1 /* Interface between GDB and target environments, including files and processes
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
5 Contributed by Cygnus Support. Written by John Gilmore.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #if !defined (TARGET_H)
30 struct bp_target_info
;
32 struct trace_state_variable
;
36 struct static_tracepoint_marker
;
37 struct traceframe_info
;
42 #include "infrun.h" /* For enum exec_direction_kind. */
43 #include "breakpoint.h" /* For enum bptype. */
44 #include "gdbsupport/scoped_restore.h"
45 #include "gdbsupport/refcounted-object.h"
46 #include "target-section.h"
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
78 #include "gdbsupport/gdb_signals.h"
82 #include "disasm-flags.h"
83 #include "tracepoint.h"
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
89 dummy_stratum
, /* The lowest of the low */
90 file_stratum
, /* Executable files, etc */
91 process_stratum
, /* Executing processes or core dump files */
92 thread_stratum
, /* Executing threads */
93 record_stratum
, /* Support record debugging */
94 arch_stratum
, /* Architecture overrides */
95 debug_stratum
/* Target debug. Must be last. */
98 enum thread_control_capabilities
100 tc_none
= 0, /* Default: can't control thread execution. */
101 tc_schedlock
= 1, /* Can lock the thread scheduler. */
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
112 /* The syscall number. */
115 /* The syscall name. */
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string
target_options_to_string (target_wait_flags target_options
);
122 /* Possible types of events that the inferior handler will have to
124 enum inferior_event_type
126 /* Process a normal inferior event which will result in target_wait
129 /* We are called to do stuff after the inferior stops. */
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY
,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY
,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
149 TARGET_OBJECT_STACK_MEMORY
,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY
,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE
,
155 /* Transfer auxilliary vector. */
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE
,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP
,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES
,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES
,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4
,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX
,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA
,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
181 TARGET_OBJECT_SIGNAL_INFO
,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS
,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA
,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO
,
188 /* Load maps for FDPIC systems. */
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO
,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB
,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE
,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF
,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
202 TARGET_OBJECT_EXEC_FILE
,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP
,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS
,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
210 /* Possible values returned by target_xfer_partial, etc. */
212 enum target_xfer_status
214 /* Some bytes are transferred. */
217 /* No further transfer is possible. */
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE
= 2,
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
226 TARGET_XFER_E_IO
= -1,
228 /* Keep list in sync with target_xfer_status_to_string. */
231 /* Return the string form of STATUS. */
234 target_xfer_status_to_string (enum target_xfer_status status
);
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops
*ops
,
238 enum target_object object
,
241 const gdb_byte
*writebuf
,
244 ULONGEST
*xfered_len
);
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops
*ops
, gdb_byte
*readbuf
,
248 const gdb_byte
*writebuf
, ULONGEST memaddr
,
249 LONGEST len
, ULONGEST
*xfered_len
);
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
267 extern LONGEST
target_read (struct target_ops
*ops
,
268 enum target_object object
,
269 const char *annex
, gdb_byte
*buf
,
270 ULONGEST offset
, LONGEST len
);
272 struct memory_read_result
274 memory_read_result (ULONGEST begin_
, ULONGEST end_
,
275 gdb::unique_xmalloc_ptr
<gdb_byte
> &&data_
)
278 data (std::move (data_
))
282 ~memory_read_result () = default;
284 memory_read_result (memory_read_result
&&other
) = default;
286 DISABLE_COPY_AND_ASSIGN (memory_read_result
);
288 /* First address that was read. */
290 /* Past-the-end address. */
293 gdb::unique_xmalloc_ptr
<gdb_byte
> data
;
296 extern std::vector
<memory_read_result
> read_memory_robust
297 (struct target_ops
*ops
, const ULONGEST offset
, const LONGEST len
);
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
314 extern LONGEST
target_write (struct target_ops
*ops
,
315 enum target_object object
,
316 const char *annex
, const gdb_byte
*buf
,
317 ULONGEST offset
, LONGEST len
);
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
326 LONGEST
target_write_with_progress (struct target_ops
*ops
,
327 enum target_object object
,
328 const char *annex
, const gdb_byte
*buf
,
329 ULONGEST offset
, LONGEST len
,
330 void (*progress
) (ULONGEST
, void *),
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
342 extern gdb::optional
<gdb::byte_vector
> target_read_alloc
343 (struct target_ops
*ops
, enum target_object object
, const char *annex
);
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
352 extern gdb::optional
<gdb::char_vector
> target_read_stralloc
353 (struct target_ops
*ops
, enum target_object object
, const char *annex
);
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial
;
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
365 extern void get_target_memory (struct target_ops
*ops
, CORE_ADDR addr
,
366 gdb_byte
*buf
, LONGEST len
);
367 extern ULONGEST
get_target_memory_unsigned (struct target_ops
*ops
,
368 CORE_ADDR addr
, int len
,
369 enum bfd_endian byte_order
);
371 struct thread_info
; /* fwd decl for parameter list below: */
373 /* The type of the callback to the to_async method. */
375 typedef void async_callback_ftype (enum inferior_event_type event_type
,
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
386 #define TARGET_DEBUG_PRINTER(FUNC)
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
419 /* Name of this target. */
420 const char *shortname
;
422 /* Name for printing. */
423 const char *longname
;
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
431 : public refcounted_object
433 /* Return this target's stratum. */
434 virtual strata
stratum () const = 0;
436 /* To the target under this one. */
437 target_ops
*beneath () const;
439 /* Free resources associated with the target. Note that singleton
440 targets, like e.g., native targets, are global objects, not
441 heap allocated, and are thus only deleted on GDB exit. The
442 main teardown entry point is the "close" method, below. */
443 virtual ~target_ops () {}
445 /* Return a reference to this target's unique target_info
447 virtual const target_info
&info () const = 0;
449 /* Name this target type. */
450 const char *shortname () const
451 { return info ().shortname
; }
453 const char *longname () const
454 { return info ().longname
; }
456 /* Close the target. This is where the target can handle
457 teardown. Heap-allocated targets should delete themselves
459 virtual void close ();
461 /* Attaches to a process on the target side. Arguments are as
462 passed to the `attach' command by the user. This routine can
463 be called when the target is not on the target-stack, if the
464 target_ops::can_run method returns 1; in that case, it must push
465 itself onto the stack. Upon exit, the target should be ready
466 for normal operations, and should be ready to deliver the
467 status of the process immediately (without waiting) to an
468 upcoming target_wait call. */
469 virtual bool can_attach ();
470 virtual void attach (const char *, int);
471 virtual void post_attach (int)
472 TARGET_DEFAULT_IGNORE ();
474 /* Detaches from the inferior. Note that on targets that support
475 async execution (i.e., targets where it is possible to detach
476 from programs with threads running), the target is responsible
477 for removing breakpoints from the program before the actual
478 detach, otherwise the program dies when it hits one. */
479 virtual void detach (inferior
*, int)
480 TARGET_DEFAULT_IGNORE ();
482 virtual void disconnect (const char *, int)
483 TARGET_DEFAULT_NORETURN (tcomplain ());
484 virtual void resume (ptid_t
,
485 int TARGET_DEBUG_PRINTER (target_debug_print_step
),
487 TARGET_DEFAULT_NORETURN (noprocess ());
489 /* Ensure that all resumed threads are committed to the target.
491 See the description of
492 process_stratum_target::commit_resumed_state for more
494 virtual void commit_resumed ()
495 TARGET_DEFAULT_IGNORE ();
497 /* See target_wait's description. Note that implementations of
498 this method must not assume that inferior_ptid on entry is
499 pointing at the thread or inferior that ends up reporting an
500 event. The reported event could be for some other thread in
501 the current inferior or even for a different process of the
502 current target. inferior_ptid may also be null_ptid on
504 virtual ptid_t
wait (ptid_t
, struct target_waitstatus
*,
505 target_wait_flags options
)
506 TARGET_DEFAULT_FUNC (default_target_wait
);
507 virtual void fetch_registers (struct regcache
*, int)
508 TARGET_DEFAULT_IGNORE ();
509 virtual void store_registers (struct regcache
*, int)
510 TARGET_DEFAULT_NORETURN (noprocess ());
511 virtual void prepare_to_store (struct regcache
*)
512 TARGET_DEFAULT_NORETURN (noprocess ());
514 virtual void files_info ()
515 TARGET_DEFAULT_IGNORE ();
516 virtual int insert_breakpoint (struct gdbarch
*,
517 struct bp_target_info
*)
518 TARGET_DEFAULT_NORETURN (noprocess ());
519 virtual int remove_breakpoint (struct gdbarch
*,
520 struct bp_target_info
*,
521 enum remove_bp_reason
)
522 TARGET_DEFAULT_NORETURN (noprocess ());
524 /* Returns true if the target stopped because it executed a
525 software breakpoint. This is necessary for correct background
526 execution / non-stop mode operation, and for correct PC
527 adjustment on targets where the PC needs to be adjusted when a
528 software breakpoint triggers. In these modes, by the time GDB
529 processes a breakpoint event, the breakpoint may already be
530 done from the target, so GDB needs to be able to tell whether
531 it should ignore the event and whether it should adjust the PC.
532 See adjust_pc_after_break. */
533 virtual bool stopped_by_sw_breakpoint ()
534 TARGET_DEFAULT_RETURN (false);
535 /* Returns true if the above method is supported. */
536 virtual bool supports_stopped_by_sw_breakpoint ()
537 TARGET_DEFAULT_RETURN (false);
539 /* Returns true if the target stopped for a hardware breakpoint.
