[PATCH 7/57][Arm][GAS] Add support for MVE instructions: vstr/vldr
[binutils-gdb.git] / gdb / gdbarch.sh
blob59493d8c21512b2b85d10cf80c000b91057b1760
1 #!/bin/sh -u
3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2019 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
28 compare_new ()
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46 do_read ()
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
93 done
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
122 esac
123 esac
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
145 break
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
157 fallback_default_p ()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p ()
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
171 class_is_function_p ()
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
179 class_is_multiarch_p ()
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
187 class_is_predicate_p ()
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
195 class_is_info_p ()
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
204 # dump out/verify the doco
205 for field in ${read}
207 case ${field} in
209 class ) : ;;
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
227 returntype ) : ;;
229 # For functions, the return type; for variables, the data type
231 function ) : ;;
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
237 formal ) : ;;
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
244 actual ) : ;;
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
250 staticdefault ) : ;;
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
259 predefault ) : ;;
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
278 postdefault ) : ;;
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
301 invalid_p ) : ;;
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
318 print ) : ;;
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol ) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
337 function_list ()
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
368 # useful).
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
433 # never be called.
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
461 # all (-1).
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
483 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
484 # a dummy frame. A dummy frame is created before an inferior call,
485 # the frame_id returned here must match the frame_id that was built
486 # for the inferior call. Usually this means the returned frame_id's
487 # stack address should match the address returned by
488 # gdbarch_push_dummy_call, and the returned frame_id's code address
489 # should match the address at which the breakpoint was set in the dummy
490 # frame.
491 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
492 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
493 # deprecated_fp_regnum.
494 v;int;deprecated_fp_regnum;;;-1;-1;;0
496 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
497 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
498 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
500 # Return true if the code of FRAME is writable.
501 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
503 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
504 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
505 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
509 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
510 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
512 # Determine the address where a longjmp will land and save this address
513 # in PC. Return nonzero on success.
515 # FRAME corresponds to the longjmp frame.
516 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
519 v;int;believe_pcc_promotion;;;;;;;
521 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
522 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
523 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
524 # Construct a value representing the contents of register REGNUM in
525 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
526 # allocate and return a struct value with all value attributes
527 # (but not the value contents) filled in.
528 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
530 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
531 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
532 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
534 # Return the return-value convention that will be used by FUNCTION
535 # to return a value of type VALTYPE. FUNCTION may be NULL in which
536 # case the return convention is computed based only on VALTYPE.
538 # If READBUF is not NULL, extract the return value and save it in this buffer.
540 # If WRITEBUF is not NULL, it contains a return value which will be
541 # stored into the appropriate register. This can be used when we want
542 # to force the value returned by a function (see the "return" command
543 # for instance).
544 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
546 # Return true if the return value of function is stored in the first hidden
547 # parameter. In theory, this feature should be language-dependent, specified
548 # by language and its ABI, such as C++. Unfortunately, compiler may
549 # implement it to a target-dependent feature. So that we need such hook here
550 # to be aware of this in GDB.
551 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
553 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
554 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
555 # On some platforms, a single function may provide multiple entry points,
556 # e.g. one that is used for function-pointer calls and a different one
557 # that is used for direct function calls.
558 # In order to ensure that breakpoints set on the function will trigger
559 # no matter via which entry point the function is entered, a platform
560 # may provide the skip_entrypoint callback. It is called with IP set
561 # to the main entry point of a function (as determined by the symbol table),
562 # and should return the address of the innermost entry point, where the
563 # actual breakpoint needs to be set. Note that skip_entrypoint is used
564 # by GDB common code even when debugging optimized code, where skip_prologue
565 # is not used.
566 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
568 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
569 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
571 # Return the breakpoint kind for this target based on *PCPTR.
572 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
574 # Return the software breakpoint from KIND. KIND can have target
575 # specific meaning like the Z0 kind parameter.
576 # SIZE is set to the software breakpoint's length in memory.
577 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
579 # Return the breakpoint kind for this target based on the current
580 # processor state (e.g. the current instruction mode on ARM) and the
581 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
582 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
584 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
585 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
586 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
587 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
589 # A function can be addressed by either it's "pointer" (possibly a
590 # descriptor address) or "entry point" (first executable instruction).
591 # The method "convert_from_func_ptr_addr" converting the former to the
592 # latter. gdbarch_deprecated_function_start_offset is being used to implement
593 # a simplified subset of that functionality - the function's address
594 # corresponds to the "function pointer" and the function's start
595 # corresponds to the "function entry point" - and hence is redundant.
597 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
599 # Return the remote protocol register number associated with this
600 # register. Normally the identity mapping.
601 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
603 # Fetch the target specific address used to represent a load module.
604 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
606 # Return the thread-local address at OFFSET in the thread-local
607 # storage for the thread PTID and the shared library or executable
608 # file given by LM_ADDR. If that block of thread-local storage hasn't
609 # been allocated yet, this function may throw an error. LM_ADDR may
610 # be zero for statically linked multithreaded inferiors.
612 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
614 v;CORE_ADDR;frame_args_skip;;;0;;;0
615 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
616 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
617 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
618 # frame-base. Enable frame-base before frame-unwind.
619 F;int;frame_num_args;struct frame_info *frame;frame
621 M;CORE_ADDR;frame_align;CORE_ADDR address;address
622 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
623 v;int;frame_red_zone_size
625 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
626 # On some machines there are bits in addresses which are not really
627 # part of the address, but are used by the kernel, the hardware, etc.
628 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
629 # we get a "real" address such as one would find in a symbol table.
630 # This is used only for addresses of instructions, and even then I'm
631 # not sure it's used in all contexts. It exists to deal with there
632 # being a few stray bits in the PC which would mislead us, not as some
633 # sort of generic thing to handle alignment or segmentation (it's
634 # possible it should be in TARGET_READ_PC instead).
635 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
637 # On some machines, not all bits of an address word are significant.
638 # For example, on AArch64, the top bits of an address known as the "tag"
639 # are ignored by the kernel, the hardware, etc. and can be regarded as
640 # additional data associated with the address.
641 v;int;significant_addr_bit;;;;;;0
643 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
644 # indicates if the target needs software single step. An ISA method to
645 # implement it.
647 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
648 # target can single step. If not, then implement single step using breakpoints.
650 # Return a vector of addresses on which the software single step
651 # breakpoints should be inserted. NULL means software single step is
652 # not used.
653 # Multiple breakpoints may be inserted for some instructions such as
654 # conditional branch. However, each implementation must always evaluate
655 # the condition and only put the breakpoint at the branch destination if
656 # the condition is true, so that we ensure forward progress when stepping
657 # past a conditional branch to self.
658 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
660 # Return non-zero if the processor is executing a delay slot and a
661 # further single-step is needed before the instruction finishes.
662 M;int;single_step_through_delay;struct frame_info *frame;frame
663 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
664 # disassembler. Perhaps objdump can handle it?
665 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
666 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
669 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
670 # evaluates non-zero, this is the address where the debugger will place
671 # a step-resume breakpoint to get us past the dynamic linker.
672 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
673 # Some systems also have trampoline code for returning from shared libs.
674 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
676 # Return true if PC lies inside an indirect branch thunk.
677 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
679 # A target might have problems with watchpoints as soon as the stack
680 # frame of the current function has been destroyed. This mostly happens
681 # as the first action in a function's epilogue. stack_frame_destroyed_p()
682 # is defined to return a non-zero value if either the given addr is one
683 # instruction after the stack destroying instruction up to the trailing
684 # return instruction or if we can figure out that the stack frame has
685 # already been invalidated regardless of the value of addr. Targets
686 # which don't suffer from that problem could just let this functionality
687 # untouched.
