_declaration (die, cu))
16197 struct symbol *sym = new_symbol (die, type, cu);
16199 if (has_template_parameters)
16201 struct symtab *symtab;
16202 if (sym != nullptr)
16203 symtab = symbol_symtab (sym);
16204 else if (cu->line_header != nullptr)
16206 /* Any related symtab will do. */
16207 symtab
16208 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16210 else
16212 symtab = nullptr;
16213 complaint (_("could not find suitable "
16214 "symtab for template parameter"
16215 " - DIE at %s [in module %s]"),
16216 sect_offset_str (die->sect_off),
16217 objfile_name (objfile));
16220 if (symtab != nullptr)
16222 /* Make sure that the symtab is set on the new symbols.
16223 Even though they don't appear in this symtab directly,
16224 other parts of gdb assume that symbols do, and this is
16225 reasonably true. */
16226 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16227 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16233 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16234 update TYPE using some information only available in DIE's children. */
16236 static void
16237 update_enumeration_type_from_children (struct die_info *die,
16238 struct type *type,
16239 struct dwarf2_cu *cu)
16241 struct die_info *child_die;
16242 int unsigned_enum = 1;
16243 int flag_enum = 1;
16244 ULONGEST mask = 0;
16246 auto_obstack obstack;
16248 for (child_die = die->child;
16249 child_die != NULL && child_die->tag;
16250 child_die = sibling_die (child_die))
16252 struct attribute *attr;
16253 LONGEST value;
16254 const gdb_byte *bytes;
16255 struct dwarf2_locexpr_baton *baton;
16256 const char *name;
16258 if (child_die->tag != DW_TAG_enumerator)
16259 continue;
16261 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16262 if (attr == NULL)
16263 continue;
16265 name = dwarf2_name (child_die, cu);
16266 if (name == NULL)
16267 name = "<anonymous enumerator>";
16269 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16270 &value, &bytes, &baton);
16271 if (value < 0)
16273 unsigned_enum = 0;
16274 flag_enum = 0;
16276 else if ((mask & value) != 0)
16277 flag_enum = 0;
16278 else
16279 mask |= value;
16281 /* If we already know that the enum type is neither unsigned, nor
16282 a flag type, no need to look at the rest of the enumerates. */
16283 if (!unsigned_enum && !flag_enum)
16284 break;
16287 if (unsigned_enum)
16288 TYPE_UNSIGNED (type) = 1;
16289 if (flag_enum)
16290 TYPE_FLAG_ENUM (type) = 1;
16293 /* Given a DW_AT_enumeration_type die, set its type. We do not
16294 complete the type's fields yet, or create any symbols. */
16296 static struct type *
16297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16300 struct type *type;
16301 struct attribute *attr;
16302 const char *name;
16304 /* If the definition of this type lives in .debug_types, read that type.
16305 Don't follow DW_AT_specification though, that will take us back up
16306 the chain and we want to go down. */
16307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16308 if (attr)
16310 type = get_DW_AT_signature_type (die, attr, cu);
16312 /* The type's CU may not be the same as CU.
16313 Ensure TYPE is recorded with CU in die_type_hash. */
16314 return set_die_type (die, type, cu);
16317 type = alloc_type (objfile);
16319 TYPE_CODE (type) = TYPE_CODE_ENUM;
16320 name = dwarf2_full_name (NULL, die, cu);
16321 if (name != NULL)
16322 TYPE_NAME (type) = name;
16324 attr = dwarf2_attr (die, DW_AT_type, cu);
16325 if (attr != NULL)
16327 struct type *underlying_type = die_type (die, cu);
16329 TYPE_TARGET_TYPE (type) = underlying_type;
16332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16333 if (attr)
16335 TYPE_LENGTH (type) = DW_UNSND (attr);
16337 else
16339 TYPE_LENGTH (type) = 0;
16342 maybe_set_alignment (cu, die, type);
16344 /* The enumeration DIE can be incomplete. In Ada, any type can be
16345 declared as private in the package spec, and then defined only
16346 inside the package body. Such types are known as Taft Amendment
16347 Types. When another package uses such a type, an incomplete DIE
16348 may be generated by the compiler. */
16349 if (die_is_declaration (die, cu))
16350 TYPE_STUB (type) = 1;
16352 /* Finish the creation of this type by using the enum's children.
16353 We must call this even when the underlying type has been provided
16354 so that we can determine if we're looking at a "flag" enum. */
16355 update_enumeration_type_from_children (die, type, cu);
16357 /* If this type has an underlying type that is not a stub, then we
16358 may use its attributes. We always use the "unsigned" attribute
16359 in this situation, because ordinarily we guess whether the type
16360 is unsigned -- but the guess can be wrong and the underlying type
16361 can tell us the reality. However, we defer to a local size
16362 attribute if one exists, because this lets the compiler override
16363 the underlying type if needed. */
16364 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16366 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16367 if (TYPE_LENGTH (type) == 0)
16368 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16369 if (TYPE_RAW_ALIGN (type) == 0
16370 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16371 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16374 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16376 return set_die_type (die, type, cu);
16379 /* Given a pointer to a die which begins an enumeration, process all
16380 the dies that define the members of the enumeration, and create the
16381 symbol for the enumeration type.
16383 NOTE: We reverse the order of the element list. */
16385 static void
16386 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16388 struct type *this_type;
16390 this_type = get_die_type (die, cu);
16391 if (this_type == NULL)
16392 this_type = read_enumeration_type (die, cu);
16394 if (die->child != NULL)
16396 struct die_info *child_die;
16397 struct symbol *sym;
16398 struct field *fields = NULL;
16399 int num_fields = 0;
16400 const char *name;
16402 child_die = die->child;
16403 while (child_die && child_die->tag)
16405 if (child_die->tag != DW_TAG_enumerator)
16407 process_die (child_die, cu);
16409 else
16411 name = dwarf2_name (child_die, cu);
16412 if (name)
16414 sym = new_symbol (child_die, this_type, cu);
16416 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16418 fields = (struct field *)
16419 xrealloc (fields,
16420 (num_fields + DW_FIELD_ALLOC_CHUNK)
16421 * sizeof (struct field));
16424 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16425 FIELD_TYPE (fields[num_fields]) = NULL;
16426 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16427 FIELD_BITSIZE (fields[num_fields]) = 0;
16429 num_fields++;
16433 child_die = sibling_die (child_die);
16436 if (num_fields)
16438 TYPE_NFIELDS (this_type) = num_fields;
16439 TYPE_FIELDS (this_type) = (struct field *)
16440 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16441 memcpy (TYPE_FIELDS (this_type), fields,
16442 sizeof (struct field) * num_fields);
16443 xfree (fields);
16447 /* If we are reading an enum from a .debug_types unit, and the enum
16448 is a declaration, and the enum is not the signatured type in the
16449 unit, then we do not want to add a symbol for it. Adding a
16450 symbol would in some cases obscure the true definition of the
16451 enum, giving users an incomplete type when the definition is
16452 actually available. Note that we do not want to do this for all
16453 enums which are just declarations, because C++0x allows forward
16454 enum declarations. */
16455 if (cu->per_cu->is_debug_types
16456 && die_is_declaration (die, cu))
16458 struct signatured_type *sig_type;
16460 sig_type = (struct signatured_type *) cu->per_cu;
16461 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16462 if (sig_type->type_offset_in_section != die->sect_off)
16463 return;
16466 new_symbol (die, this_type, cu);
16469 /* Extract all information from a DW_TAG_array_type DIE and put it in
16470 the DIE's type field. For now, this only handles one dimensional
16471 arrays. */
16473 static struct type *
16474 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16477 struct die_info *child_die;
16478 struct type *type;
16479 struct type *element_type, *range_type, *index_type;
16480 struct attribute *attr;
16481 const char *name;
16482 struct dynamic_prop *byte_stride_prop = NULL;
16483 unsigned int bit_stride = 0;
16485 element_type = die_type (die, cu);
16487 /* The die_type call above may have already set the type for this DIE. */
16488 type = get_die_type (die, cu);
16489 if (type)
16490 return type;
16492 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16493 if (attr != NULL)
16495 int stride_ok;
16497 byte_stride_prop
16498 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16499 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16500 if (!stride_ok)
16502 complaint (_("unable to read array DW_AT_byte_stride "
16503 " - DIE at %s [in module %s]"),
16504 sect_offset_str (die->sect_off),
16505 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16506 /* Ignore this attribute. We will likely not be able to print
16507 arrays of this type correctly, but there is little we can do
16508 to help if we cannot read the attribute's value. */
16509 byte_stride_prop = NULL;
16513 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16514 if (attr != NULL)
16515 bit_stride = DW_UNSND (attr);
16517 /* Irix 6.2 native cc creates array types without children for
16518 arrays with unspecified length. */
16519 if (die->child == NULL)
16521 index_type = objfile_type (objfile)->builtin_int;
16522 range_type = create_static_range_type (NULL, index_type, 0, -1);
16523 type = create_array_type_with_stride (NULL, element_type, range_type,
16524 byte_stride_prop, bit_stride);
16525 return set_die_type (die, type, cu);
16528 std::vector<struct type *> range_types;
16529 child_die = die->child;
16530 while (child_die && child_die->tag)
16532 if (child_die->tag == DW_TAG_subrange_type)
16534 struct type *child_type = read_type_die (child_die, cu);
16536 if (child_type != NULL)
16538 /* The range type was succesfully read. Save it for the
16539 array type creation. */
16540 range_types.push_back (child_type);
16543 child_die = sibling_die (child_die);
16546 /* Dwarf2 dimensions are output from left to right, create the
16547 necessary array types in backwards order. */
16549 type = element_type;
16551 if (read_array_order (die, cu) == DW_ORD_col_major)
16553 int i = 0;
16555 while (i < range_types.size ())
16556 type = create_array_type_with_stride (NULL, type, range_types[i++],
16557 byte_stride_prop, bit_stride);
16559 else
16561 size_t ndim = range_types.size ();
16562 while (ndim-- > 0)
16563 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16564 byte_stride_prop, bit_stride);
16567 /* Understand Dwarf2 support for vector types (like they occur on
16568 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16569 array type. This is not part of the Dwarf2/3 standard yet, but a
16570 custom vendor extension. The main difference between a regular
16571 array and the vector variant is that vectors are passed by value
16572 to functions. */
16573 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16574 if (attr)
16575 make_vector_type (type);
16577 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16578 implementation may choose to implement triple vectors using this
16579 attribute. */
16580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16581 if (attr)
16583 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16584 TYPE_LENGTH (type) = DW_UNSND (attr);
16585 else
16586 complaint (_("DW_AT_byte_size for array type smaller "
16587 "than the total size of elements"));
16590 name = dwarf2_name (die, cu);
16591 if (name)
16592 TYPE_NAME (type) = name;
16594 maybe_set_alignment (cu, die, type);
16596 /* Install the type in the die. */
16597 set_die_type (die, type, cu);
16599 /* set_die_type should be already done. */
16600 set_descriptive_type (type, die, cu);
16602 return type;
16605 static enum dwarf_array_dim_ordering
16606 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16608 struct attribute *attr;
16610 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16612 if (attr)
16613 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16615 /* GNU F77 is a special case, as at 08/2004 array type info is the
16616 opposite order to the dwarf2 specification, but data is still
16617 laid out as per normal fortran.
16619 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16620 version checking. */
16622 if (cu->language == language_fortran
16623 && cu->producer && strstr (cu->producer, "GNU F77"))
16625 return DW_ORD_row_major;
16628 switch (cu->language_defn->la_array_ordering)
16630 case array_column_major:
16631 return DW_ORD_col_major;
16632 case array_row_major:
16633 default:
16634 return DW_ORD_row_major;
16638 /* Extract all information from a DW_TAG_set_type DIE and put it in
16639 the DIE's type field. */
16641 static struct type *
16642 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16644 struct type *domain_type, *set_type;
16645 struct attribute *attr;
16647 domain_type = die_type (die, cu);
16649 /* The die_type call above may have already set the type for this DIE. */
16650 set_type = get_die_type (die, cu);
16651 if (set_type)
16652 return set_type;
16654 set_type = create_set_type (NULL, domain_type);
16656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16657 if (attr)
16658 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16660 maybe_set_alignment (cu, die, set_type);
16662 return set_die_type (die, set_type, cu);
16665 /* A helper for read_common_block that creates a locexpr baton.
16666 SYM is the symbol which we are marking as computed.
16667 COMMON_DIE is the DIE for the common block.
16668 COMMON_LOC is the location expression attribute for the common
16669 block itself.
16670 MEMBER_LOC is the location expression attribute for the particular
16671 member of the common block that we are processing.
16672 CU is the CU from which the above come. */
16674 static void
16675 mark_common_block_symbol_computed (struct symbol *sym,
16676 struct die_info *common_die,
16677 struct attribute *common_loc,
16678 struct attribute *member_loc,
16679 struct dwarf2_cu *cu)
16681 struct dwarf2_per_objfile *dwarf2_per_objfile
16682 = cu->per_cu->dwarf2_per_objfile;
16683 struct objfile *objfile = dwarf2_per_objfile->objfile;
16684 struct dwarf2_locexpr_baton *baton;
16685 gdb_byte *ptr;
16686 unsigned int cu_off;
16687 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16688 LONGEST offset = 0;
16690 gdb_assert (common_loc && member_loc);
16691 gdb_assert (attr_form_is_block (common_loc));
16692 gdb_assert (attr_form_is_block (member_loc)
16693 || attr_form_is_constant (member_loc));
16695 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16696 baton->per_cu = cu->per_cu;
16697 gdb_assert (baton->per_cu);
16699 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16701 if (attr_form_is_constant (member_loc))
16703 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16704 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16706 else
16707 baton->size += DW_BLOCK (member_loc)->size;
16709 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16710 baton->data = ptr;
16712 *ptr++ = DW_OP_call4;
16713 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16714 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16715 ptr += 4;
16717 if (attr_form_is_constant (member_loc))
16719 *ptr++ = DW_OP_addr;
16720 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16721 ptr += cu->header.addr_size;
16723 else
16725 /* We have to copy the data here, because DW_OP_call4 will only
16726 use a DW_AT_location attribute. */
16727 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16728 ptr += DW_BLOCK (member_loc)->size;
16731 *ptr++ = DW_OP_plus;
16732 gdb_assert (ptr - baton->data == baton->size);
16734 SYMBOL_LOCATION_BATON (sym) = baton;
16735 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16738 /* Create appropriate locally-scoped variables for all the
16739 DW_TAG_common_block entries. Also create a struct common_block
16740 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16741 is used to sepate the common blocks name namespace from regular
16742 variable names. */
16744 static void
16745 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16747 struct attribute *attr;
16749 attr = dwarf2_attr (die, DW_AT_location, cu);
16750 if (attr)
16752 /* Support the .debug_loc offsets. */
16753 if (attr_form_is_block (attr))
16755 /* Ok. */
16757 else if (attr_form_is_section_offset (attr))
16759 dwarf2_complex_location_expr_complaint ();
16760 attr = NULL;
16762 else
16764 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16765 "common block member");
16766 attr = NULL;
16770 if (die->child != NULL)
16772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16773 struct die_info *child_die;
16774 size_t n_entries = 0, size;
16775 struct common_block *common_block;
16776 struct symbol *sym;
16778 for (child_die = die->child;
16779 child_die && child_die->tag;
16780 child_die = sibling_die (child_die))
16781 ++n_entries;
16783 size = (sizeof (struct common_block)
16784 + (n_entries - 1) * sizeof (struct symbol *));
16785 common_block
16786 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16787 size);
16788 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16789 common_block->n_entries = 0;
16791 for (child_die = die->child;
16792 child_die && child_die->tag;
16793 child_die = sibling_die (child_die))
16795 /* Create the symbol in the DW_TAG_common_block block in the current
16796 symbol scope. */
16797 sym = new_symbol (child_die, NULL, cu);
16798 if (sym != NULL)
16800 struct attribute *member_loc;
16802 common_block->contents[common_block->n_entries++] = sym;
16804 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16805 cu);
16806 if (member_loc)
16808 /* GDB has handled this for a long time, but it is
16809 not specified by DWARF. It seems to have been
16810 emitted by gfortran at least as recently as:
16811 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16812 complaint (_("Variable in common block has "
16813 "DW_AT_data_member_location "
16814 "- DIE at %s [in module %s]"),
16815 sect_offset_str (child_die->sect_off),
16816 objfile_name (objfile));
16818 if (attr_form_is_section_offset (member_loc))
16819 dwarf2_complex_location_expr_complaint ();
16820 else if (attr_form_is_constant (member_loc)
16821 || attr_form_is_block (member_loc))
16823 if (attr)
16824 mark_common_block_symbol_computed (sym, die, attr,
16825 member_loc, cu);
16827 else
16828 dwarf2_complex_location_expr_complaint ();
16833 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16834 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16838 /* Create a type for a C++ namespace. */
16840 static struct type *
16841 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16844 const char *previous_prefix, *name;
16845 int is_anonymous;
16846 struct type *type;
16848 /* For extensions, reuse the type of the original namespace. */
16849 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16851 struct die_info *ext_die;
16852 struct dwarf2_cu *ext_cu = cu;
16854 ext_die = dwarf2_extension (die, &ext_cu);
16855 type = read_type_die (ext_die, ext_cu);
16857 /* EXT_CU may not be the same as CU.
16858 Ensure TYPE is recorded with CU in die_type_hash. */
16859 return set_die_type (die, type, cu);
16862 name = namespace_name (die, &is_anonymous, cu);
16864 /* Now build the name of the current namespace. */
16866 previous_prefix = determine_prefix (die, cu);
16867 if (previous_prefix[0] != '\0')
16868 name = typename_concat (&objfile->objfile_obstack,
16869 previous_prefix, name, 0, cu);
16871 /* Create the type. */
16872 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16874 return set_die_type (die, type, cu);
16877 /* Read a namespace scope. */
16879 static void
16880 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16882 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16883 int is_anonymous;
16885 /* Add a symbol associated to this if we haven't seen the namespace
16886 before. Also, add a using directive if it's an anonymous
16887 namespace. */
16889 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16891 struct type *type;
16893 type = read_type_die (die, cu);
16894 new_symbol (die, type, cu);
16896 namespace_name (die, &is_anonymous, cu);
16897 if (is_anonymous)
16899 const char *previous_prefix = determine_prefix (die, cu);
16901 std::vector<const char *> excludes;
16902 add_using_directive (using_directives (cu),
16903 previous_prefix, TYPE_NAME (type), NULL,
16904 NULL, excludes, 0, &objfile->objfile_obstack);
16908 if (die->child != NULL)
16910 struct die_info *child_die = die->child;
16912 while (child_die && child_die->tag)
16914 process_die (child_die, cu);
16915 child_die = sibling_die (child_die);
16920 /* Read a Fortran module as type. This DIE can be only a declaration used for
16921 imported module. Still we need that type as local Fortran "use ... only"
16922 declaration imports depend on the created type in determine_prefix. */
16924 static struct type *
16925 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16928 const char *module_name;
16929 struct type *type;
16931 module_name = dwarf2_name (die, cu);
16932 if (!module_name)
16933 complaint (_("DW_TAG_module has no name, offset %s"),
16934 sect_offset_str (die->sect_off));
16935 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16937 return set_die_type (die, type, cu);
16940 /* Read a Fortran module. */
16942 static void
16943 read_module (struct die_info *die, struct dwarf2_cu *cu)
16945 struct die_info *child_die = die->child;
16946 struct type *type;
16948 type = read_type_die (die, cu);
16949 new_symbol (die, type, cu);
16951 while (child_die && child_die->tag)
16953 process_die (child_die, cu);
16954 child_die = sibling_die (child_die);
16958 /* Return the name of the namespace represented by DIE. Set
16959 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16960 namespace. */
16962 static const char *
16963 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16965 struct die_info *current_die;
16966 const char *name = NULL;
16968 /* Loop through the extensions until we find a name. */
16970 for (current_die = die;
16971 current_die != NULL;
16972 current_die = dwarf2_extension (die, &cu))
16974 /* We don't use dwarf2_name here so that we can detect the absence
16975 of a name -> anonymous namespace. */
16976 name = dwarf2_string_attr (die, DW_AT_name, cu);
16978 if (name != NULL)
16979 break;
16982 /* Is it an anonymous namespace? */
16984 *is_anonymous = (name == NULL);
16985 if (*is_anonymous)
16986 name = CP_ANONYMOUS_NAMESPACE_STR;
16988 return name;
16991 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16992 the user defined type vector. */
16994 static struct type *
16995 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16997 struct gdbarch *gdbarch
16998 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16999 struct comp_unit_head *cu_header = &cu->header;
17000 struct type *type;
17001 struct attribute *attr_byte_size;
17002 struct attribute *attr_address_class;
17003 int byte_size, addr_class;
17004 struct type *target_type;
17006 target_type = die_type (die, cu);
17008 /* The die_type call above may have already set the type for this DIE. */
17009 type = get_die_type (die, cu);
17010 if (type)
17011 return type;
17013 type = lookup_pointer_type (target_type);
17015 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17016 if (attr_byte_size)
17017 byte_size = DW_UNSND (attr_byte_size);
17018 else
17019 byte_size = cu_header->addr_size;
17021 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17022 if (attr_address_class)
17023 addr_class = DW_UNSND (attr_address_class);
17024 else
17025 addr_class = DW_ADDR_none;
17027 ULONGEST alignment = get_alignment (cu, die);
17029 /* If the pointer size, alignment, or address class is different
17030 than the default, create a type variant marked as such and set
17031 the length accordingly. */
17032 if (TYPE_LENGTH (type) != byte_size
17033 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17034 && alignment != TYPE_RAW_ALIGN (type))
17035 || addr_class != DW_ADDR_none)
17037 if (gdbarch_address_class_type_flags_p (gdbarch))
17039 int type_flags;
17041 type_flags = gdbarch_address_class_type_flags
17042 (gdbarch, byte_size, addr_class);
17043 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17044 == 0);
17045 type = make_type_with_address_space (type, type_flags);
17047 else if (TYPE_LENGTH (type) != byte_size)
17049 complaint (_("invalid pointer size %d"), byte_size);
17051 else if (TYPE_RAW_ALIGN (type) != alignment)
17053 complaint (_("Invalid DW_AT_alignment"
17054 " - DIE at %s [in module %s]"),
17055 sect_offset_str (die->sect_off),
17056 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17058 else
17060 /* Should we also complain about unhandled address classes? */
17064 TYPE_LENGTH (type) = byte_size;
17065 set_type_align (type, alignment);
17066 return set_die_type (die, type, cu);
17069 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17070 the user defined type vector. */
17072 static struct type *
17073 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17075 struct type *type;
17076 struct type *to_type;
17077 struct type *domain;
17079 to_type = die_type (die, cu);
17080 domain = die_containing_type (die, cu);
17082 /* The calls above may have already set the type for this DIE. */
17083 type = get_die_type (die, cu);
17084 if (type)
17085 return type;
17087 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17088 type = lookup_methodptr_type (to_type);
17089 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17091 struct type *new_type
17092 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17094 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17095 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17096 TYPE_VARARGS (to_type));
17097 type = lookup_methodptr_type (new_type);
17099 else
17100 type = lookup_memberptr_type (to_type, domain);
17102 return set_die_type (die, type, cu);
17105 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17106 the user defined type vector. */
17108 static struct type *
17109 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17110 enum type_code refcode)
17112 struct comp_unit_head *cu_header = &cu->header;
17113 struct type *type, *target_type;
17114 struct attribute *attr;
17116 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17118 target_type = die_type (die, cu);
17120 /* The die_type call above may have already set the type for this DIE. */
17121 type = get_die_type (die, cu);
17122 if (type)
17123 return type;
17125 type = lookup_reference_type (target_type, refcode);
17126 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17127 if (attr)
17129 TYPE_LENGTH (type) = DW_UNSND (attr);
17131 else
17133 TYPE_LENGTH (type) = cu_header->addr_size;
17135 maybe_set_alignment (cu, die, type);
17136 return set_die_type (die, type, cu);
17139 /* Add the given cv-qualifiers to the element type of the array. GCC
17140 outputs DWARF type qualifiers that apply to an array, not the
17141 element type. But GDB relies on the array element type to carry
17142 the cv-qualifiers. This mimics section 6.7.3 of the C99
17143 specification. */
17145 static struct type *
17146 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17147 struct type *base_type, int cnst, int voltl)
17149 struct type *el_type, *inner_array;
17151 base_type = copy_type (base_type);
17152 inner_array = base_type;
17154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17156 TYPE_TARGET_TYPE (inner_array) =
17157 copy_type (TYPE_TARGET_TYPE (inner_array));
17158 inner_array = TYPE_TARGET_TYPE (inner_array);
17161 el_type = TYPE_TARGET_TYPE (inner_array);
17162 cnst |= TYPE_CONST (el_type);
17163 voltl |= TYPE_VOLATILE (el_type);
17164 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17166 return set_die_type (die, base_type, cu);
17169 static struct type *
17170 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17172 struct type *base_type, *cv_type;
17174 base_type = die_type (die, cu);
17176 /* The die_type call above may have already set the type for this DIE. */
17177 cv_type = get_die_type (die, cu);
17178 if (cv_type)
17179 return cv_type;
17181 /* In case the const qualifier is applied to an array type, the element type
17182 is so qualified, not the array type (section 6.7.3 of C99). */
17183 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17184 return add_array_cv_type (die, cu, base_type, 1, 0);
17186 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17187 return set_die_type (die, cv_type, cu);
17190 static struct type *
17191 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17193 struct type *base_type, *cv_type;
17195 base_type = die_type (die, cu);
17197 /* The die_type call above may have already set the type for this DIE. */
17198 cv_type = get_die_type (die, cu);
17199 if (cv_type)
17200 return cv_type;
17202 /* In case the volatile qualifier is applied to an array type, the
17203 element type is so qualified, not the array type (section 6.7.3
17204 of C99). */
17205 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17206 return add_array_cv_type (die, cu, base_type, 0, 1);
17208 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17209 return set_die_type (die, cv_type, cu);
17212 /* Handle DW_TAG_restrict_type. */
17214 static struct type *
17215 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17217 struct type *base_type, *cv_type;
17219 base_type = die_type (die, cu);
17221 /* The die_type call above may have already set the type for this DIE. */
17222 cv_type = get_die_type (die, cu);
17223 if (cv_type)
17224 return cv_type;
17226 cv_type = make_restrict_type (base_type);
17227 return set_die_type (die, cv_type, cu);
17230 /* Handle DW_TAG_atomic_type. */
17232 static struct type *
17233 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17235 struct type *base_type, *cv_type;
17237 base_type = die_type (die, cu);
17239 /* The die_type call above may have already set the type for this DIE. */
17240 cv_type = get_die_type (die, cu);
17241 if (cv_type)
17242 return cv_type;
17244 cv_type = make_atomic_type (base_type);
17245 return set_die_type (die, cv_type, cu);
17248 /* Extract all information from a DW_TAG_string_type DIE and add to
17249 the user defined type vector. It isn't really a user defined type,
17250 but it behaves like one, with other DIE's using an AT_user_def_type
17251 attribute to reference it. */
17253 static struct type *
17254 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17258 struct type *type, *range_type, *index_type, *char_type;
17259 struct attribute *attr;
17260 unsigned int length;
17262 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17263 if (attr)
17265 length = DW_UNSND (attr);
17267 else
17269 /* Check for the DW_AT_byte_size attribute. */
17270 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17271 if (attr)
17273 length = DW_UNSND (attr);
17275 else
17277 length = 1;
17281 index_type = objfile_type (objfile)->builtin_int;
17282 range_type = create_static_range_type (NULL, index_type, 1, length);
17283 char_type = language_string_char_type (cu->language_defn, gdbarch);
17284 type = create_string_type (NULL, char_type, range_type);
17286 return set_die_type (die, type, cu);
17289 /* Assuming that DIE corresponds to a function, returns nonzero
17290 if the function is prototyped. */
17292 static int
17293 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17295 struct attribute *attr;
17297 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17298 if (attr && (DW_UNSND (attr) != 0))
17299 return 1;
17301 /* The DWARF standard implies that the DW_AT_prototyped attribute
17302 is only meaninful for C, but the concept also extends to other
17303 languages that allow unprototyped functions (Eg: Objective C).
17304 For all other languages, assume that functions are always
17305 prototyped. */
17306 if (cu->language != language_c
17307 && cu->language != language_objc
17308 && cu->language != language_opencl)
17309 return 1;
17311 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17312 prototyped and unprototyped functions; default to prototyped,
17313 since that is more common in modern code (and RealView warns
17314 about unprototyped functions). */
17315 if (producer_is_realview (cu->producer))
17316 return 1;
17318 return 0;
17321 /* Handle DIES due to C code like:
17323 struct foo
17325 int (*funcp)(int a, long l);
17326 int b;
17329 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17331 static struct type *
17332 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17334 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17335 struct type *type; /* Type that this function returns. */
17336 struct type *ftype; /* Function that returns above type. */
17337 struct attribute *attr;
17339 type = die_type (die, cu);
17341 /* The die_type call above may have already set the type for this DIE. */
17342 ftype = get_die_type (die, cu);
17343 if (ftype)
17344 return ftype;
17346 ftype = lookup_function_type (type);
17348 if (prototyped_function_p (die, cu))
17349 TYPE_PROTOTYPED (ftype) = 1;
17351 /* Store the calling convention in the type if it's available in
17352 the subroutine die. Otherwise set the calling convention to
17353 the default value DW_CC_normal. */
17354 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17355 if (attr)
17356 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17357 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17358 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17359 else
17360 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17362 /* Record whether the function returns normally to its caller or not
17363 if the DWARF producer set that information. */
17364 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17365 if (attr && (DW_UNSND (attr) != 0))
17366 TYPE_NO_RETURN (ftype) = 1;
17368 /* We need to add the subroutine type to the die immediately so
17369 we don't infinitely recurse when dealing with parameters
17370 declared as the same subroutine type. */
17371 set_die_type (die, ftype, cu);
17373 if (die->child != NULL)
17375 struct type *void_type = objfile_type (objfile)->builtin_void;
17376 struct die_info *child_die;
17377 int nparams, iparams;
17379 /* Count the number of parameters.
17380 FIXME: GDB currently ignores vararg functions, but knows about
17381 vararg member functions. */
17382 nparams = 0;
17383 child_die = die->child;
17384 while (child_die && child_die->tag)
17386 if (child_die->tag == DW_TAG_formal_parameter)
17387 nparams++;
17388 else if (child_die->tag == DW_TAG_unspecified_parameters)
17389 TYPE_VARARGS (ftype) = 1;
17390 child_die = sibling_die (child_die);
17393 /* Allocate storage for parameters and fill them in. */
17394 TYPE_NFIELDS (ftype) = nparams;
17395 TYPE_FIELDS (ftype) = (struct field *)
17396 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17398 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17399 even if we error out during the parameters reading below. */
17400 for (iparams = 0; iparams < nparams; iparams++)
17401 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17403 iparams = 0;
17404 child_die = die->child;
17405 while (child_die && child_die->tag)
17407 if (child_die->tag == DW_TAG_formal_parameter)
17409 struct type *arg_type;
17411 /* DWARF version 2 has no clean way to discern C++
17412 static and non-static member functions. G++ helps
17413 GDB by marking the first parameter for non-static
17414 member functions (which is the this pointer) as
17415 artificial. We pass this information to
17416 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17418 DWARF version 3 added DW_AT_object_pointer, which GCC
17419 4.5 does not yet generate. */
17420 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17421 if (attr)
17422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17423 else
17424 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17425 arg_type = die_type (child_die, cu);
17427 /* RealView does not mark THIS as const, which the testsuite
17428 expects. GCC marks THIS as const in method definitions,
17429 but not in the class specifications (GCC PR 43053). */
17430 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17431 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17433 int is_this = 0;
17434 struct dwarf2_cu *arg_cu = cu;
17435 const char *name = dwarf2_name (child_die, cu);
17437 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17438 if (attr)
17440 /* If the compiler emits this, use it. */
17441 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17442 is_this = 1;
17444 else if (name && strcmp (name, "this") == 0)
17445 /* Function definitions will have the argument names. */
17446 is_this = 1;
17447 else if (name == NULL && iparams == 0)
17448 /* Declarations may not have the names, so like
17449 elsewhere in GDB, assume an artificial first
17450 argument is "this". */
17451 is_this = 1;
17453 if (is_this)
17454 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17455 arg_type, 0);
17458 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17459 iparams++;
17461 child_die = sibling_die (child_die);
17465 return ftype;
17468 static struct type *
17469 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17471 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17472 const char *name = NULL;
17473 struct type *this_type, *target_type;
17475 name = dwarf2_full_name (NULL, die, cu);
17476 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17477 TYPE_TARGET_STUB (this_type) = 1;
17478 set_die_type (die, this_type, cu);
17479 target_type = die_type (die, cu);
17480 if (target_type != this_type)
17481 TYPE_TARGET_TYPE (this_type) = target_type;
17482 else
17484 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17485 spec and cause infinite loops in GDB. */
17486 complaint (_("Self-referential DW_TAG_typedef "
17487 "- DIE at %s [in module %s]"),
17488 sect_offset_str (die->sect_off), objfile_name (objfile));
17489 TYPE_TARGET_TYPE (this_type) = NULL;
17491 return this_type;
17494 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17495 (which may be different from NAME) to the architecture back-end to allow
17496 it to guess the correct format if necessary. */
17498 static struct type *
17499 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17500 const char *name_hint)
17502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17503 const struct floatformat **format;
17504 struct type *type;
17506 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17507 if (format)
17508 type = init_float_type (objfile, bits, name, format);
17509 else
17510 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17512 return type;
17515 /* Allocate an integer type of size BITS and name NAME. */
17517 static struct type *
17518 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17519 int bits, int unsigned_p, const char *name)
17521 struct type *type;
17523 /* Versions of Intel's C Compiler generate an integer type called "void"
17524 instead of using DW_TAG_unspecified_type. This has been seen on
17525 at least versions 14, 17, and 18. */
17526 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17527 && strcmp (name, "void") == 0)
17528 type = objfile_type (objfile)->builtin_void;
17529 else
17530 type = init_integer_type (objfile, bits, unsigned_p, name);
17532 return type;
17535 /* Initialise and return a floating point type of size BITS suitable for
17536 use as a component of a complex number. The NAME_HINT is passed through
17537 when initialising the floating point type and is the name of the complex
17538 type.