540 Likewise, if the target supports hardware breakpoints, this
541 method is necessary for correct background execution / non-stop
542 mode operation. Even though hardware breakpoints do not
543 require PC adjustment, GDB needs to be able to tell whether the
544 hardware breakpoint event is a delayed event for a breakpoint
545 that is already gone and should thus be ignored. */
546 virtual bool stopped_by_hw_breakpoint ()
547 TARGET_DEFAULT_RETURN (false);
548 /* Returns true if the above method is supported. */
549 virtual bool supports_stopped_by_hw_breakpoint ()
550 TARGET_DEFAULT_RETURN (false);
552 virtual int can_use_hw_breakpoint (enum bptype
, int, int)
553 TARGET_DEFAULT_RETURN (0);
554 virtual int ranged_break_num_registers ()
555 TARGET_DEFAULT_RETURN (-1);
556 virtual int insert_hw_breakpoint (struct gdbarch
*,
557 struct bp_target_info
*)
558 TARGET_DEFAULT_RETURN (-1);
559 virtual int remove_hw_breakpoint (struct gdbarch
*,
560 struct bp_target_info
*)
561 TARGET_DEFAULT_RETURN (-1);
563 /* Documentation of what the two routines below are expected to do is
564 provided with the corresponding target_* macros. */
565 virtual int remove_watchpoint (CORE_ADDR
, int,
566 enum target_hw_bp_type
, struct expression
*)
567 TARGET_DEFAULT_RETURN (-1);
568 virtual int insert_watchpoint (CORE_ADDR
, int,
569 enum target_hw_bp_type
, struct expression
*)
570 TARGET_DEFAULT_RETURN (-1);
572 virtual int insert_mask_watchpoint (CORE_ADDR
, CORE_ADDR
,
573 enum target_hw_bp_type
)
574 TARGET_DEFAULT_RETURN (1);
575 virtual int remove_mask_watchpoint (CORE_ADDR
, CORE_ADDR
,
576 enum target_hw_bp_type
)
577 TARGET_DEFAULT_RETURN (1);
578 virtual bool stopped_by_watchpoint ()
579 TARGET_DEFAULT_RETURN (false);
580 virtual bool have_steppable_watchpoint ()
581 TARGET_DEFAULT_RETURN (false);
582 virtual bool stopped_data_address (CORE_ADDR
*)
583 TARGET_DEFAULT_RETURN (false);
584 virtual bool watchpoint_addr_within_range (CORE_ADDR
, CORE_ADDR
, int)
585 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range
);
587 /* Documentation of this routine is provided with the corresponding
589 virtual int region_ok_for_hw_watchpoint (CORE_ADDR
, int)
590 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint
);
592 virtual bool can_accel_watchpoint_condition (CORE_ADDR
, int, int,
594 TARGET_DEFAULT_RETURN (false);
595 virtual int masked_watch_num_registers (CORE_ADDR
, CORE_ADDR
)
596 TARGET_DEFAULT_RETURN (-1);
598 /* Return 1 for sure target can do single step. Return -1 for
599 unknown. Return 0 for target can't do. */
600 virtual int can_do_single_step ()
601 TARGET_DEFAULT_RETURN (-1);
603 virtual bool supports_terminal_ours ()
604 TARGET_DEFAULT_RETURN (false);
605 virtual void terminal_init ()
606 TARGET_DEFAULT_IGNORE ();
607 virtual void terminal_inferior ()
608 TARGET_DEFAULT_IGNORE ();
609 virtual void terminal_save_inferior ()
610 TARGET_DEFAULT_IGNORE ();
611 virtual void terminal_ours_for_output ()
612 TARGET_DEFAULT_IGNORE ();
613 virtual void terminal_ours ()
614 TARGET_DEFAULT_IGNORE ();
615 virtual void terminal_info (const char *, int)
616 TARGET_DEFAULT_FUNC (default_terminal_info
);
618 TARGET_DEFAULT_NORETURN (noprocess ());
619 virtual void load (const char *, int)
620 TARGET_DEFAULT_NORETURN (tcomplain ());
621 /* Start an inferior process and set inferior_ptid to its pid.
622 EXEC_FILE is the file to run.
623 ALLARGS is a string containing the arguments to the program.
624 ENV is the environment vector to pass. Errors reported with error().
625 On VxWorks and various standalone systems, we ignore exec_file. */
626 virtual bool can_create_inferior ();
627 virtual void create_inferior (const char *, const std::string
&,
629 virtual int insert_fork_catchpoint (int)
630 TARGET_DEFAULT_RETURN (1);
631 virtual int remove_fork_catchpoint (int)
632 TARGET_DEFAULT_RETURN (1);
633 virtual int insert_vfork_catchpoint (int)
634 TARGET_DEFAULT_RETURN (1);
635 virtual int remove_vfork_catchpoint (int)
636 TARGET_DEFAULT_RETURN (1);
637 virtual void follow_fork (inferior
*, ptid_t
, target_waitkind
, bool, bool)
638 TARGET_DEFAULT_FUNC (default_follow_fork
);
639 virtual int insert_exec_catchpoint (int)
640 TARGET_DEFAULT_RETURN (1);
641 virtual int remove_exec_catchpoint (int)
642 TARGET_DEFAULT_RETURN (1);
643 virtual void follow_exec (inferior
*, ptid_t
, const char *)
644 TARGET_DEFAULT_IGNORE ();
645 virtual int set_syscall_catchpoint (int, bool, int,
646 gdb::array_view
<const int>)
647 TARGET_DEFAULT_RETURN (1);
648 virtual void mourn_inferior ()
649 TARGET_DEFAULT_FUNC (default_mourn_inferior
);
651 /* Note that can_run is special and can be invoked on an unpushed
652 target. Targets defining this method must also define
653 to_can_async_p and to_supports_non_stop. */
654 virtual bool can_run ();
656 /* Documentation of this routine is provided with the corresponding
658 virtual void pass_signals (gdb::array_view
<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals
))
659 TARGET_DEFAULT_IGNORE ();
661 /* Documentation of this routine is provided with the
662 corresponding target_* function. */
663 virtual void program_signals (gdb::array_view
<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals
))
664 TARGET_DEFAULT_IGNORE ();
666 virtual bool thread_alive (ptid_t ptid
)
667 TARGET_DEFAULT_RETURN (false);
668 virtual void update_thread_list ()
669 TARGET_DEFAULT_IGNORE ();
670 virtual std::string
pid_to_str (ptid_t
)
671 TARGET_DEFAULT_FUNC (default_pid_to_str
);
672 virtual const char *extra_thread_info (thread_info
*)
673 TARGET_DEFAULT_RETURN (NULL
);
674 virtual const char *thread_name (thread_info
*)
675 TARGET_DEFAULT_RETURN (NULL
);
676 virtual thread_info
*thread_handle_to_thread_info (const gdb_byte
*,
679 TARGET_DEFAULT_RETURN (NULL
);
680 /* See target_thread_info_to_thread_handle. */
681 virtual gdb::byte_vector
thread_info_to_thread_handle (struct thread_info
*)
682 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
683 virtual void stop (ptid_t
)
684 TARGET_DEFAULT_IGNORE ();
685 virtual void interrupt ()
686 TARGET_DEFAULT_IGNORE ();
687 virtual void pass_ctrlc ()
688 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc
);
689 virtual void rcmd (const char *command
, struct ui_file
*output
)
690 TARGET_DEFAULT_FUNC (default_rcmd
);
691 virtual const char *pid_to_exec_file (int pid
)
692 TARGET_DEFAULT_RETURN (NULL
);
693 virtual void log_command (const char *)
694 TARGET_DEFAULT_IGNORE ();
695 virtual const target_section_table
*get_section_table ()
696 TARGET_DEFAULT_RETURN (default_get_section_table ());
698 /* Provide default values for all "must have" methods. */
699 virtual bool has_all_memory () { return false; }
700 virtual bool has_memory () { return false; }
701 virtual bool has_stack () { return false; }
702 virtual bool has_registers () { return false; }
703 virtual bool has_execution (inferior
*inf
) { return false; }
705 /* Control thread execution. */
706 virtual thread_control_capabilities
get_thread_control_capabilities ()
707 TARGET_DEFAULT_RETURN (tc_none
);
708 virtual bool attach_no_wait ()
709 TARGET_DEFAULT_RETURN (0);
710 /* This method must be implemented in some situations. See the
711 comment on 'can_run'. */
712 virtual bool can_async_p ()
713 TARGET_DEFAULT_RETURN (false);
714 virtual bool is_async_p ()
715 TARGET_DEFAULT_RETURN (false);
716 virtual void async (int)
717 TARGET_DEFAULT_NORETURN (tcomplain ());
718 virtual int async_wait_fd ()
719 TARGET_DEFAULT_NORETURN (noprocess ());
720 /* Return true if the target has pending events to report to the
721 core. If true, then GDB avoids resuming the target until all
722 pending events are consumed, so that multiple resumptions can
723 be coalesced as an optimization. Most targets can't tell
724 whether they have pending events without calling target_wait,
725 so we default to returning false. The only downside is that a
726 potential optimization is missed. */
727 virtual bool has_pending_events ()
728 TARGET_DEFAULT_RETURN (false);
729 virtual void thread_events (int)
730 TARGET_DEFAULT_IGNORE ();
731 /* This method must be implemented in some situations. See the
732 comment on 'can_run'. */
733 virtual bool supports_non_stop ()
734 TARGET_DEFAULT_RETURN (false);
735 /* Return true if the target operates in non-stop mode even with
736 "set non-stop off". */
737 virtual bool always_non_stop_p ()
738 TARGET_DEFAULT_RETURN (false);
739 /* find_memory_regions support method for gcore */
740 virtual int find_memory_regions (find_memory_region_ftype func
, void *data
)
741 TARGET_DEFAULT_FUNC (dummy_find_memory_regions
);
742 /* make_corefile_notes support method for gcore */
743 virtual gdb::unique_xmalloc_ptr
<char> make_corefile_notes (bfd
*, int *)
744 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes
);
745 /* get_bookmark support method for bookmarks */
746 virtual gdb_byte
*get_bookmark (const char *, int)
747 TARGET_DEFAULT_NORETURN (tcomplain ());
748 /* goto_bookmark support method for bookmarks */
749 virtual void goto_bookmark (const gdb_byte
*, int)
750 TARGET_DEFAULT_NORETURN (tcomplain ());
751 /* Return the thread-local address at OFFSET in the
752 thread-local storage for the thread PTID and the shared library
753 or executable file given by LOAD_MODULE_ADDR. If that block of
754 thread-local storage hasn't been allocated yet, this function
755 may throw an error. LOAD_MODULE_ADDR may be zero for statically
756 linked multithreaded inferiors. */
757 virtual CORE_ADDR
get_thread_local_address (ptid_t ptid
,
758 CORE_ADDR load_module_addr
,
760 TARGET_DEFAULT_NORETURN (generic_tls_error ());
762 /* Request that OPS transfer up to LEN addressable units of the target's
763 OBJECT. When reading from a memory object, the size of an addressable
764 unit is architecture dependent and can be found using
765 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
766 1 byte long. The OFFSET, for a seekable object, specifies the
767 starting point. The ANNEX can be used to provide additional
768 data-specific information to the target.
770 Return the transferred status, error or OK (an
771 'enum target_xfer_status' value). Save the number of addressable units
772 actually transferred in *XFERED_LEN if transfer is successful
773 (TARGET_XFER_OK) or the number unavailable units if the requested
774 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
775 smaller than LEN does not indicate the end of the object, only
776 the end of the transfer; higher level code should continue
777 transferring if desired. This is handled in target.c.
779 The interface does not support a "retry" mechanism. Instead it
780 assumes that at least one addressable unit will be transfered on each
783 NOTE: cagney/2003-10-17: The current interface can lead to
784 fragmented transfers. Lower target levels should not implement
785 hacks, such as enlarging the transfer, in an attempt to
786 compensate for this. Instead, the target stack should be
787 extended so that it implements supply/collect methods and a
788 look-aside object cache. With that available, the lowest
789 target can safely and freely "push" data up the stack.
