1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean
add_extra_plt_sections (struct bfd_link_info
*, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
52 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
53 static xtensa_opcode
get_const16_opcode (void);
54 static xtensa_opcode
get_l32r_opcode (void);
55 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
56 static int get_relocation_opnd (xtensa_opcode
, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
60 static bfd_boolean is_l32r_relocation
61 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
62 static bfd_boolean
is_alt_relocation (int);
63 static bfd_boolean
is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
72 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
82 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
83 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela
*retrieve_internal_relocs
88 (bfd
*, asection
*, bfd_boolean
);
89 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
91 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
92 static void pin_contents (asection
*, bfd_byte
*);
93 static void release_contents (asection
*, bfd_byte
*);
94 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
96 /* Miscellaneous utility functions. */
98 static asection
*elf_xtensa_get_plt_section (struct bfd_link_info
*, int);
99 static asection
*elf_xtensa_get_gotplt_section (struct bfd_link_info
*, int);
100 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
101 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
102 (bfd
*, unsigned long);
103 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
104 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
105 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
106 static bfd_boolean
xtensa_is_property_section (asection
*);
107 static bfd_boolean
xtensa_is_insntable_section (asection
*);
108 static bfd_boolean
xtensa_is_littable_section (asection
*);
109 static bfd_boolean
xtensa_is_proptable_section (asection
*);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection
*xtensa_get_property_section (asection
*, const char *);
113 static flagword
xtensa_get_property_predef_flags (asection
*);
115 /* Other functions called directly by the linker. */
117 typedef void (*deps_callback_t
)
118 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
128 int elf32xtensa_size_opt
;
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
135 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
143 xtensa_isa xtensa_default_isa
;
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
150 static bfd_boolean relaxing_section
= FALSE
;
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
155 int elf32xtensa_no_literal_movement
= 1;
157 /* Place property records for a section into individual property section
158 with xt.prop. prefix. */
160 bfd_boolean elf32xtensa_separate_props
= FALSE
;
162 /* Rename one of the generic section flags to better document how it
164 /* Whether relocations have been processed. */
165 #define reloc_done sec_flg0
167 static reloc_howto_type elf_howto_table
[] =
169 HOWTO (R_XTENSA_NONE
, 0, 3, 0, FALSE
, 0, complain_overflow_dont
,
170 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
172 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
173 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
174 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
176 /* Replace a 32-bit value with a value from the runtime linker (only
177 used by linker-generated stub functions). The r_addend value is
178 special: 1 means to substitute a pointer to the runtime linker's
179 dynamic resolver function; 2 means to substitute the link map for
180 the shared object. */
181 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
182 NULL
, "R_XTENSA_RTLD", FALSE
, 0, 0, FALSE
),
184 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
185 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
186 FALSE
, 0, 0xffffffff, FALSE
),
187 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
188 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
189 FALSE
, 0, 0xffffffff, FALSE
),
190 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
191 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
192 FALSE
, 0, 0xffffffff, FALSE
),
193 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
194 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
195 FALSE
, 0, 0xffffffff, FALSE
),
199 /* Old relocations for backward compatibility. */
200 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
201 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0", FALSE
, 0, 0, TRUE
),
202 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
203 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1", FALSE
, 0, 0, TRUE
),
204 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
205 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2", FALSE
, 0, 0, TRUE
),
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
209 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND", FALSE
, 0, 0, TRUE
),
210 /* Relax assembly auto-expansion. */
211 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
212 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY", FALSE
, 0, 0, TRUE
),
216 HOWTO (R_XTENSA_32_PCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_bitfield
,
217 bfd_elf_xtensa_reloc
, "R_XTENSA_32_PCREL",
218 FALSE
, 0, 0xffffffff, TRUE
),
220 /* GNU extension to record C++ vtable hierarchy. */
221 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
222 NULL
, "R_XTENSA_GNU_VTINHERIT",
224 /* GNU extension to record C++ vtable member usage. */
225 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
226 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
229 /* Relocations for supporting difference of symbols. */
230 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_signed
,
231 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8", FALSE
, 0, 0xff, FALSE
),
232 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_signed
,
233 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16", FALSE
, 0, 0xffff, FALSE
),
234 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
235 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32", FALSE
, 0, 0xffffffff, FALSE
),
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
239 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP", FALSE
, 0, 0, TRUE
),
240 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
241 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP", FALSE
, 0, 0, TRUE
),
242 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
243 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP", FALSE
, 0, 0, TRUE
),
244 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
245 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP", FALSE
, 0, 0, TRUE
),
246 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
247 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP", FALSE
, 0, 0, TRUE
),
248 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
249 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP", FALSE
, 0, 0, TRUE
),
250 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
251 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP", FALSE
, 0, 0, TRUE
),
252 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
253 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP", FALSE
, 0, 0, TRUE
),
254 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
255 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP", FALSE
, 0, 0, TRUE
),
256 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
257 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP", FALSE
, 0, 0, TRUE
),
258 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
259 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP", FALSE
, 0, 0, TRUE
),
260 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
261 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP", FALSE
, 0, 0, TRUE
),
262 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
263 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP", FALSE
, 0, 0, TRUE
),
264 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
265 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP", FALSE
, 0, 0, TRUE
),
266 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
267 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP", FALSE
, 0, 0, TRUE
),
269 /* "Alternate" relocations. The meaning of these is opcode-specific. */
270 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
271 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT", FALSE
, 0, 0, TRUE
),
272 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
273 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT", FALSE
, 0, 0, TRUE
),
274 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
275 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT", FALSE
, 0, 0, TRUE
),
276 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
277 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT", FALSE
, 0, 0, TRUE
),
278 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
279 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT", FALSE
, 0, 0, TRUE
),
280 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
281 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT", FALSE
, 0, 0, TRUE
),
282 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
283 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT", FALSE
, 0, 0, TRUE
),
284 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
285 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT", FALSE
, 0, 0, TRUE
),
286 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
287 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT", FALSE
, 0, 0, TRUE
),
288 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
289 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT", FALSE
, 0, 0, TRUE
),
290 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
291 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT", FALSE
, 0, 0, TRUE
),
292 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
293 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT", FALSE
, 0, 0, TRUE
),
294 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
295 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT", FALSE
, 0, 0, TRUE
),
296 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
297 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT", FALSE
, 0, 0, TRUE
),
298 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
299 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT", FALSE
, 0, 0, TRUE
),
301 /* TLS relocations. */
302 HOWTO (R_XTENSA_TLSDESC_FN
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
303 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_FN",
304 FALSE
, 0, 0xffffffff, FALSE
),
305 HOWTO (R_XTENSA_TLSDESC_ARG
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
306 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_ARG",
307 FALSE
, 0, 0xffffffff, FALSE
),
308 HOWTO (R_XTENSA_TLS_DTPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
309 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_DTPOFF",
310 FALSE
, 0, 0xffffffff, FALSE
),
311 HOWTO (R_XTENSA_TLS_TPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
312 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_TPOFF",
313 FALSE
, 0, 0xffffffff, FALSE
),
314 HOWTO (R_XTENSA_TLS_FUNC
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
315 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_FUNC",
317 HOWTO (R_XTENSA_TLS_ARG
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
318 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_ARG",
320 HOWTO (R_XTENSA_TLS_CALL
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
321 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_CALL",
327 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
332 static reloc_howto_type
*
333 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
334 bfd_reloc_code_real_type code
)
339 TRACE ("BFD_RELOC_NONE");
340 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
343 TRACE ("BFD_RELOC_32");
344 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
346 case BFD_RELOC_32_PCREL
:
347 TRACE ("BFD_RELOC_32_PCREL");
348 return &elf_howto_table
[(unsigned) R_XTENSA_32_PCREL
];
350 case BFD_RELOC_XTENSA_DIFF8
:
351 TRACE ("BFD_RELOC_XTENSA_DIFF8");
352 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
354 case BFD_RELOC_XTENSA_DIFF16
:
355 TRACE ("BFD_RELOC_XTENSA_DIFF16");
356 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
358 case BFD_RELOC_XTENSA_DIFF32
:
359 TRACE ("BFD_RELOC_XTENSA_DIFF32");
360 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
362 case BFD_RELOC_XTENSA_RTLD
:
363 TRACE ("BFD_RELOC_XTENSA_RTLD");
364 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
366 case BFD_RELOC_XTENSA_GLOB_DAT
:
367 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
368 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
370 case BFD_RELOC_XTENSA_JMP_SLOT
:
371 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
372 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
374 case BFD_RELOC_XTENSA_RELATIVE
:
375 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
376 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
378 case BFD_RELOC_XTENSA_PLT
:
379 TRACE ("BFD_RELOC_XTENSA_PLT");
380 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
382 case BFD_RELOC_XTENSA_OP0
:
383 TRACE ("BFD_RELOC_XTENSA_OP0");
384 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
386 case BFD_RELOC_XTENSA_OP1
:
387 TRACE ("BFD_RELOC_XTENSA_OP1");
388 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
390 case BFD_RELOC_XTENSA_OP2
:
391 TRACE ("BFD_RELOC_XTENSA_OP2");
392 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
394 case BFD_RELOC_XTENSA_ASM_EXPAND
:
395 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
396 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
398 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
399 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
400 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
402 case BFD_RELOC_VTABLE_INHERIT
:
403 TRACE ("BFD_RELOC_VTABLE_INHERIT");
404 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
406 case BFD_RELOC_VTABLE_ENTRY
:
407 TRACE ("BFD_RELOC_VTABLE_ENTRY");
408 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
410 case BFD_RELOC_XTENSA_TLSDESC_FN
:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
412 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_FN
];
414 case BFD_RELOC_XTENSA_TLSDESC_ARG
:
415 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
416 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_ARG
];
418 case BFD_RELOC_XTENSA_TLS_DTPOFF
:
419 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
420 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_DTPOFF
];
422 case BFD_RELOC_XTENSA_TLS_TPOFF
:
423 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
424 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_TPOFF
];
426 case BFD_RELOC_XTENSA_TLS_FUNC
:
427 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
428 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_FUNC
];
430 case BFD_RELOC_XTENSA_TLS_ARG
:
431 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
432 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_ARG
];
434 case BFD_RELOC_XTENSA_TLS_CALL
:
435 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
436 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_CALL
];
439 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
440 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
442 unsigned n
= (R_XTENSA_SLOT0_OP
+
443 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
444 return &elf_howto_table
[n
];
447 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
448 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
450 unsigned n
= (R_XTENSA_SLOT0_ALT
+
451 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
452 return &elf_howto_table
[n
];
458 /* xgettext:c-format */
459 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd
, (int) code
);
460 bfd_set_error (bfd_error_bad_value
);
465 static reloc_howto_type
*
466 elf_xtensa_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
471 for (i
= 0; i
< sizeof (elf_howto_table
) / sizeof (elf_howto_table
[0]); i
++)
472 if (elf_howto_table
[i
].name
!= NULL
473 && strcasecmp (elf_howto_table
[i
].name
, r_name
) == 0)
474 return &elf_howto_table
[i
];
480 /* Given an ELF "rela" relocation, find the corresponding howto and record
481 it in the BFD internal arelent representation of the relocation. */
484 elf_xtensa_info_to_howto_rela (bfd
*abfd
,
486 Elf_Internal_Rela
*dst
)
488 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
490 if (r_type
>= (unsigned int) R_XTENSA_max
)
492 /* xgettext:c-format */
493 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
495 bfd_set_error (bfd_error_bad_value
);
498 cache_ptr
->howto
= &elf_howto_table
[r_type
];
503 /* Functions for the Xtensa ELF linker. */
505 /* The name of the dynamic interpreter. This is put in the .interp
508 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
510 /* The size in bytes of an entry in the procedure linkage table.
511 (This does _not_ include the space for the literals associated with
514 #define PLT_ENTRY_SIZE 16
516 /* For _really_ large PLTs, we may need to alternate between literals
517 and code to keep the literals within the 256K range of the L32R
518 instructions in the code. It's unlikely that anyone would ever need
519 such a big PLT, but an arbitrary limit on the PLT size would be bad.
520 Thus, we split the PLT into chunks. Since there's very little
521 overhead (2 extra literals) for each chunk, the chunk size is kept
522 small so that the code for handling multiple chunks get used and
523 tested regularly. With 254 entries, there are 1K of literals for
524 each chunk, and that seems like a nice round number. */
526 #define PLT_ENTRIES_PER_CHUNK 254
528 /* PLT entries are actually used as stub functions for lazy symbol
529 resolution. Once the symbol is resolved, the stub function is never
530 invoked. Note: the 32-byte frame size used here cannot be changed
531 without a corresponding change in the runtime linker. */
533 static const bfd_byte elf_xtensa_be_plt_entry
[][PLT_ENTRY_SIZE
] =
536 0x6c, 0x10, 0x04, /* entry sp, 32 */
537 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
538 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
539 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
540 0x0a, 0x80, 0x00, /* jx a8 */
544 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
545 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
546 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
547 0x0a, 0x80, 0x00, /* jx a8 */
552 static const bfd_byte elf_xtensa_le_plt_entry
[][PLT_ENTRY_SIZE
] =
555 0x36, 0x41, 0x00, /* entry sp, 32 */
556 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
557 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
558 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
559 0xa0, 0x08, 0x00, /* jx a8 */
563 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
564 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
565 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
566 0xa0, 0x08, 0x00, /* jx a8 */
571 /* The size of the thread control block. */
574 struct elf_xtensa_link_hash_entry
576 struct elf_link_hash_entry elf
;
578 bfd_signed_vma tlsfunc_refcount
;
580 #define GOT_UNKNOWN 0
582 #define GOT_TLS_GD 2 /* global or local dynamic */
583 #define GOT_TLS_IE 4 /* initial or local exec */
584 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
585 unsigned char tls_type
;
588 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
590 struct elf_xtensa_obj_tdata
592 struct elf_obj_tdata root
;
594 /* tls_type for each local got entry. */
595 char *local_got_tls_type
;
597 bfd_signed_vma
*local_tlsfunc_refcounts
;
600 #define elf_xtensa_tdata(abfd) \
601 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
603 #define elf_xtensa_local_got_tls_type(abfd) \
604 (elf_xtensa_tdata (abfd)->local_got_tls_type)
606 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
607 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
609 #define is_xtensa_elf(bfd) \
610 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
611 && elf_tdata (bfd) != NULL \
612 && elf_object_id (bfd) == XTENSA_ELF_DATA)
615 elf_xtensa_mkobject (bfd
*abfd
)
617 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_xtensa_obj_tdata
),
621 /* Xtensa ELF linker hash table. */
623 struct elf_xtensa_link_hash_table
625 struct elf_link_hash_table elf
;
627 /* Short-cuts to get to dynamic linker sections. */
629 asection
*spltlittbl
;
631 /* Total count of PLT relocations seen during check_relocs.
632 The actual PLT code must be split into multiple sections and all
633 the sections have to be created before size_dynamic_sections,
634 where we figure out the exact number of PLT entries that will be
635 needed. It is OK if this count is an overestimate, e.g., some
636 relocations may be removed by GC. */
639 struct elf_xtensa_link_hash_entry
*tlsbase
;
642 /* Get the Xtensa ELF linker hash table from a link_info structure. */
644 #define elf_xtensa_hash_table(p) \
645 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
646 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
648 /* Create an entry in an Xtensa ELF linker hash table. */
650 static struct bfd_hash_entry
*
651 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
652 struct bfd_hash_table
*table
,
655 /* Allocate the structure if it has not already been allocated by a
659 entry
= bfd_hash_allocate (table
,
660 sizeof (struct elf_xtensa_link_hash_entry
));
665 /* Call the allocation method of the superclass. */
666 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
669 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (entry
);
670 eh
->tlsfunc_refcount
= 0;
671 eh
->tls_type
= GOT_UNKNOWN
;
677 /* Create an Xtensa ELF linker hash table. */
679 static struct bfd_link_hash_table
*
680 elf_xtensa_link_hash_table_create (bfd
*abfd
)
682 struct elf_link_hash_entry
*tlsbase
;
683 struct elf_xtensa_link_hash_table
*ret
;
684 bfd_size_type amt
= sizeof (struct elf_xtensa_link_hash_table
);
686 ret
= bfd_zmalloc (amt
);
690 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
691 elf_xtensa_link_hash_newfunc
,
692 sizeof (struct elf_xtensa_link_hash_entry
),
699 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
701 tlsbase
= elf_link_hash_lookup (&ret
->elf
, "_TLS_MODULE_BASE_",
703 tlsbase
->root
.type
= bfd_link_hash_new
;
704 tlsbase
->root
.u
.undef
.abfd
= NULL
;
705 tlsbase
->non_elf
= 0;
706 ret
->tlsbase
= elf_xtensa_hash_entry (tlsbase
);
707 ret
->tlsbase
->tls_type
= GOT_UNKNOWN
;
709 return &ret
->elf
.root
;
712 /* Copy the extra info we tack onto an elf_link_hash_entry. */
715 elf_xtensa_copy_indirect_symbol (struct bfd_link_info
*info
,
716 struct elf_link_hash_entry
*dir
,
717 struct elf_link_hash_entry
*ind
)
719 struct elf_xtensa_link_hash_entry
*edir
, *eind
;
721 edir
= elf_xtensa_hash_entry (dir
);
722 eind
= elf_xtensa_hash_entry (ind
);
724 if (ind
->root
.type
== bfd_link_hash_indirect
)
726 edir
->tlsfunc_refcount
+= eind
->tlsfunc_refcount
;
727 eind
->tlsfunc_refcount
= 0;
729 if (dir
->got
.refcount
<= 0)
731 edir
->tls_type
= eind
->tls_type
;
732 eind
->tls_type
= GOT_UNKNOWN
;
736 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
739 static inline bfd_boolean
740 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
741 struct bfd_link_info
*info
)
743 /* Check if we should do dynamic things to this symbol. The
744 "ignore_protected" argument need not be set, because Xtensa code
745 does not require special handling of STV_PROTECTED to make function
746 pointer comparisons work properly. The PLT addresses are never
747 used for function pointers. */
749 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
754 property_table_compare (const void *ap
, const void *bp
)
756 const property_table_entry
*a
= (const property_table_entry
*) ap
;
757 const property_table_entry
*b
= (const property_table_entry
*) bp
;
759 if (a
->address
== b
->address
)
761 if (a
->size
!= b
->size
)
762 return (a
->size
- b
->size
);
764 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
765 return ((b
->flags
& XTENSA_PROP_ALIGN
)
766 - (a
->flags
& XTENSA_PROP_ALIGN
));
768 if ((a
->flags
& XTENSA_PROP_ALIGN
)
769 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
770 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
771 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
772 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
774 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
775 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
776 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
777 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
779 return (a
->flags
- b
->flags
);
782 return (a
->address
- b
->address
);
787 property_table_matches (const void *ap
, const void *bp
)
789 const property_table_entry
*a
= (const property_table_entry
*) ap
;
790 const property_table_entry
*b
= (const property_table_entry
*) bp
;
792 /* Check if one entry overlaps with the other. */
793 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
794 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
797 return (a
->address
- b
->address
);
801 /* Get the literal table or property table entries for the given
802 section. Sets TABLE_P and returns the number of entries. On
803 error, returns a negative value. */
806 xtensa_read_table_entries (bfd
*abfd
,
808 property_table_entry
**table_p
,
809 const char *sec_name
,
810 bfd_boolean output_addr
)
812 asection
*table_section
;
813 bfd_size_type table_size
= 0;
814 bfd_byte
*table_data
;
815 property_table_entry
*blocks
;
816 int blk
, block_count
;
817 bfd_size_type num_records
;
818 Elf_Internal_Rela
*internal_relocs
, *irel
, *rel_end
;
819 bfd_vma section_addr
, off
;
820 flagword predef_flags
;
821 bfd_size_type table_entry_size
, section_limit
;
824 || !(section
->flags
& SEC_ALLOC
)
825 || (section
->flags
& SEC_DEBUGGING
))
831 table_section
= xtensa_get_property_section (section
, sec_name
);
833 table_size
= table_section
->size
;
841 predef_flags
= xtensa_get_property_predef_flags (table_section
);
842 table_entry_size
= 12;
844 table_entry_size
-= 4;
846 num_records
= table_size
/ table_entry_size
;
847 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
848 blocks
= (property_table_entry
*)
849 bfd_malloc (num_records
* sizeof (property_table_entry
));
853 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
855 section_addr
= section
->vma
;
857 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
858 if (internal_relocs
&& !table_section
->reloc_done
)
860 qsort (internal_relocs
, table_section
->reloc_count
,
861 sizeof (Elf_Internal_Rela
), internal_reloc_compare
);
862 irel
= internal_relocs
;
867 section_limit
= bfd_get_section_limit (abfd
, section
);
868 rel_end
= internal_relocs
+ table_section
->reloc_count
;
870 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
872 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
874 /* Skip any relocations before the current offset. This should help
875 avoid confusion caused by unexpected relocations for the preceding
878 (irel
->r_offset
< off
879 || (irel
->r_offset
== off
880 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_NONE
)))
887 if (irel
&& irel
->r_offset
== off
)
890 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
891 BFD_ASSERT (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
);
893 if (get_elf_r_symndx_section (abfd
, r_symndx
) != section
)
896 sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
897 BFD_ASSERT (sym_off
== 0);
898 address
+= (section_addr
+ sym_off
+ irel
->r_addend
);
902 if (address
< section_addr
903 || address
>= section_addr
+ section_limit
)
907 blocks
[block_count
].address
= address
;
908 blocks
[block_count
].size
= bfd_get_32 (abfd
, table_data
+ off
+ 4);
910 blocks
[block_count
].flags
= predef_flags
;
912 blocks
[block_count
].flags
= bfd_get_32 (abfd
, table_data
+ off
+ 8);
916 release_contents (table_section
, table_data
);
917 release_internal_relocs (table_section
, internal_relocs
);
921 /* Now sort them into address order for easy reference. */
922 qsort (blocks
, block_count
, sizeof (property_table_entry
),
923 property_table_compare
);
925 /* Check that the table contents are valid. Problems may occur,
926 for example, if an unrelocated object file is stripped. */
927 for (blk
= 1; blk
< block_count
; blk
++)
929 /* The only circumstance where two entries may legitimately
930 have the same address is when one of them is a zero-size
931 placeholder to mark a place where fill can be inserted.
932 The zero-size entry should come first. */
933 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
934 blocks
[blk
- 1].size
!= 0)
936 /* xgettext:c-format */
937 _bfd_error_handler (_("%pB(%pA): invalid property table"),
939 bfd_set_error (bfd_error_bad_value
);
951 static property_table_entry
*
952 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
953 int property_table_size
,
956 property_table_entry entry
;
957 property_table_entry
*rv
;
959 if (property_table_size
== 0)
962 entry
.address
= addr
;
966 rv
= bsearch (&entry
, property_table
, property_table_size
,
967 sizeof (property_table_entry
), property_table_matches
);
973 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
977 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
984 /* Look through the relocs for a section during the first phase, and
985 calculate needed space in the dynamic reloc sections. */
988 elf_xtensa_check_relocs (bfd
*abfd
,
989 struct bfd_link_info
*info
,
991 const Elf_Internal_Rela
*relocs
)
993 struct elf_xtensa_link_hash_table
*htab
;
994 Elf_Internal_Shdr
*symtab_hdr
;
995 struct elf_link_hash_entry
**sym_hashes
;
996 const Elf_Internal_Rela
*rel
;
997 const Elf_Internal_Rela
*rel_end
;
999 if (bfd_link_relocatable (info
) || (sec
->flags
& SEC_ALLOC
) == 0)
1002 BFD_ASSERT (is_xtensa_elf (abfd
));
1004 htab
= elf_xtensa_hash_table (info
);
1008 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1009 sym_hashes
= elf_sym_hashes (abfd
);
1011 rel_end
= relocs
+ sec
->reloc_count
;
1012 for (rel
= relocs
; rel
< rel_end
; rel
++)
1014 unsigned int r_type
;
1016 struct elf_link_hash_entry
*h
= NULL
;
1017 struct elf_xtensa_link_hash_entry
*eh
;
1018 int tls_type
, old_tls_type
;
1019 bfd_boolean is_got
= FALSE
;
1020 bfd_boolean is_plt
= FALSE
;
1021 bfd_boolean is_tlsfunc
= FALSE
;
1023 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1024 r_type
= ELF32_R_TYPE (rel
->r_info
);
1026 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1028 /* xgettext:c-format */
1029 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1034 if (r_symndx
>= symtab_hdr
->sh_info
)
1036 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1037 while (h
->root
.type
== bfd_link_hash_indirect
1038 || h
->root
.type
== bfd_link_hash_warning
)
1039 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1041 eh
= elf_xtensa_hash_entry (h
);
1045 case R_XTENSA_TLSDESC_FN
:
1046 if (bfd_link_pic (info
))
1048 tls_type
= GOT_TLS_GD
;
1053 tls_type
= GOT_TLS_IE
;
1056 case R_XTENSA_TLSDESC_ARG
:
1057 if (bfd_link_pic (info
))
1059 tls_type
= GOT_TLS_GD
;
1064 tls_type
= GOT_TLS_IE
;
1065 if (h
&& elf_xtensa_hash_entry (h
) != htab
->tlsbase
)
1070 case R_XTENSA_TLS_DTPOFF
:
1071 if (bfd_link_pic (info
))
1072 tls_type
= GOT_TLS_GD
;
1074 tls_type
= GOT_TLS_IE
;
1077 case R_XTENSA_TLS_TPOFF
:
1078 tls_type
= GOT_TLS_IE
;
1079 if (bfd_link_pic (info
))
1080 info
->flags
|= DF_STATIC_TLS
;
1081 if (bfd_link_pic (info
) || h
)
1086 tls_type
= GOT_NORMAL
;
1091 tls_type
= GOT_NORMAL
;
1095 case R_XTENSA_GNU_VTINHERIT
:
1096 /* This relocation describes the C++ object vtable hierarchy.
1097 Reconstruct it for later use during GC. */
1098 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1102 case R_XTENSA_GNU_VTENTRY
:
1103 /* This relocation describes which C++ vtable entries are actually
1104 used. Record for later use during GC. */
1105 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1110 /* Nothing to do for any other relocations. */
1118 if (h
->plt
.refcount
<= 0)
1121 h
->plt
.refcount
= 1;
1124 h
->plt
.refcount
+= 1;
1126 /* Keep track of the total PLT relocation count even if we
1127 don't yet know whether the dynamic sections will be
1129 htab
->plt_reloc_count
+= 1;
1131 if (elf_hash_table (info
)->dynamic_sections_created
)
1133 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1139 if (h
->got
.refcount
<= 0)
1140 h
->got
.refcount
= 1;
1142 h
->got
.refcount
+= 1;
1146 eh
->tlsfunc_refcount
+= 1;
1148 old_tls_type
= eh
->tls_type
;
1152 /* Allocate storage the first time. */
1153 if (elf_local_got_refcounts (abfd
) == NULL
)
1155 bfd_size_type size
= symtab_hdr
->sh_info
;
1158 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1161 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) mem
;
1163 mem
= bfd_zalloc (abfd
, size
);
1166 elf_xtensa_local_got_tls_type (abfd
) = (char *) mem
;
1168 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1171 elf_xtensa_local_tlsfunc_refcounts (abfd
)
1172 = (bfd_signed_vma
*) mem
;
1175 /* This is a global offset table entry for a local symbol. */
1176 if (is_got
|| is_plt
)
1177 elf_local_got_refcounts (abfd
) [r_symndx
] += 1;
1180 elf_xtensa_local_tlsfunc_refcounts (abfd
) [r_symndx
] += 1;
1182 old_tls_type
= elf_xtensa_local_got_tls_type (abfd
) [r_symndx
];
1185 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_IE
))
1186 tls_type
|= old_tls_type
;
1187 /* If a TLS symbol is accessed using IE at least once,
1188 there is no point to use a dynamic model for it. */
1189 else if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1190 && ((old_tls_type
& GOT_TLS_GD
) == 0
1191 || (tls_type
& GOT_TLS_IE
) == 0))
1193 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GD
))
1194 tls_type
= old_tls_type
;
1195 else if ((old_tls_type
& GOT_TLS_GD
) && (tls_type
& GOT_TLS_GD
))
1196 tls_type
|= old_tls_type
;
1200 /* xgettext:c-format */
1201 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1203 h
? h
->root
.root
.string
: "<local>");
1208 if (old_tls_type
!= tls_type
)
1211 eh
->tls_type
= tls_type
;
1213 elf_xtensa_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1222 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
1223 struct elf_link_hash_entry
*h
)
1225 if (bfd_link_pic (info
))
1227 if (h
->plt
.refcount
> 0)
1229 /* For shared objects, there's no need for PLT entries for local
1230 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1231 if (h
->got
.refcount
< 0)
1232 h
->got
.refcount
= 0;
1233 h
->got
.refcount
+= h
->plt
.refcount
;
1234 h
->plt
.refcount
= 0;
1239 /* Don't need any dynamic relocations at all. */
1240 h
->plt
.refcount
= 0;
1241 h
->got
.refcount
= 0;
1247 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
1248 struct elf_link_hash_entry
*h
,
1249 bfd_boolean force_local
)
1251 /* For a shared link, move the plt refcount to the got refcount to leave
1252 space for RELATIVE relocs. */
1253 elf_xtensa_make_sym_local (info
, h
);
1255 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
1259 /* Return the section that should be marked against GC for a given
1263 elf_xtensa_gc_mark_hook (asection
*sec
,
1264 struct bfd_link_info
*info
,
1265 Elf_Internal_Rela
*rel
,
1266 struct elf_link_hash_entry
*h
,
1267 Elf_Internal_Sym
*sym
)
1269 /* Property sections are marked "KEEP" in the linker scripts, but they
1270 should not cause other sections to be marked. (This approach relies
1271 on elf_xtensa_discard_info to remove property table entries that
1272 describe discarded sections. Alternatively, it might be more
1273 efficient to avoid using "KEEP" in the linker scripts and instead use
1274 the gc_mark_extra_sections hook to mark only the property sections
1275 that describe marked sections. That alternative does not work well
1276 with the current property table sections, which do not correspond
1277 one-to-one with the sections they describe, but that should be fixed
1279 if (xtensa_is_property_section (sec
))
1283 switch (ELF32_R_TYPE (rel
->r_info
))
1285 case R_XTENSA_GNU_VTINHERIT
:
1286 case R_XTENSA_GNU_VTENTRY
:
1290 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1294 /* Create all the dynamic sections. */
1297 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1299 struct elf_xtensa_link_hash_table
*htab
;
1300 flagword flags
, noalloc_flags
;
1302 htab
= elf_xtensa_hash_table (info
);
1306 /* First do all the standard stuff. */
1307 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1310 /* Create any extra PLT sections in case check_relocs has already
1311 been called on all the non-dynamic input files. */
1312 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1315 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1316 | SEC_LINKER_CREATED
| SEC_READONLY
);
1317 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1319 /* Mark the ".got.plt" section READONLY. */
1320 if (htab
->elf
.sgotplt
== NULL
1321 || ! bfd_set_section_flags (dynobj
, htab
->elf
.sgotplt
, flags
))
1324 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1325 htab
->sgotloc
= bfd_make_section_anyway_with_flags (dynobj
, ".got.loc",
1327 if (htab
->sgotloc
== NULL
1328 || ! bfd_set_section_alignment (dynobj
, htab
->sgotloc
, 2))
1331 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1332 htab
->spltlittbl
= bfd_make_section_anyway_with_flags (dynobj
, ".xt.lit.plt",
1334 if (htab
->spltlittbl
== NULL
1335 || ! bfd_set_section_alignment (dynobj
, htab
->spltlittbl
, 2))
1343 add_extra_plt_sections (struct bfd_link_info
*info
, int count
)
1345 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
1348 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1349 ".got.plt" sections. */
1350 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1356 /* Stop when we find a section has already been created. */
1357 if (elf_xtensa_get_plt_section (info
, chunk
))
1360 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1361 | SEC_LINKER_CREATED
| SEC_READONLY
);
1363 sname
= (char *) bfd_malloc (10);
1364 sprintf (sname
, ".plt.%u", chunk
);
1365 s
= bfd_make_section_anyway_with_flags (dynobj
, sname
, flags
| SEC_CODE
);
1367 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1370 sname
= (char *) bfd_malloc (14);
1371 sprintf (sname
, ".got.plt.%u", chunk
);
1372 s
= bfd_make_section_anyway_with_flags (dynobj
, sname
, flags
);
1374 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1382 /* Adjust a symbol defined by a dynamic object and referenced by a
1383 regular object. The current definition is in some section of the
1384 dynamic object, but we're not including those sections. We have to
1385 change the definition to something the rest of the link can
1389 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1390 struct elf_link_hash_entry
*h
)
1392 /* If this is a weak symbol, and there is a real definition, the
1393 processor independent code will have arranged for us to see the
1394 real definition first, and we can just use the same value. */
1395 if (h
->is_weakalias
)
1397 struct elf_link_hash_entry
*def
= weakdef (h
);
1398 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
1399 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
1400 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
1404 /* This is a reference to a symbol defined by a dynamic object. The
1405 reference must go through the GOT, so there's no need for COPY relocs,
1413 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *arg
)
1415 struct bfd_link_info
*info
;
1416 struct elf_xtensa_link_hash_table
*htab
;
1417 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (h
);
1419 if (h
->root
.type
== bfd_link_hash_indirect
)
1422 info
= (struct bfd_link_info
*) arg
;
1423 htab
= elf_xtensa_hash_table (info
);
1427 /* If we saw any use of an IE model for this symbol, we can then optimize
1428 away GOT entries for any TLSDESC_FN relocs. */
1429 if ((eh
->tls_type
& GOT_TLS_IE
) != 0)
1431 BFD_ASSERT (h
->got
.refcount
>= eh
->tlsfunc_refcount
);
1432 h
->got
.refcount
-= eh
->tlsfunc_refcount
;
1435 if (! elf_xtensa_dynamic_symbol_p (h
, info
))
1436 elf_xtensa_make_sym_local (info
, h
);
1438 if (! elf_xtensa_dynamic_symbol_p (h
, info
)
1439 && h
->root
.type
== bfd_link_hash_undefweak
)
1442 if (h
->plt
.refcount
> 0)
1443 htab
->elf
.srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1445 if (h
->got
.refcount
> 0)
1446 htab
->elf
.srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1453 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
)
1455 struct elf_xtensa_link_hash_table
*htab
;
1458 htab
= elf_xtensa_hash_table (info
);
1462 for (i
= info
->input_bfds
; i
; i
= i
->link
.next
)
1464 bfd_signed_vma
*local_got_refcounts
;
1465 bfd_size_type j
, cnt
;
1466 Elf_Internal_Shdr
*symtab_hdr
;
1468 local_got_refcounts
= elf_local_got_refcounts (i
);
1469 if (!local_got_refcounts
)
1472 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1473 cnt
= symtab_hdr
->sh_info
;
1475 for (j
= 0; j
< cnt
; ++j
)
1477 /* If we saw any use of an IE model for this symbol, we can
1478 then optimize away GOT entries for any TLSDESC_FN relocs. */
1479 if ((elf_xtensa_local_got_tls_type (i
) [j
] & GOT_TLS_IE
) != 0)
1481 bfd_signed_vma
*tlsfunc_refcount
1482 = &elf_xtensa_local_tlsfunc_refcounts (i
) [j
];
1483 BFD_ASSERT (local_got_refcounts
[j
] >= *tlsfunc_refcount
);
1484 local_got_refcounts
[j
] -= *tlsfunc_refcount
;
1487 if (local_got_refcounts
[j
] > 0)
1488 htab
->elf
.srelgot
->size
+= (local_got_refcounts
[j
]
1489 * sizeof (Elf32_External_Rela
));
1495 /* Set the sizes of the dynamic sections. */
1498 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1499 struct bfd_link_info
*info
)
1501 struct elf_xtensa_link_hash_table
*htab
;
1503 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1504 bfd_boolean relplt
, relgot
;
1505 int plt_entries
, plt_chunks
, chunk
;
1510 htab
= elf_xtensa_hash_table (info
);
1514 dynobj
= elf_hash_table (info
)->dynobj
;
1517 srelgot
= htab
->elf
.srelgot
;
1518 srelplt
= htab
->elf
.srelplt
;
1520 if (elf_hash_table (info
)->dynamic_sections_created
)
1522 BFD_ASSERT (htab
->elf
.srelgot
!= NULL
1523 && htab
->elf
.srelplt
!= NULL
1524 && htab
->elf
.sgot
!= NULL
1525 && htab
->spltlittbl
!= NULL
1526 && htab
->sgotloc
!= NULL
);
1528 /* Set the contents of the .interp section to the interpreter. */
1529 if (bfd_link_executable (info
) && !info
->nointerp
)
1531 s
= bfd_get_linker_section (dynobj
, ".interp");
1534 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1535 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1538 /* Allocate room for one word in ".got". */
1539 htab
->elf
.sgot
->size
= 4;
1541 /* Allocate space in ".rela.got" for literals that reference global
1542 symbols and space in ".rela.plt" for literals that have PLT
1544 elf_link_hash_traverse (elf_hash_table (info
),
1545 elf_xtensa_allocate_dynrelocs
,
1548 /* If we are generating a shared object, we also need space in
1549 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1550 reference local symbols. */
1551 if (bfd_link_pic (info
))
1552 elf_xtensa_allocate_local_got_size (info
);
1554 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1555 each PLT entry, we need the PLT code plus a 4-byte literal.