17540 As DWARF doesn't currently provide an explicit name for the components
17541 of a complex number, but it can be helpful to have these components
17542 named, we try to select a suitable name based on the size of the
17543 component. */
17544 static struct type *
17545 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17546 struct objfile *objfile,
17547 int bits, const char *name_hint)
17549 gdbarch *gdbarch = get_objfile_arch (objfile);
17550 struct type *tt = nullptr;
17552 /* Try to find a suitable floating point builtin type of size BITS.
17553 We're going to use the name of this type as the name for the complex
17554 target type that we are about to create. */
17555 switch (cu->language)
17557 case language_fortran:
17558 switch (bits)
17560 case 32:
17561 tt = builtin_f_type (gdbarch)->builtin_real;
17562 break;
17563 case 64:
17564 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17565 break;
17566 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17567 case 128:
17568 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17569 break;
17571 break;
17572 default:
17573 switch (bits)
17575 case 32:
17576 tt = builtin_type (gdbarch)->builtin_float;
17577 break;
17578 case 64:
17579 tt = builtin_type (gdbarch)->builtin_double;
17580 break;
17581 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17582 case 128:
17583 tt = builtin_type (gdbarch)->builtin_long_double;
17584 break;
17586 break;
17589 /* If the type we found doesn't match the size we were looking for, then
17590 pretend we didn't find a type at all, the complex target type we
17591 create will then be nameless. */
17592 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17593 tt = nullptr;
17595 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17596 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17599 /* Find a representation of a given base type and install
17600 it in the TYPE field of the die. */
17602 static struct type *
17603 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17605 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17606 struct type *type;
17607 struct attribute *attr;
17608 int encoding = 0, bits = 0;
17609 const char *name;
17611 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17612 if (attr)
17614 encoding = DW_UNSND (attr);
17616 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17617 if (attr)
17619 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17621 name = dwarf2_name (die, cu);
17622 if (!name)
17624 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17627 switch (encoding)
17629 case DW_ATE_address:
17630 /* Turn DW_ATE_address into a void * pointer. */
17631 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17632 type = init_pointer_type (objfile, bits, name, type);
17633 break;
17634 case DW_ATE_boolean:
17635 type = init_boolean_type (objfile, bits, 1, name);
17636 break;
17637 case DW_ATE_complex_float:
17638 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17639 type = init_complex_type (objfile, name, type);
17640 break;
17641 case DW_ATE_decimal_float:
17642 type = init_decfloat_type (objfile, bits, name);
17643 break;
17644 case DW_ATE_float:
17645 type = dwarf2_init_float_type (objfile, bits, name, name);
17646 break;
17647 case DW_ATE_signed:
17648 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17649 break;
17650 case DW_ATE_unsigned:
17651 if (cu->language == language_fortran
17652 && name
17653 && startswith (name, "character("))
17654 type = init_character_type (objfile, bits, 1, name);
17655 else
17656 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17657 break;
17658 case DW_ATE_signed_char:
17659 if (cu->language == language_ada || cu->language == language_m2
17660 || cu->language == language_pascal
17661 || cu->language == language_fortran)
17662 type = init_character_type (objfile, bits, 0, name);
17663 else
17664 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17665 break;
17666 case DW_ATE_unsigned_char:
17667 if (cu->language == language_ada || cu->language == language_m2
17668 || cu->language == language_pascal
17669 || cu->language == language_fortran
17670 || cu->language == language_rust)
17671 type = init_character_type (objfile, bits, 1, name);
17672 else
17673 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17674 break;
17675 case DW_ATE_UTF:
17677 gdbarch *arch = get_objfile_arch (objfile);
17679 if (bits == 16)
17680 type = builtin_type (arch)->builtin_char16;
17681 else if (bits == 32)
17682 type = builtin_type (arch)->builtin_char32;
17683 else
17685 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17686 bits);
17687 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17689 return set_die_type (die, type, cu);
17691 break;
17693 default:
17694 complaint (_("unsupported DW_AT_encoding: '%s'"),
17695 dwarf_type_encoding_name (encoding));
17696 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17697 break;
17700 if (name && strcmp (name, "char") == 0)
17701 TYPE_NOSIGN (type) = 1;
17703 maybe_set_alignment (cu, die, type);
17705 return set_die_type (die, type, cu);
17708 /* Parse dwarf attribute if it's a block, reference or constant and put the
17709 resulting value of the attribute into struct bound_prop.
17710 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17712 static int
17713 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17714 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17716 struct dwarf2_property_baton *baton;
17717 struct obstack *obstack
17718 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17720 if (attr == NULL || prop == NULL)
17721 return 0;
17723 if (attr_form_is_block (attr))
17725 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17726 baton->referenced_type = NULL;
17727 baton->locexpr.per_cu = cu->per_cu;
17728 baton->locexpr.size = DW_BLOCK (attr)->size;
17729 baton->locexpr.data = DW_BLOCK (attr)->data;
17730 prop->data.baton = baton;
17731 prop->kind = PROP_LOCEXPR;
17732 gdb_assert (prop->data.baton != NULL);
17734 else if (attr_form_is_ref (attr))
17736 struct dwarf2_cu *target_cu = cu;
17737 struct die_info *target_die;
17738 struct attribute *target_attr;
17740 target_die = follow_die_ref (die, attr, &target_cu);
17741 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17742 if (target_attr == NULL)
17743 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17744 target_cu);
17745 if (target_attr == NULL)
17746 return 0;
17748 switch (target_attr->name)
17750 case DW_AT_location:
17751 if (attr_form_is_section_offset (target_attr))
17753 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17754 baton->referenced_type = die_type (target_die, target_cu);
17755 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17756 prop->data.baton = baton;
17757 prop->kind = PROP_LOCLIST;
17758 gdb_assert (prop->data.baton != NULL);
17760 else if (attr_form_is_block (target_attr))
17762 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17763 baton->referenced_type = die_type (target_die, target_cu);
17764 baton->locexpr.per_cu = cu->per_cu;
17765 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17766 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17767 prop->data.baton = baton;
17768 prop->kind = PROP_LOCEXPR;
17769 gdb_assert (prop->data.baton != NULL);
17771 else
17773 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17774 "dynamic property");
17775 return 0;
17777 break;
17778 case DW_AT_data_member_location:
17780 LONGEST offset;
17782 if (!handle_data_member_location (target_die, target_cu,
17783 &offset))
17784 return 0;
17786 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17787 baton->referenced_type = read_type_die (target_die->parent,
17788 target_cu);
17789 baton->offset_info.offset = offset;
17790 baton->offset_info.type = die_type (target_die, target_cu);
17791 prop->data.baton = baton;
17792 prop->kind = PROP_ADDR_OFFSET;
17793 break;
17797 else if (attr_form_is_constant (attr))
17799 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17800 prop->kind = PROP_CONST;
17802 else
17804 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17805 dwarf2_name (die, cu));
17806 return 0;
17809 return 1;
17812 /* Read the given DW_AT_subrange DIE. */
17814 static struct type *
17815 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17817 struct type *base_type, *orig_base_type;
17818 struct type *range_type;
17819 struct attribute *attr;
17820 struct dynamic_prop low, high;
17821 int low_default_is_valid;
17822 int high_bound_is_count = 0;
17823 const char *name;
17824 ULONGEST negative_mask;
17826 orig_base_type = die_type (die, cu);
17827 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17828 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17829 creating the range type, but we use the result of check_typedef
17830 when examining properties of the type. */
17831 base_type = check_typedef (orig_base_type);
17833 /* The die_type call above may have already set the type for this DIE. */
17834 range_type = get_die_type (die, cu);
17835 if (range_type)
17836 return range_type;
17838 low.kind = PROP_CONST;
17839 high.kind = PROP_CONST;
17840 high.data.const_val = 0;
17842 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17843 omitting DW_AT_lower_bound. */
17844 switch (cu->language)
17846 case language_c:
17847 case language_cplus:
17848 low.data.const_val = 0;
17849 low_default_is_valid = 1;
17850 break;
17851 case language_fortran:
17852 low.data.const_val = 1;
17853 low_default_is_valid = 1;
17854 break;
17855 case language_d:
17856 case language_objc:
17857 case language_rust:
17858 low.data.const_val = 0;
17859 low_default_is_valid = (cu->header.version >= 4);
17860 break;
17861 case language_ada:
17862 case language_m2:
17863 case language_pascal:
17864 low.data.const_val = 1;
17865 low_default_is_valid = (cu->header.version >= 4);
17866 break;
17867 default:
17868 low.data.const_val = 0;
17869 low_default_is_valid = 0;
17870 break;
17873 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17874 if (attr)
17875 attr_to_dynamic_prop (attr, die, cu, &low);
17876 else if (!low_default_is_valid)
17877 complaint (_("Missing DW_AT_lower_bound "
17878 "- DIE at %s [in module %s]"),
17879 sect_offset_str (die->sect_off),
17880 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17882 struct attribute *attr_ub, *attr_count;
17883 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17884 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17886 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17887 if (attr_to_dynamic_prop (attr, die, cu, &high))
17889 /* If bounds are constant do the final calculation here. */
17890 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17891 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17892 else
17893 high_bound_is_count = 1;
17895 else
17897 if (attr_ub != NULL)
17898 complaint (_("Unresolved DW_AT_upper_bound "
17899 "- DIE at %s [in module %s]"),
17900 sect_offset_str (die->sect_off),
17901 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17902 if (attr_count != NULL)
17903 complaint (_("Unresolved DW_AT_count "
17904 "- DIE at %s [in module %s]"),
17905 sect_offset_str (die->sect_off),
17906 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17911 /* Dwarf-2 specifications explicitly allows to create subrange types
17912 without specifying a base type.
17913 In that case, the base type must be set to the type of
17914 the lower bound, upper bound or count, in that order, if any of these
17915 three attributes references an object that has a type.
17916 If no base type is found, the Dwarf-2 specifications say that
17917 a signed integer type of size equal to the size of an address should
17918 be used.
17919 For the following C code: `extern char gdb_int [];'
17920 GCC produces an empty range DIE.
17921 FIXME: muller/2010-05-28: Possible references to object for low bound,
17922 high bound or count are not yet handled by this code. */
17923 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17925 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17926 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17927 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17928 struct type *int_type = objfile_type (objfile)->builtin_int;
17930 /* Test "int", "long int", and "long long int" objfile types,
17931 and select the first one having a size above or equal to the
17932 architecture address size. */
17933 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17934 base_type = int_type;
17935 else
17937 int_type = objfile_type (objfile)->builtin_long;
17938 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17939 base_type = int_type;
17940 else
17942 int_type = objfile_type (objfile)->builtin_long_long;
17943 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17944 base_type = int_type;
17949 /* Normally, the DWARF producers are expected to use a signed
17950 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17951 But this is unfortunately not always the case, as witnessed
17952 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17953 is used instead. To work around that ambiguity, we treat
17954 the bounds as signed, and thus sign-extend their values, when
17955 the base type is signed. */
17956 negative_mask =
17957 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17958 if (low.kind == PROP_CONST
17959 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17960 low.data.const_val |= negative_mask;
17961 if (high.kind == PROP_CONST
17962 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17963 high.data.const_val |= negative_mask;
17965 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17967 if (high_bound_is_count)
17968 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17970 /* Ada expects an empty array on no boundary attributes. */
17971 if (attr == NULL && cu->language != language_ada)
17972 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17974 name = dwarf2_name (die, cu);
17975 if (name)
17976 TYPE_NAME (range_type) = name;
17978 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17979 if (attr)
17980 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17982 maybe_set_alignment (cu, die, range_type);
17984 set_die_type (die, range_type, cu);
17986 /* set_die_type should be already done. */
17987 set_descriptive_type (range_type, die, cu);
17989 return range_type;
17992 static struct type *
17993 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17995 struct type *type;
17997 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17998 NULL);
17999 TYPE_NAME (type) = dwarf2_name (die, cu);
18001 /* In Ada, an unspecified type is typically used when the description
18002 of the type is defered to a different unit. When encountering
18003 such a type, we treat it as a stub, and try to resolve it later on,
18004 when needed. */
18005 if (cu->language == language_ada)
18006 TYPE_STUB (type) = 1;
18008 return set_die_type (die, type, cu);
18011 /* Read a single die and all its descendents. Set the die's sibling
18012 field to NULL; set other fields in the die correctly, and set all
18013 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18014 location of the info_ptr after reading all of those dies. PARENT
18015 is the parent of the die in question. */
18017 static struct die_info *
18018 read_die_and_children (const struct die_reader_specs *reader,
18019 const gdb_byte *info_ptr,
18020 const gdb_byte **new_info_ptr,
18021 struct die_info *parent)
18023 struct die_info *die;
18024 const gdb_byte *cur_ptr;
18025 int has_children;
18027 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18028 if (die == NULL)
18030 *new_info_ptr = cur_ptr;
18031 return NULL;
18033 store_in_ref_table (die, reader->cu);
18035 if (has_children)
18036 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18037 else
18039 die->child = NULL;
18040 *new_info_ptr = cur_ptr;
18043 die->sibling = NULL;
18044 die->parent = parent;
18045 return die;
18048 /* Read a die, all of its descendents, and all of its siblings; set
18049 all of the fields of all of the dies correctly. Arguments are as
18050 in read_die_and_children. */
18052 static struct die_info *
18053 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18054 const gdb_byte *info_ptr,
18055 const gdb_byte **new_info_ptr,
18056 struct die_info *parent)
18058 struct die_info *first_die, *last_sibling;
18059 const gdb_byte *cur_ptr;
18061 cur_ptr = info_ptr;
18062 first_die = last_sibling = NULL;
18064 while (1)
18066 struct die_info *die
18067 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18069 if (die == NULL)
18071 *new_info_ptr = cur_ptr;
18072 return first_die;
18075 if (!first_die)
18076 first_die = die;
18077 else
18078 last_sibling->sibling = die;
18080 last_sibling = die;
18084 /* Read a die, all of its descendents, and all of its siblings; set
18085 all of the fields of all of the dies correctly. Arguments are as
18086 in read_die_and_children.
18087 This the main entry point for reading a DIE and all its children. */
18089 static struct die_info *
18090 read_die_and_siblings (const struct die_reader_specs *reader,
18091 const gdb_byte *info_ptr,
18092 const gdb_byte **new_info_ptr,
18093 struct die_info *parent)
18095 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18096 new_info_ptr, parent);
18098 if (dwarf_die_debug)
18100 fprintf_unfiltered (gdb_stdlog,
18101 "Read die from %s@0x%x of %s:\n",
18102 get_section_name (reader->die_section),
18103 (unsigned) (info_ptr - reader->die_section->buffer),
18104 bfd_get_filename (reader->abfd));
18105 dump_die (die, dwarf_die_debug);
18108 return die;
18111 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18112 attributes.
18113 The caller is responsible for filling in the extra attributes
18114 and updating (*DIEP)->num_attrs.
18115 Set DIEP to point to a newly allocated die with its information,
18116 except for its child, sibling, and parent fields.
18117 Set HAS_CHILDREN to tell whether the die has children or not. */
18119 static const gdb_byte *
18120 read_full_die_1 (const struct die_reader_specs *reader,
18121 struct die_info **diep, const gdb_byte *info_ptr,
18122 int *has_children, int num_extra_attrs)
18124 unsigned int abbrev_number, bytes_read, i;
18125 struct abbrev_info *abbrev;
18126 struct die_info *die;
18127 struct dwarf2_cu *cu = reader->cu;
18128 bfd *abfd = reader->abfd;
18130 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18131 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18132 info_ptr += bytes_read;
18133 if (!abbrev_number)
18135 *diep = NULL;
18136 *has_children = 0;
18137 return info_ptr;
18140 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18141 if (!abbrev)
18142 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18143 abbrev_number,
18144 bfd_get_filename (abfd));
18146 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18147 die->sect_off = sect_off;
18148 die->tag = abbrev->tag;
18149 die->abbrev = abbrev_number;
18151 /* Make the result usable.
18152 The caller needs to update num_attrs after adding the extra
18153 attributes. */
18154 die->num_attrs = abbrev->num_attrs;
18156 for (i = 0; i < abbrev->num_attrs; ++i)
18157 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18158 info_ptr);
18160 *diep = die;
18161 *has_children = abbrev->has_children;
18162 return info_ptr;
18165 /* Read a die and all its attributes.
18166 Set DIEP to point to a newly allocated die with its information,
18167 except for its child, sibling, and parent fields.
18168 Set HAS_CHILDREN to tell whether the die has children or not. */
18170 static const gdb_byte *
18171 read_full_die (const struct die_reader_specs *reader,
18172 struct die_info **diep, const gdb_byte *info_ptr,
18173 int *has_children)
18175 const gdb_byte *result;
18177 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18179 if (dwarf_die_debug)
18181 fprintf_unfiltered (gdb_stdlog,
18182 "Read die from %s@0x%x of %s:\n",
18183 get_section_name (reader->die_section),
18184 (unsigned) (info_ptr - reader->die_section->buffer),
18185 bfd_get_filename (reader->abfd));
18186 dump_die (*diep, dwarf_die_debug);
18189 return result;
18192 /* Abbreviation tables.
18194 In DWARF version 2, the description of the debugging information is
18195 stored in a separate .debug_abbrev section. Before we read any
18196 dies from a section we read in all abbreviations and install them
18197 in a hash table. */
18199 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18201 struct abbrev_info *
18202 abbrev_table::alloc_abbrev ()
18204 struct abbrev_info *abbrev;
18206 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18207 memset (abbrev, 0, sizeof (struct abbrev_info));
18209 return abbrev;
18212 /* Add an abbreviation to the table. */
18214 void
18215 abbrev_table::add_abbrev (unsigned int abbrev_number,
18216 struct abbrev_info *abbrev)
18218 unsigned int hash_number;
18220 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18221 abbrev->next = m_abbrevs[hash_number];
18222 m_abbrevs[hash_number] = abbrev;
18225 /* Look up an abbrev in the table.
18226 Returns NULL if the abbrev is not found. */
18228 struct abbrev_info *
18229 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18231 unsigned int hash_number;
18232 struct abbrev_info *abbrev;
18234 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18235 abbrev = m_abbrevs[hash_number];
18237 while (abbrev)
18239 if (abbrev->number == abbrev_number)
18240 return abbrev;
18241 abbrev = abbrev->next;
18243 return NULL;
18246 /* Read in an abbrev table. */
18248 static abbrev_table_up
18249 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18250 struct dwarf2_section_info *section,
18251 sect_offset sect_off)
18253 struct objfile *objfile = dwarf2_per_objfile->objfile;
18254 bfd *abfd = get_section_bfd_owner (section);
18255 const gdb_byte *abbrev_ptr;
18256 struct abbrev_info *cur_abbrev;
18257 unsigned int abbrev_number, bytes_read, abbrev_name;
18258 unsigned int abbrev_form;
18259 struct attr_abbrev *cur_attrs;
18260 unsigned int allocated_attrs;
18262 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18264 dwarf2_read_section (objfile, section);
18265 abbrev_ptr = section->buffer + to_underlying (sect_off);
18266 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18267 abbrev_ptr += bytes_read;
18269 allocated_attrs = ATTR_ALLOC_CHUNK;
18270 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18272 /* Loop until we reach an abbrev number of 0. */
18273 while (abbrev_number)
18275 cur_abbrev = abbrev_table->alloc_abbrev ();
18277 /* read in abbrev header */
18278 cur_abbrev->number = abbrev_number;
18279 cur_abbrev->tag
18280 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18281 abbrev_ptr += bytes_read;
18282 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18283 abbrev_ptr += 1;
18285 /* now read in declarations */
18286 for (;;)
18288 LONGEST implicit_const;
18290 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18291 abbrev_ptr += bytes_read;
18292 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18293 abbrev_ptr += bytes_read;
18294 if (abbrev_form == DW_FORM_implicit_const)
18296 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18297 &bytes_read);
18298 abbrev_ptr += bytes_read;
18300 else
18302 /* Initialize it due to a false compiler warning. */
18303 implicit_const = -1;
18306 if (abbrev_name == 0)
18307 break;
18309 if (cur_abbrev->num_attrs == allocated_attrs)
18311 allocated_attrs += ATTR_ALLOC_CHUNK;
18312 cur_attrs
18313 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18316 cur_attrs[cur_abbrev->num_attrs].name
18317 = (enum dwarf_attribute) abbrev_name;
18318 cur_attrs[cur_abbrev->num_attrs].form
18319 = (enum dwarf_form) abbrev_form;
18320 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18321 ++cur_abbrev->num_attrs;
18324 cur_abbrev->attrs =
18325 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18326 cur_abbrev->num_attrs);
18327 memcpy (cur_abbrev->attrs, cur_attrs,
18328 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18330 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18332 /* Get next abbreviation.
18333 Under Irix6 the abbreviations for a compilation unit are not
18334 always properly terminated with an abbrev number of 0.
18335 Exit loop if we encounter an abbreviation which we have
18336 already read (which means we are about to read the abbreviations
18337 for the next compile unit) or if the end of the abbreviation
18338 table is reached. */
18339 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18340 break;
18341 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18342 abbrev_ptr += bytes_read;
18343 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18344 break;
18347 xfree (cur_attrs);
18348 return abbrev_table;
18351 /* Returns nonzero if TAG represents a type that we might generate a partial
18352 symbol for. */
18354 static int
18355 is_type_tag_for_partial (int tag)
18357 switch (tag)
18359 #if 0
18360 /* Some types that would be reasonable to generate partial symbols for,
18361 that we don't at present. */
18362 case DW_TAG_array_type:
18363 case DW_TAG_file_type:
18364 case DW_TAG_ptr_to_member_type:
18365 case DW_TAG_set_type:
18366 case DW_TAG_string_type:
18367 case DW_TAG_subroutine_type:
18368 #endif
18369 case DW_TAG_base_type:
18370 case DW_TAG_class_type:
18371 case DW_TAG_interface_type:
18372 case DW_TAG_enumeration_type:
18373 case DW_TAG_structure_type:
18374 case DW_TAG_subrange_type:
18375 case DW_TAG_typedef:
18376 case DW_TAG_union_type:
18377 return 1;
18378 default:
18379 return 0;
18383 /* Load all DIEs that are interesting for partial symbols into memory. */
18385 static struct partial_die_info *
18386 load_partial_dies (const struct die_reader_specs *reader,
18387 const gdb_byte *info_ptr, int building_psymtab)
18389 struct dwarf2_cu *cu = reader->cu;
18390 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18391 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18392 unsigned int bytes_read;
18393 unsigned int load_all = 0;
18394 int nesting_level = 1;
18396 parent_die = NULL;
18397 last_die = NULL;
18399 gdb_assert (cu->per_cu != NULL);
18400 if (cu->per_cu->load_all_dies)
18401 load_all = 1;
18403 cu->partial_dies
18404 = htab_create_alloc_ex (cu->header.length / 12,
18405 partial_die_hash,
18406 partial_die_eq,
18407 NULL,
18408 &cu->comp_unit_obstack,
18409 hashtab_obstack_allocate,
18410 dummy_obstack_deallocate);
18412 while (1)
18414 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18416 /* A NULL abbrev means the end of a series of children. */
18417 if (abbrev == NULL)
18419 if (--nesting_level == 0)
18420 return first_die;
18422 info_ptr += bytes_read;
18423 last_die = parent_die;
18424 parent_die = parent_die->die_parent;
18425 continue;
18428 /* Check for template arguments. We never save these; if
18429 they're seen, we just mark the parent, and go on our way. */
18430 if (parent_die != NULL
18431 && cu->language == language_cplus
18432 && (abbrev->tag == DW_TAG_template_type_param
18433 || abbrev->tag == DW_TAG_template_value_param))
18435 parent_die->has_template_arguments = 1;
18437 if (!load_all)
18439 /* We don't need a partial DIE for the template argument. */
18440 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18441 continue;
18445 /* We only recurse into c++ subprograms looking for template arguments.
18446 Skip their other children. */
18447 if (!load_all
18448 && cu->language == language_cplus
18449 && parent_die != NULL
18450 && parent_die->tag == DW_TAG_subprogram)
18452 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18453 continue;
18456 /* Check whether this DIE is interesting enough to save. Normally
18457 we would not be interested in members here, but there may be
18458 later variables referencing them via DW_AT_specification (for
18459 static members). */
18460 if (!load_all
18461 && !is_type_tag_for_partial (abbrev->tag)
18462 && abbrev->tag != DW_TAG_constant
18463 && abbrev->tag != DW_TAG_enumerator
18464 && abbrev->tag != DW_TAG_subprogram
18465 && abbrev->tag != DW_TAG_inlined_subroutine
18466 && abbrev->tag != DW_TAG_lexical_block
18467 && abbrev->tag != DW_TAG_variable
18468 && abbrev->tag != DW_TAG_namespace
18469 && abbrev->tag != DW_TAG_module
18470 && abbrev->tag != DW_TAG_member
18471 && abbrev->tag != DW_TAG_imported_unit
18472 && abbrev->tag != DW_TAG_imported_declaration)
18474 /* Otherwise we skip to the next sibling, if any. */
18475 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18476 continue;
18479 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18480 abbrev);
18482 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18484 /* This two-pass algorithm for processing partial symbols has a
18485 high cost in cache pressure. Thus, handle some simple cases
18486 here which cover the majority of C partial symbols. DIEs
18487 which neither have specification tags in them, nor could have
18488 specification tags elsewhere pointing at them, can simply be
18489 processed and discarded.
18491 This segment is also optional; scan_partial_symbols and
18492 add_partial_symbol will handle these DIEs if we chain
18493 them in normally. When compilers which do not emit large
18494 quantities of duplicate debug information are more common,
18495 this code can probably be removed. */
18497 /* Any complete simple types at the top level (pretty much all
18498 of them, for a language without namespaces), can be processed
18499 directly. */
18500 if (parent_die == NULL
18501 && pdi.has_specification == 0
18502 && pdi.is_declaration == 0
18503 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18504 || pdi.tag == DW_TAG_base_type
18505 || pdi.tag == DW_TAG_subrange_type))
18507 if (building_psymtab && pdi.name != NULL)
18508 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18509 VAR_DOMAIN, LOC_TYPEDEF, -1,
18510 psymbol_placement::STATIC,
18511 0, cu->language, objfile);
18512 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18513 continue;
18516 /* The exception for DW_TAG_typedef with has_children above is
18517 a workaround of GCC PR debug/47510. In the case of this complaint
18518 type_name_or_error will error on such types later.
18520 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18521 it could not find the child DIEs referenced later, this is checked
18522 above. In correct DWARF DW_TAG_typedef should have no children. */
18524 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18525 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18526 "- DIE at %s [in module %s]"),
18527 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18529 /* If we're at the second level, and we're an enumerator, and
18530 our parent has no specification (meaning possibly lives in a
18531 namespace elsewhere), then we can add the partial symbol now
18532 instead of queueing it. */
18533 if (pdi.tag == DW_TAG_enumerator
18534 && parent_die != NULL
18535 && parent_die->die_parent == NULL
18536 && parent_die->tag == DW_TAG_enumeration_type
18537 && parent_die->has_specification == 0)
18539 if (pdi.name == NULL)
18540 complaint (_("malformed enumerator DIE ignored"));
18541 else if (building_psymtab)
18542 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18543 VAR_DOMAIN, LOC_CONST, -1,
18544 cu->language == language_cplus
18545 ? psymbol_placement::GLOBAL
18546 : psymbol_placement::STATIC,
18547 0, cu->language, objfile);
18549 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18550 continue;
18553 struct partial_die_info *part_die
18554 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18556 /* We'll save this DIE so link it in. */
18557 part_die->die_parent = parent_die;
18558 part_die->die_sibling = NULL;
18559 part_die->die_child = NULL;
18561 if (last_die && last_die == parent_die)
18562 last_die->die_child = part_die;
18563 else if (last_die)
18564 last_die->die_sibling = part_die;
18566 last_die = part_die;
18568 if (first_die == NULL)
18569 first_die = part_die;
18571 /* Maybe add the DIE to the hash table. Not all DIEs that we
18572 find interesting need to be in the hash table, because we
18573 also have the parent/sibling/child chains; only those that we
18574 might refer to by offset later during partial symbol reading.
18576 For now this means things that might have be the target of a
18577 DW_AT_specification, DW_AT_abstract_origin, or
18578 DW_AT_extension. DW_AT_extension will refer only to
18579 namespaces; DW_AT_abstract_origin refers to functions (and
18580 many things under the function DIE, but we do not recurse
18581 into function DIEs during partial symbol reading) and
18582 possibly variables as well; DW_AT_specification refers to
18583 declarations. Declarations ought to have the DW_AT_declaration
18584 flag. It happens that GCC forgets to put it in sometimes, but
18585 only for functions, not for types.
18587 Adding more things than necessary to the hash table is harmless
18588 except for the performance cost. Adding too few will result in
18589 wasted time in find_partial_die, when we reread the compilation
18590 unit with load_all_dies set. */
18592 if (load_all
18593 || abbrev->tag == DW_TAG_constant
18594 || abbrev->tag == DW_TAG_subprogram
18595 || abbrev->tag == DW_TAG_variable
18596 || abbrev->tag == DW_TAG_namespace
18597 || part_die->is_declaration)
18599 void **slot;
18601 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18602 to_underlying (part_die->sect_off),
18603 INSERT);
18604 *slot = part_die;
18607 /* For some DIEs we want to follow their children (if any). For C
18608 we have no reason to follow the children of structures; for other
18609 languages we have to, so that we can get at method physnames
18610 to infer fully qualified class names, for DW_AT_specification,
18611 and for C++ template arguments. For C++, we also look one level
18612 inside functions to find template arguments (if the name of the
18613 function does not already contain the template arguments).
18615 For Ada, we need to scan the children of subprograms and lexical
18616 blocks as well because Ada allows the definition of nested
18617 entities that could be interesting for the debugger, such as
18618 nested subprograms for instance. */
18619 if (last_die->has_children
18620 && (load_all
18621 || last_die->tag == DW_TAG_namespace
18622 || last_die->tag == DW_TAG_module
18623 || last_die->tag == DW_TAG_enumeration_type
18624 || (cu->language == language_cplus
18625 && last_die->tag == DW_TAG_subprogram
18626 && (last_die->name == NULL
18627 || strchr (last_die->name, '<') == NULL))
18628 || (cu->language != language_c
18629 && (last_die->tag == DW_TAG_class_type
18630 || last_die->tag == DW_TAG_interface_type
18631 || last_die->tag == DW_TAG_structure_type
18632 || last_die->tag == DW_TAG_union_type))
18633 || (cu->language == language_ada
18634 && (last_die->tag == DW_TAG_subprogram
18635 || last_die->tag == DW_TAG_lexical_block))))
18637 nesting_level++;
18638 parent_die = last_die;
18639 continue;
18642 /* Otherwise we skip to the next sibling, if any. */
18643 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18645 /* Back to the top, do it again. */
18649 partial_die_info::partial_die_info (sect_offset sect_off_,
18650 struct abbrev_info *abbrev)
18651 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18655 /* Read a minimal amount of information into the minimal die structure.