791 See target_read and target_write for more information. One,
792 and only one, of readbuf or writebuf must be non-NULL. */
794 virtual enum target_xfer_status
xfer_partial (enum target_object object
,
797 const gdb_byte
*writebuf
,
798 ULONGEST offset
, ULONGEST len
,
799 ULONGEST
*xfered_len
)
800 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO
);
802 /* Return the limit on the size of any single memory transfer
805 virtual ULONGEST
get_memory_xfer_limit ()
806 TARGET_DEFAULT_RETURN (ULONGEST_MAX
);
808 /* Returns the memory map for the target. A return value of NULL
809 means that no memory map is available. If a memory address
810 does not fall within any returned regions, it's assumed to be
811 RAM. The returned memory regions should not overlap.
813 The order of regions does not matter; target_memory_map will
814 sort regions by starting address. For that reason, this
815 function should not be called directly except via
818 This method should not cache data; if the memory map could
819 change unexpectedly, it should be invalidated, and higher
820 layers will re-fetch it. */
821 virtual std::vector
<mem_region
> memory_map ()
822 TARGET_DEFAULT_RETURN (std::vector
<mem_region
> ());
824 /* Erases the region of flash memory starting at ADDRESS, of
827 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
828 on flash block boundaries, as reported by 'to_memory_map'. */
829 virtual void flash_erase (ULONGEST address
, LONGEST length
)
830 TARGET_DEFAULT_NORETURN (tcomplain ());
832 /* Finishes a flash memory write sequence. After this operation
833 all flash memory should be available for writing and the result
834 of reading from areas written by 'to_flash_write' should be
835 equal to what was written. */
836 virtual void flash_done ()
837 TARGET_DEFAULT_NORETURN (tcomplain ());
839 /* Describe the architecture-specific features of the current
842 Returns the description found, or nullptr if no description was
845 If some target features differ between threads, the description
846 returned by read_description (and the resulting gdbarch) won't
847 accurately describe all threads. In this case, the
848 thread_architecture method can be used to obtain gdbarches that
849 accurately describe each thread. */
850 virtual const struct target_desc
*read_description ()
851 TARGET_DEFAULT_RETURN (NULL
);
853 /* Build the PTID of the thread on which a given task is running,
854 based on LWP and THREAD. These values are extracted from the
855 task Private_Data section of the Ada Task Control Block, and
856 their interpretation depends on the target. */
857 virtual ptid_t
get_ada_task_ptid (long lwp
, ULONGEST thread
)
858 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid
);
860 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
861 Return 0 if *READPTR is already at the end of the buffer.
862 Return -1 if there is insufficient buffer for a whole entry.
863 Return 1 if an entry was read into *TYPEP and *VALP. */
864 virtual int auxv_parse (gdb_byte
**readptr
,
865 gdb_byte
*endptr
, CORE_ADDR
*typep
, CORE_ADDR
*valp
)
866 TARGET_DEFAULT_FUNC (default_auxv_parse
);
868 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
869 sequence of bytes in PATTERN with length PATTERN_LEN.
871 The result is 1 if found, 0 if not found, and -1 if there was an error
872 requiring halting of the search (e.g. memory read error).
873 If the pattern is found the address is recorded in FOUND_ADDRP. */
874 virtual int search_memory (CORE_ADDR start_addr
, ULONGEST search_space_len
,
875 const gdb_byte
*pattern
, ULONGEST pattern_len
,
876 CORE_ADDR
*found_addrp
)
877 TARGET_DEFAULT_FUNC (default_search_memory
);
879 /* Can target execute in reverse? */
880 virtual bool can_execute_reverse ()
881 TARGET_DEFAULT_RETURN (false);
883 /* The direction the target is currently executing. Must be
884 implemented on targets that support reverse execution and async
885 mode. The default simply returns forward execution. */
886 virtual enum exec_direction_kind
execution_direction ()
887 TARGET_DEFAULT_FUNC (default_execution_direction
);
889 /* Does this target support debugging multiple processes
891 virtual bool supports_multi_process ()
892 TARGET_DEFAULT_RETURN (false);
894 /* Does this target support enabling and disabling tracepoints while a trace
895 experiment is running? */
896 virtual bool supports_enable_disable_tracepoint ()
897 TARGET_DEFAULT_RETURN (false);
899 /* Does this target support disabling address space randomization? */
900 virtual bool supports_disable_randomization ()
901 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization
);
903 /* Does this target support the tracenz bytecode for string collection? */
904 virtual bool supports_string_tracing ()
905 TARGET_DEFAULT_RETURN (false);
907 /* Does this target support evaluation of breakpoint conditions on its
909 virtual bool supports_evaluation_of_breakpoint_conditions ()
910 TARGET_DEFAULT_RETURN (false);
912 /* Does this target support native dumpcore API? */
913 virtual bool supports_dumpcore ()
914 TARGET_DEFAULT_RETURN (false);
916 /* Generate the core file with native target API. */
917 virtual void dumpcore (const char *filename
)
918 TARGET_DEFAULT_IGNORE ();
920 /* Does this target support evaluation of breakpoint commands on its
922 virtual bool can_run_breakpoint_commands ()
923 TARGET_DEFAULT_RETURN (false);
925 /* Determine current architecture of thread PTID.
927 The target is supposed to determine the architecture of the code where
928 the target is currently stopped at. The architecture information is
929 used to perform decr_pc_after_break adjustment, and also to determine
930 the frame architecture of the innermost frame. ptrace operations need to
931 operate according to target_gdbarch (). */
932 virtual struct gdbarch
*thread_architecture (ptid_t
)
933 TARGET_DEFAULT_RETURN (NULL
);
935 /* Determine current address space of thread PTID. */
936 virtual struct address_space
*thread_address_space (ptid_t
)
937 TARGET_DEFAULT_RETURN (NULL
);
939 /* Target file operations. */
941 /* Return true if the filesystem seen by the current inferior
942 is the local filesystem, false otherwise. */
943 virtual bool filesystem_is_local ()
944 TARGET_DEFAULT_RETURN (true);
946 /* Open FILENAME on the target, in the filesystem as seen by INF,
947 using FLAGS and MODE. If INF is NULL, use the filesystem seen
948 by the debugger (GDB or, for remote targets, the remote stub).
949 If WARN_IF_SLOW is nonzero, print a warning message if the file
950 is being accessed over a link that may be slow. Return a
951 target file descriptor, or -1 if an error occurs (and set
953 virtual int fileio_open (struct inferior
*inf
, const char *filename
,
954 int flags
, int mode
, int warn_if_slow
,
957 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
958 Return the number of bytes written, or -1 if an error occurs
959 (and set *TARGET_ERRNO). */
960 virtual int fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
961 ULONGEST offset
, int *target_errno
);
963 /* Read up to LEN bytes FD on the target into READ_BUF.
964 Return the number of bytes read, or -1 if an error occurs
965 (and set *TARGET_ERRNO). */
966 virtual int fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
967 ULONGEST offset
, int *target_errno
);
969 /* Get information about the file opened as FD and put it in
970 SB. Return 0 on success, or -1 if an error occurs (and set
972 virtual int fileio_fstat (int fd
, struct stat
*sb
, int *target_errno
);
974 /* Close FD on the target. Return 0, or -1 if an error occurs
975 (and set *TARGET_ERRNO). */
976 virtual int fileio_close (int fd
, int *target_errno
);
978 /* Unlink FILENAME on the target, in the filesystem as seen by
979 INF. If INF is NULL, use the filesystem seen by the debugger
980 (GDB or, for remote targets, the remote stub). Return 0, or
981 -1 if an error occurs (and set *TARGET_ERRNO). */
982 virtual int fileio_unlink (struct inferior
*inf
,
983 const char *filename
,
986 /* Read value of symbolic link FILENAME on the target, in the
987 filesystem as seen by INF. If INF is NULL, use the filesystem
988 seen by the debugger (GDB or, for remote targets, the remote
989 stub). Return a string, or an empty optional if an error
990 occurs (and set *TARGET_ERRNO). */
991 virtual gdb::optional
<std::string
> fileio_readlink (struct inferior
*inf
,
992 const char *filename
,
995 /* Implement the "info proc" command. Returns true if the target
996 actually implemented the command, false otherwise. */
997 virtual bool info_proc (const char *, enum info_proc_what
);
999 /* Tracepoint-related operations. */
1001 /* Prepare the target for a tracing run. */
1002 virtual void trace_init ()
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1005 /* Send full details of a tracepoint location to the target. */
1006 virtual void download_tracepoint (struct bp_location
*location
)
1007 TARGET_DEFAULT_NORETURN (tcomplain ());
1009 /* Is the target able to download tracepoint locations in current
1011 virtual bool can_download_tracepoint ()
1012 TARGET_DEFAULT_RETURN (false);
1014 /* Send full details of a trace state variable to the target. */
1015 virtual void download_trace_state_variable (const trace_state_variable
&tsv
)
1016 TARGET_DEFAULT_NORETURN (tcomplain ());
1018 /* Enable a tracepoint on the target. */
1019 virtual void enable_tracepoint (struct bp_location
*location
)
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1022 /* Disable a tracepoint on the target. */
1023 virtual void disable_tracepoint (struct bp_location
*location
)
1024 TARGET_DEFAULT_NORETURN (tcomplain ());
1026 /* Inform the target info of memory regions that are readonly
1027 (such as text sections), and so it should return data from
1028 those rather than look in the trace buffer. */
1029 virtual void trace_set_readonly_regions ()
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1032 /* Start a trace run. */
1033 virtual void trace_start ()
1034 TARGET_DEFAULT_NORETURN (tcomplain ());
1036 /* Get the current status of a tracing run. */
1037 virtual int get_trace_status (struct trace_status
*ts
)
1038 TARGET_DEFAULT_RETURN (-1);
1040 virtual void get_tracepoint_status (struct breakpoint
*tp
,
1041 struct uploaded_tp
*utp
)
1042 TARGET_DEFAULT_NORETURN (tcomplain ());
1044 /* Stop a trace run. */
1045 virtual void trace_stop ()
1046 TARGET_DEFAULT_NORETURN (tcomplain ());
1048 /* Ask the target to find a trace frame of the given type TYPE,
1049 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1050 number of the trace frame, and also the tracepoint number at
1051 TPP. If no trace frame matches, return -1. May throw if the
1053 virtual int trace_find (enum trace_find_type type
, int num
,
1054 CORE_ADDR addr1
, CORE_ADDR addr2
, int *tpp
)
1055 TARGET_DEFAULT_RETURN (-1);
1057 /* Get the value of the trace state variable number TSV, returning
1058 1 if the value is known and writing the value itself into the
1059 location pointed to by VAL, else returning 0. */
1060 virtual bool get_trace_state_variable_value (int tsv
, LONGEST
*val
)
1061 TARGET_DEFAULT_RETURN (false);
1063 virtual int save_trace_data (const char *filename
)
1064 TARGET_DEFAULT_NORETURN (tcomplain ());
1066 virtual int upload_tracepoints (struct uploaded_tp
**utpp
)
1067 TARGET_DEFAULT_RETURN (0);
1069 virtual int upload_trace_state_variables (struct uploaded_tsv
**utsvp
)
1070 TARGET_DEFAULT_RETURN (0);
1072 virtual LONGEST
get_raw_trace_data (gdb_byte
*buf
,
1073 ULONGEST offset
, LONGEST len
)
1074 TARGET_DEFAULT_NORETURN (tcomplain ());
1076 /* Get the minimum length of instruction on which a fast tracepoint
1077 may be set on the target. If this operation is unsupported,
1078 return -1. If for some reason the minimum length cannot be
1079 determined, return 0. */
1080 virtual int get_min_fast_tracepoint_insn_len ()
1081 TARGET_DEFAULT_RETURN (-1);
1083 /* Set the target's tracing behavior in response to unexpected
1084 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1085 virtual void set_disconnected_tracing (int val
)
1086 TARGET_DEFAULT_IGNORE ();
1087 virtual void set_circular_trace_buffer (int val
)
1088 TARGET_DEFAULT_IGNORE ();
1089 /* Set the size of trace buffer in the target. */
1090 virtual void set_trace_buffer_size (LONGEST val
)
1091 TARGET_DEFAULT_IGNORE ();
1093 /* Add/change textual notes about the trace run, returning true if
1094 successful, false otherwise. */
1095 virtual bool set_trace_notes (const char *user
, const char *notes
,
1096 const char *stopnotes
)
1097 TARGET_DEFAULT_RETURN (false);
1099 /* Return the processor core that thread PTID was last seen on.