1556 For each chunk of ".plt", we also need two more 4-byte
1557 literals, two corresponding entries in ".rela.got", and an
1558 8-byte entry in ".xt.lit.plt". */
1559 spltlittbl
= htab
->spltlittbl
;
1560 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1562 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1564 /* Iterate over all the PLT chunks, including any extra sections
1565 created earlier because the initial count of PLT relocations
1566 was an overestimate. */
1568 (splt
= elf_xtensa_get_plt_section (info
, chunk
)) != NULL
;
1573 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
1574 BFD_ASSERT (sgotplt
!= NULL
);
1576 if (chunk
< plt_chunks
- 1)
1577 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1578 else if (chunk
== plt_chunks
- 1)
1579 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1583 if (chunk_entries
!= 0)
1585 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1586 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1587 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1588 spltlittbl
->size
+= 8;
1597 /* Allocate space in ".got.loc" to match the total size of all the
1599 sgotloc
= htab
->sgotloc
;
1600 sgotloc
->size
= spltlittbl
->size
;
1601 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
1603 if (abfd
->flags
& DYNAMIC
)
1605 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1607 if (! discarded_section (s
)
1608 && xtensa_is_littable_section (s
)
1610 sgotloc
->size
+= s
->size
;
1615 /* Allocate memory for dynamic sections. */
1618 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1622 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1625 /* It's OK to base decisions on the section name, because none
1626 of the dynobj section names depend upon the input files. */
1627 name
= bfd_get_section_name (dynobj
, s
);
1629 if (CONST_STRNEQ (name
, ".rela"))
1633 if (strcmp (name
, ".rela.plt") == 0)
1635 else if (strcmp (name
, ".rela.got") == 0)
1638 /* We use the reloc_count field as a counter if we need
1639 to copy relocs into the output file. */
1643 else if (! CONST_STRNEQ (name
, ".plt.")
1644 && ! CONST_STRNEQ (name
, ".got.plt.")
1645 && strcmp (name
, ".got") != 0
1646 && strcmp (name
, ".plt") != 0
1647 && strcmp (name
, ".got.plt") != 0
1648 && strcmp (name
, ".xt.lit.plt") != 0
1649 && strcmp (name
, ".got.loc") != 0)
1651 /* It's not one of our sections, so don't allocate space. */
1657 /* If we don't need this section, strip it from the output
1658 file. We must create the ".plt*" and ".got.plt*"
1659 sections in create_dynamic_sections and/or check_relocs
1660 based on a conservative estimate of the PLT relocation
1661 count, because the sections must be created before the
1662 linker maps input sections to output sections. The
1663 linker does that before size_dynamic_sections, where we
1664 compute the exact size of the PLT, so there may be more
1665 of these sections than are actually needed. */
1666 s
->flags
|= SEC_EXCLUDE
;
1668 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1670 /* Allocate memory for the section contents. */
1671 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1672 if (s
->contents
== NULL
)
1677 if (elf_hash_table (info
)->dynamic_sections_created
)
1679 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1680 known until finish_dynamic_sections, but we need to get the relocs
1681 in place before they are sorted. */
1682 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1684 Elf_Internal_Rela irela
;
1688 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1691 loc
= (srelgot
->contents
1692 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1693 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1694 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1695 loc
+ sizeof (Elf32_External_Rela
));
1696 srelgot
->reloc_count
+= 2;
1699 /* Add some entries to the .dynamic section. We fill in the
1700 values later, in elf_xtensa_finish_dynamic_sections, but we
1701 must add the entries now so that we get the correct size for
1702 the .dynamic section. The DT_DEBUG entry is filled in by the
1703 dynamic linker and used by the debugger. */
1704 #define add_dynamic_entry(TAG, VAL) \
1705 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1707 if (bfd_link_executable (info
))
1709 if (!add_dynamic_entry (DT_DEBUG
, 0))
1715 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1716 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1717 || !add_dynamic_entry (DT_JMPREL
, 0))
1723 if (!add_dynamic_entry (DT_RELA
, 0)
1724 || !add_dynamic_entry (DT_RELASZ
, 0)
1725 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1729 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1730 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1731 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1734 #undef add_dynamic_entry
1740 elf_xtensa_always_size_sections (bfd
*output_bfd
,
1741 struct bfd_link_info
*info
)
1743 struct elf_xtensa_link_hash_table
*htab
;
1746 htab
= elf_xtensa_hash_table (info
);
1750 tls_sec
= htab
->elf
.tls_sec
;
1752 if (tls_sec
&& (htab
->tlsbase
->tls_type
& GOT_TLS_ANY
) != 0)
1754 struct elf_link_hash_entry
*tlsbase
= &htab
->tlsbase
->elf
;
1755 struct bfd_link_hash_entry
*bh
= &tlsbase
->root
;
1756 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
1758 tlsbase
->type
= STT_TLS
;
1759 if (!(_bfd_generic_link_add_one_symbol
1760 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
1761 tls_sec
, 0, NULL
, FALSE
,
1762 bed
->collect
, &bh
)))
1764 tlsbase
->def_regular
= 1;
1765 tlsbase
->other
= STV_HIDDEN
;
1766 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
1773 /* Return the base VMA address which should be subtracted from real addresses
1774 when resolving @dtpoff relocation.
1775 This is PT_TLS segment p_vaddr. */
1778 dtpoff_base (struct bfd_link_info
*info
)
1780 /* If tls_sec is NULL, we should have signalled an error already. */
1781 if (elf_hash_table (info
)->tls_sec
== NULL
)
1783 return elf_hash_table (info
)->tls_sec
->vma
;
1786 /* Return the relocation value for @tpoff relocation
1787 if STT_TLS virtual address is ADDRESS. */
1790 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
1792 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
1795 /* If tls_sec is NULL, we should have signalled an error already. */
1796 if (htab
->tls_sec
== NULL
)
1798 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
1799 return address
- htab
->tls_sec
->vma
+ base
;
1802 /* Perform the specified relocation. The instruction at (contents + address)
1803 is modified to set one operand to represent the value in "relocation". The
1804 operand position is determined by the relocation type recorded in the
1807 #define CALL_SEGMENT_BITS (30)
1808 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1810 static bfd_reloc_status_type
1811 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1813 asection
*input_section
,
1817 bfd_boolean is_weak_undef
,
1818 char **error_message
)
1821 xtensa_opcode opcode
;
1822 xtensa_isa isa
= xtensa_default_isa
;
1823 static xtensa_insnbuf ibuff
= NULL
;
1824 static xtensa_insnbuf sbuff
= NULL
;
1825 bfd_vma self_address
;
1826 bfd_size_type input_size
;
1832 ibuff
= xtensa_insnbuf_alloc (isa
);
1833 sbuff
= xtensa_insnbuf_alloc (isa
);
1836 input_size
= bfd_get_section_limit (abfd
, input_section
);
1838 /* Calculate the PC address for this instruction. */
1839 self_address
= (input_section
->output_section
->vma
1840 + input_section
->output_offset
1843 switch (howto
->type
)
1846 case R_XTENSA_DIFF8
:
1847 case R_XTENSA_DIFF16
:
1848 case R_XTENSA_DIFF32
:
1849 case R_XTENSA_TLS_FUNC
:
1850 case R_XTENSA_TLS_ARG
:
1851 case R_XTENSA_TLS_CALL
:
1852 return bfd_reloc_ok
;
1854 case R_XTENSA_ASM_EXPAND
:
1857 /* Check for windowed CALL across a 1GB boundary. */
1858 opcode
= get_expanded_call_opcode (contents
+ address
,
1859 input_size
- address
, 0);
1860 if (is_windowed_call_opcode (opcode
))
1862 if ((self_address
>> CALL_SEGMENT_BITS
)
1863 != (relocation
>> CALL_SEGMENT_BITS
))
1865 *error_message
= "windowed longcall crosses 1GB boundary; "
1867 return bfd_reloc_dangerous
;
1871 return bfd_reloc_ok
;
1873 case R_XTENSA_ASM_SIMPLIFY
:
1875 /* Convert the L32R/CALLX to CALL. */
1876 bfd_reloc_status_type retval
=
1877 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1879 if (retval
!= bfd_reloc_ok
)
1880 return bfd_reloc_dangerous
;
1882 /* The CALL needs to be relocated. Continue below for that part. */
1885 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1892 x
= bfd_get_32 (abfd
, contents
+ address
);
1894 bfd_put_32 (abfd
, x
, contents
+ address
);
1896 return bfd_reloc_ok
;
1898 case R_XTENSA_32_PCREL
:
1899 bfd_put_32 (abfd
, relocation
- self_address
, contents
+ address
);
1900 return bfd_reloc_ok
;
1903 case R_XTENSA_TLSDESC_FN
:
1904 case R_XTENSA_TLSDESC_ARG
:
1905 case R_XTENSA_TLS_DTPOFF
:
1906 case R_XTENSA_TLS_TPOFF
:
1907 bfd_put_32 (abfd
, relocation
, contents
+ address
);
1908 return bfd_reloc_ok
;
1911 /* Only instruction slot-specific relocations handled below.... */
1912 slot
= get_relocation_slot (howto
->type
);
1913 if (slot
== XTENSA_UNDEFINED
)
1915 *error_message
= "unexpected relocation";
1916 return bfd_reloc_dangerous
;
1919 /* Read the instruction into a buffer and decode the opcode. */
1920 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
1921 input_size
- address
);
1922 fmt
= xtensa_format_decode (isa
, ibuff
);
1923 if (fmt
== XTENSA_UNDEFINED
)
1925 *error_message
= "cannot decode instruction format";
1926 return bfd_reloc_dangerous
;
1929 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1931 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
1932 if (opcode
== XTENSA_UNDEFINED
)
1934 *error_message
= "cannot decode instruction opcode";
1935 return bfd_reloc_dangerous
;
1938 /* Check for opcode-specific "alternate" relocations. */
1939 if (is_alt_relocation (howto
->type
))
1941 if (opcode
== get_l32r_opcode ())
1943 /* Handle the special-case of non-PC-relative L32R instructions. */
1944 bfd
*output_bfd
= input_section
->output_section
->owner
;
1945 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
1948 *error_message
= "relocation references missing .lit4 section";
1949 return bfd_reloc_dangerous
;
1951 self_address
= ((lit4_sec
->vma
& ~0xfff)
1952 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1953 newval
= relocation
;
1956 else if (opcode
== get_const16_opcode ())
1958 /* ALT used for high 16 bits.
1959 Ignore 32-bit overflow. */
1960 newval
= (relocation
>> 16) & 0xffff;
1965 /* No other "alternate" relocations currently defined. */
1966 *error_message
= "unexpected relocation";
1967 return bfd_reloc_dangerous
;
1970 else /* Not an "alternate" relocation.... */
1972 if (opcode
== get_const16_opcode ())
1974 newval
= relocation
& 0xffff;
1979 /* ...normal PC-relative relocation.... */
1981 /* Determine which operand is being relocated. */
1982 opnd
= get_relocation_opnd (opcode
, howto
->type
);
1983 if (opnd
== XTENSA_UNDEFINED
)
1985 *error_message
= "unexpected relocation";
1986 return bfd_reloc_dangerous
;
1989 if (!howto
->pc_relative
)
1991 *error_message
= "expected PC-relative relocation";
1992 return bfd_reloc_dangerous
;
1995 newval
= relocation
;
1999 /* Apply the relocation. */
2000 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
2001 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
2002 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
2005 const char *opname
= xtensa_opcode_name (isa
, opcode
);
2008 msg
= "cannot encode";
2009 if (is_direct_call_opcode (opcode
))
2011 if ((relocation
& 0x3) != 0)
2012 msg
= "misaligned call target";
2014 msg
= "call target out of range";
2016 else if (opcode
== get_l32r_opcode ())
2018 if ((relocation
& 0x3) != 0)
2019 msg
= "misaligned literal target";
2020 else if (is_alt_relocation (howto
->type
))
2021 msg
= "literal target out of range (too many literals)";
2022 else if (self_address
> relocation
)
2023 msg
= "literal target out of range (try using text-section-literals)";
2025 msg
= "literal placed after use";
2028 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
2029 return bfd_reloc_dangerous
;
2032 /* Check for calls across 1GB boundaries. */
2033 if (is_direct_call_opcode (opcode
)
2034 && is_windowed_call_opcode (opcode
))
2036 if ((self_address
>> CALL_SEGMENT_BITS
)
2037 != (relocation
>> CALL_SEGMENT_BITS
))
2040 "windowed call crosses 1GB boundary; return may fail";
2041 return bfd_reloc_dangerous
;
2045 /* Write the modified instruction back out of the buffer. */
2046 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
2047 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
2048 input_size
- address
);
2049 return bfd_reloc_ok
;
2054 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
2056 /* To reduce the size of the memory leak,
2057 we only use a single message buffer. */
2058 static bfd_size_type alloc_size
= 0;
2059 static char *message
= NULL
;
2060 bfd_size_type orig_len
, len
= 0;
2061 bfd_boolean is_append
;
2064 va_start (ap
, arglen
);
2066 is_append
= (origmsg
== message
);
2068 orig_len
= strlen (origmsg
);
2069 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
2070 if (len
> alloc_size
)
2072 message
= (char *) bfd_realloc_or_free (message
, len
);
2075 if (message
!= NULL
)
2078 memcpy (message
, origmsg
, orig_len
);
2079 vsprintf (message
+ orig_len
, fmt
, ap
);
2086 /* This function is registered as the "special_function" in the
2087 Xtensa howto for handling simplify operations.
2088 bfd_perform_relocation / bfd_install_relocation use it to
2089 perform (install) the specified relocation. Since this replaces the code
2090 in bfd_perform_relocation, it is basically an Xtensa-specific,
2091 stripped-down version of bfd_perform_relocation. */
2093 static bfd_reloc_status_type
2094 bfd_elf_xtensa_reloc (bfd
*abfd
,
2095 arelent
*reloc_entry
,
2098 asection
*input_section
,
2100 char **error_message
)
2103 bfd_reloc_status_type flag
;
2104 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
2105 bfd_vma output_base
= 0;
2106 reloc_howto_type
*howto
= reloc_entry
->howto
;
2107 asection
*reloc_target_output_section
;
2108 bfd_boolean is_weak_undef
;
2110 if (!xtensa_default_isa
)
2111 xtensa_default_isa
= xtensa_isa_init (0, 0);
2113 /* ELF relocs are against symbols. If we are producing relocatable
2114 output, and the reloc is against an external symbol, the resulting
2115 reloc will also be against the same symbol. In such a case, we
2116 don't want to change anything about the way the reloc is handled,
2117 since it will all be done at final link time. This test is similar
2118 to what bfd_elf_generic_reloc does except that it lets relocs with
2119 howto->partial_inplace go through even if the addend is non-zero.
2120 (The real problem is that partial_inplace is set for XTENSA_32
2121 relocs to begin with, but that's a long story and there's little we
2122 can do about it now....) */
2124 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
2126 reloc_entry
->address
+= input_section
->output_offset
;
2127 return bfd_reloc_ok
;
2130 /* Is the address of the relocation really within the section? */
2131 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2132 return bfd_reloc_outofrange
;
2134 /* Work out which section the relocation is targeted at and the
2135 initial relocation command value. */
2137 /* Get symbol value. (Common symbols are special.) */
2138 if (bfd_is_com_section (symbol
->section
))
2141 relocation
= symbol
->value
;
2143 reloc_target_output_section
= symbol
->section
->output_section
;
2145 /* Convert input-section-relative symbol value to absolute. */
2146 if ((output_bfd
&& !howto
->partial_inplace
)
2147 || reloc_target_output_section
== NULL
)
2150 output_base
= reloc_target_output_section
->vma
;
2152 relocation
+= output_base
+ symbol
->section
->output_offset
;
2154 /* Add in supplied addend. */
2155 relocation
+= reloc_entry
->addend
;
2157 /* Here the variable relocation holds the final address of the
2158 symbol we are relocating against, plus any addend. */
2161 if (!howto
->partial_inplace
)
2163 /* This is a partial relocation, and we want to apply the relocation
2164 to the reloc entry rather than the raw data. Everything except
2165 relocations against section symbols has already been handled
2168 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
2169 reloc_entry
->addend
= relocation
;
2170 reloc_entry
->address
+= input_section
->output_offset
;
2171 return bfd_reloc_ok
;
2175 reloc_entry
->address
+= input_section
->output_offset
;
2176 reloc_entry
->addend
= 0;
2180 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
2181 && (symbol
->flags
& BSF_WEAK
) != 0);
2182 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
2183 (bfd_byte
*) data
, (bfd_vma
) octets
,
2184 is_weak_undef
, error_message
);
2186 if (flag
== bfd_reloc_dangerous
)
2188 /* Add the symbol name to the error message. */
2189 if (! *error_message
)
2190 *error_message
= "";
2191 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
2192 strlen (symbol
->name
) + 17,
2194 (unsigned long) reloc_entry
->addend
);
2201 /* Set up an entry in the procedure linkage table. */
2204 elf_xtensa_create_plt_entry (struct bfd_link_info
*info
,
2206 unsigned reloc_index
)
2208 asection
*splt
, *sgotplt
;
2209 bfd_vma plt_base
, got_base
;
2210 bfd_vma code_offset
, lit_offset
, abi_offset
;
2213 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
2214 splt
= elf_xtensa_get_plt_section (info
, chunk
);
2215 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
2216 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
2218 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
2219 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
2221 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
2222 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
2224 /* Fill in the literal entry. This is the offset of the dynamic
2225 relocation entry. */
2226 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
2227 sgotplt
->contents
+ lit_offset
);
2229 /* Fill in the entry in the procedure linkage table. */
2230 memcpy (splt
->contents
+ code_offset
,
2231 (bfd_big_endian (output_bfd
)
2232 ? elf_xtensa_be_plt_entry
[XSHAL_ABI
!= XTHAL_ABI_WINDOWED
]
2233 : elf_xtensa_le_plt_entry
[XSHAL_ABI
!= XTHAL_ABI_WINDOWED
]),
2235 abi_offset
= XSHAL_ABI
== XTHAL_ABI_WINDOWED
? 3 : 0;
2236 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
2237 plt_base
+ code_offset
+ abi_offset
),
2238 splt
->contents
+ code_offset
+ abi_offset
+ 1);
2239 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
2240 plt_base
+ code_offset
+ abi_offset
+ 3),
2241 splt
->contents
+ code_offset
+ abi_offset
+ 4);
2242 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
2243 plt_base
+ code_offset
+ abi_offset
+ 6),
2244 splt
->contents
+ code_offset
+ abi_offset
+ 7);
2246 return plt_base
+ code_offset
;
2250 static bfd_boolean
get_indirect_call_dest_reg (xtensa_opcode
, unsigned *);
2253 replace_tls_insn (Elf_Internal_Rela
*rel
,
2255 asection
*input_section
,
2257 bfd_boolean is_ld_model
,
2258 char **error_message
)
2260 static xtensa_insnbuf ibuff
= NULL
;
2261 static xtensa_insnbuf sbuff
= NULL
;
2262 xtensa_isa isa
= xtensa_default_isa
;
2264 xtensa_opcode old_op
, new_op
;
2265 bfd_size_type input_size
;
2267 unsigned dest_reg
, src_reg
;
2271 ibuff
= xtensa_insnbuf_alloc (isa
);
2272 sbuff
= xtensa_insnbuf_alloc (isa
);
2275 input_size
= bfd_get_section_limit (abfd
, input_section
);
2277 /* Read the instruction into a buffer and decode the opcode. */
2278 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2279 input_size
- rel
->r_offset
);
2280 fmt
= xtensa_format_decode (isa
, ibuff
);
2281 if (fmt
== XTENSA_UNDEFINED
)
2283 *error_message
= "cannot decode instruction format";
2287 BFD_ASSERT (xtensa_format_num_slots (isa
, fmt
) == 1);
2288 xtensa_format_get_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2290 old_op
= xtensa_opcode_decode (isa
, fmt
, 0, sbuff
);
2291 if (old_op
== XTENSA_UNDEFINED
)
2293 *error_message
= "cannot decode instruction opcode";
2297 r_type
= ELF32_R_TYPE (rel
->r_info
);
2300 case R_XTENSA_TLS_FUNC
:
2301 case R_XTENSA_TLS_ARG
:
2302 if (old_op
!= get_l32r_opcode ()
2303 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2304 sbuff
, &dest_reg
) != 0)
2306 *error_message
= "cannot extract L32R destination for TLS access";
2311 case R_XTENSA_TLS_CALL
:
2312 if (! get_indirect_call_dest_reg (old_op
, &dest_reg
)
2313 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2314 sbuff
, &src_reg
) != 0)
2316 *error_message
= "cannot extract CALLXn operands for TLS access";
2329 case R_XTENSA_TLS_FUNC
:
2330 case R_XTENSA_TLS_ARG
:
2331 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2332 versions of Xtensa). */
2333 new_op
= xtensa_opcode_lookup (isa
, "nop");
2334 if (new_op
== XTENSA_UNDEFINED
)
2336 new_op
= xtensa_opcode_lookup (isa
, "or");
2337 if (new_op
== XTENSA_UNDEFINED
2338 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2339 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2341 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2343 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2346 *error_message
= "cannot encode OR for TLS access";
2352 if (xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0)
2354 *error_message
= "cannot encode NOP for TLS access";
2360 case R_XTENSA_TLS_CALL
:
2361 /* Read THREADPTR into the CALLX's return value register. */
2362 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2363 if (new_op
== XTENSA_UNDEFINED
2364 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2365 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2366 sbuff
, dest_reg
+ 2) != 0)
2368 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2378 case R_XTENSA_TLS_FUNC
:
2379 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2380 if (new_op
== XTENSA_UNDEFINED
2381 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2382 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2383 sbuff
, dest_reg
) != 0)
2385 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2390 case R_XTENSA_TLS_ARG
:
2391 /* Nothing to do. Keep the original L32R instruction. */
2394 case R_XTENSA_TLS_CALL
:
2395 /* Add the CALLX's src register (holding the THREADPTR value)
2396 to the first argument register (holding the offset) and put
2397 the result in the CALLX's return value register. */
2398 new_op
= xtensa_opcode_lookup (isa
, "add");
2399 if (new_op
== XTENSA_UNDEFINED
2400 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2401 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2402 sbuff
, dest_reg
+ 2) != 0
2403 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2404 sbuff
, dest_reg
+ 2) != 0
2405 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2406 sbuff
, src_reg
) != 0)
2408 *error_message
= "cannot encode ADD for TLS access";
2415 xtensa_format_set_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2416 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2417 input_size
- rel
->r_offset
);
2423 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2424 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2425 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2426 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2427 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2428 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2429 || (R_TYPE) == R_XTENSA_TLS_ARG \
2430 || (R_TYPE) == R_XTENSA_TLS_CALL)
2432 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2433 both relocatable and final links. */
2436 elf_xtensa_relocate_section (bfd
*output_bfd
,
2437 struct bfd_link_info
*info
,
2439 asection
*input_section
,
2441 Elf_Internal_Rela
*relocs
,
2442 Elf_Internal_Sym
*local_syms
,
2443 asection
**local_sections
)
2445 struct elf_xtensa_link_hash_table
*htab
;
2446 Elf_Internal_Shdr
*symtab_hdr
;
2447 Elf_Internal_Rela
*rel
;
2448 Elf_Internal_Rela
*relend
;
2449 struct elf_link_hash_entry
**sym_hashes
;
2450 property_table_entry
*lit_table
= 0;
2452 char *local_got_tls_types
;
2453 char *error_message
= NULL
;
2454 bfd_size_type input_size
;
2457 if (!xtensa_default_isa
)
2458 xtensa_default_isa
= xtensa_isa_init (0, 0);
2460 if (!is_xtensa_elf (input_bfd
))
2462 bfd_set_error (bfd_error_wrong_format
);
2466 htab
= elf_xtensa_hash_table (info
);
2470 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2471 sym_hashes
= elf_sym_hashes (input_bfd
);
2472 local_got_tls_types
= elf_xtensa_local_got_tls_type (input_bfd
);
2474 if (elf_hash_table (info
)->dynamic_sections_created
)
2476 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2477 &lit_table
, XTENSA_LIT_SEC_NAME
,
2483 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2486 relend
= relocs
+ input_section
->reloc_count
;
2487 for (; rel
< relend
; rel
++)
2490 reloc_howto_type
*howto
;
2491 unsigned long r_symndx
;
2492 struct elf_link_hash_entry
*h
;
2493 Elf_Internal_Sym
*sym
;
2498 bfd_reloc_status_type r
;
2499 bfd_boolean is_weak_undef
;
2500 bfd_boolean unresolved_reloc
;
2502 bfd_boolean dynamic_symbol
;
2504 r_type
= ELF32_R_TYPE (rel
->r_info
);
2505 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2506 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2509 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2511 bfd_set_error (bfd_error_bad_value
);
2514 howto
= &elf_howto_table
[r_type
];
2516 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2521 is_weak_undef
= FALSE
;
2522 unresolved_reloc
= FALSE
;
2525 if (howto
->partial_inplace
&& !bfd_link_relocatable (info
))
2527 /* Because R_XTENSA_32 was made partial_inplace to fix some
2528 problems with DWARF info in partial links, there may be
2529 an addend stored in the contents. Take it out of there
2530 and move it back into the addend field of the reloc. */
2531 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2532 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2535 if (r_symndx
< symtab_hdr
->sh_info
)
2537 sym
= local_syms
+ r_symndx
;
2538 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
2539 sec
= local_sections
[r_symndx
];
2540 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2544 bfd_boolean ignored
;
2546 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2547 r_symndx
, symtab_hdr
, sym_hashes
,
2549 unresolved_reloc
, warned
, ignored
);
2552 && !unresolved_reloc
2553 && h
->root
.type
== bfd_link_hash_undefweak
)
2554 is_weak_undef
= TRUE
;
2559 if (sec
!= NULL
&& discarded_section (sec
))
2560 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
2561 rel
, 1, relend
, howto
, 0, contents
);
2563 if (bfd_link_relocatable (info
))
2566 asection
* sym_sec
= get_elf_r_symndx_section (input_bfd
, r_symndx
);
2568 /* This is a relocatable link.
2569 1) If the reloc is against a section symbol, adjust
2570 according to the output section.
2571 2) If there is a new target for this relocation,
2572 the new target will be in the same output section.
2573 We adjust the relocation by the output section
2576 if (relaxing_section
)
2578 /* Check if this references a section in another input file. */
2579 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2584 dest_addr
= sym_sec
->output_section
->vma
+ sym_sec
->output_offset
2585 + get_elf_r_symndx_offset (input_bfd
, r_symndx
) + rel
->r_addend
;
2587 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2589 error_message
= NULL
;
2590 /* Convert ASM_SIMPLIFY into the simpler relocation
2591 so that they never escape a relaxing link. */
2592 r
= contract_asm_expansion (contents
, input_size
, rel
,
2594 if (r
!= bfd_reloc_ok
)
2595 (*info
->callbacks
->reloc_dangerous
)
2596 (info
, error_message
,
2597 input_bfd
, input_section
, rel
->r_offset
);
2599 r_type
= ELF32_R_TYPE (rel
->r_info
);
2602 /* This is a relocatable link, so we don't have to change
2603 anything unless the reloc is against a section symbol,
2604 in which case we have to adjust according to where the
2605 section symbol winds up in the output section. */
2606 if (r_symndx
< symtab_hdr
->sh_info
)
2608 sym
= local_syms
+ r_symndx
;
2609 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2611 sec
= local_sections
[r_symndx
];
2612 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2616 /* If there is an addend with a partial_inplace howto,
2617 then move the addend to the contents. This is a hack
2618 to work around problems with DWARF in relocatable links
2619 with some previous version of BFD. Now we can't easily get
2620 rid of the hack without breaking backward compatibility.... */
2622 howto
= &elf_howto_table
[r_type
];
2623 if (howto
->partial_inplace
&& rel
->r_addend
)
2625 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2626 rel
->r_addend
, contents
,
2627 rel
->r_offset
, FALSE
,
2633 /* Put the correct bits in the target instruction, even
2634 though the relocation will still be present in the output
2635 file. This makes disassembly clearer, as well as
2636 allowing loadable kernel modules to work without needing
2637 relocations on anything other than calls and l32r's. */
2639 /* If it is not in the same section, there is nothing we can do. */
2640 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
&&
2641 sym_sec
->output_section
== input_section
->output_section
)
2643 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2644 dest_addr
, contents
,
2645 rel
->r_offset
, FALSE
,
2649 if (r
!= bfd_reloc_ok
)
2650 (*info
->callbacks
->reloc_dangerous
)
2651 (info
, error_message
,
2652 input_bfd
, input_section
, rel
->r_offset
);
2654 /* Done with work for relocatable link; continue with next reloc. */
2658 /* This is a final link. */
2660 if (relaxing_section
)
2662 /* Check if this references a section in another input file. */
2663 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2667 /* Sanity check the address. */
2668 if (rel
->r_offset
>= input_size
2669 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2672 /* xgettext:c-format */
2673 (_("%pB(%pA+%#" PRIx64
"): "
2674 "relocation offset out of range (size=%#" PRIx64
")"),
2675 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
2676 (uint64_t) input_size
);
2677 bfd_set_error (bfd_error_bad_value
);
2682 name
= h
->root
.root
.string
;
2685 name
= (bfd_elf_string_from_elf_section
2686 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
2687 if (name
== NULL
|| *name
== '\0')
2688 name
= bfd_section_name (input_bfd
, sec
);
2691 if (r_symndx
!= STN_UNDEF
2692 && r_type
!= R_XTENSA_NONE
2694 || h
->root
.type
== bfd_link_hash_defined
2695 || h
->root
.type
== bfd_link_hash_defweak
)
2696 && IS_XTENSA_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
2699 ((sym_type
== STT_TLS
2700 /* xgettext:c-format */
2701 ? _("%pB(%pA+%#" PRIx64
"): %s used with TLS symbol %s")
2702 /* xgettext:c-format */
2703 : _("%pB(%pA+%#" PRIx64
"): %s used with non-TLS symbol %s")),
2706 (uint64_t) rel
->r_offset
,
2711 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
2713 tls_type
= GOT_UNKNOWN
;
2715 tls_type
= elf_xtensa_hash_entry (h
)->tls_type
;
2716 else if (local_got_tls_types
)
2717 tls_type
= local_got_tls_types
[r_symndx
];
2723 if (elf_hash_table (info
)->dynamic_sections_created
2724 && (input_section
->flags
& SEC_ALLOC
) != 0
2725 && (dynamic_symbol
|| bfd_link_pic (info
)))
2727 Elf_Internal_Rela outrel
;
2731 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2732 srel
= htab
->elf
.srelplt
;
2734 srel
= htab
->elf
.srelgot
;
2736 BFD_ASSERT (srel
!= NULL
);
2739 _bfd_elf_section_offset (output_bfd
, info
,
2740 input_section
, rel
->r_offset
);
2742 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2743 memset (&outrel
, 0, sizeof outrel
);
2746 outrel
.r_offset
+= (input_section
->output_section
->vma
2747 + input_section
->output_offset
);
2749 /* Complain if the relocation is in a read-only section
2750 and not in a literal pool. */
2751 if ((input_section
->flags
& SEC_READONLY
) != 0
2752 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2756 _("dynamic relocation in read-only section");
2757 (*info
->callbacks
->reloc_dangerous
)
2758 (info
, error_message
,
2759 input_bfd
, input_section
, rel
->r_offset
);
2764 outrel
.r_addend
= rel
->r_addend
;
2767 if (r_type
== R_XTENSA_32
)
2770 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2773 else /* r_type == R_XTENSA_PLT */
2776 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2778 /* Create the PLT entry and set the initial
2779 contents of the literal entry to the address of
2782 elf_xtensa_create_plt_entry (info
, output_bfd
,
2785 unresolved_reloc
= FALSE
;
2787 else if (!is_weak_undef
)
2789 /* Generate a RELATIVE relocation. */
2790 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2791 outrel
.r_addend
= 0;
2799 loc
= (srel
->contents
2800 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2801 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2802 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2805 else if (r_type
== R_XTENSA_ASM_EXPAND
&& dynamic_symbol
)
2807 /* This should only happen for non-PIC code, which is not
2808 supposed to be used on systems with dynamic linking.