18656 INFO_PTR should point just after the initial uleb128 of a DIE. */
18658 const gdb_byte *
18659 partial_die_info::read (const struct die_reader_specs *reader,
18660 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18662 struct dwarf2_cu *cu = reader->cu;
18663 struct dwarf2_per_objfile *dwarf2_per_objfile
18664 = cu->per_cu->dwarf2_per_objfile;
18665 unsigned int i;
18666 int has_low_pc_attr = 0;
18667 int has_high_pc_attr = 0;
18668 int high_pc_relative = 0;
18670 for (i = 0; i < abbrev.num_attrs; ++i)
18672 struct attribute attr;
18674 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18676 /* Store the data if it is of an attribute we want to keep in a
18677 partial symbol table. */
18678 switch (attr.name)
18680 case DW_AT_name:
18681 switch (tag)
18683 case DW_TAG_compile_unit:
18684 case DW_TAG_partial_unit:
18685 case DW_TAG_type_unit:
18686 /* Compilation units have a DW_AT_name that is a filename, not
18687 a source language identifier. */
18688 case DW_TAG_enumeration_type:
18689 case DW_TAG_enumerator:
18690 /* These tags always have simple identifiers already; no need
18691 to canonicalize them. */
18692 name = DW_STRING (&attr);
18693 break;
18694 default:
18696 struct objfile *objfile = dwarf2_per_objfile->objfile;
18698 name
18699 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18700 &objfile->per_bfd->storage_obstack);
18702 break;
18704 break;
18705 case DW_AT_linkage_name:
18706 case DW_AT_MIPS_linkage_name:
18707 /* Note that both forms of linkage name might appear. We
18708 assume they will be the same, and we only store the last
18709 one we see. */
18710 if (cu->language == language_ada)
18711 name = DW_STRING (&attr);
18712 linkage_name = DW_STRING (&attr);
18713 break;
18714 case DW_AT_low_pc:
18715 has_low_pc_attr = 1;
18716 lowpc = attr_value_as_address (&attr);
18717 break;
18718 case DW_AT_high_pc:
18719 has_high_pc_attr = 1;
18720 highpc = attr_value_as_address (&attr);
18721 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18722 high_pc_relative = 1;
18723 break;
18724 case DW_AT_location:
18725 /* Support the .debug_loc offsets. */
18726 if (attr_form_is_block (&attr))
18728 d.locdesc = DW_BLOCK (&attr);
18730 else if (attr_form_is_section_offset (&attr))
18732 dwarf2_complex_location_expr_complaint ();
18734 else
18736 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18737 "partial symbol information");
18739 break;
18740 case DW_AT_external:
18741 is_external = DW_UNSND (&attr);
18742 break;
18743 case DW_AT_declaration:
18744 is_declaration = DW_UNSND (&attr);
18745 break;
18746 case DW_AT_type:
18747 has_type = 1;
18748 break;
18749 case DW_AT_abstract_origin:
18750 case DW_AT_specification:
18751 case DW_AT_extension:
18752 has_specification = 1;
18753 spec_offset = dwarf2_get_ref_die_offset (&attr);
18754 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18755 || cu->per_cu->is_dwz);
18756 break;
18757 case DW_AT_sibling:
18758 /* Ignore absolute siblings, they might point outside of
18759 the current compile unit. */
18760 if (attr.form == DW_FORM_ref_addr)
18761 complaint (_("ignoring absolute DW_AT_sibling"));
18762 else
18764 const gdb_byte *buffer = reader->buffer;
18765 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18766 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18768 if (sibling_ptr < info_ptr)
18769 complaint (_("DW_AT_sibling points backwards"));
18770 else if (sibling_ptr > reader->buffer_end)
18771 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18772 else
18773 sibling = sibling_ptr;
18775 break;
18776 case DW_AT_byte_size:
18777 has_byte_size = 1;
18778 break;
18779 case DW_AT_const_value:
18780 has_const_value = 1;
18781 break;
18782 case DW_AT_calling_convention:
18783 /* DWARF doesn't provide a way to identify a program's source-level
18784 entry point. DW_AT_calling_convention attributes are only meant
18785 to describe functions' calling conventions.
18787 However, because it's a necessary piece of information in
18788 Fortran, and before DWARF 4 DW_CC_program was the only
18789 piece of debugging information whose definition refers to
18790 a 'main program' at all, several compilers marked Fortran
18791 main programs with DW_CC_program --- even when those
18792 functions use the standard calling conventions.
18794 Although DWARF now specifies a way to provide this
18795 information, we support this practice for backward
18796 compatibility. */
18797 if (DW_UNSND (&attr) == DW_CC_program
18798 && cu->language == language_fortran)
18799 main_subprogram = 1;
18800 break;
18801 case DW_AT_inline:
18802 if (DW_UNSND (&attr) == DW_INL_inlined
18803 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18804 may_be_inlined = 1;
18805 break;
18807 case DW_AT_import:
18808 if (tag == DW_TAG_imported_unit)
18810 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18811 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18812 || cu->per_cu->is_dwz);
18814 break;
18816 case DW_AT_main_subprogram:
18817 main_subprogram = DW_UNSND (&attr);
18818 break;
18820 case DW_AT_ranges:
18822 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18823 but that requires a full DIE, so instead we just
18824 reimplement it. */
18825 int need_ranges_base = tag != DW_TAG_compile_unit;
18826 unsigned int ranges_offset = (DW_UNSND (&attr)
18827 + (need_ranges_base
18828 ? cu->ranges_base
18829 : 0));
18831 /* Value of the DW_AT_ranges attribute is the offset in the
18832 .debug_ranges section. */
18833 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18834 nullptr))
18835 has_pc_info = 1;
18837 break;
18839 default:
18840 break;
18844 if (high_pc_relative)
18845 highpc += lowpc;
18847 if (has_low_pc_attr && has_high_pc_attr)
18849 /* When using the GNU linker, .gnu.linkonce. sections are used to
18850 eliminate duplicate copies of functions and vtables and such.
18851 The linker will arbitrarily choose one and discard the others.
18852 The AT_*_pc values for such functions refer to local labels in
18853 these sections. If the section from that file was discarded, the
18854 labels are not in the output, so the relocs get a value of 0.
18855 If this is a discarded function, mark the pc bounds as invalid,
18856 so that GDB will ignore it. */
18857 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18859 struct objfile *objfile = dwarf2_per_objfile->objfile;
18860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18862 complaint (_("DW_AT_low_pc %s is zero "
18863 "for DIE at %s [in module %s]"),
18864 paddress (gdbarch, lowpc),
18865 sect_offset_str (sect_off),
18866 objfile_name (objfile));
18868 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18869 else if (lowpc >= highpc)
18871 struct objfile *objfile = dwarf2_per_objfile->objfile;
18872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18874 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18875 "for DIE at %s [in module %s]"),
18876 paddress (gdbarch, lowpc),
18877 paddress (gdbarch, highpc),
18878 sect_offset_str (sect_off),
18879 objfile_name (objfile));
18881 else
18882 has_pc_info = 1;
18885 return info_ptr;
18888 /* Find a cached partial DIE at OFFSET in CU. */
18890 struct partial_die_info *
18891 dwarf2_cu::find_partial_die (sect_offset sect_off)
18893 struct partial_die_info *lookup_die = NULL;
18894 struct partial_die_info part_die (sect_off);
18896 lookup_die = ((struct partial_die_info *)
18897 htab_find_with_hash (partial_dies, &part_die,
18898 to_underlying (sect_off)));
18900 return lookup_die;
18903 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18904 except in the case of .debug_types DIEs which do not reference
18905 outside their CU (they do however referencing other types via
18906 DW_FORM_ref_sig8). */
18908 static struct partial_die_info *
18909 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18911 struct dwarf2_per_objfile *dwarf2_per_objfile
18912 = cu->per_cu->dwarf2_per_objfile;
18913 struct objfile *objfile = dwarf2_per_objfile->objfile;
18914 struct dwarf2_per_cu_data *per_cu = NULL;
18915 struct partial_die_info *pd = NULL;
18917 if (offset_in_dwz == cu->per_cu->is_dwz
18918 && offset_in_cu_p (&cu->header, sect_off))
18920 pd = cu->find_partial_die (sect_off);
18921 if (pd != NULL)
18922 return pd;
18923 /* We missed recording what we needed.
18924 Load all dies and try again. */
18925 per_cu = cu->per_cu;
18927 else
18929 /* TUs don't reference other CUs/TUs (except via type signatures). */
18930 if (cu->per_cu->is_debug_types)
18932 error (_("Dwarf Error: Type Unit at offset %s contains"
18933 " external reference to offset %s [in module %s].\n"),
18934 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18935 bfd_get_filename (objfile->obfd));
18937 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18938 dwarf2_per_objfile);
18940 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18941 load_partial_comp_unit (per_cu);
18943 per_cu->cu->last_used = 0;
18944 pd = per_cu->cu->find_partial_die (sect_off);
18947 /* If we didn't find it, and not all dies have been loaded,
18948 load them all and try again. */
18950 if (pd == NULL && per_cu->load_all_dies == 0)
18952 per_cu->load_all_dies = 1;
18954 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18955 THIS_CU->cu may already be in use. So we can't just free it and
18956 replace its DIEs with the ones we read in. Instead, we leave those
18957 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18958 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18959 set. */
18960 load_partial_comp_unit (per_cu);
18962 pd = per_cu->cu->find_partial_die (sect_off);
18965 if (pd == NULL)
18966 internal_error (__FILE__, __LINE__,
18967 _("could not find partial DIE %s "
18968 "in cache [from module %s]\n"),
18969 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18970 return pd;
18973 /* See if we can figure out if the class lives in a namespace. We do
18974 this by looking for a member function; its demangled name will
18975 contain namespace info, if there is any. */
18977 static void
18978 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18979 struct dwarf2_cu *cu)
18981 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18982 what template types look like, because the demangler
18983 frequently doesn't give the same name as the debug info. We
18984 could fix this by only using the demangled name to get the
18985 prefix (but see comment in read_structure_type). */
18987 struct partial_die_info *real_pdi;
18988 struct partial_die_info *child_pdi;
18990 /* If this DIE (this DIE's specification, if any) has a parent, then
18991 we should not do this. We'll prepend the parent's fully qualified
18992 name when we create the partial symbol. */
18994 real_pdi = struct_pdi;
18995 while (real_pdi->has_specification)
18996 real_pdi = find_partial_die (real_pdi->spec_offset,
18997 real_pdi->spec_is_dwz, cu);
18999 if (real_pdi->die_parent != NULL)
19000 return;
19002 for (child_pdi = struct_pdi->die_child;
19003 child_pdi != NULL;
19004 child_pdi = child_pdi->die_sibling)
19006 if (child_pdi->tag == DW_TAG_subprogram
19007 && child_pdi->linkage_name != NULL)
19009 char *actual_class_name
19010 = language_class_name_from_physname (cu->language_defn,
19011 child_pdi->linkage_name);
19012 if (actual_class_name != NULL)
19014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19015 struct_pdi->name
19016 = ((const char *)
19017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19018 actual_class_name,
19019 strlen (actual_class_name)));
19020 xfree (actual_class_name);
19022 break;
19027 void
19028 partial_die_info::fixup (struct dwarf2_cu *cu)
19030 /* Once we've fixed up a die, there's no point in doing so again.
19031 This also avoids a memory leak if we were to call
19032 guess_partial_die_structure_name multiple times. */
19033 if (fixup_called)
19034 return;
19036 /* If we found a reference attribute and the DIE has no name, try
19037 to find a name in the referred to DIE. */
19039 if (name == NULL && has_specification)
19041 struct partial_die_info *spec_die;
19043 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19045 spec_die->fixup (cu);
19047 if (spec_die->name)
19049 name = spec_die->name;
19051 /* Copy DW_AT_external attribute if it is set. */
19052 if (spec_die->is_external)
19053 is_external = spec_die->is_external;
19057 /* Set default names for some unnamed DIEs. */
19059 if (name == NULL && tag == DW_TAG_namespace)
19060 name = CP_ANONYMOUS_NAMESPACE_STR;
19062 /* If there is no parent die to provide a namespace, and there are
19063 children, see if we can determine the namespace from their linkage
19064 name. */
19065 if (cu->language == language_cplus
19066 && !VEC_empty (dwarf2_section_info_def,
19067 cu->per_cu->dwarf2_per_objfile->types)
19068 && die_parent == NULL
19069 && has_children
19070 && (tag == DW_TAG_class_type
19071 || tag == DW_TAG_structure_type
19072 || tag == DW_TAG_union_type))
19073 guess_partial_die_structure_name (this, cu);
19075 /* GCC might emit a nameless struct or union that has a linkage
19076 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19077 if (name == NULL
19078 && (tag == DW_TAG_class_type
19079 || tag == DW_TAG_interface_type
19080 || tag == DW_TAG_structure_type
19081 || tag == DW_TAG_union_type)
19082 && linkage_name != NULL)
19084 char *demangled;
19086 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19087 if (demangled)
19089 const char *base;
19091 /* Strip any leading namespaces/classes, keep only the base name.
19092 DW_AT_name for named DIEs does not contain the prefixes. */
19093 base = strrchr (demangled, ':');
19094 if (base && base > demangled && base[-1] == ':')
19095 base++;
19096 else
19097 base = demangled;
19099 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19100 name
19101 = ((const char *)
19102 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19103 base, strlen (base)));
19104 xfree (demangled);
19108 fixup_called = 1;
19111 /* Read an attribute value described by an attribute form. */
19113 static const gdb_byte *
19114 read_attribute_value (const struct die_reader_specs *reader,
19115 struct attribute *attr, unsigned form,
19116 LONGEST implicit_const, const gdb_byte *info_ptr)
19118 struct dwarf2_cu *cu = reader->cu;
19119 struct dwarf2_per_objfile *dwarf2_per_objfile
19120 = cu->per_cu->dwarf2_per_objfile;
19121 struct objfile *objfile = dwarf2_per_objfile->objfile;
19122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19123 bfd *abfd = reader->abfd;
19124 struct comp_unit_head *cu_header = &cu->header;
19125 unsigned int bytes_read;
19126 struct dwarf_block *blk;
19128 attr->form = (enum dwarf_form) form;
19129 switch (form)
19131 case DW_FORM_ref_addr:
19132 if (cu->header.version == 2)
19133 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19134 else
19135 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19136 &cu->header, &bytes_read);
19137 info_ptr += bytes_read;
19138 break;
19139 case DW_FORM_GNU_ref_alt:
19140 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19141 info_ptr += bytes_read;
19142 break;
19143 case DW_FORM_addr:
19144 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19145 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19146 info_ptr += bytes_read;
19147 break;
19148 case DW_FORM_block2:
19149 blk = dwarf_alloc_block (cu);
19150 blk->size = read_2_bytes (abfd, info_ptr);
19151 info_ptr += 2;
19152 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19153 info_ptr += blk->size;
19154 DW_BLOCK (attr) = blk;
19155 break;
19156 case DW_FORM_block4:
19157 blk = dwarf_alloc_block (cu);
19158 blk->size = read_4_bytes (abfd, info_ptr);
19159 info_ptr += 4;
19160 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19161 info_ptr += blk->size;
19162 DW_BLOCK (attr) = blk;
19163 break;
19164 case DW_FORM_data2:
19165 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19166 info_ptr += 2;
19167 break;
19168 case DW_FORM_data4:
19169 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19170 info_ptr += 4;
19171 break;
19172 case DW_FORM_data8:
19173 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19174 info_ptr += 8;
19175 break;
19176 case DW_FORM_data16:
19177 blk = dwarf_alloc_block (cu);
19178 blk->size = 16;
19179 blk->data = read_n_bytes (abfd, info_ptr, 16);
19180 info_ptr += 16;
19181 DW_BLOCK (attr) = blk;
19182 break;
19183 case DW_FORM_sec_offset:
19184 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19185 info_ptr += bytes_read;
19186 break;
19187 case DW_FORM_string:
19188 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19189 DW_STRING_IS_CANONICAL (attr) = 0;
19190 info_ptr += bytes_read;
19191 break;
19192 case DW_FORM_strp:
19193 if (!cu->per_cu->is_dwz)
19195 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19196 abfd, info_ptr, cu_header,
19197 &bytes_read);
19198 DW_STRING_IS_CANONICAL (attr) = 0;
19199 info_ptr += bytes_read;
19200 break;
19202 /* FALLTHROUGH */
19203 case DW_FORM_line_strp:
19204 if (!cu->per_cu->is_dwz)
19206 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19207 abfd, info_ptr,
19208 cu_header, &bytes_read);
19209 DW_STRING_IS_CANONICAL (attr) = 0;
19210 info_ptr += bytes_read;
19211 break;
19213 /* FALLTHROUGH */
19214 case DW_FORM_GNU_strp_alt:
19216 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19217 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19218 &bytes_read);
19220 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19221 dwz, str_offset);
19222 DW_STRING_IS_CANONICAL (attr) = 0;
19223 info_ptr += bytes_read;
19225 break;
19226 case DW_FORM_exprloc:
19227 case DW_FORM_block:
19228 blk = dwarf_alloc_block (cu);
19229 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19230 info_ptr += bytes_read;
19231 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19232 info_ptr += blk->size;
19233 DW_BLOCK (attr) = blk;
19234 break;
19235 case DW_FORM_block1:
19236 blk = dwarf_alloc_block (cu);
19237 blk->size = read_1_byte (abfd, info_ptr);
19238 info_ptr += 1;
19239 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19240 info_ptr += blk->size;
19241 DW_BLOCK (attr) = blk;
19242 break;
19243 case DW_FORM_data1:
19244 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19245 info_ptr += 1;
19246 break;
19247 case DW_FORM_flag:
19248 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19249 info_ptr += 1;
19250 break;
19251 case DW_FORM_flag_present:
19252 DW_UNSND (attr) = 1;
19253 break;
19254 case DW_FORM_sdata:
19255 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19256 info_ptr += bytes_read;
19257 break;
19258 case DW_FORM_udata:
19259 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19260 info_ptr += bytes_read;
19261 break;
19262 case DW_FORM_ref1:
19263 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19264 + read_1_byte (abfd, info_ptr));
19265 info_ptr += 1;
19266 break;
19267 case DW_FORM_ref2:
19268 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19269 + read_2_bytes (abfd, info_ptr));
19270 info_ptr += 2;
19271 break;
19272 case DW_FORM_ref4:
19273 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19274 + read_4_bytes (abfd, info_ptr));
19275 info_ptr += 4;
19276 break;
19277 case DW_FORM_ref8:
19278 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19279 + read_8_bytes (abfd, info_ptr));
19280 info_ptr += 8;
19281 break;
19282 case DW_FORM_ref_sig8:
19283 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19284 info_ptr += 8;
19285 break;
19286 case DW_FORM_ref_udata:
19287 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19288 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19289 info_ptr += bytes_read;
19290 break;
19291 case DW_FORM_indirect:
19292 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19293 info_ptr += bytes_read;
19294 if (form == DW_FORM_implicit_const)
19296 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19297 info_ptr += bytes_read;
19299 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19300 info_ptr);
19301 break;
19302 case DW_FORM_implicit_const:
19303 DW_SND (attr) = implicit_const;
19304 break;
19305 case DW_FORM_addrx:
19306 case DW_FORM_GNU_addr_index:
19307 if (reader->dwo_file == NULL)
19309 /* For now flag a hard error.
19310 Later we can turn this into a complaint. */
19311 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19312 dwarf_form_name (form),
19313 bfd_get_filename (abfd));
19315 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19316 info_ptr += bytes_read;
19317 break;
19318 case DW_FORM_strx:
19319 case DW_FORM_strx1:
19320 case DW_FORM_strx2:
19321 case DW_FORM_strx3:
19322 case DW_FORM_strx4:
19323 case DW_FORM_GNU_str_index:
19324 if (reader->dwo_file == NULL)
19326 /* For now flag a hard error.
19327 Later we can turn this into a complaint if warranted. */
19328 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19329 dwarf_form_name (form),
19330 bfd_get_filename (abfd));
19333 ULONGEST str_index;
19334 if (form == DW_FORM_strx1)
19336 str_index = read_1_byte (abfd, info_ptr);
19337 info_ptr += 1;
19339 else if (form == DW_FORM_strx2)
19341 str_index = read_2_bytes (abfd, info_ptr);
19342 info_ptr += 2;
19344 else if (form == DW_FORM_strx3)
19346 str_index = read_3_bytes (abfd, info_ptr);
19347 info_ptr += 3;
19349 else if (form == DW_FORM_strx4)
19351 str_index = read_4_bytes (abfd, info_ptr);
19352 info_ptr += 4;
19354 else
19356 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19357 info_ptr += bytes_read;
19359 DW_STRING (attr) = read_str_index (reader, str_index);
19360 DW_STRING_IS_CANONICAL (attr) = 0;
19362 break;
19363 default:
19364 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19365 dwarf_form_name (form),
19366 bfd_get_filename (abfd));
19369 /* Super hack. */
19370 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19371 attr->form = DW_FORM_GNU_ref_alt;
19373 /* We have seen instances where the compiler tried to emit a byte
19374 size attribute of -1 which ended up being encoded as an unsigned
19375 0xffffffff. Although 0xffffffff is technically a valid size value,
19376 an object of this size seems pretty unlikely so we can relatively
19377 safely treat these cases as if the size attribute was invalid and
19378 treat them as zero by default. */
19379 if (attr->name == DW_AT_byte_size
19380 && form == DW_FORM_data4
19381 && DW_UNSND (attr) >= 0xffffffff)
19383 complaint
19384 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19385 hex_string (DW_UNSND (attr)));
19386 DW_UNSND (attr) = 0;
19389 return info_ptr;
19392 /* Read an attribute described by an abbreviated attribute. */
19394 static const gdb_byte *
19395 read_attribute (const struct die_reader_specs *reader,
19396 struct attribute *attr, struct attr_abbrev *abbrev,
19397 const gdb_byte *info_ptr)
19399 attr->name = abbrev->name;
19400 return read_attribute_value (reader, attr, abbrev->form,
19401 abbrev->implicit_const, info_ptr);
19404 /* Read dwarf information from a buffer. */
19406 static unsigned int
19407 read_1_byte (bfd *abfd, const gdb_byte *buf)
19409 return bfd_get_8 (abfd, buf);
19412 static int
19413 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19415 return bfd_get_signed_8 (abfd, buf);
19418 static unsigned int
19419 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19421 return bfd_get_16 (abfd, buf);
19424 static int
19425 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19427 return bfd_get_signed_16 (abfd, buf);
19430 static unsigned int
19431 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19433 unsigned int result = 0;
19434 for (int i = 0; i < 3; ++i)
19436 unsigned char byte = bfd_get_8 (abfd, buf);
19437 buf++;
19438 result |= ((unsigned int) byte << (i * 8));
19440 return result;
19443 static unsigned int
19444 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19446 return bfd_get_32 (abfd, buf);
19449 static int
19450 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19452 return bfd_get_signed_32 (abfd, buf);
19455 static ULONGEST
19456 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19458 return bfd_get_64 (abfd, buf);
19461 static CORE_ADDR
19462 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19463 unsigned int *bytes_read)
19465 struct comp_unit_head *cu_header = &cu->header;
19466 CORE_ADDR retval = 0;
19468 if (cu_header->signed_addr_p)
19470 switch (cu_header->addr_size)
19472 case 2:
19473 retval = bfd_get_signed_16 (abfd, buf);
19474 break;
19475 case 4:
19476 retval = bfd_get_signed_32 (abfd, buf);
19477 break;
19478 case 8:
19479 retval = bfd_get_signed_64 (abfd, buf);
19480 break;
19481 default:
19482 internal_error (__FILE__, __LINE__,
19483 _("read_address: bad switch, signed [in module %s]"),
19484 bfd_get_filename (abfd));
19487 else
19489 switch (cu_header->addr_size)
19491 case 2:
19492 retval = bfd_get_16 (abfd, buf);
19493 break;
19494 case 4:
19495 retval = bfd_get_32 (abfd, buf);
19496 break;
19497 case 8:
19498 retval = bfd_get_64 (abfd, buf);
19499 break;
19500 default:
19501 internal_error (__FILE__, __LINE__,
19502 _("read_address: bad switch, "
19503 "unsigned [in module %s]"),
19504 bfd_get_filename (abfd));
19508 *bytes_read = cu_header->addr_size;
19509 return retval;
19512 /* Read the initial length from a section. The (draft) DWARF 3
19513 specification allows the initial length to take up either 4 bytes
19514 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19515 bytes describe the length and all offsets will be 8 bytes in length
19516 instead of 4.
19518 An older, non-standard 64-bit format is also handled by this
19519 function. The older format in question stores the initial length
19520 as an 8-byte quantity without an escape value. Lengths greater
19521 than 2^32 aren't very common which means that the initial 4 bytes
19522 is almost always zero. Since a length value of zero doesn't make
19523 sense for the 32-bit format, this initial zero can be considered to
19524 be an escape value which indicates the presence of the older 64-bit
19525 format. As written, the code can't detect (old format) lengths
19526 greater than 4GB. If it becomes necessary to handle lengths
19527 somewhat larger than 4GB, we could allow other small values (such
19528 as the non-sensical values of 1, 2, and 3) to also be used as
19529 escape values indicating the presence of the old format.
19531 The value returned via bytes_read should be used to increment the
19532 relevant pointer after calling read_initial_length().
19534 [ Note: read_initial_length() and read_offset() are based on the
19535 document entitled "DWARF Debugging Information Format", revision
19536 3, draft 8, dated November 19, 2001. This document was obtained
19537 from:
19539 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19541 This document is only a draft and is subject to change. (So beware.)
19543 Details regarding the older, non-standard 64-bit format were
19544 determined empirically by examining 64-bit ELF files produced by
19545 the SGI toolchain on an IRIX 6.5 machine.
19547 - Kevin, July 16, 2002
19548 ] */
19550 static LONGEST
19551 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19553 LONGEST length = bfd_get_32 (abfd, buf);
19555 if (length == 0xffffffff)
19557 length = bfd_get_64 (abfd, buf + 4);
19558 *bytes_read = 12;
19560 else if (length == 0)
19562 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19563 length = bfd_get_64 (abfd, buf);
19564 *bytes_read = 8;
19566 else
19568 *bytes_read = 4;
19571 return length;
19574 /* Cover function for read_initial_length.
19575 Returns the length of the object at BUF, and stores the size of the
19576 initial length in *BYTES_READ and stores the size that offsets will be in
19577 *OFFSET_SIZE.
19578 If the initial length size is not equivalent to that specified in
19579 CU_HEADER then issue a complaint.
19580 This is useful when reading non-comp-unit headers. */
19582 static LONGEST
19583 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19584 const struct comp_unit_head *cu_header,
19585 unsigned int *bytes_read,
19586 unsigned int *offset_size)
19588 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19590 gdb_assert (cu_header->initial_length_size == 4
19591 || cu_header->initial_length_size == 8
19592 || cu_header->initial_length_size == 12);
19594 if (cu_header->initial_length_size != *bytes_read)
19595 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19597 *offset_size = (*bytes_read == 4) ? 4 : 8;
19598 return length;
19601 /* Read an offset from the data stream. The size of the offset is
19602 given by cu_header->offset_size. */
19604 static LONGEST
19605 read_offset (bfd *abfd, const gdb_byte *buf,
19606 const struct comp_unit_head *cu_header,
19607 unsigned int *bytes_read)
19609 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19611 *bytes_read = cu_header->offset_size;
19612 return offset;
19615 /* Read an offset from the data stream. */
19617 static LONGEST
19618 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19620 LONGEST retval = 0;
19622 switch (offset_size)
19624 case 4:
19625 retval = bfd_get_32 (abfd, buf);
19626 break;
19627 case 8:
19628 retval = bfd_get_64 (abfd, buf);
19629 break;
19630 default:
19631 internal_error (__FILE__, __LINE__,
19632 _("read_offset_1: bad switch [in module %s]"),
19633 bfd_get_filename (abfd));
19636 return retval;
19639 static const gdb_byte *
19640 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19642 /* If the size of a host char is 8 bits, we can return a pointer
19643 to the buffer, otherwise we have to copy the data to a buffer
19644 allocated on the temporary obstack. */
19645 gdb_assert (HOST_CHAR_BIT == 8);
19646 return buf;
19649 static const char *
19650 read_direct_string (bfd *abfd, const gdb_byte *buf,
19651 unsigned int *bytes_read_ptr)
19653 /* If the size of a host char is 8 bits, we can return a pointer
19654 to the string, otherwise we have to copy the string to a buffer
19655 allocated on the temporary obstack. */
19656 gdb_assert (HOST_CHAR_BIT == 8);
19657 if (*buf == '\0')
19659 *bytes_read_ptr = 1;
19660 return NULL;
19662 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19663 return (const char *) buf;
19666 /* Return pointer to string at section SECT offset STR_OFFSET with error
19667 reporting strings FORM_NAME and SECT_NAME. */
19669 static const char *
19670 read_indirect_string_at_offset_from (struct objfile *objfile,
19671 bfd *abfd, LONGEST str_offset,
19672 struct dwarf2_section_info *sect,
19673 const char *form_name,
19674 const char *sect_name)
19676 dwarf2_read_section (objfile, sect);
19677 if (sect->buffer == NULL)
19678 error (_("%s used without %s section [in module %s]"),
19679 form_name, sect_name, bfd_get_filename (abfd));
19680 if (str_offset >= sect->size)
19681 error (_("%s pointing outside of %s section [in module %s]"),
19682 form_name, sect_name, bfd_get_filename (abfd));
19683 gdb_assert (HOST_CHAR_BIT == 8);
19684 if (sect->buffer[str_offset] == '\0')
19685 return NULL;
19686 return (const char *) (sect->buffer + str_offset);
19689 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19691 static const char *
19692 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19693 bfd *abfd, LONGEST str_offset)
19695 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19696 abfd, str_offset,
19697 &dwarf2_per_objfile->str,
19698 "DW_FORM_strp", ".debug_str");
19701 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19703 static const char *
19704 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19705 bfd *abfd, LONGEST str_offset)
19707 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19708 abfd, str_offset,
19709 &dwarf2_per_objfile->line_str,
19710 "DW_FORM_line_strp",
19711 ".debug_line_str");
19714 /* Read a string at offset STR_OFFSET in the .debug_str section from
19715 the .dwz file DWZ. Throw an error if the offset is too large. If
19716 the string consists of a single NUL byte, return NULL; otherwise
19717 return a pointer to the string. */
19719 static const char *
19720 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19721 LONGEST str_offset)
19723 dwarf2_read_section (objfile, &dwz->str);
19725 if (dwz->str.buffer == NULL)
19726 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19727 "section [in module %s]"),
19728 bfd_get_filename (dwz->dwz_bfd));
19729 if (str_offset >= dwz->str.size)
19730 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19731 ".debug_str section [in module %s]"),
19732 bfd_get_filename (dwz->dwz_bfd));
19733 gdb_assert (HOST_CHAR_BIT == 8);
19734 if (dwz->str.buffer[str_offset] == '\0')
19735 return NULL;
19736 return (const char *) (dwz->str.buffer + str_offset);
19739 /* Return pointer to string at .debug_str offset as read from BUF.
19740 BUF is assumed to be in a compilation unit described by CU_HEADER.
19741 Return *BYTES_READ_PTR count of bytes read from BUF. */
19743 static const char *
19744 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19745 const gdb_byte *buf,
19746 const struct comp_unit_head *cu_header,
19747 unsigned int *bytes_read_ptr)
19749 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19751 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19754 /* Return pointer to string at .debug_line_str offset as read from BUF.