1100 This information is updated only when:
1101 - update_thread_list is called
1103 If the core cannot be determined -- either for the specified
1104 thread, or right now, or in this debug session, or for this
1105 target -- return -1. */
1106 virtual int core_of_thread (ptid_t ptid
)
1107 TARGET_DEFAULT_RETURN (-1);
1109 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1110 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1111 a match, 0 if there's a mismatch, and -1 if an error is
1112 encountered while reading memory. */
1113 virtual int verify_memory (const gdb_byte
*data
,
1114 CORE_ADDR memaddr
, ULONGEST size
)
1115 TARGET_DEFAULT_FUNC (default_verify_memory
);
1117 /* Return the address of the start of the Thread Information Block
1118 a Windows OS specific feature. */
1119 virtual bool get_tib_address (ptid_t ptid
, CORE_ADDR
*addr
)
1120 TARGET_DEFAULT_NORETURN (tcomplain ());
1122 /* Send the new settings of write permission variables. */
1123 virtual void set_permissions ()
1124 TARGET_DEFAULT_IGNORE ();
1126 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1127 with its details. Return true on success, false on failure. */
1128 virtual bool static_tracepoint_marker_at (CORE_ADDR
,
1129 static_tracepoint_marker
*marker
)
1130 TARGET_DEFAULT_RETURN (false);
1132 /* Return a vector of all tracepoints markers string id ID, or all
1133 markers if ID is NULL. */
1134 virtual std::vector
<static_tracepoint_marker
>
1135 static_tracepoint_markers_by_strid (const char *id
)
1136 TARGET_DEFAULT_NORETURN (tcomplain ());
1138 /* Return a traceframe info object describing the current
1139 traceframe's contents. This method should not cache data;
1140 higher layers take care of caching, invalidating, and
1141 re-fetching when necessary. */
1142 virtual traceframe_info_up
traceframe_info ()
1143 TARGET_DEFAULT_NORETURN (tcomplain ());
1145 /* Ask the target to use or not to use agent according to USE.
1146 Return true if successful, false otherwise. */
1147 virtual bool use_agent (bool use
)
1148 TARGET_DEFAULT_NORETURN (tcomplain ());
1150 /* Is the target able to use agent in current state? */
1151 virtual bool can_use_agent ()
1152 TARGET_DEFAULT_RETURN (false);
1154 /* Enable branch tracing for TP using CONF configuration.
1155 Return a branch trace target information struct for reading and for
1156 disabling branch trace. */
1157 virtual struct btrace_target_info
*enable_btrace (thread_info
*tp
,
1158 const struct btrace_config
*conf
)
1159 TARGET_DEFAULT_NORETURN (tcomplain ());
1161 /* Disable branch tracing and deallocate TINFO. */
1162 virtual void disable_btrace (struct btrace_target_info
*tinfo
)
1163 TARGET_DEFAULT_NORETURN (tcomplain ());
1165 /* Disable branch tracing and deallocate TINFO. This function is similar
1166 to to_disable_btrace, except that it is called during teardown and is
1167 only allowed to perform actions that are safe. A counter-example would
1168 be attempting to talk to a remote target. */
1169 virtual void teardown_btrace (struct btrace_target_info
*tinfo
)
1170 TARGET_DEFAULT_NORETURN (tcomplain ());
1172 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1173 DATA is cleared before new trace is added. */
1174 virtual enum btrace_error
read_btrace (struct btrace_data
*data
,
1175 struct btrace_target_info
*btinfo
,
1176 enum btrace_read_type type
)
1177 TARGET_DEFAULT_NORETURN (tcomplain ());
1179 /* Get the branch trace configuration. */
1180 virtual const struct btrace_config
*btrace_conf (const struct btrace_target_info
*)
1181 TARGET_DEFAULT_RETURN (NULL
);
1183 /* Current recording method. */
1184 virtual enum record_method
record_method (ptid_t ptid
)
1185 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE
);
1187 /* Stop trace recording. */
1188 virtual void stop_recording ()
1189 TARGET_DEFAULT_IGNORE ();
1191 /* Print information about the recording. */
1192 virtual void info_record ()
1193 TARGET_DEFAULT_IGNORE ();
1195 /* Save the recorded execution trace into a file. */
1196 virtual void save_record (const char *filename
)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1199 /* Delete the recorded execution trace from the current position
1201 virtual bool supports_delete_record ()
1202 TARGET_DEFAULT_RETURN (false);
1203 virtual void delete_record ()
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1206 /* Query if the record target is currently replaying PTID. */
1207 virtual bool record_is_replaying (ptid_t ptid
)
1208 TARGET_DEFAULT_RETURN (false);
1210 /* Query if the record target will replay PTID if it were resumed in
1211 execution direction DIR. */
1212 virtual bool record_will_replay (ptid_t ptid
, int dir
)
1213 TARGET_DEFAULT_RETURN (false);
1215 /* Stop replaying. */
1216 virtual void record_stop_replaying ()
1217 TARGET_DEFAULT_IGNORE ();
1219 /* Go to the begin of the execution trace. */
1220 virtual void goto_record_begin ()
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1223 /* Go to the end of the execution trace. */
1224 virtual void goto_record_end ()
1225 TARGET_DEFAULT_NORETURN (tcomplain ());
1227 /* Go to a specific location in the recorded execution trace. */
1228 virtual void goto_record (ULONGEST insn
)
1229 TARGET_DEFAULT_NORETURN (tcomplain ());
1231 /* Disassemble SIZE instructions in the recorded execution trace from
1232 the current position.
1233 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1234 disassemble SIZE succeeding instructions. */
1235 virtual void insn_history (int size
, gdb_disassembly_flags flags
)
1236 TARGET_DEFAULT_NORETURN (tcomplain ());
1238 /* Disassemble SIZE instructions in the recorded execution trace around
1240 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1241 disassemble SIZE instructions after FROM. */
1242 virtual void insn_history_from (ULONGEST from
, int size
,
1243 gdb_disassembly_flags flags
)
1244 TARGET_DEFAULT_NORETURN (tcomplain ());
1246 /* Disassemble a section of the recorded execution trace from instruction
1247 BEGIN (inclusive) to instruction END (inclusive). */
1248 virtual void insn_history_range (ULONGEST begin
, ULONGEST end
,
1249 gdb_disassembly_flags flags
)
1250 TARGET_DEFAULT_NORETURN (tcomplain ());
1252 /* Print a function trace of the recorded execution trace.
1253 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1254 succeeding functions. */
1255 virtual void call_history (int size
, record_print_flags flags
)
1256 TARGET_DEFAULT_NORETURN (tcomplain ());
1258 /* Print a function trace of the recorded execution trace starting
1260 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1261 SIZE functions after FROM. */
1262 virtual void call_history_from (ULONGEST begin
, int size
, record_print_flags flags
)
1263 TARGET_DEFAULT_NORETURN (tcomplain ());
1265 /* Print a function trace of an execution trace section from function BEGIN
1266 (inclusive) to function END (inclusive). */
1267 virtual void call_history_range (ULONGEST begin
, ULONGEST end
, record_print_flags flags
)
1268 TARGET_DEFAULT_NORETURN (tcomplain ());
1270 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1272 virtual bool augmented_libraries_svr4_read ()
1273 TARGET_DEFAULT_RETURN (false);
1275 /* Those unwinders are tried before any other arch unwinders. If
1276 SELF doesn't have unwinders, it should delegate to the
1277 "beneath" target. */
1278 virtual const struct frame_unwind
*get_unwinder ()
1279 TARGET_DEFAULT_RETURN (NULL
);
1281 virtual const struct frame_unwind
*get_tailcall_unwinder ()
1282 TARGET_DEFAULT_RETURN (NULL
);
1284 /* Prepare to generate a core file. */
1285 virtual void prepare_to_generate_core ()
1286 TARGET_DEFAULT_IGNORE ();
1288 /* Cleanup after generating a core file. */
1289 virtual void done_generating_core ()
1290 TARGET_DEFAULT_IGNORE ();
1292 /* Returns true if the target supports memory tagging, false otherwise. */
1293 virtual bool supports_memory_tagging ()
1294 TARGET_DEFAULT_RETURN (false);
1296 /* Return the allocated memory tags of type TYPE associated with
1297 [ADDRESS, ADDRESS + LEN) in TAGS.
1299 LEN is the number of bytes in the memory range. TAGS is a vector of
1300 bytes containing the tags found in the above memory range.
1302 It is up to the architecture/target to interpret the bytes in the TAGS
1303 vector and read the tags appropriately.
1305 Returns true if fetching the tags succeeded and false otherwise. */
1306 virtual bool fetch_memtags (CORE_ADDR address
, size_t len
,
1307 gdb::byte_vector
&tags
, int type
)
1308 TARGET_DEFAULT_NORETURN (tcomplain ());
1310 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1311 range [ADDRESS, ADDRESS + LEN).
1313 LEN is the number of bytes in the memory range. TAGS is a vector of
1314 bytes containing the tags to be stored to the memory range.
1316 It is up to the architecture/target to interpret the bytes in the TAGS
1317 vector and store them appropriately.
