1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
4 Copyright (C) 2012-2022 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
25 #include "prologue-value.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2/frame.h"
36 #include "reggroups.h"
39 #include "elf/msp430.h"
40 #include "opcode/msp430-decode.h"
43 /* Register Numbers. */
57 MSP430_R10_RAW_REGNUM
,
58 MSP430_R11_RAW_REGNUM
,
59 MSP430_R12_RAW_REGNUM
,
60 MSP430_R13_RAW_REGNUM
,
61 MSP430_R14_RAW_REGNUM
,
62 MSP430_R15_RAW_REGNUM
,
66 MSP430_PC_REGNUM
= MSP430_NUM_REGS
,
83 MSP430_NUM_TOTAL_REGS
,
84 MSP430_NUM_PSEUDO_REGS
= MSP430_NUM_TOTAL_REGS
- MSP430_NUM_REGS
89 /* TI MSP430 Architecture. */
92 /* TI MSP430X Architecture. */
98 /* The small code model limits code addresses to 16 bits. */
101 /* The large code model uses 20 bit addresses for function
102 pointers. These are stored in memory using four bytes (32 bits). */
106 /* Architecture specific data. */
108 struct msp430_gdbarch_tdep
: gdbarch_tdep
110 /* The ELF header flags specify the multilib used. */
113 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
116 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
117 some point, we support different data models too, we'll probably
118 structure things so that we can combine values using logical
123 /* This structure holds the results of a prologue analysis. */
125 struct msp430_prologue
127 /* The offset from the frame base to the stack pointer --- always
130 Calling this a "size" is a bit misleading, but given that the
131 stack grows downwards, using offsets for everything keeps one
132 from going completely sign-crazy: you never change anything's
133 sign for an ADD instruction; always change the second operand's
134 sign for a SUB instruction; and everything takes care of
138 /* Non-zero if this function has initialized the frame pointer from
139 the stack pointer, zero otherwise. */
142 /* If has_frame_ptr is non-zero, this is the offset from the frame
143 base to where the frame pointer points. This is always zero or
145 int frame_ptr_offset
;
147 /* The address of the first instruction at which the frame has been
148 set up and the arguments are where the debug info says they are
149 --- as best as we can tell. */
150 CORE_ADDR prologue_end
;
152 /* reg_offset[R] is the offset from the CFA at which register R is
153 saved, or 1 if register R has not been saved. (Real values are
154 always zero or negative.) */
155 int reg_offset
[MSP430_NUM_TOTAL_REGS
];
158 /* Implement the "register_type" gdbarch method. */
161 msp430_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
163 if (reg_nr
< MSP430_NUM_REGS
)
164 return builtin_type (gdbarch
)->builtin_uint32
;
165 else if (reg_nr
== MSP430_PC_REGNUM
)
166 return builtin_type (gdbarch
)->builtin_func_ptr
;
168 return builtin_type (gdbarch
)->builtin_uint16
;
171 /* Implement another version of the "register_type" gdbarch method
175 msp430x_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
177 if (reg_nr
< MSP430_NUM_REGS
)
178 return builtin_type (gdbarch
)->builtin_uint32
;
179 else if (reg_nr
== MSP430_PC_REGNUM
)
180 return builtin_type (gdbarch
)->builtin_func_ptr
;
182 return builtin_type (gdbarch
)->builtin_uint32
;
185 /* Implement the "register_name" gdbarch method. */
188 msp430_register_name (struct gdbarch
*gdbarch
, int regnr
)
190 static const char *const reg_names
[] = {
192 "", "", "", "", "", "", "", "",
193 "", "", "", "", "", "", "", "",
194 /* Pseudo registers. */
195 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
196 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