19755 BUF is assumed to be in a compilation unit described by CU_HEADER.
19756 Return *BYTES_READ_PTR count of bytes read from BUF. */
19758 static const char *
19759 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19760 bfd *abfd, const gdb_byte *buf,
19761 const struct comp_unit_head *cu_header,
19762 unsigned int *bytes_read_ptr)
19764 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19766 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19767 str_offset);
19770 ULONGEST
19771 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19772 unsigned int *bytes_read_ptr)
19774 ULONGEST result;
19775 unsigned int num_read;
19776 int shift;
19777 unsigned char byte;
19779 result = 0;
19780 shift = 0;
19781 num_read = 0;
19782 while (1)
19784 byte = bfd_get_8 (abfd, buf);
19785 buf++;
19786 num_read++;
19787 result |= ((ULONGEST) (byte & 127) << shift);
19788 if ((byte & 128) == 0)
19790 break;
19792 shift += 7;
19794 *bytes_read_ptr = num_read;
19795 return result;
19798 static LONGEST
19799 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19800 unsigned int *bytes_read_ptr)
19802 ULONGEST result;
19803 int shift, num_read;
19804 unsigned char byte;
19806 result = 0;
19807 shift = 0;
19808 num_read = 0;
19809 while (1)
19811 byte = bfd_get_8 (abfd, buf);
19812 buf++;
19813 num_read++;
19814 result |= ((ULONGEST) (byte & 127) << shift);
19815 shift += 7;
19816 if ((byte & 128) == 0)
19818 break;
19821 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19822 result |= -(((ULONGEST) 1) << shift);
19823 *bytes_read_ptr = num_read;
19824 return result;
19827 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19828 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19829 ADDR_SIZE is the size of addresses from the CU header. */
19831 static CORE_ADDR
19832 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19833 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19835 struct objfile *objfile = dwarf2_per_objfile->objfile;
19836 bfd *abfd = objfile->obfd;
19837 const gdb_byte *info_ptr;
19839 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19840 if (dwarf2_per_objfile->addr.buffer == NULL)
19841 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19842 objfile_name (objfile));
19843 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19844 error (_("DW_FORM_addr_index pointing outside of "
19845 ".debug_addr section [in module %s]"),
19846 objfile_name (objfile));
19847 info_ptr = (dwarf2_per_objfile->addr.buffer
19848 + addr_base + addr_index * addr_size);
19849 if (addr_size == 4)
19850 return bfd_get_32 (abfd, info_ptr);
19851 else
19852 return bfd_get_64 (abfd, info_ptr);
19855 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19857 static CORE_ADDR
19858 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19860 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19861 cu->addr_base, cu->header.addr_size);
19864 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19866 static CORE_ADDR
19867 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19868 unsigned int *bytes_read)
19870 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19871 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19873 return read_addr_index (cu, addr_index);
19876 /* Data structure to pass results from dwarf2_read_addr_index_reader
19877 back to dwarf2_read_addr_index. */
19879 struct dwarf2_read_addr_index_data
19881 ULONGEST addr_base;
19882 int addr_size;
19885 /* die_reader_func for dwarf2_read_addr_index. */
19887 static void
19888 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19889 const gdb_byte *info_ptr,
19890 struct die_info *comp_unit_die,
19891 int has_children,
19892 void *data)
19894 struct dwarf2_cu *cu = reader->cu;
19895 struct dwarf2_read_addr_index_data *aidata =
19896 (struct dwarf2_read_addr_index_data *) data;
19898 aidata->addr_base = cu->addr_base;
19899 aidata->addr_size = cu->header.addr_size;
19902 /* Given an index in .debug_addr, fetch the value.
19903 NOTE: This can be called during dwarf expression evaluation,
19904 long after the debug information has been read, and thus per_cu->cu
19905 may no longer exist. */
19907 CORE_ADDR
19908 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19909 unsigned int addr_index)
19911 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19912 struct dwarf2_cu *cu = per_cu->cu;
19913 ULONGEST addr_base;
19914 int addr_size;
19916 /* We need addr_base and addr_size.
19917 If we don't have PER_CU->cu, we have to get it.
19918 Nasty, but the alternative is storing the needed info in PER_CU,
19919 which at this point doesn't seem justified: it's not clear how frequently
19920 it would get used and it would increase the size of every PER_CU.
19921 Entry points like dwarf2_per_cu_addr_size do a similar thing
19922 so we're not in uncharted territory here.
19923 Alas we need to be a bit more complicated as addr_base is contained
19924 in the DIE.
19926 We don't need to read the entire CU(/TU).
19927 We just need the header and top level die.
19929 IWBN to use the aging mechanism to let us lazily later discard the CU.
19930 For now we skip this optimization. */
19932 if (cu != NULL)
19934 addr_base = cu->addr_base;
19935 addr_size = cu->header.addr_size;
19937 else
19939 struct dwarf2_read_addr_index_data aidata;
19941 /* Note: We can't use init_cutu_and_read_dies_simple here,
19942 we need addr_base. */
19943 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19944 dwarf2_read_addr_index_reader, &aidata);
19945 addr_base = aidata.addr_base;
19946 addr_size = aidata.addr_size;
19949 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19950 addr_size);
19953 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19954 This is only used by the Fission support. */
19956 static const char *
19957 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19959 struct dwarf2_cu *cu = reader->cu;
19960 struct dwarf2_per_objfile *dwarf2_per_objfile
19961 = cu->per_cu->dwarf2_per_objfile;
19962 struct objfile *objfile = dwarf2_per_objfile->objfile;
19963 const char *objf_name = objfile_name (objfile);
19964 bfd *abfd = objfile->obfd;
19965 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19966 struct dwarf2_section_info *str_offsets_section =
19967 &reader->dwo_file->sections.str_offsets;
19968 const gdb_byte *info_ptr;
19969 ULONGEST str_offset;
19970 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19972 dwarf2_read_section (objfile, str_section);
19973 dwarf2_read_section (objfile, str_offsets_section);
19974 if (str_section->buffer == NULL)
19975 error (_("%s used without .debug_str.dwo section"
19976 " in CU at offset %s [in module %s]"),
19977 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19978 if (str_offsets_section->buffer == NULL)
19979 error (_("%s used without .debug_str_offsets.dwo section"
19980 " in CU at offset %s [in module %s]"),
19981 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19982 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19983 error (_("%s pointing outside of .debug_str_offsets.dwo"
19984 " section in CU at offset %s [in module %s]"),
19985 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19986 info_ptr = (str_offsets_section->buffer
19987 + str_index * cu->header.offset_size);
19988 if (cu->header.offset_size == 4)
19989 str_offset = bfd_get_32 (abfd, info_ptr);
19990 else
19991 str_offset = bfd_get_64 (abfd, info_ptr);
19992 if (str_offset >= str_section->size)
19993 error (_("Offset from %s pointing outside of"
19994 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19995 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19996 return (const char *) (str_section->buffer + str_offset);
19999 /* Return the length of an LEB128 number in BUF. */
20001 static int
20002 leb128_size (const gdb_byte *buf)
20004 const gdb_byte *begin = buf;
20005 gdb_byte byte;
20007 while (1)
20009 byte = *buf++;
20010 if ((byte & 128) == 0)
20011 return buf - begin;
20015 static void
20016 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20018 switch (lang)
20020 case DW_LANG_C89:
20021 case DW_LANG_C99:
20022 case DW_LANG_C11:
20023 case DW_LANG_C:
20024 case DW_LANG_UPC:
20025 cu->language = language_c;
20026 break;
20027 case DW_LANG_Java:
20028 case DW_LANG_C_plus_plus:
20029 case DW_LANG_C_plus_plus_11:
20030 case DW_LANG_C_plus_plus_14:
20031 cu->language = language_cplus;
20032 break;
20033 case DW_LANG_D:
20034 cu->language = language_d;
20035 break;
20036 case DW_LANG_Fortran77:
20037 case DW_LANG_Fortran90:
20038 case DW_LANG_Fortran95:
20039 case DW_LANG_Fortran03:
20040 case DW_LANG_Fortran08:
20041 cu->language = language_fortran;
20042 break;
20043 case DW_LANG_Go:
20044 cu->language = language_go;
20045 break;
20046 case DW_LANG_Mips_Assembler:
20047 cu->language = language_asm;
20048 break;
20049 case DW_LANG_Ada83:
20050 case DW_LANG_Ada95:
20051 cu->language = language_ada;
20052 break;
20053 case DW_LANG_Modula2:
20054 cu->language = language_m2;
20055 break;
20056 case DW_LANG_Pascal83:
20057 cu->language = language_pascal;
20058 break;
20059 case DW_LANG_ObjC:
20060 cu->language = language_objc;
20061 break;
20062 case DW_LANG_Rust:
20063 case DW_LANG_Rust_old:
20064 cu->language = language_rust;
20065 break;
20066 case DW_LANG_Cobol74:
20067 case DW_LANG_Cobol85:
20068 default:
20069 cu->language = language_minimal;
20070 break;
20072 cu->language_defn = language_def (cu->language);
20075 /* Return the named attribute or NULL if not there. */
20077 static struct attribute *
20078 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20080 for (;;)
20082 unsigned int i;
20083 struct attribute *spec = NULL;
20085 for (i = 0; i < die->num_attrs; ++i)
20087 if (die->attrs[i].name == name)
20088 return &die->attrs[i];
20089 if (die->attrs[i].name == DW_AT_specification
20090 || die->attrs[i].name == DW_AT_abstract_origin)
20091 spec = &die->attrs[i];
20094 if (!spec)
20095 break;
20097 die = follow_die_ref (die, spec, &cu);
20100 return NULL;
20103 /* Return the named attribute or NULL if not there,
20104 but do not follow DW_AT_specification, etc.
20105 This is for use in contexts where we're reading .debug_types dies.
20106 Following DW_AT_specification, DW_AT_abstract_origin will take us
20107 back up the chain, and we want to go down. */
20109 static struct attribute *
20110 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20112 unsigned int i;
20114 for (i = 0; i < die->num_attrs; ++i)
20115 if (die->attrs[i].name == name)
20116 return &die->attrs[i];
20118 return NULL;
20121 /* Return the string associated with a string-typed attribute, or NULL if it
20122 is either not found or is of an incorrect type. */
20124 static const char *
20125 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20127 struct attribute *attr;
20128 const char *str = NULL;
20130 attr = dwarf2_attr (die, name, cu);
20132 if (attr != NULL)
20134 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20135 || attr->form == DW_FORM_string
20136 || attr->form == DW_FORM_strx
20137 || attr->form == DW_FORM_GNU_str_index
20138 || attr->form == DW_FORM_GNU_strp_alt)
20139 str = DW_STRING (attr);
20140 else
20141 complaint (_("string type expected for attribute %s for "
20142 "DIE at %s in module %s"),
20143 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20144 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20147 return str;
20150 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20151 and holds a non-zero value. This function should only be used for
20152 DW_FORM_flag or DW_FORM_flag_present attributes. */
20154 static int
20155 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20157 struct attribute *attr = dwarf2_attr (die, name, cu);
20159 return (attr && DW_UNSND (attr));
20162 static int
20163 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20165 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20166 which value is non-zero. However, we have to be careful with
20167 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20168 (via dwarf2_flag_true_p) follows this attribute. So we may
20169 end up accidently finding a declaration attribute that belongs
20170 to a different DIE referenced by the specification attribute,
20171 even though the given DIE does not have a declaration attribute. */
20172 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20173 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20176 /* Return the die giving the specification for DIE, if there is
20177 one. *SPEC_CU is the CU containing DIE on input, and the CU
20178 containing the return value on output. If there is no
20179 specification, but there is an abstract origin, that is
20180 returned. */
20182 static struct die_info *
20183 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20185 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20186 *spec_cu);
20188 if (spec_attr == NULL)
20189 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20191 if (spec_attr == NULL)
20192 return NULL;
20193 else
20194 return follow_die_ref (die, spec_attr, spec_cu);
20197 /* Stub for free_line_header to match void * callback types. */
20199 static void
20200 free_line_header_voidp (void *arg)
20202 struct line_header *lh = (struct line_header *) arg;
20204 delete lh;
20207 void
20208 line_header::add_include_dir (const char *include_dir)
20210 if (dwarf_line_debug >= 2)
20211 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20212 include_dirs.size () + 1, include_dir);
20214 include_dirs.push_back (include_dir);
20217 void
20218 line_header::add_file_name (const char *name,
20219 dir_index d_index,
20220 unsigned int mod_time,
20221 unsigned int length)
20223 if (dwarf_line_debug >= 2)
20224 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20225 (unsigned) file_names.size () + 1, name);
20227 file_names.emplace_back (name, d_index, mod_time, length);
20230 /* A convenience function to find the proper .debug_line section for a CU. */
20232 static struct dwarf2_section_info *
20233 get_debug_line_section (struct dwarf2_cu *cu)
20235 struct dwarf2_section_info *section;
20236 struct dwarf2_per_objfile *dwarf2_per_objfile
20237 = cu->per_cu->dwarf2_per_objfile;
20239 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20240 DWO file. */
20241 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20242 section = &cu->dwo_unit->dwo_file->sections.line;
20243 else if (cu->per_cu->is_dwz)
20245 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20247 section = &dwz->line;
20249 else
20250 section = &dwarf2_per_objfile->line;
20252 return section;
20255 /* Read directory or file name entry format, starting with byte of
20256 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20257 entries count and the entries themselves in the described entry
20258 format. */
20260 static void
20261 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20262 bfd *abfd, const gdb_byte **bufp,
20263 struct line_header *lh,
20264 const struct comp_unit_head *cu_header,
20265 void (*callback) (struct line_header *lh,
20266 const char *name,
20267 dir_index d_index,
20268 unsigned int mod_time,
20269 unsigned int length))
20271 gdb_byte format_count, formati;
20272 ULONGEST data_count, datai;
20273 const gdb_byte *buf = *bufp;
20274 const gdb_byte *format_header_data;
20275 unsigned int bytes_read;
20277 format_count = read_1_byte (abfd, buf);
20278 buf += 1;
20279 format_header_data = buf;
20280 for (formati = 0; formati < format_count; formati++)
20282 read_unsigned_leb128 (abfd, buf, &bytes_read);
20283 buf += bytes_read;
20284 read_unsigned_leb128 (abfd, buf, &bytes_read);
20285 buf += bytes_read;
20288 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20289 buf += bytes_read;
20290 for (datai = 0; datai < data_count; datai++)
20292 const gdb_byte *format = format_header_data;
20293 struct file_entry fe;
20295 for (formati = 0; formati < format_count; formati++)
20297 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20298 format += bytes_read;
20300 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20301 format += bytes_read;
20303 gdb::optional<const char *> string;
20304 gdb::optional<unsigned int> uint;
20306 switch (form)
20308 case DW_FORM_string:
20309 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20310 buf += bytes_read;
20311 break;
20313 case DW_FORM_line_strp:
20314 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20315 abfd, buf,
20316 cu_header,
20317 &bytes_read));
20318 buf += bytes_read;
20319 break;
20321 case DW_FORM_data1:
20322 uint.emplace (read_1_byte (abfd, buf));
20323 buf += 1;
20324 break;
20326 case DW_FORM_data2:
20327 uint.emplace (read_2_bytes (abfd, buf));
20328 buf += 2;
20329 break;
20331 case DW_FORM_data4:
20332 uint.emplace (read_4_bytes (abfd, buf));
20333 buf += 4;
20334 break;
20336 case DW_FORM_data8:
20337 uint.emplace (read_8_bytes (abfd, buf));
20338 buf += 8;
20339 break;
20341 case DW_FORM_udata:
20342 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20343 buf += bytes_read;
20344 break;
20346 case DW_FORM_block:
20347 /* It is valid only for DW_LNCT_timestamp which is ignored by
20348 current GDB. */
20349 break;
20352 switch (content_type)
20354 case DW_LNCT_path:
20355 if (string.has_value ())
20356 fe.name = *string;
20357 break;
20358 case DW_LNCT_directory_index:
20359 if (uint.has_value ())
20360 fe.d_index = (dir_index) *uint;
20361 break;
20362 case DW_LNCT_timestamp:
20363 if (uint.has_value ())
20364 fe.mod_time = *uint;
20365 break;
20366 case DW_LNCT_size:
20367 if (uint.has_value ())
20368 fe.length = *uint;
20369 break;
20370 case DW_LNCT_MD5:
20371 break;
20372 default:
20373 complaint (_("Unknown format content type %s"),
20374 pulongest (content_type));
20378 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20381 *bufp = buf;
20384 /* Read the statement program header starting at OFFSET in
20385 .debug_line, or .debug_line.dwo. Return a pointer
20386 to a struct line_header, allocated using xmalloc.
20387 Returns NULL if there is a problem reading the header, e.g., if it
20388 has a version we don't understand.
20390 NOTE: the strings in the include directory and file name tables of
20391 the returned object point into the dwarf line section buffer,
20392 and must not be freed. */
20394 static line_header_up
20395 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20397 const gdb_byte *line_ptr;
20398 unsigned int bytes_read, offset_size;
20399 int i;
20400 const char *cur_dir, *cur_file;
20401 struct dwarf2_section_info *section;
20402 bfd *abfd;
20403 struct dwarf2_per_objfile *dwarf2_per_objfile
20404 = cu->per_cu->dwarf2_per_objfile;
20406 section = get_debug_line_section (cu);
20407 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20408 if (section->buffer == NULL)
20410 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20411 complaint (_("missing .debug_line.dwo section"));
20412 else
20413 complaint (_("missing .debug_line section"));
20414 return 0;
20417 /* We can't do this until we know the section is non-empty.
20418 Only then do we know we have such a section. */
20419 abfd = get_section_bfd_owner (section);
20421 /* Make sure that at least there's room for the total_length field.
20422 That could be 12 bytes long, but we're just going to fudge that. */
20423 if (to_underlying (sect_off) + 4 >= section->size)
20425 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20426 return 0;
20429 line_header_up lh (new line_header ());
20431 lh->sect_off = sect_off;
20432 lh->offset_in_dwz = cu->per_cu->is_dwz;
20434 line_ptr = section->buffer + to_underlying (sect_off);
20436 /* Read in the header. */
20437 lh->total_length =
20438 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20439 &bytes_read, &offset_size);
20440 line_ptr += bytes_read;
20441 if (line_ptr + lh->total_length > (section->buffer + section->size))
20443 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20444 return 0;
20446 lh->statement_program_end = line_ptr + lh->total_length;
20447 lh->version = read_2_bytes (abfd, line_ptr);
20448 line_ptr += 2;
20449 if (lh->version > 5)
20451 /* This is a version we don't understand. The format could have
20452 changed in ways we don't handle properly so just punt. */
20453 complaint (_("unsupported version in .debug_line section"));
20454 return NULL;
20456 if (lh->version >= 5)
20458 gdb_byte segment_selector_size;
20460 /* Skip address size. */
20461 read_1_byte (abfd, line_ptr);
20462 line_ptr += 1;
20464 segment_selector_size = read_1_byte (abfd, line_ptr);
20465 line_ptr += 1;
20466 if (segment_selector_size != 0)
20468 complaint (_("unsupported segment selector size %u "
20469 "in .debug_line section"),
20470 segment_selector_size);
20471 return NULL;
20474 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20475 line_ptr += offset_size;
20476 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20477 line_ptr += 1;
20478 if (lh->version >= 4)
20480 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20481 line_ptr += 1;
20483 else
20484 lh->maximum_ops_per_instruction = 1;
20486 if (lh->maximum_ops_per_instruction == 0)
20488 lh->maximum_ops_per_instruction = 1;
20489 complaint (_("invalid maximum_ops_per_instruction "
20490 "in `.debug_line' section"));
20493 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20494 line_ptr += 1;
20495 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20496 line_ptr += 1;
20497 lh->line_range = read_1_byte (abfd, line_ptr);
20498 line_ptr += 1;
20499 lh->opcode_base = read_1_byte (abfd, line_ptr);
20500 line_ptr += 1;
20501 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20503 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20504 for (i = 1; i < lh->opcode_base; ++i)
20506 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20507 line_ptr += 1;
20510 if (lh->version >= 5)
20512 /* Read directory table. */
20513 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20514 &cu->header,
20515 [] (struct line_header *header, const char *name,
20516 dir_index d_index, unsigned int mod_time,
20517 unsigned int length)
20519 header->add_include_dir (name);
20522 /* Read file name table. */
20523 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20524 &cu->header,
20525 [] (struct line_header *header, const char *name,
20526 dir_index d_index, unsigned int mod_time,
20527 unsigned int length)
20529 header->add_file_name (name, d_index, mod_time, length);
20532 else
20534 /* Read directory table. */
20535 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20537 line_ptr += bytes_read;
20538 lh->add_include_dir (cur_dir);
20540 line_ptr += bytes_read;
20542 /* Read file name table. */
20543 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20545 unsigned int mod_time, length;
20546 dir_index d_index;
20548 line_ptr += bytes_read;
20549 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20550 line_ptr += bytes_read;
20551 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20552 line_ptr += bytes_read;
20553 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20554 line_ptr += bytes_read;
20556 lh->add_file_name (cur_file, d_index, mod_time, length);
20558 line_ptr += bytes_read;
20560 lh->statement_program_start = line_ptr;
20562 if (line_ptr > (section->buffer + section->size))
20563 complaint (_("line number info header doesn't "
20564 "fit in `.debug_line' section"));
20566 return lh;
20569 /* Subroutine of dwarf_decode_lines to simplify it.
20570 Return the file name of the psymtab for included file FILE_INDEX
20571 in line header LH of PST.
20572 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20573 If space for the result is malloc'd, *NAME_HOLDER will be set.
20574 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20576 static const char *
20577 psymtab_include_file_name (const struct line_header *lh, int file_index,
20578 const struct partial_symtab *pst,
20579 const char *comp_dir,
20580 gdb::unique_xmalloc_ptr<char> *name_holder)
20582 const file_entry &fe = lh->file_names[file_index];
20583 const char *include_name = fe.name;
20584 const char *include_name_to_compare = include_name;
20585 const char *pst_filename;
20586 int file_is_pst;
20588 const char *dir_name = fe.include_dir (lh);
20590 gdb::unique_xmalloc_ptr<char> hold_compare;
20591 if (!IS_ABSOLUTE_PATH (include_name)
20592 && (dir_name != NULL || comp_dir != NULL))
20594 /* Avoid creating a duplicate psymtab for PST.
20595 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20596 Before we do the comparison, however, we need to account
20597 for DIR_NAME and COMP_DIR.
20598 First prepend dir_name (if non-NULL). If we still don't
20599 have an absolute path prepend comp_dir (if non-NULL).
20600 However, the directory we record in the include-file's
20601 psymtab does not contain COMP_DIR (to match the
20602 corresponding symtab(s)).
20604 Example:
20606 bash$ cd /tmp
20607 bash$ gcc -g ./hello.c
20608 include_name = "hello.c"
20609 dir_name = "."
20610 DW_AT_comp_dir = comp_dir = "/tmp"
20611 DW_AT_name = "./hello.c"
20615 if (dir_name != NULL)
20617 name_holder->reset (concat (dir_name, SLASH_STRING,
20618 include_name, (char *) NULL));
20619 include_name = name_holder->get ();
20620 include_name_to_compare = include_name;
20622 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20624 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20625 include_name, (char *) NULL));
20626 include_name_to_compare = hold_compare.get ();
20630 pst_filename = pst->filename;
20631 gdb::unique_xmalloc_ptr<char> copied_name;
20632 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20634 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20635 pst_filename, (char *) NULL));
20636 pst_filename = copied_name.get ();
20639 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20641 if (file_is_pst)
20642 return NULL;
20643 return include_name;
20646 /* State machine to track the state of the line number program. */
20648 class lnp_state_machine
20650 public:
20651 /* Initialize a machine state for the start of a line number
20652 program. */
20653 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20654 bool record_lines_p);
20656 file_entry *current_file ()
20658 /* lh->file_names is 0-based, but the file name numbers in the
20659 statement program are 1-based. */
20660 return m_line_header->file_name_at (m_file);
20663 /* Record the line in the state machine. END_SEQUENCE is true if
20664 we're processing the end of a sequence. */
20665 void record_line (bool end_sequence);
20667 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20668 nop-out rest of the lines in this sequence. */
20669 void check_line_address (struct dwarf2_cu *cu,
20670 const gdb_byte *line_ptr,
20671 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20673 void handle_set_discriminator (unsigned int discriminator)
20675 m_discriminator = discriminator;
20676 m_line_has_non_zero_discriminator |= discriminator != 0;
20679 /* Handle DW_LNE_set_address. */
20680 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20682 m_op_index = 0;
20683 address += baseaddr;
20684 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20687 /* Handle DW_LNS_advance_pc. */
20688 void handle_advance_pc (CORE_ADDR adjust);
20690 /* Handle a special opcode. */
20691 void handle_special_opcode (unsigned char op_code);
20693 /* Handle DW_LNS_advance_line. */
20694 void handle_advance_line (int line_delta)
20696 advance_line (line_delta);
20699 /* Handle DW_LNS_set_file. */
20700 void handle_set_file (file_name_index file);
20702 /* Handle DW_LNS_negate_stmt. */
20703 void handle_negate_stmt ()
20705 m_is_stmt = !m_is_stmt;
20708 /* Handle DW_LNS_const_add_pc. */
20709 void handle_const_add_pc ();
20711 /* Handle DW_LNS_fixed_advance_pc. */
20712 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20714 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20715 m_op_index = 0;
20718 /* Handle DW_LNS_copy. */
20719 void handle_copy ()
20721 record_line (false);
20722 m_discriminator = 0;
20725 /* Handle DW_LNE_end_sequence. */
20726 void handle_end_sequence ()
20728 m_currently_recording_lines = true;
20731 private:
20732 /* Advance the line by LINE_DELTA. */
20733 void advance_line (int line_delta)
20735 m_line += line_delta;
20737 if (line_delta != 0)
20738 m_line_has_non_zero_discriminator = m_discriminator != 0;
20741 struct dwarf2_cu *m_cu;
20743 gdbarch *m_gdbarch;
20745 /* True if we're recording lines.
20746 Otherwise we're building partial symtabs and are just interested in
20747 finding include files mentioned by the line number program. */
20748 bool m_record_lines_p;
20750 /* The line number header. */
20751 line_header *m_line_header;
20753 /* These are part of the standard DWARF line number state machine,
20754 and initialized according to the DWARF spec. */
20756 unsigned char m_op_index = 0;
20757 /* The line table index (1-based) of the current file. */
20758 file_name_index m_file = (file_name_index) 1;
20759 unsigned int m_line = 1;
20761 /* These are initialized in the constructor. */
20763 CORE_ADDR m_address;
20764 bool m_is_stmt;
20765 unsigned int m_discriminator;
20767 /* Additional bits of state we need to track. */
20769 /* The last file that we called dwarf2_start_subfile for.
20770 This is only used for TLLs. */
20771 unsigned int m_last_file = 0;
20772 /* The last file a line number was recorded for. */
20773 struct subfile *m_last_subfile = NULL;
20775 /* When true, record the lines we decode. */
20776 bool m_currently_recording_lines = false;
20778 /* The last line number that was recorded, used to coalesce
20779 consecutive entries for the same line. This can happen, for
20780 example, when discriminators are present. PR 17276. */
20781 unsigned int m_last_line = 0;
20782 bool m_line_has_non_zero_discriminator = false;
20785 void
20786 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20788 CORE_ADDR addr_adj = (((m_op_index + adjust)
20789 / m_line_header->maximum_ops_per_instruction)
20790 * m_line_header->minimum_instruction_length);
20791 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20792 m_op_index = ((m_op_index + adjust)
20793 % m_line_header->maximum_ops_per_instruction);
20796 void
20797 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20799 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20800 CORE_ADDR addr_adj = (((m_op_index
20801 + (adj_opcode / m_line_header->line_range))
20802 / m_line_header->maximum_ops_per_instruction)
20803 * m_line_header->minimum_instruction_length);
20804 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20805 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20806 % m_line_header->maximum_ops_per_instruction);
20808 int line_delta = (m_line_header->line_base
20809 + (adj_opcode % m_line_header->line_range));
20810 advance_line (line_delta);
20811 record_line (false);
20812 m_discriminator = 0;
20815 void
20816 lnp_state_machine::handle_set_file (file_name_index file)
20818 m_file = file;
20820 const file_entry *fe = current_file ();
20821 if (fe == NULL)
20822 dwarf2_debug_line_missing_file_complaint ();
20823 else if (m_record_lines_p)
20825 const char *dir = fe->include_dir (m_line_header);
20827 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20828 m_line_has_non_zero_discriminator = m_discriminator != 0;
20829 dwarf2_start_subfile (m_cu, fe->name, dir);
20833 void
20834 lnp_state_machine::handle_const_add_pc ()
20836 CORE_ADDR adjust
20837 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20839 CORE_ADDR addr_adj
20840 = (((m_op_index + adjust)
20841 / m_line_header->maximum_ops_per_instruction)
20842 * m_line_header->minimum_instruction_length);
20844 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20845 m_op_index = ((m_op_index + adjust)
20846 % m_line_header->maximum_ops_per_instruction);
20849 /* Return non-zero if we should add LINE to the line number table.
20850 LINE is the line to add, LAST_LINE is the last line that was added,
20851 LAST_SUBFILE is the subfile for LAST_LINE.
20852 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20853 had a non-zero discriminator.
20855 We have to be careful in the presence of discriminators.
20856 E.g., for this line:
20858 for (i = 0; i < 100000; i++);
20860 clang can emit four line number entries for that one line,
20861 each with a different discriminator.
20862 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20864 However, we want gdb to coalesce all four entries into one.
20865 Otherwise the user could stepi into the middle of the line and
20866 gdb would get confused about whether the pc really was in the
20867 middle of the line.
20869 Things are further complicated by the fact that two consecutive
20870 line number entries for the same line is a heuristic used by gcc
20871 to denote the end of the prologue. So we can't just discard duplicate
20872 entries, we have to be selective about it. The heuristic we use is
20873 that we only collapse consecutive entries for the same line if at least
20874 one of those entries has a non-zero discriminator. PR 17276.
20876 Note: Addresses in the line number state machine can never go backwards
20877 within one sequence, thus this coalescing is ok. */
20879 static int
20880 dwarf_record_line_p (struct dwarf2_cu *cu,
20881 unsigned int line, unsigned int last_line,
20882 int line_has_non_zero_discriminator,
20883 struct subfile *last_subfile)
20885 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20886 return 1;
20887 if (line != last_line)
20888 return 1;
20889 /* Same line for the same file that we've seen already.
20890 As a last check, for pr 17276, only record the line if the line
20891 has never had a non-zero discriminator. */
20892 if (!line_has_non_zero_discriminator)
20893 return 1;
20894 return 0;
20897 /* Use the CU's builder to record line number LINE beginning at
20898 address ADDRESS in the line table of subfile SUBFILE. */
20900 static void
20901 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20902 unsigned int line, CORE_ADDR address,
20903 struct dwarf2_cu *cu)
20905 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20907 if (dwarf_line_debug)
20909 fprintf_unfiltered (gdb_stdlog,
20910 "Recording line %u, file %s, address %s\n",
20911 line, lbasename (subfile->name),
20912 paddress (gdbarch, address));
20915 if (cu != nullptr)
20916 cu->get_builder ()->record_line (subfile, line, addr);
20919 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20920 Mark the end of a set of line number records.
20921 The arguments are the same as for dwarf_record_line_1.
20922 If SUBFILE is NULL the request is ignored. */
20924 static void
20925 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20926 CORE_ADDR address, struct dwarf2_cu *cu)
20928 if (subfile == NULL)
20929 return;
20931 if (dwarf_line_debug)
20933 fprintf_unfiltered (gdb_stdlog,
20934 "Finishing current line, file %s, address %s\n",
20935 lbasename (subfile->name),
20936 paddress (gdbarch, address));
20939 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20942 void
20943 lnp_state_machine::record_line (bool end_sequence)
20945 if (dwarf_line_debug)
20947 fprintf_unfiltered (gdb_stdlog,
20948 "Processing actual line %u: file %u,"
20949 " address %s, is_stmt %u, discrim %u\n",
20950 m_line, to_underlying (m_file),
20951 paddress (m_gdbarch, m_address),
20952 m_is_stmt, m_discriminator);
20955 file_entry *fe = current_file ();
20957 if (fe == NULL)
20958 dwarf2_debug_line_missing_file_complaint ();
20959 /* For now we ignore lines not starting on an instruction boundary.
20960 But not when processing end_sequence for compatibility with the
20961 previous version of the code. */
20962 else if (m_op_index == 0 || end_sequence)
20964 fe->included_p = 1;
20965 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20967 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20968 || end_sequence)
20970 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20971 m_currently_recording_lines ? m_cu : nullptr);
20974 if (!end_sequence)
20976 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20977 m_line_has_non_zero_discriminator,
20978 m_last_subfile))
20980 buildsym_compunit *builder = m_cu->get_builder ();
20981 dwarf_record_line_1 (m_gdbarch,
20982 builder->get_current_subfile (),
20983 m_line, m_address,
20984 m_currently_recording_lines ? m_cu : nullptr);
20986 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20987 m_last_line = m_line;
20993 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20994 line_header *lh, bool record_lines_p)
20996 m_cu = cu;
20997 m_gdbarch = arch;
20998 m_record_lines_p = record_lines_p;
20999 m_line_header = lh;
21001 m_currently_recording_lines = true;
21003 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21004 was a line entry for it so that the backend has a chance to adjust it
21005 and also record it in case it needs it. This is currently used by MIPS
21006 code, cf. `mips_adjust_dwarf2_line'. */
21007 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21008 m_is_stmt = lh->default_is_stmt;
21009 m_discriminator = 0;
21012 void
21013 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21014 const gdb_byte *line_ptr,
21015 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21017 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21018 the pc range of the CU. However, we restrict the test to only ADDRESS
21019 values of zero to preserve GDB's previous behaviour which is to handle
21020 the specific case of a function being GC'd by the linker. */
21022 if (address == 0 && address < unrelocated_lowpc)
21024 /* This line table is for a function which has been
21025 GCd by the linker. Ignore it. PR gdb/12528 */
21027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21028 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21030 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21031 line_offset, objfile_name (objfile));
21032 m_currently_recording_lines = false;
21033 /* Note: m_currently_recording_lines is left as false until we see
21034 DW_LNE_end_sequence. */
21038 /* Subroutine of dwarf_decode_lines to simplify it.