1319 Returns true if storing the tags succeeded and false otherwise. */
1320 virtual bool store_memtags (CORE_ADDR address
, size_t len
,
1321 const gdb::byte_vector
&tags
, int type
)
1322 TARGET_DEFAULT_NORETURN (tcomplain ());
1325 /* Deleter for std::unique_ptr. See comments in
1326 target_ops::~target_ops and target_ops::close about heap-allocated
1328 struct target_ops_deleter
1330 void operator() (target_ops
*target
)
1336 /* A unique pointer for target_ops. */
1337 typedef std::unique_ptr
<target_ops
, target_ops_deleter
> target_ops_up
;
1339 /* Decref a target and close if, if there are no references left. */
1340 extern void decref_target (target_ops
*t
);
1342 /* A policy class to interface gdb::ref_ptr with target_ops. */
1344 struct target_ops_ref_policy
1346 static void incref (target_ops
*t
)
1351 static void decref (target_ops
*t
)
1357 /* A gdb::ref_ptr pointer to a target_ops. */
1358 typedef gdb::ref_ptr
<target_ops
, target_ops_ref_policy
> target_ops_ref
;
1360 /* Native target backends call this once at initialization time to
1361 inform the core about which is the target that can respond to "run"
1362 or "attach". Note: native targets are always singletons. */
1363 extern void set_native_target (target_ops
*target
);
1365 /* Get the registered native target, if there's one. Otherwise return
1367 extern target_ops
*get_native_target ();
1369 /* Type that manages a target stack. See description of target stacks
1370 and strata at the top of the file. */
1375 target_stack () = default;
1376 DISABLE_COPY_AND_ASSIGN (target_stack
);
1378 /* Push a new target into the stack of the existing target
1379 accessors, possibly superseding some existing accessor. */
1380 void push (target_ops
*t
);
1382 /* Remove a target from the stack, wherever it may be. Return true
1383 if it was removed, false otherwise. */
1384 bool unpush (target_ops
*t
);
1386 /* Returns true if T is pushed on the target stack. */
1387 bool is_pushed (target_ops
*t
) const
1388 { return at (t
->stratum ()) == t
; }
1390 /* Return the target at STRATUM. */
1391 target_ops
*at (strata stratum
) const { return m_stack
[stratum
]; }
1393 /* Return the target at the top of the stack. */
1394 target_ops
*top () const { return at (m_top
); }
1396 /* Find the next target down the stack from the specified target. */
1397 target_ops
*find_beneath (const target_ops
*t
) const;
1400 /* The stratum of the top target. */
1401 enum strata m_top
{};
1403 /* The stack, represented as an array, with one slot per stratum.
1404 If no target is pushed at some stratum, the corresponding slot is
1406 target_ops
*m_stack
[(int) debug_stratum
+ 1] {};
1409 /* Return the dummy target. */
1410 extern target_ops
*get_dummy_target ();
1412 /* Define easy words for doing these operations on our current target. */
1414 extern const char *target_shortname ();
1416 /* Does whatever cleanup is required for a target that we are no
1417 longer going to be calling. This routine is automatically always
1418 called after popping the target off the target stack - the target's
1419 own methods are no longer available through the target vector.
1420 Closing file descriptors and freeing all memory allocated memory are
1421 typical things it should do. */
1423 void target_close (struct target_ops
*targ
);
1425 /* Find the correct target to use for "attach". If a target on the
1426 current stack supports attaching, then it is returned. Otherwise,
1427 the default run target is returned. */
1429 extern struct target_ops
*find_attach_target (void);
1431 /* Find the correct target to use for "run". If a target on the
1432 current stack supports creating a new inferior, then it is
1433 returned. Otherwise, the default run target is returned. */
1435 extern struct target_ops
*find_run_target (void);
1437 /* Some targets don't generate traps when attaching to the inferior,
1438 or their target_attach implementation takes care of the waiting.
1439 These targets must set to_attach_no_wait. */
1441 extern bool target_attach_no_wait ();
1443 /* The target_attach operation places a process under debugger control,
1444 and stops the process.
1446 This operation provides a target-specific hook that allows the
1447 necessary bookkeeping to be performed after an attach completes. */
1449 extern void target_post_attach (int pid
);
1451 /* Display a message indicating we're about to attach to a given
1454 extern void target_announce_attach (int from_tty
, int pid
);
1456 /* Display a message indicating we're about to detach from the current
1457 inferior process. */
1459 extern void target_announce_detach (int from_tty
);
1461 /* Takes a program previously attached to and detaches it.
1462 The program may resume execution (some targets do, some don't) and will
1463 no longer stop on signals, etc. We better not have left any breakpoints
1464 in the program or it'll die when it hits one. FROM_TTY says whether to be
1467 extern void target_detach (inferior
*inf
, int from_tty
);
1469 /* Disconnect from the current target without resuming it (leaving it
1470 waiting for a debugger). */
1472 extern void target_disconnect (const char *, int);
1474 /* Resume execution (or prepare for execution) of the current thread
1475 (INFERIOR_PTID), while optionally letting other threads of the
1476 current process or all processes run free.
1478 STEP says whether to hardware single-step the current thread or to
1479 let it run free; SIGNAL is the signal to be given to the current
1480 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1483 SCOPE_PTID indicates the resumption scope. I.e., which threads
1484 (other than the current) run free. If resuming a single thread,
1485 SCOPE_PTID is the same thread as the current thread. A wildcard
1486 SCOPE_PTID (all threads, or all threads of process) lets threads
1487 other than the current (for which the wildcard SCOPE_PTID matches)
1488 resume with their 'thread->suspend.stop_signal' signal (usually
1489 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1490 pass" state. Note neither STEP nor SIGNAL apply to any thread
1491 other than the current.
1493 In order to efficiently handle batches of resumption requests,
1494 targets may implement this method such that it records the
1495 resumption request, but defers the actual resumption to the
1496 target_commit_resume method implementation. See
1497 target_commit_resume below. */
1498 extern void target_resume (ptid_t scope_ptid
,
1499 int step
, enum gdb_signal signal
);
1501 /* Ensure that all resumed threads are committed to the target.
1503 See the description of process_stratum_target::commit_resumed_state
1504 for more details. */
1505 extern void target_commit_resumed ();
1507 /* For target_read_memory see target/target.h. */
1509 /* The default target_ops::to_wait implementation. */
1511 extern ptid_t
default_target_wait (struct target_ops
*ops
,
1513 struct target_waitstatus
*status
,
1514 target_wait_flags options
);
1516 /* Return true if the target has pending events to report to the core.
1517 See target_ops::has_pending_events(). */
1519 extern bool target_has_pending_events ();
1521 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1523 extern void target_fetch_registers (struct regcache
*regcache
, int regno
);
1525 /* Store at least register REGNO, or all regs if REGNO == -1.
1526 It can store as many registers as it wants to, so target_prepare_to_store
1527 must have been previously called. Calls error() if there are problems. */
1529 extern void target_store_registers (struct regcache
*regcache
, int regs
);
1531 /* Get ready to modify the registers array. On machines which store
1532 individual registers, this doesn't need to do anything. On machines
1533 which store all the registers in one fell swoop, this makes sure
1534 that REGISTERS contains all the registers from the program being
1537 extern void target_prepare_to_store (regcache
*regcache
);
1539 /* Determine current address space of thread PTID. */
1541 struct address_space
*target_thread_address_space (ptid_t
);
1543 /* Implement the "info proc" command. This returns one if the request
1544 was handled, and zero otherwise. It can also throw an exception if
1545 an error was encountered while attempting to handle the
1548 int target_info_proc (const char *, enum info_proc_what
);
1550 /* Returns true if this target can disable address space randomization. */
1552 int target_supports_disable_randomization (void);
1554 /* Returns true if this target can enable and disable tracepoints
1555 while a trace experiment is running. */
1557 extern bool target_supports_enable_disable_tracepoint ();
1559 extern bool target_supports_string_tracing ();
1561 /* Returns true if this target can handle breakpoint conditions
1564 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1566 /* Does this target support dumpcore API? */
1568 extern bool target_supports_dumpcore ();
1570 /* Generate the core file with target API. */
1572 extern void target_dumpcore (const char *filename
);
1574 /* Returns true if this target can handle breakpoint commands
1577 extern bool target_can_run_breakpoint_commands ();
1579 /* For target_read_memory see target/target.h. */
1581 extern int target_read_raw_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
,
1584 extern int target_read_stack (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
);
1586 extern int target_read_code (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
);
1588 /* For target_write_memory see target/target.h. */
1590 extern int target_write_raw_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
,
1593 /* Fetches the target's memory map. If one is found it is sorted
1594 and returned, after some consistency checking. Otherwise, NULL
1596 std::vector
<mem_region
> target_memory_map (void);
1598 /* Erases all flash memory regions on the target. */
1599 void flash_erase_command (const char *cmd
, int from_tty
);
1601 /* Erase the specified flash region. */
1602 void target_flash_erase (ULONGEST address
, LONGEST length
);
1604 /* Finish a sequence of flash operations. */
1605 void target_flash_done (void);
1607 /* Describes a request for a memory write operation. */
1608 struct memory_write_request
1610 memory_write_request (ULONGEST begin_
, ULONGEST end_
,
1611 gdb_byte
*data_
= nullptr, void *baton_
= nullptr)
1612 : begin (begin_
), end (end_
), data (data_
), baton (baton_
)
1615 /* Begining address that must be written. */
1617 /* Past-the-end address. */
1619 /* The data to write. */
1621 /* A callback baton for progress reporting for this request. */
1625 /* Enumeration specifying different flash preservation behaviour. */
1626 enum flash_preserve_mode
1632 /* Write several memory blocks at once. This version can be more
1633 efficient than making several calls to target_write_memory, in
1634 particular because it can optimize accesses to flash memory.
1636 Moreover, this is currently the only memory access function in gdb
1637 that supports writing to flash memory, and it should be used for
1638 all cases where access to flash memory is desirable.
1640 REQUESTS is the vector of memory_write_request.
1641 PRESERVE_FLASH_P indicates what to do with blocks which must be
1642 erased, but not completely rewritten.
1643 PROGRESS_CB is a function that will be periodically called to provide
1644 feedback to user. It will be called with the baton corresponding
1645 to the request currently being written. It may also be called
1646 with a NULL baton, when preserved flash sectors are being rewritten.
1648 The function returns 0 on success, and error otherwise. */
1649 int target_write_memory_blocks
1650 (const std::vector
<memory_write_request
> &requests
,
1651 enum flash_preserve_mode preserve_flash_p
,
1652 void (*progress_cb
) (ULONGEST
, void *));
1654 /* Print a line about the current target. */
1656 extern void target_files_info ();
1658 /* Insert a breakpoint at address BP_TGT->placed_address in
1659 the target machine. Returns 0 for success, and returns non-zero or
1660 throws an error (with a detailed failure reason error code and
1661 message) otherwise. */
1663 extern int target_insert_breakpoint (struct gdbarch
*gdbarch
,
1664 struct bp_target_info
*bp_tgt
);
1666 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1667 machine. Result is 0 for success, non-zero for error. */
1669 extern int target_remove_breakpoint (struct gdbarch
*gdbarch
,
1670 struct bp_target_info
*bp_tgt
,
1671 enum remove_bp_reason reason
);
1673 /* Return true if the target stack has a non-default
1674 "terminal_ours" method. */
1676 extern bool target_supports_terminal_ours (void);
1678 /* Kill the inferior process. Make it go away. */
1680 extern void target_kill (void);
1682 /* Load an executable file into the target process. This is expected
1683 to not only bring new code into the target process, but also to
1684 update GDB's symbol tables to match.