2809 Just ignore these relocations. */
2814 case R_XTENSA_TLS_TPOFF
:
2815 /* Switch to LE model for local symbols in an executable. */
2816 if (! bfd_link_pic (info
) && ! dynamic_symbol
)
2818 relocation
= tpoff (info
, relocation
);
2823 case R_XTENSA_TLSDESC_FN
:
2824 case R_XTENSA_TLSDESC_ARG
:
2826 if (r_type
== R_XTENSA_TLSDESC_FN
)
2828 if (! bfd_link_pic (info
) || (tls_type
& GOT_TLS_IE
) != 0)
2829 r_type
= R_XTENSA_NONE
;
2831 else if (r_type
== R_XTENSA_TLSDESC_ARG
)
2833 if (bfd_link_pic (info
))
2835 if ((tls_type
& GOT_TLS_IE
) != 0)
2836 r_type
= R_XTENSA_TLS_TPOFF
;
2840 r_type
= R_XTENSA_TLS_TPOFF
;
2841 if (! dynamic_symbol
)
2843 relocation
= tpoff (info
, relocation
);
2849 if (r_type
== R_XTENSA_NONE
)
2850 /* Nothing to do here; skip to the next reloc. */
2853 if (! elf_hash_table (info
)->dynamic_sections_created
)
2856 _("TLS relocation invalid without dynamic sections");
2857 (*info
->callbacks
->reloc_dangerous
)
2858 (info
, error_message
,
2859 input_bfd
, input_section
, rel
->r_offset
);
2863 Elf_Internal_Rela outrel
;
2865 asection
*srel
= htab
->elf
.srelgot
;
2868 outrel
.r_offset
= (input_section
->output_section
->vma
2869 + input_section
->output_offset
2872 /* Complain if the relocation is in a read-only section
2873 and not in a literal pool. */
2874 if ((input_section
->flags
& SEC_READONLY
) != 0
2875 && ! elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2879 _("dynamic relocation in read-only section");
2880 (*info
->callbacks
->reloc_dangerous
)
2881 (info
, error_message
,
2882 input_bfd
, input_section
, rel
->r_offset
);
2885 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2887 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2889 outrel
.r_addend
= 0;
2892 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
2894 unresolved_reloc
= FALSE
;
2897 loc
= (srel
->contents
2898 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2899 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2900 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2906 case R_XTENSA_TLS_DTPOFF
:
2907 if (! bfd_link_pic (info
))
2908 /* Switch from LD model to LE model. */
2909 relocation
= tpoff (info
, relocation
);
2911 relocation
-= dtpoff_base (info
);
2914 case R_XTENSA_TLS_FUNC
:
2915 case R_XTENSA_TLS_ARG
:
2916 case R_XTENSA_TLS_CALL
:
2917 /* Check if optimizing to IE or LE model. */
2918 if ((tls_type
& GOT_TLS_IE
) != 0)
2920 bfd_boolean is_ld_model
=
2921 (h
&& elf_xtensa_hash_entry (h
) == htab
->tlsbase
);
2922 if (! replace_tls_insn (rel
, input_bfd
, input_section
, contents
,
2923 is_ld_model
, &error_message
))
2924 (*info
->callbacks
->reloc_dangerous
)
2925 (info
, error_message
,
2926 input_bfd
, input_section
, rel
->r_offset
);
2928 if (r_type
!= R_XTENSA_TLS_ARG
|| is_ld_model
)
2930 /* Skip subsequent relocations on the same instruction. */
2931 while (rel
+ 1 < relend
&& rel
[1].r_offset
== rel
->r_offset
)
2938 if (elf_hash_table (info
)->dynamic_sections_created
2939 && dynamic_symbol
&& (is_operand_relocation (r_type
)
2940 || r_type
== R_XTENSA_32_PCREL
))
2943 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2944 strlen (name
) + 2, name
);
2945 (*info
->callbacks
->reloc_dangerous
)
2946 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
2952 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2953 because such sections are not SEC_ALLOC and thus ld.so will
2954 not process them. */
2955 if (unresolved_reloc
2956 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2958 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2959 rel
->r_offset
) != (bfd_vma
) -1)
2962 /* xgettext:c-format */
2963 (_("%pB(%pA+%#" PRIx64
"): "
2964 "unresolvable %s relocation against symbol `%s'"),
2967 (uint64_t) rel
->r_offset
,
2973 /* TLS optimizations may have changed r_type; update "howto". */
2974 howto
= &elf_howto_table
[r_type
];
2976 /* There's no point in calling bfd_perform_relocation here.
2977 Just go directly to our "special function". */
2978 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2979 relocation
+ rel
->r_addend
,
2980 contents
, rel
->r_offset
, is_weak_undef
,
2983 if (r
!= bfd_reloc_ok
&& !warned
)
2985 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
2986 BFD_ASSERT (error_message
!= NULL
);
2988 if (rel
->r_addend
== 0)
2989 error_message
= vsprint_msg (error_message
, ": %s",
2990 strlen (name
) + 2, name
);
2992 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
2994 name
, (int) rel
->r_addend
);
2996 (*info
->callbacks
->reloc_dangerous
)
2997 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
3004 input_section
->reloc_done
= TRUE
;
3010 /* Finish up dynamic symbol handling. There's not much to do here since
3011 the PLT and GOT entries are all set up by relocate_section. */
3014 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
3015 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3016 struct elf_link_hash_entry
*h
,
3017 Elf_Internal_Sym
*sym
)
3019 if (h
->needs_plt
&& !h
->def_regular
)
3021 /* Mark the symbol as undefined, rather than as defined in
3022 the .plt section. Leave the value alone. */
3023 sym
->st_shndx
= SHN_UNDEF
;
3024 /* If the symbol is weak, we do need to clear the value.
3025 Otherwise, the PLT entry would provide a definition for
3026 the symbol even if the symbol wasn't defined anywhere,
3027 and so the symbol would never be NULL. */
3028 if (!h
->ref_regular_nonweak
)
3032 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3033 if (h
== elf_hash_table (info
)->hdynamic
3034 || h
== elf_hash_table (info
)->hgot
)
3035 sym
->st_shndx
= SHN_ABS
;
3041 /* Combine adjacent literal table entries in the output. Adjacent
3042 entries within each input section may have been removed during
3043 relaxation, but we repeat the process here, even though it's too late
3044 to shrink the output section, because it's important to minimize the
3045 number of literal table entries to reduce the start-up work for the
3046 runtime linker. Returns the number of remaining table entries or -1
3050 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
3055 property_table_entry
*table
;
3056 bfd_size_type section_size
, sgotloc_size
;
3060 section_size
= sxtlit
->size
;
3061 BFD_ASSERT (section_size
% 8 == 0);
3062 num
= section_size
/ 8;
3064 sgotloc_size
= sgotloc
->size
;
3065 if (sgotloc_size
!= section_size
)
3068 (_("internal inconsistency in size of .got.loc section"));
3072 table
= bfd_malloc (num
* sizeof (property_table_entry
));
3076 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3077 propagates to the output section, where it doesn't really apply and
3078 where it breaks the following call to bfd_malloc_and_get_section. */
3079 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
3081 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
3089 /* There should never be any relocations left at this point, so this
3090 is quite a bit easier than what is done during relaxation. */
3092 /* Copy the raw contents into a property table array and sort it. */
3094 for (n
= 0; n
< num
; n
++)
3096 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
3097 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
3100 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
3102 for (n
= 0; n
< num
; n
++)
3104 bfd_boolean remove_entry
= FALSE
;
3106 if (table
[n
].size
== 0)
3107 remove_entry
= TRUE
;
3109 && (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
3111 table
[n
-1].size
+= table
[n
].size
;
3112 remove_entry
= TRUE
;
3117 for (m
= n
; m
< num
- 1; m
++)
3119 table
[m
].address
= table
[m
+1].address
;
3120 table
[m
].size
= table
[m
+1].size
;
3128 /* Copy the data back to the raw contents. */
3130 for (n
= 0; n
< num
; n
++)
3132 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
3133 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
3137 /* Clear the removed bytes. */
3138 if ((bfd_size_type
) (num
* 8) < section_size
)
3139 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
3141 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
3145 /* Copy the contents to ".got.loc". */
3146 memcpy (sgotloc
->contents
, contents
, section_size
);
3154 /* Finish up the dynamic sections. */
3157 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
3158 struct bfd_link_info
*info
)
3160 struct elf_xtensa_link_hash_table
*htab
;
3162 asection
*sdyn
, *srelplt
, *srelgot
, *sgot
, *sxtlit
, *sgotloc
;
3163 Elf32_External_Dyn
*dyncon
, *dynconend
;
3164 int num_xtlit_entries
= 0;
3166 if (! elf_hash_table (info
)->dynamic_sections_created
)
3169 htab
= elf_xtensa_hash_table (info
);
3173 dynobj
= elf_hash_table (info
)->dynobj
;
3174 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3175 BFD_ASSERT (sdyn
!= NULL
);
3177 /* Set the first entry in the global offset table to the address of
3178 the dynamic section. */
3179 sgot
= htab
->elf
.sgot
;
3182 BFD_ASSERT (sgot
->size
== 4);
3184 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
3186 bfd_put_32 (output_bfd
,
3187 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3191 srelplt
= htab
->elf
.srelplt
;
3192 srelgot
= htab
->elf
.srelgot
;
3193 if (srelplt
&& srelplt
->size
!= 0)
3195 asection
*sgotplt
, *spltlittbl
;
3196 int chunk
, plt_chunks
, plt_entries
;
3197 Elf_Internal_Rela irela
;
3199 unsigned rtld_reloc
;
3201 spltlittbl
= htab
->spltlittbl
;
3202 BFD_ASSERT (srelgot
!= NULL
&& spltlittbl
!= NULL
);
3204 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3205 of them follow immediately after.... */
3206 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
3208 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3209 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3210 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
3213 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
3215 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
3217 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
3219 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
3221 int chunk_entries
= 0;
3223 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
3224 BFD_ASSERT (sgotplt
!= NULL
);
3226 /* Emit special RTLD relocations for the first two entries in
3227 each chunk of the .got.plt section. */
3229 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3230 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3231 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3232 irela
.r_offset
= (sgotplt
->output_section
->vma
3233 + sgotplt
->output_offset
);
3234 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
3235 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3237 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3239 /* Next literal immediately follows the first. */
3240 loc
+= sizeof (Elf32_External_Rela
);
3241 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3242 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3243 irela
.r_offset
= (sgotplt
->output_section
->vma
3244 + sgotplt
->output_offset
+ 4);
3245 /* Tell rtld to set value to object's link map. */
3247 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3249 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3251 /* Fill in the literal table. */
3252 if (chunk
< plt_chunks
- 1)
3253 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
3255 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
3257 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
3258 bfd_put_32 (output_bfd
,
3259 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
3260 spltlittbl
->contents
+ (chunk
* 8) + 0);
3261 bfd_put_32 (output_bfd
,
3262 8 + (chunk_entries
* 4),
3263 spltlittbl
->contents
+ (chunk
* 8) + 4);
3266 /* The .xt.lit.plt section has just been modified. This must
3267 happen before the code below which combines adjacent literal
3268 table entries, and the .xt.lit.plt contents have to be forced to
3270 if (! bfd_set_section_contents (output_bfd
,
3271 spltlittbl
->output_section
,
3272 spltlittbl
->contents
,
3273 spltlittbl
->output_offset
,
3276 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3277 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
3280 /* All the dynamic relocations have been emitted at this point.
3281 Make sure the relocation sections are the correct size. */
3282 if ((srelgot
&& srelgot
->size
!= (sizeof (Elf32_External_Rela
)
3283 * srelgot
->reloc_count
))
3284 || (srelplt
&& srelplt
->size
!= (sizeof (Elf32_External_Rela
)
3285 * srelplt
->reloc_count
)))
3288 /* Combine adjacent literal table entries. */
3289 BFD_ASSERT (! bfd_link_relocatable (info
));
3290 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
3291 sgotloc
= htab
->sgotloc
;
3292 BFD_ASSERT (sgotloc
);
3296 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
3297 if (num_xtlit_entries
< 0)
3301 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3302 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3303 for (; dyncon
< dynconend
; dyncon
++)
3305 Elf_Internal_Dyn dyn
;
3307 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3314 case DT_XTENSA_GOT_LOC_SZ
:
3315 dyn
.d_un
.d_val
= num_xtlit_entries
;
3318 case DT_XTENSA_GOT_LOC_OFF
:
3319 dyn
.d_un
.d_ptr
= (htab
->sgotloc
->output_section
->vma
3320 + htab
->sgotloc
->output_offset
);
3324 dyn
.d_un
.d_ptr
= (htab
->elf
.sgot
->output_section
->vma
3325 + htab
->elf
.sgot
->output_offset
);
3329 dyn
.d_un
.d_ptr
= (htab
->elf
.srelplt
->output_section
->vma
3330 + htab
->elf
.srelplt
->output_offset
);
3334 dyn
.d_un
.d_val
= htab
->elf
.srelplt
->size
;
3338 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3345 /* Functions for dealing with the e_flags field. */
3347 /* Merge backend specific data from an object file to the output
3348 object file when linking. */
3351 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
3353 bfd
*obfd
= info
->output_bfd
;
3354 unsigned out_mach
, in_mach
;
3355 flagword out_flag
, in_flag
;
3357 /* Check if we have the same endianness. */
3358 if (!_bfd_generic_verify_endian_match (ibfd
, info
))
3361 /* Don't even pretend to support mixed-format linking. */
3362 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
3363 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
3366 out_flag
= elf_elfheader (obfd
)->e_flags
;
3367 in_flag
= elf_elfheader (ibfd
)->e_flags
;
3369 out_mach
= out_flag
& EF_XTENSA_MACH
;
3370 in_mach
= in_flag
& EF_XTENSA_MACH
;
3371 if (out_mach
!= in_mach
)
3374 /* xgettext:c-format */
3375 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3376 ibfd
, out_mach
, in_mach
);
3377 bfd_set_error (bfd_error_wrong_format
);
3381 if (! elf_flags_init (obfd
))
3383 elf_flags_init (obfd
) = TRUE
;
3384 elf_elfheader (obfd
)->e_flags
= in_flag
;
3386 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
3387 && bfd_get_arch_info (obfd
)->the_default
)
3388 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
3389 bfd_get_mach (ibfd
));
3394 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
3395 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
3397 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
3398 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
3405 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
3407 BFD_ASSERT (!elf_flags_init (abfd
)
3408 || elf_elfheader (abfd
)->e_flags
== flags
);
3410 elf_elfheader (abfd
)->e_flags
|= flags
;
3411 elf_flags_init (abfd
) = TRUE
;
3418 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
3420 FILE *f
= (FILE *) farg
;
3421 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
3423 fprintf (f
, "\nXtensa header:\n");
3424 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
3425 fprintf (f
, "\nMachine = Base\n");
3427 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
3429 fprintf (f
, "Insn tables = %s\n",
3430 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
3432 fprintf (f
, "Literal tables = %s\n",
3433 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
3435 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
3439 /* Set the right machine number for an Xtensa ELF file. */
3442 elf_xtensa_object_p (bfd
*abfd
)
3445 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
3450 mach
= bfd_mach_xtensa
;
3456 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
3461 /* The final processing done just before writing out an Xtensa ELF object
3462 file. This gets the Xtensa architecture right based on the machine
3466 elf_xtensa_final_write_processing (bfd
*abfd
,
3467 bfd_boolean linker ATTRIBUTE_UNUSED
)
3472 switch (mach
= bfd_get_mach (abfd
))
3474 case bfd_mach_xtensa
:
3475 val
= E_XTENSA_MACH
;
3481 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
3482 elf_elfheader (abfd
)->e_flags
|= val
;
3486 static enum elf_reloc_type_class
3487 elf_xtensa_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3488 const asection
*rel_sec ATTRIBUTE_UNUSED
,
3489 const Elf_Internal_Rela
*rela
)
3491 switch ((int) ELF32_R_TYPE (rela
->r_info
))
3493 case R_XTENSA_RELATIVE
:
3494 return reloc_class_relative
;
3495 case R_XTENSA_JMP_SLOT
:
3496 return reloc_class_plt
;
3498 return reloc_class_normal
;
3504 elf_xtensa_discard_info_for_section (bfd
*abfd
,
3505 struct elf_reloc_cookie
*cookie
,
3506 struct bfd_link_info
*info
,
3510 bfd_vma offset
, actual_offset
;
3511 bfd_size_type removed_bytes
= 0;
3512 bfd_size_type entry_size
;
3514 if (sec
->output_section
3515 && bfd_is_abs_section (sec
->output_section
))
3518 if (xtensa_is_proptable_section (sec
))
3523 if (sec
->size
== 0 || sec
->size
% entry_size
!= 0)
3526 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
3530 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
3533 release_contents (sec
, contents
);
3537 /* Sort the relocations. They should already be in order when
3538 relaxation is enabled, but it might not be. */
3539 qsort (cookie
->rels
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
3540 internal_reloc_compare
);
3542 cookie
->rel
= cookie
->rels
;
3543 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
3545 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
3547 actual_offset
= offset
- removed_bytes
;
3549 /* The ...symbol_deleted_p function will skip over relocs but it
3550 won't adjust their offsets, so do that here. */
3551 while (cookie
->rel
< cookie
->relend
3552 && cookie
->rel
->r_offset
< offset
)
3554 cookie
->rel
->r_offset
-= removed_bytes
;
3558 while (cookie
->rel
< cookie
->relend
3559 && cookie
->rel
->r_offset
== offset
)
3561 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
3563 /* Remove the table entry. (If the reloc type is NONE, then
3564 the entry has already been merged with another and deleted
3565 during relaxation.) */
3566 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
3568 /* Shift the contents up. */
3569 if (offset
+ entry_size
< sec
->size
)
3570 memmove (&contents
[actual_offset
],
3571 &contents
[actual_offset
+ entry_size
],
3572 sec
->size
- offset
- entry_size
);
3573 removed_bytes
+= entry_size
;
3576 /* Remove this relocation. */
3577 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
3580 /* Adjust the relocation offset for previous removals. This
3581 should not be done before calling ...symbol_deleted_p
3582 because it might mess up the offset comparisons there.
3583 Make sure the offset doesn't underflow in the case where
3584 the first entry is removed. */
3585 if (cookie
->rel
->r_offset
>= removed_bytes
)
3586 cookie
->rel
->r_offset
-= removed_bytes
;
3588 cookie
->rel
->r_offset
= 0;
3594 if (removed_bytes
!= 0)
3596 /* Adjust any remaining relocs (shouldn't be any). */
3597 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
3599 if (cookie
->rel
->r_offset
>= removed_bytes
)
3600 cookie
->rel
->r_offset
-= removed_bytes
;
3602 cookie
->rel
->r_offset
= 0;
3605 /* Clear the removed bytes. */
3606 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
3608 pin_contents (sec
, contents
);
3609 pin_internal_relocs (sec
, cookie
->rels
);
3612 if (sec
->rawsize
== 0)
3613 sec
->rawsize
= sec
->size
;
3614 sec
->size
-= removed_bytes
;
3616 if (xtensa_is_littable_section (sec
))
3618 asection
*sgotloc
= elf_xtensa_hash_table (info
)->sgotloc
;
3620 sgotloc
->size
-= removed_bytes
;
3625 release_contents (sec
, contents
);
3626 release_internal_relocs (sec
, cookie
->rels
);
3629 return (removed_bytes
!= 0);
3634 elf_xtensa_discard_info (bfd
*abfd
,
3635 struct elf_reloc_cookie
*cookie
,
3636 struct bfd_link_info
*info
)
3639 bfd_boolean changed
= FALSE
;
3641 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3643 if (xtensa_is_property_section (sec
))
3645 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3655 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3657 return xtensa_is_property_section (sec
);
3662 elf_xtensa_action_discarded (asection
*sec
)
3664 if (strcmp (".xt_except_table", sec
->name
) == 0)
3667 if (strcmp (".xt_except_desc", sec
->name
) == 0)
3670 return _bfd_elf_default_action_discarded (sec
);
3674 /* Support for core dump NOTE sections. */
3677 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3682 /* The size for Xtensa is variable, so don't try to recognize the format
3683 based on the size. Just assume this is GNU/Linux. */
3686 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3689 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3693 size
= note
->descsz
- offset
- 4;
3695 /* Make a ".reg/999" section. */
3696 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3697 size
, note
->descpos
+ offset
);
3702 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3704 switch (note
->descsz
)
3709 case 128: /* GNU/Linux elf_prpsinfo */
3710 elf_tdata (abfd
)->core
->program
3711 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3712 elf_tdata (abfd
)->core
->command
3713 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3716 /* Note that for some reason, a spurious space is tacked
3717 onto the end of the args in some (at least one anyway)
3718 implementations, so strip it off if it exists. */
3721 char *command
= elf_tdata (abfd
)->core
->command
;
3722 int n
= strlen (command
);
3724 if (0 < n
&& command
[n
- 1] == ' ')
3725 command
[n
- 1] = '\0';
3732 /* Generic Xtensa configurability stuff. */
3734 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3735 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3736 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3737 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3738 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3739 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3740 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3741 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3744 init_call_opcodes (void)
3746 if (callx0_op
== XTENSA_UNDEFINED
)
3748 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3749 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3750 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3751 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3752 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3753 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3754 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3755 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3761 is_indirect_call_opcode (xtensa_opcode opcode
)
3763 init_call_opcodes ();
3764 return (opcode
== callx0_op
3765 || opcode
== callx4_op
3766 || opcode
== callx8_op
3767 || opcode
== callx12_op
);
3772 is_direct_call_opcode (xtensa_opcode opcode
)
3774 init_call_opcodes ();
3775 return (opcode
== call0_op
3776 || opcode
== call4_op
3777 || opcode
== call8_op
3778 || opcode
== call12_op
);
3783 is_windowed_call_opcode (xtensa_opcode opcode
)
3785 init_call_opcodes ();
3786 return (opcode
== call4_op
3787 || opcode
== call8_op
3788 || opcode
== call12_op
3789 || opcode
== callx4_op
3790 || opcode
== callx8_op
3791 || opcode
== callx12_op
);
3796 get_indirect_call_dest_reg (xtensa_opcode opcode
, unsigned *pdst
)
3798 unsigned dst
= (unsigned) -1;
3800 init_call_opcodes ();
3801 if (opcode
== callx0_op
)
3803 else if (opcode
== callx4_op
)
3805 else if (opcode
== callx8_op
)
3807 else if (opcode
== callx12_op
)
3810 if (dst
== (unsigned) -1)
3818 static xtensa_opcode
3819 get_const16_opcode (void)
3821 static bfd_boolean done_lookup
= FALSE
;
3822 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3825 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3828 return const16_opcode
;
3832 static xtensa_opcode
3833 get_l32r_opcode (void)
3835 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3836 static bfd_boolean done_lookup
= FALSE
;
3840 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3848 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3852 offset
= addr
- ((pc
+3) & -4);
3853 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3854 offset
= (signed int) offset
>> 2;
3855 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3861 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3863 xtensa_isa isa
= xtensa_default_isa
;
3864 int last_immed
, last_opnd
, opi
;
3866 if (opcode
== XTENSA_UNDEFINED
)
3867 return XTENSA_UNDEFINED
;
3869 /* Find the last visible PC-relative immediate operand for the opcode.
3870 If there are no PC-relative immediates, then choose the last visible
3871 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3872 last_immed
= XTENSA_UNDEFINED
;
3873 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3874 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3876 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3878 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3883 if (last_immed
== XTENSA_UNDEFINED
3884 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3888 return XTENSA_UNDEFINED
;
3890 /* If the operand number was specified in an old-style relocation,
3891 check for consistency with the operand computed above. */
3892 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3894 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3895 if (reloc_opnd
!= last_immed
)
3896 return XTENSA_UNDEFINED
;
3904 get_relocation_slot (int r_type
)
3914 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3915 return r_type
- R_XTENSA_SLOT0_OP
;
3916 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3917 return r_type
- R_XTENSA_SLOT0_ALT
;
3921 return XTENSA_UNDEFINED
;
3925 /* Get the opcode for a relocation. */
3927 static xtensa_opcode
3928 get_relocation_opcode (bfd
*abfd
,
3931 Elf_Internal_Rela
*irel
)
3933 static xtensa_insnbuf ibuff
= NULL
;
3934 static xtensa_insnbuf sbuff
= NULL
;
3935 xtensa_isa isa
= xtensa_default_isa
;
3939 if (contents
== NULL
)
3940 return XTENSA_UNDEFINED
;
3942 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
3943 return XTENSA_UNDEFINED
;
3947 ibuff
= xtensa_insnbuf_alloc (isa
);
3948 sbuff
= xtensa_insnbuf_alloc (isa
);
3951 /* Decode the instruction. */
3952 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
3953 sec
->size
- irel
->r_offset
);
3954 fmt
= xtensa_format_decode (isa
, ibuff
);
3955 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
3956 if (slot
== XTENSA_UNDEFINED
)
3957 return XTENSA_UNDEFINED
;
3958 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
3959 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
3964 is_l32r_relocation (bfd
*abfd
,
3967 Elf_Internal_Rela
*irel
)
3969 xtensa_opcode opcode
;
3970 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
3972 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
3973 return (opcode
== get_l32r_opcode ());
3977 static bfd_size_type
3978 get_asm_simplify_size (bfd_byte
*contents
,
3979 bfd_size_type content_len
,
3980 bfd_size_type offset
)
3982 bfd_size_type insnlen
, size
= 0;
3984 /* Decode the size of the next two instructions. */
3985 insnlen
= insn_decode_len (contents
, content_len
, offset
);
3991 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
4001 is_alt_relocation (int r_type
)
4003 return (r_type
>= R_XTENSA_SLOT0_ALT
4004 && r_type
<= R_XTENSA_SLOT14_ALT
);
4009 is_operand_relocation (int r_type
)
4019 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
4021 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
4030 #define MIN_INSN_LENGTH 2
4032 /* Return 0 if it fails to decode. */
4035 insn_decode_len (bfd_byte
*contents
,
4036 bfd_size_type content_len
,
4037 bfd_size_type offset
)
4040 xtensa_isa isa
= xtensa_default_isa
;
4042 static xtensa_insnbuf ibuff
= NULL
;
4044 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4048 ibuff
= xtensa_insnbuf_alloc (isa
);
4049 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
4050 content_len
- offset
);
4051 fmt
= xtensa_format_decode (isa
, ibuff
);
4052 if (fmt
== XTENSA_UNDEFINED
)
4054 insn_len
= xtensa_format_length (isa
, fmt
);
4055 if (insn_len
== XTENSA_UNDEFINED
)
4061 /* Decode the opcode for a single slot instruction.
4062 Return 0 if it fails to decode or the instruction is multi-slot. */
4065 insn_decode_opcode (bfd_byte
*contents
,
4066 bfd_size_type content_len
,
4067 bfd_size_type offset
,
4070 xtensa_isa isa
= xtensa_default_isa
;
4072 static xtensa_insnbuf insnbuf
= NULL
;
4073 static xtensa_insnbuf slotbuf
= NULL
;
4075 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4076 return XTENSA_UNDEFINED
;
4078 if (insnbuf
== NULL
)
4080 insnbuf
= xtensa_insnbuf_alloc (isa
);
4081 slotbuf
= xtensa_insnbuf_alloc (isa
);
4084 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4085 content_len
- offset
);
4086 fmt
= xtensa_format_decode (isa
, insnbuf
);
4087 if (fmt
== XTENSA_UNDEFINED
)
4088 return XTENSA_UNDEFINED
;
4090 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
4091 return XTENSA_UNDEFINED
;
4093 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
4094 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
4098 /* The offset is the offset in the contents.
4099 The address is the address of that offset. */
4102 check_branch_target_aligned (bfd_byte
*contents
,
4103 bfd_size_type content_length
,
4107 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
4110 return check_branch_target_aligned_address (address
, insn_len
);
4115 check_loop_aligned (bfd_byte
*contents
,
4116 bfd_size_type content_length
,
4120 bfd_size_type loop_len
, insn_len
;
4121 xtensa_opcode opcode
;
4123 opcode
= insn_decode_opcode (contents
, content_length
, offset
, 0);
4124 if (opcode
== XTENSA_UNDEFINED
4125 || xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) != 1)
4131 loop_len
= insn_decode_len (contents
, content_length
, offset
);
4132 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
4133 if (loop_len
== 0 || insn_len
== 0)
4139 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
4144 check_branch_target_aligned_address (bfd_vma addr
, int len
)
4147 return (addr
% 8 == 0);
4148 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
4152 /* Instruction widening and narrowing. */
4154 /* When FLIX is available we need to access certain instructions only
4155 when they are 16-bit or 24-bit instructions. This table caches
4156 information about such instructions by walking through all the
4157 opcodes and finding the smallest single-slot format into which each
4160 static xtensa_format
*op_single_fmt_table
= NULL
;
4164 init_op_single_format_table (void)
4166 xtensa_isa isa
= xtensa_default_isa
;
4167 xtensa_insnbuf ibuf
;
4168 xtensa_opcode opcode
;
4172 if (op_single_fmt_table
)
4175 ibuf
= xtensa_insnbuf_alloc (isa
);
4176 num_opcodes
= xtensa_isa_num_opcodes (isa
);
4178 op_single_fmt_table
= (xtensa_format
*)
4179 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
4180 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
4182 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
4183 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
4185 if (xtensa_format_num_slots (isa
, fmt
) == 1
4186 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
4188 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
4189 int fmt_length
= xtensa_format_length (isa
, fmt
);
4190 if (old_fmt
== XTENSA_UNDEFINED
4191 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
4192 op_single_fmt_table
[opcode
] = fmt
;
4196 xtensa_insnbuf_free (isa
, ibuf
);
4200 static xtensa_format
4201 get_single_format (xtensa_opcode opcode
)
4203 init_op_single_format_table ();
4204 return op_single_fmt_table
[opcode
];
4208 /* For the set of narrowable instructions we do NOT include the
4209 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4210 involved during linker relaxation that may require these to
4211 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4212 requires special case code to ensure it only works when op1 == op2. */
4220 struct string_pair narrowable
[] =
4223 { "addi", "addi.n" },
4224 { "addmi", "addi.n" },
4225 { "l32i", "l32i.n" },
4226 { "movi", "movi.n" },
4228 { "retw", "retw.n" },
4229 { "s32i", "s32i.n" },
4230 { "or", "mov.n" } /* special case only when op1 == op2 */
4233 struct string_pair widenable
[] =
4236 { "addi", "addi.n" },
4237 { "addmi", "addi.n" },
4238 { "beqz", "beqz.n" },
4239 { "bnez", "bnez.n" },
4240 { "l32i", "l32i.n" },
4241 { "movi", "movi.n" },
4243 { "retw", "retw.n" },
4244 { "s32i", "s32i.n" },
4245 { "or", "mov.n" } /* special case only when op1 == op2 */
4249 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4250 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4251 return the instruction buffer holding the narrow instruction. Otherwise,
4252 return 0. The set of valid narrowing are specified by a string table
4253 but require some special case operand checks in some cases. */
4255 static xtensa_insnbuf
4256 can_narrow_instruction (xtensa_insnbuf slotbuf
,
4258 xtensa_opcode opcode
)
4260 xtensa_isa isa
= xtensa_default_isa
;
4261 xtensa_format o_fmt
;
4264 static xtensa_insnbuf o_insnbuf
= NULL
;
4265 static xtensa_insnbuf o_slotbuf
= NULL
;
4267 if (o_insnbuf
== NULL
)
4269 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4270 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4273 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); opi
++)
4275 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
4277 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
4279 uint32 value
, newval
;
4280 int i
, operand_count
, o_operand_count
;
4281 xtensa_opcode o_opcode
;
4283 /* Address does not matter in this case. We might need to
4284 fix it to handle branches/jumps. */
4285 bfd_vma self_address
= 0;
4287 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
4288 if (o_opcode
== XTENSA_UNDEFINED
)
4290 o_fmt
= get_single_format (o_opcode
);
4291 if (o_fmt
== XTENSA_UNDEFINED
)
4294 if (xtensa_format_length (isa
, fmt
) != 3
4295 || xtensa_format_length (isa
, o_fmt
) != 2)
4298 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4299 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4300 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4302 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4307 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4312 uint32 rawval0
, rawval1
, rawval2
;
4314 if (o_operand_count
+ 1 != operand_count
4315 || xtensa_operand_get_field (isa
, opcode
, 0,
4316 fmt
, 0, slotbuf
, &rawval0
) != 0
4317 || xtensa_operand_get_field (isa
, opcode
, 1,
4318 fmt
, 0, slotbuf
, &rawval1
) != 0
4319 || xtensa_operand_get_field (isa
, opcode
, 2,
4320 fmt
, 0, slotbuf
, &rawval2
) != 0
4321 || rawval1
!= rawval2
4322 || rawval0
== rawval1
/* it is a nop */)
4326 for (i
= 0; i
< o_operand_count
; ++i
)
4328 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
4330 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
4333 /* PC-relative branches need adjustment, but
4334 the PC-rel operand will always have a relocation. */
4336 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4338 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4339 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4344 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4354 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4355 the action in-place directly into the contents and return TRUE. Otherwise,
4356 the return value is FALSE and the contents are not modified. */
4359 narrow_instruction (bfd_byte
*contents
,
4360 bfd_size_type content_length
,
4361 bfd_size_type offset
)
4363 xtensa_opcode opcode
;
4364 bfd_size_type insn_len
;
4365 xtensa_isa isa
= xtensa_default_isa
;
4367 xtensa_insnbuf o_insnbuf
;
4369 static xtensa_insnbuf insnbuf
= NULL
;
4370 static xtensa_insnbuf slotbuf
= NULL
;
4372 if (insnbuf
== NULL
)
4374 insnbuf
= xtensa_insnbuf_alloc (isa
);
4375 slotbuf
= xtensa_insnbuf_alloc (isa
);
4378 BFD_ASSERT (offset
< content_length
);
4380 if (content_length
< 2)
4383 /* We will hand-code a few of these for a little while.
