1 /* Renesas RX specific support for 32-bit ELF.
2 Copyright (C) 2008-2022 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #define RX_OPCODE_BIG_ENDIAN 0
31 /* This is a meta-target that's used only with objcopy, to avoid the
32 endian-swap we would otherwise get. We check for this in
34 const bfd_target rx_elf32_be_ns_vec
;
35 const bfd_target rx_elf32_be_vec
;
38 char * rx_get_reloc (long);
39 void rx_dump_symtab (bfd
*, void *, void *);
42 #define RXREL(n,sz,bit,shift,complain,pcrel) \
43 HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
44 bfd_elf_generic_reloc, "R_RX_" #n, false, 0, ~0, false)
46 /* Note that the relocations around 0x7f are internal to this file;
47 feel free to move them as needed to avoid conflicts with published
48 relocation numbers. */
50 static reloc_howto_type rx_elf_howto_table
[] =
52 RXREL (NONE
, 3, 0, 0, dont
, false),
53 RXREL (DIR32
, 2, 32, 0, signed, false),
54 RXREL (DIR24S
, 2, 24, 0, signed, false),
55 RXREL (DIR16
, 1, 16, 0, dont
, false),
56 RXREL (DIR16U
, 1, 16, 0, unsigned, false),
57 RXREL (DIR16S
, 1, 16, 0, signed, false),
58 RXREL (DIR8
, 0, 8, 0, dont
, false),
59 RXREL (DIR8U
, 0, 8, 0, unsigned, false),
60 RXREL (DIR8S
, 0, 8, 0, signed, false),
61 RXREL (DIR24S_PCREL
, 2, 24, 0, signed, true),
62 RXREL (DIR16S_PCREL
, 1, 16, 0, signed, true),
63 RXREL (DIR8S_PCREL
, 0, 8, 0, signed, true),
64 RXREL (DIR16UL
, 1, 16, 2, unsigned, false),
65 RXREL (DIR16UW
, 1, 16, 1, unsigned, false),
66 RXREL (DIR8UL
, 0, 8, 2, unsigned, false),
67 RXREL (DIR8UW
, 0, 8, 1, unsigned, false),
68 RXREL (DIR32_REV
, 1, 16, 0, dont
, false),
69 RXREL (DIR16_REV
, 1, 16, 0, dont
, false),
70 RXREL (DIR3U_PCREL
, 0, 3, 0, dont
, true),
86 RXREL (RH_3_PCREL
, 0, 3, 0, signed, true),
87 RXREL (RH_16_OP
, 1, 16, 0, signed, false),
88 RXREL (RH_24_OP
, 2, 24, 0, signed, false),
89 RXREL (RH_32_OP
, 2, 32, 0, signed, false),
90 RXREL (RH_24_UNS
, 2, 24, 0, unsigned, false),
91 RXREL (RH_8_NEG
, 0, 8, 0, signed, false),
92 RXREL (RH_16_NEG
, 1, 16, 0, signed, false),
93 RXREL (RH_24_NEG
, 2, 24, 0, signed, false),
94 RXREL (RH_32_NEG
, 2, 32, 0, signed, false),
95 RXREL (RH_DIFF
, 2, 32, 0, signed, false),
96 RXREL (RH_GPRELB
, 1, 16, 0, unsigned, false),
97 RXREL (RH_GPRELW
, 1, 16, 0, unsigned, false),
98 RXREL (RH_GPRELL
, 1, 16, 0, unsigned, false),
99 RXREL (RH_RELAX
, 0, 0, 0, dont
, false),
121 RXREL (ABS32
, 2, 32, 0, dont
, false),
122 RXREL (ABS24S
, 2, 24, 0, signed, false),
123 RXREL (ABS16
, 1, 16, 0, dont
, false),
124 RXREL (ABS16U
, 1, 16, 0, unsigned, false),
125 RXREL (ABS16S
, 1, 16, 0, signed, false),
126 RXREL (ABS8
, 0, 8, 0, dont
, false),
127 RXREL (ABS8U
, 0, 8, 0, unsigned, false),
128 RXREL (ABS8S
, 0, 8, 0, signed, false),
129 RXREL (ABS24S_PCREL
, 2, 24, 0, signed, true),
130 RXREL (ABS16S_PCREL
, 1, 16, 0, signed, true),
131 RXREL (ABS8S_PCREL
, 0, 8, 0, signed, true),
132 RXREL (ABS16UL
, 1, 16, 0, unsigned, false),
133 RXREL (ABS16UW
, 1, 16, 0, unsigned, false),
134 RXREL (ABS8UL
, 0, 8, 0, unsigned, false),
135 RXREL (ABS8UW
, 0, 8, 0, unsigned, false),
136 RXREL (ABS32_REV
, 2, 32, 0, dont
, false),
137 RXREL (ABS16_REV
, 1, 16, 0, dont
, false),
139 #define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32)
180 /* These are internal. */
181 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */
182 /* ---- ---- 4--- 3210. */
183 #define R_RX_RH_ABS5p8B 0x78
184 RXREL (RH_ABS5p8B
, 0, 0, 0, dont
, false),
185 #define R_RX_RH_ABS5p8W 0x79
186 RXREL (RH_ABS5p8W
, 0, 0, 0, dont
, false),
187 #define R_RX_RH_ABS5p8L 0x7a
188 RXREL (RH_ABS5p8L
, 0, 0, 0, dont
, false),
189 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */
190 /* ---- -432 1--- 0---. */
191 #define R_RX_RH_ABS5p5B 0x7b
192 RXREL (RH_ABS5p5B
, 0, 0, 0, dont
, false),
193 #define R_RX_RH_ABS5p5W 0x7c
194 RXREL (RH_ABS5p5W
, 0, 0, 0, dont
, false),
195 #define R_RX_RH_ABS5p5L 0x7d
196 RXREL (RH_ABS5p5L
, 0, 0, 0, dont
, false),
197 /* A 4-bit unsigned immediate at bit position 8. */
198 #define R_RX_RH_UIMM4p8 0x7e
199 RXREL (RH_UIMM4p8
, 0, 0, 0, dont
, false),
200 /* A 4-bit negative unsigned immediate at bit position 8. */
201 #define R_RX_RH_UNEG4p8 0x7f
202 RXREL (RH_UNEG4p8
, 0, 0, 0, dont
, false),
203 /* End of internal relocs. */
205 RXREL (SYM
, 2, 32, 0, dont
, false),
206 RXREL (OPneg
, 2, 32, 0, dont
, false),
207 RXREL (OPadd
, 2, 32, 0, dont
, false),
208 RXREL (OPsub
, 2, 32, 0, dont
, false),
209 RXREL (OPmul
, 2, 32, 0, dont
, false),
210 RXREL (OPdiv
, 2, 32, 0, dont
, false),
211 RXREL (OPshla
, 2, 32, 0, dont
, false),
212 RXREL (OPshra
, 2, 32, 0, dont
, false),
213 RXREL (OPsctsize
, 2, 32, 0, dont
, false),
220 RXREL (OPscttop
, 2, 32, 0, dont
, false),
225 RXREL (OPand
, 2, 32, 0, dont
, false),
226 RXREL (OPor
, 2, 32, 0, dont
, false),
227 RXREL (OPxor
, 2, 32, 0, dont
, false),
228 RXREL (OPnot
, 2, 32, 0, dont
, false),
229 RXREL (OPmod
, 2, 32, 0, dont
, false),
230 RXREL (OPromtop
, 2, 32, 0, dont
, false),
231 RXREL (OPramtop
, 2, 32, 0, dont
, false)
234 /* Map BFD reloc types to RX ELF reloc types. */
238 bfd_reloc_code_real_type bfd_reloc_val
;
239 unsigned int rx_reloc_val
;
242 static const struct rx_reloc_map rx_reloc_map
[] =
244 { BFD_RELOC_NONE
, R_RX_NONE
},
245 { BFD_RELOC_8
, R_RX_DIR8S
},
246 { BFD_RELOC_16
, R_RX_DIR16S
},
247 { BFD_RELOC_24
, R_RX_DIR24S
},
248 { BFD_RELOC_32
, R_RX_DIR32
},
249 { BFD_RELOC_RX_16_OP
, R_RX_DIR16
},
250 { BFD_RELOC_RX_DIR3U_PCREL
, R_RX_DIR3U_PCREL
},
251 { BFD_RELOC_8_PCREL
, R_RX_DIR8S_PCREL
},
252 { BFD_RELOC_16_PCREL
, R_RX_DIR16S_PCREL
},
253 { BFD_RELOC_24_PCREL
, R_RX_DIR24S_PCREL
},
254 { BFD_RELOC_RX_8U
, R_RX_DIR8U
},
255 { BFD_RELOC_RX_16U
, R_RX_DIR16U
},
256 { BFD_RELOC_RX_24U
, R_RX_RH_24_UNS
},
257 { BFD_RELOC_RX_NEG8
, R_RX_RH_8_NEG
},
258 { BFD_RELOC_RX_NEG16
, R_RX_RH_16_NEG
},
259 { BFD_RELOC_RX_NEG24
, R_RX_RH_24_NEG
},
260 { BFD_RELOC_RX_NEG32
, R_RX_RH_32_NEG
},
261 { BFD_RELOC_RX_DIFF
, R_RX_RH_DIFF
},
262 { BFD_RELOC_RX_GPRELB
, R_RX_RH_GPRELB
},
263 { BFD_RELOC_RX_GPRELW
, R_RX_RH_GPRELW
},
264 { BFD_RELOC_RX_GPRELL
, R_RX_RH_GPRELL
},
265 { BFD_RELOC_RX_RELAX
, R_RX_RH_RELAX
},
266 { BFD_RELOC_RX_SYM
, R_RX_SYM
},
267 { BFD_RELOC_RX_OP_SUBTRACT
, R_RX_OPsub
},
268 { BFD_RELOC_RX_OP_NEG
, R_RX_OPneg
},
269 { BFD_RELOC_RX_ABS8
, R_RX_ABS8
},
270 { BFD_RELOC_RX_ABS16
, R_RX_ABS16
},
271 { BFD_RELOC_RX_ABS16_REV
, R_RX_ABS16_REV
},
272 { BFD_RELOC_RX_ABS32
, R_RX_ABS32
},
273 { BFD_RELOC_RX_ABS32_REV
, R_RX_ABS32_REV
},
274 { BFD_RELOC_RX_ABS16UL
, R_RX_ABS16UL
},
275 { BFD_RELOC_RX_ABS16UW
, R_RX_ABS16UW
},
276 { BFD_RELOC_RX_ABS16U
, R_RX_ABS16U
}
279 #define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG)
281 static reloc_howto_type
*
282 rx_reloc_type_lookup (bfd
* abfd ATTRIBUTE_UNUSED
,
283 bfd_reloc_code_real_type code
)
287 if (code
== BFD_RELOC_RX_32_OP
)
288 return rx_elf_howto_table
+ R_RX_DIR32
;
290 for (i
= ARRAY_SIZE (rx_reloc_map
); i
--;)
291 if (rx_reloc_map
[i
].bfd_reloc_val
== code
)
292 return rx_elf_howto_table
+ rx_reloc_map
[i
].rx_reloc_val
;
297 static reloc_howto_type
*
298 rx_reloc_name_lookup (bfd
* abfd ATTRIBUTE_UNUSED
, const char * r_name
)
302 for (i
= 0; i
< ARRAY_SIZE (rx_elf_howto_table
); i
++)
303 if (rx_elf_howto_table
[i
].name
!= NULL
304 && strcasecmp (rx_elf_howto_table
[i
].name
, r_name
) == 0)
305 return rx_elf_howto_table
+ i
;
310 /* Set the howto pointer for an RX ELF reloc. */
313 rx_info_to_howto_rela (bfd
* abfd
,
315 Elf_Internal_Rela
* dst
)
319 r_type
= ELF32_R_TYPE (dst
->r_info
);
320 BFD_ASSERT (R_RX_max
== ARRAY_SIZE (rx_elf_howto_table
));
321 if (r_type
>= ARRAY_SIZE (rx_elf_howto_table
))
323 /* xgettext:c-format */
324 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
326 bfd_set_error (bfd_error_bad_value
);
329 cache_ptr
->howto
= rx_elf_howto_table
+ r_type
;
330 if (cache_ptr
->howto
->name
== NULL
)
332 /* xgettext:c-format */
333 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
335 bfd_set_error (bfd_error_bad_value
);
342 get_symbol_value (const char * name
,
343 struct bfd_link_info
* info
,
345 asection
* input_section
,
349 struct bfd_link_hash_entry
* h
;
351 h
= bfd_link_hash_lookup (info
->hash
, name
, false, false, true);
354 || (h
->type
!= bfd_link_hash_defined
355 && h
->type
!= bfd_link_hash_defweak
))
356 (*info
->callbacks
->undefined_symbol
)
357 (info
, name
, input_bfd
, input_section
, offset
, true);
359 value
= (h
->u
.def
.value
360 + h
->u
.def
.section
->output_section
->vma
361 + h
->u
.def
.section
->output_offset
);
367 get_symbol_value_maybe (const char * name
,
368 struct bfd_link_info
* info
)
371 struct bfd_link_hash_entry
* h
;
373 h
= bfd_link_hash_lookup (info
->hash
, name
, false, false, true);
376 || (h
->type
!= bfd_link_hash_defined
377 && h
->type
!= bfd_link_hash_defweak
))
380 value
= (h
->u
.def
.value
381 + h
->u
.def
.section
->output_section
->vma
382 + h
->u
.def
.section
->output_offset
);
388 get_gp (struct bfd_link_info
* info
,
393 static bool cached
= false;
394 static bfd_vma cached_value
= 0;
398 cached_value
= get_symbol_value ("__gp", info
, abfd
, sec
, offset
);
405 get_romstart (struct bfd_link_info
* info
,
410 static bool cached
= false;
411 static bfd_vma cached_value
= 0;
415 cached_value
= get_symbol_value ("_start", info
, abfd
, sec
, offset
);
422 get_ramstart (struct bfd_link_info
* info
,
427 static bool cached
= false;
428 static bfd_vma cached_value
= 0;
432 cached_value
= get_symbol_value ("__datastart", info
, abfd
, sec
, offset
);
438 #define NUM_STACK_ENTRIES 16
439 static int32_t rx_stack
[ NUM_STACK_ENTRIES
];
440 static unsigned int rx_stack_top
;
442 #define RX_STACK_PUSH(val) \
445 if (rx_stack_top < NUM_STACK_ENTRIES) \
446 rx_stack [rx_stack_top ++] = (val); \
448 r = bfd_reloc_dangerous; \
452 #define RX_STACK_POP(dest) \
455 if (rx_stack_top > 0) \
456 (dest) = rx_stack [-- rx_stack_top]; \
458 (dest) = 0, r = bfd_reloc_dangerous; \
462 /* Relocate an RX ELF section.