199 return reg_names
[regnr
];
202 /* Implement the "register_reggroup_p" gdbarch method. */
205 msp430_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
206 const struct reggroup
*group
)
208 if (group
== all_reggroup
)
211 /* All other registers are saved and restored. */
212 if (group
== save_reggroup
|| group
== restore_reggroup
)
213 return (MSP430_NUM_REGS
<= regnum
&& regnum
< MSP430_NUM_TOTAL_REGS
);
215 return group
== general_reggroup
;
218 /* Implement the "pseudo_register_read" gdbarch method. */
220 static enum register_status
221 msp430_pseudo_register_read (struct gdbarch
*gdbarch
,
222 readable_regcache
*regcache
,
223 int regnum
, gdb_byte
*buffer
)
225 if (MSP430_NUM_REGS
<= regnum
&& regnum
< MSP430_NUM_TOTAL_REGS
)
227 enum register_status status
;
229 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
230 int regsize
= register_size (gdbarch
, regnum
);
231 int raw_regnum
= regnum
- MSP430_NUM_REGS
;
233 status
= regcache
->raw_read (raw_regnum
, &val
);
234 if (status
== REG_VALID
)
235 store_unsigned_integer (buffer
, regsize
, byte_order
, val
);
240 gdb_assert_not_reached ("invalid pseudo register number");
243 /* Implement the "pseudo_register_write" gdbarch method. */
246 msp430_pseudo_register_write (struct gdbarch
*gdbarch
,
247 struct regcache
*regcache
,
248 int regnum
, const gdb_byte
*buffer
)
250 if (MSP430_NUM_REGS
<= regnum
&& regnum
< MSP430_NUM_TOTAL_REGS
)
254 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
255 int regsize
= register_size (gdbarch
, regnum
);
256 int raw_regnum
= regnum
- MSP430_NUM_REGS
;
258 val
= extract_unsigned_integer (buffer
, regsize
, byte_order
);
259 regcache_raw_write_unsigned (regcache
, raw_regnum
, val
);
263 gdb_assert_not_reached ("invalid pseudo register number");
266 /* Implement the `register_sim_regno' gdbarch method. */
269 msp430_register_sim_regno (struct gdbarch
*gdbarch
, int regnum
)
271 gdb_assert (regnum
< MSP430_NUM_REGS
);
273 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
274 just want to override the default here which disallows register
275 numbers which have no names. */
279 constexpr gdb_byte msp430_break_insn
[] = { 0x43, 0x43 };
281 typedef BP_MANIPULATION (msp430_break_insn
) msp430_breakpoint
;
283 /* Define a "handle" struct for fetching the next opcode. */
285 struct msp430_get_opcode_byte_handle
290 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
291 the memory address of the next byte to fetch. If successful,
292 the address in the handle is updated and the byte fetched is
293 returned as the value of the function. If not successful, -1
297 msp430_get_opcode_byte (void *handle
)
299 struct msp430_get_opcode_byte_handle
*opcdata
300 = (struct msp430_get_opcode_byte_handle
*) handle
;
304 status
= target_read_memory (opcdata
->pc
, &byte
, 1);
314 /* Function for finding saved registers in a 'struct pv_area'; this
315 function is passed to pv_area::scan.
317 If VALUE is a saved register, ADDR says it was saved at a constant
318 offset from the frame base, and SIZE indicates that the whole
319 register was saved, record its offset. */
322 check_for_saved (void *result_untyped
, pv_t addr
, CORE_ADDR size
, pv_t value
)
324 struct msp430_prologue
*result
= (struct msp430_prologue
*) result_untyped
;
326 if (value
.kind
== pvk_register
328 && pv_is_register (addr
, MSP430_SP_REGNUM
)
329 && size
== register_size (target_gdbarch (), value
.reg
))
330 result
->reg_offset
[value
.reg
] = addr
.k
;
333 /* Analyze a prologue starting at START_PC, going no further than
334 LIMIT_PC. Fill in RESULT as appropriate. */