21039 Process the line number information in LH.
21040 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21041 program in order to set included_p for every referenced header. */
21043 static void
21044 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21045 const int decode_for_pst_p, CORE_ADDR lowpc)
21047 const gdb_byte *line_ptr, *extended_end;
21048 const gdb_byte *line_end;
21049 unsigned int bytes_read, extended_len;
21050 unsigned char op_code, extended_op;
21051 CORE_ADDR baseaddr;
21052 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21053 bfd *abfd = objfile->obfd;
21054 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21055 /* True if we're recording line info (as opposed to building partial
21056 symtabs and just interested in finding include files mentioned by
21057 the line number program). */
21058 bool record_lines_p = !decode_for_pst_p;
21060 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21062 line_ptr = lh->statement_program_start;
21063 line_end = lh->statement_program_end;
21065 /* Read the statement sequences until there's nothing left. */
21066 while (line_ptr < line_end)
21068 /* The DWARF line number program state machine. Reset the state
21069 machine at the start of each sequence. */
21070 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21071 bool end_sequence = false;
21073 if (record_lines_p)
21075 /* Start a subfile for the current file of the state
21076 machine. */
21077 const file_entry *fe = state_machine.current_file ();
21079 if (fe != NULL)
21080 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21083 /* Decode the table. */
21084 while (line_ptr < line_end && !end_sequence)
21086 op_code = read_1_byte (abfd, line_ptr);
21087 line_ptr += 1;
21089 if (op_code >= lh->opcode_base)
21091 /* Special opcode. */
21092 state_machine.handle_special_opcode (op_code);
21094 else switch (op_code)
21096 case DW_LNS_extended_op:
21097 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21098 &bytes_read);
21099 line_ptr += bytes_read;
21100 extended_end = line_ptr + extended_len;
21101 extended_op = read_1_byte (abfd, line_ptr);
21102 line_ptr += 1;
21103 switch (extended_op)
21105 case DW_LNE_end_sequence:
21106 state_machine.handle_end_sequence ();
21107 end_sequence = true;
21108 break;
21109 case DW_LNE_set_address:
21111 CORE_ADDR address
21112 = read_address (abfd, line_ptr, cu, &bytes_read);
21113 line_ptr += bytes_read;
21115 state_machine.check_line_address (cu, line_ptr,
21116 lowpc - baseaddr, address);
21117 state_machine.handle_set_address (baseaddr, address);
21119 break;
21120 case DW_LNE_define_file:
21122 const char *cur_file;
21123 unsigned int mod_time, length;
21124 dir_index dindex;
21126 cur_file = read_direct_string (abfd, line_ptr,
21127 &bytes_read);
21128 line_ptr += bytes_read;
21129 dindex = (dir_index)
21130 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21131 line_ptr += bytes_read;
21132 mod_time =
21133 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21134 line_ptr += bytes_read;
21135 length =
21136 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21137 line_ptr += bytes_read;
21138 lh->add_file_name (cur_file, dindex, mod_time, length);
21140 break;
21141 case DW_LNE_set_discriminator:
21143 /* The discriminator is not interesting to the
21144 debugger; just ignore it. We still need to
21145 check its value though:
21146 if there are consecutive entries for the same
21147 (non-prologue) line we want to coalesce them.
21148 PR 17276. */
21149 unsigned int discr
21150 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21151 line_ptr += bytes_read;
21153 state_machine.handle_set_discriminator (discr);
21155 break;
21156 default:
21157 complaint (_("mangled .debug_line section"));
21158 return;
21160 /* Make sure that we parsed the extended op correctly. If e.g.
21161 we expected a different address size than the producer used,
21162 we may have read the wrong number of bytes. */
21163 if (line_ptr != extended_end)
21165 complaint (_("mangled .debug_line section"));
21166 return;
21168 break;
21169 case DW_LNS_copy:
21170 state_machine.handle_copy ();
21171 break;
21172 case DW_LNS_advance_pc:
21174 CORE_ADDR adjust
21175 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21176 line_ptr += bytes_read;
21178 state_machine.handle_advance_pc (adjust);
21180 break;
21181 case DW_LNS_advance_line:
21183 int line_delta
21184 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21185 line_ptr += bytes_read;
21187 state_machine.handle_advance_line (line_delta);
21189 break;
21190 case DW_LNS_set_file:
21192 file_name_index file
21193 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21194 &bytes_read);
21195 line_ptr += bytes_read;
21197 state_machine.handle_set_file (file);
21199 break;
21200 case DW_LNS_set_column:
21201 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21202 line_ptr += bytes_read;
21203 break;
21204 case DW_LNS_negate_stmt:
21205 state_machine.handle_negate_stmt ();
21206 break;
21207 case DW_LNS_set_basic_block:
21208 break;
21209 /* Add to the address register of the state machine the
21210 address increment value corresponding to special opcode
21211 255. I.e., this value is scaled by the minimum
21212 instruction length since special opcode 255 would have
21213 scaled the increment. */
21214 case DW_LNS_const_add_pc:
21215 state_machine.handle_const_add_pc ();
21216 break;
21217 case DW_LNS_fixed_advance_pc:
21219 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21220 line_ptr += 2;
21222 state_machine.handle_fixed_advance_pc (addr_adj);
21224 break;
21225 default:
21227 /* Unknown standard opcode, ignore it. */
21228 int i;
21230 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21232 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21233 line_ptr += bytes_read;
21239 if (!end_sequence)
21240 dwarf2_debug_line_missing_end_sequence_complaint ();
21242 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21243 in which case we still finish recording the last line). */
21244 state_machine.record_line (true);
21248 /* Decode the Line Number Program (LNP) for the given line_header
21249 structure and CU. The actual information extracted and the type
21250 of structures created from the LNP depends on the value of PST.
21252 1. If PST is NULL, then this procedure uses the data from the program
21253 to create all necessary symbol tables, and their linetables.
21255 2. If PST is not NULL, this procedure reads the program to determine
21256 the list of files included by the unit represented by PST, and
21257 builds all the associated partial symbol tables.
21259 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21260 It is used for relative paths in the line table.
21261 NOTE: When processing partial symtabs (pst != NULL),
21262 comp_dir == pst->dirname.
21264 NOTE: It is important that psymtabs have the same file name (via strcmp)
21265 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21266 symtab we don't use it in the name of the psymtabs we create.
21267 E.g. expand_line_sal requires this when finding psymtabs to expand.
21268 A good testcase for this is mb-inline.exp.
21270 LOWPC is the lowest address in CU (or 0 if not known).
21272 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21273 for its PC<->lines mapping information. Otherwise only the filename
21274 table is read in. */
21276 static void
21277 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21278 struct dwarf2_cu *cu, struct partial_symtab *pst,
21279 CORE_ADDR lowpc, int decode_mapping)
21281 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21282 const int decode_for_pst_p = (pst != NULL);
21284 if (decode_mapping)
21285 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21287 if (decode_for_pst_p)
21289 int file_index;
21291 /* Now that we're done scanning the Line Header Program, we can
21292 create the psymtab of each included file. */
21293 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21294 if (lh->file_names[file_index].included_p == 1)
21296 gdb::unique_xmalloc_ptr<char> name_holder;
21297 const char *include_name =
21298 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21299 &name_holder);
21300 if (include_name != NULL)
21301 dwarf2_create_include_psymtab (include_name, pst, objfile);
21304 else
21306 /* Make sure a symtab is created for every file, even files
21307 which contain only variables (i.e. no code with associated
21308 line numbers). */
21309 buildsym_compunit *builder = cu->get_builder ();
21310 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21311 int i;
21313 for (i = 0; i < lh->file_names.size (); i++)
21315 file_entry &fe = lh->file_names[i];
21317 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21319 if (builder->get_current_subfile ()->symtab == NULL)
21321 builder->get_current_subfile ()->symtab
21322 = allocate_symtab (cust,
21323 builder->get_current_subfile ()->name);
21325 fe.symtab = builder->get_current_subfile ()->symtab;
21330 /* Start a subfile for DWARF. FILENAME is the name of the file and
21331 DIRNAME the name of the source directory which contains FILENAME
21332 or NULL if not known.
21333 This routine tries to keep line numbers from identical absolute and
21334 relative file names in a common subfile.
21336 Using the `list' example from the GDB testsuite, which resides in
21337 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21338 of /srcdir/list0.c yields the following debugging information for list0.c:
21340 DW_AT_name: /srcdir/list0.c
21341 DW_AT_comp_dir: /compdir
21342 files.files[0].name: list0.h
21343 files.files[0].dir: /srcdir
21344 files.files[1].name: list0.c
21345 files.files[1].dir: /srcdir
21347 The line number information for list0.c has to end up in a single
21348 subfile, so that `break /srcdir/list0.c:1' works as expected.
21349 start_subfile will ensure that this happens provided that we pass the
21350 concatenation of files.files[1].dir and files.files[1].name as the
21351 subfile's name. */
21353 static void
21354 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21355 const char *dirname)
21357 char *copy = NULL;
21359 /* In order not to lose the line information directory,
21360 we concatenate it to the filename when it makes sense.
21361 Note that the Dwarf3 standard says (speaking of filenames in line
21362 information): ``The directory index is ignored for file names
21363 that represent full path names''. Thus ignoring dirname in the
21364 `else' branch below isn't an issue. */
21366 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21368 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21369 filename = copy;
21372 cu->get_builder ()->start_subfile (filename);
21374 if (copy != NULL)
21375 xfree (copy);
21378 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21379 buildsym_compunit constructor. */
21381 struct compunit_symtab *
21382 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21383 CORE_ADDR low_pc)
21385 gdb_assert (m_builder == nullptr);
21387 m_builder.reset (new struct buildsym_compunit
21388 (per_cu->dwarf2_per_objfile->objfile,
21389 name, comp_dir, language, low_pc));
21391 list_in_scope = get_builder ()->get_file_symbols ();
21393 get_builder ()->record_debugformat ("DWARF 2");
21394 get_builder ()->record_producer (producer);
21396 processing_has_namespace_info = false;
21398 return get_builder ()->get_compunit_symtab ();
21401 static void
21402 var_decode_location (struct attribute *attr, struct symbol *sym,
21403 struct dwarf2_cu *cu)
21405 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21406 struct comp_unit_head *cu_header = &cu->header;
21408 /* NOTE drow/2003-01-30: There used to be a comment and some special
21409 code here to turn a symbol with DW_AT_external and a
21410 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21411 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21412 with some versions of binutils) where shared libraries could have
21413 relocations against symbols in their debug information - the
21414 minimal symbol would have the right address, but the debug info
21415 would not. It's no longer necessary, because we will explicitly
21416 apply relocations when we read in the debug information now. */
21418 /* A DW_AT_location attribute with no contents indicates that a
21419 variable has been optimized away. */
21420 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21422 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21423 return;
21426 /* Handle one degenerate form of location expression specially, to
21427 preserve GDB's previous behavior when section offsets are
21428 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21429 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21431 if (attr_form_is_block (attr)
21432 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21433 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21434 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21435 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21436 && (DW_BLOCK (attr)->size
21437 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21439 unsigned int dummy;
21441 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21442 SYMBOL_VALUE_ADDRESS (sym) =
21443 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21444 else
21445 SYMBOL_VALUE_ADDRESS (sym) =
21446 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21447 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21448 fixup_symbol_section (sym, objfile);
21449 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21450 SYMBOL_SECTION (sym));
21451 return;
21454 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21455 expression evaluator, and use LOC_COMPUTED only when necessary
21456 (i.e. when the value of a register or memory location is
21457 referenced, or a thread-local block, etc.). Then again, it might
21458 not be worthwhile. I'm assuming that it isn't unless performance
21459 or memory numbers show me otherwise. */
21461 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21463 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21464 cu->has_loclist = true;
21467 /* Given a pointer to a DWARF information entry, figure out if we need
21468 to make a symbol table entry for it, and if so, create a new entry
21469 and return a pointer to it.
21470 If TYPE is NULL, determine symbol type from the die, otherwise
21471 used the passed type.
21472 If SPACE is not NULL, use it to hold the new symbol. If it is
21473 NULL, allocate a new symbol on the objfile's obstack. */
21475 static struct symbol *
21476 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21477 struct symbol *space)
21479 struct dwarf2_per_objfile *dwarf2_per_objfile
21480 = cu->per_cu->dwarf2_per_objfile;
21481 struct objfile *objfile = dwarf2_per_objfile->objfile;
21482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21483 struct symbol *sym = NULL;
21484 const char *name;
21485 struct attribute *attr = NULL;
21486 struct attribute *attr2 = NULL;
21487 CORE_ADDR baseaddr;
21488 struct pending **list_to_add = NULL;
21490 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21492 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21494 name = dwarf2_name (die, cu);
21495 if (name)
21497 const char *linkagename;
21498 int suppress_add = 0;
21500 if (space)
21501 sym = space;
21502 else
21503 sym = allocate_symbol (objfile);
21504 OBJSTAT (objfile, n_syms++);
21506 /* Cache this symbol's name and the name's demangled form (if any). */
21507 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21508 linkagename = dwarf2_physname (name, die, cu);
21509 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21511 /* Fortran does not have mangling standard and the mangling does differ
21512 between gfortran, iFort etc. */
21513 if (cu->language == language_fortran
21514 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21515 symbol_set_demangled_name (&(sym->ginfo),
21516 dwarf2_full_name (name, die, cu),
21517 NULL);
21519 /* Default assumptions.
21520 Use the passed type or decode it from the die. */
21521 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21522 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21523 if (type != NULL)
21524 SYMBOL_TYPE (sym) = type;
21525 else
21526 SYMBOL_TYPE (sym) = die_type (die, cu);
21527 attr = dwarf2_attr (die,
21528 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21529 cu);
21530 if (attr)
21532 SYMBOL_LINE (sym) = DW_UNSND (attr);
21535 attr = dwarf2_attr (die,
21536 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21537 cu);
21538 if (attr)
21540 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21541 struct file_entry *fe;
21543 if (cu->line_header != NULL)
21544 fe = cu->line_header->file_name_at (file_index);
21545 else
21546 fe = NULL;
21548 if (fe == NULL)
21549 complaint (_("file index out of range"));
21550 else
21551 symbol_set_symtab (sym, fe->symtab);
21554 switch (die->tag)
21556 case DW_TAG_label:
21557 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21558 if (attr)
21560 CORE_ADDR addr;
21562 addr = attr_value_as_address (attr);
21563 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21564 SYMBOL_VALUE_ADDRESS (sym) = addr;
21566 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21567 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21568 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21569 add_symbol_to_list (sym, cu->list_in_scope);
21570 break;
21571 case DW_TAG_subprogram:
21572 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21573 finish_block. */
21574 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21575 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21576 if ((attr2 && (DW_UNSND (attr2) != 0))
21577 || cu->language == language_ada)
21579 /* Subprograms marked external are stored as a global symbol.
21580 Ada subprograms, whether marked external or not, are always
21581 stored as a global symbol, because we want to be able to
21582 access them globally. For instance, we want to be able
21583 to break on a nested subprogram without having to
21584 specify the context. */
21585 list_to_add = cu->get_builder ()->get_global_symbols ();
21587 else
21589 list_to_add = cu->list_in_scope;
21591 break;
21592 case DW_TAG_inlined_subroutine:
21593 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21594 finish_block. */
21595 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21596 SYMBOL_INLINED (sym) = 1;
21597 list_to_add = cu->list_in_scope;
21598 break;
21599 case DW_TAG_template_value_param:
21600 suppress_add = 1;
21601 /* Fall through. */
21602 case DW_TAG_constant:
21603 case DW_TAG_variable:
21604 case DW_TAG_member:
21605 /* Compilation with minimal debug info may result in
21606 variables with missing type entries. Change the
21607 misleading `void' type to something sensible. */
21608 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21609 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21611 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21612 /* In the case of DW_TAG_member, we should only be called for
21613 static const members. */
21614 if (die->tag == DW_TAG_member)
21616 /* dwarf2_add_field uses die_is_declaration,
21617 so we do the same. */
21618 gdb_assert (die_is_declaration (die, cu));
21619 gdb_assert (attr);
21621 if (attr)
21623 dwarf2_const_value (attr, sym, cu);
21624 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21625 if (!suppress_add)
21627 if (attr2 && (DW_UNSND (attr2) != 0))
21628 list_to_add = cu->get_builder ()->get_global_symbols ();
21629 else
21630 list_to_add = cu->list_in_scope;
21632 break;
21634 attr = dwarf2_attr (die, DW_AT_location, cu);
21635 if (attr)
21637 var_decode_location (attr, sym, cu);
21638 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21640 /* Fortran explicitly imports any global symbols to the local
21641 scope by DW_TAG_common_block. */
21642 if (cu->language == language_fortran && die->parent
21643 && die->parent->tag == DW_TAG_common_block)
21644 attr2 = NULL;
21646 if (SYMBOL_CLASS (sym) == LOC_STATIC
21647 && SYMBOL_VALUE_ADDRESS (sym) == 0
21648 && !dwarf2_per_objfile->has_section_at_zero)
21650 /* When a static variable is eliminated by the linker,
21651 the corresponding debug information is not stripped
21652 out, but the variable address is set to null;
21653 do not add such variables into symbol table. */
21655 else if (attr2 && (DW_UNSND (attr2) != 0))
21657 /* Workaround gfortran PR debug/40040 - it uses
21658 DW_AT_location for variables in -fPIC libraries which may
21659 get overriden by other libraries/executable and get
21660 a different address. Resolve it by the minimal symbol
21661 which may come from inferior's executable using copy
21662 relocation. Make this workaround only for gfortran as for
21663 other compilers GDB cannot guess the minimal symbol
21664 Fortran mangling kind. */
21665 if (cu->language == language_fortran && die->parent
21666 && die->parent->tag == DW_TAG_module
21667 && cu->producer
21668 && startswith (cu->producer, "GNU Fortran"))
21669 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21671 /* A variable with DW_AT_external is never static,
21672 but it may be block-scoped. */
21673 list_to_add
21674 = ((cu->list_in_scope
21675 == cu->get_builder ()->get_file_symbols ())
21676 ? cu->get_builder ()->get_global_symbols ()
21677 : cu->list_in_scope);
21679 else
21680 list_to_add = cu->list_in_scope;
21682 else
21684 /* We do not know the address of this symbol.
21685 If it is an external symbol and we have type information
21686 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21687 The address of the variable will then be determined from
21688 the minimal symbol table whenever the variable is
21689 referenced. */
21690 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21692 /* Fortran explicitly imports any global symbols to the local
21693 scope by DW_TAG_common_block. */
21694 if (cu->language == language_fortran && die->parent
21695 && die->parent->tag == DW_TAG_common_block)
21697 /* SYMBOL_CLASS doesn't matter here because
21698 read_common_block is going to reset it. */
21699 if (!suppress_add)
21700 list_to_add = cu->list_in_scope;
21702 else if (attr2 && (DW_UNSND (attr2) != 0)
21703 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21705 /* A variable with DW_AT_external is never static, but it
21706 may be block-scoped. */
21707 list_to_add
21708 = ((cu->list_in_scope
21709 == cu->get_builder ()->get_file_symbols ())
21710 ? cu->get_builder ()->get_global_symbols ()
21711 : cu->list_in_scope);
21713 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21715 else if (!die_is_declaration (die, cu))
21717 /* Use the default LOC_OPTIMIZED_OUT class. */
21718 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21719 if (!suppress_add)
21720 list_to_add = cu->list_in_scope;
21723 break;
21724 case DW_TAG_formal_parameter:
21726 /* If we are inside a function, mark this as an argument. If
21727 not, we might be looking at an argument to an inlined function
21728 when we do not have enough information to show inlined frames;
21729 pretend it's a local variable in that case so that the user can
21730 still see it. */
21731 struct context_stack *curr
21732 = cu->get_builder ()->get_current_context_stack ();
21733 if (curr != nullptr && curr->name != nullptr)
21734 SYMBOL_IS_ARGUMENT (sym) = 1;
21735 attr = dwarf2_attr (die, DW_AT_location, cu);
21736 if (attr)
21738 var_decode_location (attr, sym, cu);
21740 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21741 if (attr)
21743 dwarf2_const_value (attr, sym, cu);
21746 list_to_add = cu->list_in_scope;
21748 break;
21749 case DW_TAG_unspecified_parameters:
21750 /* From varargs functions; gdb doesn't seem to have any
21751 interest in this information, so just ignore it for now.
21752 (FIXME?) */
21753 break;
21754 case DW_TAG_template_type_param:
21755 suppress_add = 1;
21756 /* Fall through. */
21757 case DW_TAG_class_type:
21758 case DW_TAG_interface_type:
21759 case DW_TAG_structure_type:
21760 case DW_TAG_union_type:
21761 case DW_TAG_set_type:
21762 case DW_TAG_enumeration_type:
21763 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21764 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21767 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21768 really ever be static objects: otherwise, if you try
21769 to, say, break of a class's method and you're in a file
21770 which doesn't mention that class, it won't work unless
21771 the check for all static symbols in lookup_symbol_aux
21772 saves you. See the OtherFileClass tests in
21773 gdb.c++/namespace.exp. */
21775 if (!suppress_add)
21777 buildsym_compunit *builder = cu->get_builder ();
21778 list_to_add
21779 = (cu->list_in_scope == builder->get_file_symbols ()
21780 && cu->language == language_cplus
21781 ? builder->get_global_symbols ()
21782 : cu->list_in_scope);
21784 /* The semantics of C++ state that "struct foo {
21785 ... }" also defines a typedef for "foo". */
21786 if (cu->language == language_cplus
21787 || cu->language == language_ada
21788 || cu->language == language_d
21789 || cu->language == language_rust)
21791 /* The symbol's name is already allocated along
21792 with this objfile, so we don't need to
21793 duplicate it for the type. */
21794 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21795 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21799 break;
21800 case DW_TAG_typedef:
21801 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21802 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21803 list_to_add = cu->list_in_scope;
21804 break;
21805 case DW_TAG_base_type:
21806 case DW_TAG_subrange_type:
21807 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21809 list_to_add = cu->list_in_scope;
21810 break;
21811 case DW_TAG_enumerator:
21812 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21813 if (attr)
21815 dwarf2_const_value (attr, sym, cu);
21818 /* NOTE: carlton/2003-11-10: See comment above in the
21819 DW_TAG_class_type, etc. block. */
21821 list_to_add
21822 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21823 && cu->language == language_cplus
21824 ? cu->get_builder ()->get_global_symbols ()
21825 : cu->list_in_scope);
21827 break;
21828 case DW_TAG_imported_declaration:
21829 case DW_TAG_namespace:
21830 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21831 list_to_add = cu->get_builder ()->get_global_symbols ();
21832 break;
21833 case DW_TAG_module:
21834 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21835 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21836 list_to_add = cu->get_builder ()->get_global_symbols ();
21837 break;
21838 case DW_TAG_common_block:
21839 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21840 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21841 add_symbol_to_list (sym, cu->list_in_scope);
21842 break;
21843 default:
21844 /* Not a tag we recognize. Hopefully we aren't processing
21845 trash data, but since we must specifically ignore things
21846 we don't recognize, there is nothing else we should do at
21847 this point. */
21848 complaint (_("unsupported tag: '%s'"),
21849 dwarf_tag_name (die->tag));
21850 break;
21853 if (suppress_add)
21855 sym->hash_next = objfile->template_symbols;
21856 objfile->template_symbols = sym;
21857 list_to_add = NULL;
21860 if (list_to_add != NULL)
21861 add_symbol_to_list (sym, list_to_add);
21863 /* For the benefit of old versions of GCC, check for anonymous
21864 namespaces based on the demangled name. */
21865 if (!cu->processing_has_namespace_info
21866 && cu->language == language_cplus)
21867 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21869 return (sym);
21872 /* Given an attr with a DW_FORM_dataN value in host byte order,
21873 zero-extend it as appropriate for the symbol's type. The DWARF
21874 standard (v4) is not entirely clear about the meaning of using
21875 DW_FORM_dataN for a constant with a signed type, where the type is
21876 wider than the data. The conclusion of a discussion on the DWARF
21877 list was that this is unspecified. We choose to always zero-extend
21878 because that is the interpretation long in use by GCC. */
21880 static gdb_byte *
21881 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21882 struct dwarf2_cu *cu, LONGEST *value, int bits)
21884 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21885 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21886 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21887 LONGEST l = DW_UNSND (attr);
21889 if (bits < sizeof (*value) * 8)
21891 l &= ((LONGEST) 1 << bits) - 1;
21892 *value = l;
21894 else if (bits == sizeof (*value) * 8)
21895 *value = l;
21896 else
21898 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21899 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21900 return bytes;
21903 return NULL;
21906 /* Read a constant value from an attribute. Either set *VALUE, or if
21907 the value does not fit in *VALUE, set *BYTES - either already
21908 allocated on the objfile obstack, or newly allocated on OBSTACK,
21909 or, set *BATON, if we translated the constant to a location
21910 expression. */
21912 static void
21913 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21914 const char *name, struct obstack *obstack,
21915 struct dwarf2_cu *cu,
21916 LONGEST *value, const gdb_byte **bytes,
21917 struct dwarf2_locexpr_baton **baton)
21919 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21920 struct comp_unit_head *cu_header = &cu->header;
21921 struct dwarf_block *blk;
21922 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21923 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21925 *value = 0;
21926 *bytes = NULL;
21927 *baton = NULL;
21929 switch (attr->form)
21931 case DW_FORM_addr:
21932 case DW_FORM_addrx:
21933 case DW_FORM_GNU_addr_index:
21935 gdb_byte *data;
21937 if (TYPE_LENGTH (type) != cu_header->addr_size)
21938 dwarf2_const_value_length_mismatch_complaint (name,
21939 cu_header->addr_size,
21940 TYPE_LENGTH (type));
21941 /* Symbols of this form are reasonably rare, so we just
21942 piggyback on the existing location code rather than writing
21943 a new implementation of symbol_computed_ops. */
21944 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21945 (*baton)->per_cu = cu->per_cu;
21946 gdb_assert ((*baton)->per_cu);
21948 (*baton)->size = 2 + cu_header->addr_size;
21949 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21950 (*baton)->data = data;
21952 data[0] = DW_OP_addr;
21953 store_unsigned_integer (&data[1], cu_header->addr_size,
21954 byte_order, DW_ADDR (attr));
21955 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21957 break;
21958 case DW_FORM_string:
21959 case DW_FORM_strp:
21960 case DW_FORM_strx:
21961 case DW_FORM_GNU_str_index:
21962 case DW_FORM_GNU_strp_alt:
21963 /* DW_STRING is already allocated on the objfile obstack, point
21964 directly to it. */
21965 *bytes = (const gdb_byte *) DW_STRING (attr);
21966 break;
21967 case DW_FORM_block1:
21968 case DW_FORM_block2:
21969 case DW_FORM_block4:
21970 case DW_FORM_block:
21971 case DW_FORM_exprloc:
21972 case DW_FORM_data16:
21973 blk = DW_BLOCK (attr);
21974 if (TYPE_LENGTH (type) != blk->size)
21975 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21976 TYPE_LENGTH (type));
21977 *bytes = blk->data;
21978 break;
21980 /* The DW_AT_const_value attributes are supposed to carry the
21981 symbol's value "represented as it would be on the target
21982 architecture." By the time we get here, it's already been
21983 converted to host endianness, so we just need to sign- or
21984 zero-extend it as appropriate. */
21985 case DW_FORM_data1:
21986 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21987 break;
21988 case DW_FORM_data2:
21989 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21990 break;
21991 case DW_FORM_data4:
21992 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21993 break;
21994 case DW_FORM_data8:
21995 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21996 break;
21998 case DW_FORM_sdata:
21999 case DW_FORM_implicit_const:
22000 *value = DW_SND (attr);
22001 break;
22003 case DW_FORM_udata:
22004 *value = DW_UNSND (attr);
22005 break;
22007 default:
22008 complaint (_("unsupported const value attribute form: '%s'"),
22009 dwarf_form_name (attr->form));
22010 *value = 0;
22011 break;
22016 /* Copy constant value from an attribute to a symbol. */
22018 static void
22019 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22020 struct dwarf2_cu *cu)
22022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22023 LONGEST value;
22024 const gdb_byte *bytes;
22025 struct dwarf2_locexpr_baton *baton;
22027 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22028 SYMBOL_PRINT_NAME (sym),
22029 &objfile->objfile_obstack, cu,
22030 &value, &bytes, &baton);
22032 if (baton != NULL)
22034 SYMBOL_LOCATION_BATON (sym) = baton;
22035 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22037 else if (bytes != NULL)
22039 SYMBOL_VALUE_BYTES (sym) = bytes;
22040 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22042 else
22044 SYMBOL_VALUE (sym) = value;
22045 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22049 /* Return the type of the die in question using its DW_AT_type attribute. */
22051 static struct type *
22052 die_type (struct die_info *die, struct dwarf2_cu *cu)
22054 struct attribute *type_attr;
22056 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22057 if (!type_attr)
22059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22060 /* A missing DW_AT_type represents a void type. */
22061 return objfile_type (objfile)->builtin_void;
22064 return lookup_die_type (die, type_attr, cu);
22067 /* True iff CU's producer generates GNAT Ada auxiliary information
22068 that allows to find parallel types through that information instead
22069 of having to do expensive parallel lookups by type name. */
22071 static int
22072 need_gnat_info (struct dwarf2_cu *cu)
22074 /* Assume that the Ada compiler was GNAT, which always produces
22075 the auxiliary information. */
22076 return (cu->language == language_ada);
22079 /* Return the auxiliary type of the die in question using its
22080 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22081 attribute is not present. */
22083 static struct type *
22084 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22086 struct attribute *type_attr;
22088 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22089 if (!type_attr)
22090 return NULL;
22092 return lookup_die_type (die, type_attr, cu);
22095 /* If DIE has a descriptive_type attribute, then set the TYPE's
22096 descriptive type accordingly. */
22098 static void
22099 set_descriptive_type (struct type *type, struct die_info *die,
22100 struct dwarf2_cu *cu)
22102 struct type *descriptive_type = die_descriptive_type (die, cu);
22104 if (descriptive_type)
22106 ALLOCATE_GNAT_AUX_TYPE (type);
22107 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22111 /* Return the containing type of the die in question using its
22112 DW_AT_containing_type attribute. */
22114 static struct type *
22115 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22117 struct attribute *type_attr;
22118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22120 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22121 if (!type_attr)
22122 error (_("Dwarf Error: Problem turning containing type into gdb type "
22123 "[in module %s]"), objfile_name (objfile));
22125 return lookup_die_type (die, type_attr, cu);
22128 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22130 static struct type *
22131 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22133 struct dwarf2_per_objfile *dwarf2_per_objfile
22134 = cu->per_cu->dwarf2_per_objfile;
22135 struct objfile *objfile = dwarf2_per_objfile->objfile;
22136 char *saved;
22138 std::string message
22139 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22140 objfile_name (objfile),
22141 sect_offset_str (cu->header.sect_off),
22142 sect_offset_str (die->sect_off));
22143 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22144 message.c_str (), message.length ());
22146 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22149 /* Look up the type of DIE in CU using its type attribute ATTR.
22150 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22151 DW_AT_containing_type.
22152 If there is no type substitute an error marker. */
22154 static struct type *
22155 lookup_die_type (struct die_info *die, const struct attribute *attr,
22156 struct dwarf2_cu *cu)
22158 struct dwarf2_per_objfile *dwarf2_per_objfile
22159 = cu->per_cu->dwarf2_per_objfile;
22160 struct objfile *objfile = dwarf2_per_objfile->objfile;
22161 struct type *this_type;
22163 gdb_assert (attr->name == DW_AT_type
22164 || attr->name == DW_AT_GNAT_descriptive_type
22165 || attr->name == DW_AT_containing_type);
22167 /* First see if we have it cached. */
22169 if (attr->form == DW_FORM_GNU_ref_alt)
22171 struct dwarf2_per_cu_data *per_cu;
22172 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22174 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22175 dwarf2_per_objfile);
22176 this_type = get_die_type_at_offset (sect_off, per_cu);
22178 else if (attr_form_is_ref (attr))
22180 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22182 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22184 else if (attr->form == DW_FORM_ref_sig8)
22186 ULONGEST signature = DW_SIGNATURE (attr);
22188 return get_signatured_type (die, signature, cu);
22190 else
22192 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22193 " at %s [in module %s]"),
22194 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22195 objfile_name (objfile));
22196 return build_error_marker_type (cu, die);
22199 /* If not cached we need to read it in. */
22201 if (this_type == NULL)
22203 struct die_info *type_die = NULL;
22204 struct dwarf2_cu *type_cu = cu;
22206 if (attr_form_is_ref (attr))
22207 type_die = follow_die_ref (die, attr, &type_cu);
22208 if (type_die == NULL)
22209 return build_error_marker_type (cu, die);
22210 /* If we find the type now, it's probably because the type came
22211 from an inter-CU reference and the type's CU got expanded before
22212 ours. */
22213 this_type = read_type_die (type_die, type_cu);
22216 /* If we still don't have a type use an error marker. */
22218 if (this_type == NULL)
22219 return build_error_marker_type (cu, die);
22221 return this_type;
22224 /* Return the type in DIE, CU.