463 There is some attempt to make this function usable for many architectures,
464 both USE_REL and USE_RELA ['twould be nice if such a critter existed],
465 if only to serve as a learning tool.
467 The RELOCATE_SECTION function is called by the new ELF backend linker
468 to handle the relocations for a section.
470 The relocs are always passed as Rela structures; if the section
471 actually uses Rel structures, the r_addend field will always be
474 This function is responsible for adjusting the section contents as
475 necessary, and (if using Rela relocs and generating a relocatable
476 output file) adjusting the reloc addend as necessary.
478 This function does not have to worry about setting the reloc
479 address or the reloc symbol index.
481 LOCAL_SYMS is a pointer to the swapped in local symbols.
483 LOCAL_SECTIONS is an array giving the section in the input file
484 corresponding to the st_shndx field of each local symbol.
486 The global hash table entry for the global symbols can be found
487 via elf_sym_hashes (input_bfd).
489 When generating relocatable output, this function must handle
490 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
491 going to be the section symbol corresponding to the output
492 section, which means that the addend must be adjusted
496 rx_elf_relocate_section
498 struct bfd_link_info
* info
,
500 asection
* input_section
,
502 Elf_Internal_Rela
* relocs
,
503 Elf_Internal_Sym
* local_syms
,
504 asection
** local_sections
)
506 Elf_Internal_Shdr
*symtab_hdr
;
507 struct elf_link_hash_entry
**sym_hashes
;
508 Elf_Internal_Rela
*rel
;
509 Elf_Internal_Rela
*relend
;
511 bool saw_subtract
= false;
512 const char *table_default_cache
= NULL
;
513 bfd_vma table_start_cache
= 0;
514 bfd_vma table_end_cache
= 0;
516 if (elf_elfheader (output_bfd
)->e_flags
& E_FLAG_RX_PID
)
521 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
522 sym_hashes
= elf_sym_hashes (input_bfd
);
523 relend
= relocs
+ input_section
->reloc_count
;
524 for (rel
= relocs
; rel
< relend
; rel
++)
526 reloc_howto_type
*howto
;
527 unsigned long r_symndx
;
528 Elf_Internal_Sym
*sym
;
530 struct elf_link_hash_entry
*h
;
532 bfd_reloc_status_type r
;
533 const char * name
= NULL
;
534 bool unresolved_reloc
= true;
537 r_type
= ELF32_R_TYPE (rel
->r_info
);
538 r_symndx
= ELF32_R_SYM (rel
->r_info
);
540 howto
= rx_elf_howto_table
+ ELF32_R_TYPE (rel
->r_info
);
546 if (rx_stack_top
== 0)
547 saw_subtract
= false;
549 if (r_symndx
< symtab_hdr
->sh_info
)
551 sym
= local_syms
+ r_symndx
;
552 sec
= local_sections
[r_symndx
];
553 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, & sec
, rel
);
555 name
= bfd_elf_string_from_elf_section
556 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
557 name
= sym
->st_name
== 0 ? bfd_section_name (sec
) : name
;
561 bool warned
, ignored
;
563 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
564 r_symndx
, symtab_hdr
, sym_hashes
, h
,
565 sec
, relocation
, unresolved_reloc
,
568 name
= h
->root
.root
.string
;
571 if (startswith (name
, "$tableentry$default$"))
577 if (table_default_cache
!= name
)
580 /* All relocs for a given table should be to the same
581 (weak) default symbol) so we can use it to detect a
582 cache miss. We use the offset into the table to find
583 the "real" symbol. Calculate and store the table's
586 table_default_cache
= name
;
588 /* We have already done error checking in rx_table_find(). */
590 buf
= (char *) bfd_malloc (13 + strlen (name
+ 20));
594 sprintf (buf
, "$tablestart$%s", name
+ 20);
595 table_start_cache
= get_symbol_value (buf
,
601 sprintf (buf
, "$tableend$%s", name
+ 20);
602 table_end_cache
= get_symbol_value (buf
,
611 entry_vma
= (input_section
->output_section
->vma
612 + input_section
->output_offset
615 if (table_end_cache
<= entry_vma
|| entry_vma
< table_start_cache
)
617 /* xgettext:c-format */
618 _bfd_error_handler (_("%pB:%pA: table entry %s outside table"),
619 input_bfd
, input_section
,
622 else if ((int) (entry_vma
- table_start_cache
) % 4)
624 /* xgettext:c-format */
625 _bfd_error_handler (_("%pB:%pA: table entry %s not word-aligned within table"),
626 input_bfd
, input_section
,
631 idx
= (int) (entry_vma
- table_start_cache
) / 4;
633 /* This will look like $tableentry$<N>$<name> */
634 buf
= (char *) bfd_malloc (12 + 20 + strlen (name
+ 20));
638 sprintf (buf
, "$tableentry$%d$%s", idx
, name
+ 20);
640 h
= (struct elf_link_hash_entry
*) bfd_link_hash_lookup (info
->hash
, buf
, false, false, true);
644 relocation
= (h
->root
.u
.def
.value
645 + h
->root
.u
.def
.section
->output_section
->vma
646 + h
->root
.u
.def
.section
->output_offset
);;
653 if (sec
!= NULL
&& discarded_section (sec
))
654 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
655 rel
, 1, relend
, howto
, 0, contents
);
657 if (bfd_link_relocatable (info
))
659 /* This is a relocatable link. We don't have to change
660 anything, unless the reloc is against a section symbol,
661 in which case we have to adjust according to where the
662 section symbol winds up in the output section. */
663 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
664 rel
->r_addend
+= sec
->output_offset
;
668 if (h
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
669 /* If the symbol is undefined and weak
670 then the relocation resolves to zero. */
674 if (howto
->pc_relative
)
676 relocation
-= (input_section
->output_section
->vma
677 + input_section
->output_offset
679 if (r_type
!= R_RX_RH_3_PCREL
680 && r_type
!= R_RX_DIR3U_PCREL
)
684 relocation
+= rel
->r_addend
;
690 if (a > (long) relocation || (long) relocation > b) \
691 r = bfd_reloc_overflow
693 if (relocation & m) \
696 (contents[rel->r_offset + (i)])
697 #define WARN_REDHAT(type) \
698 /* xgettext:c-format */ \
700 (_("%pB:%pA: warning: deprecated Red Hat reloc " \
701 "%s detected against: %s"), \
702 input_bfd, input_section, #type, name)
704 /* Check for unsafe relocs in PID mode. These are any relocs where
705 an absolute address is being computed. There are special cases
706 for relocs against symbols that are known to be referenced in
707 crt0.o before the PID base address register has been initialised. */
708 #define UNSAFE_FOR_PID \
713 && sec->flags & SEC_READONLY \
714 && !(input_section->flags & SEC_DEBUGGING) \
715 && strcmp (name, "__pid_base") != 0 \
716 && strcmp (name, "__gp") != 0 \
717 && strcmp (name, "__romdatastart") != 0 \
719 /* xgettext:c-format */ \
720 _bfd_error_handler (_("%pB(%pA): unsafe PID relocation %s " \
721 "at %#" PRIx64 " (against %s in %s)"), \
722 input_bfd, input_section, howto->name, \
723 (uint64_t) (input_section->output_section->vma \
724 + input_section->output_offset \
730 /* Opcode relocs are always big endian. Data relocs are bi-endian. */
739 case R_RX_RH_3_PCREL
:
740 WARN_REDHAT ("RX_RH_3_PCREL");
743 OP (0) |= relocation
& 0x07;
747 WARN_REDHAT ("RX_RH_8_NEG");
748 relocation
= - relocation
;
750 case R_RX_DIR8S_PCREL
:
769 WARN_REDHAT ("RX_RH_16_NEG");
770 relocation
= - relocation
;
772 case R_RX_DIR16S_PCREL
:
774 RANGE (-32768, 32767);
775 #if RX_OPCODE_BIG_ENDIAN
778 OP (1) = relocation
>> 8;
783 WARN_REDHAT ("RX_RH_16_OP");
785 RANGE (-32768, 32767);
786 #if RX_OPCODE_BIG_ENDIAN
788 OP (0) = relocation
>> 8;
791 OP (1) = relocation
>> 8;
797 RANGE (-32768, 65535);
798 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
801 OP (0) = relocation
>> 8;
806 OP (1) = relocation
>> 8;
813 #if RX_OPCODE_BIG_ENDIAN
815 OP (0) = relocation
>> 8;
818 OP (1) = relocation
>> 8;
824 RANGE (-32768, 65536);
825 #if RX_OPCODE_BIG_ENDIAN
827 OP (0) = relocation
>> 8;
830 OP (1) = relocation
>> 8;
836 RANGE (-32768, 65536);
837 #if RX_OPCODE_BIG_ENDIAN
839 OP (1) = relocation
>> 8;
842 OP (0) = relocation
>> 8;
846 case R_RX_DIR3U_PCREL
:
849 OP (0) |= relocation
& 0x07;
854 WARN_REDHAT ("RX_RH_24_NEG");
855 relocation
= - relocation
;
857 case R_RX_DIR24S_PCREL
:
858 RANGE (-0x800000, 0x7fffff);
859 #if RX_OPCODE_BIG_ENDIAN
861 OP (1) = relocation
>> 8;
862 OP (0) = relocation
>> 16;
865 OP (1) = relocation
>> 8;
866 OP (2) = relocation
>> 16;
872 WARN_REDHAT ("RX_RH_24_OP");
873 RANGE (-0x800000, 0x7fffff);
874 #if RX_OPCODE_BIG_ENDIAN
876 OP (1) = relocation
>> 8;
877 OP (0) = relocation
>> 16;
880 OP (1) = relocation
>> 8;
881 OP (2) = relocation
>> 16;
887 RANGE (-0x800000, 0x7fffff);
888 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
891 OP (1) = relocation
>> 8;
892 OP (0) = relocation
>> 16;
897 OP (1) = relocation
>> 8;
898 OP (2) = relocation
>> 16;
904 WARN_REDHAT ("RX_RH_24_UNS");
906 #if RX_OPCODE_BIG_ENDIAN
908 OP (1) = relocation
>> 8;
909 OP (0) = relocation
>> 16;
912 OP (1) = relocation
>> 8;
913 OP (2) = relocation
>> 16;
919 WARN_REDHAT ("RX_RH_32_NEG");
920 relocation
= - relocation
;
921 #if RX_OPCODE_BIG_ENDIAN
923 OP (2) = relocation
>> 8;
924 OP (1) = relocation
>> 16;
925 OP (0) = relocation
>> 24;
928 OP (1) = relocation
>> 8;
929 OP (2) = relocation
>> 16;
930 OP (3) = relocation
>> 24;
936 WARN_REDHAT ("RX_RH_32_OP");
937 #if RX_OPCODE_BIG_ENDIAN
939 OP (2) = relocation
>> 8;
940 OP (1) = relocation
>> 16;
941 OP (0) = relocation
>> 24;
944 OP (1) = relocation
>> 8;
945 OP (2) = relocation
>> 16;
946 OP (3) = relocation
>> 24;
951 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
954 OP (2) = relocation
>> 8;
955 OP (1) = relocation
>> 16;
956 OP (0) = relocation
>> 24;
961 OP (1) = relocation
>> 8;
962 OP (2) = relocation
>> 16;
963 OP (3) = relocation
>> 24;
968 if (BIGE (output_bfd
))
971 OP (1) = relocation
>> 8;
972 OP (2) = relocation
>> 16;
973 OP (3) = relocation
>> 24;
978 OP (2) = relocation
>> 8;
979 OP (1) = relocation
>> 16;
980 OP (0) = relocation
>> 24;
987 WARN_REDHAT ("RX_RH_DIFF");
988 val
= bfd_get_32 (output_bfd
, & OP (0));
990 bfd_put_32 (output_bfd
, val
, & OP (0));
995 WARN_REDHAT ("RX_RH_GPRELB");
996 relocation
-= get_gp (info
, input_bfd
, input_section
, rel
->r_offset
);
998 #if RX_OPCODE_BIG_ENDIAN
1000 OP (0) = relocation
>> 8;
1002 OP (0) = relocation
;
1003 OP (1) = relocation
>> 8;
1007 case R_RX_RH_GPRELW
:
1008 WARN_REDHAT ("RX_RH_GPRELW");
1009 relocation
-= get_gp (info
, input_bfd
, input_section
, rel
->r_offset
);
1013 #if RX_OPCODE_BIG_ENDIAN
1014 OP (1) = relocation
;
1015 OP (0) = relocation
>> 8;
1017 OP (0) = relocation
;
1018 OP (1) = relocation
>> 8;
1022 case R_RX_RH_GPRELL
:
1023 WARN_REDHAT ("RX_RH_GPRELL");
1024 relocation
-= get_gp (info
, input_bfd
, input_section
, rel
->r_offset
);
1028 #if RX_OPCODE_BIG_ENDIAN