4384 These have all been specified in the assembler aleady. */
4385 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4386 content_length
- offset
);
4387 fmt
= xtensa_format_decode (isa
, insnbuf
);
4388 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4391 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4394 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4395 if (opcode
== XTENSA_UNDEFINED
)
4397 insn_len
= xtensa_format_length (isa
, fmt
);
4398 if (insn_len
> content_length
)
4401 o_insnbuf
= can_narrow_instruction (slotbuf
, fmt
, opcode
);
4404 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4405 content_length
- offset
);
4413 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4414 "density" instruction to a standard 3-byte instruction. If it is valid,
4415 return the instruction buffer holding the wide instruction. Otherwise,
4416 return 0. The set of valid widenings are specified by a string table
4417 but require some special case operand checks in some cases. */
4419 static xtensa_insnbuf
4420 can_widen_instruction (xtensa_insnbuf slotbuf
,
4422 xtensa_opcode opcode
)
4424 xtensa_isa isa
= xtensa_default_isa
;
4425 xtensa_format o_fmt
;
4428 static xtensa_insnbuf o_insnbuf
= NULL
;
4429 static xtensa_insnbuf o_slotbuf
= NULL
;
4431 if (o_insnbuf
== NULL
)
4433 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4434 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4437 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); opi
++)
4439 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
4440 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
4441 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
4443 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
4445 uint32 value
, newval
;
4446 int i
, operand_count
, o_operand_count
, check_operand_count
;
4447 xtensa_opcode o_opcode
;
4449 /* Address does not matter in this case. We might need to fix it
4450 to handle branches/jumps. */
4451 bfd_vma self_address
= 0;
4453 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
4454 if (o_opcode
== XTENSA_UNDEFINED
)
4456 o_fmt
= get_single_format (o_opcode
);
4457 if (o_fmt
== XTENSA_UNDEFINED
)
4460 if (xtensa_format_length (isa
, fmt
) != 2
4461 || xtensa_format_length (isa
, o_fmt
) != 3)
4464 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4465 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4466 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4467 check_operand_count
= o_operand_count
;
4469 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4474 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4479 uint32 rawval0
, rawval1
;
4481 if (o_operand_count
!= operand_count
+ 1
4482 || xtensa_operand_get_field (isa
, opcode
, 0,
4483 fmt
, 0, slotbuf
, &rawval0
) != 0
4484 || xtensa_operand_get_field (isa
, opcode
, 1,
4485 fmt
, 0, slotbuf
, &rawval1
) != 0
4486 || rawval0
== rawval1
/* it is a nop */)
4490 check_operand_count
--;
4492 for (i
= 0; i
< check_operand_count
; i
++)
4495 if (is_or
&& i
== o_operand_count
- 1)
4497 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
4499 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
4502 /* PC-relative branches need adjustment, but
4503 the PC-rel operand will always have a relocation. */
4505 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4507 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4508 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4513 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4523 /* Attempt to widen an instruction. If the widening is valid, perform
4524 the action in-place directly into the contents and return TRUE. Otherwise,
4525 the return value is FALSE and the contents are not modified. */
4528 widen_instruction (bfd_byte
*contents
,
4529 bfd_size_type content_length
,
4530 bfd_size_type offset
)
4532 xtensa_opcode opcode
;
4533 bfd_size_type insn_len
;
4534 xtensa_isa isa
= xtensa_default_isa
;
4536 xtensa_insnbuf o_insnbuf
;
4538 static xtensa_insnbuf insnbuf
= NULL
;
4539 static xtensa_insnbuf slotbuf
= NULL
;
4541 if (insnbuf
== NULL
)
4543 insnbuf
= xtensa_insnbuf_alloc (isa
);
4544 slotbuf
= xtensa_insnbuf_alloc (isa
);
4547 BFD_ASSERT (offset
< content_length
);
4549 if (content_length
< 2)
4552 /* We will hand-code a few of these for a little while.
4553 These have all been specified in the assembler aleady. */
4554 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4555 content_length
- offset
);
4556 fmt
= xtensa_format_decode (isa
, insnbuf
);
4557 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4560 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4563 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4564 if (opcode
== XTENSA_UNDEFINED
)
4566 insn_len
= xtensa_format_length (isa
, fmt
);
4567 if (insn_len
> content_length
)
4570 o_insnbuf
= can_widen_instruction (slotbuf
, fmt
, opcode
);
4573 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4574 content_length
- offset
);
4581 /* Code for transforming CALLs at link-time. */
4583 static bfd_reloc_status_type
4584 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
4586 bfd_vma content_length
,
4587 char **error_message
)
4589 static xtensa_insnbuf insnbuf
= NULL
;
4590 static xtensa_insnbuf slotbuf
= NULL
;
4591 xtensa_format core_format
= XTENSA_UNDEFINED
;
4592 xtensa_opcode opcode
;
4593 xtensa_opcode direct_call_opcode
;
4594 xtensa_isa isa
= xtensa_default_isa
;
4595 bfd_byte
*chbuf
= contents
+ address
;
4598 if (insnbuf
== NULL
)
4600 insnbuf
= xtensa_insnbuf_alloc (isa
);
4601 slotbuf
= xtensa_insnbuf_alloc (isa
);
4604 if (content_length
< address
)
4606 *error_message
= _("attempt to convert L32R/CALLX to CALL failed");
4607 return bfd_reloc_other
;
4610 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
4611 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
4612 if (direct_call_opcode
== XTENSA_UNDEFINED
)
4614 *error_message
= _("attempt to convert L32R/CALLX to CALL failed");
4615 return bfd_reloc_other
;
4618 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4619 core_format
= xtensa_format_lookup (isa
, "x24");
4620 opcode
= xtensa_opcode_lookup (isa
, "or");
4621 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
4622 for (opn
= 0; opn
< 3; opn
++)
4625 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
4626 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
4629 xtensa_format_encode (isa
, core_format
, insnbuf
);
4630 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4631 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
4633 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4634 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
4635 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
4637 xtensa_format_encode (isa
, core_format
, insnbuf
);
4638 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4639 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
4640 content_length
- address
- 3);
4642 return bfd_reloc_ok
;
4646 static bfd_reloc_status_type
4647 contract_asm_expansion (bfd_byte
*contents
,
4648 bfd_vma content_length
,
4649 Elf_Internal_Rela
*irel
,
4650 char **error_message
)
4652 bfd_reloc_status_type retval
=
4653 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
4656 if (retval
!= bfd_reloc_ok
)
4657 return bfd_reloc_dangerous
;
4659 /* Update the irel->r_offset field so that the right immediate and
4660 the right instruction are modified during the relocation. */
4661 irel
->r_offset
+= 3;
4662 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
4663 return bfd_reloc_ok
;
4667 static xtensa_opcode
4668 swap_callx_for_call_opcode (xtensa_opcode opcode
)
4670 init_call_opcodes ();
4672 if (opcode
== callx0_op
) return call0_op
;
4673 if (opcode
== callx4_op
) return call4_op
;
4674 if (opcode
== callx8_op
) return call8_op
;
4675 if (opcode
== callx12_op
) return call12_op
;
4677 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4678 return XTENSA_UNDEFINED
;
4682 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4683 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4684 If not, return XTENSA_UNDEFINED. */
4686 #define L32R_TARGET_REG_OPERAND 0
4687 #define CONST16_TARGET_REG_OPERAND 0
4688 #define CALLN_SOURCE_OPERAND 0
4690 static xtensa_opcode
4691 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
4693 static xtensa_insnbuf insnbuf
= NULL
;
4694 static xtensa_insnbuf slotbuf
= NULL
;
4696 xtensa_opcode opcode
;
4697 xtensa_isa isa
= xtensa_default_isa
;
4698 uint32 regno
, const16_regno
, call_regno
;
4701 if (insnbuf
== NULL
)
4703 insnbuf
= xtensa_insnbuf_alloc (isa
);
4704 slotbuf
= xtensa_insnbuf_alloc (isa
);
4707 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
4708 fmt
= xtensa_format_decode (isa
, insnbuf
);
4709 if (fmt
== XTENSA_UNDEFINED
4710 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4711 return XTENSA_UNDEFINED
;
4713 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4714 if (opcode
== XTENSA_UNDEFINED
)
4715 return XTENSA_UNDEFINED
;
4717 if (opcode
== get_l32r_opcode ())
4720 *p_uses_l32r
= TRUE
;
4721 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4722 fmt
, 0, slotbuf
, ®no
)
4723 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4725 return XTENSA_UNDEFINED
;
4727 else if (opcode
== get_const16_opcode ())
4730 *p_uses_l32r
= FALSE
;
4731 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4732 fmt
, 0, slotbuf
, ®no
)
4733 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4735 return XTENSA_UNDEFINED
;
4737 /* Check that the next instruction is also CONST16. */
4738 offset
+= xtensa_format_length (isa
, fmt
);
4739 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4740 fmt
= xtensa_format_decode (isa
, insnbuf
);
4741 if (fmt
== XTENSA_UNDEFINED
4742 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4743 return XTENSA_UNDEFINED
;
4744 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4745 if (opcode
!= get_const16_opcode ())
4746 return XTENSA_UNDEFINED
;
4748 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4749 fmt
, 0, slotbuf
, &const16_regno
)
4750 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4752 || const16_regno
!= regno
)
4753 return XTENSA_UNDEFINED
;
4756 return XTENSA_UNDEFINED
;
4758 /* Next instruction should be an CALLXn with operand 0 == regno. */
4759 offset
+= xtensa_format_length (isa
, fmt
);
4760 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4761 fmt
= xtensa_format_decode (isa
, insnbuf
);
4762 if (fmt
== XTENSA_UNDEFINED
4763 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4764 return XTENSA_UNDEFINED
;
4765 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4766 if (opcode
== XTENSA_UNDEFINED
4767 || !is_indirect_call_opcode (opcode
))
4768 return XTENSA_UNDEFINED
;
4770 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4771 fmt
, 0, slotbuf
, &call_regno
)
4772 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4774 return XTENSA_UNDEFINED
;
4776 if (call_regno
!= regno
)
4777 return XTENSA_UNDEFINED
;
4783 /* Data structures used during relaxation. */
4785 /* r_reloc: relocation values. */
4787 /* Through the relaxation process, we need to keep track of the values
4788 that will result from evaluating relocations. The standard ELF
4789 relocation structure is not sufficient for this purpose because we're
4790 operating on multiple input files at once, so we need to know which
4791 input file a relocation refers to. The r_reloc structure thus
4792 records both the input file (bfd) and ELF relocation.
4794 For efficiency, an r_reloc also contains a "target_offset" field to
4795 cache the target-section-relative offset value that is represented by
4798 The r_reloc also contains a virtual offset that allows multiple
4799 inserted literals to be placed at the same "address" with
4800 different offsets. */
4802 typedef struct r_reloc_struct r_reloc
;
4804 struct r_reloc_struct
4807 Elf_Internal_Rela rela
;
4808 bfd_vma target_offset
;
4809 bfd_vma virtual_offset
;
4813 /* The r_reloc structure is included by value in literal_value, but not
4814 every literal_value has an associated relocation -- some are simple
4815 constants. In such cases, we set all the fields in the r_reloc
4816 struct to zero. The r_reloc_is_const function should be used to
4817 detect this case. */
4820 r_reloc_is_const (const r_reloc
*r_rel
)
4822 return (r_rel
->abfd
== NULL
);
4827 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4829 bfd_vma target_offset
;
4830 unsigned long r_symndx
;
4832 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4833 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4834 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4835 return (target_offset
+ r_rel
->rela
.r_addend
);
4839 static struct elf_link_hash_entry
*
4840 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4842 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4843 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4848 r_reloc_get_section (const r_reloc
*r_rel
)
4850 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4851 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4856 r_reloc_is_defined (const r_reloc
*r_rel
)
4862 sec
= r_reloc_get_section (r_rel
);
4863 if (sec
== bfd_abs_section_ptr
4864 || sec
== bfd_com_section_ptr
4865 || sec
== bfd_und_section_ptr
)
4872 r_reloc_init (r_reloc
*r_rel
,
4874 Elf_Internal_Rela
*irel
,
4876 bfd_size_type content_length
)
4879 reloc_howto_type
*howto
;
4883 r_rel
->rela
= *irel
;
4885 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4886 r_rel
->virtual_offset
= 0;
4887 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4888 howto
= &elf_howto_table
[r_type
];
4889 if (howto
->partial_inplace
)
4891 bfd_vma inplace_val
;
4892 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4894 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4895 r_rel
->target_offset
+= inplace_val
;
4899 memset (r_rel
, 0, sizeof (r_reloc
));
4906 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4908 if (r_reloc_is_defined (r_rel
))
4910 asection
*sec
= r_reloc_get_section (r_rel
);
4911 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4913 else if (r_reloc_get_hash_entry (r_rel
))
4914 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4916 fprintf (fp
, " ?? + ");
4918 fprintf_vma (fp
, r_rel
->target_offset
);
4919 if (r_rel
->virtual_offset
)
4921 fprintf (fp
, " + ");
4922 fprintf_vma (fp
, r_rel
->virtual_offset
);
4931 /* source_reloc: relocations that reference literals. */
4933 /* To determine whether literals can be coalesced, we need to first
4934 record all the relocations that reference the literals. The
4935 source_reloc structure below is used for this purpose. The
4936 source_reloc entries are kept in a per-literal-section array, sorted
4937 by offset within the literal section (i.e., target offset).
4939 The source_sec and r_rel.rela.r_offset fields identify the source of
4940 the relocation. The r_rel field records the relocation value, i.e.,
4941 the offset of the literal being referenced. The opnd field is needed
4942 to determine the range of the immediate field to which the relocation
4943 applies, so we can determine whether another literal with the same
4944 value is within range. The is_null field is true when the relocation
4945 is being removed (e.g., when an L32R is being removed due to a CALLX
4946 that is converted to a direct CALL). */
4948 typedef struct source_reloc_struct source_reloc
;
4950 struct source_reloc_struct
4952 asection
*source_sec
;
4954 xtensa_opcode opcode
;
4956 bfd_boolean is_null
;
4957 bfd_boolean is_abs_literal
;
4962 init_source_reloc (source_reloc
*reloc
,
4963 asection
*source_sec
,
4964 const r_reloc
*r_rel
,
4965 xtensa_opcode opcode
,
4967 bfd_boolean is_abs_literal
)
4969 reloc
->source_sec
= source_sec
;
4970 reloc
->r_rel
= *r_rel
;
4971 reloc
->opcode
= opcode
;
4973 reloc
->is_null
= FALSE
;
4974 reloc
->is_abs_literal
= is_abs_literal
;
4978 /* Find the source_reloc for a particular source offset and relocation
4979 type. Note that the array is sorted by _target_ offset, so this is
4980 just a linear search. */
4982 static source_reloc
*
4983 find_source_reloc (source_reloc
*src_relocs
,
4986 Elf_Internal_Rela
*irel
)
4990 for (i
= 0; i
< src_count
; i
++)
4992 if (src_relocs
[i
].source_sec
== sec
4993 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
4994 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
4995 == ELF32_R_TYPE (irel
->r_info
)))
4996 return &src_relocs
[i
];
5004 source_reloc_compare (const void *ap
, const void *bp
)
5006 const source_reloc
*a
= (const source_reloc
*) ap
;
5007 const source_reloc
*b
= (const source_reloc
*) bp
;
5009 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
5010 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
5012 /* We don't need to sort on these criteria for correctness,
5013 but enforcing a more strict ordering prevents unstable qsort
5014 from behaving differently with different implementations.
5015 Without the code below we get correct but different results
5016 on Solaris 2.7 and 2.8. We would like to always produce the
5017 same results no matter the host. */
5019 if ((!a
->is_null
) - (!b
->is_null
))
5020 return ((!a
->is_null
) - (!b
->is_null
));
5021 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
5025 /* Literal values and value hash tables. */
5027 /* Literals with the same value can be coalesced. The literal_value
5028 structure records the value of a literal: the "r_rel" field holds the
5029 information from the relocation on the literal (if there is one) and
5030 the "value" field holds the contents of the literal word itself.
5032 The value_map structure records a literal value along with the
5033 location of a literal holding that value. The value_map hash table
5034 is indexed by the literal value, so that we can quickly check if a
5035 particular literal value has been seen before and is thus a candidate
5038 typedef struct literal_value_struct literal_value
;
5039 typedef struct value_map_struct value_map
;
5040 typedef struct value_map_hash_table_struct value_map_hash_table
;
5042 struct literal_value_struct
5045 unsigned long value
;
5046 bfd_boolean is_abs_literal
;
5049 struct value_map_struct
5051 literal_value val
; /* The literal value. */
5052 r_reloc loc
; /* Location of the literal. */
5056 struct value_map_hash_table_struct
5058 unsigned bucket_count
;
5059 value_map
**buckets
;
5061 bfd_boolean has_last_loc
;
5067 init_literal_value (literal_value
*lit
,
5068 const r_reloc
*r_rel
,
5069 unsigned long value
,
5070 bfd_boolean is_abs_literal
)
5072 lit
->r_rel
= *r_rel
;
5074 lit
->is_abs_literal
= is_abs_literal
;
5079 literal_value_equal (const literal_value
*src1
,
5080 const literal_value
*src2
,
5081 bfd_boolean final_static_link
)
5083 struct elf_link_hash_entry
*h1
, *h2
;
5085 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
5088 if (r_reloc_is_const (&src1
->r_rel
))
5089 return (src1
->value
== src2
->value
);
5091 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
5092 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
5095 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
5098 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
5101 if (src1
->value
!= src2
->value
)
5104 /* Now check for the same section (if defined) or the same elf_hash
5105 (if undefined or weak). */
5106 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
5107 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
5108 if (r_reloc_is_defined (&src1
->r_rel
)
5109 && (final_static_link
5110 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
5111 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
5113 if (r_reloc_get_section (&src1
->r_rel
)
5114 != r_reloc_get_section (&src2
->r_rel
))
5119 /* Require that the hash entries (i.e., symbols) be identical. */
5120 if (h1
!= h2
|| h1
== 0)
5124 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
5131 /* Must be power of 2. */
5132 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5134 static value_map_hash_table
*
5135 value_map_hash_table_init (void)
5137 value_map_hash_table
*values
;
5139 values
= (value_map_hash_table
*)
5140 bfd_zmalloc (sizeof (value_map_hash_table
));
5141 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
5143 values
->buckets
= (value_map
**)
5144 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
5145 if (values
->buckets
== NULL
)
5150 values
->has_last_loc
= FALSE
;
5157 value_map_hash_table_delete (value_map_hash_table
*table
)
5159 free (table
->buckets
);
5165 hash_bfd_vma (bfd_vma val
)
5167 return (val
>> 2) + (val
>> 10);
5172 literal_value_hash (const literal_value
*src
)
5176 hash_val
= hash_bfd_vma (src
->value
);
5177 if (!r_reloc_is_const (&src
->r_rel
))
5181 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
5182 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
5183 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
5185 /* Now check for the same section and the same elf_hash. */
5186 if (r_reloc_is_defined (&src
->r_rel
))
5187 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
5189 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
5190 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
5196 /* Check if the specified literal_value has been seen before. */
5199 value_map_get_cached_value (value_map_hash_table
*map
,
5200 const literal_value
*val
,
5201 bfd_boolean final_static_link
)
5207 idx
= literal_value_hash (val
);
5208 idx
= idx
& (map
->bucket_count
- 1);
5209 bucket
= map
->buckets
[idx
];
5210 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
5212 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
5219 /* Record a new literal value. It is illegal to call this if VALUE
5220 already has an entry here. */
5223 add_value_map (value_map_hash_table
*map
,
5224 const literal_value
*val
,
5226 bfd_boolean final_static_link
)
5228 value_map
**bucket_p
;
5231 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
5234 bfd_set_error (bfd_error_no_memory
);
5238 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
5242 idx
= literal_value_hash (val
);
5243 idx
= idx
& (map
->bucket_count
- 1);
5244 bucket_p
= &map
->buckets
[idx
];
5246 val_e
->next
= *bucket_p
;
5249 /* FIXME: Consider resizing the hash table if we get too many entries. */
5255 /* Lists of text actions (ta_) for narrowing, widening, longcall
5256 conversion, space fill, code & literal removal, etc. */
5258 /* The following text actions are generated:
5260 "ta_remove_insn" remove an instruction or instructions
5261 "ta_remove_longcall" convert longcall to call
5262 "ta_convert_longcall" convert longcall to nop/call
5263 "ta_narrow_insn" narrow a wide instruction
5264 "ta_widen" widen a narrow instruction
5265 "ta_fill" add fill or remove fill
5266 removed < 0 is a fill; branches to the fill address will be
5267 changed to address + fill size (e.g., address - removed)
5268 removed >= 0 branches to the fill address will stay unchanged
5269 "ta_remove_literal" remove a literal; this action is
5270 indicated when a literal is removed
5272 "ta_add_literal" insert a new literal; this action is
5273 indicated when a literal has been moved.
5274 It may use a virtual_offset because
5275 multiple literals can be placed at the
5278 For each of these text actions, we also record the number of bytes
5279 removed by performing the text action. In the case of a "ta_widen"
5280 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5282 typedef struct text_action_struct text_action
;
5283 typedef struct text_action_list_struct text_action_list
;
5284 typedef enum text_action_enum_t text_action_t
;
5286 enum text_action_enum_t
5289 ta_remove_insn
, /* removed = -size */
5290 ta_remove_longcall
, /* removed = -size */
5291 ta_convert_longcall
, /* removed = 0 */
5292 ta_narrow_insn
, /* removed = -1 */
5293 ta_widen_insn
, /* removed = +1 */
5294 ta_fill
, /* removed = +size */
5300 /* Structure for a text action record. */
5301 struct text_action_struct
5303 text_action_t action
;
5304 asection
*sec
; /* Optional */
5306 bfd_vma virtual_offset
; /* Zero except for adding literals. */
5308 literal_value value
; /* Only valid when adding literals. */
5311 struct removal_by_action_entry_struct
5316 int eq_removed_before_fill
;
5318 typedef struct removal_by_action_entry_struct removal_by_action_entry
;
5320 struct removal_by_action_map_struct
5323 removal_by_action_entry
*entry
;
5325 typedef struct removal_by_action_map_struct removal_by_action_map
;
5328 /* List of all of the actions taken on a text section. */
5329 struct text_action_list_struct
5333 removal_by_action_map map
;
5337 static text_action
*
5338 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
5342 /* It is not necessary to fill at the end of a section. */
5343 if (sec
->size
== offset
)
5349 splay_tree_node node
= splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
);
5351 return (text_action
*)node
->value
;
5357 compute_removed_action_diff (const text_action
*ta
,
5361 int removable_space
)
5364 int current_removed
= 0;
5367 current_removed
= ta
->removed_bytes
;
5369 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
5370 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
5372 /* It is not necessary to fill at the end of a section. Clean this up. */
5373 if (sec
->size
== offset
)
5374 new_removed
= removable_space
- 0;
5378 int added
= -removed
- current_removed
;
5379 /* Ignore multiples of the section alignment. */
5380 added
= ((1 << sec
->alignment_power
) - 1) & added
;
5381 new_removed
= (-added
);
5383 /* Modify for removable. */
5384 space
= removable_space
- new_removed
;
5385 new_removed
= (removable_space
5386 - (((1 << sec
->alignment_power
) - 1) & space
));
5388 return (new_removed
- current_removed
);
5393 adjust_fill_action (text_action
*ta
, int fill_diff
)
5395 ta
->removed_bytes
+= fill_diff
;
5400 text_action_compare (splay_tree_key a
, splay_tree_key b
)
5402 text_action
*pa
= (text_action
*)a
;
5403 text_action
*pb
= (text_action
*)b
;
5404 static const int action_priority
[] =
5408 [ta_convert_longcall
] = 2,
5409 [ta_narrow_insn
] = 3,
5410 [ta_remove_insn
] = 4,
5411 [ta_remove_longcall
] = 5,
5412 [ta_remove_literal
] = 6,
5413 [ta_widen_insn
] = 7,
5414 [ta_add_literal
] = 8,
5417 if (pa
->offset
== pb
->offset
)
5419 if (pa
->action
== pb
->action
)
5421 return action_priority
[pa
->action
] - action_priority
[pb
->action
];
5424 return pa
->offset
< pb
->offset
? -1 : 1;
5427 static text_action
*
5428 action_first (text_action_list
*action_list
)
5430 splay_tree_node node
= splay_tree_min (action_list
->tree
);
5431 return node
? (text_action
*)node
->value
: NULL
;
5434 static text_action
*
5435 action_next (text_action_list
*action_list
, text_action
*action
)
5437 splay_tree_node node
= splay_tree_successor (action_list
->tree
,
5438 (splay_tree_key
)action
);
5439 return node
? (text_action
*)node
->value
: NULL
;
5442 /* Add a modification action to the text. For the case of adding or
5443 removing space, modify any current fill and assume that
5444 "unreachable_space" bytes can be freely contracted. Note that a
5445 negative removed value is a fill. */
5448 text_action_add (text_action_list
*l
,
5449 text_action_t action
,
5457 /* It is not necessary to fill at the end of a section. */
5458 if (action
== ta_fill
&& sec
->size
== offset
)
5461 /* It is not necessary to fill 0 bytes. */
5462 if (action
== ta_fill
&& removed
== 0)
5468 if (action
== ta_fill
)
5470 splay_tree_node node
= splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
);
5474 ta
= (text_action
*)node
->value
;
5475 ta
->removed_bytes
+= removed
;
5480 BFD_ASSERT (splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
) == NULL
);
5482 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5483 ta
->action
= action
;
5485 ta
->offset
= offset
;
5486 ta
->removed_bytes
= removed
;
5487 splay_tree_insert (l
->tree
, (splay_tree_key
)ta
, (splay_tree_value
)ta
);
5493 text_action_add_literal (text_action_list
*l
,
5494 text_action_t action
,
5496 const literal_value
*value
,
5500 asection
*sec
= r_reloc_get_section (loc
);
5501 bfd_vma offset
= loc
->target_offset
;
5502 bfd_vma virtual_offset
= loc
->virtual_offset
;
5504 BFD_ASSERT (action
== ta_add_literal
);
5506 /* Create a new record and fill it up. */
5507 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5508 ta
->action
= action
;
5510 ta
->offset
= offset
;
5511 ta
->virtual_offset
= virtual_offset
;
5513 ta
->removed_bytes
= removed
;
5515 BFD_ASSERT (splay_tree_lookup (l
->tree
, (splay_tree_key
)ta
) == NULL
);
5516 splay_tree_insert (l
->tree
, (splay_tree_key
)ta
, (splay_tree_value
)ta
);
5521 /* Find the total offset adjustment for the relaxations specified by
5522 text_actions, beginning from a particular starting action. This is
5523 typically used from offset_with_removed_text to search an entire list of
5524 actions, but it may also be called directly when adjusting adjacent offsets
5525 so that each search may begin where the previous one left off. */
5528 removed_by_actions (text_action_list
*action_list
,
5529 text_action
**p_start_action
,
5531 bfd_boolean before_fill
)
5536 r
= *p_start_action
;
5539 splay_tree_node node
= splay_tree_lookup (action_list
->tree
,
5541 BFD_ASSERT (node
!= NULL
&& r
== (text_action
*)node
->value
);
5546 if (r
->offset
> offset
)
5549 if (r
->offset
== offset
5550 && (before_fill
|| r
->action
!= ta_fill
|| r
->removed_bytes
>= 0))
5553 removed
+= r
->removed_bytes
;
5555 r
= action_next (action_list
, r
);
5558 *p_start_action
= r
;
5564 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
5566 text_action
*r
= action_first (action_list
);
5568 return offset
- removed_by_actions (action_list
, &r
, offset
, FALSE
);
5573 action_list_count (text_action_list
*action_list
)
5575 return action_list
->count
;
5578 typedef struct map_action_fn_context_struct map_action_fn_context
;
5579 struct map_action_fn_context_struct
5582 removal_by_action_map map
;
5583 bfd_boolean eq_complete
;
5587 map_action_fn (splay_tree_node node
, void *p
)
5589 map_action_fn_context
*ctx
= p
;
5590 text_action
*r
= (text_action
*)node
->value
;
5591 removal_by_action_entry
*ientry
= ctx
->map
.entry
+ ctx
->map
.n_entries
;
5593 if (ctx
->map
.n_entries
&& (ientry
- 1)->offset
== r
->offset
)
5599 ++ctx
->map
.n_entries
;
5600 ctx
->eq_complete
= FALSE
;
5601 ientry
->offset
= r
->offset
;
5602 ientry
->eq_removed_before_fill
= ctx
->removed
;
5605 if (!ctx
->eq_complete
)
5607 if (r
->action
!= ta_fill
|| r
->removed_bytes
>= 0)
5609 ientry
->eq_removed
= ctx
->removed
;
5610 ctx
->eq_complete
= TRUE
;
5613 ientry
->eq_removed
= ctx
->removed
+ r
->removed_bytes
;
5616 ctx
->removed
+= r
->removed_bytes
;
5617 ientry
->removed
= ctx
->removed
;
5622 map_removal_by_action (text_action_list
*action_list
)
5624 map_action_fn_context ctx
;
5627 ctx
.map
.n_entries
= 0;
5628 ctx
.map
.entry
= bfd_malloc (action_list_count (action_list
) *
5629 sizeof (removal_by_action_entry
));
5630 ctx
.eq_complete
= FALSE
;
5632 splay_tree_foreach (action_list
->tree
, map_action_fn
, &ctx
);
5633 action_list
->map
= ctx
.map
;
5637 removed_by_actions_map (text_action_list
*action_list
, bfd_vma offset
,
5638 bfd_boolean before_fill
)
5642 if (!action_list
->map
.entry
)
5643 map_removal_by_action (action_list
);
5645 if (!action_list
->map
.n_entries
)
5649 b
= action_list
->map
.n_entries
;
5653 unsigned c
= (a
+ b
) / 2;
5655 if (action_list
->map
.entry
[c
].offset
<= offset
)
5661 if (action_list
->map
.entry
[a
].offset
< offset
)
5663 return action_list
->map
.entry
[a
].removed
;
5665 else if (action_list
->map
.entry
[a
].offset
== offset
)
5667 return before_fill
?
5668 action_list
->map
.entry
[a
].eq_removed_before_fill
:
5669 action_list
->map
.entry
[a
].eq_removed
;
5678 offset_with_removed_text_map (text_action_list
*action_list
, bfd_vma offset
)
5680 int removed
= removed_by_actions_map (action_list
, offset
, FALSE
);
5681 return offset
- removed
;
5685 /* The find_insn_action routine will only find non-fill actions. */
5687 static text_action
*
5688 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
5690 static const text_action_t action
[] =
5692 ta_convert_longcall
,
5702 for (i
= 0; i
< sizeof (action
) / sizeof (*action
); ++i
)
5704 splay_tree_node node
;
5706 a
.action
= action
[i
];
5707 node
= splay_tree_lookup (action_list
->tree
, (splay_tree_key
)&a
);
5709 return (text_action
*)node
->value
;
5718 print_action (FILE *fp
, text_action
*r
)
5720 const char *t
= "unknown";
5723 case ta_remove_insn
:
5724 t
= "remove_insn"; break;
5725 case ta_remove_longcall
:
5726 t
= "remove_longcall"; break;
5727 case ta_convert_longcall
:
5728 t
= "convert_longcall"; break;
5729 case ta_narrow_insn
:
5730 t
= "narrow_insn"; break;
5732 t
= "widen_insn"; break;
5737 case ta_remove_literal
:
5738 t
= "remove_literal"; break;
5739 case ta_add_literal
:
5740 t
= "add_literal"; break;
5743 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
5744 r
->sec
->owner
->filename
,
5745 r
->sec
->name
, (unsigned long) r
->offset
, t
, r
->removed_bytes
);
5749 print_action_list_fn (splay_tree_node node
, void *p
)
5751 text_action
*r
= (text_action
*)node
->value
;
5753 print_action (p
, r
);
5758 print_action_list (FILE *fp
, text_action_list
*action_list
)
5760 fprintf (fp
, "Text Action\n");
5761 splay_tree_foreach (action_list
->tree
, print_action_list_fn
, fp
);
5767 /* Lists of literals being coalesced or removed. */
5769 /* In the usual case, the literal identified by "from" is being
5770 coalesced with another literal identified by "to". If the literal is
5771 unused and is being removed altogether, "to.abfd" will be NULL.