337 msp430_analyze_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
,
338 CORE_ADDR limit_pc
, struct msp430_prologue
*result
)
340 CORE_ADDR pc
, next_pc
;
342 pv_t reg
[MSP430_NUM_TOTAL_REGS
];
343 CORE_ADDR after_last_frame_setup_insn
= start_pc
;
344 msp430_gdbarch_tdep
*tdep
= (msp430_gdbarch_tdep
*) gdbarch_tdep (gdbarch
);
345 int code_model
= tdep
->code_model
;
348 memset (result
, 0, sizeof (*result
));
350 for (rn
= 0; rn
< MSP430_NUM_TOTAL_REGS
; rn
++)
352 reg
[rn
] = pv_register (rn
, 0);
353 result
->reg_offset
[rn
] = 1;
356 pv_area
stack (MSP430_SP_REGNUM
, gdbarch_addr_bit (gdbarch
));
358 /* The call instruction has saved the return address on the stack. */
359 sz
= code_model
== MSP_LARGE_CODE_MODEL
? 4 : 2;
360 reg
[MSP430_SP_REGNUM
] = pv_add_constant (reg
[MSP430_SP_REGNUM
], -sz
);
361 stack
.store (reg
[MSP430_SP_REGNUM
], sz
, reg
[MSP430_PC_REGNUM
]);
364 while (pc
< limit_pc
)
367 struct msp430_get_opcode_byte_handle opcode_handle
;
368 MSP430_Opcode_Decoded opc
;
370 opcode_handle
.pc
= pc
;
371 bytes_read
= msp430_decode_opcode (pc
, &opc
, msp430_get_opcode_byte
,
373 next_pc
= pc
+ bytes_read
;
375 if (opc
.id
== MSO_push
&& opc
.op
[0].type
== MSP430_Operand_Register
)
377 int rsrc
= opc
.op
[0].reg
;
379 reg
[MSP430_SP_REGNUM
] = pv_add_constant (reg
[MSP430_SP_REGNUM
], -2);
380 stack
.store (reg
[MSP430_SP_REGNUM
], 2, reg
[rsrc
]);
381 after_last_frame_setup_insn
= next_pc
;
383 else if (opc
.id
== MSO_push
/* PUSHM */
384 && opc
.op
[0].type
== MSP430_Operand_None
385 && opc
.op
[1].type
== MSP430_Operand_Register
)
387 int rsrc
= opc
.op
[1].reg
;
388 int count
= opc
.repeats
+ 1;
389 int size
= opc
.size
== 16 ? 2 : 4;
393 reg
[MSP430_SP_REGNUM
]
394 = pv_add_constant (reg
[MSP430_SP_REGNUM
], -size
);
395 stack
.store (reg
[MSP430_SP_REGNUM
], size
, reg
[rsrc
]);
399 after_last_frame_setup_insn
= next_pc
;
401 else if (opc
.id
== MSO_sub
402 && opc
.op
[0].type
== MSP430_Operand_Register
403 && opc
.op
[0].reg
== MSR_SP
404 && opc
.op
[1].type
== MSP430_Operand_Immediate
)
406 int addend
= opc
.op
[1].addend
;
408 reg
[MSP430_SP_REGNUM
] = pv_add_constant (reg
[MSP430_SP_REGNUM
],
410 after_last_frame_setup_insn
= next_pc
;
412 else if (opc
.id
== MSO_mov
413 && opc
.op
[0].type
== MSP430_Operand_Immediate
414 && 12 <= opc
.op
[0].reg
&& opc
.op
[0].reg
<= 15)
415 after_last_frame_setup_insn
= next_pc
;
418 /* Terminate the prologue scan. */
425 /* Is the frame size (offset, really) a known constant? */
426 if (pv_is_register (reg
[MSP430_SP_REGNUM
], MSP430_SP_REGNUM
))
427 result
->frame_size
= reg
[MSP430_SP_REGNUM
].k
;
429 /* Record where all the registers were saved. */
430 stack
.scan (check_for_saved
, result
);
432 result
->prologue_end
= after_last_frame_setup_insn
;
435 /* Implement the "skip_prologue" gdbarch method. */
438 msp430_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
441 CORE_ADDR func_addr
, func_end
;
442 struct msp430_prologue p
;
444 /* Try to find the extent of the function that contains PC. */
445 if (!find_pc_partial_function (pc
, &name
, &func_addr
, &func_end
))
448 msp430_analyze_prologue (gdbarch
, pc
, func_end
, &p
);
449 return p
.prologue_end
;
452 /* Given a frame described by THIS_FRAME, decode the prologue of its
453 associated function if there is not cache entry as specified by
454 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
455 return that struct as the value of this function. */
457 static struct msp430_prologue
*
458 msp430_analyze_frame_prologue (struct frame_info
*this_frame
,
459 void **this_prologue_cache
)
461 if (!*this_prologue_cache
)
463 CORE_ADDR func_start