1029 OP (1) = relocation
;
1030 OP (0) = relocation
>> 8;
1032 OP (0) = relocation
;
1033 OP (1) = relocation
>> 8;
1037 /* Internal relocations just for relaxation: */
1038 case R_RX_RH_ABS5p5B
:
1039 RX_STACK_POP (relocation
);
1042 OP (0) |= relocation
>> 2;
1044 OP (1) |= (relocation
<< 6) & 0x80;
1045 OP (1) |= (relocation
<< 3) & 0x08;
1048 case R_RX_RH_ABS5p5W
:
1049 RX_STACK_POP (relocation
);
1054 OP (0) |= relocation
>> 2;
1056 OP (1) |= (relocation
<< 6) & 0x80;
1057 OP (1) |= (relocation
<< 3) & 0x08;
1060 case R_RX_RH_ABS5p5L
:
1061 RX_STACK_POP (relocation
);
1066 OP (0) |= relocation
>> 2;
1068 OP (1) |= (relocation
<< 6) & 0x80;
1069 OP (1) |= (relocation
<< 3) & 0x08;
1072 case R_RX_RH_ABS5p8B
:
1073 RX_STACK_POP (relocation
);
1076 OP (0) |= (relocation
<< 3) & 0x80;
1077 OP (0) |= relocation
& 0x0f;
1080 case R_RX_RH_ABS5p8W
:
1081 RX_STACK_POP (relocation
);
1086 OP (0) |= (relocation
<< 3) & 0x80;
1087 OP (0) |= relocation
& 0x0f;
1090 case R_RX_RH_ABS5p8L
:
1091 RX_STACK_POP (relocation
);
1096 OP (0) |= (relocation
<< 3) & 0x80;
1097 OP (0) |= relocation
& 0x0f;
1100 case R_RX_RH_UIMM4p8
:
1103 OP (0) |= relocation
<< 4;
1106 case R_RX_RH_UNEG4p8
:
1109 OP (0) |= (-relocation
) << 4;
1112 /* Complex reloc handling: */
1116 RX_STACK_POP (relocation
);
1117 #if RX_OPCODE_BIG_ENDIAN
1118 OP (3) = relocation
;
1119 OP (2) = relocation
>> 8;
1120 OP (1) = relocation
>> 16;
1121 OP (0) = relocation
>> 24;
1123 OP (0) = relocation
;
1124 OP (1) = relocation
>> 8;
1125 OP (2) = relocation
>> 16;
1126 OP (3) = relocation
>> 24;
1130 case R_RX_ABS32_REV
:
1132 RX_STACK_POP (relocation
);
1133 #if RX_OPCODE_BIG_ENDIAN
1134 OP (0) = relocation
;
1135 OP (1) = relocation
>> 8;
1136 OP (2) = relocation
>> 16;
1137 OP (3) = relocation
>> 24;
1139 OP (3) = relocation
;
1140 OP (2) = relocation
>> 8;
1141 OP (1) = relocation
>> 16;
1142 OP (0) = relocation
>> 24;
1146 case R_RX_ABS24S_PCREL
:
1149 RX_STACK_POP (relocation
);
1150 RANGE (-0x800000, 0x7fffff);
1151 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
1153 OP (2) = relocation
;
1154 OP (1) = relocation
>> 8;
1155 OP (0) = relocation
>> 16;
1159 OP (0) = relocation
;
1160 OP (1) = relocation
>> 8;
1161 OP (2) = relocation
>> 16;
1167 RX_STACK_POP (relocation
);
1168 RANGE (-32768, 65535);
1169 #if RX_OPCODE_BIG_ENDIAN
1170 OP (1) = relocation
;
1171 OP (0) = relocation
>> 8;
1173 OP (0) = relocation
;
1174 OP (1) = relocation
>> 8;
1178 case R_RX_ABS16_REV
:
1180 RX_STACK_POP (relocation
);
1181 RANGE (-32768, 65535);
1182 #if RX_OPCODE_BIG_ENDIAN
1183 OP (0) = relocation
;
1184 OP (1) = relocation
>> 8;
1186 OP (1) = relocation
;
1187 OP (0) = relocation
>> 8;
1191 case R_RX_ABS16S_PCREL
:
1193 RX_STACK_POP (relocation
);
1194 RANGE (-32768, 32767);
1195 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
1197 OP (1) = relocation
;
1198 OP (0) = relocation
>> 8;
1202 OP (0) = relocation
;
1203 OP (1) = relocation
>> 8;
1209 RX_STACK_POP (relocation
);
1211 #if RX_OPCODE_BIG_ENDIAN
1212 OP (1) = relocation
;
1213 OP (0) = relocation
>> 8;
1215 OP (0) = relocation
;
1216 OP (1) = relocation
>> 8;
1222 RX_STACK_POP (relocation
);
1225 #if RX_OPCODE_BIG_ENDIAN
1226 OP (1) = relocation
;
1227 OP (0) = relocation
>> 8;
1229 OP (0) = relocation
;
1230 OP (1) = relocation
>> 8;
1236 RX_STACK_POP (relocation
);
1239 #if RX_OPCODE_BIG_ENDIAN
1240 OP (1) = relocation
;
1241 OP (0) = relocation
>> 8;
1243 OP (0) = relocation
;
1244 OP (1) = relocation
>> 8;
1250 RX_STACK_POP (relocation
);
1252 OP (0) = relocation
;
1257 RX_STACK_POP (relocation
);
1259 OP (0) = relocation
;
1264 RX_STACK_POP (relocation
);
1267 OP (0) = relocation
;
1272 RX_STACK_POP (relocation
);
1275 OP (0) = relocation
;
1281 case R_RX_ABS8S_PCREL
:
1282 RX_STACK_POP (relocation
);
1284 OP (0) = relocation
;
1288 if (r_symndx
< symtab_hdr
->sh_info
)
1289 RX_STACK_PUSH (sec
->output_section
->vma
1290 + sec
->output_offset
1296 && (h
->root
.type
== bfd_link_hash_defined
1297 || h
->root
.type
== bfd_link_hash_defweak
))
1298 RX_STACK_PUSH (h
->root
.u
.def
.value
1299 + sec
->output_section
->vma
1300 + sec
->output_offset
1304 (_("warning: RX_SYM reloc with an unknown symbol"));
1312 saw_subtract
= true;
1315 RX_STACK_PUSH (tmp
);
1323 RX_STACK_POP (tmp1
);
1324 RX_STACK_POP (tmp2
);
1326 RX_STACK_PUSH (tmp1
);
1334 saw_subtract
= true;
1335 RX_STACK_POP (tmp1
);
1336 RX_STACK_POP (tmp2
);
1338 RX_STACK_PUSH (tmp2
);
1346 RX_STACK_POP (tmp1
);
1347 RX_STACK_POP (tmp2
);
1349 RX_STACK_PUSH (tmp1
);
1357 RX_STACK_POP (tmp1
);
1358 RX_STACK_POP (tmp2
);
1360 RX_STACK_PUSH (tmp1
);
1368 RX_STACK_POP (tmp1
);
1369 RX_STACK_POP (tmp2
);
1371 RX_STACK_PUSH (tmp1
);
1379 RX_STACK_POP (tmp1
);
1380 RX_STACK_POP (tmp2
);
1382 RX_STACK_PUSH (tmp1
);
1386 case R_RX_OPsctsize
:
1387 RX_STACK_PUSH (input_section
->size
);
1391 RX_STACK_PUSH (input_section
->output_section
->vma
);
1398 RX_STACK_POP (tmp1
);
1399 RX_STACK_POP (tmp2
);
1401 RX_STACK_PUSH (tmp1
);
1409 RX_STACK_POP (tmp1
);
1410 RX_STACK_POP (tmp2
);
1412 RX_STACK_PUSH (tmp1
);
1420 RX_STACK_POP (tmp1
);
1421 RX_STACK_POP (tmp2
);
1423 RX_STACK_PUSH (tmp1
);
1433 RX_STACK_PUSH (tmp
);
1441 RX_STACK_POP (tmp1
);
1442 RX_STACK_POP (tmp2
);
1444 RX_STACK_PUSH (tmp1
);
1449 RX_STACK_PUSH (get_romstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1453 RX_STACK_PUSH (get_ramstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1457 r
= bfd_reloc_notsupported
;
1461 if (r
!= bfd_reloc_ok
)
1463 const char * msg
= NULL
;
1467 case bfd_reloc_overflow
:
1468 /* Catch the case of a missing function declaration
1469 and emit a more helpful error message. */
1470 if (r_type
== R_RX_DIR24S_PCREL
)
1471 /* xgettext:c-format */
1472 msg
= _("%pB(%pA): error: call to undefined function '%s'");
1474 (*info
->callbacks
->reloc_overflow
)
1475 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
, (bfd_vma
) 0,
1476 input_bfd
, input_section
, rel
->r_offset
);
1479 case bfd_reloc_undefined
:
1480 (*info
->callbacks
->undefined_symbol
)
1481 (info
, name
, input_bfd
, input_section
, rel
->r_offset
, true);
1484 case bfd_reloc_other
:
1485 /* xgettext:c-format */
1486 msg
= _("%pB(%pA): warning: unaligned access to symbol '%s' in the small data area");
1489 case bfd_reloc_outofrange
:
1490 /* xgettext:c-format */
1491 msg
= _("%pB(%pA): internal error: out of range error");
1494 case bfd_reloc_notsupported
:
1495 /* xgettext:c-format */
1496 msg
= _("%pB(%pA): internal error: unsupported relocation error");
1499 case bfd_reloc_dangerous
:
1500 /* xgettext:c-format */
1501 msg
= _("%pB(%pA): internal error: dangerous relocation");
1505 /* xgettext:c-format */
1506 msg
= _("%pB(%pA): internal error: unknown error");
1511 _bfd_error_handler (msg
, input_bfd
, input_section
, name
);
1518 /* Relaxation Support. */
1520 /* Progression of relocations from largest operand size to smallest
1524 next_smaller_reloc (int r
)
1528 case R_RX_DIR32
: return R_RX_DIR24S
;
1529 case R_RX_DIR24S
: return R_RX_DIR16S
;
1530 case R_RX_DIR16S
: return R_RX_DIR8S
;
1531 case R_RX_DIR8S
: return R_RX_NONE
;
1533 case R_RX_DIR16
: return R_RX_DIR8
;
1534 case R_RX_DIR8
: return R_RX_NONE
;
1536 case R_RX_DIR16U
: return R_RX_DIR8U
;
1537 case R_RX_DIR8U
: return R_RX_NONE
;
1539 case R_RX_DIR24S_PCREL
: return R_RX_DIR16S_PCREL
;
1540 case R_RX_DIR16S_PCREL
: return R_RX_DIR8S_PCREL
;
1541 case R_RX_DIR8S_PCREL
: return R_RX_DIR3U_PCREL
;
1543 case R_RX_DIR16UL
: return R_RX_DIR8UL
;
1544 case R_RX_DIR8UL
: return R_RX_NONE
;
1545 case R_RX_DIR16UW
: return R_RX_DIR8UW
;
1546 case R_RX_DIR8UW
: return R_RX_NONE
;
1548 case R_RX_RH_32_OP
: return R_RX_RH_24_OP
;
1549 case R_RX_RH_24_OP
: return R_RX_RH_16_OP
;
1550 case R_RX_RH_16_OP
: return R_RX_DIR8
;
1552 case R_RX_ABS32
: return R_RX_ABS24S
;
1553 case R_RX_ABS24S
: return R_RX_ABS16S
;
1554 case R_RX_ABS16
: return R_RX_ABS8
;
1555 case R_RX_ABS16U
: return R_RX_ABS8U
;
1556 case R_RX_ABS16S
: return R_RX_ABS8S
;
1557 case R_RX_ABS8
: return R_RX_NONE
;
1558 case R_RX_ABS8U
: return R_RX_NONE
;
1559 case R_RX_ABS8S
: return R_RX_NONE
;
1560 case R_RX_ABS24S_PCREL
: return R_RX_ABS16S_PCREL
;
1561 case R_RX_ABS16S_PCREL
: return R_RX_ABS8S_PCREL
;
1562 case R_RX_ABS8S_PCREL
: return R_RX_NONE
;
1563 case R_RX_ABS16UL
: return R_RX_ABS8UL
;
1564 case R_RX_ABS16UW
: return R_RX_ABS8UW
;
1565 case R_RX_ABS8UL
: return R_RX_NONE
;
1566 case R_RX_ABS8UW
: return R_RX_NONE
;
1571 /* Delete some bytes from a section while relaxing. */
1574 elf32_rx_relax_delete_bytes (bfd
*abfd
, asection
*sec
, bfd_vma addr
, int count
,
1575 Elf_Internal_Rela
*alignment_rel
, int force_snip
,
1576 Elf_Internal_Rela
*irelstart
)
1578 Elf_Internal_Shdr
* symtab_hdr
;
1579 unsigned int sec_shndx
;
1580 bfd_byte
* contents
;
1581 Elf_Internal_Rela
* irel
;
1582 Elf_Internal_Rela
* irelend
;
1583 Elf_Internal_Sym
* isym
;
1584 Elf_Internal_Sym
* isymend
;
1586 unsigned int symcount
;
1587 struct elf_link_hash_entry
** sym_hashes
;
1588 struct elf_link_hash_entry
** end_hashes
;
1593 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
1595 contents
= elf_section_data (sec
)->this_hdr
.contents
;
1597 /* The deletion must stop at the next alignment boundary, if
1598 ALIGNMENT_REL is non-NULL. */
1601 toaddr
= alignment_rel
->r_offset
;
1603 BFD_ASSERT (toaddr
> addr
);
1605 /* Actually delete the bytes. */
1606 memmove (contents
+ addr
, contents
+ addr
+ count
,
1607 (size_t) (toaddr
- addr
- count
));
1609 /* If we don't have an alignment marker to worry about, we can just
1610 shrink the section. Otherwise, we have to fill in the newly
1611 created gap with NOP insns (0x03). */
1615 memset (contents
+ toaddr
- count
, 0x03, count
);
1618 BFD_ASSERT (irel
!= NULL
|| sec
->reloc_count
== 0);
1619 irelend
= irel
+ sec
->reloc_count
;
1621 /* Adjust all the relocs. */
1622 for (; irel
< irelend
; irel
++)
1624 /* Get the new reloc address. */
1625 if (irel
->r_offset
> addr
1626 && (irel
->r_offset
< toaddr
1627 || (force_snip
&& irel
->r_offset
== toaddr
)))
1628 irel
->r_offset
-= count
;
1630 /* If we see an ALIGN marker at the end of the gap, we move it
1631 to the beginning of the gap, since marking these gaps is what
1633 if (irel
->r_offset
== toaddr
1634 && ELF32_R_TYPE (irel
->r_info
) == R_RX_RH_RELAX
1635 && irel
->r_addend
& RX_RELAXA_ALIGN
)
1636 irel
->r_offset
-= count
;
1639 /* Adjust the local symbols defined in this section. */
1640 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1641 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