688 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
689 # Process an ELF symbol in the minimal symbol table in a backend-specific
690 # way. Normally this hook is supposed to do nothing, however if required,
691 # then this hook can be used to apply tranformations to symbols that are
692 # considered special in some way. For example the MIPS backend uses it
693 # to interpret \`st_other' information to mark compressed code symbols so
694 # that they can be treated in the appropriate manner in the processing of
695 # the main symbol table and DWARF-2 records.
696 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
697 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
698 # Process a symbol in the main symbol table in a backend-specific way.
699 # Normally this hook is supposed to do nothing, however if required,
700 # then this hook can be used to apply tranformations to symbols that
701 # are considered special in some way. This is currently used by the
702 # MIPS backend to make sure compressed code symbols have the ISA bit
703 # set. This in turn is needed for symbol values seen in GDB to match
704 # the values used at the runtime by the program itself, for function
705 # and label references.
706 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
707 # Adjust the address retrieved from a DWARF-2 record other than a line
708 # entry in a backend-specific way. Normally this hook is supposed to
709 # return the address passed unchanged, however if that is incorrect for
710 # any reason, then this hook can be used to fix the address up in the
711 # required manner. This is currently used by the MIPS backend to make
712 # sure addresses in FDE, range records, etc. referring to compressed
713 # code have the ISA bit set, matching line information and the symbol
714 # table.
715 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
716 # Adjust the address updated by a line entry in a backend-specific way.
717 # Normally this hook is supposed to return the address passed unchanged,
718 # however in the case of inconsistencies in these records, this hook can
719 # be used to fix them up in the required manner. This is currently used
720 # by the MIPS backend to make sure all line addresses in compressed code
721 # are presented with the ISA bit set, which is not always the case. This
722 # in turn ensures breakpoint addresses are correctly matched against the
723 # stop PC.
724 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
725 v;int;cannot_step_breakpoint;;;0;0;;0
726 # See comment in target.h about continuable, steppable and
727 # non-steppable watchpoints.
728 v;int;have_nonsteppable_watchpoint;;;0;0;;0
729 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
730 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
731 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
732 # FS are passed from the generic execute_cfa_program function.
733 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
735 # Return the appropriate type_flags for the supplied address class.
736 # This function should return 1 if the address class was recognized and
737 # type_flags was set, zero otherwise.
738 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
739 # Is a register in a group
740 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
741 # Fetch the pointer to the ith function argument.
742 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
744 # Iterate over all supported register notes in a core file. For each
745 # supported register note section, the iterator must call CB and pass
746 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
747 # the supported register note sections based on the current register
748 # values. Otherwise it should enumerate all supported register note
749 # sections.
750 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
752 # Create core file notes
753 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
755 # Find core file memory regions
756 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
758 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
759 # core file into buffer READBUF with length LEN. Return the number of bytes read
760 # (zero indicates failure).
761 # failed, otherwise, return the red length of READBUF.
762 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
764 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
765 # libraries list from core file into buffer READBUF with length LEN.
766 # Return the number of bytes read (zero indicates failure).
767 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
769 # How the core target converts a PTID from a core file to a string.
770 M;std::string;core_pid_to_str;ptid_t ptid;ptid
772 # How the core target extracts the name of a thread from a core file.
773 M;const char *;core_thread_name;struct thread_info *thr;thr
775 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
776 # from core file into buffer READBUF with length LEN. Return the number
777 # of bytes read (zero indicates EOF, a negative value indicates failure).
778 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
780 # BFD target to use when generating a core file.
781 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
783 # If the elements of C++ vtables are in-place function descriptors rather
784 # than normal function pointers (which may point to code or a descriptor),
785 # set this to one.
786 v;int;vtable_function_descriptors;;;0;0;;0
788 # Set if the least significant bit of the delta is used instead of the least
789 # significant bit of the pfn for pointers to virtual member functions.
790 v;int;vbit_in_delta;;;0;0;;0
792 # Advance PC to next instruction in order to skip a permanent breakpoint.
793 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
795 # The maximum length of an instruction on this architecture in bytes.
796 V;ULONGEST;max_insn_length;;;0;0
798 # Copy the instruction at FROM to TO, and make any adjustments
799 # necessary to single-step it at that address.
801 # REGS holds the state the thread's registers will have before
802 # executing the copied instruction; the PC in REGS will refer to FROM,
803 # not the copy at TO. The caller should update it to point at TO later.
805 # Return a pointer to data of the architecture's choice to be passed
806 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
807 # the instruction's effects have been completely simulated, with the
808 # resulting state written back to REGS.
810 # For a general explanation of displaced stepping and how GDB uses it,
811 # see the comments in infrun.c.
813 # The TO area is only guaranteed to have space for
814 # gdbarch_max_insn_length (arch) bytes, so this function must not
815 # write more bytes than that to that area.
817 # If you do not provide this function, GDB assumes that the
818 # architecture does not support displaced stepping.
820 # If the instruction cannot execute out of line, return NULL. The
821 # core falls back to stepping past the instruction in-line instead in
822 # that case.
823 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
825 # Return true if GDB should use hardware single-stepping to execute
826 # the displaced instruction identified by CLOSURE. If false,
827 # GDB will simply restart execution at the displaced instruction
828 # location, and it is up to the target to ensure GDB will receive
829 # control again (e.g. by placing a software breakpoint instruction
830 # into the displaced instruction buffer).
832 # The default implementation returns false on all targets that
833 # provide a gdbarch_software_single_step routine, and true otherwise.
834 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
836 # Fix up the state resulting from successfully single-stepping a
837 # displaced instruction, to give the result we would have gotten from
838 # stepping the instruction in its original location.
840 # REGS is the register state resulting from single-stepping the
841 # displaced instruction.
843 # CLOSURE is the result from the matching call to
844 # gdbarch_displaced_step_copy_insn.
846 # If you provide gdbarch_displaced_step_copy_insn.but not this
847 # function, then GDB assumes that no fixup is needed after
848 # single-stepping the instruction.
850 # For a general explanation of displaced stepping and how GDB uses it,
851 # see the comments in infrun.c.
852 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
854 # Return the address of an appropriate place to put displaced
855 # instructions while we step over them. There need only be one such
856 # place, since we're only stepping one thread over a breakpoint at a
857 # time.
859 # For a general explanation of displaced stepping and how GDB uses it,
860 # see the comments in infrun.c.
861 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
863 # Relocate an instruction to execute at a different address. OLDLOC
864 # is the address in the inferior memory where the instruction to
865 # relocate is currently at. On input, TO points to the destination
866 # where we want the instruction to be copied (and possibly adjusted)
867 # to. On output, it points to one past the end of the resulting
868 # instruction(s). The effect of executing the instruction at TO shall
869 # be the same as if executing it at FROM. For example, call
870 # instructions that implicitly push the return address on the stack
871 # should be adjusted to return to the instruction after OLDLOC;
872 # relative branches, and other PC-relative instructions need the
873 # offset adjusted; etc.
874 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
876 # Refresh overlay mapped state for section OSECT.
877 F;void;overlay_update;struct obj_section *osect;osect
879 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
881 # Handle special encoding of static variables in stabs debug info.
882 F;const char *;static_transform_name;const char *name;name
883 # Set if the address in N_SO or N_FUN stabs may be zero.
884 v;int;sofun_address_maybe_missing;;;0;0;;0
886 # Parse the instruction at ADDR storing in the record execution log
887 # the registers REGCACHE and memory ranges that will be affected when
888 # the instruction executes, along with their current values.
889 # Return -1 if something goes wrong, 0 otherwise.
890 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
892 # Save process state after a signal.
893 # Return -1 if something goes wrong, 0 otherwise.
894 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
896 # Signal translation: translate inferior's signal (target's) number
897 # into GDB's representation. The implementation of this method must
898 # be host independent. IOW, don't rely on symbols of the NAT_FILE
899 # header (the nm-*.h files), the host <signal.h> header, or similar
900 # headers. This is mainly used when cross-debugging core files ---
901 # "Live" targets hide the translation behind the target interface
902 # (target_wait, target_resume, etc.).