22225 Returns NULL for invalid types.
22227 This first does a lookup in die_type_hash,
22228 and only reads the die in if necessary.
22230 NOTE: This can be called when reading in partial or full symbols. */
22232 static struct type *
22233 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22235 struct type *this_type;
22237 this_type = get_die_type (die, cu);
22238 if (this_type)
22239 return this_type;
22241 return read_type_die_1 (die, cu);
22244 /* Read the type in DIE, CU.
22245 Returns NULL for invalid types. */
22247 static struct type *
22248 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22250 struct type *this_type = NULL;
22252 switch (die->tag)
22254 case DW_TAG_class_type:
22255 case DW_TAG_interface_type:
22256 case DW_TAG_structure_type:
22257 case DW_TAG_union_type:
22258 this_type = read_structure_type (die, cu);
22259 break;
22260 case DW_TAG_enumeration_type:
22261 this_type = read_enumeration_type (die, cu);
22262 break;
22263 case DW_TAG_subprogram:
22264 case DW_TAG_subroutine_type:
22265 case DW_TAG_inlined_subroutine:
22266 this_type = read_subroutine_type (die, cu);
22267 break;
22268 case DW_TAG_array_type:
22269 this_type = read_array_type (die, cu);
22270 break;
22271 case DW_TAG_set_type:
22272 this_type = read_set_type (die, cu);
22273 break;
22274 case DW_TAG_pointer_type:
22275 this_type = read_tag_pointer_type (die, cu);
22276 break;
22277 case DW_TAG_ptr_to_member_type:
22278 this_type = read_tag_ptr_to_member_type (die, cu);
22279 break;
22280 case DW_TAG_reference_type:
22281 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22282 break;
22283 case DW_TAG_rvalue_reference_type:
22284 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22285 break;
22286 case DW_TAG_const_type:
22287 this_type = read_tag_const_type (die, cu);
22288 break;
22289 case DW_TAG_volatile_type:
22290 this_type = read_tag_volatile_type (die, cu);
22291 break;
22292 case DW_TAG_restrict_type:
22293 this_type = read_tag_restrict_type (die, cu);
22294 break;
22295 case DW_TAG_string_type:
22296 this_type = read_tag_string_type (die, cu);
22297 break;
22298 case DW_TAG_typedef:
22299 this_type = read_typedef (die, cu);
22300 break;
22301 case DW_TAG_subrange_type:
22302 this_type = read_subrange_type (die, cu);
22303 break;
22304 case DW_TAG_base_type:
22305 this_type = read_base_type (die, cu);
22306 break;
22307 case DW_TAG_unspecified_type:
22308 this_type = read_unspecified_type (die, cu);
22309 break;
22310 case DW_TAG_namespace:
22311 this_type = read_namespace_type (die, cu);
22312 break;
22313 case DW_TAG_module:
22314 this_type = read_module_type (die, cu);
22315 break;
22316 case DW_TAG_atomic_type:
22317 this_type = read_tag_atomic_type (die, cu);
22318 break;
22319 default:
22320 complaint (_("unexpected tag in read_type_die: '%s'"),
22321 dwarf_tag_name (die->tag));
22322 break;
22325 return this_type;
22328 /* See if we can figure out if the class lives in a namespace. We do
22329 this by looking for a member function; its demangled name will
22330 contain namespace info, if there is any.
22331 Return the computed name or NULL.
22332 Space for the result is allocated on the objfile's obstack.
22333 This is the full-die version of guess_partial_die_structure_name.
22334 In this case we know DIE has no useful parent. */
22336 static char *
22337 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22339 struct die_info *spec_die;
22340 struct dwarf2_cu *spec_cu;
22341 struct die_info *child;
22342 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22344 spec_cu = cu;
22345 spec_die = die_specification (die, &spec_cu);
22346 if (spec_die != NULL)
22348 die = spec_die;
22349 cu = spec_cu;
22352 for (child = die->child;
22353 child != NULL;
22354 child = child->sibling)
22356 if (child->tag == DW_TAG_subprogram)
22358 const char *linkage_name = dw2_linkage_name (child, cu);
22360 if (linkage_name != NULL)
22362 char *actual_name
22363 = language_class_name_from_physname (cu->language_defn,
22364 linkage_name);
22365 char *name = NULL;
22367 if (actual_name != NULL)
22369 const char *die_name = dwarf2_name (die, cu);
22371 if (die_name != NULL
22372 && strcmp (die_name, actual_name) != 0)
22374 /* Strip off the class name from the full name.
22375 We want the prefix. */
22376 int die_name_len = strlen (die_name);
22377 int actual_name_len = strlen (actual_name);
22379 /* Test for '::' as a sanity check. */
22380 if (actual_name_len > die_name_len + 2
22381 && actual_name[actual_name_len
22382 - die_name_len - 1] == ':')
22383 name = (char *) obstack_copy0 (
22384 &objfile->per_bfd->storage_obstack,
22385 actual_name, actual_name_len - die_name_len - 2);
22388 xfree (actual_name);
22389 return name;
22394 return NULL;
22397 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22398 prefix part in such case. See
22399 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22401 static const char *
22402 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22404 struct attribute *attr;
22405 const char *base;
22407 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22408 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22409 return NULL;
22411 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22412 return NULL;
22414 attr = dw2_linkage_name_attr (die, cu);
22415 if (attr == NULL || DW_STRING (attr) == NULL)
22416 return NULL;
22418 /* dwarf2_name had to be already called. */
22419 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22421 /* Strip the base name, keep any leading namespaces/classes. */
22422 base = strrchr (DW_STRING (attr), ':');
22423 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22424 return "";
22426 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22427 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22428 DW_STRING (attr),
22429 &base[-1] - DW_STRING (attr));
22432 /* Return the name of the namespace/class that DIE is defined within,
22433 or "" if we can't tell. The caller should not xfree the result.
22435 For example, if we're within the method foo() in the following
22436 code:
22438 namespace N {
22439 class C {
22440 void foo () {
22445 then determine_prefix on foo's die will return "N::C". */
22447 static const char *
22448 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22450 struct dwarf2_per_objfile *dwarf2_per_objfile
22451 = cu->per_cu->dwarf2_per_objfile;
22452 struct die_info *parent, *spec_die;
22453 struct dwarf2_cu *spec_cu;
22454 struct type *parent_type;
22455 const char *retval;
22457 if (cu->language != language_cplus
22458 && cu->language != language_fortran && cu->language != language_d
22459 && cu->language != language_rust)
22460 return "";
22462 retval = anonymous_struct_prefix (die, cu);
22463 if (retval)
22464 return retval;
22466 /* We have to be careful in the presence of DW_AT_specification.
22467 For example, with GCC 3.4, given the code
22469 namespace N {
22470 void foo() {
22471 // Definition of N::foo.
22475 then we'll have a tree of DIEs like this:
22477 1: DW_TAG_compile_unit
22478 2: DW_TAG_namespace // N
22479 3: DW_TAG_subprogram // declaration of N::foo
22480 4: DW_TAG_subprogram // definition of N::foo
22481 DW_AT_specification // refers to die #3
22483 Thus, when processing die #4, we have to pretend that we're in
22484 the context of its DW_AT_specification, namely the contex of die
22485 #3. */
22486 spec_cu = cu;
22487 spec_die = die_specification (die, &spec_cu);
22488 if (spec_die == NULL)
22489 parent = die->parent;
22490 else
22492 parent = spec_die->parent;
22493 cu = spec_cu;
22496 if (parent == NULL)
22497 return "";
22498 else if (parent->building_fullname)
22500 const char *name;
22501 const char *parent_name;
22503 /* It has been seen on RealView 2.2 built binaries,
22504 DW_TAG_template_type_param types actually _defined_ as
22505 children of the parent class:
22507 enum E {};
22508 template class <class Enum> Class{};
22509 Class<enum E> class_e;
22511 1: DW_TAG_class_type (Class)
22512 2: DW_TAG_enumeration_type (E)
22513 3: DW_TAG_enumerator (enum1:0)
22514 3: DW_TAG_enumerator (enum2:1)
22516 2: DW_TAG_template_type_param
22517 DW_AT_type DW_FORM_ref_udata (E)
22519 Besides being broken debug info, it can put GDB into an
22520 infinite loop. Consider:
22522 When we're building the full name for Class<E>, we'll start
22523 at Class, and go look over its template type parameters,
22524 finding E. We'll then try to build the full name of E, and
22525 reach here. We're now trying to build the full name of E,
22526 and look over the parent DIE for containing scope. In the
22527 broken case, if we followed the parent DIE of E, we'd again
22528 find Class, and once again go look at its template type
22529 arguments, etc., etc. Simply don't consider such parent die
22530 as source-level parent of this die (it can't be, the language
22531 doesn't allow it), and break the loop here. */
22532 name = dwarf2_name (die, cu);
22533 parent_name = dwarf2_name (parent, cu);
22534 complaint (_("template param type '%s' defined within parent '%s'"),
22535 name ? name : "<unknown>",
22536 parent_name ? parent_name : "<unknown>");
22537 return "";
22539 else
22540 switch (parent->tag)
22542 case DW_TAG_namespace:
22543 parent_type = read_type_die (parent, cu);
22544 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22545 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22546 Work around this problem here. */
22547 if (cu->language == language_cplus
22548 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22549 return "";
22550 /* We give a name to even anonymous namespaces. */
22551 return TYPE_NAME (parent_type);
22552 case DW_TAG_class_type:
22553 case DW_TAG_interface_type:
22554 case DW_TAG_structure_type:
22555 case DW_TAG_union_type:
22556 case DW_TAG_module:
22557 parent_type = read_type_die (parent, cu);
22558 if (TYPE_NAME (parent_type) != NULL)
22559 return TYPE_NAME (parent_type);
22560 else
22561 /* An anonymous structure is only allowed non-static data
22562 members; no typedefs, no member functions, et cetera.
22563 So it does not need a prefix. */
22564 return "";
22565 case DW_TAG_compile_unit:
22566 case DW_TAG_partial_unit:
22567 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22568 if (cu->language == language_cplus
22569 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22570 && die->child != NULL
22571 && (die->tag == DW_TAG_class_type
22572 || die->tag == DW_TAG_structure_type
22573 || die->tag == DW_TAG_union_type))
22575 char *name = guess_full_die_structure_name (die, cu);
22576 if (name != NULL)
22577 return name;
22579 return "";
22580 case DW_TAG_enumeration_type:
22581 parent_type = read_type_die (parent, cu);
22582 if (TYPE_DECLARED_CLASS (parent_type))
22584 if (TYPE_NAME (parent_type) != NULL)
22585 return TYPE_NAME (parent_type);
22586 return "";
22588 /* Fall through. */
22589 default:
22590 return determine_prefix (parent, cu);
22594 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22595 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22596 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22597 an obconcat, otherwise allocate storage for the result. The CU argument is
22598 used to determine the language and hence, the appropriate separator. */
22600 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22602 static char *
22603 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22604 int physname, struct dwarf2_cu *cu)
22606 const char *lead = "";
22607 const char *sep;
22609 if (suffix == NULL || suffix[0] == '\0'
22610 || prefix == NULL || prefix[0] == '\0')
22611 sep = "";
22612 else if (cu->language == language_d)
22614 /* For D, the 'main' function could be defined in any module, but it
22615 should never be prefixed. */
22616 if (strcmp (suffix, "D main") == 0)
22618 prefix = "";
22619 sep = "";
22621 else
22622 sep = ".";
22624 else if (cu->language == language_fortran && physname)
22626 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22627 DW_AT_MIPS_linkage_name is preferred and used instead. */
22629 lead = "__";
22630 sep = "_MOD_";
22632 else
22633 sep = "::";
22635 if (prefix == NULL)
22636 prefix = "";
22637 if (suffix == NULL)
22638 suffix = "";
22640 if (obs == NULL)
22642 char *retval
22643 = ((char *)
22644 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22646 strcpy (retval, lead);
22647 strcat (retval, prefix);
22648 strcat (retval, sep);
22649 strcat (retval, suffix);
22650 return retval;
22652 else
22654 /* We have an obstack. */
22655 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22659 /* Return sibling of die, NULL if no sibling. */
22661 static struct die_info *
22662 sibling_die (struct die_info *die)
22664 return die->sibling;
22667 /* Get name of a die, return NULL if not found. */
22669 static const char *
22670 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22671 struct obstack *obstack)
22673 if (name && cu->language == language_cplus)
22675 std::string canon_name = cp_canonicalize_string (name);
22677 if (!canon_name.empty ())
22679 if (canon_name != name)
22680 name = (const char *) obstack_copy0 (obstack,
22681 canon_name.c_str (),
22682 canon_name.length ());
22686 return name;
22689 /* Get name of a die, return NULL if not found.
22690 Anonymous namespaces are converted to their magic string. */
22692 static const char *
22693 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22695 struct attribute *attr;
22696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22698 attr = dwarf2_attr (die, DW_AT_name, cu);
22699 if ((!attr || !DW_STRING (attr))
22700 && die->tag != DW_TAG_namespace
22701 && die->tag != DW_TAG_class_type
22702 && die->tag != DW_TAG_interface_type
22703 && die->tag != DW_TAG_structure_type
22704 && die->tag != DW_TAG_union_type)
22705 return NULL;
22707 switch (die->tag)
22709 case DW_TAG_compile_unit:
22710 case DW_TAG_partial_unit:
22711 /* Compilation units have a DW_AT_name that is a filename, not
22712 a source language identifier. */
22713 case DW_TAG_enumeration_type:
22714 case DW_TAG_enumerator:
22715 /* These tags always have simple identifiers already; no need
22716 to canonicalize them. */
22717 return DW_STRING (attr);
22719 case DW_TAG_namespace:
22720 if (attr != NULL && DW_STRING (attr) != NULL)
22721 return DW_STRING (attr);
22722 return CP_ANONYMOUS_NAMESPACE_STR;
22724 case DW_TAG_class_type:
22725 case DW_TAG_interface_type:
22726 case DW_TAG_structure_type:
22727 case DW_TAG_union_type:
22728 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22729 structures or unions. These were of the form "._%d" in GCC 4.1,
22730 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22731 and GCC 4.4. We work around this problem by ignoring these. */
22732 if (attr && DW_STRING (attr)
22733 && (startswith (DW_STRING (attr), "._")
22734 || startswith (DW_STRING (attr), "<anonymous")))
22735 return NULL;
22737 /* GCC might emit a nameless typedef that has a linkage name. See
22738 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22739 if (!attr || DW_STRING (attr) == NULL)
22741 char *demangled = NULL;
22743 attr = dw2_linkage_name_attr (die, cu);
22744 if (attr == NULL || DW_STRING (attr) == NULL)
22745 return NULL;
22747 /* Avoid demangling DW_STRING (attr) the second time on a second
22748 call for the same DIE. */
22749 if (!DW_STRING_IS_CANONICAL (attr))
22750 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22752 if (demangled)
22754 const char *base;
22756 /* FIXME: we already did this for the partial symbol... */
22757 DW_STRING (attr)
22758 = ((const char *)
22759 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22760 demangled, strlen (demangled)));
22761 DW_STRING_IS_CANONICAL (attr) = 1;
22762 xfree (demangled);
22764 /* Strip any leading namespaces/classes, keep only the base name.
22765 DW_AT_name for named DIEs does not contain the prefixes. */
22766 base = strrchr (DW_STRING (attr), ':');
22767 if (base && base > DW_STRING (attr) && base[-1] == ':')
22768 return &base[1];
22769 else
22770 return DW_STRING (attr);
22773 break;
22775 default:
22776 break;
22779 if (!DW_STRING_IS_CANONICAL (attr))
22781 DW_STRING (attr)
22782 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22783 &objfile->per_bfd->storage_obstack);
22784 DW_STRING_IS_CANONICAL (attr) = 1;
22786 return DW_STRING (attr);
22789 /* Return the die that this die in an extension of, or NULL if there
22790 is none. *EXT_CU is the CU containing DIE on input, and the CU
22791 containing the return value on output. */
22793 static struct die_info *
22794 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22796 struct attribute *attr;
22798 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22799 if (attr == NULL)
22800 return NULL;
22802 return follow_die_ref (die, attr, ext_cu);
22805 /* Convert a DIE tag into its string name. */
22807 static const char *
22808 dwarf_tag_name (unsigned tag)
22810 const char *name = get_DW_TAG_name (tag);
22812 if (name == NULL)
22813 return "DW_TAG_<unknown>";
22815 return name;
22818 /* Convert a DWARF attribute code into its string name. */
22820 static const char *
22821 dwarf_attr_name (unsigned attr)
22823 const char *name;
22825 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22826 if (attr == DW_AT_MIPS_fde)
22827 return "DW_AT_MIPS_fde";
22828 #else
22829 if (attr == DW_AT_HP_block_index)
22830 return "DW_AT_HP_block_index";
22831 #endif
22833 name = get_DW_AT_name (attr);
22835 if (name == NULL)
22836 return "DW_AT_<unknown>";
22838 return name;
22841 /* Convert a DWARF value form code into its string name. */
22843 static const char *
22844 dwarf_form_name (unsigned form)
22846 const char *name = get_DW_FORM_name (form);
22848 if (name == NULL)
22849 return "DW_FORM_<unknown>";
22851 return name;
22854 static const char *
22855 dwarf_bool_name (unsigned mybool)
22857 if (mybool)
22858 return "TRUE";
22859 else
22860 return "FALSE";
22863 /* Convert a DWARF type code into its string name. */
22865 static const char *
22866 dwarf_type_encoding_name (unsigned enc)
22868 const char *name = get_DW_ATE_name (enc);
22870 if (name == NULL)
22871 return "DW_ATE_<unknown>";
22873 return name;
22876 static void
22877 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22879 unsigned int i;
22881 print_spaces (indent, f);
22882 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22883 dwarf_tag_name (die->tag), die->abbrev,
22884 sect_offset_str (die->sect_off));
22886 if (die->parent != NULL)
22888 print_spaces (indent, f);
22889 fprintf_unfiltered (f, " parent at offset: %s\n",
22890 sect_offset_str (die->parent->sect_off));
22893 print_spaces (indent, f);
22894 fprintf_unfiltered (f, " has children: %s\n",
22895 dwarf_bool_name (die->child != NULL));
22897 print_spaces (indent, f);
22898 fprintf_unfiltered (f, " attributes:\n");
22900 for (i = 0; i < die->num_attrs; ++i)
22902 print_spaces (indent, f);
22903 fprintf_unfiltered (f, " %s (%s) ",
22904 dwarf_attr_name (die->attrs[i].name),
22905 dwarf_form_name (die->attrs[i].form));
22907 switch (die->attrs[i].form)
22909 case DW_FORM_addr:
22910 case DW_FORM_addrx:
22911 case DW_FORM_GNU_addr_index:
22912 fprintf_unfiltered (f, "address: ");
22913 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22914 break;
22915 case DW_FORM_block2:
22916 case DW_FORM_block4:
22917 case DW_FORM_block:
22918 case DW_FORM_block1:
22919 fprintf_unfiltered (f, "block: size %s",
22920 pulongest (DW_BLOCK (&die->attrs[i])->size));
22921 break;
22922 case DW_FORM_exprloc:
22923 fprintf_unfiltered (f, "expression: size %s",
22924 pulongest (DW_BLOCK (&die->attrs[i])->size));
22925 break;
22926 case DW_FORM_data16:
22927 fprintf_unfiltered (f, "constant of 16 bytes");
22928 break;
22929 case DW_FORM_ref_addr:
22930 fprintf_unfiltered (f, "ref address: ");
22931 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22932 break;
22933 case DW_FORM_GNU_ref_alt:
22934 fprintf_unfiltered (f, "alt ref address: ");
22935 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22936 break;
22937 case DW_FORM_ref1:
22938 case DW_FORM_ref2:
22939 case DW_FORM_ref4:
22940 case DW_FORM_ref8:
22941 case DW_FORM_ref_udata:
22942 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22943 (long) (DW_UNSND (&die->attrs[i])));
22944 break;
22945 case DW_FORM_data1:
22946 case DW_FORM_data2:
22947 case DW_FORM_data4:
22948 case DW_FORM_data8:
22949 case DW_FORM_udata:
22950 case DW_FORM_sdata:
22951 fprintf_unfiltered (f, "constant: %s",
22952 pulongest (DW_UNSND (&die->attrs[i])));
22953 break;
22954 case DW_FORM_sec_offset:
22955 fprintf_unfiltered (f, "section offset: %s",
22956 pulongest (DW_UNSND (&die->attrs[i])));
22957 break;
22958 case DW_FORM_ref_sig8:
22959 fprintf_unfiltered (f, "signature: %s",
22960 hex_string (DW_SIGNATURE (&die->attrs[i])));
22961 break;
22962 case DW_FORM_string:
22963 case DW_FORM_strp:
22964 case DW_FORM_line_strp:
22965 case DW_FORM_strx:
22966 case DW_FORM_GNU_str_index:
22967 case DW_FORM_GNU_strp_alt:
22968 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22969 DW_STRING (&die->attrs[i])
22970 ? DW_STRING (&die->attrs[i]) : "",
22971 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22972 break;
22973 case DW_FORM_flag:
22974 if (DW_UNSND (&die->attrs[i]))
22975 fprintf_unfiltered (f, "flag: TRUE");
22976 else
22977 fprintf_unfiltered (f, "flag: FALSE");
22978 break;
22979 case DW_FORM_flag_present:
22980 fprintf_unfiltered (f, "flag: TRUE");
22981 break;
22982 case DW_FORM_indirect:
22983 /* The reader will have reduced the indirect form to
22984 the "base form" so this form should not occur. */
22985 fprintf_unfiltered (f,
22986 "unexpected attribute form: DW_FORM_indirect");
22987 break;
22988 case DW_FORM_implicit_const:
22989 fprintf_unfiltered (f, "constant: %s",
22990 plongest (DW_SND (&die->attrs[i])));
22991 break;
22992 default:
22993 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22994 die->attrs[i].form);
22995 break;
22997 fprintf_unfiltered (f, "\n");
23001 static void
23002 dump_die_for_error (struct die_info *die)
23004 dump_die_shallow (gdb_stderr, 0, die);
23007 static void
23008 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23010 int indent = level * 4;
23012 gdb_assert (die != NULL);
23014 if (level >= max_level)
23015 return;
23017 dump_die_shallow (f, indent, die);
23019 if (die->child != NULL)
23021 print_spaces (indent, f);
23022 fprintf_unfiltered (f, " Children:");
23023 if (level + 1 < max_level)
23025 fprintf_unfiltered (f, "\n");
23026 dump_die_1 (f, level + 1, max_level, die->child);
23028 else
23030 fprintf_unfiltered (f,
23031 " [not printed, max nesting level reached]\n");
23035 if (die->sibling != NULL && level > 0)
23037 dump_die_1 (f, level, max_level, die->sibling);
23041 /* This is called from the pdie macro in gdbinit.in.
23042 It's not static so gcc will keep a copy callable from gdb. */
23044 void
23045 dump_die (struct die_info *die, int max_level)
23047 dump_die_1 (gdb_stdlog, 0, max_level, die);
23050 static void
23051 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23053 void **slot;
23055 slot = htab_find_slot_with_hash (cu->die_hash, die,
23056 to_underlying (die->sect_off),
23057 INSERT);
23059 *slot = die;
23062 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23063 required kind. */
23065 static sect_offset
23066 dwarf2_get_ref_die_offset (const struct attribute *attr)
23068 if (attr_form_is_ref (attr))
23069 return (sect_offset) DW_UNSND (attr);
23071 complaint (_("unsupported die ref attribute form: '%s'"),
23072 dwarf_form_name (attr->form));
23073 return {};
23076 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23077 * the value held by the attribute is not constant. */
23079 static LONGEST
23080 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23082 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23083 return DW_SND (attr);
23084 else if (attr->form == DW_FORM_udata
23085 || attr->form == DW_FORM_data1
23086 || attr->form == DW_FORM_data2
23087 || attr->form == DW_FORM_data4
23088 || attr->form == DW_FORM_data8)
23089 return DW_UNSND (attr);
23090 else
23092 /* For DW_FORM_data16 see attr_form_is_constant. */
23093 complaint (_("Attribute value is not a constant (%s)"),
23094 dwarf_form_name (attr->form));
23095 return default_value;
23099 /* Follow reference or signature attribute ATTR of SRC_DIE.
23100 On entry *REF_CU is the CU of SRC_DIE.
23101 On exit *REF_CU is the CU of the result. */
23103 static struct die_info *
23104 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23105 struct dwarf2_cu **ref_cu)
23107 struct die_info *die;
23109 if (attr_form_is_ref (attr))
23110 die = follow_die_ref (src_die, attr, ref_cu);
23111 else if (attr->form == DW_FORM_ref_sig8)
23112 die = follow_die_sig (src_die, attr, ref_cu);
23113 else
23115 dump_die_for_error (src_die);
23116 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23117 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23120 return die;
23123 /* Follow reference OFFSET.
23124 On entry *REF_CU is the CU of the source die referencing OFFSET.
23125 On exit *REF_CU is the CU of the result.
23126 Returns NULL if OFFSET is invalid. */
23128 static struct die_info *
23129 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23130 struct dwarf2_cu **ref_cu)
23132 struct die_info temp_die;
23133 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23134 struct dwarf2_per_objfile *dwarf2_per_objfile
23135 = cu->per_cu->dwarf2_per_objfile;
23137 gdb_assert (cu->per_cu != NULL);
23139 target_cu = cu;
23141 if (cu->per_cu->is_debug_types)
23143 /* .debug_types CUs cannot reference anything outside their CU.
23144 If they need to, they have to reference a signatured type via
23145 DW_FORM_ref_sig8. */
23146 if (!offset_in_cu_p (&cu->header, sect_off))
23147 return NULL;
23149 else if (offset_in_dwz != cu->per_cu->is_dwz
23150 || !offset_in_cu_p (&cu->header, sect_off))
23152 struct dwarf2_per_cu_data *per_cu;
23154 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23155 dwarf2_per_objfile);
23157 /* If necessary, add it to the queue and load its DIEs. */
23158 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23159 load_full_comp_unit (per_cu, false, cu->language);
23161 target_cu = per_cu->cu;
23163 else if (cu->dies == NULL)
23165 /* We're loading full DIEs during partial symbol reading. */
23166 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23167 load_full_comp_unit (cu->per_cu, false, language_minimal);
23170 *ref_cu = target_cu;
23171 temp_die.sect_off = sect_off;
23173 if (target_cu != cu)
23174 target_cu->ancestor = cu;
23176 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23177 &temp_die,
23178 to_underlying (sect_off));
23181 /* Follow reference attribute ATTR of SRC_DIE.
23182 On entry *REF_CU is the CU of SRC_DIE.
23183 On exit *REF_CU is the CU of the result. */
23185 static struct die_info *
23186 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23187 struct dwarf2_cu **ref_cu)
23189 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23190 struct dwarf2_cu *cu = *ref_cu;
23191 struct die_info *die;
23193 die = follow_die_offset (sect_off,
23194 (attr->form == DW_FORM_GNU_ref_alt
23195 || cu->per_cu->is_dwz),
23196 ref_cu);
23197 if (!die)
23198 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23199 "at %s [in module %s]"),
23200 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23201 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23203 return die;
23206 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23207 Returned value is intended for DW_OP_call*. Returned
23208 dwarf2_locexpr_baton->data has lifetime of
23209 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23211 struct dwarf2_locexpr_baton
23212 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23213 struct dwarf2_per_cu_data *per_cu,
23214 CORE_ADDR (*get_frame_pc) (void *baton),
23215 void *baton, bool resolve_abstract_p)
23217 struct dwarf2_cu *cu;
23218 struct die_info *die;
23219 struct attribute *attr;
23220 struct dwarf2_locexpr_baton retval;
23221 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23222 struct objfile *objfile = dwarf2_per_objfile->objfile;
23224 if (per_cu->cu == NULL)
23225 load_cu (per_cu, false);
23226 cu = per_cu->cu;
23227 if (cu == NULL)
23229 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23230 Instead just throw an error, not much else we can do. */
23231 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23232 sect_offset_str (sect_off), objfile_name (objfile));
23235 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23236 if (!die)
23237 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23238 sect_offset_str (sect_off), objfile_name (objfile));
23240 attr = dwarf2_attr (die, DW_AT_location, cu);
23241 if (!attr && resolve_abstract_p
23242 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23243 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23245 CORE_ADDR pc = (*get_frame_pc) (baton);
23247 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23249 if (!cand->parent
23250 || cand->parent->tag != DW_TAG_subprogram)
23251 continue;
23253 CORE_ADDR pc_low, pc_high;
23254 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23255 if (pc_low == ((CORE_ADDR) -1)
23256 || !(pc_low <= pc && pc < pc_high))
23257 continue;
23259 die = cand;
23260 attr = dwarf2_attr (die, DW_AT_location, cu);
23261 break;
23265 if (!attr)
23267 /* DWARF: "If there is no such attribute, then there is no effect.".
23268 DATA is ignored if SIZE is 0. */
23270 retval.data = NULL;
23271 retval.size = 0;
23273 else if (attr_form_is_section_offset (attr))
23275 struct dwarf2_loclist_baton loclist_baton;
23276 CORE_ADDR pc = (*get_frame_pc) (baton);
23277 size_t size;
23279 fill_in_loclist_baton (cu, &loclist_baton, attr);
23281 retval.data = dwarf2_find_location_expression (&loclist_baton,
23282 &size, pc);
23283 retval.size = size;
23285 else
23287 if (!attr_form_is_block (attr))
23288 error (_("Dwarf Error: DIE at %s referenced in module %s "
23289 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23290 sect_offset_str (sect_off), objfile_name (objfile));
23292 retval.data = DW_BLOCK (attr)->data;
23293 retval.size = DW_BLOCK (attr)->size;
23295 retval.per_cu = cu->per_cu;
23297 age_cached_comp_units (dwarf2_per_objfile);
23299 return retval;
23302 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23303 offset. */
23305 struct dwarf2_locexpr_baton
23306 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23307 struct dwarf2_per_cu_data *per_cu,
23308 CORE_ADDR (*get_frame_pc) (void *baton),
23309 void *baton)
23311 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23313 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23316 /* Write a constant of a given type as target-ordered bytes into
23317 OBSTACK. */
23319 static const gdb_byte *
23320 write_constant_as_bytes (struct obstack *obstack,
23321 enum bfd_endian byte_order,
23322 struct type *type,
23323 ULONGEST value,
23324 LONGEST *len)
23326 gdb_byte *result;
23328 *len = TYPE_LENGTH (type);
23329 result = (gdb_byte *) obstack_alloc (obstack, *len);
23330 store_unsigned_integer (result, *len, byte_order, value);
23332 return result;
23335 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23336 pointer to the constant bytes and set LEN to the length of the
23337 data. If memory is needed, allocate it on OBSTACK. If the DIE
23338 does not have a DW_AT_const_value, return NULL. */
23340 const gdb_byte *
23341 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23342 struct dwarf2_per_cu_data *per_cu,
23343 struct obstack *obstack,
23344 LONGEST *len)
23346 struct dwarf2_cu *cu;
23347 struct die_info *die;
23348 struct attribute *attr;
23349 const gdb_byte *result = NULL;
23350 struct type *type;
23351 LONGEST value;
23352 enum bfd_endian byte_order;
23353 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23355 if (per_cu->cu == NULL)
23356 load_cu (per_cu, false);
23357 cu = per_cu->cu;
23358 if (cu == NULL)
23360 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23361 Instead just throw an error, not much else we can do. */
23362 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23363 sect_offset_str (sect_off), objfile_name (objfile));
23366 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23367 if (!die)
23368 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23369 sect_offset_str (sect_off), objfile_name (objfile));
23371 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23372 if (attr == NULL)
23373 return NULL;
23375 byte_order = (bfd_big_endian (objfile->obfd)
23376 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23378 switch (attr->form)
23380 case DW_FORM_addr:
23381 case DW_FORM_addrx:
23382 case DW_FORM_GNU_addr_index:
23384 gdb_byte *tem;
23386 *len = cu->header.addr_size;
23387 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23388 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23389 result = tem;
23391 break;
23392 case DW_FORM_string:
23393 case DW_FORM_strp:
23394 case DW_FORM_strx:
23395 case DW_FORM_GNU_str_index:
23396 case DW_FORM_GNU_strp_alt:
23397 /* DW_STRING is already allocated on the objfile obstack, point
23398 directly to it. */
23399 result = (const gdb_byte *) DW_STRING (attr);
23400 *len = strlen (DW_STRING (attr));
23401 break;
23402 case DW_FORM_block1:
23403 case DW_FORM_block2:
23404 case DW_FORM_block4:
23405 case DW_FORM_block:
23406 case DW_FORM_exprloc:
23407 case DW_FORM_data16:
23408 result = DW_BLOCK (attr)->data;
23409 *len = DW_BLOCK (attr)->size;
23410 break;
23412 /* The DW_AT_const_value attributes are supposed to carry the
23413 symbol's value "represented as it would be on the target
23414 architecture." By the time we get here, it's already been
23415 converted to host endianness, so we just need to sign- or
23416 zero-extend it as appropriate. */
23417 case DW_FORM_data1:
23418 type = die_type (die, cu);
23419 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23420 if (result == NULL)
23421 result = write_constant_as_bytes (obstack, byte_order,
23422 type, value, len);
23423 break;
23424 case DW_FORM_data2:
23425 type = die_type (die, cu);
23426 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23427 if (result == NULL)
23428 result = write_constant_as_bytes (obstack, byte_order,
23429 type, value, len);
23430 break;
23431 case DW_FORM_data4:
23432 type = die_type (die, cu);
23433 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23434 if (result == NULL)
23435 result = write_constant_as_bytes (obstack, byte_order,
23436 type, value, len);
23437 break;
23438 case DW_FORM_data8:
23439 type = die_type (die, cu);
23440 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23441 if (result == NULL)
23442 result = write_constant_as_bytes (obstack, byte_order,
23443 type, value, len);
23444 break;
23446 case DW_FORM_sdata:
23447 case DW_FORM_implicit_const:
23448 type = die_type (die, cu);
23449 result = write_constant_as_bytes (obstack, byte_order,
23450 type, DW_SND (attr), len);
23451 break;
23453 case DW_FORM_udata:
23454 type = die_type (die, cu);
23455 result = write_constant_as_bytes (obstack, byte_order,
23456 type, DW_UNSND (attr), len);
23457 break;
23459 default:
23460 complaint (_("unsupported const value attribute form: '%s'"),
23461 dwarf_form_name (attr->form));
23462 break;
23465 return result;
23468 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23469 valid type for this die is found. */
23471 struct type *
23472 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23473 struct dwarf2_per_cu_data *per_cu)
23475 struct dwarf2_cu *cu;
23476 struct die_info *die;
23478 if (per_cu->cu == NULL)
23479 load_cu (per_cu, false);
23480 cu = per_cu->cu;
23481 if (!cu)
23482 return NULL;
23484 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23485 if (!die)
23486 return NULL;
23488 return die_type (die, cu);
23491 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23492 PER_CU. */
23494 struct type *
23495 dwarf2_get_die_type (cu_offset die_offset,
23496 struct dwarf2_per_cu_data *per_cu)
23498 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23499 return get_die_type_at_offset (die_offset_sect, per_cu);
23502 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23503 On entry *REF_CU is the CU of SRC_DIE.