1642 isymend
= isym
+ symtab_hdr
->sh_info
;
1644 for (; isym
< isymend
; isym
++)
1646 /* If the symbol is in the range of memory we just moved, we
1647 have to adjust its value. */
1648 if (isym
->st_shndx
== sec_shndx
1649 && isym
->st_value
> addr
1650 && isym
->st_value
< toaddr
)
1651 isym
->st_value
-= count
;
1653 /* If the symbol *spans* the bytes we just deleted (i.e. it's
1654 *end* is in the moved bytes but it's *start* isn't), then we
1655 must adjust its size. */
1656 if (isym
->st_shndx
== sec_shndx
1657 && isym
->st_value
< addr
1658 && isym
->st_value
+ isym
->st_size
> addr
1659 && isym
->st_value
+ isym
->st_size
< toaddr
)
1660 isym
->st_size
-= count
;
1663 /* Now adjust the global symbols defined in this section. */
1664 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
1665 - symtab_hdr
->sh_info
);
1666 sym_hashes
= elf_sym_hashes (abfd
);
1667 end_hashes
= sym_hashes
+ symcount
;
1669 for (; sym_hashes
< end_hashes
; sym_hashes
++)
1671 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
1673 if ((sym_hash
->root
.type
== bfd_link_hash_defined
1674 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
1675 && sym_hash
->root
.u
.def
.section
== sec
)
1677 /* As above, adjust the value if needed. */
1678 if (sym_hash
->root
.u
.def
.value
> addr
1679 && sym_hash
->root
.u
.def
.value
< toaddr
)
1680 sym_hash
->root
.u
.def
.value
-= count
;
1682 /* As above, adjust the size if needed. */
1683 if (sym_hash
->root
.u
.def
.value
< addr
1684 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
> addr
1685 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
< toaddr
)
1686 sym_hash
->size
-= count
;
1693 /* Used to sort relocs by address. If relocs have the same address,
1694 we maintain their relative order, except that R_RX_RH_RELAX
1695 alignment relocs must be the first reloc for any given address. */
1698 reloc_bubblesort (Elf_Internal_Rela
* r
, int count
)
1704 /* This is almost a classic bubblesort. It's the slowest sort, but
1705 we're taking advantage of the fact that the relocations are
1706 mostly in order already (the assembler emits them that way) and
1707 we need relocs with the same address to remain in the same
1713 for (i
= 0; i
< count
- 1; i
++)
1715 if (r
[i
].r_offset
> r
[i
+ 1].r_offset
)
1717 else if (r
[i
].r_offset
< r
[i
+ 1].r_offset
)
1719 else if (ELF32_R_TYPE (r
[i
+ 1].r_info
) == R_RX_RH_RELAX
1720 && (r
[i
+ 1].r_addend
& RX_RELAXA_ALIGN
))
1722 else if (ELF32_R_TYPE (r
[i
+ 1].r_info
) == R_RX_RH_RELAX
1723 && (r
[i
+ 1].r_addend
& RX_RELAXA_ELIGN
)
1724 && !(ELF32_R_TYPE (r
[i
].r_info
) == R_RX_RH_RELAX
1725 && (r
[i
].r_addend
& RX_RELAXA_ALIGN
)))
1732 Elf_Internal_Rela tmp
;
1737 /* If we do move a reloc back, re-scan to see if it
1738 needs to be moved even further back. This avoids
1739 most of the O(n^2) behavior for our cases. */
1749 #define OFFSET_FOR_RELOC(rel, lrel, scale) \
1750 rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
1751 lrel, abfd, sec, link_info, scale)
1754 rx_offset_for_reloc (bfd
* abfd
,
1755 Elf_Internal_Rela
* rel
,
1756 Elf_Internal_Shdr
* symtab_hdr
,
1757 bfd_byte
* shndx_buf ATTRIBUTE_UNUSED
,
1758 Elf_Internal_Sym
* intsyms
,
1759 Elf_Internal_Rela
** lrel
,
1761 asection
* input_section
,
1762 struct bfd_link_info
* info
,
1766 bfd_reloc_status_type r
;
1770 /* REL is the first of 1..N relocations. We compute the symbol
1771 value for each relocation, then combine them if needed. LREL
1772 gets a pointer to the last relocation used. */
1777 /* Get the value of the symbol referred to by the reloc. */
1778 if (ELF32_R_SYM (rel
->r_info
) < symtab_hdr
->sh_info
)
1780 /* A local symbol. */
1781 Elf_Internal_Sym
*isym
;
1784 isym
= intsyms
+ ELF32_R_SYM (rel
->r_info
);
1786 if (isym
->st_shndx
== SHN_UNDEF
)
1787 ssec
= bfd_und_section_ptr
;
1788 else if (isym
->st_shndx
== SHN_ABS
)
1789 ssec
= bfd_abs_section_ptr
;
1790 else if (isym
->st_shndx
== SHN_COMMON
)
1791 ssec
= bfd_com_section_ptr
;
1793 ssec
= bfd_section_from_elf_index (abfd
,
1796 /* Initial symbol value. */
1797 symval
= isym
->st_value
;
1799 /* GAS may have made this symbol relative to a section, in
1800 which case, we have to add the addend to find the
1802 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
1803 symval
+= rel
->r_addend
;
1807 if ((ssec
->flags
& SEC_MERGE
)
1808 && ssec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
1809 symval
= _bfd_merged_section_offset (abfd
, & ssec
,
1810 elf_section_data (ssec
)->sec_info
,
1814 /* Now make the offset relative to where the linker is putting it. */
1817 ssec
->output_section
->vma
+ ssec
->output_offset
;
1819 symval
+= rel
->r_addend
;
1824 struct elf_link_hash_entry
* h
;
1826 /* An external symbol. */
1827 indx
= ELF32_R_SYM (rel
->r_info
) - symtab_hdr
->sh_info
;
1828 h
= elf_sym_hashes (abfd
)[indx
];
1829 BFD_ASSERT (h
!= NULL
);
1831 if (h
->root
.type
!= bfd_link_hash_defined
1832 && h
->root
.type
!= bfd_link_hash_defweak
)
1834 /* This appears to be a reference to an undefined
1835 symbol. Just ignore it--it will be caught by the
1836 regular reloc processing. */
1842 symval
= (h
->root
.u
.def
.value
1843 + h
->root
.u
.def
.section
->output_section
->vma
1844 + h
->root
.u
.def
.section
->output_offset
);
1846 symval
+= rel
->r_addend
;
1849 switch (ELF32_R_TYPE (rel
->r_info
))
1852 RX_STACK_PUSH (symval
);
1856 RX_STACK_POP (tmp1
);
1858 RX_STACK_PUSH (tmp1
);
1862 RX_STACK_POP (tmp1
);
1863 RX_STACK_POP (tmp2
);
1865 RX_STACK_PUSH (tmp1
);
1869 RX_STACK_POP (tmp1
);
1870 RX_STACK_POP (tmp2
);
1872 RX_STACK_PUSH (tmp2
);
1876 RX_STACK_POP (tmp1
);
1877 RX_STACK_POP (tmp2
);
1879 RX_STACK_PUSH (tmp1
);
1883 RX_STACK_POP (tmp1
);
1884 RX_STACK_POP (tmp2
);
1886 RX_STACK_PUSH (tmp1
);
1890 RX_STACK_POP (tmp1
);
1891 RX_STACK_POP (tmp2
);
1893 RX_STACK_PUSH (tmp1
);
1897 RX_STACK_POP (tmp1
);
1898 RX_STACK_POP (tmp2
);
1900 RX_STACK_PUSH (tmp1
);
1903 case R_RX_OPsctsize
:
1904 RX_STACK_PUSH (input_section
->size
);
1908 RX_STACK_PUSH (input_section
->output_section
->vma
);
1912 RX_STACK_POP (tmp1
);
1913 RX_STACK_POP (tmp2
);
1915 RX_STACK_PUSH (tmp1
);
1919 RX_STACK_POP (tmp1
);
1920 RX_STACK_POP (tmp2
);
1922 RX_STACK_PUSH (tmp1
);
1926 RX_STACK_POP (tmp1
);
1927 RX_STACK_POP (tmp2
);
1929 RX_STACK_PUSH (tmp1
);
1933 RX_STACK_POP (tmp1
);
1935 RX_STACK_PUSH (tmp1
);
1939 RX_STACK_POP (tmp1
);
1940 RX_STACK_POP (tmp2
);
1942 RX_STACK_PUSH (tmp1
);
1946 RX_STACK_PUSH (get_romstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1950 RX_STACK_PUSH (get_ramstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1958 RX_STACK_POP (symval
);
1969 RX_STACK_POP (symval
);
1977 RX_STACK_POP (symval
);
1990 move_reloc (Elf_Internal_Rela
* irel
, Elf_Internal_Rela
* srel
, int delta
)
1992 bfd_vma old_offset
= srel
->r_offset
;
1995 while (irel
<= srel
)
1997 if (irel
->r_offset
== old_offset
)
1998 irel
->r_offset
+= delta
;
2003 /* Relax one section. */
2006 elf32_rx_relax_section (bfd
*abfd
,
2008 struct bfd_link_info
*link_info
,
2012 Elf_Internal_Shdr
*symtab_hdr
;
2013 Elf_Internal_Shdr
*shndx_hdr
;
2014 Elf_Internal_Rela
*internal_relocs
;
2015 Elf_Internal_Rela
*irel
;
2016 Elf_Internal_Rela
*srel
;
2017 Elf_Internal_Rela
*irelend
;
2018 Elf_Internal_Rela
*next_alignment
;
2019 Elf_Internal_Rela
*prev_alignment
;
2020 bfd_byte
*contents
= NULL
;
2021 bfd_byte
*free_contents
= NULL
;
2022 Elf_Internal_Sym
*intsyms
= NULL
;
2023 Elf_Internal_Sym
*free_intsyms
= NULL
;
2024 bfd_byte
*shndx_buf
= NULL
;
2030 int section_alignment_glue
;
2031 /* how much to scale the relocation by - 1, 2, or 4. */
2034 /* Assume nothing changes. */
2037 /* We don't have to do anything for a relocatable link, if
2038 this section does not have relocs, or if this is not a
2040 if (bfd_link_relocatable (link_info
)
2041 || (sec
->flags
& SEC_RELOC
) == 0
2042 || sec
->reloc_count
== 0
2043 || (sec
->flags
& SEC_CODE
) == 0)
2046 symtab_hdr
= & elf_symtab_hdr (abfd
);
2047 if (elf_symtab_shndx_list (abfd
))
2048 shndx_hdr
= & elf_symtab_shndx_list (abfd
)->hdr
;
2052 sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
2054 /* Get the section contents. */
2055 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
2056 contents
= elf_section_data (sec
)->this_hdr
.contents
;
2057 /* Go get them off disk. */
2060 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
2062 elf_section_data (sec
)->this_hdr
.contents
= contents
;
2065 /* Read this BFD's symbols. */
2066 /* Get cached copy if it exists. */
2067 if (symtab_hdr
->contents
!= NULL
)
2068 intsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2071 intsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
, symtab_hdr
->sh_info
, 0, NULL
, NULL
, NULL
);
2072 symtab_hdr
->contents
= (bfd_byte
*) intsyms
;
2075 if (shndx_hdr
&& shndx_hdr
->sh_size
!= 0)
2079 if (_bfd_mul_overflow (symtab_hdr
->sh_info
,
2080 sizeof (Elf_External_Sym_Shndx
), &amt
))
2082 bfd_set_error (bfd_error_file_too_big
);
2085 if (bfd_seek (abfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0)
2087 shndx_buf
= _bfd_malloc_and_read (abfd
, amt
, amt
);
2088 if (shndx_buf
== NULL
)
2090 shndx_hdr
->contents
= shndx_buf
;
2093 /* Get a copy of the native relocations. */
2094 /* Note - we ignore the setting of link_info->keep_memory when reading
2095 in these relocs. We have to maintain a permanent copy of the relocs
2096 because we are going to walk over them multiple times, adjusting them
2097 as bytes are deleted from the section, and with this relaxation
2098 function itself being called multiple times on the same section... */
2099 internal_relocs
= _bfd_elf_link_read_relocs
2100 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true);
2101 if (internal_relocs
== NULL
)
2104 /* The RL_ relocs must be just before the operand relocs they go
2105 with, so we must sort them to guarantee this. We use bubblesort
2106 instead of qsort so we can guarantee that relocs with the same
2107 address remain in the same relative order. */
2108 reloc_bubblesort (internal_relocs
, sec
->reloc_count
);
2110 /* Walk through them looking for relaxing opportunities. */
2111 irelend
= internal_relocs
+ sec
->reloc_count
;
2113 /* This will either be NULL or a pointer to the next alignment
2115 next_alignment
= internal_relocs
;
2116 /* This will be the previous alignment, although at first it points
2117 to the first real relocation. */
2118 prev_alignment
= internal_relocs
;
2120 /* We calculate worst case shrinkage caused by alignment directives.