903 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
905 # Signal translation: translate the GDB's internal signal number into
906 # the inferior's signal (target's) representation. The implementation
907 # of this method must be host independent. IOW, don't rely on symbols
908 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
909 # header, or similar headers.
910 # Return the target signal number if found, or -1 if the GDB internal
911 # signal number is invalid.
912 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
914 # Extra signal info inspection.
916 # Return a type suitable to inspect extra signal information.
917 M;struct type *;get_siginfo_type;void;
919 # Record architecture-specific information from the symbol table.
920 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
922 # Function for the 'catch syscall' feature.
924 # Get architecture-specific system calls information from registers.
925 M;LONGEST;get_syscall_number;thread_info *thread;thread
927 # The filename of the XML syscall for this architecture.
928 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
930 # Information about system calls from this architecture
931 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
933 # SystemTap related fields and functions.
935 # A NULL-terminated array of prefixes used to mark an integer constant
936 # on the architecture's assembly.
937 # For example, on x86 integer constants are written as:
939 # \$10 ;; integer constant 10
941 # in this case, this prefix would be the character \`\$\'.
942 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
944 # A NULL-terminated array of suffixes used to mark an integer constant
945 # on the architecture's assembly.
946 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
948 # A NULL-terminated array of prefixes used to mark a register name on
949 # the architecture's assembly.
950 # For example, on x86 the register name is written as:
952 # \%eax ;; register eax
954 # in this case, this prefix would be the character \`\%\'.
955 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
957 # A NULL-terminated array of suffixes used to mark a register name on
958 # the architecture's assembly.
959 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
961 # A NULL-terminated array of prefixes used to mark a register
962 # indirection on the architecture's assembly.
963 # For example, on x86 the register indirection is written as:
965 # \(\%eax\) ;; indirecting eax
967 # in this case, this prefix would be the charater \`\(\'.
969 # Please note that we use the indirection prefix also for register
970 # displacement, e.g., \`4\(\%eax\)\' on x86.
971 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
973 # A NULL-terminated array of suffixes used to mark a register
974 # indirection on the architecture's assembly.
975 # For example, on x86 the register indirection is written as:
977 # \(\%eax\) ;; indirecting eax
979 # in this case, this prefix would be the charater \`\)\'.
981 # Please note that we use the indirection suffix also for register
982 # displacement, e.g., \`4\(\%eax\)\' on x86.
983 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
985 # Prefix(es) used to name a register using GDB's nomenclature.
987 # For example, on PPC a register is represented by a number in the assembly
988 # language (e.g., \`10\' is the 10th general-purpose register). However,
989 # inside GDB this same register has an \`r\' appended to its name, so the 10th
990 # register would be represented as \`r10\' internally.
991 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
993 # Suffix used to name a register using GDB's nomenclature.
994 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
996 # Check if S is a single operand.
998 # Single operands can be:
999 # \- Literal integers, e.g. \`\$10\' on x86
1000 # \- Register access, e.g. \`\%eax\' on x86
1001 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
1002 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
1004 # This function should check for these patterns on the string
1005 # and return 1 if some were found, or zero otherwise. Please try to match
1006 # as much info as you can from the string, i.e., if you have to match
1007 # something like \`\(\%\', do not match just the \`\(\'.
1008 M;int;stap_is_single_operand;const char *s;s
1010 # Function used to handle a "special case" in the parser.
1012 # A "special case" is considered to be an unknown token, i.e., a token
1013 # that the parser does not know how to parse. A good example of special
1014 # case would be ARM's register displacement syntax:
1016 # [R0, #4] ;; displacing R0 by 4
1018 # Since the parser assumes that a register displacement is of the form:
1020 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1022 # it means that it will not be able to recognize and parse this odd syntax.
1023 # Therefore, we should add a special case function that will handle this token.
1025 # This function should generate the proper expression form of the expression
1026 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1027 # and so on). It should also return 1 if the parsing was successful, or zero
1028 # if the token was not recognized as a special token (in this case, returning
1029 # zero means that the special parser is deferring the parsing to the generic
1030 # parser), and should advance the buffer pointer (p->arg).
1031 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1033 # DTrace related functions.
1035 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1036 # NARG must be >= 0.
1037 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1039 # True if the given ADDR does not contain the instruction sequence
1040 # corresponding to a disabled DTrace is-enabled probe.
1041 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1043 # Enable a DTrace is-enabled probe at ADDR.
1044 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1046 # Disable a DTrace is-enabled probe at ADDR.
1047 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1049 # True if the list of shared libraries is one and only for all
1050 # processes, as opposed to a list of shared libraries per inferior.
1051 # This usually means that all processes, although may or may not share
1052 # an address space, will see the same set of symbols at the same
1053 # addresses.
1054 v;int;has_global_solist;;;0;0;;0
1056 # On some targets, even though each inferior has its own private
1057 # address space, the debug interface takes care of making breakpoints
1058 # visible to all address spaces automatically. For such cases,
1059 # this property should be set to true.
1060 v;int;has_global_breakpoints;;;0;0;;0
1062 # True if inferiors share an address space (e.g., uClinux).
1063 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1065 # True if a fast tracepoint can be set at an address.
1066 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1068 # Guess register state based on tracepoint location. Used for tracepoints
1069 # where no registers have been collected, but there's only one location,
1070 # allowing us to guess the PC value, and perhaps some other registers.
1071 # On entry, regcache has all registers marked as unavailable.
1072 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1074 # Return the "auto" target charset.
1075 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1076 # Return the "auto" target wide charset.
1077 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1079 # If non-empty, this is a file extension that will be opened in place
1080 # of the file extension reported by the shared library list.
1082 # This is most useful for toolchains that use a post-linker tool,
1083 # where the names of the files run on the target differ in extension
1084 # compared to the names of the files GDB should load for debug info.
1085 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1087 # If true, the target OS has DOS-based file system semantics. That
1088 # is, absolute paths include a drive name, and the backslash is
1089 # considered a directory separator.
1090 v;int;has_dos_based_file_system;;;0;0;;0
1092 # Generate bytecodes to collect the return address in a frame.
1093 # Since the bytecodes run on the target, possibly with GDB not even
1094 # connected, the full unwinding machinery is not available, and
1095 # typically this function will issue bytecodes for one or more likely
1096 # places that the return address may be found.
1097 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1099 # Implement the "info proc" command.
1100 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1102 # Implement the "info proc" command for core files. Noe that there
1103 # are two "info_proc"-like methods on gdbarch -- one for core files,
1104 # one for live targets.
1105 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1107 # Iterate over all objfiles in the order that makes the most sense
1108 # for the architecture to make global symbol searches.
1110 # CB is a callback function where OBJFILE is the objfile to be searched,
1111 # and CB_DATA a pointer to user-defined data (the same data that is passed
1112 # when calling this gdbarch method). The iteration stops if this function
1113 # returns nonzero.
1115 # CB_DATA is a pointer to some user-defined data to be passed to
1116 # the callback.
1118 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1119 # inspected when the symbol search was requested.
1120 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1122 # Ravenscar arch-dependent ops.
1123 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1125 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1126 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1128 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1129 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1131 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1132 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1134 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1135 # Return 0 if *READPTR is already at the end of the buffer.
1136 # Return -1 if there is insufficient buffer for a whole entry.
1137 # Return 1 if an entry was read into *TYPEP and *VALP.
1138 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1140 # Print the description of a single auxv entry described by TYPE and VAL
1141 # to FILE.
1142 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1144 # Find the address range of the current inferior's vsyscall/vDSO, and
1145 # write it to *RANGE. If the vsyscall's length can't be determined, a
1146 # range with zero length is returned. Returns true if the vsyscall is
1147 # found, false otherwise.