1686 ARG contains command-line arguments, to be broken down with
1687 buildargv (). The first non-switch argument is the filename to
1688 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1689 0)), which is an offset to apply to the load addresses of FILE's
1690 sections. The target may define switches, or other non-switch
1691 arguments, as it pleases. */
1693 extern void target_load (const char *arg
, int from_tty
);
1695 /* On some targets, we can catch an inferior fork or vfork event when
1696 it occurs. These functions insert/remove an already-created
1697 catchpoint for such events. They return 0 for success, 1 if the
1698 catchpoint type is not supported and -1 for failure. */
1700 extern int target_insert_fork_catchpoint (int pid
);
1702 extern int target_remove_fork_catchpoint (int pid
);
1704 extern int target_insert_vfork_catchpoint (int pid
);
1706 extern int target_remove_vfork_catchpoint (int pid
);
1708 /* Call the follow_fork method on the current target stack.
1710 This function is called when the inferior forks or vforks, to perform any
1711 bookkeeping and fiddling necessary to continue debugging either the parent,
1712 the child or both. */
1714 void target_follow_fork (inferior
*inf
, ptid_t child_ptid
,
1715 target_waitkind fork_kind
, bool follow_child
,
1718 /* Handle the target-specific bookkeeping required when the inferior makes an
1721 The current inferior at the time of the call is the inferior that did the
1722 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1723 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1724 inferior, meaning that execution continues with the same inferior. If
1725 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1726 that execution continues in a new inferior.
1728 On exit, the target must leave FOLLOW_INF as the current inferior. */
1730 void target_follow_exec (inferior
*follow_inf
, ptid_t ptid
,
1731 const char *execd_pathname
);
1733 /* On some targets, we can catch an inferior exec event when it
1734 occurs. These functions insert/remove an already-created
1735 catchpoint for such events. They return 0 for success, 1 if the
1736 catchpoint type is not supported and -1 for failure. */
1738 extern int target_insert_exec_catchpoint (int pid
);
1740 extern int target_remove_exec_catchpoint (int pid
);
1744 NEEDED is true if any syscall catch (of any kind) is requested.
1745 If NEEDED is false, it means the target can disable the mechanism to
1746 catch system calls because there are no more catchpoints of this type.
1748 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1749 being requested. In this case, SYSCALL_COUNTS should be ignored.
1751 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1752 element in this array is nonzero if that syscall should be caught.
1753 This argument only matters if ANY_COUNT is zero.
1755 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1758 extern int target_set_syscall_catchpoint
1759 (int pid
, bool needed
, int any_count
,
1760 gdb::array_view
<const int> syscall_counts
);
1762 /* The debugger has completed a blocking wait() call. There is now
1763 some process event that must be processed. This function should
1764 be defined by those targets that require the debugger to perform
1765 cleanup or internal state changes in response to the process event. */
1767 /* For target_mourn_inferior see target/target.h. */
1769 /* Does target have enough data to do a run or attach command? */
1771 extern int target_can_run ();
1773 /* Set list of signals to be handled in the target.
1775 PASS_SIGNALS is an array indexed by target signal number
1776 (enum gdb_signal). For every signal whose entry in this array is
1777 non-zero, the target is allowed -but not required- to skip reporting
1778 arrival of the signal to the GDB core by returning from target_wait,
1779 and to pass the signal directly to the inferior instead.
1781 However, if the target is hardware single-stepping a thread that is
1782 about to receive a signal, it needs to be reported in any case, even
1783 if mentioned in a previous target_pass_signals call. */
1785 extern void target_pass_signals
1786 (gdb::array_view
<const unsigned char> pass_signals
);
1788 /* Set list of signals the target may pass to the inferior. This
1789 directly maps to the "handle SIGNAL pass/nopass" setting.
1791 PROGRAM_SIGNALS is an array indexed by target signal
1792 number (enum gdb_signal). For every signal whose entry in this
1793 array is non-zero, the target is allowed to pass the signal to the
1794 inferior. Signals not present in the array shall be silently
1795 discarded. This does not influence whether to pass signals to the
1796 inferior as a result of a target_resume call. This is useful in
1797 scenarios where the target needs to decide whether to pass or not a
1798 signal to the inferior without GDB core involvement, such as for
1799 example, when detaching (as threads may have been suspended with
1800 pending signals not reported to GDB). */
1802 extern void target_program_signals
1803 (gdb::array_view
<const unsigned char> program_signals
);
1805 /* Check to see if a thread is still alive. */
1807 extern int target_thread_alive (ptid_t ptid
);
1809 /* Sync the target's threads with GDB's thread list. */
1811 extern void target_update_thread_list (void);
1813 /* Make target stop in a continuable fashion. (For instance, under
1814 Unix, this should act like SIGSTOP). Note that this function is
1815 asynchronous: it does not wait for the target to become stopped
1816 before returning. If this is the behavior you want please use
1817 target_stop_and_wait. */
1819 extern void target_stop (ptid_t ptid
);
1821 /* Interrupt the target. Unlike target_stop, this does not specify
1822 which thread/process reports the stop. For most target this acts
1823 like raising a SIGINT, though that's not absolutely required. This
1824 function is asynchronous. */
1826 extern void target_interrupt ();
1828 /* Pass a ^C, as determined to have been pressed by checking the quit
1829 flag, to the target, as if the user had typed the ^C on the
1830 inferior's controlling terminal while the inferior was in the
1831 foreground. Remote targets may take the opportunity to detect the
1832 remote side is not responding and offer to disconnect. */
1834 extern void target_pass_ctrlc (void);
1836 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1837 target_interrupt. */
1838 extern void default_target_pass_ctrlc (struct target_ops
*ops
);
1840 /* Send the specified COMMAND to the target's monitor
1841 (shell,interpreter) for execution. The result of the query is
1842 placed in OUTBUF. */
1844 extern void target_rcmd (const char *command
, struct ui_file
*outbuf
);
1846 /* Does the target include memory? (Dummy targets don't.) */
1848 extern int target_has_memory ();
1850 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1851 we start a process.) */
1853 extern int target_has_stack ();
1855 /* Does the target have registers? (Exec files don't.) */
1857 extern int target_has_registers ();
1859 /* Does the target have execution? Can we make it jump (through
1860 hoops), or pop its stack a few times? This means that the current
1861 target is currently executing; for some targets, that's the same as
1862 whether or not the target is capable of execution, but there are
1863 also targets which can be current while not executing. In that
1864 case this will become true after to_create_inferior or
1865 to_attach. INF is the inferior to use; nullptr means to use the
1866 current inferior. */
1868 extern bool target_has_execution (inferior
*inf
= nullptr);
1870 /* Can the target support the debugger control of thread execution?
1871 Can it lock the thread scheduler? */
1873 extern bool target_can_lock_scheduler ();
1875 /* Controls whether async mode is permitted. */
1876 extern bool target_async_permitted
;
1878 /* Can the target support asynchronous execution? */
1879 extern bool target_can_async_p ();
1881 /* An overload of the above that can be called when the target is not yet
1882 pushed, this calls TARGET::can_async_p directly. */
1883 extern bool target_can_async_p (struct target_ops
*target
);
1885 /* Is the target in asynchronous execution mode? */
1886 extern bool target_is_async_p ();
1888 /* Enables/disabled async target events. */
1889 extern void target_async (int enable
);
1891 /* Enables/disables thread create and exit events. */
1892 extern void target_thread_events (int enable
);
1894 /* Whether support for controlling the target backends always in
1895 non-stop mode is enabled. */
1896 extern enum auto_boolean target_non_stop_enabled
;
1898 /* Is the target in non-stop mode? Some targets control the inferior
1899 in non-stop mode even with "set non-stop off". Always true if "set
1901 extern bool target_is_non_stop_p ();
1903 /* Return true if at least one inferior has a non-stop target. */
1904 extern bool exists_non_stop_target ();
1906 extern exec_direction_kind
target_execution_direction ();
1908 /* Converts a process id to a string. Usually, the string just contains
1909 `process xyz', but on some systems it may contain
1910 `process xyz thread abc'. */
1912 extern std::string
target_pid_to_str (ptid_t ptid
);
1914 extern std::string
normal_pid_to_str (ptid_t ptid
);
1916 /* Return a short string describing extra information about PID,
1917 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1920 extern const char *target_extra_thread_info (thread_info
*tp
);
1922 /* Return the thread's name, or NULL if the target is unable to determine it.
1923 The returned value must not be freed by the caller.
1925 You likely don't want to call this function, but use the thread_name
1926 function instead, which prefers the user-given thread name, if set. */
1928 extern const char *target_thread_name (struct thread_info
*);
1930 /* Given a pointer to a thread library specific thread handle and
1931 its length, return a pointer to the corresponding thread_info struct. */
1933 extern struct thread_info
*target_thread_handle_to_thread_info
1934 (const gdb_byte
*thread_handle
, int handle_len
, struct inferior
*inf
);
1936 /* Given a thread, return the thread handle, a target-specific sequence of
1937 bytes which serves as a thread identifier within the program being
1939 extern gdb::byte_vector target_thread_info_to_thread_handle
1940 (struct thread_info
*);
1942 /* Attempts to find the pathname of the executable file
1943 that was run to create a specified process.
1945 The process PID must be stopped when this operation is used.
1947 If the executable file cannot be determined, NULL is returned.
1949 Else, a pointer to a character string containing the pathname
1950 is returned. This string should be copied into a buffer by
1951 the client if the string will not be immediately used, or if
1954 extern const char *target_pid_to_exec_file (int pid
);
1956 /* See the to_thread_architecture description in struct target_ops. */
1958 extern gdbarch
*target_thread_architecture (ptid_t ptid
);
1961 * Iterator function for target memory regions.
1962 * Calls a callback function once for each memory region 'mapped'
1963 * in the child process. Defined as a simple macro rather than
1964 * as a function macro so that it can be tested for nullity.
1967 extern int target_find_memory_regions (find_memory_region_ftype func
,
1971 * Compose corefile .note section.
1974 extern gdb::unique_xmalloc_ptr
<char> target_make_corefile_notes (bfd
*bfd
,
1977 /* Bookmark interfaces. */
1978 extern gdb_byte
*target_get_bookmark (const char *args
, int from_tty
);
1980 extern void target_goto_bookmark (const gdb_byte
*arg
, int from_tty
);
1982 /* Hardware watchpoint interfaces. */
1984 /* GDB's current model is that there are three "kinds" of watchpoints,
1985 with respect to when they trigger and how you can move past them.