2121 No fool-proof, but better than either ignoring the problem or
2122 doing heavy duty analysis of all the alignment markers in all
2124 section_alignment_glue
= 0;
2125 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2126 if (ELF32_R_TYPE (irel
->r_info
) == R_RX_RH_RELAX
2127 && irel
->r_addend
& RX_RELAXA_ALIGN
)
2129 int this_glue
= 1 << (irel
->r_addend
& RX_RELAXA_ANUM
);
2131 if (section_alignment_glue
< this_glue
)
2132 section_alignment_glue
= this_glue
;
2134 /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
2136 section_alignment_glue
*= 2;
2138 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2140 unsigned char *insn
;
2143 /* The insns we care about are all marked with one of these. */
2144 if (ELF32_R_TYPE (irel
->r_info
) != R_RX_RH_RELAX
)
2147 if (irel
->r_addend
& RX_RELAXA_ALIGN
2148 || next_alignment
== internal_relocs
)
2150 /* When we delete bytes, we need to maintain all the alignments
2151 indicated. In addition, we need to be careful about relaxing
2152 jumps across alignment boundaries - these displacements
2153 *grow* when we delete bytes. For now, don't shrink
2154 displacements across an alignment boundary, just in case.
2155 Note that this only affects relocations to the same
2157 prev_alignment
= next_alignment
;
2158 next_alignment
+= 2;
2159 while (next_alignment
< irelend
2160 && (ELF32_R_TYPE (next_alignment
->r_info
) != R_RX_RH_RELAX
2161 || !(next_alignment
->r_addend
& RX_RELAXA_ELIGN
)))
2163 if (next_alignment
>= irelend
|| next_alignment
->r_offset
== 0)
2164 next_alignment
= NULL
;
2167 /* When we hit alignment markers, see if we've shrunk enough
2168 before them to reduce the gap without violating the alignment
2170 if (irel
->r_addend
& RX_RELAXA_ALIGN
)
2172 /* At this point, the next relocation *should* be the ELIGN
2174 Elf_Internal_Rela
*erel
= irel
+ 1;
2175 unsigned int alignment
, nbytes
;
2177 if (ELF32_R_TYPE (erel
->r_info
) != R_RX_RH_RELAX
)
2179 if (!(erel
->r_addend
& RX_RELAXA_ELIGN
))
2182 alignment
= 1 << (irel
->r_addend
& RX_RELAXA_ANUM
);
2184 if (erel
->r_offset
- irel
->r_offset
< alignment
)
2187 nbytes
= erel
->r_offset
- irel
->r_offset
;
2188 nbytes
/= alignment
;
2189 nbytes
*= alignment
;
2191 elf32_rx_relax_delete_bytes (abfd
, sec
, erel
->r_offset
-nbytes
, nbytes
, next_alignment
,
2192 erel
->r_offset
== sec
->size
, internal_relocs
);
2198 if (irel
->r_addend
& RX_RELAXA_ELIGN
)
2201 insn
= contents
+ irel
->r_offset
;
2203 nrelocs
= irel
->r_addend
& RX_RELAXA_RNUM
;
2205 /* At this point, we have an insn that is a candidate for linker
2206 relaxation. There are NRELOCS relocs following that may be
2207 relaxed, although each reloc may be made of more than one
2208 reloc entry (such as gp-rel symbols). */
2210 /* Get the value of the symbol referred to by the reloc. Just
2211 in case this is the last reloc in the list, use the RL's
2212 addend to choose between this reloc (no addend) or the next
2213 (yes addend, which means at least one following reloc). */
2215 /* srel points to the "current" reloction for this insn -
2216 actually the last reloc for a given operand, which is the one
2217 we need to update. We check the relaxations in the same
2218 order that the relocations happen, so we'll just push it
2222 pc
= sec
->output_section
->vma
+ sec
->output_offset
2226 symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
2227 pcrel = symval - pc + srel->r_addend; \
2230 #define SNIPNR(offset, nbytes) \
2231 elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0, internal_relocs);
2232 #define SNIP(offset, nbytes, newtype) \
2233 SNIPNR (offset, nbytes); \
2234 srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
2236 /* The order of these bit tests must match the order that the
2237 relocs appear in. Since we sorted those by offset, we can
2240 /* Note that the numbers in, say, DSP6 are the bit offsets of
2241 the code fields that describe the operand. Bits number 0 for
2242 the MSB of insn[0]. */
2249 if (irel
->r_addend
& RX_RELAXA_DSP6
)
2254 if (code
== 2 && symval
/scale
<= 255)
2256 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2259 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2260 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2262 SNIP (3, 1, newrel
);
2267 else if (code
== 1 && symval
== 0)
2270 SNIP (2, 1, R_RX_NONE
);
2274 /* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */
2275 else if (code
== 1 && symval
/scale
<= 31
2276 /* Decodable bits. */
2277 && (insn
[0] & 0xcc) == 0xcc
2279 && (insn
[0] & 0x30) != 0x30
2280 /* Register MSBs. */
2281 && (insn
[1] & 0x88) == 0x00)
2285 insn
[0] = 0x88 | (insn
[0] & 0x30);
2286 /* The register fields are in the right place already. */
2288 /* We can't relax this new opcode. */
2291 switch ((insn
[0] & 0x30) >> 4)
2294 newrel
= R_RX_RH_ABS5p5B
;
2297 newrel
= R_RX_RH_ABS5p5W
;
2300 newrel
= R_RX_RH_ABS5p5L
;
2304 move_reloc (irel
, srel
, -2);
2305 SNIP (2, 1, newrel
);
2308 /* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */
2309 else if (code
== 1 && symval
/scale
<= 31
2310 /* Decodable bits. */
2311 && (insn
[0] & 0xf8) == 0x58
2312 /* Register MSBs. */
2313 && (insn
[1] & 0x88) == 0x00)
2317 insn
[0] = 0xb0 | ((insn
[0] & 0x04) << 1);
2318 /* The register fields are in the right place already. */
2320 /* We can't relax this new opcode. */
2323 switch ((insn
[0] & 0x08) >> 3)
2326 newrel
= R_RX_RH_ABS5p5B
;
2329 newrel
= R_RX_RH_ABS5p5W
;
2333 move_reloc (irel
, srel
, -2);
2334 SNIP (2, 1, newrel
);
2338 /* A DSP4 operand always follows a DSP6 operand, even if there's
2339 no relocation for it. We have to read the code out of the
2340 opcode to calculate the offset of the operand. */
2341 if (irel
->r_addend
& RX_RELAXA_DSP4
)
2343 int code6
, offset
= 0;
2347 code6
= insn
[0] & 0x03;
2350 case 0: offset
= 2; break;
2351 case 1: offset
= 3; break;
2352 case 2: offset
= 4; break;
2353 case 3: offset
= 2; break;
2356 code
= (insn
[0] & 0x0c) >> 2;
2358 if (code
== 2 && symval
/ scale
<= 255)
2360 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2364 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2365 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2367 SNIP (offset
+1, 1, newrel
);
2372 else if (code
== 1 && symval
== 0)
2375 SNIP (offset
, 1, R_RX_NONE
);
2378 /* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */
2379 else if (code
== 1 && symval
/scale
<= 31
2380 /* Decodable bits. */
2381 && (insn
[0] & 0xc3) == 0xc3
2383 && (insn
[0] & 0x30) != 0x30
2384 /* Register MSBs. */
2385 && (insn
[1] & 0x88) == 0x00)
2389 insn
[0] = 0x80 | (insn
[0] & 0x30);
2390 /* The register fields are in the right place already. */
2392 /* We can't relax this new opcode. */
2395 switch ((insn
[0] & 0x30) >> 4)
2398 newrel
= R_RX_RH_ABS5p5B
;
2401 newrel
= R_RX_RH_ABS5p5W
;
2404 newrel
= R_RX_RH_ABS5p5L
;
2408 move_reloc (irel
, srel
, -2);
2409 SNIP (2, 1, newrel
);
2413 /* These always occur alone, but the offset depends on whether
2414 it's a MEMEX opcode (0x06) or not. */
2415 if (irel
->r_addend
& RX_RELAXA_DSP14
)
2420 if (insn
[0] == 0x06)
2427 if (code
== 2 && symval
/ scale
<= 255)
2429 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2433 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2434 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2436 SNIP (offset
, 1, newrel
);
2440 else if (code
== 1 && symval
== 0)
2443 SNIP (offset
, 1, R_RX_NONE
);
2454 /* These always occur alone. */
2455 if (irel
->r_addend
& RX_RELAXA_IMM6
)
2461 /* These relocations sign-extend, so we must do signed compares. */
2462 ssymval
= (long) symval
;
2464 code
= insn
[0] & 0x03;
2466 if (code
== 0 && ssymval
<= 8388607 && ssymval
>= -8388608)
2468 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2472 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2473 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2475 SNIP (2, 1, newrel
);
2480 else if (code
== 3 && ssymval
<= 32767 && ssymval
>= -32768)
2482 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2486 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2487 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2489 SNIP (2, 1, newrel
);
2494 /* Special case UIMM8 format: CMP #uimm8,Rdst. */
2495 else if (code
== 2 && ssymval
<= 255 && ssymval
>= 16
2496 /* Decodable bits. */
2497 && (insn
[0] & 0xfc) == 0x74
2498 /* Decodable bits. */
2499 && ((insn
[1] & 0xf0) == 0x00))
2504 insn
[1] = 0x50 | (insn
[1] & 0x0f);
2506 /* We can't relax this new opcode. */
2509 if (STACK_REL_P (ELF32_R_TYPE (srel
->r_info
)))
2510 newrel
= R_RX_ABS8U
;
2512 newrel
= R_RX_DIR8U
;
2514 SNIP (2, 1, newrel
);
2518 else if (code
== 2 && ssymval
<= 127 && ssymval
>= -128)
2520 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2524 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2525 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2527 SNIP (2, 1, newrel
);
2532 /* Special case UIMM4 format: CMP, MUL, AND, OR. */
2533 else if (code
== 1 && ssymval
<= 15 && ssymval
>= 0
2534 /* Decodable bits and immediate type. */
2536 /* Decodable bits. */
2537 && (insn
[1] & 0xc0) == 0x00)
2539 static const int newop
[4] = { 1, 3, 4, 5 };
2541 insn
[0] = 0x60 | newop
[insn
[1] >> 4];
2542 /* The register number doesn't move. */
2544 /* We can't relax this new opcode. */
2547 move_reloc (irel
, srel
, -1);
2549 SNIP (2, 1, R_RX_RH_UIMM4p8
);
2553 /* Special case UIMM4 format: ADD -> ADD/SUB. */
2554 else if (code
== 1 && ssymval
<= 15 && ssymval
>= -15
2555 /* Decodable bits and immediate type. */
2557 /* Same register for source and destination. */
2558 && ((insn
[1] >> 4) == (insn
[1] & 0x0f)))
2562 /* Note that we can't turn "add $0,Rs" into a NOP
2563 because the flags need to be set right. */
2567 insn
[0] = 0x60; /* Subtract. */
2568 newrel
= R_RX_RH_UNEG4p8
;
2572 insn
[0] = 0x62; /* Add. */
2573 newrel
= R_RX_RH_UIMM4p8
;
2576 /* The register number is in the right place. */
2578 /* We can't relax this new opcode. */
2581 move_reloc (irel
, srel
, -1);
2583 SNIP (2, 1, newrel
);
2588 /* These are either matched with a DSP6 (2-byte base) or an id24
2590 if (irel
->r_addend
& RX_RELAXA_IMM12
)
2592 int dspcode
, offset
= 0;
2597 if ((insn
[0] & 0xfc) == 0xfc)
2598 dspcode
= 1; /* Just something with one byte operand. */
2600 dspcode
= insn
[0] & 3;
2603 case 0: offset
= 2; break;
2604 case 1: offset
= 3; break;
2605 case 2: offset
= 4; break;
2606 case 3: offset
= 2; break;
2609 /* These relocations sign-extend, so we must do signed compares. */
2610 ssymval
= (long) symval
;
2612 code
= (insn
[1] >> 2) & 3;
2613 if (code
== 0 && ssymval
<= 8388607 && ssymval
>= -8388608)
2615 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2619 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2620 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2622 SNIP (offset
, 1, newrel
);
2627 else if (code
== 3 && ssymval
<= 32767 && ssymval
>= -32768)
2629 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2633 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2634 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2636 SNIP (offset
, 1, newrel
);
2641 /* Special case UIMM8 format: MOV #uimm8,Rdst. */
2642 else if (code
== 2 && ssymval
<= 255 && ssymval
>= 16
2643 /* Decodable bits. */
2645 /* Decodable bits. */
2646 && ((insn
[1] & 0x03) == 0x02))
2651 insn
[1] = 0x40 | (insn
[1] >> 4);
2653 /* We can't relax this new opcode. */
2656 if (STACK_REL_P (ELF32_R_TYPE (srel
->r_info
)))
2657 newrel
= R_RX_ABS8U
;
2659 newrel
= R_RX_DIR8U
;
2661 SNIP (2, 1, newrel
);
2665 else if (code
== 2 && ssymval
<= 127 && ssymval
>= -128)
2667 unsigned int newrel
= ELF32_R_TYPE(srel
->r_info
);
2671 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2672 if (newrel
!= ELF32_R_TYPE(srel
->r_info
))
2674 SNIP (offset
, 1, newrel
);
2679 /* Special case UIMM4 format: MOV #uimm4,Rdst. */
2680 else if (code
== 1 && ssymval
<= 15 && ssymval
>= 0
2681 /* Decodable bits. */
2683 /* Decodable bits. */
2684 && ((insn
[1] & 0x03) == 0x02))
2687 insn
[1] = insn
[1] >> 4;
2689 /* We can't relax this new opcode. */
2692 move_reloc (irel
, srel
, -1);
2694 SNIP (2, 1, R_RX_RH_UIMM4p8
);
2699 if (irel
->r_addend
& RX_RELAXA_BRA
)
2701 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2703 int alignment_glue
= 0;
2707 /* Branches over alignment chunks are problematic, as
2708 deleting bytes here makes the branch *further* away. We
2709 can be agressive with branches within this alignment
2710 block, but not branches outside it. */
2711 if ((prev_alignment
== NULL
2712 || symval
< (bfd_vma
)(sec_start
+ prev_alignment
->r_offset
))
2713 && (next_alignment
== NULL
2714 || symval
> (bfd_vma
)(sec_start
+ next_alignment
->r_offset
)))
2715 alignment_glue
= section_alignment_glue
;
2717 if (ELF32_R_TYPE(srel
[1].r_info
) == R_RX_RH_RELAX
2718 && srel
[1].r_addend
& RX_RELAXA_BRA
2719 && srel
[1].r_offset
< irel
->r_offset
+ pcrel
)
2722 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2724 /* The values we compare PCREL with are not what you'd
2725 expect; they're off by a little to compensate for (1)
2726 where the reloc is relative to the insn, and (2) how much
2727 the insn is going to change when we relax it. */
2729 /* These we have to decode. */
2732 case 0x04: /* BRA pcdsp:24 */
2733 if (-32768 + alignment_glue
<= pcrel
2734 && pcrel
<= 32765 - alignment_glue
)
2737 SNIP (3, 1, newrel
);
2742 case 0x38: /* BRA pcdsp:16 */
2743 if (-128 + alignment_glue
<= pcrel
2744 && pcrel
<= 127 - alignment_glue
)
2747 SNIP (2, 1, newrel
);
2752 case 0x2e: /* BRA pcdsp:8 */
2753 /* Note that there's a risk here of shortening things so
2754 much that we no longer fit this reloc; it *should*
2755 only happen when you branch across a branch, and that
2756 branch also devolves into BRA.S. "Real" code should
2758 if (max_pcrel3
+ alignment_glue
<= pcrel
2759 && pcrel
<= 10 - alignment_glue
2763 SNIP (1, 1, newrel
);
2764 move_reloc (irel
, srel
, -1);
2769 case 0x05: /* BSR pcdsp:24 */
2770 if (-32768 + alignment_glue
<= pcrel
2771 && pcrel
<= 32765 - alignment_glue
)
2774 SNIP (1, 1, newrel
);
2779 case 0x3a: /* BEQ.W pcdsp:16 */
2780 case 0x3b: /* BNE.W pcdsp:16 */
2781 if (-128 + alignment_glue
<= pcrel
2782 && pcrel
<= 127 - alignment_glue
)
2784 insn
[0] = 0x20 | (insn
[0] & 1);
2785 SNIP (1, 1, newrel
);
2790 case 0x20: /* BEQ.B pcdsp:8 */
2791 case 0x21: /* BNE.B pcdsp:8 */
2792 if (max_pcrel3
+ alignment_glue
<= pcrel
2793 && pcrel
- alignment_glue
<= 10
2796 insn
[0] = 0x10 | ((insn
[0] & 1) << 3);
2797 SNIP (1, 1, newrel
);
2798 move_reloc (irel
, srel
, -1);
2803 case 0x16: /* synthetic BNE dsp24 */
2804 case 0x1e: /* synthetic BEQ dsp24 */
2805 if (-32767 + alignment_glue
<= pcrel
2806 && pcrel
<= 32766 - alignment_glue
2809 if (insn
[0] == 0x16)
2813 /* We snip out the bytes at the end else the reloc
2814 will get moved too, and too much. */
2815 SNIP (3, 2, newrel
);
2816 move_reloc (irel
, srel
, -1);
2822 /* Special case - synthetic conditional branches, pcrel24.