1148 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1150 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1151 # PROT has GDB_MMAP_PROT_* bitmask format.
1152 # Throw an error if it is not possible. Returned address is always valid.
1153 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1155 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1156 # Print a warning if it is not possible.
1157 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1159 # Return string (caller has to use xfree for it) with options for GCC
1160 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1161 # These options are put before CU's DW_AT_producer compilation options so that
1162 # they can override it. Method may also return NULL.
1163 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1165 # Return a regular expression that matches names used by this
1166 # architecture in GNU configury triplets. The result is statically
1167 # allocated and must not be freed. The default implementation simply
1168 # returns the BFD architecture name, which is correct in nearly every
1169 # case.
1170 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1172 # Return the size in 8-bit bytes of an addressable memory unit on this
1173 # architecture. This corresponds to the number of 8-bit bytes associated to
1174 # each address in memory.
1175 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1177 # Functions for allowing a target to modify its disassembler options.
1178 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1179 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1180 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1182 # Type alignment override method. Return the architecture specific
1183 # alignment required for TYPE. If there is no special handling
1184 # required for TYPE then return the value 0, GDB will then apply the
1185 # default rules as laid out in gdbtypes.c:type_align.
1186 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1192 # The .log file
1194 exec > new-gdbarch.log
1195 function_list | while do_read
1197 cat <<EOF
1198 ${class} ${returntype} ${function} ($formal)
1200 for r in ${read}
1202 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1203 done
1204 if class_is_predicate_p && fallback_default_p
1205 then
1206 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1207 kill $$
1208 exit 1
1210 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1211 then
1212 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1213 kill $$
1214 exit 1
1216 if class_is_multiarch_p
1217 then
1218 if class_is_predicate_p ; then :
1219 elif test "x${predefault}" = "x"
1220 then
1221 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1222 kill $$
1223 exit 1
1226 echo ""
1227 done
1229 exec 1>&2
1230 compare_new gdbarch.log
1233 copyright ()
1235 cat <<EOF
1236 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1237 /* vi:set ro: */
1239 /* Dynamic architecture support for GDB, the GNU debugger.
1241 Copyright (C) 1998-2019 Free Software Foundation, Inc.
1243 This file is part of GDB.
1245 This program is free software; you can redistribute it and/or modify
1246 it under the terms of the GNU General Public License as published by
1247 the Free Software Foundation; either version 3 of the License, or
1248 (at your option) any later version.
1250 This program is distributed in the hope that it will be useful,
1251 but WITHOUT ANY WARRANTY; without even the implied warranty of
1252 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1253 GNU General Public License for more details.
1255 You should have received a copy of the GNU General Public License
1256 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1258 /* This file was created with the aid of \`\`gdbarch.sh''.
1260 The Bourne shell script \`\`gdbarch.sh'' creates the files
1261 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1262 against the existing \`\`gdbarch.[hc]''. Any differences found
1263 being reported.
1265 If editing this file, please also run gdbarch.sh and merge any
1266 changes into that script. Conversely, when making sweeping changes
1267 to this file, modifying gdbarch.sh and using its output may prove
1268 easier. */
1274 # The .h file
1277 exec > new-gdbarch.h
1278 copyright
1279 cat <<EOF
1280 #ifndef GDBARCH_H
1281 #define GDBARCH_H
1283 #include <vector>
1284 #include "frame.h"
1285 #include "dis-asm.h"
1286 #include "gdb_obstack.h"
1288 struct floatformat;
1289 struct ui_file;
1290 struct value;
1291 struct objfile;
1292 struct obj_section;
1293 struct minimal_symbol;
1294 struct regcache;
1295 struct reggroup;
1296 struct regset;
1297 struct disassemble_info;
1298 struct target_ops;
1299 struct obstack;
1300 struct bp_target_info;
1301 struct target_desc;
1302 struct symbol;
1303 struct displaced_step_closure;
1304 struct syscall;
1305 struct agent_expr;
1306 struct axs_value;
1307 struct stap_parse_info;
1308 struct expr_builder;
1309 struct ravenscar_arch_ops;
1310 struct mem_range;
1311 struct syscalls_info;
1312 struct thread_info;
1313 struct ui_out;
1315 #include "regcache.h"
1317 /* The architecture associated with the inferior through the
1318 connection to the target.
1320 The architecture vector provides some information that is really a
1321 property of the inferior, accessed through a particular target:
1322 ptrace operations; the layout of certain RSP packets; the solib_ops
1323 vector; etc. To differentiate architecture accesses to
1324 per-inferior/target properties from
1325 per-thread/per-frame/per-objfile properties, accesses to
1326 per-inferior/target properties should be made through this
1327 gdbarch. */
1329 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1330 extern struct gdbarch *target_gdbarch (void);
1332 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1333 gdbarch method. */
1335 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1336 (struct objfile *objfile, void *cb_data);
1338 /* Callback type for regset section iterators. The callback usually
1339 invokes the REGSET's supply or collect method, to which it must
1340 pass a buffer - for collects this buffer will need to be created using
1341 COLLECT_SIZE, for supply the existing buffer being read from should
1342 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1343 is used for diagnostic messages. CB_DATA should have been passed
1344 unchanged through the iterator. */
1346 typedef void (iterate_over_regset_sections_cb)
1347 (const char *sect_name, int supply_size, int collect_size,
1348 const struct regset *regset, const char *human_name, void *cb_data);
1350 /* For a function call, does the function return a value using a
1351 normal value return or a structure return - passing a hidden
1352 argument pointing to storage. For the latter, there are two
1353 cases: language-mandated structure return and target ABI
1354 structure return. */
1356 enum function_call_return_method
1358 /* Standard value return. */
1359 return_method_normal = 0,
1361 /* Language ABI structure return. This is handled
1362 by passing the return location as the first parameter to
1363 the function, even preceding "this". */
1364 return_method_hidden_param,
1366 /* Target ABI struct return. This is target-specific; for instance,
1367 on ia64 the first argument is passed in out0 but the hidden
1368 structure return pointer would normally be passed in r8. */
1369 return_method_struct,
1374 # function typedef's
1375 printf "\n"
1376 printf "\n"
1377 printf "/* The following are pre-initialized by GDBARCH. */\n"
1378 function_list | while do_read
1380 if class_is_info_p
1381 then
1382 printf "\n"
1383 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1384 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1386 done
1388 # function typedef's
1389 printf "\n"
1390 printf "\n"
1391 printf "/* The following are initialized by the target dependent code. */\n"
1392 function_list | while do_read
1394 if [ -n "${comment}" ]
1395 then
1396 echo "${comment}" | sed \
1397 -e '2 s,#,/*,' \
1398 -e '3,$ s,#, ,' \
1399 -e '$ s,$, */,'
1402 if class_is_predicate_p
1403 then
1404 printf "\n"
1405 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1407 if class_is_variable_p
1408 then
1409 printf "\n"
1410 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1411 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1413 if class_is_function_p
1414 then
1415 printf "\n"
1416 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1417 then
1418 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1419 elif class_is_multiarch_p
1420 then
1421 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1422 else
1423 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1425 if [ "x${formal}" = "xvoid" ]
1426 then
1427 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1428 else
1429 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1431 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1433 done
1435 # close it off
1436 cat <<EOF
1438 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1441 /* Mechanism for co-ordinating the selection of a specific
1442 architecture.
1444 GDB targets (*-tdep.c) can register an interest in a specific
1445 architecture. Other GDB components can register a need to maintain
1446 per-architecture data.
1448 The mechanisms below ensures that there is only a loose connection
1449 between the set-architecture command and the various GDB
1450 components. Each component can independently register their need
1451 to maintain architecture specific data with gdbarch.
1453 Pragmatics:
1455 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1456 didn't scale.