5772 The removed_literal entries are kept on a per-section list, sorted
5773 by the "from" offset field. */
5775 typedef struct removed_literal_struct removed_literal
;
5776 typedef struct removed_literal_map_entry_struct removed_literal_map_entry
;
5777 typedef struct removed_literal_list_struct removed_literal_list
;
5779 struct removed_literal_struct
5783 removed_literal
*next
;
5786 struct removed_literal_map_entry_struct
5789 removed_literal
*literal
;
5792 struct removed_literal_list_struct
5794 removed_literal
*head
;
5795 removed_literal
*tail
;
5798 removed_literal_map_entry
*map
;
5802 /* Record that the literal at "from" is being removed. If "to" is not
5803 NULL, the "from" literal is being coalesced with the "to" literal. */
5806 add_removed_literal (removed_literal_list
*removed_list
,
5807 const r_reloc
*from
,
5810 removed_literal
*r
, *new_r
, *next_r
;
5812 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
5814 new_r
->from
= *from
;
5818 new_r
->to
.abfd
= NULL
;
5821 r
= removed_list
->head
;
5824 removed_list
->head
= new_r
;
5825 removed_list
->tail
= new_r
;
5827 /* Special check for common case of append. */
5828 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
5830 removed_list
->tail
->next
= new_r
;
5831 removed_list
->tail
= new_r
;
5835 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
5841 new_r
->next
= next_r
;
5843 removed_list
->tail
= new_r
;
5848 map_removed_literal (removed_literal_list
*removed_list
)
5852 removed_literal_map_entry
*map
= NULL
;
5853 removed_literal
*r
= removed_list
->head
;
5855 for (i
= 0; r
; ++i
, r
= r
->next
)
5859 n_map
= (n_map
* 2) + 2;
5860 map
= bfd_realloc (map
, n_map
* sizeof (*map
));
5862 map
[i
].addr
= r
->from
.target_offset
;
5865 removed_list
->map
= map
;
5866 removed_list
->n_map
= i
;
5870 removed_literal_compare (const void *a
, const void *b
)
5872 const removed_literal_map_entry
*pa
= a
;
5873 const removed_literal_map_entry
*pb
= b
;
5875 if (pa
->addr
== pb
->addr
)
5878 return pa
->addr
< pb
->addr
? -1 : 1;
5881 /* Check if the list of removed literals contains an entry for the
5882 given address. Return the entry if found. */
5884 static removed_literal
*
5885 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
5887 removed_literal_map_entry
*p
;
5888 removed_literal
*r
= NULL
;
5890 if (removed_list
->map
== NULL
)
5891 map_removed_literal (removed_list
);
5893 p
= bsearch (&addr
, removed_list
->map
, removed_list
->n_map
,
5894 sizeof (*removed_list
->map
), removed_literal_compare
);
5897 while (p
!= removed_list
->map
&& (p
- 1)->addr
== addr
)
5908 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
5911 r
= removed_list
->head
;
5913 fprintf (fp
, "Removed Literals\n");
5914 for (; r
!= NULL
; r
= r
->next
)
5916 print_r_reloc (fp
, &r
->from
);
5917 fprintf (fp
, " => ");
5918 if (r
->to
.abfd
== NULL
)
5919 fprintf (fp
, "REMOVED");
5921 print_r_reloc (fp
, &r
->to
);
5929 /* Per-section data for relaxation. */
5931 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
5933 struct xtensa_relax_info_struct
5935 bfd_boolean is_relaxable_literal_section
;
5936 bfd_boolean is_relaxable_asm_section
;
5937 int visited
; /* Number of times visited. */
5939 source_reloc
*src_relocs
; /* Array[src_count]. */
5941 int src_next
; /* Next src_relocs entry to assign. */
5943 removed_literal_list removed_list
;
5944 text_action_list action_list
;
5946 reloc_bfd_fix
*fix_list
;
5947 reloc_bfd_fix
*fix_array
;
5948 unsigned fix_array_count
;
5950 /* Support for expanding the reloc array that is stored
5951 in the section structure. If the relocations have been
5952 reallocated, the newly allocated relocations will be referenced
5953 here along with the actual size allocated. The relocation
5954 count will always be found in the section structure. */
5955 Elf_Internal_Rela
*allocated_relocs
;
5956 unsigned relocs_count
;
5957 unsigned allocated_relocs_count
;
5960 struct elf_xtensa_section_data
5962 struct bfd_elf_section_data elf
;
5963 xtensa_relax_info relax_info
;
5968 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
5970 if (!sec
->used_by_bfd
)
5972 struct elf_xtensa_section_data
*sdata
;
5973 bfd_size_type amt
= sizeof (*sdata
);
5975 sdata
= bfd_zalloc (abfd
, amt
);
5978 sec
->used_by_bfd
= sdata
;
5981 return _bfd_elf_new_section_hook (abfd
, sec
);
5985 static xtensa_relax_info
*
5986 get_xtensa_relax_info (asection
*sec
)
5988 struct elf_xtensa_section_data
*section_data
;
5990 /* No info available if no section or if it is an output section. */
5991 if (!sec
|| sec
== sec
->output_section
)
5994 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5995 return §ion_data
->relax_info
;
6000 init_xtensa_relax_info (asection
*sec
)
6002 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6004 relax_info
->is_relaxable_literal_section
= FALSE
;
6005 relax_info
->is_relaxable_asm_section
= FALSE
;
6006 relax_info
->visited
= 0;
6008 relax_info
->src_relocs
= NULL
;
6009 relax_info
->src_count
= 0;
6010 relax_info
->src_next
= 0;
6012 relax_info
->removed_list
.head
= NULL
;
6013 relax_info
->removed_list
.tail
= NULL
;
6015 relax_info
->action_list
.tree
= splay_tree_new (text_action_compare
,
6017 relax_info
->action_list
.map
.n_entries
= 0;
6018 relax_info
->action_list
.map
.entry
= NULL
;
6020 relax_info
->fix_list
= NULL
;
6021 relax_info
->fix_array
= NULL
;
6022 relax_info
->fix_array_count
= 0;
6024 relax_info
->allocated_relocs
= NULL
;
6025 relax_info
->relocs_count
= 0;
6026 relax_info
->allocated_relocs_count
= 0;
6030 /* Coalescing literals may require a relocation to refer to a section in
6031 a different input file, but the standard relocation information
6032 cannot express that. Instead, the reloc_bfd_fix structures are used
6033 to "fix" the relocations that refer to sections in other input files.
6034 These structures are kept on per-section lists. The "src_type" field
6035 records the relocation type in case there are multiple relocations on
6036 the same location. FIXME: This is ugly; an alternative might be to
6037 add new symbols with the "owner" field to some other input file. */
6039 struct reloc_bfd_fix_struct
6043 unsigned src_type
; /* Relocation type. */
6045 asection
*target_sec
;
6046 bfd_vma target_offset
;
6047 bfd_boolean translated
;
6049 reloc_bfd_fix
*next
;
6053 static reloc_bfd_fix
*
6054 reloc_bfd_fix_init (asection
*src_sec
,
6057 asection
*target_sec
,
6058 bfd_vma target_offset
,
6059 bfd_boolean translated
)
6063 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
6064 fix
->src_sec
= src_sec
;
6065 fix
->src_offset
= src_offset
;
6066 fix
->src_type
= src_type
;
6067 fix
->target_sec
= target_sec
;
6068 fix
->target_offset
= target_offset
;
6069 fix
->translated
= translated
;
6076 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
6078 xtensa_relax_info
*relax_info
;
6080 relax_info
= get_xtensa_relax_info (src_sec
);
6081 fix
->next
= relax_info
->fix_list
;
6082 relax_info
->fix_list
= fix
;
6087 fix_compare (const void *ap
, const void *bp
)
6089 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
6090 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
6092 if (a
->src_offset
!= b
->src_offset
)
6093 return (a
->src_offset
- b
->src_offset
);
6094 return (a
->src_type
- b
->src_type
);
6099 cache_fix_array (asection
*sec
)
6101 unsigned i
, count
= 0;
6103 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6105 if (relax_info
== NULL
)
6107 if (relax_info
->fix_list
== NULL
)
6110 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
6113 relax_info
->fix_array
=
6114 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
6115 relax_info
->fix_array_count
= count
;
6117 r
= relax_info
->fix_list
;
6118 for (i
= 0; i
< count
; i
++, r
= r
->next
)
6120 relax_info
->fix_array
[count
- 1 - i
] = *r
;
6121 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
6124 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
6125 sizeof (reloc_bfd_fix
), fix_compare
);
6129 static reloc_bfd_fix
*
6130 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
6132 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6136 if (relax_info
== NULL
)
6138 if (relax_info
->fix_list
== NULL
)
6141 if (relax_info
->fix_array
== NULL
)
6142 cache_fix_array (sec
);
6144 key
.src_offset
= offset
;
6145 key
.src_type
= type
;
6146 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
6147 sizeof (reloc_bfd_fix
), fix_compare
);
6152 /* Section caching. */
6154 typedef struct section_cache_struct section_cache_t
;
6156 struct section_cache_struct
6160 bfd_byte
*contents
; /* Cache of the section contents. */
6161 bfd_size_type content_length
;
6163 property_table_entry
*ptbl
; /* Cache of the section property table. */
6166 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6167 unsigned reloc_count
;
6172 init_section_cache (section_cache_t
*sec_cache
)
6174 memset (sec_cache
, 0, sizeof (*sec_cache
));
6179 free_section_cache (section_cache_t
*sec_cache
)
6183 release_contents (sec_cache
->sec
, sec_cache
->contents
);
6184 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
6185 if (sec_cache
->ptbl
)
6186 free (sec_cache
->ptbl
);
6192 section_cache_section (section_cache_t
*sec_cache
,
6194 struct bfd_link_info
*link_info
)
6197 property_table_entry
*prop_table
= NULL
;
6199 bfd_byte
*contents
= NULL
;
6200 Elf_Internal_Rela
*internal_relocs
= NULL
;
6201 bfd_size_type sec_size
;
6205 if (sec
== sec_cache
->sec
)
6209 sec_size
= bfd_get_section_limit (abfd
, sec
);
6211 /* Get the contents. */
6212 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6213 if (contents
== NULL
&& sec_size
!= 0)
6216 /* Get the relocations. */
6217 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6218 link_info
->keep_memory
);
6220 /* Get the entry table. */
6221 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6222 XTENSA_PROP_SEC_NAME
, FALSE
);
6226 /* Fill in the new section cache. */
6227 free_section_cache (sec_cache
);
6228 init_section_cache (sec_cache
);
6230 sec_cache
->sec
= sec
;
6231 sec_cache
->contents
= contents
;
6232 sec_cache
->content_length
= sec_size
;
6233 sec_cache
->relocs
= internal_relocs
;
6234 sec_cache
->reloc_count
= sec
->reloc_count
;
6235 sec_cache
->pte_count
= ptblsize
;
6236 sec_cache
->ptbl
= prop_table
;
6241 release_contents (sec
, contents
);
6242 release_internal_relocs (sec
, internal_relocs
);
6249 /* Extended basic blocks. */
6251 /* An ebb_struct represents an Extended Basic Block. Within this
6252 range, we guarantee that all instructions are decodable, the
6253 property table entries are contiguous, and no property table
6254 specifies a segment that cannot have instructions moved. This
6255 structure contains caches of the contents, property table and
6256 relocations for the specified section for easy use. The range is
6257 specified by ranges of indices for the byte offset, property table
6258 offsets and relocation offsets. These must be consistent. */
6260 typedef struct ebb_struct ebb_t
;
6266 bfd_byte
*contents
; /* Cache of the section contents. */
6267 bfd_size_type content_length
;
6269 property_table_entry
*ptbl
; /* Cache of the section property table. */
6272 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6273 unsigned reloc_count
;
6275 bfd_vma start_offset
; /* Offset in section. */
6276 unsigned start_ptbl_idx
; /* Offset in the property table. */
6277 unsigned start_reloc_idx
; /* Offset in the relocations. */
6280 unsigned end_ptbl_idx
;
6281 unsigned end_reloc_idx
;
6283 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
6285 /* The unreachable property table at the end of this set of blocks;
6286 NULL if the end is not an unreachable block. */
6287 property_table_entry
*ends_unreachable
;
6291 enum ebb_target_enum
6294 EBB_DESIRE_TGT_ALIGN
,
6295 EBB_REQUIRE_TGT_ALIGN
,
6296 EBB_REQUIRE_LOOP_ALIGN
,
6301 /* proposed_action_struct is similar to the text_action_struct except
6302 that is represents a potential transformation, not one that will
6303 occur. We build a list of these for an extended basic block
6304 and use them to compute the actual actions desired. We must be
6305 careful that the entire set of actual actions we perform do not
6306 break any relocations that would fit if the actions were not
6309 typedef struct proposed_action_struct proposed_action
;
6311 struct proposed_action_struct
6313 enum ebb_target_enum align_type
; /* for the target alignment */
6314 bfd_vma alignment_pow
;
6315 text_action_t action
;
6318 bfd_boolean do_action
; /* If false, then we will not perform the action. */
6322 /* The ebb_constraint_struct keeps a set of proposed actions for an
6323 extended basic block. */
6325 typedef struct ebb_constraint_struct ebb_constraint
;
6327 struct ebb_constraint_struct
6330 bfd_boolean start_movable
;
6332 /* Bytes of extra space at the beginning if movable. */
6333 int start_extra_space
;
6335 enum ebb_target_enum start_align
;
6337 bfd_boolean end_movable
;
6339 /* Bytes of extra space at the end if movable. */
6340 int end_extra_space
;
6342 unsigned action_count
;
6343 unsigned action_allocated
;
6345 /* Array of proposed actions. */
6346 proposed_action
*actions
;
6348 /* Action alignments -- one for each proposed action. */
6349 enum ebb_target_enum
*action_aligns
;
6354 init_ebb_constraint (ebb_constraint
*c
)
6356 memset (c
, 0, sizeof (ebb_constraint
));
6361 free_ebb_constraint (ebb_constraint
*c
)
6369 init_ebb (ebb_t
*ebb
,
6372 bfd_size_type content_length
,
6373 property_table_entry
*prop_table
,
6375 Elf_Internal_Rela
*internal_relocs
,
6376 unsigned reloc_count
)
6378 memset (ebb
, 0, sizeof (ebb_t
));
6380 ebb
->contents
= contents
;
6381 ebb
->content_length
= content_length
;
6382 ebb
->ptbl
= prop_table
;
6383 ebb
->pte_count
= ptblsize
;
6384 ebb
->relocs
= internal_relocs
;
6385 ebb
->reloc_count
= reloc_count
;
6386 ebb
->start_offset
= 0;
6387 ebb
->end_offset
= ebb
->content_length
- 1;
6388 ebb
->start_ptbl_idx
= 0;
6389 ebb
->end_ptbl_idx
= ptblsize
;
6390 ebb
->start_reloc_idx
= 0;
6391 ebb
->end_reloc_idx
= reloc_count
;
6395 /* Extend the ebb to all decodable contiguous sections. The algorithm
6396 for building a basic block around an instruction is to push it
6397 forward until we hit the end of a section, an unreachable block or
6398 a block that cannot be transformed. Then we push it backwards
6399 searching for similar conditions. */
6401 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
6402 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
6403 static bfd_size_type insn_block_decodable_len
6404 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
6407 extend_ebb_bounds (ebb_t
*ebb
)
6409 if (!extend_ebb_bounds_forward (ebb
))
6411 if (!extend_ebb_bounds_backward (ebb
))
6418 extend_ebb_bounds_forward (ebb_t
*ebb
)
6420 property_table_entry
*the_entry
, *new_entry
;
6422 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6424 /* Stop when (1) we cannot decode an instruction, (2) we are at
6425 the end of the property tables, (3) we hit a non-contiguous property
6426 table entry, (4) we hit a NO_TRANSFORM region. */
6431 bfd_size_type insn_block_len
;
6433 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
6435 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6437 entry_end
- ebb
->end_offset
);
6438 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
6441 /* xgettext:c-format */
6442 (_("%pB(%pA+%#" PRIx64
"): could not decode instruction; "
6443 "possible configuration mismatch"),
6444 ebb
->sec
->owner
, ebb
->sec
,
6445 (uint64_t) (ebb
->end_offset
+ insn_block_len
));
6448 ebb
->end_offset
+= insn_block_len
;
6450 if (ebb
->end_offset
== ebb
->sec
->size
)
6451 ebb
->ends_section
= TRUE
;
6453 /* Update the reloc counter. */
6454 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
6455 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
6458 ebb
->end_reloc_idx
++;
6461 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6464 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6465 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
6466 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6467 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6470 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
6473 the_entry
= new_entry
;
6474 ebb
->end_ptbl_idx
++;
6477 /* Quick check for an unreachable or end of file just at the end. */
6478 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6480 if (ebb
->end_offset
== ebb
->content_length
)
6481 ebb
->ends_section
= TRUE
;
6485 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6486 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
6487 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
6488 ebb
->ends_unreachable
= new_entry
;
6491 /* Any other ending requires exact alignment. */
6497 extend_ebb_bounds_backward (ebb_t
*ebb
)
6499 property_table_entry
*the_entry
, *new_entry
;
6501 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6503 /* Stop when (1) we cannot decode the instructions in the current entry.
6504 (2) we are at the beginning of the property tables, (3) we hit a
6505 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6509 bfd_vma block_begin
;
6510 bfd_size_type insn_block_len
;
6512 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
6514 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6516 ebb
->start_offset
- block_begin
);
6517 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
6520 /* xgettext:c-format */
6521 (_("%pB(%pA+%#" PRIx64
"): could not decode instruction; "
6522 "possible configuration mismatch"),
6523 ebb
->sec
->owner
, ebb
->sec
,
6524 (uint64_t) (ebb
->end_offset
+ insn_block_len
));
6527 ebb
->start_offset
-= insn_block_len
;
6529 /* Update the reloc counter. */
6530 while (ebb
->start_reloc_idx
> 0
6531 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
6532 >= ebb
->start_offset
))
6534 ebb
->start_reloc_idx
--;
6537 if (ebb
->start_ptbl_idx
== 0)
6540 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
6541 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
6542 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6543 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6545 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
6548 the_entry
= new_entry
;
6549 ebb
->start_ptbl_idx
--;
6555 static bfd_size_type
6556 insn_block_decodable_len (bfd_byte
*contents
,
6557 bfd_size_type content_len
,
6558 bfd_vma block_offset
,
6559 bfd_size_type block_len
)
6561 bfd_vma offset
= block_offset
;
6563 while (offset
< block_offset
+ block_len
)
6565 bfd_size_type insn_len
= 0;
6567 insn_len
= insn_decode_len (contents
, content_len
, offset
);
6569 return (offset
- block_offset
);
6572 return (offset
- block_offset
);
6577 ebb_propose_action (ebb_constraint
*c
,
6578 enum ebb_target_enum align_type
,
6579 bfd_vma alignment_pow
,
6580 text_action_t action
,
6583 bfd_boolean do_action
)
6585 proposed_action
*act
;
6587 if (c
->action_allocated
<= c
->action_count
)
6589 unsigned new_allocated
, i
;
6590 proposed_action
*new_actions
;
6592 new_allocated
= (c
->action_count
+ 2) * 2;
6593 new_actions
= (proposed_action
*)
6594 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
6596 for (i
= 0; i
< c
->action_count
; i
++)
6597 new_actions
[i
] = c
->actions
[i
];
6600 c
->actions
= new_actions
;
6601 c
->action_allocated
= new_allocated
;
6604 act
= &c
->actions
[c
->action_count
];
6605 act
->align_type
= align_type
;
6606 act
->alignment_pow
= alignment_pow
;
6607 act
->action
= action
;
6608 act
->offset
= offset
;
6609 act
->removed_bytes
= removed_bytes
;
6610 act
->do_action
= do_action
;
6616 /* Access to internal relocations, section contents and symbols. */
6618 /* During relaxation, we need to modify relocations, section contents,
6619 and symbol definitions, and we need to keep the original values from
6620 being reloaded from the input files, i.e., we need to "pin" the
6621 modified values in memory. We also want to continue to observe the
6622 setting of the "keep-memory" flag. The following functions wrap the
6623 standard BFD functions to take care of this for us. */
6625 static Elf_Internal_Rela
*
6626 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6628 Elf_Internal_Rela
*internal_relocs
;
6630 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6633 internal_relocs
= elf_section_data (sec
)->relocs
;
6634 if (internal_relocs
== NULL
)
6635 internal_relocs
= (_bfd_elf_link_read_relocs
6636 (abfd
, sec
, NULL
, NULL
, keep_memory
));
6637 return internal_relocs
;
6642 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6644 elf_section_data (sec
)->relocs
= internal_relocs
;
6649 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6652 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6653 free (internal_relocs
);
6658 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6661 bfd_size_type sec_size
;
6663 sec_size
= bfd_get_section_limit (abfd
, sec
);
6664 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6666 if (contents
== NULL
&& sec_size
!= 0)
6668 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6675 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6682 pin_contents (asection
*sec
, bfd_byte
*contents
)
6684 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6689 release_contents (asection
*sec
, bfd_byte
*contents
)
6691 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6696 static Elf_Internal_Sym
*
6697 retrieve_local_syms (bfd
*input_bfd
)
6699 Elf_Internal_Shdr
*symtab_hdr
;
6700 Elf_Internal_Sym
*isymbuf
;
6703 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6704 locsymcount
= symtab_hdr
->sh_info
;
6706 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6707 if (isymbuf
== NULL
&& locsymcount
!= 0)
6708 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6711 /* Save the symbols for this input file so they won't be read again. */
6712 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
6713 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
6719 /* Code for link-time relaxation. */
6721 /* Initialization for relaxation: */
6722 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
6723 static bfd_boolean find_relaxable_sections
6724 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
6725 static bfd_boolean collect_source_relocs
6726 (bfd
*, asection
*, struct bfd_link_info
*);
6727 static bfd_boolean is_resolvable_asm_expansion
6728 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
6730 static Elf_Internal_Rela
*find_associated_l32r_irel
6731 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
6732 static bfd_boolean compute_text_actions
6733 (bfd
*, asection
*, struct bfd_link_info
*);
6734 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
6735 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
6736 typedef struct reloc_range_list_struct reloc_range_list
;
6737 static bfd_boolean check_section_ebb_pcrels_fit
6738 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*,
6739 reloc_range_list
*, const ebb_constraint
*,
6740 const xtensa_opcode
*);
6741 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
6742 static void text_action_add_proposed
6743 (text_action_list
*, const ebb_constraint
*, asection
*);
6746 static bfd_boolean compute_removed_literals
6747 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
6748 static Elf_Internal_Rela
*get_irel_at_offset
6749 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
6750 static bfd_boolean is_removable_literal
6751 (const source_reloc
*, int, const source_reloc
*, int, asection
*,
6752 property_table_entry
*, int);
6753 static bfd_boolean remove_dead_literal
6754 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
6755 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
6756 static bfd_boolean identify_literal_placement
6757 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
6758 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
6759 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
6761 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
6762 static bfd_boolean coalesce_shared_literal
6763 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
6764 static bfd_boolean move_shared_literal
6765 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
6766 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
6769 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
6770 static bfd_boolean
translate_section_fixes (asection
*);
6771 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
6772 static asection
*translate_reloc (const r_reloc
*, r_reloc
*, asection
*);
6773 static void shrink_dynamic_reloc_sections
6774 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
6775 static bfd_boolean move_literal
6776 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
6777 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
6778 static bfd_boolean relax_property_section
6779 (bfd
*, asection
*, struct bfd_link_info
*);
6782 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
6786 elf_xtensa_relax_section (bfd
*abfd
,
6788 struct bfd_link_info
*link_info
,
6791 static value_map_hash_table
*values
= NULL
;
6792 static bfd_boolean relocations_analyzed
= FALSE
;
6793 xtensa_relax_info
*relax_info
;
6795 if (!relocations_analyzed
)
6797 /* Do some overall initialization for relaxation. */
6798 values
= value_map_hash_table_init ();
6801 relaxing_section
= TRUE
;
6802 if (!analyze_relocations (link_info
))
6804 relocations_analyzed
= TRUE
;
6808 /* Don't mess with linker-created sections. */
6809 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6812 relax_info
= get_xtensa_relax_info (sec
);
6813 BFD_ASSERT (relax_info
!= NULL
);
6815 switch (relax_info
->visited
)
6818 /* Note: It would be nice to fold this pass into
6819 analyze_relocations, but it is important for this step that the
6820 sections be examined in link order. */
6821 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
6828 value_map_hash_table_delete (values
);
6830 if (!relax_section (abfd
, sec
, link_info
))
6836 if (!relax_section_symbols (abfd
, sec
))
6841 relax_info
->visited
++;
6846 /* Initialization for relaxation. */
6848 /* This function is called once at the start of relaxation. It scans
6849 all the input sections and marks the ones that are relaxable (i.e.,
6850 literal sections with L32R relocations against them), and then
6851 collects source_reloc information for all the relocations against
6852 those relaxable sections. During this process, it also detects
6853 longcalls, i.e., calls relaxed by the assembler into indirect
6854 calls, that can be optimized back into direct calls. Within each
6855 extended basic block (ebb) containing an optimized longcall, it
6856 computes a set of "text actions" that can be performed to remove
6857 the L32R associated with the longcall while optionally preserving
6858 branch target alignments. */
6861 analyze_relocations (struct bfd_link_info
*link_info
)
6865 bfd_boolean is_relaxable
= FALSE
;
6867 /* Initialize the per-section relaxation info. */
6868 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6869 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6871 init_xtensa_relax_info (sec
);
6874 /* Mark relaxable sections (and count relocations against each one). */
6875 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6876 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6878 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
6882 /* Bail out if there are no relaxable sections. */
6886 /* Allocate space for source_relocs. */
6887 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6888 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6890 xtensa_relax_info
*relax_info
;
6892 relax_info
= get_xtensa_relax_info (sec
);
6893 if (relax_info
->is_relaxable_literal_section
6894 || relax_info
->is_relaxable_asm_section
)
6896 relax_info
->src_relocs
= (source_reloc
*)
6897 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
6900 relax_info
->src_count
= 0;
6903 /* Collect info on relocations against each relaxable section. */
6904 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6905 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6907 if (!collect_source_relocs (abfd
, sec
, link_info
))
6911 /* Compute the text actions. */
6912 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6913 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6915 if (!compute_text_actions (abfd
, sec
, link_info
))
6923 /* Find all the sections that might be relaxed. The motivation for
6924 this pass is that collect_source_relocs() needs to record _all_ the
6925 relocations that target each relaxable section. That is expensive
6926 and unnecessary unless the target section is actually going to be
6927 relaxed. This pass identifies all such sections by checking if
6928 they have L32Rs pointing to them. In the process, the total number
6929 of relocations targeting each section is also counted so that we
6930 know how much space to allocate for source_relocs against each
6931 relaxable literal section. */
6934 find_relaxable_sections (bfd
*abfd
,
6936 struct bfd_link_info
*link_info
,
6937 bfd_boolean
*is_relaxable_p
)
6939 Elf_Internal_Rela
*internal_relocs
;
6941 bfd_boolean ok
= TRUE
;
6943 xtensa_relax_info
*source_relax_info
;
6944 bfd_boolean is_l32r_reloc
;
6946 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6947 link_info
->keep_memory
);
6948 if (internal_relocs
== NULL
)
6951 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6952 if (contents
== NULL
&& sec
->size
!= 0)
6958 source_relax_info
= get_xtensa_relax_info (sec
);
6959 for (i
= 0; i
< sec
->reloc_count
; i
++)
6961 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6963 asection
*target_sec
;
6964 xtensa_relax_info
*target_relax_info
;
6966 /* If this section has not already been marked as "relaxable", and
6967 if it contains any ASM_EXPAND relocations (marking expanded
6968 longcalls) that can be optimized into direct calls, then mark
6969 the section as "relaxable". */
6970 if (source_relax_info
6971 && !source_relax_info
->is_relaxable_asm_section
6972 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
6974 bfd_boolean is_reachable
= FALSE
;
6975 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
6976 link_info
, &is_reachable
)
6979 source_relax_info
->is_relaxable_asm_section
= TRUE
;
6980 *is_relaxable_p
= TRUE
;
6984 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6985 bfd_get_section_limit (abfd
, sec
));
6987 target_sec
= r_reloc_get_section (&r_rel
);
6988 target_relax_info
= get_xtensa_relax_info (target_sec
);
6989 if (!target_relax_info
)
6992 /* Count PC-relative operand relocations against the target section.
6993 Note: The conditions tested here must match the conditions under
6994 which init_source_reloc is called in collect_source_relocs(). */
6995 is_l32r_reloc
= FALSE
;
6996 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6998 xtensa_opcode opcode
=
6999 get_relocation_opcode (abfd
, sec
, contents
, irel
);
7000 if (opcode
!= XTENSA_UNDEFINED
)
7002 is_l32r_reloc
= (opcode
== get_l32r_opcode ());
7003 if (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
7005 target_relax_info
->src_count
++;
7009 if (is_l32r_reloc
&& r_reloc_is_defined (&r_rel
))
7011 /* Mark the target section as relaxable. */
7012 target_relax_info
->is_relaxable_literal_section
= TRUE
;
7013 *is_relaxable_p
= TRUE
;
7018 release_contents (sec
, contents
);
7019 release_internal_relocs (sec
, internal_relocs
);
7024 /* Record _all_ the relocations that point to relaxable sections, and
7025 get rid of ASM_EXPAND relocs by either converting them to
7026 ASM_SIMPLIFY or by removing them. */
7029 collect_source_relocs (bfd
*abfd
,
7031 struct bfd_link_info
*link_info
)
7033 Elf_Internal_Rela
*internal_relocs
;
7035 bfd_boolean ok
= TRUE
;
7037 bfd_size_type sec_size
;
7039 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7040 link_info
->keep_memory
);
7041 if (internal_relocs
== NULL
)
7044 sec_size
= bfd_get_section_limit (abfd
, sec
);
7045 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7046 if (contents
== NULL
&& sec_size
!= 0)
7052 /* Record relocations against relaxable literal sections. */
7053 for (i
= 0; i
< sec
->reloc_count
; i
++)
7055 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7057 asection
*target_sec
;
7058 xtensa_relax_info
*target_relax_info
;
7060 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7062 target_sec
= r_reloc_get_section (&r_rel
);
7063 target_relax_info
= get_xtensa_relax_info (target_sec
);
7065 if (target_relax_info
7066 && (target_relax_info
->is_relaxable_literal_section
7067 || target_relax_info
->is_relaxable_asm_section
))
7069 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
7071 bfd_boolean is_abs_literal
= FALSE
;
7073 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7075 /* None of the current alternate relocs are PC-relative,
7076 and only PC-relative relocs matter here. However, we
7077 still need to record the opcode for literal
7079 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7080 if (opcode
== get_l32r_opcode ())
7082 is_abs_literal
= TRUE
;
7086 opcode
= XTENSA_UNDEFINED
;
7088 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
7090 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7091 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7094 if (opcode
!= XTENSA_UNDEFINED
)
7096 int src_next
= target_relax_info
->src_next
++;
7097 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
7099 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
7105 /* Now get rid of ASM_EXPAND relocations. At this point, the
7106 src_relocs array for the target literal section may still be
7107 incomplete, but it must at least contain the entries for the L32R
7108 relocations associated with ASM_EXPANDs because they were just
7109 added in the preceding loop over the relocations. */
7111 for (i
= 0; i
< sec
->reloc_count
; i
++)
7113 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7114 bfd_boolean is_reachable
;
7116 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
7122 Elf_Internal_Rela
*l32r_irel
;
7124 asection
*target_sec
;
7125 xtensa_relax_info
*target_relax_info
;
7127 /* Mark the source_reloc for the L32R so that it will be
7128 removed in compute_removed_literals(), along with the
7129 associated literal. */
7130 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
7131 irel
, internal_relocs
);
7132 if (l32r_irel
== NULL
)
7135 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
7137 target_sec
= r_reloc_get_section (&r_rel
);
7138 target_relax_info
= get_xtensa_relax_info (target_sec
);
7140 if (target_relax_info
7141 && (target_relax_info
->is_relaxable_literal_section
7142 || target_relax_info
->is_relaxable_asm_section
))
7144 source_reloc
*s_reloc
;
7146 /* Search the source_relocs for the entry corresponding to
7147 the l32r_irel. Note: The src_relocs array is not yet
7148 sorted, but it wouldn't matter anyway because we're
7149 searching by source offset instead of target offset. */
7150 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
7151 target_relax_info
->src_next
,
7153 BFD_ASSERT (s_reloc
);
7154 s_reloc
->is_null
= TRUE
;
7157 /* Convert this reloc to ASM_SIMPLIFY. */
7158 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
7159 R_XTENSA_ASM_SIMPLIFY
);
7160 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7162 pin_internal_relocs (sec
, internal_relocs
);
7166 /* It is resolvable but doesn't reach. We resolve now
7167 by eliminating the relocation -- the call will remain
7168 expanded into L32R/CALLX. */
7169 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7170 pin_internal_relocs (sec
, internal_relocs
);
7175 release_contents (sec
, contents
);
7176 release_internal_relocs (sec
, internal_relocs
);
7181 /* Return TRUE if the asm expansion can be resolved. Generally it can
7182 be resolved on a final link or when a partial link locates it in the
7183 same section as the target. Set "is_reachable" flag if the target of
7184 the call is within the range of a direct call, given the current VMA
7185 for this section and the target section. */
7188 is_resolvable_asm_expansion (bfd
*abfd
,
7191 Elf_Internal_Rela
*irel
,
7192 struct bfd_link_info
*link_info
,
7193 bfd_boolean
*is_reachable_p
)
7195 asection
*target_sec
;
7199 unsigned int first_align
;
7200 unsigned int adjust
;
7201 bfd_vma target_offset
;
7203 xtensa_opcode opcode
, direct_call_opcode
;
7204 bfd_vma self_address
;
7205 bfd_vma dest_address
;
7206 bfd_boolean uses_l32r
;
7207 bfd_size_type sec_size
;
7209 *is_reachable_p
= FALSE
;
7211 if (contents
== NULL
)
7214 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
7217 sec_size
= bfd_get_section_limit (abfd
, sec
);
7218 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
7219 sec_size
- irel
->r_offset
, &uses_l32r
);
7220 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7224 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
7225 if (direct_call_opcode
== XTENSA_UNDEFINED
)
7228 /* Check and see that the target resolves. */
7229 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7230 if (!r_reloc_is_defined (&r_rel
))
7233 target_sec
= r_reloc_get_section (&r_rel
);
7234 target_offset
= r_rel
.target_offset
;
7236 /* If the target is in a shared library, then it doesn't reach. This
7237 isn't supposed to come up because the compiler should never generate
7238 non-PIC calls on systems that use shared libraries, but the linker
7239 shouldn't crash regardless. */
7240 if (!target_sec
->output_section
)
7243 /* For relocatable sections, we can only simplify when the output
7244 section of the target is the same as the output section of the
7246 if (bfd_link_relocatable (link_info
)
7247 && (target_sec
->output_section
!= sec
->output_section
7248 || is_reloc_sym_weak (abfd
, irel
)))
7251 if (target_sec
->output_section
!= sec
->output_section
)
7253 /* If the two sections are sufficiently far away that relaxation
7254 might take the call out of range, we can't simplify. For
7255 example, a positive displacement call into another memory
7256 could get moved to a lower address due to literal removal,
7257 but the destination won't move, and so the displacment might
7260 If the displacement is negative, assume the destination could
7261 move as far back as the start of the output section. The
7262 self_address will be at least as far into the output section
7263 as it is prior to relaxation.
7265 If the displacement is postive, assume the destination will be in
7266 it's pre-relaxed location (because relaxation only makes sections
7267 smaller). The self_address could go all the way to the beginning
7268 of the output section. */
7270 dest_address
= target_sec
->output_section
->vma
;
7271 self_address
= sec
->output_section
->vma
;
7273 if (sec
->output_section
->vma
> target_sec
->output_section
->vma
)
7274 self_address
+= sec
->output_offset
+ irel
->r_offset
+ 3;
7276 dest_address
+= bfd_get_section_limit (abfd
, target_sec
->output_section
);
7277 /* Call targets should be four-byte aligned. */
7278 dest_address
= (dest_address
+ 3) & ~3;
7283 self_address
= (sec
->output_section
->vma
7284 + sec
->output_offset
+ irel
->r_offset
+ 3);
7285 dest_address
= (target_sec
->output_section
->vma
7286 + target_sec
->output_offset
+ target_offset
);
7289 /* Adjust addresses with alignments for the worst case to see if call insn
7290 can fit. Don't relax l32r + callx to call if the target can be out of
7291 range due to alignment.
7292 Caller and target addresses are highest and lowest address.
7293 Search all sections between caller and target, looking for max alignment.
7294 The adjustment is max alignment bytes. If the alignment at the lowest
7295 address is less than the adjustment, apply the adjustment to highest
7298 /* Start from lowest address.