, stop_addr
;
465 *this_prologue_cache
= FRAME_OBSTACK_ZALLOC (struct msp430_prologue
);
467 func_start
= get_frame_func (this_frame
);
468 stop_addr
= get_frame_pc (this_frame
);
470 /* If we couldn't find any function containing the PC, then
471 just initialize the prologue cache, but don't do anything. */
473 stop_addr
= func_start
;
475 msp430_analyze_prologue (get_frame_arch (this_frame
), func_start
,
477 (struct msp430_prologue
*) *this_prologue_cache
);
480 return (struct msp430_prologue
*) *this_prologue_cache
;
483 /* Given a frame and a prologue cache, return this frame's base. */
486 msp430_frame_base (struct frame_info
*this_frame
, void **this_prologue_cache
)
488 struct msp430_prologue
*p
489 = msp430_analyze_frame_prologue (this_frame
, this_prologue_cache
);
490 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, MSP430_SP_REGNUM
);
492 return sp
- p
->frame_size
;
495 /* Implement the "frame_this_id" method for unwinding frames. */
498 msp430_this_id (struct frame_info
*this_frame
,
499 void **this_prologue_cache
, struct frame_id
*this_id
)
501 *this_id
= frame_id_build (msp430_frame_base (this_frame
,
502 this_prologue_cache
),
503 get_frame_func (this_frame
));
506 /* Implement the "frame_prev_register" method for unwinding frames. */
508 static struct value
*
509 msp430_prev_register (struct frame_info
*this_frame
,
510 void **this_prologue_cache
, int regnum
)
512 struct msp430_prologue
*p
513 = msp430_analyze_frame_prologue (this_frame
, this_prologue_cache
);
514 CORE_ADDR frame_base
= msp430_frame_base (this_frame
, this_prologue_cache
);
516 if (regnum
== MSP430_SP_REGNUM
)
517 return frame_unwind_got_constant (this_frame
, regnum
, frame_base
);
519 /* If prologue analysis says we saved this register somewhere,
520 return a description of the stack slot holding it. */
521 else if (p
->reg_offset
[regnum
] != 1)
523 struct value
*rv
= frame_unwind_got_memory (this_frame
, regnum
,
525 p
->reg_offset
[regnum
]);
527 if (regnum
== MSP430_PC_REGNUM
)
529 ULONGEST pc
= value_as_long (rv
);
531 return frame_unwind_got_constant (this_frame
, regnum
, pc
);
536 /* Otherwise, presume we haven't changed the value of this
537 register, and get it from the next frame. */
539 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
542 static const struct frame_unwind msp430_unwind
= {
545 default_frame_unwind_stop_reason
,
547 msp430_prev_register
,
549 default_frame_sniffer
552 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
555 msp430_dwarf2_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
557 if (reg
>= 0 && reg
< MSP430_NUM_REGS
)
558 return reg
+ MSP430_NUM_REGS
;
562 /* Implement the "return_value" gdbarch method. */
564 static enum return_value_convention
565 msp430_return_value (struct gdbarch
*gdbarch
,
566 struct value
*function
,
567 struct type
*valtype
,
568 struct regcache
*regcache
,
569 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
571 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
572 LONGEST valtype_len
= TYPE_LENGTH (valtype
);
573 msp430_gdbarch_tdep
*tdep
= (msp430_gdbarch_tdep
*) gdbarch_tdep (gdbarch
);
574 int code_model
= tdep
->code_model
;
576 if (TYPE_LENGTH (valtype
) > 8
577 || valtype
->code () == TYPE_CODE_STRUCT
578 || valtype
->code () == TYPE_CODE_UNION
)
579 return RETURN_VALUE_STRUCT_CONVENTION
;
584 int argreg
= MSP430_R12_REGNUM
;
587 while (valtype_len
> 0)
591 if (code_model
== MSP_LARGE_CODE_MODEL
592 && valtype
->code () == TYPE_CODE_PTR
)
597 regcache_cooked_read_unsigned (regcache
, argreg
, &u
);
598 store_unsigned_integer (readbuf
+ offset
, size
, byte_order