1458 The more traditional mega-struct containing architecture specific
1459 data for all the various GDB components was also considered. Since
1460 GDB is built from a variable number of (fairly independent)
1461 components it was determined that the global aproach was not
1462 applicable. */
1465 /* Register a new architectural family with GDB.
1467 Register support for the specified ARCHITECTURE with GDB. When
1468 gdbarch determines that the specified architecture has been
1469 selected, the corresponding INIT function is called.
1473 The INIT function takes two parameters: INFO which contains the
1474 information available to gdbarch about the (possibly new)
1475 architecture; ARCHES which is a list of the previously created
1476 \`\`struct gdbarch'' for this architecture.
1478 The INFO parameter is, as far as possible, be pre-initialized with
1479 information obtained from INFO.ABFD or the global defaults.
1481 The ARCHES parameter is a linked list (sorted most recently used)
1482 of all the previously created architures for this architecture
1483 family. The (possibly NULL) ARCHES->gdbarch can used to access
1484 values from the previously selected architecture for this
1485 architecture family.
1487 The INIT function shall return any of: NULL - indicating that it
1488 doesn't recognize the selected architecture; an existing \`\`struct
1489 gdbarch'' from the ARCHES list - indicating that the new
1490 architecture is just a synonym for an earlier architecture (see
1491 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1492 - that describes the selected architecture (see gdbarch_alloc()).
1494 The DUMP_TDEP function shall print out all target specific values.
1495 Care should be taken to ensure that the function works in both the
1496 multi-arch and non- multi-arch cases. */
1498 struct gdbarch_list
1500 struct gdbarch *gdbarch;
1501 struct gdbarch_list *next;
1504 struct gdbarch_info
1506 /* Use default: NULL (ZERO). */
1507 const struct bfd_arch_info *bfd_arch_info;
1509 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1510 enum bfd_endian byte_order;
1512 enum bfd_endian byte_order_for_code;
1514 /* Use default: NULL (ZERO). */
1515 bfd *abfd;
1517 /* Use default: NULL (ZERO). */
1518 union
1520 /* Architecture-specific information. The generic form for targets
1521 that have extra requirements. */
1522 struct gdbarch_tdep_info *tdep_info;
1524 /* Architecture-specific target description data. Numerous targets
1525 need only this, so give them an easy way to hold it. */
1526 struct tdesc_arch_data *tdesc_data;
1528 /* SPU file system ID. This is a single integer, so using the
1529 generic form would only complicate code. Other targets may
1530 reuse this member if suitable. */
1531 int *id;
1534 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1535 enum gdb_osabi osabi;
1537 /* Use default: NULL (ZERO). */
1538 const struct target_desc *target_desc;
1541 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1542 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1544 /* DEPRECATED - use gdbarch_register() */
1545 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1547 extern void gdbarch_register (enum bfd_architecture architecture,
1548 gdbarch_init_ftype *,
1549 gdbarch_dump_tdep_ftype *);
1552 /* Return a freshly allocated, NULL terminated, array of the valid
1553 architecture names. Since architectures are registered during the
1554 _initialize phase this function only returns useful information
1555 once initialization has been completed. */
1557 extern const char **gdbarch_printable_names (void);
1560 /* Helper function. Search the list of ARCHES for a GDBARCH that
1561 matches the information provided by INFO. */
1563 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1566 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1567 basic initialization using values obtained from the INFO and TDEP
1568 parameters. set_gdbarch_*() functions are called to complete the
1569 initialization of the object. */
1571 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1574 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1575 It is assumed that the caller freeds the \`\`struct
1576 gdbarch_tdep''. */
1578 extern void gdbarch_free (struct gdbarch *);
1580 /* Get the obstack owned by ARCH. */
1582 extern obstack *gdbarch_obstack (gdbarch *arch);
1584 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1585 obstack. The memory is freed when the corresponding architecture
1586 is also freed. */
1588 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1589 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1591 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1592 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1594 /* Duplicate STRING, returning an equivalent string that's allocated on the
1595 obstack associated with GDBARCH. The string is freed when the corresponding
1596 architecture is also freed. */
1598 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1600 /* Helper function. Force an update of the current architecture.
1602 The actual architecture selected is determined by INFO, \`\`(gdb) set
1603 architecture'' et.al., the existing architecture and BFD's default
1604 architecture. INFO should be initialized to zero and then selected
1605 fields should be updated.
1607 Returns non-zero if the update succeeds. */
1609 extern int gdbarch_update_p (struct gdbarch_info info);
1612 /* Helper function. Find an architecture matching info.
1614 INFO should be initialized using gdbarch_info_init, relevant fields
1615 set, and then finished using gdbarch_info_fill.
1617 Returns the corresponding architecture, or NULL if no matching
1618 architecture was found. */
1620 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1623 /* Helper function. Set the target gdbarch to "gdbarch". */
1625 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1628 /* Register per-architecture data-pointer.
1630 Reserve space for a per-architecture data-pointer. An identifier
1631 for the reserved data-pointer is returned. That identifer should
1632 be saved in a local static variable.
1634 Memory for the per-architecture data shall be allocated using
1635 gdbarch_obstack_zalloc. That memory will be deleted when the
1636 corresponding architecture object is deleted.
1638 When a previously created architecture is re-selected, the
1639 per-architecture data-pointer for that previous architecture is
1640 restored. INIT() is not re-called.
1642 Multiple registrarants for any architecture are allowed (and
1643 strongly encouraged). */
1645 struct gdbarch_data;
1647 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1648 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1649 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1650 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1651 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1652 struct gdbarch_data *data,
1653 void *pointer);
1655 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1658 /* Set the dynamic target-system-dependent parameters (architecture,
1659 byte-order, ...) using information found in the BFD. */
1661 extern void set_gdbarch_from_file (bfd *);
1664 /* Initialize the current architecture to the "first" one we find on
1665 our list. */
1667 extern void initialize_current_architecture (void);
1669 /* gdbarch trace variable */
1670 extern unsigned int gdbarch_debug;
1672 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1674 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1676 static inline int
1677 gdbarch_num_cooked_regs (gdbarch *arch)
1679 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1682 #endif
1684 exec 1>&2
1685 #../move-if-change new-gdbarch.h gdbarch.h
1686 compare_new gdbarch.h
1690 # C file
1693 exec > new-gdbarch.c
1694 copyright
1695 cat <<EOF
1697 #include "defs.h"
1698 #include "arch-utils.h"
1700 #include "gdbcmd.h"
1701 #include "inferior.h"
1702 #include "symcat.h"
1704 #include "floatformat.h"
1705 #include "reggroups.h"
1706 #include "osabi.h"
1707 #include "gdb_obstack.h"
1708 #include "observable.h"
1709 #include "regcache.h"
1710 #include "objfiles.h"
1711 #include "auxv.h"
1712 #include "frame-unwind.h"
1713 #include "dummy-frame.h"
1715 /* Static function declarations */
1717 static void alloc_gdbarch_data (struct gdbarch *);
1719 /* Non-zero if we want to trace architecture code. */
1721 #ifndef GDBARCH_DEBUG
1722 #define GDBARCH_DEBUG 0
1723 #endif
1724 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1725 static void
1726 show_gdbarch_debug (struct ui_file *file, int from_tty,
1727 struct cmd_list_element *c, const char *value)
1729 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1732 static const char *
1733 pformat (const struct floatformat **format)
1735 if (format == NULL)
1736 return "(null)";
1737 else
1738 /* Just print out one of them - this is only for diagnostics. */
1739 return format[0]->name;
1742 static const char *
1743 pstring (const char *string)
1745 if (string == NULL)
1746 return "(null)";
1747 return string;
1750 static const char *
1751 pstring_ptr (char **string)
1753 if (string == NULL || *string == NULL)
1754 return "(null)";
1755 return *string;
1758 /* Helper function to print a list of strings, represented as "const
1759 char *const *". The list is printed comma-separated. */
1761 static const char *
1762 pstring_list (const char *const *list)
1764 static char ret[100];
1765 const char *const *p;
1766 size_t offset = 0;
1768 if (list == NULL)
1769 return "(null)";
1771 ret[0] = '\0';
1772 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1774 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1775 offset += 2 + s;
1778 if (offset > 0)
1780 gdb_assert (offset - 2 < sizeof (ret));
1781 ret[offset - 2] = '\0';
1784 return ret;
1789 # gdbarch open the gdbarch object
1790 printf "\n"
1791 printf "/* Maintain the struct gdbarch object. */\n"
1792 printf "\n"
1793 printf "struct gdbarch\n"
1794 printf "{\n"
1795 printf " /* Has this architecture been fully initialized? */\n"
1796 printf " int initialized_p;\n"
1797 printf "\n"
1798 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1799 printf " struct obstack *obstack;\n"
1800 printf "\n"
1801 printf " /* basic architectural information. */\n"
1802 function_list | while do_read
1804 if class_is_info_p
1805 then
1806 printf " ${returntype} ${function};\n"
1808 done
1809 printf "\n"
1810 printf " /* target specific vector. */\n"
1811 printf " struct gdbarch_tdep *tdep;\n"
1812 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1813 printf "\n"
1814 printf " /* per-architecture data-pointers. */\n"
1815 printf " unsigned nr_data;\n"
1816 printf " void **data;\n"
1817 printf "\n"
1818 cat <<EOF
1819 /* Multi-arch values.