7299 Lowest address aligmnet is from input section.
7300 Initial alignment (adjust) is from input section. */
7301 if (dest_address
> self_address
)
7303 s
= sec
->output_section
;
7304 last_vma
= dest_address
;
7305 first_align
= sec
->alignment_power
;
7306 adjust
= target_sec
->alignment_power
;
7310 s
= target_sec
->output_section
;
7311 last_vma
= self_address
;
7312 first_align
= target_sec
->alignment_power
;
7313 adjust
= sec
->alignment_power
;
7318 /* Find the largest alignment in output section list. */
7319 for (; s
&& s
->vma
>= first_vma
&& s
->vma
<= last_vma
; s
= s
->next
)
7321 if (s
->alignment_power
> adjust
)
7322 adjust
= s
->alignment_power
;
7325 if (adjust
> first_align
)
7327 /* Alignment may enlarge the range, adjust highest address. */
7328 adjust
= 1 << adjust
;
7329 if (dest_address
> self_address
)
7331 dest_address
+= adjust
;
7335 self_address
+= adjust
;
7339 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
7340 self_address
, dest_address
);
7342 if ((self_address
>> CALL_SEGMENT_BITS
) !=
7343 (dest_address
>> CALL_SEGMENT_BITS
))
7350 static Elf_Internal_Rela
*
7351 find_associated_l32r_irel (bfd
*abfd
,
7354 Elf_Internal_Rela
*other_irel
,
7355 Elf_Internal_Rela
*internal_relocs
)
7359 for (i
= 0; i
< sec
->reloc_count
; i
++)
7361 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7363 if (irel
== other_irel
)
7365 if (irel
->r_offset
!= other_irel
->r_offset
)
7367 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
7375 static xtensa_opcode
*
7376 build_reloc_opcodes (bfd
*abfd
,
7379 Elf_Internal_Rela
*internal_relocs
)
7382 xtensa_opcode
*reloc_opcodes
=
7383 (xtensa_opcode
*) bfd_malloc (sizeof (xtensa_opcode
) * sec
->reloc_count
);
7384 for (i
= 0; i
< sec
->reloc_count
; i
++)
7386 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7387 reloc_opcodes
[i
] = get_relocation_opcode (abfd
, sec
, contents
, irel
);
7389 return reloc_opcodes
;
7392 struct reloc_range_struct
7395 bfd_boolean add
; /* TRUE if start of a range, FALSE otherwise. */
7396 /* Original irel index in the array of relocations for a section. */
7397 unsigned irel_index
;
7399 typedef struct reloc_range_struct reloc_range
;
7401 typedef struct reloc_range_list_entry_struct reloc_range_list_entry
;
7402 struct reloc_range_list_entry_struct
7404 reloc_range_list_entry
*next
;
7405 reloc_range_list_entry
*prev
;
7406 Elf_Internal_Rela
*irel
;
7407 xtensa_opcode opcode
;
7411 struct reloc_range_list_struct
7413 /* The rest of the structure is only meaningful when ok is TRUE. */
7416 unsigned n_range
; /* Number of range markers. */
7417 reloc_range
*range
; /* Sorted range markers. */
7419 unsigned first
; /* Index of a first range element in the list. */
7420 unsigned last
; /* One past index of a last range element in the list. */
7422 unsigned n_list
; /* Number of list elements. */
7423 reloc_range_list_entry
*reloc
; /* */
7424 reloc_range_list_entry list_root
;
7428 reloc_range_compare (const void *a
, const void *b
)
7430 const reloc_range
*ra
= a
;
7431 const reloc_range
*rb
= b
;
7433 if (ra
->addr
!= rb
->addr
)
7434 return ra
->addr
< rb
->addr
? -1 : 1;
7435 if (ra
->add
!= rb
->add
)
7436 return ra
->add
? -1 : 1;
7441 build_reloc_ranges (bfd
*abfd
, asection
*sec
,
7443 Elf_Internal_Rela
*internal_relocs
,
7444 xtensa_opcode
*reloc_opcodes
,
7445 reloc_range_list
*list
)
7450 reloc_range
*ranges
= NULL
;
7451 reloc_range_list_entry
*reloc
=
7452 bfd_malloc (sec
->reloc_count
* sizeof (*reloc
));
7454 memset (list
, 0, sizeof (*list
));
7457 for (i
= 0; i
< sec
->reloc_count
; i
++)
7459 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7460 int r_type
= ELF32_R_TYPE (irel
->r_info
);
7461 reloc_howto_type
*howto
= &elf_howto_table
[r_type
];
7464 if (r_type
== R_XTENSA_ASM_SIMPLIFY
7465 || r_type
== R_XTENSA_32_PCREL
7466 || !howto
->pc_relative
)
7469 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7470 bfd_get_section_limit (abfd
, sec
));
7472 if (r_reloc_get_section (&r_rel
) != sec
)
7477 max_n
= (max_n
+ 2) * 2;
7478 ranges
= bfd_realloc (ranges
, max_n
* sizeof (*ranges
));
7481 ranges
[n
].addr
= irel
->r_offset
;
7482 ranges
[n
+ 1].addr
= r_rel
.target_offset
;
7484 ranges
[n
].add
= ranges
[n
].addr
< ranges
[n
+ 1].addr
;
7485 ranges
[n
+ 1].add
= !ranges
[n
].add
;
7487 ranges
[n
].irel_index
= i
;
7488 ranges
[n
+ 1].irel_index
= i
;
7492 reloc
[i
].irel
= irel
;
7494 /* Every relocation won't possibly be checked in the optimized version of
7495 check_section_ebb_pcrels_fit, so this needs to be done here. */
7496 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7498 /* None of the current alternate relocs are PC-relative,
7499 and only PC-relative relocs matter here. */
7503 xtensa_opcode opcode
;
7507 opcode
= reloc_opcodes
[i
];
7509 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7511 if (opcode
== XTENSA_UNDEFINED
)
7517 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7518 if (opnum
== XTENSA_UNDEFINED
)
7524 /* Record relocation opcode and opnum as we've calculated them
7525 anyway and they won't change. */
7526 reloc
[i
].opcode
= opcode
;
7527 reloc
[i
].opnum
= opnum
;
7533 ranges
= bfd_realloc (ranges
, n
* sizeof (*ranges
));
7534 qsort (ranges
, n
, sizeof (*ranges
), reloc_range_compare
);
7537 list
->range
= ranges
;
7538 list
->reloc
= reloc
;
7539 list
->list_root
.prev
= &list
->list_root
;
7540 list
->list_root
.next
= &list
->list_root
;
7549 static void reloc_range_list_append (reloc_range_list
*list
,
7550 unsigned irel_index
)
7552 reloc_range_list_entry
*entry
= list
->reloc
+ irel_index
;
7554 entry
->prev
= list
->list_root
.prev
;
7555 entry
->next
= &list
->list_root
;
7556 entry
->prev
->next
= entry
;
7557 entry
->next
->prev
= entry
;
7561 static void reloc_range_list_remove (reloc_range_list
*list
,
7562 unsigned irel_index
)
7564 reloc_range_list_entry
*entry
= list
->reloc
+ irel_index
;
7566 entry
->next
->prev
= entry
->prev
;
7567 entry
->prev
->next
= entry
->next
;
7571 /* Update relocation list object so that it lists all relocations that cross
7572 [first; last] range. Range bounds should not decrease with successive
7574 static void reloc_range_list_update_range (reloc_range_list
*list
,
7575 bfd_vma first
, bfd_vma last
)
7577 /* This should not happen: EBBs are iterated from lower addresses to higher.
7578 But even if that happens there's no need to break: just flush current list
7579 and start from scratch. */
7580 if ((list
->last
> 0 && list
->range
[list
->last
- 1].addr
> last
) ||
7581 (list
->first
> 0 && list
->range
[list
->first
- 1].addr
>= first
))
7586 list
->list_root
.next
= &list
->list_root
;
7587 list
->list_root
.prev
= &list
->list_root
;
7588 fprintf (stderr
, "%s: move backwards requested\n", __func__
);
7591 for (; list
->last
< list
->n_range
&&
7592 list
->range
[list
->last
].addr
<= last
; ++list
->last
)
7593 if (list
->range
[list
->last
].add
)
7594 reloc_range_list_append (list
, list
->range
[list
->last
].irel_index
);
7596 for (; list
->first
< list
->n_range
&&
7597 list
->range
[list
->first
].addr
< first
; ++list
->first
)
7598 if (!list
->range
[list
->first
].add
)
7599 reloc_range_list_remove (list
, list
->range
[list
->first
].irel_index
);
7602 static void free_reloc_range_list (reloc_range_list
*list
)
7608 /* The compute_text_actions function will build a list of potential
7609 transformation actions for code in the extended basic block of each
7610 longcall that is optimized to a direct call. From this list we
7611 generate a set of actions to actually perform that optimizes for
7612 space and, if not using size_opt, maintains branch target
7615 These actions to be performed are placed on a per-section list.
7616 The actual changes are performed by relax_section() in the second
7620 compute_text_actions (bfd
*abfd
,
7622 struct bfd_link_info
*link_info
)
7624 xtensa_opcode
*reloc_opcodes
= NULL
;
7625 xtensa_relax_info
*relax_info
;
7627 Elf_Internal_Rela
*internal_relocs
;
7628 bfd_boolean ok
= TRUE
;
7630 property_table_entry
*prop_table
= 0;
7632 bfd_size_type sec_size
;
7633 reloc_range_list relevant_relocs
;
7635 relax_info
= get_xtensa_relax_info (sec
);
7636 BFD_ASSERT (relax_info
);
7637 BFD_ASSERT (relax_info
->src_next
== relax_info
->src_count
);
7639 /* Do nothing if the section contains no optimized longcalls. */
7640 if (!relax_info
->is_relaxable_asm_section
)
7643 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7644 link_info
->keep_memory
);
7646 if (internal_relocs
)
7647 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7648 internal_reloc_compare
);
7650 sec_size
= bfd_get_section_limit (abfd
, sec
);
7651 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7652 if (contents
== NULL
&& sec_size
!= 0)
7658 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7659 XTENSA_PROP_SEC_NAME
, FALSE
);
7666 /* Precompute the opcode for each relocation. */
7667 reloc_opcodes
= build_reloc_opcodes (abfd
, sec
, contents
, internal_relocs
);
7669 build_reloc_ranges (abfd
, sec
, contents
, internal_relocs
, reloc_opcodes
,
7672 for (i
= 0; i
< sec
->reloc_count
; i
++)
7674 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7676 property_table_entry
*the_entry
;
7679 ebb_constraint ebb_table
;
7680 bfd_size_type simplify_size
;
7682 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
7684 r_offset
= irel
->r_offset
;
7686 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
7687 if (simplify_size
== 0)
7690 /* xgettext:c-format */
7691 (_("%pB(%pA+%#" PRIx64
"): could not decode instruction for "
7692 "XTENSA_ASM_SIMPLIFY relocation; "
7693 "possible configuration mismatch"),
7694 sec
->owner
, sec
, (uint64_t) r_offset
);
7698 /* If the instruction table is not around, then don't do this
7700 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7701 sec
->vma
+ irel
->r_offset
);
7702 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
7704 text_action_add (&relax_info
->action_list
,
7705 ta_convert_longcall
, sec
, r_offset
,
7710 /* If the next longcall happens to be at the same address as an
7711 unreachable section of size 0, then skip forward. */
7712 ptbl_idx
= the_entry
- prop_table
;
7713 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
7714 && the_entry
->size
== 0
7715 && ptbl_idx
+ 1 < ptblsize
7716 && (prop_table
[ptbl_idx
+ 1].address
7717 == prop_table
[ptbl_idx
].address
))
7723 if (the_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
)
7724 /* NO_REORDER is OK */
7727 init_ebb_constraint (&ebb_table
);
7728 ebb
= &ebb_table
.ebb
;
7729 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
7730 internal_relocs
, sec
->reloc_count
);
7731 ebb
->start_offset
= r_offset
+ simplify_size
;
7732 ebb
->end_offset
= r_offset
+ simplify_size
;
7733 ebb
->start_ptbl_idx
= ptbl_idx
;
7734 ebb
->end_ptbl_idx
= ptbl_idx
;
7735 ebb
->start_reloc_idx
= i
;
7736 ebb
->end_reloc_idx
= i
;
7738 if (!extend_ebb_bounds (ebb
)
7739 || !compute_ebb_proposed_actions (&ebb_table
)
7740 || !compute_ebb_actions (&ebb_table
)
7741 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
7744 &ebb_table
, reloc_opcodes
)
7745 || !check_section_ebb_reduces (&ebb_table
))
7747 /* If anything goes wrong or we get unlucky and something does
7748 not fit, with our plan because of expansion between
7749 critical branches, just convert to a NOP. */
7751 text_action_add (&relax_info
->action_list
,
7752 ta_convert_longcall
, sec
, r_offset
, 0);
7753 i
= ebb_table
.ebb
.end_reloc_idx
;
7754 free_ebb_constraint (&ebb_table
);
7758 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
7760 /* Update the index so we do not go looking at the relocations
7761 we have already processed. */
7762 i
= ebb_table
.ebb
.end_reloc_idx
;
7763 free_ebb_constraint (&ebb_table
);
7766 free_reloc_range_list (&relevant_relocs
);
7769 if (action_list_count (&relax_info
->action_list
))
7770 print_action_list (stderr
, &relax_info
->action_list
);
7774 release_contents (sec
, contents
);
7775 release_internal_relocs (sec
, internal_relocs
);
7779 free (reloc_opcodes
);
7785 /* Do not widen an instruction if it is preceeded by a
7786 loop opcode. It might cause misalignment. */
7789 prev_instr_is_a_loop (bfd_byte
*contents
,
7790 bfd_size_type content_length
,
7791 bfd_size_type offset
)
7793 xtensa_opcode prev_opcode
;
7797 prev_opcode
= insn_decode_opcode (contents
, content_length
, offset
-3, 0);
7798 return (xtensa_opcode_is_loop (xtensa_default_isa
, prev_opcode
) == 1);
7802 /* Find all of the possible actions for an extended basic block. */
7805 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
7807 const ebb_t
*ebb
= &ebb_table
->ebb
;
7808 unsigned rel_idx
= ebb
->start_reloc_idx
;
7809 property_table_entry
*entry
, *start_entry
, *end_entry
;
7811 xtensa_isa isa
= xtensa_default_isa
;
7813 static xtensa_insnbuf insnbuf
= NULL
;
7814 static xtensa_insnbuf slotbuf
= NULL
;
7816 if (insnbuf
== NULL
)
7818 insnbuf
= xtensa_insnbuf_alloc (isa
);
7819 slotbuf
= xtensa_insnbuf_alloc (isa
);
7822 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
7823 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
7825 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
7827 bfd_vma start_offset
, end_offset
;
7828 bfd_size_type insn_len
;
7830 start_offset
= entry
->address
- ebb
->sec
->vma
;
7831 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
7833 if (entry
== start_entry
)
7834 start_offset
= ebb
->start_offset
;
7835 if (entry
== end_entry
)
7836 end_offset
= ebb
->end_offset
;
7837 offset
= start_offset
;
7839 if (offset
== entry
->address
- ebb
->sec
->vma
7840 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
7842 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
7843 BFD_ASSERT (offset
!= end_offset
);
7844 if (offset
== end_offset
)
7847 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
7852 if (check_branch_target_aligned_address (offset
, insn_len
))
7853 align_type
= EBB_REQUIRE_TGT_ALIGN
;
7855 ebb_propose_action (ebb_table
, align_type
, 0,
7856 ta_none
, offset
, 0, TRUE
);
7859 while (offset
!= end_offset
)
7861 Elf_Internal_Rela
*irel
;
7862 xtensa_opcode opcode
;
7864 while (rel_idx
< ebb
->end_reloc_idx
7865 && (ebb
->relocs
[rel_idx
].r_offset
< offset
7866 || (ebb
->relocs
[rel_idx
].r_offset
== offset
7867 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
7868 != R_XTENSA_ASM_SIMPLIFY
))))
7871 /* Check for longcall. */
7872 irel
= &ebb
->relocs
[rel_idx
];
7873 if (irel
->r_offset
== offset
7874 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
7876 bfd_size_type simplify_size
;
7878 simplify_size
= get_asm_simplify_size (ebb
->contents
,
7879 ebb
->content_length
,
7881 if (simplify_size
== 0)
7884 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7885 ta_convert_longcall
, offset
, 0, TRUE
);
7887 offset
+= simplify_size
;
7891 if (offset
+ MIN_INSN_LENGTH
> ebb
->content_length
)
7893 xtensa_insnbuf_from_chars (isa
, insnbuf
, &ebb
->contents
[offset
],
7894 ebb
->content_length
- offset
);
7895 fmt
= xtensa_format_decode (isa
, insnbuf
);
7896 if (fmt
== XTENSA_UNDEFINED
)
7898 insn_len
= xtensa_format_length (isa
, fmt
);
7899 if (insn_len
== (bfd_size_type
) XTENSA_UNDEFINED
)
7902 if (xtensa_format_num_slots (isa
, fmt
) != 1)
7908 xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
);
7909 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
7910 if (opcode
== XTENSA_UNDEFINED
)
7913 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
7914 && (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7915 && can_narrow_instruction (slotbuf
, fmt
, opcode
) != 0)
7917 /* Add an instruction narrow action. */
7918 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7919 ta_narrow_insn
, offset
, 0, FALSE
);
7921 else if ((entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7922 && can_widen_instruction (slotbuf
, fmt
, opcode
) != 0
7923 && ! prev_instr_is_a_loop (ebb
->contents
,
7924 ebb
->content_length
, offset
))
7926 /* Add an instruction widen action. */
7927 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7928 ta_widen_insn
, offset
, 0, FALSE
);
7930 else if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) == 1)
7932 /* Check for branch targets. */
7933 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
7934 ta_none
, offset
, 0, TRUE
);
7941 if (ebb
->ends_unreachable
)
7943 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7944 ta_fill
, ebb
->end_offset
, 0, TRUE
);
7951 /* xgettext:c-format */
7952 (_("%pB(%pA+%#" PRIx64
"): could not decode instruction; "
7953 "possible configuration mismatch"),
7954 ebb
->sec
->owner
, ebb
->sec
, (uint64_t) offset
);
7959 /* After all of the information has collected about the
7960 transformations possible in an EBB, compute the appropriate actions
7961 here in compute_ebb_actions. We still must check later to make
7962 sure that the actions do not break any relocations. The algorithm
7963 used here is pretty greedy. Basically, it removes as many no-ops
7964 as possible so that the end of the EBB has the same alignment
7965 characteristics as the original. First, it uses narrowing, then
7966 fill space at the end of the EBB, and finally widenings. If that
7967 does not work, it tries again with one fewer no-op removed. The
7968 optimization will only be performed if all of the branch targets
7969 that were aligned before transformation are also aligned after the
7972 When the size_opt flag is set, ignore the branch target alignments,
7973 narrow all wide instructions, and remove all no-ops unless the end
7974 of the EBB prevents it. */
7977 compute_ebb_actions (ebb_constraint
*ebb_table
)
7981 int removed_bytes
= 0;
7982 ebb_t
*ebb
= &ebb_table
->ebb
;
7983 unsigned seg_idx_start
= 0;
7984 unsigned seg_idx_end
= 0;
7986 /* We perform this like the assembler relaxation algorithm: Start by
7987 assuming all instructions are narrow and all no-ops removed; then
7990 /* For each segment of this that has a solid constraint, check to
7991 see if there are any combinations that will keep the constraint.
7993 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
7995 bfd_boolean requires_text_end_align
= FALSE
;
7996 unsigned longcall_count
= 0;
7997 unsigned longcall_convert_count
= 0;
7998 unsigned narrowable_count
= 0;
7999 unsigned narrowable_convert_count
= 0;
8000 unsigned widenable_count
= 0;
8001 unsigned widenable_convert_count
= 0;
8003 proposed_action
*action
= NULL
;
8004 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
8006 seg_idx_start
= seg_idx_end
;
8008 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
8010 action
= &ebb_table
->actions
[i
];
8011 if (action
->action
== ta_convert_longcall
)
8013 if (action
->action
== ta_narrow_insn
)
8015 if (action
->action
== ta_widen_insn
)
8017 if (action
->action
== ta_fill
)
8019 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
8021 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
8022 && !elf32xtensa_size_opt
)
8027 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
8028 requires_text_end_align
= TRUE
;
8030 if (elf32xtensa_size_opt
&& !requires_text_end_align
8031 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
8032 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
8034 longcall_convert_count
= longcall_count
;
8035 narrowable_convert_count
= narrowable_count
;
8036 widenable_convert_count
= 0;
8040 /* There is a constraint. Convert the max number of longcalls. */
8041 narrowable_convert_count
= 0;
8042 longcall_convert_count
= 0;
8043 widenable_convert_count
= 0;
8045 for (j
= 0; j
< longcall_count
; j
++)
8047 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
8048 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
8049 unsigned desire_widen
= removed
;
8050 if (desire_narrow
<= narrowable_count
)
8052 narrowable_convert_count
= desire_narrow
;
8053 narrowable_convert_count
+=
8054 (align
* ((narrowable_count
- narrowable_convert_count
)
8056 longcall_convert_count
= (longcall_count
- j
);
8057 widenable_convert_count
= 0;
8060 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
8062 narrowable_convert_count
= 0;
8063 longcall_convert_count
= longcall_count
- j
;
8064 widenable_convert_count
= desire_widen
;
8070 /* Now the number of conversions are saved. Do them. */
8071 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
8073 action
= &ebb_table
->actions
[i
];
8074 switch (action
->action
)
8076 case ta_convert_longcall
:
8077 if (longcall_convert_count
!= 0)
8079 action
->action
= ta_remove_longcall
;
8080 action
->do_action
= TRUE
;
8081 action
->removed_bytes
+= 3;
8082 longcall_convert_count
--;
8085 case ta_narrow_insn
:
8086 if (narrowable_convert_count
!= 0)
8088 action
->do_action
= TRUE
;
8089 action
->removed_bytes
+= 1;
8090 narrowable_convert_count
--;
8094 if (widenable_convert_count
!= 0)
8096 action
->do_action
= TRUE
;
8097 action
->removed_bytes
-= 1;
8098 widenable_convert_count
--;
8107 /* Now we move on to some local opts. Try to remove each of the
8108 remaining longcalls. */
8110 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
8113 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8115 int old_removed_bytes
= removed_bytes
;
8116 proposed_action
*action
= &ebb_table
->actions
[i
];
8118 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
8120 bfd_boolean bad_alignment
= FALSE
;
8122 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
8124 proposed_action
*new_action
= &ebb_table
->actions
[j
];
8125 bfd_vma offset
= new_action
->offset
;
8126 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
8128 if (!check_branch_target_aligned
8129 (ebb_table
->ebb
.contents
,
8130 ebb_table
->ebb
.content_length
,
8131 offset
, offset
- removed_bytes
))
8133 bad_alignment
= TRUE
;
8137 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
8139 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
8140 ebb_table
->ebb
.content_length
,
8142 offset
- removed_bytes
))
8144 bad_alignment
= TRUE
;
8148 if (new_action
->action
== ta_narrow_insn
8149 && !new_action
->do_action
8150 && ebb_table
->ebb
.sec
->alignment_power
== 2)
8152 /* Narrow an instruction and we are done. */
8153 new_action
->do_action
= TRUE
;
8154 new_action
->removed_bytes
+= 1;
8155 bad_alignment
= FALSE
;
8158 if (new_action
->action
== ta_widen_insn
8159 && new_action
->do_action
8160 && ebb_table
->ebb
.sec
->alignment_power
== 2)
8162 /* Narrow an instruction and we are done. */
8163 new_action
->do_action
= FALSE
;
8164 new_action
->removed_bytes
+= 1;
8165 bad_alignment
= FALSE
;
8168 if (new_action
->do_action
)
8169 removed_bytes
+= new_action
->removed_bytes
;
8173 action
->removed_bytes
+= 3;
8174 action
->action
= ta_remove_longcall
;
8175 action
->do_action
= TRUE
;
8178 removed_bytes
= old_removed_bytes
;
8179 if (action
->do_action
)
8180 removed_bytes
+= action
->removed_bytes
;
8185 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
8187 proposed_action
*action
= &ebb_table
->actions
[i
];
8188 if (action
->do_action
)
8189 removed_bytes
+= action
->removed_bytes
;
8192 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
8193 && ebb
->ends_unreachable
)
8195 proposed_action
*action
;
8199 BFD_ASSERT (ebb_table
->action_count
!= 0);
8200 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
8201 BFD_ASSERT (action
->action
== ta_fill
);
8202 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
8204 extra_space
= xtensa_compute_fill_extra_space (ebb
->ends_unreachable
);
8205 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
8206 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
8208 action
->removed_bytes
= extra_space
- br
;
8214 /* The xlate_map is a sorted array of address mappings designed to
8215 answer the offset_with_removed_text() query with a binary search instead
8216 of a linear search through the section's action_list. */
8218 typedef struct xlate_map_entry xlate_map_entry_t
;
8219 typedef struct xlate_map xlate_map_t
;
8221 struct xlate_map_entry
8223 bfd_vma orig_address
;
8224 bfd_vma new_address
;
8230 unsigned entry_count
;
8231 xlate_map_entry_t
*entry
;
8236 xlate_compare (const void *a_v
, const void *b_v
)
8238 const xlate_map_entry_t
*a
= (const xlate_map_entry_t
*) a_v
;
8239 const xlate_map_entry_t
*b
= (const xlate_map_entry_t
*) b_v
;
8240 if (a
->orig_address
< b
->orig_address
)
8242 if (a
->orig_address
> (b
->orig_address
+ b
->size
- 1))
8249 xlate_offset_with_removed_text (const xlate_map_t
*map
,
8250 text_action_list
*action_list
,
8254 xlate_map_entry_t
*e
;
8255 struct xlate_map_entry se
;
8258 return offset_with_removed_text (action_list
, offset
);
8260 if (map
->entry_count
== 0)
8263 se
.orig_address
= offset
;
8264 r
= bsearch (&se
, map
->entry
, map
->entry_count
,
8265 sizeof (xlate_map_entry_t
), &xlate_compare
);
8266 e
= (xlate_map_entry_t
*) r
;
8268 /* There could be a jump past the end of the section,
8269 allow it using the last xlate map entry to translate its address. */
8272 e
= map
->entry
+ map
->entry_count
- 1;
8273 if (xlate_compare (&se
, e
) <= 0)
8276 BFD_ASSERT (e
!= NULL
);
8279 return e
->new_address
- e
->orig_address
+ offset
;
8282 typedef struct xlate_map_context_struct xlate_map_context
;
8283 struct xlate_map_context_struct
8286 xlate_map_entry_t
*current_entry
;
8291 xlate_map_fn (splay_tree_node node
, void *p
)
8293 text_action
*r
= (text_action
*)node
->value
;
8294 xlate_map_context
*ctx
= p
;
8295 unsigned orig_size
= 0;
8300 case ta_remove_insn
:
8301 case ta_convert_longcall
:
8302 case ta_remove_literal
:
8303 case ta_add_literal
:
8305 case ta_remove_longcall
:
8308 case ta_narrow_insn
:
8317 ctx
->current_entry
->size
=
8318 r
->offset
+ orig_size
- ctx
->current_entry
->orig_address
;
8319 if (ctx
->current_entry
->size
!= 0)
8321 ctx
->current_entry
++;
8322 ctx
->map
->entry_count
++;
8324 ctx
->current_entry
->orig_address
= r
->offset
+ orig_size
;
8325 ctx
->removed
+= r
->removed_bytes
;
8326 ctx
->current_entry
->new_address
= r
->offset
+ orig_size
- ctx
->removed
;
8327 ctx
->current_entry
->size
= 0;
8331 /* Build a binary searchable offset translation map from a section's
8334 static xlate_map_t
*
8335 build_xlate_map (asection
*sec
, xtensa_relax_info
*relax_info
)
8337 text_action_list
*action_list
= &relax_info
->action_list
;
8338 unsigned num_actions
= 0;
8339 xlate_map_context ctx
;
8341 ctx
.map
= (xlate_map_t
*) bfd_malloc (sizeof (xlate_map_t
));
8343 if (ctx
.map
== NULL
)
8346 num_actions
= action_list_count (action_list
);
8347 ctx
.map
->entry
= (xlate_map_entry_t
*)
8348 bfd_malloc (sizeof (xlate_map_entry_t
) * (num_actions
+ 1));
8349 if (ctx
.map
->entry
== NULL
)
8354 ctx
.map
->entry_count
= 0;
8357 ctx
.current_entry
= &ctx
.map
->entry
[0];
8359 ctx
.current_entry
->orig_address
= 0;
8360 ctx
.current_entry
->new_address
= 0;
8361 ctx
.current_entry
->size
= 0;
8363 splay_tree_foreach (action_list
->tree
, xlate_map_fn
, &ctx
);
8365 ctx
.current_entry
->size
= (bfd_get_section_limit (sec
->owner
, sec
)
8366 - ctx
.current_entry
->orig_address
);
8367 if (ctx
.current_entry
->size
!= 0)
8368 ctx
.map
->entry_count
++;
8374 /* Free an offset translation map. */
8377 free_xlate_map (xlate_map_t
*map
)
8379 if (map
&& map
->entry
)
8386 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8387 relocations in a section will fit if a proposed set of actions
8391 check_section_ebb_pcrels_fit (bfd
*abfd
,
8394 Elf_Internal_Rela
*internal_relocs
,
8395 reloc_range_list
*relevant_relocs
,
8396 const ebb_constraint
*constraint
,
8397 const xtensa_opcode
*reloc_opcodes
)
8400 unsigned n
= sec
->reloc_count
;
8401 Elf_Internal_Rela
*irel
;
8402 xlate_map_t
*xmap
= NULL
;
8403 bfd_boolean ok
= TRUE
;
8404 xtensa_relax_info
*relax_info
;
8405 reloc_range_list_entry
*entry
= NULL
;
8407 relax_info
= get_xtensa_relax_info (sec
);
8409 if (relax_info
&& sec
->reloc_count
> 100)
8411 xmap
= build_xlate_map (sec
, relax_info
);
8412 /* NULL indicates out of memory, but the slow version
8413 can still be used. */
8416 if (relevant_relocs
&& constraint
->action_count
)
8418 if (!relevant_relocs
->ok
)
8425 bfd_vma min_offset
, max_offset
;
8426 min_offset
= max_offset
= constraint
->actions
[0].offset
;
8428 for (i
= 1; i
< constraint
->action_count
; ++i
)
8430 proposed_action
*action
= &constraint
->actions
[i
];
8431 bfd_vma offset
= action
->offset
;
8433 if (offset
< min_offset
)
8434 min_offset
= offset
;
8435 if (offset
> max_offset
)
8436 max_offset
= offset
;
8438 reloc_range_list_update_range (relevant_relocs
, min_offset
,
8440 n
= relevant_relocs
->n_list
;
8441 entry
= &relevant_relocs
->list_root
;
8446 relevant_relocs
= NULL
;
8449 for (i
= 0; i
< n
; i
++)
8452 bfd_vma orig_self_offset
, orig_target_offset
;
8453 bfd_vma self_offset
, target_offset
;
8455 reloc_howto_type
*howto
;
8456 int self_removed_bytes
, target_removed_bytes
;
8458 if (relevant_relocs
)
8460 entry
= entry
->next
;
8465 irel
= internal_relocs
+ i
;
8467 r_type
= ELF32_R_TYPE (irel
->r_info
);
8469 howto
= &elf_howto_table
[r_type
];
8470 /* We maintain the required invariant: PC-relative relocations
8471 that fit before linking must fit after linking. Thus we only
8472 need to deal with relocations to the same section that are
8474 if (r_type
== R_XTENSA_ASM_SIMPLIFY
8475 || r_type
== R_XTENSA_32_PCREL
8476 || !howto
->pc_relative
)
8479 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
8480 bfd_get_section_limit (abfd
, sec
));
8482 if (r_reloc_get_section (&r_rel
) != sec
)
8485 orig_self_offset
= irel
->r_offset
;
8486 orig_target_offset
= r_rel
.target_offset
;
8488 self_offset
= orig_self_offset
;
8489 target_offset
= orig_target_offset
;
8494 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
8497 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
8498 orig_target_offset
);
8501 self_removed_bytes
= 0;
8502 target_removed_bytes
= 0;
8504 for (j
= 0; j
< constraint
->action_count
; ++j
)
8506 proposed_action
*action
= &constraint
->actions
[j
];
8507 bfd_vma offset
= action
->offset
;
8508 int removed_bytes
= action
->removed_bytes
;
8509 if (offset
< orig_self_offset
8510 || (offset
== orig_self_offset
&& action
->action
== ta_fill
8511 && action
->removed_bytes
< 0))
8512 self_removed_bytes
+= removed_bytes
;
8513 if (offset
< orig_target_offset
8514 || (offset
== orig_target_offset
&& action
->action
== ta_fill
8515 && action
->removed_bytes
< 0))
8516 target_removed_bytes
+= removed_bytes
;
8518 self_offset
-= self_removed_bytes
;
8519 target_offset
-= target_removed_bytes
;
8521 /* Try to encode it. Get the operand and check. */
8522 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
8524 /* None of the current alternate relocs are PC-relative,
8525 and only PC-relative relocs matter here. */
8529 xtensa_opcode opcode
;
8532 if (relevant_relocs
)
8534 opcode
= entry
->opcode
;
8535 opnum
= entry
->opnum
;
8540 opcode
= reloc_opcodes
[relevant_relocs
?