, u
);
608 int argreg
= MSP430_R12_REGNUM
;
611 while (valtype_len
> 0)
615 if (code_model
== MSP_LARGE_CODE_MODEL
616 && valtype
->code () == TYPE_CODE_PTR
)
621 u
= extract_unsigned_integer (writebuf
+ offset
, size
, byte_order
);
622 regcache_cooked_write_unsigned (regcache
, argreg
, u
);
629 return RETURN_VALUE_REGISTER_CONVENTION
;
633 /* Implement the "frame_align" gdbarch method. */
636 msp430_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
638 return align_down (sp
, 2);
641 /* Implement the "push_dummy_call" gdbarch method. */
644 msp430_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
645 struct regcache
*regcache
, CORE_ADDR bp_addr
,
646 int nargs
, struct value
**args
, CORE_ADDR sp
,
647 function_call_return_method return_method
,
648 CORE_ADDR struct_addr
)
650 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
654 msp430_gdbarch_tdep
*tdep
= (msp430_gdbarch_tdep
*) gdbarch_tdep (gdbarch
);
655 int code_model
= tdep
->code_model
;
657 struct type
*func_type
= value_type (function
);
659 /* Dereference function pointer types. */
660 while (func_type
->code () == TYPE_CODE_PTR
)
661 func_type
= TYPE_TARGET_TYPE (func_type
);
663 /* The end result had better be a function or a method. */
664 gdb_assert (func_type
->code () == TYPE_CODE_FUNC
665 || func_type
->code () == TYPE_CODE_METHOD
);
667 /* We make two passes; the first does the stack allocation,
668 the second actually stores the arguments. */
669 for (write_pass
= 0; write_pass
<= 1; write_pass
++)
672 int arg_reg
= MSP430_R12_REGNUM
;
673 int args_on_stack
= 0;
676 sp
= align_down (sp
- sp_off
, 4);
679 if (return_method
== return_method_struct
)
682 regcache_cooked_write_unsigned (regcache
, arg_reg
, struct_addr
);
686 /* Push the arguments. */
687 for (i
= 0; i
< nargs
; i
++)
689 struct value
*arg
= args
[i
];
690 const gdb_byte
*arg_bits
= value_contents_all (arg
).data ();
691 struct type
*arg_type
= check_typedef (value_type (arg
));
692 ULONGEST arg_size
= TYPE_LENGTH (arg_type
);
694 int current_arg_on_stack
;
695 gdb_byte struct_addr_buf
[4];
697 current_arg_on_stack
= 0;
699 if (arg_type
->code () == TYPE_CODE_STRUCT
700 || arg_type
->code () == TYPE_CODE_UNION
)
702 /* Aggregates of any size are passed by reference. */
703 store_unsigned_integer (struct_addr_buf
, 4, byte_order
,
704 value_address (arg
));
705 arg_bits
= struct_addr_buf
;
706 arg_size
= (code_model
== MSP_LARGE_CODE_MODEL
) ? 4 : 2;
710 /* Scalars bigger than 8 bytes such as complex doubles are passed
713 current_arg_on_stack
= 1;
717 for (offset
= 0; offset
< arg_size
; offset
+= 2)
719 /* The condition below prevents 8 byte scalars from being split
720 between registers and memory (stack). It also prevents other
721 splits once the stack has been written to. */
722 if (!current_arg_on_stack
724 + ((arg_size
== 8 || args_on_stack
)
725 ? ((arg_size
- offset
) / 2 - 1)
726 : 0) <= MSP430_R15_REGNUM
))
730 if (code_model
== MSP_LARGE_CODE_MODEL
731 && (arg_type
->code () == TYPE_CODE_PTR
732 || TYPE_IS_REFERENCE (arg_type
)
733 || arg_type
->code () == TYPE_CODE_STRUCT
734 || arg_type
->code () == TYPE_CODE_UNION
))
736 /* When using the large memory model, pointer,
737 reference, struct, and union arguments are
738 passed using the entire register. (As noted
739 earlier, aggregates are always passed by
747 regcache_cooked_write_unsigned (regcache
, arg_reg
,
748 extract_unsigned_integer
749 (arg_bits
+ offset
, size
,
757 write_memory (sp
+ sp_off
, arg_bits
+ offset
, 2);
761 current_arg_on_stack
= 1;
767 /* Keep track of the stack address prior to pushing the return address.