1821 When extending this structure you must:
1823 Add the field below.
1825 Declare set/get functions and define the corresponding
1826 macro in gdbarch.h.
1828 gdbarch_alloc(): If zero/NULL is not a suitable default,
1829 initialize the new field.
1831 verify_gdbarch(): Confirm that the target updated the field
1832 correctly.
1834 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1835 field is dumped out
1837 get_gdbarch(): Implement the set/get functions (probably using
1838 the macro's as shortcuts).
1843 function_list | while do_read
1845 if class_is_variable_p
1846 then
1847 printf " ${returntype} ${function};\n"
1848 elif class_is_function_p
1849 then
1850 printf " gdbarch_${function}_ftype *${function};\n"
1852 done
1853 printf "};\n"
1855 # Create a new gdbarch struct
1856 cat <<EOF
1858 /* Create a new \`\`struct gdbarch'' based on information provided by
1859 \`\`struct gdbarch_info''. */
1861 printf "\n"
1862 cat <<EOF
1863 struct gdbarch *
1864 gdbarch_alloc (const struct gdbarch_info *info,
1865 struct gdbarch_tdep *tdep)
1867 struct gdbarch *gdbarch;
1869 /* Create an obstack for allocating all the per-architecture memory,
1870 then use that to allocate the architecture vector. */
1871 struct obstack *obstack = XNEW (struct obstack);
1872 obstack_init (obstack);
1873 gdbarch = XOBNEW (obstack, struct gdbarch);
1874 memset (gdbarch, 0, sizeof (*gdbarch));
1875 gdbarch->obstack = obstack;
1877 alloc_gdbarch_data (gdbarch);
1879 gdbarch->tdep = tdep;
1881 printf "\n"
1882 function_list | while do_read
1884 if class_is_info_p
1885 then
1886 printf " gdbarch->${function} = info->${function};\n"
1888 done
1889 printf "\n"
1890 printf " /* Force the explicit initialization of these. */\n"
1891 function_list | while do_read
1893 if class_is_function_p || class_is_variable_p
1894 then
1895 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1896 then
1897 printf " gdbarch->${function} = ${predefault};\n"
1900 done
1901 cat <<EOF
1902 /* gdbarch_alloc() */
1904 return gdbarch;
1908 # Free a gdbarch struct.
1909 printf "\n"
1910 printf "\n"
1911 cat <<EOF
1913 obstack *gdbarch_obstack (gdbarch *arch)
1915 return arch->obstack;
1918 /* See gdbarch.h. */
1920 char *
1921 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1923 return obstack_strdup (arch->obstack, string);
1927 /* Free a gdbarch struct. This should never happen in normal
1928 operation --- once you've created a gdbarch, you keep it around.
1929 However, if an architecture's init function encounters an error
1930 building the structure, it may need to clean up a partially
1931 constructed gdbarch. */
1933 void
1934 gdbarch_free (struct gdbarch *arch)
1936 struct obstack *obstack;
1938 gdb_assert (arch != NULL);
1939 gdb_assert (!arch->initialized_p);
1940 obstack = arch->obstack;
1941 obstack_free (obstack, 0); /* Includes the ARCH. */
1942 xfree (obstack);
1946 # verify a new architecture
1947 cat <<EOF
1950 /* Ensure that all values in a GDBARCH are reasonable. */
1952 static void
1953 verify_gdbarch (struct gdbarch *gdbarch)
1955 string_file log;
1957 /* fundamental */
1958 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1959 log.puts ("\n\tbyte-order");
1960 if (gdbarch->bfd_arch_info == NULL)
1961 log.puts ("\n\tbfd_arch_info");
1962 /* Check those that need to be defined for the given multi-arch level. */
1964 function_list | while do_read
1966 if class_is_function_p || class_is_variable_p
1967 then
1968 if [ "x${invalid_p}" = "x0" ]
1969 then
1970 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1971 elif class_is_predicate_p
1972 then
1973 printf " /* Skip verify of ${function}, has predicate. */\n"
1974 # FIXME: See do_read for potential simplification
1975 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1976 then
1977 printf " if (${invalid_p})\n"
1978 printf " gdbarch->${function} = ${postdefault};\n"
1979 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1980 then
1981 printf " if (gdbarch->${function} == ${predefault})\n"
1982 printf " gdbarch->${function} = ${postdefault};\n"
1983 elif [ -n "${postdefault}" ]
1984 then
1985 printf " if (gdbarch->${function} == 0)\n"
1986 printf " gdbarch->${function} = ${postdefault};\n"
1987 elif [ -n "${invalid_p}" ]
1988 then
1989 printf " if (${invalid_p})\n"
1990 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1991 elif [ -n "${predefault}" ]
1992 then
1993 printf " if (gdbarch->${function} == ${predefault})\n"
1994 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1997 done
1998 cat <<EOF
1999 if (!log.empty ())
2000 internal_error (__FILE__, __LINE__,
2001 _("verify_gdbarch: the following are invalid ...%s"),
2002 log.c_str ());
2006 # dump the structure
2007 printf "\n"
2008 printf "\n"
2009 cat <<EOF
2010 /* Print out the details of the current architecture. */
2012 void
2013 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2015 const char *gdb_nm_file = "<not-defined>";
2017 #if defined (GDB_NM_FILE)
2018 gdb_nm_file = GDB_NM_FILE;
2019 #endif
2020 fprintf_unfiltered (file,
2021 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2022 gdb_nm_file);
2024 function_list | sort '-t;' -k 3 | while do_read
2026 # First the predicate
2027 if class_is_predicate_p
2028 then
2029 printf " fprintf_unfiltered (file,\n"
2030 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2031 printf " gdbarch_${function}_p (gdbarch));\n"
2033 # Print the corresponding value.