8541 (unsigned)(entry
- relevant_relocs
->reloc
) : i
];
8543 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
8544 if (opcode
== XTENSA_UNDEFINED
)
8550 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
8551 if (opnum
== XTENSA_UNDEFINED
)
8558 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
8567 free_xlate_map (xmap
);
8574 check_section_ebb_reduces (const ebb_constraint
*constraint
)
8579 for (i
= 0; i
< constraint
->action_count
; i
++)
8581 const proposed_action
*action
= &constraint
->actions
[i
];
8582 if (action
->do_action
)
8583 removed
+= action
->removed_bytes
;
8593 text_action_add_proposed (text_action_list
*l
,
8594 const ebb_constraint
*ebb_table
,
8599 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8601 proposed_action
*action
= &ebb_table
->actions
[i
];
8603 if (!action
->do_action
)
8605 switch (action
->action
)
8607 case ta_remove_insn
:
8608 case ta_remove_longcall
:
8609 case ta_convert_longcall
:
8610 case ta_narrow_insn
:
8613 case ta_remove_literal
:
8614 text_action_add (l
, action
->action
, sec
, action
->offset
,
8615 action
->removed_bytes
);
8628 xtensa_compute_fill_extra_space (property_table_entry
*entry
)
8630 int fill_extra_space
;
8635 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
8638 fill_extra_space
= entry
->size
;
8639 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
8641 /* Fill bytes for alignment:
8642 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8643 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
8644 int nsm
= (1 << pow
) - 1;
8645 bfd_vma addr
= entry
->address
+ entry
->size
;
8646 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
8647 fill_extra_space
+= align_fill
;
8649 return fill_extra_space
;
8653 /* First relaxation pass. */
8655 /* If the section contains relaxable literals, check each literal to
8656 see if it has the same value as another literal that has already
8657 been seen, either in the current section or a previous one. If so,
8658 add an entry to the per-section list of removed literals. The
8659 actual changes are deferred until the next pass. */
8662 compute_removed_literals (bfd
*abfd
,
8664 struct bfd_link_info
*link_info
,
8665 value_map_hash_table
*values
)
8667 xtensa_relax_info
*relax_info
;
8669 Elf_Internal_Rela
*internal_relocs
;
8670 source_reloc
*src_relocs
, *rel
;
8671 bfd_boolean ok
= TRUE
;
8672 property_table_entry
*prop_table
= NULL
;
8675 bfd_boolean last_loc_is_prev
= FALSE
;
8676 bfd_vma last_target_offset
= 0;
8677 section_cache_t target_sec_cache
;
8678 bfd_size_type sec_size
;
8680 init_section_cache (&target_sec_cache
);
8682 /* Do nothing if it is not a relaxable literal section. */
8683 relax_info
= get_xtensa_relax_info (sec
);
8684 BFD_ASSERT (relax_info
);
8685 if (!relax_info
->is_relaxable_literal_section
)
8688 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8689 link_info
->keep_memory
);
8691 sec_size
= bfd_get_section_limit (abfd
, sec
);
8692 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8693 if (contents
== NULL
&& sec_size
!= 0)
8699 /* Sort the source_relocs by target offset. */
8700 src_relocs
= relax_info
->src_relocs
;
8701 qsort (src_relocs
, relax_info
->src_count
,
8702 sizeof (source_reloc
), source_reloc_compare
);
8703 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8704 internal_reloc_compare
);
8706 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
8707 XTENSA_PROP_SEC_NAME
, FALSE
);
8715 for (i
= 0; i
< relax_info
->src_count
; i
++)
8717 Elf_Internal_Rela
*irel
= NULL
;
8719 rel
= &src_relocs
[i
];
8720 if (get_l32r_opcode () != rel
->opcode
)
8722 irel
= get_irel_at_offset (sec
, internal_relocs
,
8723 rel
->r_rel
.target_offset
);
8725 /* If the relocation on this is not a simple R_XTENSA_32 or
8726 R_XTENSA_PLT then do not consider it. This may happen when
8727 the difference of two symbols is used in a literal. */
8728 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
8729 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
8732 /* If the target_offset for this relocation is the same as the
8733 previous relocation, then we've already considered whether the
8734 literal can be coalesced. Skip to the next one.... */
8735 if (i
!= 0 && prev_i
!= -1
8736 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
8740 if (last_loc_is_prev
&&
8741 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
8742 last_loc_is_prev
= FALSE
;
8744 /* Check if the relocation was from an L32R that is being removed
8745 because a CALLX was converted to a direct CALL, and check if
8746 there are no other relocations to the literal. */
8747 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
,
8748 sec
, prop_table
, ptblsize
))
8750 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
8751 irel
, rel
, prop_table
, ptblsize
))
8756 last_target_offset
= rel
->r_rel
.target_offset
;
8760 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
8762 &last_loc_is_prev
, irel
,
8763 relax_info
->src_count
- i
, rel
,
8764 prop_table
, ptblsize
,
8765 &target_sec_cache
, rel
->is_abs_literal
))
8770 last_target_offset
= rel
->r_rel
.target_offset
;
8774 print_removed_literals (stderr
, &relax_info
->removed_list
);
8775 print_action_list (stderr
, &relax_info
->action_list
);
8781 free_section_cache (&target_sec_cache
);
8783 release_contents (sec
, contents
);
8784 release_internal_relocs (sec
, internal_relocs
);
8789 static Elf_Internal_Rela
*
8790 get_irel_at_offset (asection
*sec
,
8791 Elf_Internal_Rela
*internal_relocs
,
8795 Elf_Internal_Rela
*irel
;
8797 Elf_Internal_Rela key
;
8799 if (!internal_relocs
)
8802 key
.r_offset
= offset
;
8803 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
8804 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
8808 /* bsearch does not guarantee which will be returned if there are
8809 multiple matches. We need the first that is not an alignment. */
8810 i
= irel
- internal_relocs
;
8813 if (internal_relocs
[i
-1].r_offset
!= offset
)
8817 for ( ; i
< sec
->reloc_count
; i
++)
8819 irel
= &internal_relocs
[i
];
8820 r_type
= ELF32_R_TYPE (irel
->r_info
);
8821 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
8830 is_removable_literal (const source_reloc
*rel
,
8832 const source_reloc
*src_relocs
,
8835 property_table_entry
*prop_table
,
8838 const source_reloc
*curr_rel
;
8839 property_table_entry
*entry
;
8844 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8845 sec
->vma
+ rel
->r_rel
.target_offset
);
8846 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
8849 for (++i
; i
< src_count
; ++i
)
8851 curr_rel
= &src_relocs
[i
];
8852 /* If all others have the same target offset.... */
8853 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
8856 if (!curr_rel
->is_null
8857 && !xtensa_is_property_section (curr_rel
->source_sec
)
8858 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
8866 remove_dead_literal (bfd
*abfd
,
8868 struct bfd_link_info
*link_info
,
8869 Elf_Internal_Rela
*internal_relocs
,
8870 Elf_Internal_Rela
*irel
,
8872 property_table_entry
*prop_table
,
8875 property_table_entry
*entry
;
8876 xtensa_relax_info
*relax_info
;
8878 relax_info
= get_xtensa_relax_info (sec
);
8882 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8883 sec
->vma
+ rel
->r_rel
.target_offset
);
8885 /* Mark the unused literal so that it will be removed. */
8886 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
8888 text_action_add (&relax_info
->action_list
,
8889 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
8891 /* If the section is 4-byte aligned, do not add fill. */
8892 if (sec
->alignment_power
> 2)
8894 int fill_extra_space
;
8895 bfd_vma entry_sec_offset
;
8897 property_table_entry
*the_add_entry
;
8901 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
8903 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
8905 /* If the literal range is at the end of the section,
8907 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8909 fill_extra_space
= xtensa_compute_fill_extra_space (the_add_entry
);
8911 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
8912 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
8913 -4, fill_extra_space
);
8915 adjust_fill_action (fa
, removed_diff
);
8917 text_action_add (&relax_info
->action_list
,
8918 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
8921 /* Zero out the relocation on this literal location. */
8924 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8925 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8927 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8928 pin_internal_relocs (sec
, internal_relocs
);
8931 /* Do not modify "last_loc_is_prev". */
8937 identify_literal_placement (bfd
*abfd
,
8940 struct bfd_link_info
*link_info
,
8941 value_map_hash_table
*values
,
8942 bfd_boolean
*last_loc_is_prev_p
,
8943 Elf_Internal_Rela
*irel
,
8944 int remaining_src_rels
,
8946 property_table_entry
*prop_table
,
8948 section_cache_t
*target_sec_cache
,
8949 bfd_boolean is_abs_literal
)
8953 xtensa_relax_info
*relax_info
;
8954 bfd_boolean literal_placed
= FALSE
;
8956 unsigned long value
;
8957 bfd_boolean final_static_link
;
8958 bfd_size_type sec_size
;
8960 relax_info
= get_xtensa_relax_info (sec
);
8964 sec_size
= bfd_get_section_limit (abfd
, sec
);
8967 (!bfd_link_relocatable (link_info
)
8968 && !elf_hash_table (link_info
)->dynamic_sections_created
);
8970 /* The placement algorithm first checks to see if the literal is
8971 already in the value map. If so and the value map is reachable
8972 from all uses, then the literal is moved to that location. If
8973 not, then we identify the last location where a fresh literal was
8974 placed. If the literal can be safely moved there, then we do so.
8975 If not, then we assume that the literal is not to move and leave
8976 the literal where it is, marking it as the last literal
8979 /* Find the literal value. */
8981 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
8984 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
8985 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
8987 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
8989 /* Check if we've seen another literal with the same value that
8990 is in the same output section. */
8991 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
8994 && (r_reloc_get_section (&val_map
->loc
)->output_section
8995 == sec
->output_section
)
8996 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
8997 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
8999 /* No change to last_loc_is_prev. */
9000 literal_placed
= TRUE
;
9003 /* For relocatable links, do not try to move literals. To do it
9004 correctly might increase the number of relocations in an input
9005 section making the default relocatable linking fail. */
9006 if (!bfd_link_relocatable (link_info
) && !literal_placed
9007 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
9009 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
9010 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
9012 /* Increment the virtual offset. */
9013 r_reloc try_loc
= values
->last_loc
;
9014 try_loc
.virtual_offset
+= 4;
9016 /* There is a last loc that was in the same output section. */
9017 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
9018 && move_shared_literal (sec
, link_info
, rel
,
9019 prop_table
, ptblsize
,
9020 &try_loc
, &val
, target_sec_cache
))
9022 values
->last_loc
.virtual_offset
+= 4;
9023 literal_placed
= TRUE
;
9025 val_map
= add_value_map (values
, &val
, &try_loc
,
9028 val_map
->loc
= try_loc
;
9033 if (!literal_placed
)
9035 /* Nothing worked, leave the literal alone but update the last loc. */
9036 values
->has_last_loc
= TRUE
;
9037 values
->last_loc
= rel
->r_rel
;
9039 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
9041 val_map
->loc
= rel
->r_rel
;
9042 *last_loc_is_prev_p
= TRUE
;
9049 /* Check if the original relocations (presumably on L32R instructions)
9050 identified by reloc[0..N] can be changed to reference the literal
9051 identified by r_rel. If r_rel is out of range for any of the
9052 original relocations, then we don't want to coalesce the original
9053 literal with the one at r_rel. We only check reloc[0..N], where the
9054 offsets are all the same as for reloc[0] (i.e., they're all
9055 referencing the same literal) and where N is also bounded by the
9056 number of remaining entries in the "reloc" array. The "reloc" array
9057 is sorted by target offset so we know all the entries for the same
9058 literal will be contiguous. */
9061 relocations_reach (source_reloc
*reloc
,
9062 int remaining_relocs
,
9063 const r_reloc
*r_rel
)
9065 bfd_vma from_offset
, source_address
, dest_address
;
9069 if (!r_reloc_is_defined (r_rel
))
9072 sec
= r_reloc_get_section (r_rel
);
9073 from_offset
= reloc
[0].r_rel
.target_offset
;
9075 for (i
= 0; i
< remaining_relocs
; i
++)
9077 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
9080 /* Ignore relocations that have been removed. */
9081 if (reloc
[i
].is_null
)
9084 /* The original and new output section for these must be the same
9085 in order to coalesce. */
9086 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
9087 != sec
->output_section
)
9090 /* Absolute literals in the same output section can always be
9092 if (reloc
[i
].is_abs_literal
)
9095 /* A literal with no PC-relative relocations can be moved anywhere. */
9096 if (reloc
[i
].opnd
!= -1)
9098 /* Otherwise, check to see that it fits. */
9099 source_address
= (reloc
[i
].source_sec
->output_section
->vma
9100 + reloc
[i
].source_sec
->output_offset
9101 + reloc
[i
].r_rel
.rela
.r_offset
);
9102 dest_address
= (sec
->output_section
->vma
9103 + sec
->output_offset
9104 + r_rel
->target_offset
);
9106 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
9107 source_address
, dest_address
))
9116 /* Move a literal to another literal location because it is
9117 the same as the other literal value. */
9120 coalesce_shared_literal (asection
*sec
,
9122 property_table_entry
*prop_table
,
9126 property_table_entry
*entry
;
9128 property_table_entry
*the_add_entry
;
9130 xtensa_relax_info
*relax_info
;
9132 relax_info
= get_xtensa_relax_info (sec
);
9136 entry
= elf_xtensa_find_property_entry
9137 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
9138 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
9141 /* Mark that the literal will be coalesced. */
9142 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
9144 text_action_add (&relax_info
->action_list
,
9145 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
9147 /* If the section is 4-byte aligned, do not add fill. */
9148 if (sec
->alignment_power
> 2)
9150 int fill_extra_space
;
9151 bfd_vma entry_sec_offset
;
9154 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
9156 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
9158 /* If the literal range is at the end of the section,
9160 fill_extra_space
= 0;
9161 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
9163 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9164 fill_extra_space
= the_add_entry
->size
;
9166 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
9167 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
9168 -4, fill_extra_space
);
9170 adjust_fill_action (fa
, removed_diff
);
9172 text_action_add (&relax_info
->action_list
,
9173 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
9180 /* Move a literal to another location. This may actually increase the
9181 total amount of space used because of alignments so we need to do
9182 this carefully. Also, it may make a branch go out of range. */
9185 move_shared_literal (asection
*sec
,
9186 struct bfd_link_info
*link_info
,
9188 property_table_entry
*prop_table
,
9190 const r_reloc
*target_loc
,
9191 const literal_value
*lit_value
,
9192 section_cache_t
*target_sec_cache
)
9194 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
9195 text_action
*fa
, *target_fa
;
9197 xtensa_relax_info
*relax_info
, *target_relax_info
;
9198 asection
*target_sec
;
9200 ebb_constraint ebb_table
;
9201 bfd_boolean relocs_fit
;
9203 /* If this routine always returns FALSE, the literals that cannot be
9204 coalesced will not be moved. */
9205 if (elf32xtensa_no_literal_movement
)
9208 relax_info
= get_xtensa_relax_info (sec
);
9212 target_sec
= r_reloc_get_section (target_loc
);
9213 target_relax_info
= get_xtensa_relax_info (target_sec
);
9215 /* Literals to undefined sections may not be moved because they
9216 must report an error. */
9217 if (bfd_is_und_section (target_sec
))
9220 src_entry
= elf_xtensa_find_property_entry
9221 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
9223 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
9226 target_entry
= elf_xtensa_find_property_entry
9227 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
9228 target_sec
->vma
+ target_loc
->target_offset
);
9233 /* Make sure that we have not broken any branches. */
9236 init_ebb_constraint (&ebb_table
);
9237 ebb
= &ebb_table
.ebb
;
9238 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
9239 target_sec_cache
->content_length
,
9240 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
9241 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
9243 /* Propose to add 4 bytes + worst-case alignment size increase to
9245 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
9246 ta_fill
, target_loc
->target_offset
,
9247 -4 - (1 << target_sec
->alignment_power
), TRUE
);
9249 /* Check all of the PC-relative relocations to make sure they still fit. */
9250 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
9251 target_sec_cache
->contents
,
9252 target_sec_cache
->relocs
, NULL
,
9258 text_action_add_literal (&target_relax_info
->action_list
,
9259 ta_add_literal
, target_loc
, lit_value
, -4);
9261 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
9263 /* May need to add or remove some fill to maintain alignment. */
9264 int fill_extra_space
;
9265 bfd_vma entry_sec_offset
;
9268 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
9270 /* If the literal range is at the end of the section,
9272 fill_extra_space
= 0;
9274 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
9275 target_sec_cache
->pte_count
,
9277 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9278 fill_extra_space
= the_add_entry
->size
;
9280 target_fa
= find_fill_action (&target_relax_info
->action_list
,
9281 target_sec
, entry_sec_offset
);
9282 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
9283 entry_sec_offset
, 4,
9286 adjust_fill_action (target_fa
, removed_diff
);
9288 text_action_add (&target_relax_info
->action_list
,
9289 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
9292 /* Mark that the literal will be moved to the new location. */
9293 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
9295 /* Remove the literal. */
9296 text_action_add (&relax_info
->action_list
,
9297 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
9299 /* If the section is 4-byte aligned, do not add fill. */
9300 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
9302 int fill_extra_space
;
9303 bfd_vma entry_sec_offset
;
9306 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
9308 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
9310 /* If the literal range is at the end of the section,
9312 fill_extra_space
= 0;
9313 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
9315 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9316 fill_extra_space
= the_add_entry
->size
;
9318 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
9319 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
9320 -4, fill_extra_space
);
9322 adjust_fill_action (fa
, removed_diff
);
9324 text_action_add (&relax_info
->action_list
,
9325 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
9332 /* Second relaxation pass. */
9335 action_remove_bytes_fn (splay_tree_node node
, void *p
)
9337 bfd_size_type
*final_size
= p
;
9338 text_action
*action
= (text_action
*)node
->value
;
9340 *final_size
-= action
->removed_bytes
;
9344 /* Modify all of the relocations to point to the right spot, and if this
9345 is a relaxable section, delete the unwanted literals and fix the
9349 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
9351 Elf_Internal_Rela
*internal_relocs
;
9352 xtensa_relax_info
*relax_info
;
9354 bfd_boolean ok
= TRUE
;
9356 bfd_boolean rv
= FALSE
;
9357 bfd_boolean virtual_action
;
9358 bfd_size_type sec_size
;
9360 sec_size
= bfd_get_section_limit (abfd
, sec
);
9361 relax_info
= get_xtensa_relax_info (sec
);
9362 BFD_ASSERT (relax_info
);
9364 /* First translate any of the fixes that have been added already. */
9365 translate_section_fixes (sec
);
9367 /* Handle property sections (e.g., literal tables) specially. */
9368 if (xtensa_is_property_section (sec
))
9370 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
9371 return relax_property_section (abfd
, sec
, link_info
);
9374 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9375 link_info
->keep_memory
);
9376 if (!internal_relocs
&& !action_list_count (&relax_info
->action_list
))
9379 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9380 if (contents
== NULL
&& sec_size
!= 0)
9386 if (internal_relocs
)
9388 for (i
= 0; i
< sec
->reloc_count
; i
++)
9390 Elf_Internal_Rela
*irel
;
9391 xtensa_relax_info
*target_relax_info
;
9392 bfd_vma source_offset
, old_source_offset
;
9395 asection
*target_sec
;
9397 /* Locally change the source address.
9398 Translate the target to the new target address.
9399 If it points to this section and has been removed,
9403 irel
= &internal_relocs
[i
];
9404 source_offset
= irel
->r_offset
;
9405 old_source_offset
= source_offset
;
9407 r_type
= ELF32_R_TYPE (irel
->r_info
);
9408 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
9409 bfd_get_section_limit (abfd
, sec
));
9411 /* If this section could have changed then we may need to
9412 change the relocation's offset. */
9414 if (relax_info
->is_relaxable_literal_section
9415 || relax_info
->is_relaxable_asm_section
)
9417 pin_internal_relocs (sec
, internal_relocs
);
9419 if (r_type
!= R_XTENSA_NONE
9420 && find_removed_literal (&relax_info
->removed_list
,
9423 /* Remove this relocation. */
9424 if (elf_hash_table (link_info
)->dynamic_sections_created
)
9425 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
9426 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
9427 irel
->r_offset
= offset_with_removed_text_map
9428 (&relax_info
->action_list
, irel
->r_offset
);
9432 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
9434 text_action
*action
=
9435 find_insn_action (&relax_info
->action_list
,
9437 if (action
&& (action
->action
== ta_convert_longcall
9438 || action
->action
== ta_remove_longcall
))
9440 bfd_reloc_status_type retval
;
9441 char *error_message
= NULL
;
9443 retval
= contract_asm_expansion (contents
, sec_size
,
9444 irel
, &error_message
);
9445 if (retval
!= bfd_reloc_ok
)
9447 (*link_info
->callbacks
->reloc_dangerous
)
9448 (link_info
, error_message
, abfd
, sec
,
9452 /* Update the action so that the code that moves
9453 the contents will do the right thing. */
9454 /* ta_remove_longcall and ta_remove_insn actions are
9455 grouped together in the tree as well as
9456 ta_convert_longcall and ta_none, so that changes below
9457 can be done w/o removing and reinserting action into
9460 if (action
->action
== ta_remove_longcall
)
9461 action
->action
= ta_remove_insn
;
9463 action
->action
= ta_none
;
9464 /* Refresh the info in the r_rel. */
9465 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
9466 r_type
= ELF32_R_TYPE (irel
->r_info
);
9470 source_offset
= offset_with_removed_text_map
9471 (&relax_info
->action_list
, irel
->r_offset
);
9472 irel
->r_offset
= source_offset
;
9475 /* If the target section could have changed then
9476 we may need to change the relocation's target offset. */
9478 target_sec
= r_reloc_get_section (&r_rel
);
9480 /* For a reference to a discarded section from a DWARF section,
9481 i.e., where action_discarded is PRETEND, the symbol will
9482 eventually be modified to refer to the kept section (at least if
9483 the kept and discarded sections are the same size). Anticipate
9484 that here and adjust things accordingly. */
9485 if (! elf_xtensa_ignore_discarded_relocs (sec
)
9486 && elf_xtensa_action_discarded (sec
) == PRETEND
9487 && sec
->sec_info_type
!= SEC_INFO_TYPE_STABS
9488 && target_sec
!= NULL
9489 && discarded_section (target_sec
))
9491 /* It would be natural to call _bfd_elf_check_kept_section
9492 here, but it's not exported from elflink.c. It's also a
9493 fairly expensive check. Adjusting the relocations to the
9494 discarded section is fairly harmless; it will only adjust
9495 some addends and difference values. If it turns out that
9496 _bfd_elf_check_kept_section fails later, it won't matter,
9497 so just compare the section names to find the right group
9499 asection
*kept
= target_sec
->kept_section
;
9502 if ((kept
->flags
& SEC_GROUP
) != 0)
9504 asection
*first
= elf_next_in_group (kept
);
9505 asection
*s
= first
;
9510 if (strcmp (s
->name
, target_sec
->name
) == 0)
9515 s
= elf_next_in_group (s
);
9522 && ((target_sec
->rawsize
!= 0
9523 ? target_sec
->rawsize
: target_sec
->size
)
9524 == (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9528 target_relax_info
= get_xtensa_relax_info (target_sec
);
9529 if (target_relax_info
9530 && (target_relax_info
->is_relaxable_literal_section
9531 || target_relax_info
->is_relaxable_asm_section
))
9534 target_sec
= translate_reloc (&r_rel
, &new_reloc
, target_sec
);
9536 if (r_type
== R_XTENSA_DIFF8
9537 || r_type
== R_XTENSA_DIFF16
9538 || r_type
== R_XTENSA_DIFF32
)
9540 bfd_signed_vma diff_value
= 0;
9541 bfd_vma new_end_offset
, diff_mask
= 0;
9543 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
9545 (*link_info
->callbacks
->reloc_dangerous
)
9546 (link_info
, _("invalid relocation address"),
9547 abfd
, sec
, old_source_offset
);
9553 case R_XTENSA_DIFF8
:
9555 bfd_get_signed_8 (abfd
, &contents
[old_source_offset
]);
9557 case R_XTENSA_DIFF16
:
9559 bfd_get_signed_16 (abfd
, &contents
[old_source_offset
]);
9561 case R_XTENSA_DIFF32
:
9563 bfd_get_signed_32 (abfd
, &contents
[old_source_offset
]);
9567 new_end_offset
= offset_with_removed_text_map
9568 (&target_relax_info
->action_list
,
9569 r_rel
.target_offset
+ diff_value
);
9570 diff_value
= new_end_offset
- new_reloc
.target_offset
;
9574 case R_XTENSA_DIFF8
:
9576 bfd_put_signed_8 (abfd
, diff_value
,
9577 &contents
[old_source_offset
]);
9579 case R_XTENSA_DIFF16
:
9581 bfd_put_signed_16 (abfd
, diff_value
,
9582 &contents
[old_source_offset
]);
9584 case R_XTENSA_DIFF32
:
9585 diff_mask
= 0x7fffffff;
9586 bfd_put_signed_32 (abfd
, diff_value
,
9587 &contents
[old_source_offset
]);
9591 /* Check for overflow. Sign bits must be all zeroes or all ones */
9592 if ((diff_value
& ~diff_mask
) != 0 &&
9593 (diff_value
& ~diff_mask
) != (-1 & ~diff_mask
))
9595 (*link_info
->callbacks
->reloc_dangerous
)
9596 (link_info
, _("overflow after relaxation"),
9597 abfd
, sec
, old_source_offset
);
9601 pin_contents (sec
, contents
);
9604 /* If the relocation still references a section in the same
9605 input file, modify the relocation directly instead of
9606 adding a "fix" record. */
9607 if (target_sec
->owner
== abfd
)
9609 unsigned r_symndx
= ELF32_R_SYM (new_reloc
.rela
.r_info
);
9610 irel
->r_info
= ELF32_R_INFO (r_symndx
, r_type
);
9611 irel
->r_addend
= new_reloc
.rela
.r_addend
;
9612 pin_internal_relocs (sec
, internal_relocs
);
9616 bfd_vma addend_displacement
;
9619 addend_displacement
=
9620 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
9621 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
,
9623 addend_displacement
, TRUE
);
9630 if ((relax_info
->is_relaxable_literal_section
9631 || relax_info
->is_relaxable_asm_section
)
9632 && action_list_count (&relax_info
->action_list
))
9634 /* Walk through the planned actions and build up a table
9635 of move, copy and fill records. Use the move, copy and
9636 fill records to perform the actions once. */
9638 bfd_size_type final_size
, copy_size
, orig_insn_size
;
9639 bfd_byte
*scratch
= NULL
;
9640 bfd_byte
*dup_contents
= NULL
;
9641 bfd_size_type orig_size
= sec
->size
;
9642 bfd_vma orig_dot
= 0;
9643 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
9644 orig dot in physical memory. */
9645 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
9646 bfd_vma dup_dot
= 0;
9648 text_action
*action
;
9650 final_size
= sec
->size
;
9652 splay_tree_foreach (relax_info
->action_list
.tree
,
9653 action_remove_bytes_fn
, &final_size
);
9654 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
9655 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
9657 /* The dot is the current fill location. */
9659 print_action_list (stderr
, &relax_info
->action_list
);
9662 for (action
= action_first (&relax_info
->action_list
); action
;
9663 action
= action_next (&relax_info
->action_list
, action
))
9665 virtual_action
= FALSE
;
9666 if (action
->offset
> orig_dot
)
9668 orig_dot
+= orig_dot_copied
;
9669 orig_dot_copied
= 0;
9671 /* Out of the virtual world. */
9674 if (action
->offset
> orig_dot
)
9676 copy_size
= action
->offset
- orig_dot
;
9677 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9678 orig_dot
+= copy_size
;
9679 dup_dot
+= copy_size
;
9680 BFD_ASSERT (action
->offset
== orig_dot
);
9682 else if (action
->offset
< orig_dot
)
9684 if (action
->action
== ta_fill
9685 && action
->offset
- action
->removed_bytes
== orig_dot
)
9687 /* This is OK because the fill only effects the dup_dot. */
9689 else if (action
->action
== ta_add_literal
)
9691 /* TBD. Might need to handle this. */
9694 if (action
->offset
== orig_dot
)
9696 if (action
->virtual_offset
> orig_dot_vo
)
9698 if (orig_dot_vo
== 0)
9700 /* Need to copy virtual_offset bytes. Probably four. */
9701 copy_size
= action
->virtual_offset
- orig_dot_vo
;
9702 memmove (&dup_contents
[dup_dot
],
9703 &contents
[orig_dot
], copy_size
);
9704 orig_dot_copied
= copy_size
;
9705 dup_dot
+= copy_size
;
9707 virtual_action
= TRUE
;
9710 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
9712 switch (action
->action
)
9714 case ta_remove_literal
:
9715 case ta_remove_insn
:
9716 BFD_ASSERT (action
->removed_bytes
>= 0);
9717 orig_dot
+= action
->removed_bytes
;
9720 case ta_narrow_insn
:
9723 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9724 BFD_ASSERT (action
->removed_bytes
== 1);
9725 rv
= narrow_instruction (scratch
, final_size
, 0);
9727 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9728 orig_dot
+= orig_insn_size
;
9729 dup_dot
+= copy_size
;
9733 if (action
->removed_bytes
>= 0)
9734 orig_dot
+= action
->removed_bytes
;
9737 /* Already zeroed in dup_contents. Just bump the
9739 dup_dot
+= (-action
->removed_bytes
);
9744 BFD_ASSERT (action
->removed_bytes
== 0);
9747 case ta_convert_longcall
:
9748 case ta_remove_longcall
:
9749 /* These will be removed or converted before we get here. */
9756 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9757 BFD_ASSERT (action
->removed_bytes
== -1);
9758 rv
= widen_instruction (scratch
, final_size
, 0);
9760 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9761 orig_dot
+= orig_insn_size
;
9762 dup_dot
+= copy_size
;
9765 case ta_add_literal
:
9768 BFD_ASSERT (action
->removed_bytes
== -4);
9769 /* TBD -- place the literal value here and insert
9771 memset (&dup_contents
[dup_dot
], 0, 4);
9772 pin_internal_relocs (sec
, internal_relocs
);
9773 pin_contents (sec
, contents
);
9775 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
9776 relax_info
, &internal_relocs
, &action
->value
))
9780 orig_dot_vo
+= copy_size
;
9782 orig_dot
+= orig_insn_size
;
9783 dup_dot
+= copy_size
;
9787 /* Not implemented yet. */
9792 BFD_ASSERT (dup_dot
<= final_size
);
9793 BFD_ASSERT (orig_dot
<= orig_size
);
9796 orig_dot
+= orig_dot_copied
;
9797 orig_dot_copied
= 0;
9799 if (orig_dot
!= orig_size
)
9801 copy_size
= orig_size
- orig_dot
;
9802 BFD_ASSERT (orig_size
> orig_dot
);
9803 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
9804 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9805 orig_dot
+= copy_size
;
9806 dup_dot
+= copy_size
;
9808 BFD_ASSERT (orig_size
== orig_dot
);
9809 BFD_ASSERT (final_size
== dup_dot
);
9811 /* Move the dup_contents back. */
9812 if (final_size
> orig_size
)
9814 /* Contents need to be reallocated. Swap the dup_contents into
9816 sec
->contents
= dup_contents
;
9818 contents
= dup_contents
;
9819 pin_contents (sec
, contents
);
9823 BFD_ASSERT (final_size
<= orig_size
);
9824 memset (contents
, 0, orig_size
);
9825 memcpy (contents
, dup_contents
, final_size
);
9826 free (dup_contents
);
9829 pin_contents (sec
, contents
);
9831 if (sec
->rawsize
== 0)
9832 sec
->rawsize
= sec
->size
;
9833 sec
->size
= final_size
;
9837 release_internal_relocs (sec
, internal_relocs
);
9838 release_contents (sec
, contents
);
9844 translate_section_fixes (asection
*sec
)
9846 xtensa_relax_info
*relax_info
;
9849 relax_info
= get_xtensa_relax_info (sec
);
9853 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
9854 if (!translate_reloc_bfd_fix (r
))
9861 /* Translate a fix given the mapping in the relax info for the target
9862 section. If it has already been translated, no work is required. */
9865 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
9867 reloc_bfd_fix new_fix
;
9869 xtensa_relax_info
*relax_info
;
9870 removed_literal
*removed
;
9871 bfd_vma new_offset
, target_offset
;
9873 if (fix
->translated
)
9876 sec
= fix
->target_sec
;
9877 target_offset
= fix
->target_offset
;
9879 relax_info
= get_xtensa_relax_info (sec
);
9882 fix
->translated
= TRUE
;
9888 /* The fix does not need to be translated if the section cannot change. */
9889 if (!relax_info
->is_relaxable_literal_section
9890 && !relax_info
->is_relaxable_asm_section
)
9892 fix
->translated
= TRUE
;
9896 /* If the literal has been moved and this relocation was on an
9897 opcode, then the relocation should move to the new literal
9898 location. Otherwise, the relocation should move within the
9902 if (is_operand_relocation (fix
->src_type
))
9904 /* Check if the original relocation is against a literal being
9906 removed
= find_removed_literal (&relax_info
->removed_list
,
9914 /* The fact that there is still a relocation to this literal indicates
9915 that the literal is being coalesced, not simply removed. */
9916 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9918 /* This was moved to some other address (possibly another section). */
9919 new_sec
= r_reloc_get_section (&removed
->to
);
9923 relax_info
= get_xtensa_relax_info (sec
);
9925 (!relax_info
->is_relaxable_literal_section
9926 && !relax_info
->is_relaxable_asm_section
))
9928 target_offset
= removed
->to
.target_offset
;
9929 new_fix
.target_sec
= new_sec
;
9930 new_fix
.target_offset
= target_offset
;
9931 new_fix
.translated
= TRUE
;
9936 target_offset
= removed
->to
.target_offset
;
9937 new_fix
.target_sec
= new_sec
;
9940 /* The target address may have been moved within its section. */
9941 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
9944 new_fix
.target_offset
= new_offset
;
9945 new_fix
.target_offset
= new_offset
;
9946 new_fix
.translated
= TRUE
;
9952 /* Fix up a relocation to take account of removed literals. */
9955 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
, asection
*sec
)
9957 xtensa_relax_info
*relax_info
;
9958 removed_literal
*removed
;
9959 bfd_vma target_offset
, base_offset
;
9961 *new_rel
= *orig_rel
;
9963 if (!r_reloc_is_defined (orig_rel
))
9966 relax_info
= get_xtensa_relax_info (sec
);
9967 BFD_ASSERT (relax_info
&& (relax_info
->is_relaxable_literal_section
9968 || relax_info
->is_relaxable_asm_section
));
9970 target_offset
= orig_rel
->target_offset
;
9973 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
9975 /* Check if the original relocation is against a literal being
9977 removed
= find_removed_literal (&relax_info
->removed_list
,
9980 if (removed
&& removed
->to
.abfd
)
9984 /* The fact that there is still a relocation to this literal indicates
9985 that the literal is being coalesced, not simply removed. */
9986 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9988 /* This was moved to some other address
9989 (possibly in another section). */
9990 *new_rel
= removed
->to
;
9991 new_sec
= r_reloc_get_section (new_rel
);
9995 relax_info
= get_xtensa_relax_info (sec
);
9997 || (!relax_info
->is_relaxable_literal_section
9998 && !relax_info
->is_relaxable_asm_section
))
10001 target_offset
= new_rel
->target_offset
;
10004 /* Find the base offset of the reloc symbol, excluding any addend from the
10005 reloc or from the section contents (for a partial_inplace reloc). Then
10006 find the adjusted values of the offsets due to relaxation. The base
10007 offset is needed to determine the change to the reloc's addend; the reloc
10008 addend should not be adjusted due to relaxations located before the base
10011 base_offset
= r_reloc_get_target_offset (new_rel
) - new_rel
->rela
.r_addend
;
10012 if (base_offset
<= target_offset
)
10014 int base_removed
= removed_by_actions_map (&relax_info
->action_list
,
10015 base_offset
, FALSE
);
10016 int addend_removed
= removed_by_actions_map (&relax_info
->action_list
,
10017 target_offset
, FALSE
) -
10020 new_rel
->target_offset
= target_offset
- base_removed
- addend_removed
;
10021 new_rel
->rela
.r_addend
-= addend_removed
;
10025 /* Handle a negative addend. The base offset comes first. */
10026 int tgt_removed
= removed_by_actions_map (&relax_info
->action_list
,
10027 target_offset
, FALSE
);
10028 int addend_removed
= removed_by_actions_map (&relax_info
->action_list
,
10029 base_offset
, FALSE
) -
10032 new_rel
->target_offset
= target_offset
- tgt_removed
;
10033 new_rel
->rela
.r_addend
+= addend_removed
;
10040 /* For dynamic links, there may be a dynamic relocation for each
10041 literal. The number of dynamic relocations must be computed in
10042 size_dynamic_sections, which occurs before relaxation. When a
10043 literal is removed, this function checks if there is a corresponding
10044 dynamic relocation and shrinks the size of the appropriate dynamic
10045 relocation section accordingly. At this point, the contents of the
10046 dynamic relocation sections have not yet been filled in, so there's
10047 nothing else that needs to be done. */
10050 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
10052 asection
*input_section
,
10053 Elf_Internal_Rela
*rel
)
10055 struct elf_xtensa_link_hash_table
*htab
;
10056 Elf_Internal_Shdr
*symtab_hdr
;
10057 struct elf_link_hash_entry
**sym_hashes
;
10058 unsigned long r_symndx
;
10060 struct elf_link_hash_entry
*h
;
10061 bfd_boolean dynamic_symbol
;
10063 htab
= elf_xtensa_hash_table (info
);
10067 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10068 sym_hashes
= elf_sym_hashes (abfd
);
10070 r_type
= ELF32_R_TYPE (rel
->r_info
);
10071 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10073 if (r_symndx
< symtab_hdr
->sh_info
)
10076 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10078 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
10080 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
10081 && (input_section
->flags
& SEC_ALLOC
) != 0
10082 && (dynamic_symbol
|| bfd_link_pic (info
))
10083 && (!h
|| h
->root
.type
!= bfd_link_hash_undefweak
10085 && (bfd_link_dll (info
) || info
->export_dynamic
))))
10088 bfd_boolean is_plt
= FALSE
;
10090 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
10092 srel
= htab
->elf
.srelplt
;
10096 srel
= htab
->elf
.srelgot
;
10098 /* Reduce size of the .rela.* section by one reloc. */
10099 BFD_ASSERT (srel
!= NULL
);
10100 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
10101 srel
->size
-= sizeof (Elf32_External_Rela
);
10105 asection
*splt
, *sgotplt
, *srelgot
;
10106 int reloc_index
, chunk
;
10108 /* Find the PLT reloc index of the entry being removed. This
10109 is computed from the size of ".rela.plt". It is needed to
10110 figure out which PLT chunk to resize. Usually "last index
10111 = size - 1" since the index starts at zero, but in this
10112 context, the size has just been decremented so there's no
10113 need to subtract one. */
10114 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
10116 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
10117 splt
= elf_xtensa_get_plt_section (info
, chunk
);
10118 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
10119 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
10121 /* Check if an entire PLT chunk has just been eliminated. */
10122 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
10124 /* The two magic GOT entries for that chunk can go away. */
10125 srelgot
= htab
->elf
.srelgot
;
10126 BFD_ASSERT (srelgot
!= NULL
);
10127 srelgot
->reloc_count
-= 2;
10128 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
10129 sgotplt
->size
-= 8;
10131 /* There should be only one entry left (and it will be
10133 BFD_ASSERT (sgotplt
->size
== 4);
10134 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
10137 BFD_ASSERT (sgotplt
->size
>= 4);
10138 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
10140 sgotplt
->size
-= 4;
10141 splt
->size
-= PLT_ENTRY_SIZE
;
10147 /* Take an r_rel and move it to another section. This usually
10148 requires extending the interal_relocation array and pinning it. If
10149 the original r_rel is from the same BFD, we can complete this here.