1987 Those are: continuable, steppable, and non-steppable.
1989 Continuable watchpoints are like x86's -- those trigger after the
1990 memory access's side effects are fully committed to memory. I.e.,
1991 they trap with the PC pointing at the next instruction already.
1992 Continuing past such a watchpoint is doable by just normally
1993 continuing, hence the name.
1995 Both steppable and non-steppable watchpoints trap before the memory
1996 access. I.e, the PC points at the instruction that is accessing
1997 the memory. So GDB needs to single-step once past the current
1998 instruction in order to make the access effective and check whether
1999 the instruction's side effects change the watched expression.
2001 Now, in order to step past that instruction, depending on
2002 architecture and target, you can have two situations:
2004 - steppable watchpoints: you can single-step with the watchpoint
2005 still armed, and the watchpoint won't trigger again.
2007 - non-steppable watchpoints: if you try to single-step with the
2008 watchpoint still armed, you'd trap the watchpoint again and the
2009 thread wouldn't make any progress. So GDB needs to temporarily
2010 remove the watchpoint in order to step past it.
2012 If your target/architecture does not signal that it has either
2013 steppable or non-steppable watchpoints via either
2014 target_have_steppable_watchpoint or
2015 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2018 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2019 write). Only the INFERIOR_PTID task is being queried. */
2021 extern bool target_stopped_by_watchpoint ();
2023 /* Returns true if the target stopped because it executed a
2024 software breakpoint instruction. */
2026 extern bool target_stopped_by_sw_breakpoint ();
2028 extern bool target_supports_stopped_by_sw_breakpoint ();
2030 extern bool target_stopped_by_hw_breakpoint ();
2032 extern bool target_supports_stopped_by_hw_breakpoint ();
2034 /* True if we have steppable watchpoints */
2036 extern bool target_have_steppable_watchpoint ();
2038 /* Provide defaults for hardware watchpoint functions. */
2040 /* If the *_hw_beakpoint functions have not been defined
2041 elsewhere use the definitions in the target vector. */
2043 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2044 Returns negative if the target doesn't have enough hardware debug
2045 registers available. Return zero if hardware watchpoint of type
2046 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2047 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2048 CNT is the number of such watchpoints used so far, including this
2049 one. OTHERTYPE is the number of watchpoints of other types than
2050 this one used so far. */
2052 extern int target_can_use_hardware_watchpoint (bptype type
, int cnt
,
2055 /* Returns the number of debug registers needed to watch the given
2056 memory region, or zero if not supported. */
2058 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr
, int len
);
2060 extern int target_can_do_single_step ();
2062 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2063 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2064 COND is the expression for its condition, or NULL if there's none.
2065 Returns 0 for success, 1 if the watchpoint type is not supported,
2068 extern int target_insert_watchpoint (CORE_ADDR addr
, int len
,
2069 target_hw_bp_type type
, expression
*cond
);
2071 extern int target_remove_watchpoint (CORE_ADDR addr
, int len
,
2072 target_hw_bp_type type
, expression
*cond
);
2074 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2075 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2076 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2077 masked watchpoints are not supported, -1 for failure. */
2079 extern int target_insert_mask_watchpoint (CORE_ADDR
, CORE_ADDR
,
2080 enum target_hw_bp_type
);
2082 /* Remove a masked watchpoint at ADDR with the mask MASK.
2083 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2084 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2087 extern int target_remove_mask_watchpoint (CORE_ADDR
, CORE_ADDR
,
2088 enum target_hw_bp_type
);
2090 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2091 the target machine. Returns 0 for success, and returns non-zero or
2092 throws an error (with a detailed failure reason error code and
2093 message) otherwise. */
2095 extern int target_insert_hw_breakpoint (gdbarch
*gdbarch
,
2096 bp_target_info
*bp_tgt
);
2098 extern int target_remove_hw_breakpoint (gdbarch
*gdbarch
,
2099 bp_target_info
*bp_tgt
);
2101 /* Return number of debug registers needed for a ranged breakpoint,
2102 or -1 if ranged breakpoints are not supported. */
2104 extern int target_ranged_break_num_registers (void);
2106 /* Return non-zero if target knows the data address which triggered this
2107 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2108 INFERIOR_PTID task is being queried. */
2109 #define target_stopped_data_address(target, addr_p) \
2110 (target)->stopped_data_address (addr_p)
2112 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2113 LENGTH bytes beginning at START. */
2114 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2115 (target)->watchpoint_addr_within_range (addr, start, length)
2117 /* Return non-zero if the target is capable of using hardware to evaluate
2118 the condition expression. In this case, if the condition is false when
2119 the watched memory location changes, execution may continue without the
2120 debugger being notified.
2122 Due to limitations in the hardware implementation, it may be capable of
2123 avoiding triggering the watchpoint in some cases where the condition
2124 expression is false, but may report some false positives as well.
2125 For this reason, GDB will still evaluate the condition expression when
2126 the watchpoint triggers. */
2128 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr
, int len
,
2129 int type
, expression
*cond
);
2131 /* Return number of debug registers needed for a masked watchpoint,
2132 -1 if masked watchpoints are not supported or -2 if the given address
2133 and mask combination cannot be used. */
2135 extern int target_masked_watch_num_registers (CORE_ADDR addr
, CORE_ADDR mask
);
2137 /* Target can execute in reverse? */
2139 extern bool target_can_execute_reverse ();
2141 extern const struct target_desc
*target_read_description (struct target_ops
*);
2143 extern ptid_t
target_get_ada_task_ptid (long lwp
, ULONGEST tid
);
2145 /* Main entry point for searching memory. */
2146 extern int target_search_memory (CORE_ADDR start_addr
,
2147 ULONGEST search_space_len
,
2148 const gdb_byte
*pattern
,
2149 ULONGEST pattern_len
,
2150 CORE_ADDR
*found_addrp
);
2152 /* Target file operations. */
2154 /* Return true if the filesystem seen by the current inferior
2155 is the local filesystem, zero otherwise. */
2157 extern bool target_filesystem_is_local ();
2159 /* Open FILENAME on the target, in the filesystem as seen by INF,
2160 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2161 the debugger (GDB or, for remote targets, the remote stub). Return
2162 a target file descriptor, or -1 if an error occurs (and set
2163 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2164 if the file is being accessed over a link that may be slow. */
2165 extern int target_fileio_open (struct inferior
*inf
,
2166 const char *filename
, int flags
,
2167 int mode
, bool warn_if_slow
,
2170 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2171 Return the number of bytes written, or -1 if an error occurs
2172 (and set *TARGET_ERRNO). */
2173 extern int target_fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
2174 ULONGEST offset
, int *target_errno
);
2176 /* Read up to LEN bytes FD on the target into READ_BUF.
2177 Return the number of bytes read, or -1 if an error occurs
2178 (and set *TARGET_ERRNO). */
2179 extern int target_fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
2180 ULONGEST offset
, int *target_errno
);
2182 /* Get information about the file opened as FD on the target
2183 and put it in SB. Return 0 on success, or -1 if an error
2184 occurs (and set *TARGET_ERRNO). */
2185 extern int target_fileio_fstat (int fd
, struct stat
*sb
,
2188 /* Close FD on the target. Return 0, or -1 if an error occurs
2189 (and set *TARGET_ERRNO). */
2190 extern int target_fileio_close (int fd
, int *target_errno
);
2192 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2193 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2194 for remote targets, the remote stub). Return 0, or -1 if an error
2195 occurs (and set *TARGET_ERRNO). */
2196 extern int target_fileio_unlink (struct inferior
*inf
,
2197 const char *filename
,
2200 /* Read value of symbolic link FILENAME on the target, in the
2201 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2202 by the debugger (GDB or, for remote targets, the remote stub).
2203 Return a null-terminated string allocated via xmalloc, or NULL if
2204 an error occurs (and set *TARGET_ERRNO). */
2205 extern gdb::optional
<std::string
> target_fileio_readlink
2206 (struct inferior
*inf
, const char *filename
, int *target_errno
);
2208 /* Read target file FILENAME, in the filesystem as seen by INF. If
2209 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2210 remote targets, the remote stub). The return value will be -1 if
2211 the transfer fails or is not supported; 0 if the object is empty;
2212 or the length of the object otherwise. If a positive value is
2213 returned, a sufficiently large buffer will be allocated using
2214 xmalloc and returned in *BUF_P containing the contents of the
2217 This method should be used for objects sufficiently small to store
2218 in a single xmalloc'd buffer, when no fixed bound on the object's
2219 size is known in advance. */
2220 extern LONGEST
target_fileio_read_alloc (struct inferior
*inf
,
2221 const char *filename
,
2224 /* Read target file FILENAME, in the filesystem as seen by INF. If
2225 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2226 remote targets, the remote stub). The result is NUL-terminated and
2227 returned as a string, allocated using xmalloc. If an error occurs
2228 or the transfer is unsupported, NULL is returned. Empty objects
2229 are returned as allocated but empty strings. A warning is issued
2230 if the result contains any embedded NUL bytes. */
2231 extern gdb::unique_xmalloc_ptr
<char> target_fileio_read_stralloc
2232 (struct inferior
*inf
, const char *filename
);
2234 /* Invalidate the target associated with open handles that were open
2235 on target TARG, since we're about to close (and maybe destroy) the
2236 target. The handles remain open from the client's perspective, but
2237 trying to do anything with them other than closing them will fail
2239 extern void fileio_handles_invalidate_target (target_ops
*targ
);
2241 /* Tracepoint-related operations. */
2243 extern void target_trace_init ();
2245 extern void target_download_tracepoint (bp_location
*location
);
2247 extern bool target_can_download_tracepoint ();
2249 extern void target_download_trace_state_variable (const trace_state_variable
&tsv
);
2251 extern void target_enable_tracepoint (bp_location
*loc
);
2253 extern void target_disable_tracepoint (bp_location
*loc
);
2255 extern void target_trace_start ();
2257 extern void target_trace_set_readonly_regions ();
2259 extern int target_get_trace_status (trace_status
*ts
);
2261 extern void target_get_tracepoint_status (breakpoint
*tp
, uploaded_tp
*utp
);
2263 extern void target_trace_stop ();
2265 extern int target_trace_find (trace_find_type type
, int num
, CORE_ADDR addr1
,
2266 CORE_ADDR addr2
, int *tpp
);
2268 extern bool target_get_trace_state_variable_value (int tsv
, LONGEST
*val
);
2270 extern int target_save_trace_data (const char *filename
);
2272 extern int target_upload_tracepoints (uploaded_tp
**utpp
);
2274 extern int target_upload_trace_state_variables (uploaded_tsv
**utsvp
);
2276 extern LONGEST
target_get_raw_trace_data (gdb_byte
*buf
, ULONGEST offset
,
2279 extern int target_get_min_fast_tracepoint_insn_len ();
2281 extern void target_set_disconnected_tracing (int val
);
2283 extern void target_set_circular_trace_buffer (int val
);
2285 extern void target_set_trace_buffer_size (LONGEST val
);
2287 extern bool target_set_trace_notes (const char *user
, const char *notes
,
2288 const char *stopnotes
);
2290 extern bool target_get_tib_address (ptid_t ptid
, CORE_ADDR
*addr
);
2292 extern void target_set_permissions ();
2294 extern bool target_static_tracepoint_marker_at
2295 (CORE_ADDR addr
, static_tracepoint_marker
*marker
);
2297 extern std::vector
<static_tracepoint_marker
>
2298 target_static_tracepoint_markers_by_strid (const char *marker_id
);
2300 extern traceframe_info_up
target_traceframe_info ();
2302 extern bool target_use_agent (bool use
);
2304 extern bool target_can_use_agent ();
2306 extern bool target_augmented_libraries_svr4_read ();
2308 extern bool target_supports_memory_tagging ();
2310 extern bool target_fetch_memtags (CORE_ADDR address
, size_t len
,
2311 gdb::byte_vector
&tags
, int type
);
2313 extern bool target_store_memtags (CORE_ADDR address
, size_t len
,
2314 const gdb::byte_vector
&tags
, int type
);
2316 /* Command logging facility. */
2318 extern void target_log_command (const char *p
);
2320 extern int target_core_of_thread (ptid_t ptid
);
2322 /* See to_get_unwinder in struct target_ops. */
2323 extern const struct frame_unwind
*target_get_unwinder (void);
2325 /* See to_get_tailcall_unwinder in struct target_ops. */
2326 extern const struct frame_unwind
*target_get_tailcall_unwinder (void);
2328 /* This implements basic memory verification, reading target memory
2329 and performing the comparison here (as opposed to accelerated
2330 verification making use of the qCRC packet, for example). */
2332 extern int simple_verify_memory (struct target_ops
* ops
,
2333 const gdb_byte
*data
,
2334 CORE_ADDR memaddr
, ULONGEST size
);
2336 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2337 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2338 if there's a mismatch, and -1 if an error is encountered while
2339 reading memory. Throws an error if the functionality is found not
2340 to be supported by the current target. */
2341 int target_verify_memory (const gdb_byte
*data
,
2342 CORE_ADDR memaddr
, ULONGEST size
);
2344 /* Routines for maintenance of the target structures...