2823 Note that EQ and NE have been handled above. */
2824 if ((insn
[0] & 0xf0) == 0x20
2827 && srel
->r_offset
!= irel
->r_offset
+ 1
2828 && -32767 + alignment_glue
<= pcrel
2829 && pcrel
<= 32766 - alignment_glue
)
2833 SNIP (5, 1, newrel
);
2837 /* Special case - synthetic conditional branches, pcrel16 */
2838 if ((insn
[0] & 0xf0) == 0x20
2841 && srel
->r_offset
!= irel
->r_offset
+ 1
2842 && -127 + alignment_glue
<= pcrel
2843 && pcrel
<= 126 - alignment_glue
)
2845 int cond
= (insn
[0] & 0x0f) ^ 0x01;
2847 insn
[0] = 0x20 | cond
;
2848 /* By moving the reloc first, we avoid having
2849 delete_bytes move it also. */
2850 move_reloc (irel
, srel
, -2);
2851 SNIP (2, 3, newrel
);
2856 BFD_ASSERT (nrelocs
== 0);
2858 /* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can
2859 use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky
2860 because it may have one or two relocations. */
2861 if ((insn
[0] & 0xfc) == 0xf8
2862 && (insn
[1] & 0x80) == 0x00
2863 && (insn
[0] & 0x03) != 0x03)
2865 int dcode
, icode
, reg
, ioff
, dscale
, ilen
;
2866 bfd_vma disp_val
= 0;
2868 Elf_Internal_Rela
* disp_rel
= 0;
2869 Elf_Internal_Rela
* imm_rel
= 0;
2874 dcode
= insn
[0] & 0x03;
2875 icode
= (insn
[1] >> 2) & 0x03;
2876 reg
= (insn
[1] >> 4) & 0x0f;
2878 ioff
= dcode
== 1 ? 3 : dcode
== 2 ? 4 : 2;
2880 /* Figure out what the dispacement is. */
2881 if (dcode
== 1 || dcode
== 2)
2883 /* There's a displacement. See if there's a reloc for it. */
2884 if (srel
[1].r_offset
== irel
->r_offset
+ 2)
2896 #if RX_OPCODE_BIG_ENDIAN
2897 disp_val
= insn
[2] * 256 + insn
[3];
2899 disp_val
= insn
[2] + insn
[3] * 256;
2902 switch (insn
[1] & 3)
2918 /* Figure out what the immediate is. */
2919 if (srel
[1].r_offset
== irel
->r_offset
+ ioff
)
2922 imm_val
= (long) symval
;
2927 unsigned char * ip
= insn
+ ioff
;
2932 /* For byte writes, we don't sign extend. Makes the math easier later. */
2936 imm_val
= (char) ip
[0];
2939 #if RX_OPCODE_BIG_ENDIAN
2940 imm_val
= ((char) ip
[0] << 8) | ip
[1];
2942 imm_val
= ((char) ip
[1] << 8) | ip
[0];
2946 #if RX_OPCODE_BIG_ENDIAN
2947 imm_val
= ((char) ip
[0] << 16) | (ip
[1] << 8) | ip
[2];
2949 imm_val
= ((char) ip
[2] << 16) | (ip
[1] << 8) | ip
[0];
2953 #if RX_OPCODE_BIG_ENDIAN
2954 imm_val
= ((unsigned) ip
[0] << 24) | (ip
[1] << 16) | (ip
[2] << 8) | ip
[3];
2956 imm_val
= ((unsigned) ip
[3] << 24) | (ip
[2] << 16) | (ip
[1] << 8) | ip
[0];
2990 /* The shortcut happens when the immediate is 0..255,
2991 register r0 to r7, and displacement (scaled) 0..31. */
2993 if (0 <= imm_val
&& imm_val
<= 255
2994 && 0 <= reg
&& reg
<= 7
2995 && disp_val
/ dscale
<= 31)
2997 insn
[0] = 0x3c | (insn
[1] & 0x03);
2998 insn
[1] = (((disp_val
/ dscale
) << 3) & 0x80) | (reg
<< 4) | ((disp_val
/dscale
) & 0x0f);
3003 int newrel
= R_RX_NONE
;
3008 newrel
= R_RX_RH_ABS5p8B
;
3011 newrel
= R_RX_RH_ABS5p8W
;
3014 newrel
= R_RX_RH_ABS5p8L
;
3017 disp_rel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (disp_rel
->r_info
), newrel
);
3018 move_reloc (irel
, disp_rel
, -1);
3022 imm_rel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (imm_rel
->r_info
), R_RX_DIR8U
);
3023 move_reloc (disp_rel
? disp_rel
: irel
,
3025 irel
->r_offset
- imm_rel
->r_offset
+ 2);
3028 SNIPNR (3, ilen
- 3);
3031 /* We can't relax this new opcode. */
3037 /* We can't reliably relax branches to DIR3U_PCREL unless we know
3038 whatever they're branching over won't shrink any more. If we're
3039 basically done here, do one more pass just for branches - but
3040 don't request a pass after that one! */
3041 if (!*again
&& !allow_pcrel3
)
3045 elf32_rx_relax_section (abfd
, sec
, link_info
, &ignored
, true);
3051 free (free_contents
);
3053 if (shndx_buf
!= NULL
)
3055 shndx_hdr
->contents
= NULL
;
3059 free (free_intsyms
);
3065 elf32_rx_relax_section_wrapper (bfd
*abfd
,
3067 struct bfd_link_info
*link_info
,
3070 return elf32_rx_relax_section (abfd
, sec
, link_info
, again
, false);
3073 /* Function to set the ELF flag bits. */
3076 rx_elf_set_private_flags (bfd
* abfd
, flagword flags
)
3078 elf_elfheader (abfd
)->e_flags
= flags
;
3079 elf_flags_init (abfd
) = true;
3083 static bool no_warn_mismatch
= false;
3084 static bool ignore_lma
= true;
3086 void bfd_elf32_rx_set_target_flags (bool, bool);
3089 bfd_elf32_rx_set_target_flags (bool user_no_warn_mismatch
,
3090 bool user_ignore_lma
)
3092 no_warn_mismatch
= user_no_warn_mismatch
;
3093 ignore_lma
= user_ignore_lma
;
3096 /* Converts FLAGS into a descriptive string.
3097 Returns a static pointer. */
3100 describe_flags (flagword flags
, char *buf
)
3104 if (flags
& E_FLAG_RX_64BIT_DOUBLES
)
3105 strcat (buf
, "64-bit doubles");
3107 strcat (buf
, "32-bit doubles");
3109 if (flags
& E_FLAG_RX_DSP
)
3110 strcat (buf
, ", dsp");
3112 strcat (buf
, ", no dsp");
3114 if (flags
& E_FLAG_RX_PID
)
3115 strcat (buf
, ", pid");
3117 strcat (buf
, ", no pid");
3119 if (flags
& E_FLAG_RX_ABI
)
3120 strcat (buf
, ", RX ABI");
3122 strcat (buf
, ", GCC ABI");
3124 if (flags
& E_FLAG_RX_SINSNS_SET
)
3125 strcat (buf
, flags
& E_FLAG_RX_SINSNS_YES
? ", uses String instructions" : ", bans String instructions");
3130 /* Merge backend specific data from an object file to the output
3131 object file when linking. */
3134 rx_elf_merge_private_bfd_data (bfd
* ibfd
, struct bfd_link_info
*info
)
3136 bfd
*obfd
= info
->output_bfd
;
3141 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3142 old_flags
= elf_elfheader (obfd
)->e_flags
;
3144 if (!elf_flags_init (obfd
))
3146 /* First call, no flags set. */
3147 elf_flags_init (obfd
) = true;
3148 elf_elfheader (obfd
)->e_flags
= new_flags
;
3150 else if (old_flags
!= new_flags
)
3152 flagword known_flags
;
3154 if (old_flags
& E_FLAG_RX_SINSNS_SET
)
3156 if ((new_flags
& E_FLAG_RX_SINSNS_SET
) == 0)
3158 new_flags
&= ~ E_FLAG_RX_SINSNS_MASK
;
3159 new_flags
|= (old_flags
& E_FLAG_RX_SINSNS_MASK
);
3162 else if (new_flags
& E_FLAG_RX_SINSNS_SET
)
3164 old_flags
&= ~ E_FLAG_RX_SINSNS_MASK
;
3165 old_flags
|= (new_flags
& E_FLAG_RX_SINSNS_MASK
);
3168 known_flags
= E_FLAG_RX_ABI
| E_FLAG_RX_64BIT_DOUBLES
3169 | E_FLAG_RX_DSP
| E_FLAG_RX_PID
| E_FLAG_RX_SINSNS_MASK
;
3171 if ((old_flags
^ new_flags
) & known_flags
)
3173 /* Only complain if flag bits we care about do not match.
3174 Other bits may be set, since older binaries did use some
3175 deprecated flags. */
3176 if (no_warn_mismatch
)
3178 elf_elfheader (obfd
)->e_flags
= (new_flags
| old_flags
) & known_flags
;
3184 _bfd_error_handler (_("there is a conflict merging the"
3185 " ELF header flags from %pB"),
3187 _bfd_error_handler (_(" the input file's flags: %s"),
3188 describe_flags (new_flags
, buf
));
3189 _bfd_error_handler (_(" the output file's flags: %s"),
3190 describe_flags (old_flags
, buf
));
3195 elf_elfheader (obfd
)->e_flags
= new_flags
& known_flags
;
3199 bfd_set_error (bfd_error_bad_value
);
3205 rx_elf_print_private_bfd_data (bfd
* abfd
, void * ptr
)
3207 FILE * file
= (FILE *) ptr
;
3211 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
3213 /* Print normal ELF private data. */
3214 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
3216 flags
= elf_elfheader (abfd
)->e_flags
;
3217 fprintf (file
, _("private flags = 0x%lx:"), (long) flags
);
3219 fprintf (file
, "%s", describe_flags (flags
, buf
));
3223 /* Return the MACH for an e_flags value. */
3226 elf32_rx_machine (bfd
* abfd ATTRIBUTE_UNUSED
)
3228 #if 0 /* FIXME: EF_RX_CPU_MASK collides with E_FLAG_RX_...