10150 Otherwise, we add a fix record to let the final link fix the
10151 appropriate address. Contents and internal relocations for the
10152 section must be pinned after calling this routine. */
10155 move_literal (bfd
*abfd
,
10156 struct bfd_link_info
*link_info
,
10159 bfd_byte
*contents
,
10160 xtensa_relax_info
*relax_info
,
10161 Elf_Internal_Rela
**internal_relocs_p
,
10162 const literal_value
*lit
)
10164 Elf_Internal_Rela
*new_relocs
= NULL
;
10165 size_t new_relocs_count
= 0;
10166 Elf_Internal_Rela this_rela
;
10167 const r_reloc
*r_rel
;
10169 r_rel
= &lit
->r_rel
;
10170 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
10172 if (r_reloc_is_const (r_rel
))
10173 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
10178 reloc_bfd_fix
*fix
;
10179 unsigned insert_at
;
10181 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
10183 /* This is the difficult case. We have to create a fix up. */
10184 this_rela
.r_offset
= offset
;
10185 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
10186 this_rela
.r_addend
=
10187 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
10188 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
10190 /* Currently, we cannot move relocations during a relocatable link. */
10191 BFD_ASSERT (!bfd_link_relocatable (link_info
));
10192 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
,
10193 r_reloc_get_section (r_rel
),
10194 r_rel
->target_offset
+ r_rel
->virtual_offset
,
10196 /* We also need to mark that relocations are needed here. */
10197 sec
->flags
|= SEC_RELOC
;
10199 translate_reloc_bfd_fix (fix
);
10200 /* This fix has not yet been translated. */
10201 add_fix (sec
, fix
);
10203 /* Add the relocation. If we have already allocated our own
10204 space for the relocations and we have room for more, then use
10205 it. Otherwise, allocate new space and move the literals. */
10206 insert_at
= sec
->reloc_count
;
10207 for (i
= 0; i
< sec
->reloc_count
; ++i
)
10209 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
10216 if (*internal_relocs_p
!= relax_info
->allocated_relocs
10217 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
10219 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
10220 || sec
->reloc_count
== relax_info
->relocs_count
);
10222 if (relax_info
->allocated_relocs_count
== 0)
10223 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
10225 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
10227 new_relocs
= (Elf_Internal_Rela
*)
10228 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
10232 /* We could handle this more quickly by finding the split point. */
10233 if (insert_at
!= 0)
10234 memcpy (new_relocs
, *internal_relocs_p
,
10235 insert_at
* sizeof (Elf_Internal_Rela
));
10237 new_relocs
[insert_at
] = this_rela
;
10239 if (insert_at
!= sec
->reloc_count
)
10240 memcpy (new_relocs
+ insert_at
+ 1,
10241 (*internal_relocs_p
) + insert_at
,
10242 (sec
->reloc_count
- insert_at
)
10243 * sizeof (Elf_Internal_Rela
));
10245 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
10247 /* The first time we re-allocate, we can only free the
10248 old relocs if they were allocated with bfd_malloc.
10249 This is not true when keep_memory is in effect. */
10250 if (!link_info
->keep_memory
)
10251 free (*internal_relocs_p
);
10254 free (*internal_relocs_p
);
10255 relax_info
->allocated_relocs
= new_relocs
;
10256 relax_info
->allocated_relocs_count
= new_relocs_count
;
10257 elf_section_data (sec
)->relocs
= new_relocs
;
10258 sec
->reloc_count
++;
10259 relax_info
->relocs_count
= sec
->reloc_count
;
10260 *internal_relocs_p
= new_relocs
;
10264 if (insert_at
!= sec
->reloc_count
)
10267 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
10268 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
10270 (*internal_relocs_p
)[insert_at
] = this_rela
;
10271 sec
->reloc_count
++;
10272 if (relax_info
->allocated_relocs
)
10273 relax_info
->relocs_count
= sec
->reloc_count
;
10280 /* This is similar to relax_section except that when a target is moved,
10281 we shift addresses up. We also need to modify the size. This
10282 algorithm does NOT allow for relocations into the middle of the
10283 property sections. */
10286 relax_property_section (bfd
*abfd
,
10288 struct bfd_link_info
*link_info
)
10290 Elf_Internal_Rela
*internal_relocs
;
10291 bfd_byte
*contents
;
10293 bfd_boolean ok
= TRUE
;
10294 bfd_boolean is_full_prop_section
;
10295 size_t last_zfill_target_offset
= 0;
10296 asection
*last_zfill_target_sec
= NULL
;
10297 bfd_size_type sec_size
;
10298 bfd_size_type entry_size
;
10300 sec_size
= bfd_get_section_limit (abfd
, sec
);
10301 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
10302 link_info
->keep_memory
);
10303 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
10304 if (contents
== NULL
&& sec_size
!= 0)
10310 is_full_prop_section
= xtensa_is_proptable_section (sec
);
10311 if (is_full_prop_section
)
10316 if (internal_relocs
)
10318 for (i
= 0; i
< sec
->reloc_count
; i
++)
10320 Elf_Internal_Rela
*irel
;
10321 xtensa_relax_info
*target_relax_info
;
10323 asection
*target_sec
;
10325 bfd_byte
*size_p
, *flags_p
;
10327 /* Locally change the source address.
10328 Translate the target to the new target address.
10329 If it points to this section and has been removed, MOVE IT.
10330 Also, don't forget to modify the associated SIZE at
10333 irel
= &internal_relocs
[i
];
10334 r_type
= ELF32_R_TYPE (irel
->r_info
);
10335 if (r_type
== R_XTENSA_NONE
)
10338 /* Find the literal value. */
10339 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
10340 size_p
= &contents
[irel
->r_offset
+ 4];
10342 if (is_full_prop_section
)
10343 flags_p
= &contents
[irel
->r_offset
+ 8];
10344 BFD_ASSERT (irel
->r_offset
+ entry_size
<= sec_size
);
10346 target_sec
= r_reloc_get_section (&val
.r_rel
);
10347 target_relax_info
= get_xtensa_relax_info (target_sec
);
10349 if (target_relax_info
10350 && (target_relax_info
->is_relaxable_literal_section
10351 || target_relax_info
->is_relaxable_asm_section
))
10353 /* Translate the relocation's destination. */
10354 bfd_vma old_offset
= val
.r_rel
.target_offset
;
10355 bfd_vma new_offset
;
10356 long old_size
, new_size
;
10357 int removed_by_old_offset
=
10358 removed_by_actions_map (&target_relax_info
->action_list
,
10359 old_offset
, FALSE
);
10360 new_offset
= old_offset
- removed_by_old_offset
;
10362 /* Assert that we are not out of bounds. */
10363 old_size
= bfd_get_32 (abfd
, size_p
);
10364 new_size
= old_size
;
10368 /* Only the first zero-sized unreachable entry is
10369 allowed to expand. In this case the new offset
10370 should be the offset before the fill and the new
10371 size is the expansion size. For other zero-sized
10372 entries the resulting size should be zero with an
10373 offset before or after the fill address depending
10374 on whether the expanding unreachable entry
10376 if (last_zfill_target_sec
== 0
10377 || last_zfill_target_sec
!= target_sec
10378 || last_zfill_target_offset
!= old_offset
)
10380 bfd_vma new_end_offset
= new_offset
;
10382 /* Recompute the new_offset, but this time don't
10383 include any fill inserted by relaxation. */
10384 removed_by_old_offset
=
10385 removed_by_actions_map (&target_relax_info
->action_list
,
10387 new_offset
= old_offset
- removed_by_old_offset
;
10389 /* If it is not unreachable and we have not yet
10390 seen an unreachable at this address, place it
10391 before the fill address. */
10392 if (flags_p
&& (bfd_get_32 (abfd
, flags_p
)
10393 & XTENSA_PROP_UNREACHABLE
) != 0)
10395 new_size
= new_end_offset
- new_offset
;
10397 last_zfill_target_sec
= target_sec
;
10398 last_zfill_target_offset
= old_offset
;
10404 int removed_by_old_offset_size
=
10405 removed_by_actions_map (&target_relax_info
->action_list
,
10406 old_offset
+ old_size
, TRUE
);
10407 new_size
-= removed_by_old_offset_size
- removed_by_old_offset
;
10410 if (new_size
!= old_size
)
10412 bfd_put_32 (abfd
, new_size
, size_p
);
10413 pin_contents (sec
, contents
);
10416 if (new_offset
!= old_offset
)
10418 bfd_vma diff
= new_offset
- old_offset
;
10419 irel
->r_addend
+= diff
;
10420 pin_internal_relocs (sec
, internal_relocs
);
10426 /* Combine adjacent property table entries. This is also done in
10427 finish_dynamic_sections() but at that point it's too late to
10428 reclaim the space in the output section, so we do this twice. */
10430 if (internal_relocs
&& (!bfd_link_relocatable (link_info
)
10431 || xtensa_is_littable_section (sec
)))
10433 Elf_Internal_Rela
*last_irel
= NULL
;
10434 Elf_Internal_Rela
*irel
, *next_rel
, *rel_end
;
10435 int removed_bytes
= 0;
10437 flagword predef_flags
;
10439 predef_flags
= xtensa_get_property_predef_flags (sec
);
10441 /* Walk over memory and relocations at the same time.
10442 This REQUIRES that the internal_relocs be sorted by offset. */
10443 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
10444 internal_reloc_compare
);
10446 pin_internal_relocs (sec
, internal_relocs
);
10447 pin_contents (sec
, contents
);
10449 next_rel
= internal_relocs
;
10450 rel_end
= internal_relocs
+ sec
->reloc_count
;
10452 BFD_ASSERT (sec
->size
% entry_size
== 0);
10454 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
10456 Elf_Internal_Rela
*offset_rel
, *extra_rel
;
10457 bfd_vma bytes_to_remove
, size
, actual_offset
;
10458 bfd_boolean remove_this_rel
;
10461 /* Find the first relocation for the entry at the current offset.
10462 Adjust the offsets of any extra relocations for the previous
10467 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10469 if ((irel
->r_offset
== offset
10470 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
10471 || irel
->r_offset
> offset
)
10476 irel
->r_offset
-= removed_bytes
;
10480 /* Find the next relocation (if there are any left). */
10484 for (irel
= offset_rel
+ 1; irel
< rel_end
; irel
++)
10486 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
10494 /* Check if there are relocations on the current entry. There
10495 should usually be a relocation on the offset field. If there
10496 are relocations on the size or flags, then we can't optimize
10497 this entry. Also, find the next relocation to examine on the
10501 if (offset_rel
->r_offset
>= offset
+ entry_size
)
10503 next_rel
= offset_rel
;
10504 /* There are no relocations on the current entry, but we
10505 might still be able to remove it if the size is zero. */
10508 else if (offset_rel
->r_offset
> offset
10510 && extra_rel
->r_offset
< offset
+ entry_size
))
10512 /* There is a relocation on the size or flags, so we can't
10513 do anything with this entry. Continue with the next. */
10514 next_rel
= offset_rel
;
10519 BFD_ASSERT (offset_rel
->r_offset
== offset
);
10520 offset_rel
->r_offset
-= removed_bytes
;
10521 next_rel
= offset_rel
+ 1;
10527 remove_this_rel
= FALSE
;
10528 bytes_to_remove
= 0;
10529 actual_offset
= offset
- removed_bytes
;
10530 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
10532 if (is_full_prop_section
)
10533 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
10535 flags
= predef_flags
;
10538 && (flags
& XTENSA_PROP_ALIGN
) == 0
10539 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
10541 /* Always remove entries with zero size and no alignment. */
10542 bytes_to_remove
= entry_size
;
10544 remove_this_rel
= TRUE
;
10546 else if (offset_rel
10547 && ELF32_R_TYPE (offset_rel
->r_info
) == R_XTENSA_32
)
10551 flagword old_flags
;
10553 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
10554 bfd_vma old_address
=
10555 (last_irel
->r_addend
10556 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
10557 bfd_vma new_address
=
10558 (offset_rel
->r_addend
10559 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
10560 if (is_full_prop_section
)
10561 old_flags
= bfd_get_32
10562 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
10564 old_flags
= predef_flags
;
10566 if ((ELF32_R_SYM (offset_rel
->r_info
)
10567 == ELF32_R_SYM (last_irel
->r_info
))
10568 && old_address
+ old_size
== new_address
10569 && old_flags
== flags
10570 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
10571 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
10573 /* Fix the old size. */
10574 bfd_put_32 (abfd
, old_size
+ size
,
10575 &contents
[last_irel
->r_offset
+ 4]);
10576 bytes_to_remove
= entry_size
;
10577 remove_this_rel
= TRUE
;
10580 last_irel
= offset_rel
;
10583 last_irel
= offset_rel
;
10586 if (remove_this_rel
)
10588 offset_rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
10589 offset_rel
->r_offset
= 0;
10592 if (bytes_to_remove
!= 0)
10594 removed_bytes
+= bytes_to_remove
;
10595 if (offset
+ bytes_to_remove
< sec
->size
)
10596 memmove (&contents
[actual_offset
],
10597 &contents
[actual_offset
+ bytes_to_remove
],
10598 sec
->size
- offset
- bytes_to_remove
);
10604 /* Fix up any extra relocations on the last entry. */
10605 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10606 irel
->r_offset
-= removed_bytes
;
10608 /* Clear the removed bytes. */
10609 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
10611 if (sec
->rawsize
== 0)
10612 sec
->rawsize
= sec
->size
;
10613 sec
->size
-= removed_bytes
;
10615 if (xtensa_is_littable_section (sec
))
10617 asection
*sgotloc
= elf_xtensa_hash_table (link_info
)->sgotloc
;
10619 sgotloc
->size
-= removed_bytes
;
10625 release_internal_relocs (sec
, internal_relocs
);
10626 release_contents (sec
, contents
);
10631 /* Third relaxation pass. */
10633 /* Change symbol values to account for removed literals. */
10636 relax_section_symbols (bfd
*abfd
, asection
*sec
)
10638 xtensa_relax_info
*relax_info
;
10639 unsigned int sec_shndx
;
10640 Elf_Internal_Shdr
*symtab_hdr
;
10641 Elf_Internal_Sym
*isymbuf
;
10642 unsigned i
, num_syms
, num_locals
;
10644 relax_info
= get_xtensa_relax_info (sec
);
10645 BFD_ASSERT (relax_info
);
10647 if (!relax_info
->is_relaxable_literal_section
10648 && !relax_info
->is_relaxable_asm_section
)
10651 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
10653 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10654 isymbuf
= retrieve_local_syms (abfd
);
10656 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
10657 num_locals
= symtab_hdr
->sh_info
;
10659 /* Adjust the local symbols defined in this section. */
10660 for (i
= 0; i
< num_locals
; i
++)
10662 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
10664 if (isym
->st_shndx
== sec_shndx
)
10666 bfd_vma orig_addr
= isym
->st_value
;
10667 int removed
= removed_by_actions_map (&relax_info
->action_list
,
10670 isym
->st_value
-= removed
;
10671 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
10673 removed_by_actions_map (&relax_info
->action_list
,
10674 orig_addr
+ isym
->st_size
, FALSE
) -
10679 /* Now adjust the global symbols defined in this section. */
10680 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
10682 struct elf_link_hash_entry
*sym_hash
;
10684 sym_hash
= elf_sym_hashes (abfd
)[i
];
10686 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
10687 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
10689 if ((sym_hash
->root
.type
== bfd_link_hash_defined
10690 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
10691 && sym_hash
->root
.u
.def
.section
== sec
)
10693 bfd_vma orig_addr
= sym_hash
->root
.u
.def
.value
;
10694 int removed
= removed_by_actions_map (&relax_info
->action_list
,
10697 sym_hash
->root
.u
.def
.value
-= removed
;
10699 if (sym_hash
->type
== STT_FUNC
)
10701 removed_by_actions_map (&relax_info
->action_list
,
10702 orig_addr
+ sym_hash
->size
, FALSE
) -
10711 /* "Fix" handling functions, called while performing relocations. */
10714 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
10716 asection
*input_section
,
10717 bfd_byte
*contents
)
10720 asection
*sec
, *old_sec
;
10721 bfd_vma old_offset
;
10722 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10723 reloc_bfd_fix
*fix
;
10725 if (r_type
== R_XTENSA_NONE
)
10728 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10732 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
10733 bfd_get_section_limit (input_bfd
, input_section
));
10734 old_sec
= r_reloc_get_section (&r_rel
);
10735 old_offset
= r_rel
.target_offset
;
10737 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
10739 if (r_type
!= R_XTENSA_ASM_EXPAND
)
10742 /* xgettext:c-format */
10743 (_("%pB(%pA+%#" PRIx64
"): unexpected fix for %s relocation"),
10744 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
10745 elf_howto_table
[r_type
].name
);
10748 /* Leave it be. Resolution will happen in a later stage. */
10752 sec
= fix
->target_sec
;
10753 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
10754 - (old_sec
->output_offset
+ old_offset
));
10761 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
10763 asection
*input_section
,
10764 bfd_byte
*contents
,
10765 bfd_vma
*relocationp
)
10768 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10769 reloc_bfd_fix
*fix
;
10770 bfd_vma fixup_diff
;
10772 if (r_type
== R_XTENSA_NONE
)
10775 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10779 sec
= fix
->target_sec
;
10781 fixup_diff
= rel
->r_addend
;
10782 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
10784 bfd_vma inplace_val
;
10785 BFD_ASSERT (fix
->src_offset
10786 < bfd_get_section_limit (input_bfd
, input_section
));
10787 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
10788 fixup_diff
+= inplace_val
;
10791 *relocationp
= (sec
->output_section
->vma
10792 + sec
->output_offset
10793 + fix
->target_offset
- fixup_diff
);
10797 /* Miscellaneous utility functions.... */
10800 elf_xtensa_get_plt_section (struct bfd_link_info
*info
, int chunk
)
10806 return elf_hash_table (info
)->splt
;
10808 dynobj
= elf_hash_table (info
)->dynobj
;
10809 sprintf (plt_name
, ".plt.%u", chunk
);
10810 return bfd_get_linker_section (dynobj
, plt_name
);
10815 elf_xtensa_get_gotplt_section (struct bfd_link_info
*info
, int chunk
)
10821 return elf_hash_table (info
)->sgotplt
;
10823 dynobj
= elf_hash_table (info
)->dynobj
;
10824 sprintf (got_name
, ".got.plt.%u", chunk
);
10825 return bfd_get_linker_section (dynobj
, got_name
);
10829 /* Get the input section for a given symbol index.
10831 . a section symbol, return the section;
10832 . a common symbol, return the common section;
10833 . an undefined symbol, return the undefined section;
10834 . an indirect symbol, follow the links;
10835 . an absolute value, return the absolute section. */
10838 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
10840 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10841 asection
*target_sec
= NULL
;
10842 if (r_symndx
< symtab_hdr
->sh_info
)
10844 Elf_Internal_Sym
*isymbuf
;
10845 unsigned int section_index
;
10847 isymbuf
= retrieve_local_syms (abfd
);
10848 section_index
= isymbuf
[r_symndx
].st_shndx
;
10850 if (section_index
== SHN_UNDEF
)
10851 target_sec
= bfd_und_section_ptr
;
10852 else if (section_index
== SHN_ABS
)
10853 target_sec
= bfd_abs_section_ptr
;
10854 else if (section_index
== SHN_COMMON
)
10855 target_sec
= bfd_com_section_ptr
;
10857 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
10861 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10862 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
10864 while (h
->root
.type
== bfd_link_hash_indirect
10865 || h
->root
.type
== bfd_link_hash_warning
)
10866 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10868 switch (h
->root
.type
)
10870 case bfd_link_hash_defined
:
10871 case bfd_link_hash_defweak
:
10872 target_sec
= h
->root
.u
.def
.section
;
10874 case bfd_link_hash_common
:
10875 target_sec
= bfd_com_section_ptr
;
10877 case bfd_link_hash_undefined
:
10878 case bfd_link_hash_undefweak
:
10879 target_sec
= bfd_und_section_ptr
;
10881 default: /* New indirect warning. */
10882 target_sec
= bfd_und_section_ptr
;
10890 static struct elf_link_hash_entry
*
10891 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
10893 unsigned long indx
;
10894 struct elf_link_hash_entry
*h
;
10895 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10897 if (r_symndx
< symtab_hdr
->sh_info
)
10900 indx
= r_symndx
- symtab_hdr
->sh_info
;
10901 h
= elf_sym_hashes (abfd
)[indx
];
10902 while (h
->root
.type
== bfd_link_hash_indirect
10903 || h
->root
.type
== bfd_link_hash_warning
)
10904 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10909 /* Get the section-relative offset for a symbol number. */
10912 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
10914 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10915 bfd_vma offset
= 0;
10917 if (r_symndx
< symtab_hdr
->sh_info
)
10919 Elf_Internal_Sym
*isymbuf
;
10920 isymbuf
= retrieve_local_syms (abfd
);
10921 offset
= isymbuf
[r_symndx
].st_value
;
10925 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10926 struct elf_link_hash_entry
*h
=
10927 elf_sym_hashes (abfd
)[indx
];
10929 while (h
->root
.type
== bfd_link_hash_indirect
10930 || h
->root
.type
== bfd_link_hash_warning
)
10931 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10932 if (h
->root
.type
== bfd_link_hash_defined
10933 || h
->root
.type
== bfd_link_hash_defweak
)
10934 offset
= h
->root
.u
.def
.value
;
10941 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
10943 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
10944 struct elf_link_hash_entry
*h
;
10946 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
10947 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
10954 pcrel_reloc_fits (xtensa_opcode opc
,
10956 bfd_vma self_address
,
10957 bfd_vma dest_address
)
10959 xtensa_isa isa
= xtensa_default_isa
;
10960 uint32 valp
= dest_address
;
10961 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
10962 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
10969 xtensa_is_property_section (asection
*sec
)
10971 if (xtensa_is_insntable_section (sec
)
10972 || xtensa_is_littable_section (sec
)
10973 || xtensa_is_proptable_section (sec
))
10981 xtensa_is_insntable_section (asection
*sec
)
10983 if (CONST_STRNEQ (sec
->name
, XTENSA_INSN_SEC_NAME
)
10984 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.x."))
10992 xtensa_is_littable_section (asection
*sec
)
10994 if (CONST_STRNEQ (sec
->name
, XTENSA_LIT_SEC_NAME
)
10995 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.p."))
11003 xtensa_is_proptable_section (asection
*sec
)
11005 if (CONST_STRNEQ (sec
->name
, XTENSA_PROP_SEC_NAME
)
11006 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.prop."))
11014 internal_reloc_compare (const void *ap
, const void *bp
)
11016 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
11017 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
11019 if (a
->r_offset
!= b
->r_offset
)
11020 return (a
->r_offset
- b
->r_offset
);
11022 /* We don't need to sort on these criteria for correctness,
11023 but enforcing a more strict ordering prevents unstable qsort
11024 from behaving differently with different implementations.
11025 Without the code below we get correct but different results
11026 on Solaris 2.7 and 2.8. We would like to always produce the
11027 same results no matter the host. */
11029 if (a
->r_info
!= b
->r_info
)
11030 return (a
->r_info
- b
->r_info
);
11032 return (a
->r_addend
- b
->r_addend
);
11037 internal_reloc_matches (const void *ap
, const void *bp
)
11039 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
11040 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
11042 /* Check if one entry overlaps with the other; this shouldn't happen
11043 except when searching for a match. */
11044 return (a
->r_offset
- b
->r_offset
);
11048 /* Predicate function used to look up a section in a particular group. */
11051 match_section_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
, void *inf
)
11053 const char *gname
= inf
;
11054 const char *group_name
= elf_group_name (sec
);
11056 return (group_name
== gname
11057 || (group_name
!= NULL
11059 && strcmp (group_name
, gname
) == 0));
11064 xtensa_add_names (const char *base
, const char *suffix
)
11068 size_t base_len
= strlen (base
);
11069 size_t suffix_len
= strlen (suffix
);
11070 char *str
= bfd_malloc (base_len
+ suffix_len
+ 1);
11072 memcpy (str
, base
, base_len
);
11073 memcpy (str
+ base_len
, suffix
, suffix_len
+ 1);
11078 return strdup (base
);
11082 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
11085 xtensa_property_section_name (asection
*sec
, const char *base_name
,
11086 bfd_boolean separate_sections
)
11088 const char *suffix
, *group_name
;
11089 char *prop_sec_name
;
11091 group_name
= elf_group_name (sec
);
11094 suffix
= strrchr (sec
->name
, '.');
11095 if (suffix
== sec
->name
)
11097 prop_sec_name
= xtensa_add_names (base_name
, suffix
);
11099 else if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
11101 char *linkonce_kind
= 0;
11103 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
11104 linkonce_kind
= "x.";
11105 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
11106 linkonce_kind
= "p.";
11107 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
11108 linkonce_kind
= "prop.";
11112 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
11113 + strlen (linkonce_kind
) + 1);
11114 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
11115 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
11117 suffix
= sec
->name
+ linkonce_len
;
11118 /* For backward compatibility, replace "t." instead of inserting
11119 the new linkonce_kind (but not for "prop" sections). */
11120 if (CONST_STRNEQ (suffix
, "t.") && linkonce_kind
[1] == '.')
11122 strcat (prop_sec_name
+ linkonce_len
, suffix
);
11126 prop_sec_name
= xtensa_add_names (base_name
,
11127 separate_sections
? sec
->name
: NULL
);
11130 return prop_sec_name
;
11135 xtensa_get_separate_property_section (asection
*sec
, const char *base_name
,
11136 bfd_boolean separate_section
)
11138 char *prop_sec_name
;
11139 asection
*prop_sec
;
11141 prop_sec_name
= xtensa_property_section_name (sec
, base_name
,
11143 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
11144 match_section_group
,
11145 (void *) elf_group_name (sec
));
11146 free (prop_sec_name
);
11151 xtensa_get_property_section (asection
*sec
, const char *base_name
)
11153 asection
*prop_sec
;
11155 /* Try individual property section first. */
11156 prop_sec
= xtensa_get_separate_property_section (sec
, base_name
, TRUE
);
11158 /* Refer to a common property section if individual is not present. */
11160 prop_sec
= xtensa_get_separate_property_section (sec
, base_name
, FALSE
);
11167 xtensa_make_property_section (asection
*sec
, const char *base_name
)
11169 char *prop_sec_name
;
11170 asection
*prop_sec
;
11172 /* Check if the section already exists. */
11173 prop_sec_name
= xtensa_property_section_name (sec
, base_name
,
11174 elf32xtensa_separate_props
);
11175 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
11176 match_section_group
,
11177 (void *) elf_group_name (sec
));
11178 /* If not, create it. */
11181 flagword flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
);
11182 flags
|= (bfd_get_section_flags (sec
->owner
, sec
)
11183 & (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
));
11185 prop_sec
= bfd_make_section_anyway_with_flags
11186 (sec
->owner
, strdup (prop_sec_name
), flags
);
11190 elf_group_name (prop_sec
) = elf_group_name (sec
);
11193 free (prop_sec_name
);
11199 xtensa_get_property_predef_flags (asection
*sec
)
11201 if (xtensa_is_insntable_section (sec
))
11202 return (XTENSA_PROP_INSN
11203 | XTENSA_PROP_NO_TRANSFORM
11204 | XTENSA_PROP_INSN_NO_REORDER
);
11206 if (xtensa_is_littable_section (sec
))
11207 return (XTENSA_PROP_LITERAL
11208 | XTENSA_PROP_NO_TRANSFORM
11209 | XTENSA_PROP_INSN_NO_REORDER
);
11215 /* Other functions called directly by the linker. */
11218 xtensa_callback_required_dependence (bfd
*abfd
,
11220 struct bfd_link_info
*link_info
,
11221 deps_callback_t callback
,
11224 Elf_Internal_Rela
*internal_relocs
;
11225 bfd_byte
*contents
;
11227 bfd_boolean ok
= TRUE
;
11228 bfd_size_type sec_size
;
11230 sec_size
= bfd_get_section_limit (abfd
, sec
);
11232 /* ".plt*" sections have no explicit relocations but they contain L32R
11233 instructions that reference the corresponding ".got.plt*" sections. */
11234 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
11235 && CONST_STRNEQ (sec
->name
, ".plt"))
11239 /* Find the corresponding ".got.plt*" section. */
11240 if (sec
->name
[4] == '\0')
11241 sgotplt
= elf_hash_table (link_info
)->sgotplt
;
11247 BFD_ASSERT (sec
->name
[4] == '.');
11248 chunk
= strtol (&sec
->name
[5], NULL
, 10);
11250 sprintf (got_name
, ".got.plt.%u", chunk
);
11251 sgotplt
= bfd_get_linker_section (sec
->owner
, got_name
);
11253 BFD_ASSERT (sgotplt
);
11255 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11256 section referencing a literal at the very beginning of
11257 ".got.plt". This is very close to the real dependence, anyway. */
11258 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
11261 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11262 when building uclibc, which runs "ld -b binary /dev/null". */
11263 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
11266 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
11267 link_info
->keep_memory
);
11268 if (internal_relocs
== NULL
11269 || sec
->reloc_count
== 0)
11272 /* Cache the contents for the duration of this scan. */
11273 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
11274 if (contents
== NULL
&& sec_size
!= 0)
11280 if (!xtensa_default_isa
)
11281 xtensa_default_isa
= xtensa_isa_init (0, 0);
11283 for (i
= 0; i
< sec
->reloc_count
; i
++)
11285 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
11286 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
11289 asection
*target_sec
;
11290 bfd_vma target_offset
;
11292 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
11295 /* L32Rs must be local to the input file. */
11296 if (r_reloc_is_defined (&l32r_rel
))
11298 target_sec
= r_reloc_get_section (&l32r_rel
);
11299 target_offset
= l32r_rel
.target_offset
;
11301 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
11307 release_internal_relocs (sec
, internal_relocs
);
11308 release_contents (sec
, contents
);
11312 /* The default literal sections should always be marked as "code" (i.e.,
11313 SHF_EXECINSTR). This is particularly important for the Linux kernel
11314 module loader so that the literals are not placed after the text. */
11315 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
11317 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11318 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11319 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11320 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE
, 0 },
11321 { NULL
, 0, 0, 0, 0 }
11324 #define ELF_TARGET_ID XTENSA_ELF_DATA
11326 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11327 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11328 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11329 #define TARGET_BIG_NAME "elf32-xtensa-be"
11330 #define ELF_ARCH bfd_arch_xtensa
11332 #define ELF_MACHINE_CODE EM_XTENSA
11333 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11335 #define ELF_MAXPAGESIZE 0x1000
11336 #endif /* ELF_ARCH */
11338 #define elf_backend_can_gc_sections 1
11339 #define elf_backend_can_refcount 1
11340 #define elf_backend_plt_readonly 1
11341 #define elf_backend_got_header_size 4
11342 #define elf_backend_want_dynbss 0
11343 #define elf_backend_want_got_plt 1
11344 #define elf_backend_dtrel_excludes_plt 1
11346 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11348 #define bfd_elf32_mkobject elf_xtensa_mkobject
11350 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11351 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11352 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11353 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11354 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11355 #define bfd_elf32_bfd_reloc_name_lookup \
11356 elf_xtensa_reloc_name_lookup
11357 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11358 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11360 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11361 #define elf_backend_check_relocs elf_xtensa_check_relocs
11362 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11363 #define elf_backend_discard_info elf_xtensa_discard_info
11364 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11365 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11366 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11367 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11368 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11369 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11370 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11371 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11372 #define elf_backend_object_p elf_xtensa_object_p
11373 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11374 #define elf_backend_relocate_section elf_xtensa_relocate_section
11375 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11376 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11377 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11378 #define elf_backend_special_sections elf_xtensa_special_sections
11379 #define elf_backend_action_discarded elf_xtensa_action_discarded
11380 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11382 #include "elf32-target.h"