23504 On exit *REF_CU is the CU of the result.
23505 Returns NULL if the referenced DIE isn't found. */
23507 static struct die_info *
23508 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23509 struct dwarf2_cu **ref_cu)
23511 struct die_info temp_die;
23512 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23513 struct die_info *die;
23515 /* While it might be nice to assert sig_type->type == NULL here,
23516 we can get here for DW_AT_imported_declaration where we need
23517 the DIE not the type. */
23519 /* If necessary, add it to the queue and load its DIEs. */
23521 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23522 read_signatured_type (sig_type);
23524 sig_cu = sig_type->per_cu.cu;
23525 gdb_assert (sig_cu != NULL);
23526 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23527 temp_die.sect_off = sig_type->type_offset_in_section;
23528 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23529 to_underlying (temp_die.sect_off));
23530 if (die)
23532 struct dwarf2_per_objfile *dwarf2_per_objfile
23533 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23535 /* For .gdb_index version 7 keep track of included TUs.
23536 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23537 if (dwarf2_per_objfile->index_table != NULL
23538 && dwarf2_per_objfile->index_table->version <= 7)
23540 VEC_safe_push (dwarf2_per_cu_ptr,
23541 (*ref_cu)->per_cu->imported_symtabs,
23542 sig_cu->per_cu);
23545 *ref_cu = sig_cu;
23546 if (sig_cu != cu)
23547 sig_cu->ancestor = cu;
23549 return die;
23552 return NULL;
23555 /* Follow signatured type referenced by ATTR in SRC_DIE.
23556 On entry *REF_CU is the CU of SRC_DIE.
23557 On exit *REF_CU is the CU of the result.
23558 The result is the DIE of the type.
23559 If the referenced type cannot be found an error is thrown. */
23561 static struct die_info *
23562 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23563 struct dwarf2_cu **ref_cu)
23565 ULONGEST signature = DW_SIGNATURE (attr);
23566 struct signatured_type *sig_type;
23567 struct die_info *die;
23569 gdb_assert (attr->form == DW_FORM_ref_sig8);
23571 sig_type = lookup_signatured_type (*ref_cu, signature);
23572 /* sig_type will be NULL if the signatured type is missing from
23573 the debug info. */
23574 if (sig_type == NULL)
23576 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23577 " from DIE at %s [in module %s]"),
23578 hex_string (signature), sect_offset_str (src_die->sect_off),
23579 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23582 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23583 if (die == NULL)
23585 dump_die_for_error (src_die);
23586 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23587 " from DIE at %s [in module %s]"),
23588 hex_string (signature), sect_offset_str (src_die->sect_off),
23589 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23592 return die;
23595 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23596 reading in and processing the type unit if necessary. */
23598 static struct type *
23599 get_signatured_type (struct die_info *die, ULONGEST signature,
23600 struct dwarf2_cu *cu)
23602 struct dwarf2_per_objfile *dwarf2_per_objfile
23603 = cu->per_cu->dwarf2_per_objfile;
23604 struct signatured_type *sig_type;
23605 struct dwarf2_cu *type_cu;
23606 struct die_info *type_die;
23607 struct type *type;
23609 sig_type = lookup_signatured_type (cu, signature);
23610 /* sig_type will be NULL if the signatured type is missing from
23611 the debug info. */
23612 if (sig_type == NULL)
23614 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23615 " from DIE at %s [in module %s]"),
23616 hex_string (signature), sect_offset_str (die->sect_off),
23617 objfile_name (dwarf2_per_objfile->objfile));
23618 return build_error_marker_type (cu, die);
23621 /* If we already know the type we're done. */
23622 if (sig_type->type != NULL)
23623 return sig_type->type;
23625 type_cu = cu;
23626 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23627 if (type_die != NULL)
23629 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23630 is created. This is important, for example, because for c++ classes
23631 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23632 type = read_type_die (type_die, type_cu);
23633 if (type == NULL)
23635 complaint (_("Dwarf Error: Cannot build signatured type %s"
23636 " referenced from DIE at %s [in module %s]"),
23637 hex_string (signature), sect_offset_str (die->sect_off),
23638 objfile_name (dwarf2_per_objfile->objfile));
23639 type = build_error_marker_type (cu, die);
23642 else
23644 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23645 " from DIE at %s [in module %s]"),
23646 hex_string (signature), sect_offset_str (die->sect_off),
23647 objfile_name (dwarf2_per_objfile->objfile));
23648 type = build_error_marker_type (cu, die);
23650 sig_type->type = type;
23652 return type;
23655 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23656 reading in and processing the type unit if necessary. */
23658 static struct type *
23659 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23660 struct dwarf2_cu *cu) /* ARI: editCase function */
23662 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23663 if (attr_form_is_ref (attr))
23665 struct dwarf2_cu *type_cu = cu;
23666 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23668 return read_type_die (type_die, type_cu);
23670 else if (attr->form == DW_FORM_ref_sig8)
23672 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23674 else
23676 struct dwarf2_per_objfile *dwarf2_per_objfile
23677 = cu->per_cu->dwarf2_per_objfile;
23679 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23680 " at %s [in module %s]"),
23681 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23682 objfile_name (dwarf2_per_objfile->objfile));
23683 return build_error_marker_type (cu, die);
23687 /* Load the DIEs associated with type unit PER_CU into memory. */
23689 static void
23690 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23692 struct signatured_type *sig_type;
23694 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23695 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23697 /* We have the per_cu, but we need the signatured_type.
23698 Fortunately this is an easy translation. */
23699 gdb_assert (per_cu->is_debug_types);
23700 sig_type = (struct signatured_type *) per_cu;
23702 gdb_assert (per_cu->cu == NULL);
23704 read_signatured_type (sig_type);
23706 gdb_assert (per_cu->cu != NULL);
23709 /* die_reader_func for read_signatured_type.
23710 This is identical to load_full_comp_unit_reader,
23711 but is kept separate for now. */
23713 static void
23714 read_signatured_type_reader (const struct die_reader_specs *reader,
23715 const gdb_byte *info_ptr,
23716 struct die_info *comp_unit_die,
23717 int has_children,
23718 void *data)
23720 struct dwarf2_cu *cu = reader->cu;
23722 gdb_assert (cu->die_hash == NULL);
23723 cu->die_hash =
23724 htab_create_alloc_ex (cu->header.length / 12,
23725 die_hash,
23726 die_eq,
23727 NULL,
23728 &cu->comp_unit_obstack,
23729 hashtab_obstack_allocate,
23730 dummy_obstack_deallocate);
23732 if (has_children)
23733 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23734 &info_ptr, comp_unit_die);
23735 cu->dies = comp_unit_die;
23736 /* comp_unit_die is not stored in die_hash, no need. */
23738 /* We try not to read any attributes in this function, because not
23739 all CUs needed for references have been loaded yet, and symbol
23740 table processing isn't initialized. But we have to set the CU language,
23741 or we won't be able to build types correctly.
23742 Similarly, if we do not read the producer, we can not apply
23743 producer-specific interpretation. */
23744 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23747 /* Read in a signatured type and build its CU and DIEs.
23748 If the type is a stub for the real type in a DWO file,
23749 read in the real type from the DWO file as well. */
23751 static void
23752 read_signatured_type (struct signatured_type *sig_type)
23754 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23756 gdb_assert (per_cu->is_debug_types);
23757 gdb_assert (per_cu->cu == NULL);
23759 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23760 read_signatured_type_reader, NULL);
23761 sig_type->per_cu.tu_read = 1;
23764 /* Decode simple location descriptions.
23765 Given a pointer to a dwarf block that defines a location, compute
23766 the location and return the value.
23768 NOTE drow/2003-11-18: This function is called in two situations
23769 now: for the address of static or global variables (partial symbols
23770 only) and for offsets into structures which are expected to be
23771 (more or less) constant. The partial symbol case should go away,
23772 and only the constant case should remain. That will let this
23773 function complain more accurately. A few special modes are allowed
23774 without complaint for global variables (for instance, global
23775 register values and thread-local values).
23777 A location description containing no operations indicates that the
23778 object is optimized out. The return value is 0 for that case.
23779 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23780 callers will only want a very basic result and this can become a
23781 complaint.
23783 Note that stack[0] is unused except as a default error return. */
23785 static CORE_ADDR
23786 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23788 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23789 size_t i;
23790 size_t size = blk->size;
23791 const gdb_byte *data = blk->data;
23792 CORE_ADDR stack[64];
23793 int stacki;
23794 unsigned int bytes_read, unsnd;
23795 gdb_byte op;
23797 i = 0;
23798 stacki = 0;
23799 stack[stacki] = 0;
23800 stack[++stacki] = 0;
23802 while (i < size)
23804 op = data[i++];
23805 switch (op)
23807 case DW_OP_lit0:
23808 case DW_OP_lit1:
23809 case DW_OP_lit2:
23810 case DW_OP_lit3:
23811 case DW_OP_lit4:
23812 case DW_OP_lit5:
23813 case DW_OP_lit6:
23814 case DW_OP_lit7:
23815 case DW_OP_lit8:
23816 case DW_OP_lit9:
23817 case DW_OP_lit10:
23818 case DW_OP_lit11:
23819 case DW_OP_lit12:
23820 case DW_OP_lit13:
23821 case DW_OP_lit14:
23822 case DW_OP_lit15:
23823 case DW_OP_lit16:
23824 case DW_OP_lit17:
23825 case DW_OP_lit18:
23826 case DW_OP_lit19:
23827 case DW_OP_lit20:
23828 case DW_OP_lit21:
23829 case DW_OP_lit22:
23830 case DW_OP_lit23:
23831 case DW_OP_lit24:
23832 case DW_OP_lit25:
23833 case DW_OP_lit26:
23834 case DW_OP_lit27:
23835 case DW_OP_lit28:
23836 case DW_OP_lit29:
23837 case DW_OP_lit30:
23838 case DW_OP_lit31:
23839 stack[++stacki] = op - DW_OP_lit0;
23840 break;
23842 case DW_OP_reg0:
23843 case DW_OP_reg1:
23844 case DW_OP_reg2:
23845 case DW_OP_reg3:
23846 case DW_OP_reg4:
23847 case DW_OP_reg5:
23848 case DW_OP_reg6:
23849 case DW_OP_reg7:
23850 case DW_OP_reg8:
23851 case DW_OP_reg9:
23852 case DW_OP_reg10:
23853 case DW_OP_reg11:
23854 case DW_OP_reg12:
23855 case DW_OP_reg13:
23856 case DW_OP_reg14:
23857 case DW_OP_reg15:
23858 case DW_OP_reg16:
23859 case DW_OP_reg17:
23860 case DW_OP_reg18:
23861 case DW_OP_reg19:
23862 case DW_OP_reg20:
23863 case DW_OP_reg21:
23864 case DW_OP_reg22:
23865 case DW_OP_reg23:
23866 case DW_OP_reg24:
23867 case DW_OP_reg25:
23868 case DW_OP_reg26:
23869 case DW_OP_reg27:
23870 case DW_OP_reg28:
23871 case DW_OP_reg29:
23872 case DW_OP_reg30:
23873 case DW_OP_reg31:
23874 stack[++stacki] = op - DW_OP_reg0;
23875 if (i < size)
23876 dwarf2_complex_location_expr_complaint ();
23877 break;
23879 case DW_OP_regx:
23880 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23881 i += bytes_read;
23882 stack[++stacki] = unsnd;
23883 if (i < size)
23884 dwarf2_complex_location_expr_complaint ();
23885 break;
23887 case DW_OP_addr:
23888 stack[++stacki] = read_address (objfile->obfd, &data[i],
23889 cu, &bytes_read);
23890 i += bytes_read;
23891 break;
23893 case DW_OP_const1u:
23894 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23895 i += 1;
23896 break;
23898 case DW_OP_const1s:
23899 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23900 i += 1;
23901 break;
23903 case DW_OP_const2u:
23904 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23905 i += 2;
23906 break;
23908 case DW_OP_const2s:
23909 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23910 i += 2;
23911 break;
23913 case DW_OP_const4u:
23914 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23915 i += 4;
23916 break;
23918 case DW_OP_const4s:
23919 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23920 i += 4;
23921 break;
23923 case DW_OP_const8u:
23924 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23925 i += 8;
23926 break;
23928 case DW_OP_constu:
23929 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23930 &bytes_read);
23931 i += bytes_read;
23932 break;
23934 case DW_OP_consts:
23935 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23936 i += bytes_read;
23937 break;
23939 case DW_OP_dup:
23940 stack[stacki + 1] = stack[stacki];
23941 stacki++;
23942 break;
23944 case DW_OP_plus:
23945 stack[stacki - 1] += stack[stacki];
23946 stacki--;
23947 break;
23949 case DW_OP_plus_uconst:
23950 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23951 &bytes_read);
23952 i += bytes_read;
23953 break;
23955 case DW_OP_minus:
23956 stack[stacki - 1] -= stack[stacki];
23957 stacki--;
23958 break;
23960 case DW_OP_deref:
23961 /* If we're not the last op, then we definitely can't encode
23962 this using GDB's address_class enum. This is valid for partial
23963 global symbols, although the variable's address will be bogus
23964 in the psymtab. */
23965 if (i < size)
23966 dwarf2_complex_location_expr_complaint ();
23967 break;
23969 case DW_OP_GNU_push_tls_address:
23970 case DW_OP_form_tls_address:
23971 /* The top of the stack has the offset from the beginning
23972 of the thread control block at which the variable is located. */
23973 /* Nothing should follow this operator, so the top of stack would
23974 be returned. */
23975 /* This is valid for partial global symbols, but the variable's
23976 address will be bogus in the psymtab. Make it always at least
23977 non-zero to not look as a variable garbage collected by linker
23978 which have DW_OP_addr 0. */
23979 if (i < size)
23980 dwarf2_complex_location_expr_complaint ();
23981 stack[stacki]++;
23982 break;
23984 case DW_OP_GNU_uninit:
23985 break;
23987 case DW_OP_addrx:
23988 case DW_OP_GNU_addr_index:
23989 case DW_OP_GNU_const_index:
23990 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23991 &bytes_read);
23992 i += bytes_read;
23993 break;
23995 default:
23997 const char *name = get_DW_OP_name (op);
23999 if (name)
24000 complaint (_("unsupported stack op: '%s'"),
24001 name);
24002 else
24003 complaint (_("unsupported stack op: '%02x'"),
24004 op);
24007 return (stack[stacki]);
24010 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24011 outside of the allocated space. Also enforce minimum>0. */
24012 if (stacki >= ARRAY_SIZE (stack) - 1)
24014 complaint (_("location description stack overflow"));
24015 return 0;
24018 if (stacki <= 0)
24020 complaint (_("location description stack underflow"));
24021 return 0;
24024 return (stack[stacki]);
24027 /* memory allocation interface */
24029 static struct dwarf_block *
24030 dwarf_alloc_block (struct dwarf2_cu *cu)
24032 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24035 static struct die_info *
24036 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24038 struct die_info *die;
24039 size_t size = sizeof (struct die_info);
24041 if (num_attrs > 1)
24042 size += (num_attrs - 1) * sizeof (struct attribute);
24044 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24045 memset (die, 0, sizeof (struct die_info));
24046 return (die);
24050 /* Macro support. */
24052 /* Return file name relative to the compilation directory of file number I in
24053 *LH's file name table. The result is allocated using xmalloc; the caller is
24054 responsible for freeing it. */
24056 static char *
24057 file_file_name (int file, struct line_header *lh)
24059 /* Is the file number a valid index into the line header's file name
24060 table? Remember that file numbers start with one, not zero. */
24061 if (1 <= file && file <= lh->file_names.size ())
24063 const file_entry &fe = lh->file_names[file - 1];
24065 if (!IS_ABSOLUTE_PATH (fe.name))
24067 const char *dir = fe.include_dir (lh);
24068 if (dir != NULL)
24069 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24071 return xstrdup (fe.name);
24073 else
24075 /* The compiler produced a bogus file number. We can at least
24076 record the macro definitions made in the file, even if we
24077 won't be able to find the file by name. */
24078 char fake_name[80];
24080 xsnprintf (fake_name, sizeof (fake_name),
24081 "<bad macro file number %d>", file);
24083 complaint (_("bad file number in macro information (%d)"),
24084 file);
24086 return xstrdup (fake_name);
24090 /* Return the full name of file number I in *LH's file name table.
24091 Use COMP_DIR as the name of the current directory of the
24092 compilation. The result is allocated using xmalloc; the caller is
24093 responsible for freeing it. */
24094 static char *
24095 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24097 /* Is the file number a valid index into the line header's file name
24098 table? Remember that file numbers start with one, not zero. */
24099 if (1 <= file && file <= lh->file_names.size ())
24101 char *relative = file_file_name (file, lh);
24103 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24104 return relative;
24105 return reconcat (relative, comp_dir, SLASH_STRING,
24106 relative, (char *) NULL);
24108 else
24109 return file_file_name (file, lh);
24113 static struct macro_source_file *
24114 macro_start_file (struct dwarf2_cu *cu,
24115 int file, int line,
24116 struct macro_source_file *current_file,
24117 struct line_header *lh)
24119 /* File name relative to the compilation directory of this source file. */
24120 char *file_name = file_file_name (file, lh);
24122 if (! current_file)
24124 /* Note: We don't create a macro table for this compilation unit
24125 at all until we actually get a filename. */
24126 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24128 /* If we have no current file, then this must be the start_file
24129 directive for the compilation unit's main source file. */
24130 current_file = macro_set_main (macro_table, file_name);
24131 macro_define_special (macro_table);
24133 else
24134 current_file = macro_include (current_file, line, file_name);
24136 xfree (file_name);
24138 return current_file;
24141 static const char *
24142 consume_improper_spaces (const char *p, const char *body)
24144 if (*p == ' ')
24146 complaint (_("macro definition contains spaces "
24147 "in formal argument list:\n`%s'"),
24148 body);
24150 while (*p == ' ')
24151 p++;
24154 return p;
24158 static void
24159 parse_macro_definition (struct macro_source_file *file, int line,
24160 const char *body)
24162 const char *p;
24164 /* The body string takes one of two forms. For object-like macro
24165 definitions, it should be:
24167 <macro name> " " <definition>
24169 For function-like macro definitions, it should be:
24171 <macro name> "() " <definition>
24173 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24175 Spaces may appear only where explicitly indicated, and in the
24176 <definition>.
24178 The Dwarf 2 spec says that an object-like macro's name is always
24179 followed by a space, but versions of GCC around March 2002 omit
24180 the space when the macro's definition is the empty string.
24182 The Dwarf 2 spec says that there should be no spaces between the
24183 formal arguments in a function-like macro's formal argument list,
24184 but versions of GCC around March 2002 include spaces after the
24185 commas. */
24188 /* Find the extent of the macro name. The macro name is terminated
24189 by either a space or null character (for an object-like macro) or
24190 an opening paren (for a function-like macro). */
24191 for (p = body; *p; p++)
24192 if (*p == ' ' || *p == '(')
24193 break;
24195 if (*p == ' ' || *p == '\0')
24197 /* It's an object-like macro. */
24198 int name_len = p - body;
24199 char *name = savestring (body, name_len);
24200 const char *replacement;
24202 if (*p == ' ')
24203 replacement = body + name_len + 1;
24204 else
24206 dwarf2_macro_malformed_definition_complaint (body);
24207 replacement = body + name_len;
24210 macro_define_object (file, line, name, replacement);
24212 xfree (name);
24214 else if (*p == '(')
24216 /* It's a function-like macro. */
24217 char *name = savestring (body, p - body);
24218 int argc = 0;
24219 int argv_size = 1;
24220 char **argv = XNEWVEC (char *, argv_size);
24222 p++;
24224 p = consume_improper_spaces (p, body);
24226 /* Parse the formal argument list. */
24227 while (*p && *p != ')')
24229 /* Find the extent of the current argument name. */
24230 const char *arg_start = p;
24232 while (*p && *p != ',' && *p != ')' && *p != ' ')
24233 p++;
24235 if (! *p || p == arg_start)
24236 dwarf2_macro_malformed_definition_complaint (body);
24237 else
24239 /* Make sure argv has room for the new argument. */
24240 if (argc >= argv_size)
24242 argv_size *= 2;
24243 argv = XRESIZEVEC (char *, argv, argv_size);
24246 argv[argc++] = savestring (arg_start, p - arg_start);
24249 p = consume_improper_spaces (p, body);
24251 /* Consume the comma, if present. */
24252 if (*p == ',')
24254 p++;
24256 p = consume_improper_spaces (p, body);
24260 if (*p == ')')
24262 p++;
24264 if (*p == ' ')
24265 /* Perfectly formed definition, no complaints. */
24266 macro_define_function (file, line, name,
24267 argc, (const char **) argv,
24268 p + 1);
24269 else if (*p == '\0')
24271 /* Complain, but do define it. */
24272 dwarf2_macro_malformed_definition_complaint (body);
24273 macro_define_function (file, line, name,
24274 argc, (const char **) argv,
24277 else
24278 /* Just complain. */
24279 dwarf2_macro_malformed_definition_complaint (body);
24281 else
24282 /* Just complain. */
24283 dwarf2_macro_malformed_definition_complaint (body);
24285 xfree (name);
24287 int i;
24289 for (i = 0; i < argc; i++)
24290 xfree (argv[i]);
24292 xfree (argv);
24294 else
24295 dwarf2_macro_malformed_definition_complaint (body);
24298 /* Skip some bytes from BYTES according to the form given in FORM.
24299 Returns the new pointer. */
24301 static const gdb_byte *
24302 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24303 enum dwarf_form form,
24304 unsigned int offset_size,
24305 struct dwarf2_section_info *section)
24307 unsigned int bytes_read;
24309 switch (form)
24311 case DW_FORM_data1:
24312 case DW_FORM_flag:
24313 ++bytes;
24314 break;
24316 case DW_FORM_data2:
24317 bytes += 2;
24318 break;
24320 case DW_FORM_data4:
24321 bytes += 4;
24322 break;
24324 case DW_FORM_data8:
24325 bytes += 8;
24326 break;
24328 case DW_FORM_data16:
24329 bytes += 16;
24330 break;
24332 case DW_FORM_string:
24333 read_direct_string (abfd, bytes, &bytes_read);
24334 bytes += bytes_read;
24335 break;
24337 case DW_FORM_sec_offset:
24338 case DW_FORM_strp:
24339 case DW_FORM_GNU_strp_alt:
24340 bytes += offset_size;
24341 break;
24343 case DW_FORM_block:
24344 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24345 bytes += bytes_read;
24346 break;
24348 case DW_FORM_block1:
24349 bytes += 1 + read_1_byte (abfd, bytes);
24350 break;
24351 case DW_FORM_block2:
24352 bytes += 2 + read_2_bytes (abfd, bytes);
24353 break;
24354 case DW_FORM_block4:
24355 bytes += 4 + read_4_bytes (abfd, bytes);
24356 break;
24358 case DW_FORM_addrx:
24359 case DW_FORM_sdata:
24360 case DW_FORM_strx:
24361 case DW_FORM_udata:
24362 case DW_FORM_GNU_addr_index:
24363 case DW_FORM_GNU_str_index:
24364 bytes = gdb_skip_leb128 (bytes, buffer_end);
24365 if (bytes == NULL)
24367 dwarf2_section_buffer_overflow_complaint (section);
24368 return NULL;
24370 break;
24372 case DW_FORM_implicit_const:
24373 break;
24375 default:
24377 complaint (_("invalid form 0x%x in `%s'"),
24378 form, get_section_name (section));
24379 return NULL;
24383 return bytes;
24386 /* A helper for dwarf_decode_macros that handles skipping an unknown
24387 opcode. Returns an updated pointer to the macro data buffer; or,
24388 on error, issues a complaint and returns NULL. */
24390 static const gdb_byte *
24391 skip_unknown_opcode (unsigned int opcode,
24392 const gdb_byte **opcode_definitions,
24393 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24394 bfd *abfd,
24395 unsigned int offset_size,
24396 struct dwarf2_section_info *section)
24398 unsigned int bytes_read, i;
24399 unsigned long arg;
24400 const gdb_byte *defn;
24402 if (opcode_definitions[opcode] == NULL)
24404 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24405 opcode);
24406 return NULL;
24409 defn = opcode_definitions[opcode];
24410 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24411 defn += bytes_read;
24413 for (i = 0; i < arg; ++i)
24415 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24416 (enum dwarf_form) defn[i], offset_size,
24417 section);
24418 if (mac_ptr == NULL)
24420 /* skip_form_bytes already issued the complaint. */
24421 return NULL;
24425 return mac_ptr;
24428 /* A helper function which parses the header of a macro section.
24429 If the macro section is the extended (for now called "GNU") type,
24430 then this updates *OFFSET_SIZE. Returns a pointer to just after
24431 the header, or issues a complaint and returns NULL on error. */
24433 static const gdb_byte *
24434 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24435 bfd *abfd,
24436 const gdb_byte *mac_ptr,
24437 unsigned int *offset_size,
24438 int section_is_gnu)
24440 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24442 if (section_is_gnu)
24444 unsigned int version, flags;
24446 version = read_2_bytes (abfd, mac_ptr);
24447 if (version != 4 && version != 5)
24449 complaint (_("unrecognized version `%d' in .debug_macro section"),
24450 version);
24451 return NULL;
24453 mac_ptr += 2;
24455 flags = read_1_byte (abfd, mac_ptr);
24456 ++mac_ptr;
24457 *offset_size = (flags & 1) ? 8 : 4;
24459 if ((flags & 2) != 0)
24460 /* We don't need the line table offset. */
24461 mac_ptr += *offset_size;
24463 /* Vendor opcode descriptions. */
24464 if ((flags & 4) != 0)
24466 unsigned int i, count;
24468 count = read_1_byte (abfd, mac_ptr);
24469 ++mac_ptr;
24470 for (i = 0; i < count; ++i)
24472 unsigned int opcode, bytes_read;
24473 unsigned long arg;
24475 opcode = read_1_byte (abfd, mac_ptr);
24476 ++mac_ptr;
24477 opcode_definitions[opcode] = mac_ptr;
24478 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24479 mac_ptr += bytes_read;
24480 mac_ptr += arg;
24485 return mac_ptr;
24488 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24489 including DW_MACRO_import. */
24491 static void
24492 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24493 bfd *abfd,
24494 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24495 struct macro_source_file *current_file,
24496 struct line_header *lh,
24497 struct dwarf2_section_info *section,
24498 int section_is_gnu, int section_is_dwz,
24499 unsigned int offset_size,
24500 htab_t include_hash)
24502 struct dwarf2_per_objfile *dwarf2_per_objfile
24503 = cu->per_cu->dwarf2_per_objfile;
24504 struct objfile *objfile = dwarf2_per_objfile->objfile;
24505 enum dwarf_macro_record_type macinfo_type;
24506 int at_commandline;
24507 const gdb_byte *opcode_definitions[256];
24509 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24510 &offset_size, section_is_gnu);
24511 if (mac_ptr == NULL)
24513 /* We already issued a complaint. */
24514 return;
24517 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24518 GDB is still reading the definitions from command line. First
24519 DW_MACINFO_start_file will need to be ignored as it was already executed
24520 to create CURRENT_FILE for the main source holding also the command line
24521 definitions. On first met DW_MACINFO_start_file this flag is reset to
24522 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24524 at_commandline = 1;
24528 /* Do we at least have room for a macinfo type byte? */
24529 if (mac_ptr >= mac_end)
24531 dwarf2_section_buffer_overflow_complaint (section);
24532 break;
24535 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24536 mac_ptr++;
24538 /* Note that we rely on the fact that the corresponding GNU and
24539 DWARF constants are the same. */
24540 DIAGNOSTIC_PUSH
24541 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24542 switch (macinfo_type)
24544 /* A zero macinfo type indicates the end of the macro
24545 information. */
24546 case 0:
24547 break;
24549 case DW_MACRO_define:
24550 case DW_MACRO_undef:
24551 case DW_MACRO_define_strp:
24552 case DW_MACRO_undef_strp:
24553 case DW_MACRO_define_sup:
24554 case DW_MACRO_undef_sup:
24556 unsigned int bytes_read;
24557 int line;
24558 const char *body;
24559 int is_define;
24561 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24562 mac_ptr += bytes_read;
24564 if (macinfo_type == DW_MACRO_define
24565 || macinfo_type == DW_MACRO_undef)
24567 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24568 mac_ptr += bytes_read;
24570 else
24572 LONGEST str_offset;
24574 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24575 mac_ptr += offset_size;
24577 if (macinfo_type == DW_MACRO_define_sup
24578 || macinfo_type == DW_MACRO_undef_sup
24579 || section_is_dwz)
24581 struct dwz_file *dwz
24582 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24584 body = read_indirect_string_from_dwz (objfile,
24585 dwz, str_offset);
24587 else
24588 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24589 abfd, str_offset);
24592 is_define = (macinfo_type == DW_MACRO_define
24593 || macinfo_type == DW_MACRO_define_strp
24594 || macinfo_type == DW_MACRO_define_sup);
24595 if (! current_file)
24597 /* DWARF violation as no main source is present. */
24598 complaint (_("debug info with no main source gives macro %s "
24599 "on line %d: %s"),
24600 is_define ? _("definition") : _("undefinition"),
24601 line, body);
24602 break;
24604 if ((line == 0 && !at_commandline)
24605 || (line != 0 && at_commandline))
24606 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24607 at_commandline ? _("command-line") : _("in-file"),
24608 is_define ? _("definition") : _("undefinition"),
24609 line == 0 ? _("zero") : _("non-zero"), line, body);
24611 if (is_define)
24613 if (body != NULL)
24614 parse_macro_definition (current_file, line, body);
24615 else
24617 /* Fedora's rpm-build's "debugedit" binary
24618 corrupted .debug_macro sections.