3229 Need to sort out how these flag bits are used.
3230 For now we assume that the flags are OK. */
3231 if ((elf_elfheader (abfd
)->e_flags
& EF_RX_CPU_MASK
) == EF_RX_CPU_RX
)
3233 if ((elf_elfheader (abfd
)->e_flags
& E_FLAG_RX_V2
))
3234 return bfd_mach_rx_v2
;
3235 else if ((elf_elfheader (abfd
)->e_flags
& E_FLAG_RX_V3
))
3236 return bfd_mach_rx_v3
;
3244 rx_elf_object_p (bfd
* abfd
)
3248 Elf_Internal_Phdr
*phdr
= elf_tdata (abfd
)->phdr
;
3249 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
3250 int nphdrs
= ehdr
->e_phnum
;
3252 static int saw_be
= false;
3253 bfd_vma end_phdroff
;
3255 /* We never want to automatically choose the non-swapping big-endian
3256 target. The user can only get that explicitly, such as with -I
3258 if (abfd
->xvec
== &rx_elf32_be_ns_vec
3259 && abfd
->target_defaulted
)
3262 /* BFD->target_defaulted is not set to TRUE when a target is chosen
3263 as a fallback, so we check for "scanning" to know when to stop
3264 using the non-swapping target. */
3265 if (abfd
->xvec
== &rx_elf32_be_ns_vec
3268 if (abfd
->xvec
== &rx_elf32_be_vec
)
3271 bfd_default_set_arch_mach (abfd
, bfd_arch_rx
,
3272 elf32_rx_machine (abfd
));
3274 /* For each PHDR in the object, we must find some section that
3275 corresponds (based on matching file offsets) and use its VMA
3276 information to reconstruct the p_vaddr field we clobbered when we
3278 /* If PT_LOAD headers include the ELF file header or program headers
3279 then the PT_LOAD header does not start with some section contents.
3280 Making adjustments based on the difference between sh_offset and
3281 p_offset is nonsense in such cases. Exclude them. Note that
3282 since standard linker scripts for RX do not use SIZEOF_HEADERS,
3283 the linker won't normally create PT_LOAD segments covering the
3284 headers so this is mainly for passing the ld testsuite.
3285 FIXME. Why are we looking at non-PT_LOAD headers here? */
3286 end_phdroff
= ehdr
->e_ehsize
;
3287 if (ehdr
->e_phoff
!= 0)
3288 end_phdroff
= ehdr
->e_phoff
+ nphdrs
* ehdr
->e_phentsize
;
3289 for (i
=0; i
<nphdrs
; i
++)
3291 for (u
=0; u
<elf_tdata(abfd
)->num_elf_sections
; u
++)
3293 Elf_Internal_Shdr
*sec
= elf_tdata(abfd
)->elf_sect_ptr
[u
];
3295 if (phdr
[i
].p_filesz
3296 && phdr
[i
].p_offset
>= end_phdroff
3297 && phdr
[i
].p_offset
<= (bfd_vma
) sec
->sh_offset
3299 && sec
->sh_type
!= SHT_NOBITS
3300 && (bfd_vma
)sec
->sh_offset
<= phdr
[i
].p_offset
+ (phdr
[i
].p_filesz
- 1))
3302 /* Found one! The difference between the two addresses,
3303 plus the difference between the two file offsets, is
3304 enough information to reconstruct the lma. */
3306 /* Example where they aren't:
3307 PHDR[1] = lma fffc0100 offset 00002010 size 00000100
3308 SEC[6] = vma 00000050 offset 00002050 size 00000040
3310 The correct LMA for the section is fffc0140 + (2050-2010).
3313 phdr
[i
].p_vaddr
= sec
->sh_addr
+ (sec
->sh_offset
- phdr
[i
].p_offset
);
3318 /* We must update the bfd sections as well, so we don't stop
3320 bsec
= abfd
->sections
;
3323 if (phdr
[i
].p_filesz
3324 && phdr
[i
].p_vaddr
<= bsec
->vma
3325 && bsec
->vma
<= phdr
[i
].p_vaddr
+ (phdr
[i
].p_filesz
- 1))
3327 bsec
->lma
= phdr
[i
].p_paddr
+ (bsec
->vma
- phdr
[i
].p_vaddr
);
3337 rx_linux_object_p (bfd
* abfd
)
3339 bfd_default_set_arch_mach (abfd
, bfd_arch_rx
, elf32_rx_machine (abfd
));
3346 rx_dump_symtab (bfd
* abfd
, void * internal_syms
, void * external_syms
)
3349 Elf_Internal_Sym
* isymbuf
;
3350 Elf_Internal_Sym
* isymend
;
3351 Elf_Internal_Sym
* isym
;
3352 Elf_Internal_Shdr
* symtab_hdr
;
3354 char * st_info_stb_str
;
3355 char * st_other_str
;
3356 char * st_shndx_str
;
3358 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3359 locsymcount
= symtab_hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3361 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
3362 symtab_hdr
->sh_info
, 0,
3363 internal_syms
, external_syms
, NULL
);
3365 isymbuf
= internal_syms
;
3366 isymend
= isymbuf
+ locsymcount
;
3368 for (isym
= isymbuf
; isym
< isymend
; isym
++)
3370 switch (ELF_ST_TYPE (isym
->st_info
))
3372 case STT_FUNC
: st_info_str
= "STT_FUNC"; break;
3373 case STT_SECTION
: st_info_str
= "STT_SECTION"; break;
3374 case STT_FILE
: st_info_str
= "STT_FILE"; break;
3375 case STT_OBJECT
: st_info_str
= "STT_OBJECT"; break;
3376 case STT_TLS
: st_info_str
= "STT_TLS"; break;
3377 default: st_info_str
= "";
3379 switch (ELF_ST_BIND (isym
->st_info
))
3381 case STB_LOCAL
: st_info_stb_str
= "STB_LOCAL"; break;
3382 case STB_GLOBAL
: st_info_stb_str
= "STB_GLOBAL"; break;
3383 default: st_info_stb_str
= "";
3385 switch (ELF_ST_VISIBILITY (isym
->st_other
))
3387 case STV_DEFAULT
: st_other_str
= "STV_DEFAULT"; break;
3388 case STV_INTERNAL
: st_other_str
= "STV_INTERNAL"; break;
3389 case STV_PROTECTED
: st_other_str
= "STV_PROTECTED"; break;
3390 default: st_other_str
= "";
3392 switch (isym
->st_shndx
)
3394 case SHN_ABS
: st_shndx_str
= "SHN_ABS"; break;
3395 case SHN_COMMON
: st_shndx_str
= "SHN_COMMON"; break;
3396 case SHN_UNDEF
: st_shndx_str
= "SHN_UNDEF"; break;
3397 default: st_shndx_str
= "";
3400 printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
3401 "st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
3403 (unsigned long) isym
->st_value
,
3404 (unsigned long) isym
->st_size
,
3406 bfd_elf_string_from_elf_section (abfd
, symtab_hdr
->sh_link
,
3408 isym
->st_info
, st_info_str
, st_info_stb_str
,
3409 isym
->st_other
, st_other_str
,
3410 isym
->st_shndx
, st_shndx_str
);
3415 rx_get_reloc (long reloc
)
3417 if (0 <= reloc
&& reloc
< R_RX_max
)
3418 return rx_elf_howto_table
[reloc
].name
;
3424 /* We must take care to keep the on-disk copy of any code sections
3425 that are fully linked swapped if the target is big endian, to match
3426 the Renesas tools. */
3428 /* The rule is: big endian object that are final-link executables,
3429 have code sections stored with 32-bit words swapped relative to
3430 what you'd get by default. */
3433 rx_get_section_contents (bfd
* abfd
,
3437 bfd_size_type count
)
3439 int exec
= (abfd
->flags
& EXEC_P
) ? 1 : 0;
3440 int s_code
= (section
->flags
& SEC_CODE
) ? 1 : 0;
3444 fprintf (stderr
, "dj: get %ld %ld from %s %s e%d sc%d %08lx:%08lx\n",
3445 (long) offset
, (long) count
, section
->name
,
3446 bfd_big_endian(abfd
) ? "be" : "le",
3447 exec
, s_code
, (long unsigned) section
->filepos
,
3448 (long unsigned) offset
);
3451 if (exec
&& s_code
&& bfd_big_endian (abfd
))
3453 char * cloc
= (char *) location
;
3454 bfd_size_type cnt
, end_cnt
;
3458 /* Fetch and swap unaligned bytes at the beginning. */
3463 rv
= _bfd_generic_get_section_contents (abfd
, section
, buf
,
3468 bfd_putb32 (bfd_getl32 (buf
), buf
);
3470 cnt
= 4 - (offset
% 4);
3474 memcpy (location
, buf
+ (offset
% 4), cnt
);
3481 end_cnt
= count
% 4;
3483 /* Fetch and swap the middle bytes. */
3486 rv
= _bfd_generic_get_section_contents (abfd
, section
, cloc
, offset
,
3491 for (cnt
= count
; cnt
>= 4; cnt
-= 4, cloc
+= 4)
3492 bfd_putb32 (bfd_getl32 (cloc
), cloc
);
3495 /* Fetch and swap the end bytes. */
3500 /* Fetch the end bytes. */
3501 rv
= _bfd_generic_get_section_contents (abfd
, section
, buf
,
3502 offset
+ count
- end_cnt
, 4);
3506 bfd_putb32 (bfd_getl32 (buf
), buf
);
3507 memcpy (cloc
, buf
, end_cnt
);
3511 rv
= _bfd_generic_get_section_contents (abfd
, section
, location
, offset
, count
);
3518 rx2_set_section_contents (bfd
* abfd
,
3520 const void * location
,
3522 bfd_size_type count
)
3526 fprintf (stderr
, " set sec %s %08x loc %p offset %#x count %#x\n",
3527 section
->name
, (unsigned) section
->vma
, location
, (int) offset
, (int) count
);
3528 for (i
= 0; i
< count
; i
++)
3530 if (i
% 16 == 0 && i
> 0)
3531 fprintf (stderr
, "\n");
3533 if (i
% 16 && i
% 4 == 0)
3534 fprintf (stderr
, " ");
3537 fprintf (stderr
, " %08x:", (int) (section
->vma
+ offset
+ i
));
3539 fprintf (stderr
, " %02x", ((unsigned char *) location
)[i
]);
3541 fprintf (stderr
, "\n");
3543 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
, count
);
3545 #define _bfd_elf_set_section_contents rx2_set_section_contents
3549 rx_set_section_contents (bfd
* abfd
,
3551 const void * location
,
3553 bfd_size_type count
)
3555 bool exec
= (abfd
->flags
& EXEC_P
) != 0;
3556 bool s_code
= (section
->flags
& SEC_CODE
) != 0;
3558 char * swapped_data
= NULL
;
3560 bfd_vma caddr
= section
->vma
+ offset
;
3562 bfd_size_type scount
;
3567 fprintf (stderr
, "\ndj: set %ld %ld to %s %s e%d sc%d\n",
3568 (long) offset
, (long) count
, section
->name
,
3569 bfd_big_endian (abfd
) ? "be" : "le",
3572 for (i
= 0; i
< count
; i
++)
3574 int a
= section
->vma
+ offset
+ i
;
3576 if (a
% 16 == 0 && a
> 0)
3577 fprintf (stderr
, "\n");
3579 if (a
% 16 && a
% 4 == 0)
3580 fprintf (stderr
, " ");
3582 if (a
% 16 == 0 || i
== 0)
3583 fprintf (stderr
, " %08x:", (int) (section
->vma
+ offset
+ i
));
3585 fprintf (stderr
, " %02x", ((unsigned char *) location
)[i
]);
3588 fprintf (stderr
, "\n");
3591 if (! exec
|| ! s_code
|| ! bfd_big_endian (abfd
))
3592 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
, count
);
3594 while (count
> 0 && caddr
> 0 && caddr
% 4)
3598 case 0: faddr
= offset
+ 3; break;
3599 case 1: faddr
= offset
+ 1; break;
3600 case 2: faddr
= offset
- 1; break;
3601 case 3: faddr
= offset
- 3; break;
3604 rv
= _bfd_elf_set_section_contents (abfd
, section
, location
, faddr
, 1);
3608 location
= (bfd_byte
*) location
+ 1;
3614 scount
= (int)(count
/ 4) * 4;
3617 char * cloc
= (char *) location
;
3619 swapped_data
= (char *) bfd_alloc (abfd
, count
);
3620 if (swapped_data
== NULL
)
3623 for (i
= 0; i
< count
; i
+= 4)
3625 bfd_vma v
= bfd_getl32 (cloc
+ i
);
3626 bfd_putb32 (v
, swapped_data
+ i
);
3629 rv
= _bfd_elf_set_section_contents (abfd
, section
, swapped_data
, offset
, scount
);
3636 location
= (bfd_byte
*) location
+ scount
;
3641 caddr
= section
->vma
+ offset
;
3646 case 0: faddr
= offset
+ 3; break;
3647 case 1: faddr
= offset
+ 1; break;
3648 case 2: faddr
= offset
- 1; break;
3649 case 3: faddr
= offset
- 3; break;
3651 rv
= _bfd_elf_set_section_contents (abfd
, section
, location
, faddr
, 1);
3655 location
= (bfd_byte
*) location
+ 1;
3666 rx_final_link (bfd
* abfd
, struct bfd_link_info
* info
)
3670 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3673 fprintf (stderr
, "sec %s fl %x vma %lx lma %lx size %lx raw %lx\n",
3674 o
->name
, o
->flags
, o
->vma
, o
->lma
, o
->size
, o
->rawsize
);
3676 if (o
->flags
& SEC_CODE
3677 && bfd_big_endian (abfd
)
3681 fprintf (stderr
, "adjusting...\n");
3683 o
->size
+= 4 - (o
->size
% 4);
3687 return bfd_elf_final_link (abfd
, info
);
3691 elf32_rx_modify_headers (bfd
*abfd
, struct bfd_link_info
*info
)
3693 const struct elf_backend_data
* bed
;
3694 struct elf_obj_tdata
* tdata
;
3695 Elf_Internal_Phdr
* phdr
;
3699 bed
= get_elf_backend_data (abfd
);
3700 tdata
= elf_tdata (abfd
);
3702 count
= elf_program_header_size (abfd
) / bed
->s
->sizeof_phdr
;
3705 for (i
= count
; i
-- != 0;)
3706 if (phdr
[i
].p_type
== PT_LOAD
)
3708 /* The Renesas tools expect p_paddr to be zero. However,
3709 there is no other way to store the writable data in ROM for
3710 startup initialization. So, we let the linker *think*
3711 we're using paddr and vaddr the "usual" way, but at the