2034 if class_is_function_p
2035 then
2036 printf " fprintf_unfiltered (file,\n"
2037 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2038 printf " host_address_to_string (gdbarch->${function}));\n"
2039 else
2040 # It is a variable
2041 case "${print}:${returntype}" in
2042 :CORE_ADDR )
2043 fmt="%s"
2044 print="core_addr_to_string_nz (gdbarch->${function})"
2046 :* )
2047 fmt="%s"
2048 print="plongest (gdbarch->${function})"
2051 fmt="%s"
2053 esac
2054 printf " fprintf_unfiltered (file,\n"
2055 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2056 printf " ${print});\n"
2058 done
2059 cat <<EOF
2060 if (gdbarch->dump_tdep != NULL)
2061 gdbarch->dump_tdep (gdbarch, file);
2066 # GET/SET
2067 printf "\n"
2068 cat <<EOF
2069 struct gdbarch_tdep *
2070 gdbarch_tdep (struct gdbarch *gdbarch)
2072 if (gdbarch_debug >= 2)
2073 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2074 return gdbarch->tdep;
2077 printf "\n"
2078 function_list | while do_read
2080 if class_is_predicate_p
2081 then
2082 printf "\n"
2083 printf "int\n"
2084 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2085 printf "{\n"
2086 printf " gdb_assert (gdbarch != NULL);\n"
2087 printf " return ${predicate};\n"
2088 printf "}\n"
2090 if class_is_function_p
2091 then
2092 printf "\n"
2093 printf "${returntype}\n"
2094 if [ "x${formal}" = "xvoid" ]
2095 then
2096 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2097 else
2098 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2100 printf "{\n"
2101 printf " gdb_assert (gdbarch != NULL);\n"
2102 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2103 if class_is_predicate_p && test -n "${predefault}"
2104 then
2105 # Allow a call to a function with a predicate.
2106 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2108 printf " if (gdbarch_debug >= 2)\n"
2109 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2110 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2111 then
2112 if class_is_multiarch_p
2113 then
2114 params="gdbarch"
2115 else
2116 params=""
2118 else
2119 if class_is_multiarch_p
2120 then
2121 params="gdbarch, ${actual}"
2122 else
2123 params="${actual}"
2126 if [ "x${returntype}" = "xvoid" ]
2127 then
2128 printf " gdbarch->${function} (${params});\n"
2129 else
2130 printf " return gdbarch->${function} (${params});\n"
2132 printf "}\n"
2133 printf "\n"
2134 printf "void\n"
2135 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2136 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2137 printf "{\n"
2138 printf " gdbarch->${function} = ${function};\n"
2139 printf "}\n"
2140 elif class_is_variable_p
2141 then
2142 printf "\n"
2143 printf "${returntype}\n"
2144 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2145 printf "{\n"
2146 printf " gdb_assert (gdbarch != NULL);\n"
2147 if [ "x${invalid_p}" = "x0" ]
2148 then
2149 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2150 elif [ -n "${invalid_p}" ]
2151 then
2152 printf " /* Check variable is valid. */\n"
2153 printf " gdb_assert (!(${invalid_p}));\n"
2154 elif [ -n "${predefault}" ]
2155 then
2156 printf " /* Check variable changed from pre-default. */\n"
2157 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2159 printf " if (gdbarch_debug >= 2)\n"
2160 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2161 printf " return gdbarch->${function};\n"
2162 printf "}\n"
2163 printf "\n"
2164 printf "void\n"
2165 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2166 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2167 printf "{\n"
2168 printf " gdbarch->${function} = ${function};\n"
2169 printf "}\n"
2170 elif class_is_info_p
2171 then
2172 printf "\n"
2173 printf "${returntype}\n"
2174 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2175 printf "{\n"
2176 printf " gdb_assert (gdbarch != NULL);\n"
2177 printf " if (gdbarch_debug >= 2)\n"
2178 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2179 printf " return gdbarch->${function};\n"
2180 printf "}\n"
2182 done
2184 # All the trailing guff
2185 cat <<EOF
2188 /* Keep a registry of per-architecture data-pointers required by GDB
2189 modules. */
2191 struct gdbarch_data
2193 unsigned index;
2194 int init_p;
2195 gdbarch_data_pre_init_ftype *pre_init;
2196 gdbarch_data_post_init_ftype *post_init;
2199 struct gdbarch_data_registration
2201 struct gdbarch_data *data;
2202 struct gdbarch_data_registration *next;
2205 struct gdbarch_data_registry
2207 unsigned nr;
2208 struct gdbarch_data_registration *registrations;
2211 struct gdbarch_data_registry gdbarch_data_registry =
2213 0, NULL,
2216 static struct gdbarch_data *
2217 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2218 gdbarch_data_post_init_ftype *post_init)
2220 struct gdbarch_data_registration **curr;
2222 /* Append the new registration. */
2223 for (curr = &gdbarch_data_registry.registrations;
2224 (*curr) != NULL;
2225 curr = &(*curr)->next);
2226 (*curr) = XNEW (struct gdbarch_data_registration);
2227 (*curr)->next = NULL;
2228 (*curr)->data = XNEW (struct gdbarch_data);
2229 (*curr)->data->index = gdbarch_data_registry.nr++;
2230 (*curr)->data->pre_init = pre_init;
2231 (*curr)->data->post_init = post_init;
2232 (*curr)->data->init_p = 1;
2233 return (*curr)->data;
2236 struct gdbarch_data *
2237 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2239 return gdbarch_data_register (pre_init, NULL);
2242 struct gdbarch_data *
2243 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2245 return gdbarch_data_register (NULL, post_init);
2248 /* Create/delete the gdbarch data vector. */
2250 static void
2251 alloc_gdbarch_data (struct gdbarch *gdbarch)
2253 gdb_assert (gdbarch->data == NULL);
2254 gdbarch->nr_data = gdbarch_data_registry.nr;
2255 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2258 /* Initialize the current value of the specified per-architecture
2259 data-pointer. */
2261 void
2262 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2263 struct gdbarch_data *data,
2264 void *pointer)
2266 gdb_assert (data->index < gdbarch->nr_data);
2267 gdb_assert (gdbarch->data[data->index] == NULL);
2268 gdb_assert (data->pre_init == NULL);
2269 gdbarch->data[data->index] = pointer;
2272 /* Return the current value of the specified per-architecture
2273 data-pointer. */
2275 void *
2276 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2278 gdb_assert (data->index < gdbarch->nr_data);
2279 if (gdbarch->data[data->index] == NULL)
2281 /* The data-pointer isn't initialized, call init() to get a
2282 value. */
2283 if (data->pre_init != NULL)
2284 /* Mid architecture creation: pass just the obstack, and not
2285 the entire architecture, as that way it isn't possible for
2286 pre-init code to refer to undefined architecture
2287 fields. */
2288 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2289 else if (gdbarch->initialized_p
2290 && data->post_init != NULL)
2291 /* Post architecture creation: pass the entire architecture
2292 (as all fields are valid), but be careful to also detect
2293 recursive references. */
2295 gdb_assert (data->init_p);
2296 data->init_p = 0;
2297 gdbarch->data[data->index] = data->post_init (gdbarch);
2298 data->init_p = 1;
2300 else
2301 /* The architecture initialization hasn't completed - punt -
2302 hope that the caller knows what they are doing. Once
2303 deprecated_set_gdbarch_data has been initialized, this can be
2304 changed to an internal error. */
2305 return NULL;
2306 gdb_assert (gdbarch->data[data->index] != NULL);
2308 return gdbarch->data[data->index];
2312 /* Keep a registry of the architectures known by GDB. */
2314 struct gdbarch_registration
2316 enum bfd_architecture bfd_architecture;
2317 gdbarch_init_ftype *init;
2318 gdbarch_dump_tdep_ftype *dump_tdep;
2319 struct gdbarch_list *arches;
2320 struct gdbarch_registration *next;
2323 static struct gdbarch_registration *gdbarch_registry = NULL;