768 This is the value that we'll return. */
771 /* Push the return address. */
773 int sz
= tdep
->code_model
== MSP_SMALL_CODE_MODEL
? 2 : 4;
775 write_memory_unsigned_integer (sp
, sz
, byte_order
, bp_addr
);
778 /* Update the stack pointer. */
779 regcache_cooked_write_unsigned (regcache
, MSP430_SP_REGNUM
, sp
);
784 /* In order to keep code size small, the compiler may create epilogue
785 code through which more than one function epilogue is routed. I.e.
786 the epilogue and return may just be a branch to some common piece of
787 code which is responsible for tearing down the frame and performing
788 the return. These epilog (label) names will have the common prefix
791 static const char msp430_epilog_name_prefix
[] = "__mspabi_func_epilog_";
793 /* Implement the "in_return_stub" gdbarch method. */
796 msp430_in_return_stub (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
800 && startswith (name
, msp430_epilog_name_prefix
));
803 /* Implement the "skip_trampoline_code" gdbarch method. */
805 msp430_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
807 struct bound_minimal_symbol bms
;
808 const char *stub_name
;
809 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
811 bms
= lookup_minimal_symbol_by_pc (pc
);
815 stub_name
= bms
.minsym
->linkage_name ();
817 msp430_gdbarch_tdep
*tdep
= (msp430_gdbarch_tdep
*) gdbarch_tdep (gdbarch
);
818 if (tdep
->code_model
== MSP_SMALL_CODE_MODEL
819 && msp430_in_return_stub (gdbarch
, pc
, stub_name
))
821 CORE_ADDR sp
= get_frame_register_unsigned (frame
, MSP430_SP_REGNUM
);
823 return read_memory_integer
824 (sp
+ 2 * (stub_name
[strlen (msp430_epilog_name_prefix
)] - '0'),
825 2, gdbarch_byte_order (gdbarch
));
831 /* Allocate and initialize a gdbarch object. */
833 static struct gdbarch
*
834 msp430_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
836 struct gdbarch
*gdbarch
;
837 int elf_flags
, isa
, code_model
;
839 /* Extract the elf_flags if available. */
840 if (info
.abfd
!= NULL
841 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
842 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
846 if (info
.abfd
!= NULL
)
847 switch (bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_PROC
,
848 OFBA_MSPABI_Tag_ISA
))
851 isa
= MSP_ISA_MSP430
;
852 code_model
= MSP_SMALL_CODE_MODEL
;
855 isa
= MSP_ISA_MSP430X
;
856 switch (bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_PROC
,
857 OFBA_MSPABI_Tag_Code_Model
))
860 code_model
= MSP_SMALL_CODE_MODEL
;
863 code_model
= MSP_LARGE_CODE_MODEL
;
866 internal_error (__FILE__
, __LINE__
,
867 _("Unknown msp430x code memory model"));
872 /* This can happen when loading a previously dumped data structure.