24620 For more info, see
24621 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24622 complaint (_("debug info gives %s invalid macro definition "
24623 "without body (corrupted?) at line %d"
24624 "on file %s"),
24625 at_commandline ? _("command-line")
24626 : _("in-file"),
24627 line, current_file->filename);
24630 else
24632 gdb_assert (macinfo_type == DW_MACRO_undef
24633 || macinfo_type == DW_MACRO_undef_strp
24634 || macinfo_type == DW_MACRO_undef_sup);
24635 macro_undef (current_file, line, body);
24638 break;
24640 case DW_MACRO_start_file:
24642 unsigned int bytes_read;
24643 int line, file;
24645 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24646 mac_ptr += bytes_read;
24647 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24648 mac_ptr += bytes_read;
24650 if ((line == 0 && !at_commandline)
24651 || (line != 0 && at_commandline))
24652 complaint (_("debug info gives source %d included "
24653 "from %s at %s line %d"),
24654 file, at_commandline ? _("command-line") : _("file"),
24655 line == 0 ? _("zero") : _("non-zero"), line);
24657 if (at_commandline)
24659 /* This DW_MACRO_start_file was executed in the
24660 pass one. */
24661 at_commandline = 0;
24663 else
24664 current_file = macro_start_file (cu, file, line, current_file,
24665 lh);
24667 break;
24669 case DW_MACRO_end_file:
24670 if (! current_file)
24671 complaint (_("macro debug info has an unmatched "
24672 "`close_file' directive"));
24673 else
24675 current_file = current_file->included_by;
24676 if (! current_file)
24678 enum dwarf_macro_record_type next_type;
24680 /* GCC circa March 2002 doesn't produce the zero
24681 type byte marking the end of the compilation
24682 unit. Complain if it's not there, but exit no
24683 matter what. */
24685 /* Do we at least have room for a macinfo type byte? */
24686 if (mac_ptr >= mac_end)
24688 dwarf2_section_buffer_overflow_complaint (section);
24689 return;
24692 /* We don't increment mac_ptr here, so this is just
24693 a look-ahead. */
24694 next_type
24695 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24696 mac_ptr);
24697 if (next_type != 0)
24698 complaint (_("no terminating 0-type entry for "
24699 "macros in `.debug_macinfo' section"));
24701 return;
24704 break;
24706 case DW_MACRO_import:
24707 case DW_MACRO_import_sup:
24709 LONGEST offset;
24710 void **slot;
24711 bfd *include_bfd = abfd;
24712 struct dwarf2_section_info *include_section = section;
24713 const gdb_byte *include_mac_end = mac_end;
24714 int is_dwz = section_is_dwz;
24715 const gdb_byte *new_mac_ptr;
24717 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24718 mac_ptr += offset_size;
24720 if (macinfo_type == DW_MACRO_import_sup)
24722 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24724 dwarf2_read_section (objfile, &dwz->macro);
24726 include_section = &dwz->macro;
24727 include_bfd = get_section_bfd_owner (include_section);
24728 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24729 is_dwz = 1;
24732 new_mac_ptr = include_section->buffer + offset;
24733 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24735 if (*slot != NULL)
24737 /* This has actually happened; see
24738 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24739 complaint (_("recursive DW_MACRO_import in "
24740 ".debug_macro section"));
24742 else
24744 *slot = (void *) new_mac_ptr;
24746 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24747 include_mac_end, current_file, lh,
24748 section, section_is_gnu, is_dwz,
24749 offset_size, include_hash);
24751 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24754 break;
24756 case DW_MACINFO_vendor_ext:
24757 if (!section_is_gnu)
24759 unsigned int bytes_read;
24761 /* This reads the constant, but since we don't recognize
24762 any vendor extensions, we ignore it. */
24763 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24764 mac_ptr += bytes_read;
24765 read_direct_string (abfd, mac_ptr, &bytes_read);
24766 mac_ptr += bytes_read;
24768 /* We don't recognize any vendor extensions. */
24769 break;
24771 /* FALLTHROUGH */
24773 default:
24774 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24775 mac_ptr, mac_end, abfd, offset_size,
24776 section);
24777 if (mac_ptr == NULL)
24778 return;
24779 break;
24781 DIAGNOSTIC_POP
24782 } while (macinfo_type != 0);
24785 static void
24786 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24787 int section_is_gnu)
24789 struct dwarf2_per_objfile *dwarf2_per_objfile
24790 = cu->per_cu->dwarf2_per_objfile;
24791 struct objfile *objfile = dwarf2_per_objfile->objfile;
24792 struct line_header *lh = cu->line_header;
24793 bfd *abfd;
24794 const gdb_byte *mac_ptr, *mac_end;
24795 struct macro_source_file *current_file = 0;
24796 enum dwarf_macro_record_type macinfo_type;
24797 unsigned int offset_size = cu->header.offset_size;
24798 const gdb_byte *opcode_definitions[256];
24799 void **slot;
24800 struct dwarf2_section_info *section;
24801 const char *section_name;
24803 if (cu->dwo_unit != NULL)
24805 if (section_is_gnu)
24807 section = &cu->dwo_unit->dwo_file->sections.macro;
24808 section_name = ".debug_macro.dwo";
24810 else
24812 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24813 section_name = ".debug_macinfo.dwo";
24816 else
24818 if (section_is_gnu)
24820 section = &dwarf2_per_objfile->macro;
24821 section_name = ".debug_macro";
24823 else
24825 section = &dwarf2_per_objfile->macinfo;
24826 section_name = ".debug_macinfo";
24830 dwarf2_read_section (objfile, section);
24831 if (section->buffer == NULL)
24833 complaint (_("missing %s section"), section_name);
24834 return;
24836 abfd = get_section_bfd_owner (section);
24838 /* First pass: Find the name of the base filename.
24839 This filename is needed in order to process all macros whose definition
24840 (or undefinition) comes from the command line. These macros are defined
24841 before the first DW_MACINFO_start_file entry, and yet still need to be
24842 associated to the base file.
24844 To determine the base file name, we scan the macro definitions until we
24845 reach the first DW_MACINFO_start_file entry. We then initialize
24846 CURRENT_FILE accordingly so that any macro definition found before the
24847 first DW_MACINFO_start_file can still be associated to the base file. */
24849 mac_ptr = section->buffer + offset;
24850 mac_end = section->buffer + section->size;
24852 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24853 &offset_size, section_is_gnu);
24854 if (mac_ptr == NULL)
24856 /* We already issued a complaint. */
24857 return;
24862 /* Do we at least have room for a macinfo type byte? */
24863 if (mac_ptr >= mac_end)
24865 /* Complaint is printed during the second pass as GDB will probably
24866 stop the first pass earlier upon finding
24867 DW_MACINFO_start_file. */
24868 break;
24871 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24872 mac_ptr++;
24874 /* Note that we rely on the fact that the corresponding GNU and
24875 DWARF constants are the same. */
24876 DIAGNOSTIC_PUSH
24877 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24878 switch (macinfo_type)
24880 /* A zero macinfo type indicates the end of the macro
24881 information. */
24882 case 0:
24883 break;
24885 case DW_MACRO_define:
24886 case DW_MACRO_undef:
24887 /* Only skip the data by MAC_PTR. */
24889 unsigned int bytes_read;
24891 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24892 mac_ptr += bytes_read;
24893 read_direct_string (abfd, mac_ptr, &bytes_read);
24894 mac_ptr += bytes_read;
24896 break;
24898 case DW_MACRO_start_file:
24900 unsigned int bytes_read;
24901 int line, file;
24903 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24904 mac_ptr += bytes_read;
24905 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24906 mac_ptr += bytes_read;
24908 current_file = macro_start_file (cu, file, line, current_file, lh);
24910 break;
24912 case DW_MACRO_end_file:
24913 /* No data to skip by MAC_PTR. */
24914 break;
24916 case DW_MACRO_define_strp:
24917 case DW_MACRO_undef_strp:
24918 case DW_MACRO_define_sup:
24919 case DW_MACRO_undef_sup:
24921 unsigned int bytes_read;
24923 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24924 mac_ptr += bytes_read;
24925 mac_ptr += offset_size;
24927 break;
24929 case DW_MACRO_import:
24930 case DW_MACRO_import_sup:
24931 /* Note that, according to the spec, a transparent include
24932 chain cannot call DW_MACRO_start_file. So, we can just
24933 skip this opcode. */
24934 mac_ptr += offset_size;
24935 break;
24937 case DW_MACINFO_vendor_ext:
24938 /* Only skip the data by MAC_PTR. */
24939 if (!section_is_gnu)
24941 unsigned int bytes_read;
24943 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24944 mac_ptr += bytes_read;
24945 read_direct_string (abfd, mac_ptr, &bytes_read);
24946 mac_ptr += bytes_read;
24948 /* FALLTHROUGH */
24950 default:
24951 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24952 mac_ptr, mac_end, abfd, offset_size,
24953 section);
24954 if (mac_ptr == NULL)
24955 return;
24956 break;
24958 DIAGNOSTIC_POP
24959 } while (macinfo_type != 0 && current_file == NULL);
24961 /* Second pass: Process all entries.
24963 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24964 command-line macro definitions/undefinitions. This flag is unset when we
24965 reach the first DW_MACINFO_start_file entry. */
24967 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24968 htab_eq_pointer,
24969 NULL, xcalloc, xfree));
24970 mac_ptr = section->buffer + offset;
24971 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24972 *slot = (void *) mac_ptr;
24973 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24974 current_file, lh, section,
24975 section_is_gnu, 0, offset_size,
24976 include_hash.get ());
24979 /* Check if the attribute's form is a DW_FORM_block*
24980 if so return true else false. */
24982 static int
24983 attr_form_is_block (const struct attribute *attr)
24985 return (attr == NULL ? 0 :
24986 attr->form == DW_FORM_block1
24987 || attr->form == DW_FORM_block2
24988 || attr->form == DW_FORM_block4
24989 || attr->form == DW_FORM_block
24990 || attr->form == DW_FORM_exprloc);
24993 /* Return non-zero if ATTR's value is a section offset --- classes
24994 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24995 You may use DW_UNSND (attr) to retrieve such offsets.
24997 Section 7.5.4, "Attribute Encodings", explains that no attribute
24998 may have a value that belongs to more than one of these classes; it
24999 would be ambiguous if we did, because we use the same forms for all
25000 of them. */
25002 static int
25003 attr_form_is_section_offset (const struct attribute *attr)
25005 return (attr->form == DW_FORM_data4
25006 || attr->form == DW_FORM_data8
25007 || attr->form == DW_FORM_sec_offset);
25010 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25011 zero otherwise. When this function returns true, you can apply
25012 dwarf2_get_attr_constant_value to it.
25014 However, note that for some attributes you must check
25015 attr_form_is_section_offset before using this test. DW_FORM_data4
25016 and DW_FORM_data8 are members of both the constant class, and of
25017 the classes that contain offsets into other debug sections
25018 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25019 that, if an attribute's can be either a constant or one of the
25020 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25021 taken as section offsets, not constants.
25023 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25024 cannot handle that. */
25026 static int
25027 attr_form_is_constant (const struct attribute *attr)
25029 switch (attr->form)
25031 case DW_FORM_sdata:
25032 case DW_FORM_udata:
25033 case DW_FORM_data1:
25034 case DW_FORM_data2:
25035 case DW_FORM_data4:
25036 case DW_FORM_data8:
25037 case DW_FORM_implicit_const:
25038 return 1;
25039 default:
25040 return 0;
25045 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25046 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25048 static int
25049 attr_form_is_ref (const struct attribute *attr)
25051 switch (attr->form)
25053 case DW_FORM_ref_addr:
25054 case DW_FORM_ref1:
25055 case DW_FORM_ref2:
25056 case DW_FORM_ref4:
25057 case DW_FORM_ref8:
25058 case DW_FORM_ref_udata:
25059 case DW_FORM_GNU_ref_alt:
25060 return 1;
25061 default:
25062 return 0;
25066 /* Return the .debug_loc section to use for CU.
25067 For DWO files use .debug_loc.dwo. */
25069 static struct dwarf2_section_info *
25070 cu_debug_loc_section (struct dwarf2_cu *cu)
25072 struct dwarf2_per_objfile *dwarf2_per_objfile
25073 = cu->per_cu->dwarf2_per_objfile;
25075 if (cu->dwo_unit)
25077 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25079 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25081 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25082 : &dwarf2_per_objfile->loc);
25085 /* A helper function that fills in a dwarf2_loclist_baton. */
25087 static void
25088 fill_in_loclist_baton (struct dwarf2_cu *cu,
25089 struct dwarf2_loclist_baton *baton,
25090 const struct attribute *attr)
25092 struct dwarf2_per_objfile *dwarf2_per_objfile
25093 = cu->per_cu->dwarf2_per_objfile;
25094 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25096 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25098 baton->per_cu = cu->per_cu;
25099 gdb_assert (baton->per_cu);
25100 /* We don't know how long the location list is, but make sure we
25101 don't run off the edge of the section. */
25102 baton->size = section->size - DW_UNSND (attr);
25103 baton->data = section->buffer + DW_UNSND (attr);
25104 baton->base_address = cu->base_address;
25105 baton->from_dwo = cu->dwo_unit != NULL;
25108 static void
25109 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25110 struct dwarf2_cu *cu, int is_block)
25112 struct dwarf2_per_objfile *dwarf2_per_objfile
25113 = cu->per_cu->dwarf2_per_objfile;
25114 struct objfile *objfile = dwarf2_per_objfile->objfile;
25115 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25117 if (attr_form_is_section_offset (attr)
25118 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25119 the section. If so, fall through to the complaint in the
25120 other branch. */
25121 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25123 struct dwarf2_loclist_baton *baton;
25125 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25127 fill_in_loclist_baton (cu, baton, attr);
25129 if (cu->base_known == 0)
25130 complaint (_("Location list used without "
25131 "specifying the CU base address."));
25133 SYMBOL_ACLASS_INDEX (sym) = (is_block
25134 ? dwarf2_loclist_block_index
25135 : dwarf2_loclist_index);
25136 SYMBOL_LOCATION_BATON (sym) = baton;
25138 else
25140 struct dwarf2_locexpr_baton *baton;
25142 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25143 baton->per_cu = cu->per_cu;
25144 gdb_assert (baton->per_cu);
25146 if (attr_form_is_block (attr))
25148 /* Note that we're just copying the block's data pointer
25149 here, not the actual data. We're still pointing into the
25150 info_buffer for SYM's objfile; right now we never release
25151 that buffer, but when we do clean up properly this may
25152 need to change. */
25153 baton->size = DW_BLOCK (attr)->size;
25154 baton->data = DW_BLOCK (attr)->data;
25156 else
25158 dwarf2_invalid_attrib_class_complaint ("location description",
25159 SYMBOL_NATURAL_NAME (sym));
25160 baton->size = 0;
25163 SYMBOL_ACLASS_INDEX (sym) = (is_block
25164 ? dwarf2_locexpr_block_index
25165 : dwarf2_locexpr_index);
25166 SYMBOL_LOCATION_BATON (sym) = baton;
25170 /* Return the OBJFILE associated with the compilation unit CU. If CU
25171 came from a separate debuginfo file, then the master objfile is
25172 returned. */
25174 struct objfile *
25175 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25177 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25179 /* Return the master objfile, so that we can report and look up the
25180 correct file containing this variable. */
25181 if (objfile->separate_debug_objfile_backlink)
25182 objfile = objfile->separate_debug_objfile_backlink;
25184 return objfile;
25187 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25188 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25189 CU_HEADERP first. */
25191 static const struct comp_unit_head *
25192 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25193 struct dwarf2_per_cu_data *per_cu)
25195 const gdb_byte *info_ptr;
25197 if (per_cu->cu)
25198 return &per_cu->cu->header;
25200 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25202 memset (cu_headerp, 0, sizeof (*cu_headerp));
25203 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25204 rcuh_kind::COMPILE);
25206 return cu_headerp;
25209 /* Return the address size given in the compilation unit header for CU. */
25212 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25214 struct comp_unit_head cu_header_local;
25215 const struct comp_unit_head *cu_headerp;
25217 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25219 return cu_headerp->addr_size;
25222 /* Return the offset size given in the compilation unit header for CU. */
25225 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25227 struct comp_unit_head cu_header_local;
25228 const struct comp_unit_head *cu_headerp;
25230 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25232 return cu_headerp->offset_size;
25235 /* See its dwarf2loc.h declaration. */
25238 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25240 struct comp_unit_head cu_header_local;
25241 const struct comp_unit_head *cu_headerp;
25243 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25245 if (cu_headerp->version == 2)
25246 return cu_headerp->addr_size;
25247 else
25248 return cu_headerp->offset_size;
25251 /* Return the text offset of the CU. The returned offset comes from
25252 this CU's objfile. If this objfile came from a separate debuginfo
25253 file, then the offset may be different from the corresponding
25254 offset in the parent objfile. */
25256 CORE_ADDR
25257 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25259 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25261 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25264 /* Return DWARF version number of PER_CU. */
25266 short
25267 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25269 return per_cu->dwarf_version;
25272 /* Locate the .debug_info compilation unit from CU's objfile which contains
25273 the DIE at OFFSET. Raises an error on failure. */
25275 static struct dwarf2_per_cu_data *
25276 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25277 unsigned int offset_in_dwz,
25278 struct dwarf2_per_objfile *dwarf2_per_objfile)
25280 struct dwarf2_per_cu_data *this_cu;
25281 int low, high;
25283 low = 0;
25284 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25285 while (high > low)
25287 struct dwarf2_per_cu_data *mid_cu;
25288 int mid = low + (high - low) / 2;
25290 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25291 if (mid_cu->is_dwz > offset_in_dwz
25292 || (mid_cu->is_dwz == offset_in_dwz
25293 && mid_cu->sect_off + mid_cu->length >= sect_off))
25294 high = mid;
25295 else
25296 low = mid + 1;
25298 gdb_assert (low == high);
25299 this_cu = dwarf2_per_objfile->all_comp_units[low];
25300 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25302 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25303 error (_("Dwarf Error: could not find partial DIE containing "
25304 "offset %s [in module %s]"),
25305 sect_offset_str (sect_off),
25306 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25308 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25309 <= sect_off);
25310 return dwarf2_per_objfile->all_comp_units[low-1];
25312 else
25314 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25315 && sect_off >= this_cu->sect_off + this_cu->length)
25316 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25317 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25318 return this_cu;
25322 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25324 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25325 : per_cu (per_cu_),
25326 mark (false),
25327 has_loclist (false),
25328 checked_producer (false),
25329 producer_is_gxx_lt_4_6 (false),
25330 producer_is_gcc_lt_4_3 (false),
25331 producer_is_icc (false),
25332 producer_is_icc_lt_14 (false),
25333 producer_is_codewarrior (false),
25334 processing_has_namespace_info (false)
25336 per_cu->cu = this;
25339 /* Destroy a dwarf2_cu. */
25341 dwarf2_cu::~dwarf2_cu ()
25343 per_cu->cu = NULL;
25346 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25348 static void
25349 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25350 enum language pretend_language)
25352 struct attribute *attr;
25354 /* Set the language we're debugging. */
25355 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25356 if (attr)
25357 set_cu_language (DW_UNSND (attr), cu);
25358 else
25360 cu->language = pretend_language;
25361 cu->language_defn = language_def (cu->language);
25364 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25367 /* Increase the age counter on each cached compilation unit, and free
25368 any that are too old. */
25370 static void
25371 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25373 struct dwarf2_per_cu_data *per_cu, **last_chain;
25375 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25376 per_cu = dwarf2_per_objfile->read_in_chain;
25377 while (per_cu != NULL)
25379 per_cu->cu->last_used ++;
25380 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25381 dwarf2_mark (per_cu->cu);
25382 per_cu = per_cu->cu->read_in_chain;
25385 per_cu = dwarf2_per_objfile->read_in_chain;
25386 last_chain = &dwarf2_per_objfile->read_in_chain;
25387 while (per_cu != NULL)
25389 struct dwarf2_per_cu_data *next_cu;
25391 next_cu = per_cu->cu->read_in_chain;
25393 if (!per_cu->cu->mark)
25395 delete per_cu->cu;
25396 *last_chain = next_cu;
25398 else
25399 last_chain = &per_cu->cu->read_in_chain;
25401 per_cu = next_cu;
25405 /* Remove a single compilation unit from the cache. */
25407 static void
25408 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25410 struct dwarf2_per_cu_data *per_cu, **last_chain;
25411 struct dwarf2_per_objfile *dwarf2_per_objfile
25412 = target_per_cu->dwarf2_per_objfile;
25414 per_cu = dwarf2_per_objfile->read_in_chain;
25415 last_chain = &dwarf2_per_objfile->read_in_chain;
25416 while (per_cu != NULL)
25418 struct dwarf2_per_cu_data *next_cu;
25420 next_cu = per_cu->cu->read_in_chain;
25422 if (per_cu == target_per_cu)
25424 delete per_cu->cu;
25425 per_cu->cu = NULL;
25426 *last_chain = next_cu;
25427 break;
25429 else
25430 last_chain = &per_cu->cu->read_in_chain;
25432 per_cu = next_cu;
25436 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25437 We store these in a hash table separate from the DIEs, and preserve them
25438 when the DIEs are flushed out of cache.
25440 The CU "per_cu" pointer is needed because offset alone is not enough to
25441 uniquely identify the type. A file may have multiple .debug_types sections,
25442 or the type may come from a DWO file. Furthermore, while it's more logical
25443 to use per_cu->section+offset, with Fission the section with the data is in
25444 the DWO file but we don't know that section at the point we need it.
25445 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25446 because we can enter the lookup routine, get_die_type_at_offset, from
25447 outside this file, and thus won't necessarily have PER_CU->cu.
25448 Fortunately, PER_CU is stable for the life of the objfile. */
25450 struct dwarf2_per_cu_offset_and_type
25452 const struct dwarf2_per_cu_data *per_cu;
25453 sect_offset sect_off;
25454 struct type *type;
25457 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25459 static hashval_t
25460 per_cu_offset_and_type_hash (const void *item)
25462 const struct dwarf2_per_cu_offset_and_type *ofs
25463 = (const struct dwarf2_per_cu_offset_and_type *) item;
25465 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25468 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25470 static int
25471 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25473 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25474 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25475 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25476 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25478 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25479 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25482 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25483 table if necessary. For convenience, return TYPE.
25485 The DIEs reading must have careful ordering to:
25486 * Not cause infite loops trying to read in DIEs as a prerequisite for
25487 reading current DIE.
25488 * Not trying to dereference contents of still incompletely read in types
25489 while reading in other DIEs.
25490 * Enable referencing still incompletely read in types just by a pointer to
25491 the type without accessing its fields.
25493 Therefore caller should follow these rules:
25494 * Try to fetch any prerequisite types we may need to build this DIE type
25495 before building the type and calling set_die_type.
25496 * After building type call set_die_type for current DIE as soon as
25497 possible before fetching more types to complete the current type.
25498 * Make the type as complete as possible before fetching more types. */
25500 static struct type *
25501 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25503 struct dwarf2_per_objfile *dwarf2_per_objfile
25504 = cu->per_cu->dwarf2_per_objfile;
25505 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25506 struct objfile *objfile = dwarf2_per_objfile->objfile;
25507 struct attribute *attr;
25508 struct dynamic_prop prop;
25510 /* For Ada types, make sure that the gnat-specific data is always
25511 initialized (if not already set). There are a few types where
25512 we should not be doing so, because the type-specific area is
25513 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25514 where the type-specific area is used to store the floatformat).
25515 But this is not a problem, because the gnat-specific information
25516 is actually not needed for these types. */
25517 if (need_gnat_info (cu)
25518 && TYPE_CODE (type) != TYPE_CODE_FUNC
25519 && TYPE_CODE (type) != TYPE_CODE_FLT
25520 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25521 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25522 && TYPE_CODE (type) != TYPE_CODE_METHOD
25523 && !HAVE_GNAT_AUX_INFO (type))
25524 INIT_GNAT_SPECIFIC (type);
25526 /* Read DW_AT_allocated and set in type. */
25527 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25528 if (attr_form_is_block (attr))
25530 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25531 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25533 else if (attr != NULL)
25535 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25536 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25537 sect_offset_str (die->sect_off));
25540 /* Read DW_AT_associated and set in type. */
25541 attr = dwarf2_attr (die, DW_AT_associated, cu);
25542 if (attr_form_is_block (attr))
25544 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25545 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25547 else if (attr != NULL)
25549 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25550 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25551 sect_offset_str (die->sect_off));
25554 /* Read DW_AT_data_location and set in type. */
25555 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25556 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25557 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25559 if (dwarf2_per_objfile->die_type_hash == NULL)
25561 dwarf2_per_objfile->die_type_hash =
25562 htab_create_alloc_ex (127,
25563 per_cu_offset_and_type_hash,
25564 per_cu_offset_and_type_eq,
25565 NULL,
25566 &objfile->objfile_obstack,
25567 hashtab_obstack_allocate,
25568 dummy_obstack_deallocate);
25571 ofs.per_cu = cu->per_cu;
25572 ofs.sect_off = die->sect_off;
25573 ofs.type = type;
25574 slot = (struct dwarf2_per_cu_offset_and_type **)
25575 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25576 if (*slot)
25577 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25578 sect_offset_str (die->sect_off));
25579 *slot = XOBNEW (&objfile->objfile_obstack,
25580 struct dwarf2_per_cu_offset_and_type);
25581 **slot = ofs;
25582 return type;
25585 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25586 or return NULL if the die does not have a saved type. */
25588 static struct type *
25589 get_die_type_at_offset (sect_offset sect_off,
25590 struct dwarf2_per_cu_data *per_cu)
25592 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25593 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25595 if (dwarf2_per_objfile->die_type_hash == NULL)
25596 return NULL;
25598 ofs.per_cu = per_cu;
25599 ofs.sect_off = sect_off;
25600 slot = ((struct dwarf2_per_cu_offset_and_type *)
25601 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25602 if (slot)
25603 return slot->type;
25604 else
25605 return NULL;
25608 /* Look up the type for DIE in CU in die_type_hash,
25609 or return NULL if DIE does not have a saved type. */
25611 static struct type *
25612 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25614 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25617 /* Add a dependence relationship from CU to REF_PER_CU. */
25619 static void
25620 dwarf2_add_dependence (struct dwarf2_cu *cu,
25621 struct dwarf2_per_cu_data *ref_per_cu)
25623 void **slot;
25625 if (cu->dependencies == NULL)
25626 cu->dependencies
25627 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25628 NULL, &cu->comp_unit_obstack,
25629 hashtab_obstack_allocate,
25630 dummy_obstack_deallocate);
25632 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25633 if (*slot == NULL)
25634 *slot = ref_per_cu;
25637 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25638 Set the mark field in every compilation unit in the
25639 cache that we must keep because we are keeping CU. */
25641 static int
25642 dwarf2_mark_helper (void **slot, void *data)
25644 struct dwarf2_per_cu_data *per_cu;
25646 per_cu = (struct dwarf2_per_cu_data *) *slot;
25648 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25649 reading of the chain. As such dependencies remain valid it is not much
25650 useful to track and undo them during QUIT cleanups. */
25651 if (per_cu->cu == NULL)
25652 return 1;
25654 if (per_cu->cu->mark)
25655 return 1;
25656 per_cu->cu->mark = true;
25658 if (per_cu->cu->dependencies != NULL)
25659 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25661 return 1;
25664 /* Set the mark field in CU and in every other compilation unit in the
25665 cache that we must keep because we are keeping CU. */
25667 static void
25668 dwarf2_mark (struct dwarf2_cu *cu)
25670 if (cu->mark)
25671 return;
25672 cu->mark = true;
25673 if (cu->dependencies != NULL)
25674 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25677 static void
25678 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25680 while (per_cu)
25682 per_cu->cu->mark = false;
25683 per_cu = per_cu->cu->read_in_chain;
25687 /* Trivial hash function for partial_die_info: the hash value of a DIE
25688 is its offset in .debug_info for this objfile. */
25690 static hashval_t
25691 partial_die_hash (const void *item)
25693 const struct partial_die_info *part_die
25694 = (const struct partial_die_info *) item;
25696 return to_underlying (part_die->sect_off);
25699 /* Trivial comparison function for partial_die_info structures: two DIEs
25700 are equal if they have the same offset. */
25702 static int
25703 partial_die_eq (const void *item_lhs, const void *item_rhs)
25705 const struct partial_die_info *part_die_lhs
25706 = (const struct partial_die_info *) item_lhs;
25707 const struct partial_die_info *part_die_rhs
25708 = (const struct partial_die_info *) item_rhs;
25710 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25713 struct cmd_list_element *set_dwarf_cmdlist;
25714 struct cmd_list_element *show_dwarf_cmdlist;
25716 static void
25717 set_dwarf_cmd (const char *args, int from_tty)
25719 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25720 gdb_stdout);
25723 static void
25724 show_dwarf_cmd (const char *args, int from_tty)
25726 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25729 int dwarf_always_disassemble;
25731 static void
25732 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25733 struct cmd_list_element *c, const char *value)
25735 fprintf_filtered (file,
25736 _("Whether to always disassemble "
25737 "DWARF expressions is %s.\n"),
25738 value);
25741 static void
25742 show_check_physname (struct ui_file *file, int from_tty,
25743 struct cmd_list_element *c, const char *value)
25745 fprintf_filtered (file,
25746 _("Whether to check \"physname\" is %s.\n"),
25747 value);
25750 void
25751 _initialize_dwarf2_read (void)
25753 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25754 Set DWARF specific variables.\n\
25755 Configure DWARF variables such as the cache size"),
25756 &set_dwarf_cmdlist, "maintenance set dwarf ",
25757 0/*allow-unknown*/, &maintenance_set_cmdlist);
25759 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25760 Show DWARF specific variables\n\
25761 Show DWARF variables such as the cache size"),
25762 &show_dwarf_cmdlist, "maintenance show dwarf ",
25763 0/*allow-unknown*/, &maintenance_show_cmdlist);
25765 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25766 &dwarf_max_cache_age, _("\
25767 Set the upper bound on the age of cached DWARF compilation units."), _("\
25768 Show the upper bound on the age of cached DWARF compilation units."), _("\
25769 A higher limit means that cached compilation units will be stored\n\
25770 in memory longer, and more total memory will be used. Zero disables\n\
25771 caching, which can slow down startup."),
25772 NULL,
25773 show_dwarf_max_cache_age,
25774 &set_dwarf_cmdlist,
25775 &show_dwarf_cmdlist);
25777 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25778 &dwarf_always_disassemble, _("\
25779 Set whether `info address' always disassembles DWARF expressions."), _("\
25780 Show whether `info address' always disassembles DWARF expressions."), _("\
25781 When enabled, DWARF expressions are always printed in an assembly-like\n\
25782 syntax. When disabled, expressions will be printed in a more\n\
25783 conversational style, when possible."),
25784 NULL,
25785 show_dwarf_always_disassemble,
25786 &set_dwarf_cmdlist,
25787 &show_dwarf_cmdlist);
25789 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25790 Set debugging of the DWARF reader."), _("\
25791 Show debugging of the DWARF reader."), _("\
25792 When enabled (non-zero), debugging messages are printed during DWARF\n\
25793 reading and symtab expansion. A value of 1 (one) provides basic\n\
25794 information. A value greater than 1 provides more verbose information."),
25795 NULL,
25796 NULL,
25797 &setdebuglist, &showdebuglist);
25799 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25800 Set debugging of the DWARF DIE reader."), _("\
25801 Show debugging of the DWARF DIE reader."), _("\
25802 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25803 The value is the maximum depth to print."),
25804 NULL,
25805 NULL,
25806 &setdebuglist, &showdebuglist);
25808 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25809 Set debugging of the dwarf line reader."), _("\
25810 Show debugging of the dwarf line reader."), _("\
25811 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25812 A value of 1 (one) provides basic information.\n\
25813 A value greater than 1 provides more verbose information."),
25814 NULL,
25815 NULL,
25816 &setdebuglist, &showdebuglist);
25818 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25819 Set cross-checking of \"physname\" code against demangler."), _("\
25820 Show cross-checking of \"physname\" code against demangler."), _("\
25821 When enabled, GDB's internal \"physname\" code is checked against\n\
25822 the demangler."),
25823 NULL, show_check_physname,
25824 &setdebuglist, &showdebuglist);
25826 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25827 no_class, &use_deprecated_index_sections, _("\
25828 Set whether to use deprecated gdb_index sections."), _("\
25829 Show whether to use deprecated gdb_index sections."), _("\
25830 When enabled, deprecated .gdb_index sections are used anyway.\n\
25831 Normally they are ignored either because of a missing feature or\n\
25832 performance issue.\n\
25833 Warning: This option must be enabled before gdb reads the file."),
25834 NULL,
25835 NULL,
25836 &setlist, &showlist);
25838 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25839 &dwarf2_locexpr_funcs);
25840 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25841 &dwarf2_loclist_funcs);
25843 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25844 &dwarf2_block_frame_base_locexpr_funcs);
25845 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25846 &dwarf2_block_frame_base_loclist_funcs);
25848 #if GDB_SELF_TEST
25849 selftests::register_test ("dw2_expand_symtabs_matching",
25850 selftests::dw2_expand_symtabs_matching::run_test);
25851 #endif