2325 static void
2326 append_name (const char ***buf, int *nr, const char *name)
2328 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2329 (*buf)[*nr] = name;
2330 *nr += 1;
2333 const char **
2334 gdbarch_printable_names (void)
2336 /* Accumulate a list of names based on the registed list of
2337 architectures. */
2338 int nr_arches = 0;
2339 const char **arches = NULL;
2340 struct gdbarch_registration *rego;
2342 for (rego = gdbarch_registry;
2343 rego != NULL;
2344 rego = rego->next)
2346 const struct bfd_arch_info *ap;
2347 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2348 if (ap == NULL)
2349 internal_error (__FILE__, __LINE__,
2350 _("gdbarch_architecture_names: multi-arch unknown"));
2353 append_name (&arches, &nr_arches, ap->printable_name);
2354 ap = ap->next;
2356 while (ap != NULL);
2358 append_name (&arches, &nr_arches, NULL);
2359 return arches;
2363 void
2364 gdbarch_register (enum bfd_architecture bfd_architecture,
2365 gdbarch_init_ftype *init,
2366 gdbarch_dump_tdep_ftype *dump_tdep)
2368 struct gdbarch_registration **curr;
2369 const struct bfd_arch_info *bfd_arch_info;
2371 /* Check that BFD recognizes this architecture */
2372 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2373 if (bfd_arch_info == NULL)
2375 internal_error (__FILE__, __LINE__,
2376 _("gdbarch: Attempt to register "
2377 "unknown architecture (%d)"),
2378 bfd_architecture);
2380 /* Check that we haven't seen this architecture before. */
2381 for (curr = &gdbarch_registry;
2382 (*curr) != NULL;
2383 curr = &(*curr)->next)
2385 if (bfd_architecture == (*curr)->bfd_architecture)
2386 internal_error (__FILE__, __LINE__,
2387 _("gdbarch: Duplicate registration "
2388 "of architecture (%s)"),
2389 bfd_arch_info->printable_name);
2391 /* log it */
2392 if (gdbarch_debug)
2393 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2394 bfd_arch_info->printable_name,
2395 host_address_to_string (init));
2396 /* Append it */
2397 (*curr) = XNEW (struct gdbarch_registration);
2398 (*curr)->bfd_architecture = bfd_architecture;
2399 (*curr)->init = init;
2400 (*curr)->dump_tdep = dump_tdep;
2401 (*curr)->arches = NULL;
2402 (*curr)->next = NULL;
2405 void
2406 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2407 gdbarch_init_ftype *init)
2409 gdbarch_register (bfd_architecture, init, NULL);
2413 /* Look for an architecture using gdbarch_info. */
2415 struct gdbarch_list *
2416 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2417 const struct gdbarch_info *info)
2419 for (; arches != NULL; arches = arches->next)
2421 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2422 continue;
2423 if (info->byte_order != arches->gdbarch->byte_order)
2424 continue;
2425 if (info->osabi != arches->gdbarch->osabi)
2426 continue;
2427 if (info->target_desc != arches->gdbarch->target_desc)
2428 continue;
2429 return arches;
2431 return NULL;
2435 /* Find an architecture that matches the specified INFO. Create a new
2436 architecture if needed. Return that new architecture. */
2438 struct gdbarch *
2439 gdbarch_find_by_info (struct gdbarch_info info)
2441 struct gdbarch *new_gdbarch;
2442 struct gdbarch_registration *rego;
2444 /* Fill in missing parts of the INFO struct using a number of
2445 sources: "set ..."; INFOabfd supplied; and the global
2446 defaults. */
2447 gdbarch_info_fill (&info);
2449 /* Must have found some sort of architecture. */
2450 gdb_assert (info.bfd_arch_info != NULL);
2452 if (gdbarch_debug)
2454 fprintf_unfiltered (gdb_stdlog,
2455 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2456 (info.bfd_arch_info != NULL
2457 ? info.bfd_arch_info->printable_name
2458 : "(null)"));
2459 fprintf_unfiltered (gdb_stdlog,
2460 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2461 info.byte_order,
2462 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2463 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2464 : "default"));
2465 fprintf_unfiltered (gdb_stdlog,
2466 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2467 info.osabi, gdbarch_osabi_name (info.osabi));
2468 fprintf_unfiltered (gdb_stdlog,
2469 "gdbarch_find_by_info: info.abfd %s\n",
2470 host_address_to_string (info.abfd));
2471 fprintf_unfiltered (gdb_stdlog,
2472 "gdbarch_find_by_info: info.tdep_info %s\n",
2473 host_address_to_string (info.tdep_info));
2476 /* Find the tdep code that knows about this architecture. */
2477 for (rego = gdbarch_registry;
2478 rego != NULL;
2479 rego = rego->next)
2480 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2481 break;
2482 if (rego == NULL)
2484 if (gdbarch_debug)
2485 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2486 "No matching architecture\n");
2487 return 0;
2490 /* Ask the tdep code for an architecture that matches "info". */
2491 new_gdbarch = rego->init (info, rego->arches);
2493 /* Did the tdep code like it? No. Reject the change and revert to
2494 the old architecture. */
2495 if (new_gdbarch == NULL)
2497 if (gdbarch_debug)
2498 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2499 "Target rejected architecture\n");
2500 return NULL;
2503 /* Is this a pre-existing architecture (as determined by already
2504 being initialized)? Move it to the front of the architecture
2505 list (keeping the list sorted Most Recently Used). */
2506 if (new_gdbarch->initialized_p)
2508 struct gdbarch_list **list;
2509 struct gdbarch_list *self;
2510 if (gdbarch_debug)
2511 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2512 "Previous architecture %s (%s) selected\n",
2513 host_address_to_string (new_gdbarch),
2514 new_gdbarch->bfd_arch_info->printable_name);
2515 /* Find the existing arch in the list. */
2516 for (list = &rego->arches;
2517 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2518 list = &(*list)->next);
2519 /* It had better be in the list of architectures. */
2520 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2521 /* Unlink SELF. */
2522 self = (*list);
2523 (*list) = self->next;
2524 /* Insert SELF at the front. */
2525 self->next = rego->arches;
2526 rego->arches = self;
2527 /* Return it. */
2528 return new_gdbarch;
2531 /* It's a new architecture. */
2532 if (gdbarch_debug)
2533 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2534 "New architecture %s (%s) selected\n",
2535 host_address_to_string (new_gdbarch),
2536 new_gdbarch->bfd_arch_info->printable_name);
2538 /* Insert the new architecture into the front of the architecture
2539 list (keep the list sorted Most Recently Used). */
2541 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2542 self->next = rego->arches;
2543 self->gdbarch = new_gdbarch;
2544 rego->arches = self;
2547 /* Check that the newly installed architecture is valid. Plug in
2548 any post init values. */
2549 new_gdbarch->dump_tdep = rego->dump_tdep;
2550 verify_gdbarch (new_gdbarch);
2551 new_gdbarch->initialized_p = 1;
2553 if (gdbarch_debug)
2554 gdbarch_dump (new_gdbarch, gdb_stdlog);
2556 return new_gdbarch;
2559 /* Make the specified architecture current. */
2561 void
2562 set_target_gdbarch (struct gdbarch *new_gdbarch)
2564 gdb_assert (new_gdbarch != NULL);
2565 gdb_assert (new_gdbarch->initialized_p);
2566 current_inferior ()->gdbarch = new_gdbarch;
2567 gdb::observers::architecture_changed.notify (new_gdbarch);
2568 registers_changed ();
2571 /* Return the current inferior's arch. */
2573 struct gdbarch *
2574 target_gdbarch (void)
2576 return current_inferior ()->gdbarch;
2579 void
2580 _initialize_gdbarch (void)
2582 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2583 Set architecture debugging."), _("\\
2584 Show architecture debugging."), _("\\
2585 When non-zero, architecture debugging is enabled."),
2586 NULL,
2587 show_gdbarch_debug,
2588 &setdebuglist, &showdebuglist);
2592 # close things off
2593 exec 1>&2
2594 #../move-if-change new-gdbarch.c gdbarch.c
2595 compare_new gdbarch.c