2346 add_target: Add a target to the list of all possible targets.
2347 This only makes sense for targets that should be activated using
2348 the "target TARGET_NAME ..." command.
2350 push_target: Make this target the top of the stack of currently used
2351 targets, within its particular stratum of the stack. Result
2352 is 0 if now atop the stack, nonzero if not on top (maybe
2355 unpush_target: Remove this from the stack of currently used targets,
2356 no matter where it is on the list. Returns 0 if no
2357 change, 1 if removed from stack. */
2359 /* Type of callback called when the user activates a target with
2360 "target TARGET_NAME". The callback routine takes the rest of the
2361 parameters from the command, and (if successful) pushes a new
2362 target onto the stack. */
2363 typedef void target_open_ftype (const char *args
, int from_tty
);
2365 /* Add the target described by INFO to the list of possible targets
2366 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2367 as the command's completer if not NULL. */
2369 extern void add_target (const target_info
&info
,
2370 target_open_ftype
*func
,
2371 completer_ftype
*completer
= NULL
);
2373 /* Adds a command ALIAS for the target described by INFO and marks it
2374 deprecated. This is useful for maintaining backwards compatibility
2375 when renaming targets. */
2377 extern void add_deprecated_target_alias (const target_info
&info
,
2380 /* A unique_ptr helper to unpush a target. */
2382 struct target_unpusher
2384 void operator() (struct target_ops
*ops
) const;
2387 /* A unique_ptr that unpushes a target on destruction. */
2389 typedef std::unique_ptr
<struct target_ops
, target_unpusher
> target_unpush_up
;
2391 extern void target_pre_inferior (int);
2393 extern void target_preopen (int);
2395 /* Does whatever cleanup is required to get rid of all pushed targets. */
2396 extern void pop_all_targets (void);
2398 /* Like pop_all_targets, but pops only targets whose stratum is at or
2400 extern void pop_all_targets_at_and_above (enum strata stratum
);
2402 /* Like pop_all_targets, but pops only targets whose stratum is
2403 strictly above ABOVE_STRATUM. */
2404 extern void pop_all_targets_above (enum strata above_stratum
);
2406 extern CORE_ADDR
target_translate_tls_address (struct objfile
*objfile
,
2409 /* Return the "section" containing the specified address. */
2410 const struct target_section
*target_section_by_addr (struct target_ops
*target
,
2413 /* Return the target section table this target (or the targets
2414 beneath) currently manipulate. */
2416 extern const target_section_table
*target_get_section_table
2417 (struct target_ops
*target
);
2419 /* Default implementation of get_section_table for dummy_target. */
2421 extern const target_section_table
*default_get_section_table ();
2423 /* From mem-break.c */
2425 extern int memory_remove_breakpoint (struct target_ops
*,
2426 struct gdbarch
*, struct bp_target_info
*,
2427 enum remove_bp_reason
);
2429 extern int memory_insert_breakpoint (struct target_ops
*,
2430 struct gdbarch
*, struct bp_target_info
*);
2432 /* Convenience template use to add memory breakpoints support to a
2435 template <typename BaseTarget
>
2436 struct memory_breakpoint_target
: public BaseTarget
2438 int insert_breakpoint (struct gdbarch
*gdbarch
,
2439 struct bp_target_info
*bp_tgt
) override
2440 { return memory_insert_breakpoint (this, gdbarch
, bp_tgt
); }
2442 int remove_breakpoint (struct gdbarch
*gdbarch
,
2443 struct bp_target_info
*bp_tgt
,
2444 enum remove_bp_reason reason
) override
2445 { return memory_remove_breakpoint (this, gdbarch
, bp_tgt
, reason
); }
2448 /* Check whether the memory at the breakpoint's placed address still
2449 contains the expected breakpoint instruction. */
2451 extern int memory_validate_breakpoint (struct gdbarch
*gdbarch
,
2452 struct bp_target_info
*bp_tgt
);
2454 extern int default_memory_remove_breakpoint (struct gdbarch
*,
2455 struct bp_target_info
*);
2457 extern int default_memory_insert_breakpoint (struct gdbarch
*,
2458 struct bp_target_info
*);
2463 extern void initialize_targets (void);
2465 extern void noprocess (void) ATTRIBUTE_NORETURN
;
2467 extern void target_require_runnable (void);
2469 /* Find the target at STRATUM. If no target is at that stratum,
2472 struct target_ops
*find_target_at (enum strata stratum
);
2474 /* Read OS data object of type TYPE from the target, and return it in XML
2475 format. The return value follows the same rules as target_read_stralloc. */
2477 extern gdb::optional
<gdb::char_vector
> target_get_osdata (const char *type
);
2479 /* Stuff that should be shared among the various remote targets. */
2482 /* Timeout limit for response from target. */
2483 extern int remote_timeout
;
2487 /* Set the show memory breakpoints mode to show, and return a
2488 scoped_restore to restore it back to the current value. */
2489 extern scoped_restore_tmpl
<int>
2490 make_scoped_restore_show_memory_breakpoints (int show
);
2492 extern bool may_write_registers
;
2493 extern bool may_write_memory
;
2494 extern bool may_insert_breakpoints
;
2495 extern bool may_insert_tracepoints
;
2496 extern bool may_insert_fast_tracepoints
;
2497 extern bool may_stop
;
2499 extern void update_target_permissions (void);
2502 /* Imported from machine dependent code. */
2504 /* See to_enable_btrace in struct target_ops. */
2505 extern struct btrace_target_info
*
2506 target_enable_btrace (thread_info
*tp
, const struct btrace_config
*);
2508 /* See to_disable_btrace in struct target_ops. */
2509 extern void target_disable_btrace (struct btrace_target_info
*btinfo
);
2511 /* See to_teardown_btrace in struct target_ops. */
2512 extern void target_teardown_btrace (struct btrace_target_info
*btinfo
);
2514 /* See to_read_btrace in struct target_ops. */
2515 extern enum btrace_error
target_read_btrace (struct btrace_data
*,
2516 struct btrace_target_info
*,
2517 enum btrace_read_type
);
2519 /* See to_btrace_conf in struct target_ops. */
2520 extern const struct btrace_config
*
2521 target_btrace_conf (const struct btrace_target_info
*);
2523 /* See to_stop_recording in struct target_ops. */
2524 extern void target_stop_recording (void);
2526 /* See to_save_record in struct target_ops. */
2527 extern void target_save_record (const char *filename
);
2529 /* Query if the target supports deleting the execution log. */
2530 extern int target_supports_delete_record (void);
2532 /* See to_delete_record in struct target_ops. */
2533 extern void target_delete_record (void);
2535 /* See to_record_method. */
2536 extern enum record_method
target_record_method (ptid_t ptid
);
2538 /* See to_record_is_replaying in struct target_ops. */
2539 extern int target_record_is_replaying (ptid_t ptid
);
2541 /* See to_record_will_replay in struct target_ops. */
2542 extern int target_record_will_replay (ptid_t ptid
, int dir
);
2544 /* See to_record_stop_replaying in struct target_ops. */
2545 extern void target_record_stop_replaying (void);
2547 /* See to_goto_record_begin in struct target_ops. */
2548 extern void target_goto_record_begin (void);
2550 /* See to_goto_record_end in struct target_ops. */
2551 extern void target_goto_record_end (void);
2553 /* See to_goto_record in struct target_ops. */
2554 extern void target_goto_record (ULONGEST insn
);
2556 /* See to_insn_history. */
2557 extern void target_insn_history (int size
, gdb_disassembly_flags flags
);
2559 /* See to_insn_history_from. */
2560 extern void target_insn_history_from (ULONGEST from
, int size
,
2561 gdb_disassembly_flags flags
);
2563 /* See to_insn_history_range. */
2564 extern void target_insn_history_range (ULONGEST begin
, ULONGEST end
,
2565 gdb_disassembly_flags flags
);
2567 /* See to_call_history. */
2568 extern void target_call_history (int size
, record_print_flags flags
);
2570 /* See to_call_history_from. */
2571 extern void target_call_history_from (ULONGEST begin
, int size
,
2572 record_print_flags flags
);
2574 /* See to_call_history_range. */
2575 extern void target_call_history_range (ULONGEST begin
, ULONGEST end
,
2576 record_print_flags flags
);
2578 /* See to_prepare_to_generate_core. */
2579 extern void target_prepare_to_generate_core (void);
2581 /* See to_done_generating_core. */
2582 extern void target_done_generating_core (void);
2584 #endif /* !defined (TARGET_H) */