873 Use the ISA and code model from the current architecture, provided
876 struct gdbarch
*ca
= get_current_arch ();
877 if (ca
&& gdbarch_bfd_arch_info (ca
)->arch
== bfd_arch_msp430
)
879 msp430_gdbarch_tdep
*ca_tdep
880 = (msp430_gdbarch_tdep
*) gdbarch_tdep (ca
);
882 elf_flags
= ca_tdep
->elf_flags
;
884 code_model
= ca_tdep
->code_model
;
890 error (_("Unknown msp430 isa"));
895 isa
= MSP_ISA_MSP430
;
896 code_model
= MSP_SMALL_CODE_MODEL
;
900 /* Try to find the architecture in the list of already defined
902 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
904 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
906 msp430_gdbarch_tdep
*candidate_tdep
907 = (msp430_gdbarch_tdep
*) gdbarch_tdep (arches
->gdbarch
);
909 if (candidate_tdep
->elf_flags
!= elf_flags
910 || candidate_tdep
->isa
!= isa
911 || candidate_tdep
->code_model
!= code_model
)
914 return arches
->gdbarch
;
917 /* None found, create a new architecture from the information
919 msp430_gdbarch_tdep
*tdep
= new msp430_gdbarch_tdep
;
920 gdbarch
= gdbarch_alloc (&info
, tdep
);
921 tdep
->elf_flags
= elf_flags
;
923 tdep
->code_model
= code_model
;
926 set_gdbarch_num_regs (gdbarch
, MSP430_NUM_REGS
);
927 set_gdbarch_num_pseudo_regs (gdbarch
, MSP430_NUM_PSEUDO_REGS
);
928 set_gdbarch_register_name (gdbarch
, msp430_register_name
);
929 if (isa
== MSP_ISA_MSP430
)
930 set_gdbarch_register_type (gdbarch
, msp430_register_type
);
932 set_gdbarch_register_type (gdbarch
, msp430x_register_type
);
933 set_gdbarch_pc_regnum (gdbarch
, MSP430_PC_REGNUM
);
934 set_gdbarch_sp_regnum (gdbarch
, MSP430_SP_REGNUM
);
935 set_gdbarch_register_reggroup_p (gdbarch
, msp430_register_reggroup_p
);
936 set_gdbarch_pseudo_register_read (gdbarch
, msp430_pseudo_register_read
);
937 set_gdbarch_pseudo_register_write (gdbarch
, msp430_pseudo_register_write
);
938 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, msp430_dwarf2_reg_to_regnum
);
939 set_gdbarch_register_sim_regno (gdbarch
, msp430_register_sim_regno
);
942 set_gdbarch_char_signed (gdbarch
, 0);
943 set_gdbarch_short_bit (gdbarch
, 16);
944 set_gdbarch_int_bit (gdbarch
, 16);
945 set_gdbarch_long_bit (gdbarch
, 32);
946 set_gdbarch_long_long_bit (gdbarch
, 64);
947 if (code_model
== MSP_SMALL_CODE_MODEL
)
949 set_gdbarch_ptr_bit (gdbarch
, 16);
950 set_gdbarch_addr_bit (gdbarch
, 16);
952 else /* MSP_LARGE_CODE_MODEL */
954 set_gdbarch_ptr_bit (gdbarch
, 32);
955 set_gdbarch_addr_bit (gdbarch
, 32);
957 set_gdbarch_dwarf2_addr_size (gdbarch
, 4);
958 set_gdbarch_float_bit (gdbarch
, 32);
959 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
960 set_gdbarch_double_bit (gdbarch
, 64);
961 set_gdbarch_long_double_bit (gdbarch
, 64);
962 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
963 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
966 set_gdbarch_breakpoint_kind_from_pc (gdbarch
,
967 msp430_breakpoint::kind_from_pc
);
968 set_gdbarch_sw_breakpoint_from_kind (gdbarch
,
969 msp430_breakpoint::bp_from_kind
);
970 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
972 /* Frames, prologues, etc. */
973 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
974 set_gdbarch_skip_prologue (gdbarch
, msp430_skip_prologue
);
975 set_gdbarch_frame_align (gdbarch
, msp430_frame_align
);
976 dwarf2_append_unwinders (gdbarch
);
977 frame_unwind_append_unwinder (gdbarch
, &msp430_unwind
);
979 /* Dummy frames, return values. */
980 set_gdbarch_push_dummy_call (gdbarch
, msp430_push_dummy_call
);
981 set_gdbarch_return_value (gdbarch
, msp430_return_value
);
984 set_gdbarch_in_solib_return_trampoline (gdbarch
, msp430_in_return_stub
);
985 set_gdbarch_skip_trampoline_code (gdbarch
, msp430_skip_trampoline_code
);
987 /* Virtual tables. */
988 set_gdbarch_vbit_in_delta (gdbarch
, 0);
993 /* Register the initialization routine. */
995 void _initialize_msp430_tdep ();
997 _initialize_msp430_tdep ()
999 register_gdbarch_init (bfd_arch_msp430
, msp430_gdbarch_init
);