3712 last minute we move the paddr into the vaddr (which is what
3713 the simulator uses) and zero out paddr. Note that this
3714 does not affect the section headers, just the program
3715 headers. We hope. */
3716 phdr
[i
].p_vaddr
= phdr
[i
].p_paddr
;
3717 #if 0 /* If we zero out p_paddr, then the LMA in the section table
3719 phdr
[i
].p_paddr
= 0;
3723 return _bfd_elf_modify_headers (abfd
, info
);
3726 /* The default literal sections should always be marked as "code" (i.e.,
3727 SHF_EXECINSTR). This is particularly important for big-endian mode
3728 when we do not want their contents byte reversed. */
3729 static const struct bfd_elf_special_section elf32_rx_special_sections
[] =
3731 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3732 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3733 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3734 { NULL
, 0, 0, 0, 0 }
3739 struct bfd_link_info
*info
;
3740 bfd_vma table_start
;
3742 bfd_vma
*table_handlers
;
3743 bfd_vma table_default_handler
;
3744 struct bfd_link_hash_entry
**table_entries
;
3745 struct bfd_link_hash_entry
*table_default_entry
;
3750 rx_table_find (struct bfd_hash_entry
*vent
, void *vinfo
)
3752 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3753 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3754 const char *name
; /* of the symbol we've found */
3758 const char *tname
; /* name of the table */
3759 bfd_vma start_addr
, end_addr
;
3761 struct bfd_link_hash_entry
* h
;
3763 /* We're looking for globally defined symbols of the form
3764 $tablestart$<NAME>. */
3765 if (ent
->type
!= bfd_link_hash_defined
3766 && ent
->type
!= bfd_link_hash_defweak
)
3769 name
= ent
->root
.string
;
3770 sec
= ent
->u
.def
.section
;
3773 if (!startswith (name
, "$tablestart$"))
3776 sec
->flags
|= SEC_KEEP
;
3780 start_addr
= ent
->u
.def
.value
;
3782 /* At this point, we can't build the table but we can (and must)
3783 find all the related symbols and mark their sections as SEC_KEEP
3784 so we don't garbage collect them. */
3786 buf
= (char *) bfd_malloc (12 + 10 + strlen (tname
));
3790 sprintf (buf
, "$tableend$%s", tname
);
3791 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, false, false, true);
3792 if (!h
|| (h
->type
!= bfd_link_hash_defined
3793 && h
->type
!= bfd_link_hash_defweak
))
3795 /* xgettext:c-format */
3796 _bfd_error_handler (_("%pB:%pA: table %s missing corresponding %s"),
3797 abfd
, sec
, name
, buf
);
3801 if (h
->u
.def
.section
!= ent
->u
.def
.section
)
3803 /* xgettext:c-format */
3804 _bfd_error_handler (_("%pB:%pA: %s and %s must be in the same input section"),
3805 h
->u
.def
.section
->owner
, h
->u
.def
.section
,
3810 end_addr
= h
->u
.def
.value
;
3812 sprintf (buf
, "$tableentry$default$%s", tname
);
3813 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, false, false, true);
3814 if (h
&& (h
->type
== bfd_link_hash_defined
3815 || h
->type
== bfd_link_hash_defweak
))
3817 h
->u
.def
.section
->flags
|= SEC_KEEP
;
3820 for (idx
= 0; idx
< (int) (end_addr
- start_addr
) / 4; idx
++)
3822 sprintf (buf
, "$tableentry$%d$%s", idx
, tname
);
3823 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, false, false, true);
3824 if (h
&& (h
->type
== bfd_link_hash_defined
3825 || h
->type
== bfd_link_hash_defweak
))
3827 h
->u
.def
.section
->flags
|= SEC_KEEP
;
3831 /* Return TRUE to keep scanning, FALSE to end the traversal. */
3835 /* We need to check for table entry symbols and build the tables, and
3836 we need to do it before the linker does garbage collection. This function is
3837 called once per input object file. */
3840 (bfd
* abfd ATTRIBUTE_UNUSED
,
3841 struct bfd_link_info
* info ATTRIBUTE_UNUSED
)
3843 RX_Table_Info stuff
;
3847 bfd_hash_traverse (&(info
->hash
->table
), rx_table_find
, &stuff
);
3854 rx_table_map_2 (struct bfd_hash_entry
*vent
, void *vinfo
)
3856 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3857 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3862 /* See if the symbol ENT has an address listed in the table, and
3863 isn't a debug/special symbol. If so, put it in the table. */
3865 if (ent
->type
!= bfd_link_hash_defined
3866 && ent
->type
!= bfd_link_hash_defweak
)
3869 name
= ent
->root
.string
;
3871 if (name
[0] == '$' || name
[0] == '.' || name
[0] < ' ')
3874 addr
= (ent
->u
.def
.value
3875 + ent
->u
.def
.section
->output_section
->vma
3876 + ent
->u
.def
.section
->output_offset
);
3878 for (idx
= 0; idx
< info
->table_size
; idx
++)
3879 if (addr
== info
->table_handlers
[idx
])
3880 info
->table_entries
[idx
] = ent
;
3882 if (addr
== info
->table_default_handler
)
3883 info
->table_default_entry
= ent
;
3889 rx_table_map (struct bfd_hash_entry
*vent
, void *vinfo
)
3891 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3892 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3893 const char *name
; /* of the symbol we've found */
3895 const char *tname
; /* name of the table */
3896 bfd_vma start_addr
, end_addr
;
3898 struct bfd_link_hash_entry
* h
;
3901 /* We're looking for globally defined symbols of the form
3902 $tablestart$<NAME>. */
3903 if (ent
->type
!= bfd_link_hash_defined
3904 && ent
->type
!= bfd_link_hash_defweak
)
3907 name
= ent
->root
.string
;
3909 if (!startswith (name
, "$tablestart$"))
3913 start_addr
= (ent
->u
.def
.value
3914 + ent
->u
.def
.section
->output_section
->vma
3915 + ent
->u
.def
.section
->output_offset
);
3917 buf
= (char *) bfd_malloc (12 + 10 + strlen (tname
));
3921 sprintf (buf
, "$tableend$%s", tname
);
3922 end_addr
= get_symbol_value_maybe (buf
, info
->info
);
3924 sprintf (buf
, "$tableentry$default$%s", tname
);
3925 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, false, false, true);
3928 info
->table_default_handler
= (h
->u
.def
.value
3929 + h
->u
.def
.section
->output_section
->vma
3930 + h
->u
.def
.section
->output_offset
);
3933 /* Zero is a valid handler address! */
3934 info
->table_default_handler
= (bfd_vma
) (-1);
3935 info
->table_default_entry
= NULL
;
3937 info
->table_start
= start_addr
;
3938 info
->table_size
= (int) (end_addr
- start_addr
) / 4;
3939 info
->table_handlers
= (bfd_vma
*)
3940 bfd_malloc (info
->table_size
* sizeof (bfd_vma
));
3941 if (info
->table_handlers
== NULL
)
3946 info
->table_entries
= (struct bfd_link_hash_entry
**)
3947 bfd_malloc (info
->table_size
* sizeof (struct bfd_link_hash_entry
));
3948 if (info
->table_entries
== NULL
)
3950 free (info
->table_handlers
);
3955 for (idx
= 0; idx
< (int) (end_addr
- start_addr
) / 4; idx
++)
3957 sprintf (buf
, "$tableentry$%d$%s", idx
, tname
);
3958 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, false, false, true);
3959 if (h
&& (h
->type
== bfd_link_hash_defined
3960 || h
->type
== bfd_link_hash_defweak
))
3962 info
->table_handlers
[idx
] = (h
->u
.def
.value
3963 + h
->u
.def
.section
->output_section
->vma
3964 + h
->u
.def
.section
->output_offset
);
3967 info
->table_handlers
[idx
] = info
->table_default_handler
;
3968 info
->table_entries
[idx
] = NULL
;
3973 bfd_hash_traverse (&(info
->info
->hash
->table
), rx_table_map_2
, info
);
3975 fprintf (info
->mapfile
, "\nRX Vector Table: %s has %d entries at 0x%08" BFD_VMA_FMT
"x\n\n",
3976 tname
, info
->table_size
, start_addr
);
3978 if (info
->table_default_entry
)
3979 fprintf (info
->mapfile
, " default handler is: %s at 0x%08" BFD_VMA_FMT
"x\n",
3980 info
->table_default_entry
->root
.string
,
3981 info
->table_default_handler
);
3982 else if (info
->table_default_handler
!= (bfd_vma
)(-1))
3983 fprintf (info
->mapfile
, " default handler is at 0x%08" BFD_VMA_FMT
"x\n",
3984 info
->table_default_handler
);
3986 fprintf (info
->mapfile
, " no default handler\n");
3989 for (idx
= 0; idx
< info
->table_size
; idx
++)
3991 if (info
->table_handlers
[idx
] == info
->table_default_handler
)
3994 fprintf (info
->mapfile
, " . . .\n");
4000 fprintf (info
->mapfile
, " 0x%08" BFD_VMA_FMT
"x [%3d] ", start_addr
+ 4 * idx
, idx
);
4002 if (info
->table_handlers
[idx
] == (bfd_vma
) (-1))
4003 fprintf (info
->mapfile
, "(no handler found)\n");
4005 else if (info
->table_handlers
[idx
] == info
->table_default_handler
)
4007 if (info
->table_default_entry
)
4008 fprintf (info
->mapfile
, "(default)\n");
4010 fprintf (info
->mapfile
, "(default)\n");
4013 else if (info
->table_entries
[idx
])
4015 fprintf (info
->mapfile
, "0x%08" BFD_VMA_FMT
"x %s\n", info
->table_handlers
[idx
], info
->table_entries
[idx
]->root
.string
);
4020 fprintf (info
->mapfile
, "0x%08" BFD_VMA_FMT
"x ???\n", info
->table_handlers
[idx
]);
4024 fprintf (info
->mapfile
, " . . .\n");
4030 rx_additional_link_map_text (bfd
*obfd
, struct bfd_link_info
*info
, FILE *mapfile
)
4032 /* We scan the symbol table looking for $tableentry$'s, and for
4033 each, try to deduce which handlers go with which entries. */
4035 RX_Table_Info stuff
;
4039 stuff
.mapfile
= mapfile
;
4040 bfd_hash_traverse (&(info
->hash
->table
), rx_table_map
, &stuff
);
4044 #define ELF_ARCH bfd_arch_rx
4045 #define ELF_MACHINE_CODE EM_RX
4046 #define ELF_MAXPAGESIZE 0x1000
4048 #define TARGET_BIG_SYM rx_elf32_be_vec
4049 #define TARGET_BIG_NAME "elf32-rx-be"
4051 #define TARGET_LITTLE_SYM rx_elf32_le_vec
4052 #define TARGET_LITTLE_NAME "elf32-rx-le"
4054 #define elf_info_to_howto_rel NULL
4055 #define elf_info_to_howto rx_info_to_howto_rela
4056 #define elf_backend_object_p rx_elf_object_p
4057 #define elf_backend_relocate_section rx_elf_relocate_section
4058 #define elf_symbol_leading_char ('_')
4059 #define elf_backend_can_gc_sections 1
4060 #define elf_backend_modify_headers elf32_rx_modify_headers
4062 #define bfd_elf32_bfd_reloc_type_lookup rx_reloc_type_lookup
4063 #define bfd_elf32_bfd_reloc_name_lookup rx_reloc_name_lookup
4064 #define bfd_elf32_bfd_set_private_flags rx_elf_set_private_flags
4065 #define bfd_elf32_bfd_merge_private_bfd_data rx_elf_merge_private_bfd_data
4066 #define bfd_elf32_bfd_print_private_bfd_data rx_elf_print_private_bfd_data
4067 #define bfd_elf32_get_section_contents rx_get_section_contents
4068 #define bfd_elf32_set_section_contents rx_set_section_contents
4069 #define bfd_elf32_bfd_final_link rx_final_link
4070 #define bfd_elf32_bfd_relax_section elf32_rx_relax_section_wrapper
4071 #define elf_backend_special_sections elf32_rx_special_sections
4072 #define elf_backend_check_directives rx_check_directives
4074 #include "elf32-target.h"
4076 /* We define a second big-endian target that doesn't have the custom
4077 section get/set hooks, for times when we want to preserve the
4078 pre-swapped .text sections (like objcopy). */
4080 #undef TARGET_BIG_SYM
4081 #define TARGET_BIG_SYM rx_elf32_be_ns_vec
4082 #undef TARGET_BIG_NAME
4083 #define TARGET_BIG_NAME "elf32-rx-be-ns"
4084 #undef TARGET_LITTLE_SYM
4086 #undef bfd_elf32_get_section_contents
4087 #undef bfd_elf32_set_section_contents
4090 #define elf32_bed elf32_rx_be_ns_bed
4092 #include "elf32-target.h"
4094 #undef TARGET_LITTLE_SYM
4095 #define TARGET_LITTLE_SYM rx_elf32_linux_le_vec
4096 #undef TARGET_LITTLE_NAME
4097 #define TARGET_LITTLE_NAME "elf32-rx-linux"
4098 #undef TARGET_BIG_SYM
4099 #undef TARGET_BIG_NAME
4101 #undef elf_backend_object_p
4102 #define elf_backend_object_p rx_linux_object_p
4103 #undef elf_symbol_leading_char
4105 #define elf32_bed elf32_rx_le_linux_bed
4107 #include "elf32-target.h"