gdb/testsuite: fix gdb.trace/signal.exp on x86
[binutils-gdb/blckswan.git] / gdb / gdbarch-components.py
blobfc10e8600ba4033af66533faecd28c67be8c2618
1 # Dynamic architecture support for GDB, the GNU debugger.
3 # Copyright (C) 1998-2022 Free Software Foundation, Inc.
5 # This file is part of GDB.
7 # This program is free software; you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation; either version 3 of the License, or
10 # (at your option) any later version.
12 # This program is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with this program. If not, see <http://www.gnu.org/licenses/>.
20 # How to add to gdbarch:
22 # There are four kinds of fields in gdbarch:
24 # * Info - you should never need this; it is only for things that are
25 # copied directly from the gdbarch_info.
27 # * Value - a variable.
29 # * Function - a function pointer.
31 # * Method - a function pointer, but the function takes a gdbarch as
32 # its first parameter.
34 # You construct a new one with a call to one of those functions. So,
35 # for instance, you can use the function named "Value" to make a new
36 # Value.
38 # All parameters are keyword-only. This is done to help catch typos.
40 # Some parameters are shared among all types (including Info):
42 # * "name" - required, the name of the field.
44 # * "type" - required, the type of the field. For functions and
45 # methods, this is the return type.
47 # * "printer" - an expression to turn this field into a 'const char
48 # *'. This is used for dumping. The string must live long enough to
49 # be passed to printf.
51 # Value, Function, and Method share some more parameters. Some of
52 # these work in conjunction in a somewhat complicated way, so they are
53 # described in a separate sub-section below.
55 # * "comment" - a comment that's written to the .h file. Please
56 # always use this. (It isn't currently a required option for
57 # historical reasons.)
59 # * "predicate" - a boolean, if True then a _p predicate function will
60 # be generated. The predicate will use the generic validation
61 # function for the field. See below.
63 # * "predefault", "postdefault", and "invalid" - These are used for
64 # the initialization and verification steps:
66 # A gdbarch is zero-initialized. Then, if a field has a pre-default,
67 # the field is set to that value. After initialization is complete
68 # (that is, after the tdep code has a chance to change the settings),
69 # the post-initialization step is done.
71 # There is a generic algorithm to generate a "validation function" for
72 # all fields. If the field has an "invalid" attribute with a string
73 # value, then this string is the expression (note that a string-valued
74 # "invalid" and "predicate" are mutually exclusive; and the case where
75 # invalid is True means to ignore this field and instead use the
76 # default checking that is about to be described). Otherwise, if
77 # there is a "predefault", then the field is valid if it differs from
78 # the predefault. Otherwise, the check is done against 0 (really NULL
79 # for function pointers, but same idea).
81 # In post-initialization / validation, there are several cases.
83 # * If "invalid" is False, or if the field specifies "predicate",
84 # validation is skipped. Otherwise, a validation step is emitted.
86 # * Otherwise, the validity is checked using the usual validation
87 # function (see above). If the field is considered valid, nothing is
88 # done.
90 # * Otherwise, the field's value is invalid. If there is a
91 # "postdefault", then the field is assigned that value.
93 # * Otherwise, the gdbarch will fail validation and gdb will crash.
95 # Function and Method share:
97 # * "params" - required, a tuple of tuples. Each inner tuple is a
98 # pair of the form (TYPE, NAME), where TYPE is the type of this
99 # argument, and NAME is the name. Note that while the names could be
100 # auto-generated, this approach lets the "comment" field refer to
101 # arguments in a nicer way. It is also just nicer for users.
103 Info(
104 type="const struct bfd_arch_info *",
105 name="bfd_arch_info",
106 printer="gdbarch_bfd_arch_info (gdbarch)->printable_name",
109 Info(
110 type="enum bfd_endian",
111 name="byte_order",
114 Info(
115 type="enum bfd_endian",
116 name="byte_order_for_code",
119 Info(
120 type="enum gdb_osabi",
121 name="osabi",
124 Info(
125 type="const struct target_desc *",
126 name="target_desc",
127 printer="host_address_to_string (gdbarch->target_desc)",
130 Value(
131 comment="""
132 Number of bits in a short or unsigned short for the target machine.
133 """,
134 type="int",
135 name="short_bit",
136 predefault="2*TARGET_CHAR_BIT",
137 invalid=False,
140 Value(
141 comment="""
142 Number of bits in an int or unsigned int for the target machine.
143 """,
144 type="int",
145 name="int_bit",
146 predefault="4*TARGET_CHAR_BIT",
147 invalid=False,
150 Value(
151 comment="""
152 Number of bits in a long or unsigned long for the target machine.
153 """,
154 type="int",
155 name="long_bit",
156 predefault="4*TARGET_CHAR_BIT",
157 invalid=False,
160 Value(
161 comment="""
162 Number of bits in a long long or unsigned long long for the target
163 machine.
164 """,
165 type="int",
166 name="long_long_bit",
167 predefault="2*gdbarch->long_bit",
168 invalid=False,
171 Value(
172 comment="""
173 The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
174 "long double". These bit/format pairs should eventually be combined
175 into a single object. For the moment, just initialize them as a pair.
176 Each format describes both the big and little endian layouts (if
177 useful).
178 """,
179 type="int",
180 name="bfloat16_bit",
181 predefault="2*TARGET_CHAR_BIT",
182 invalid=False,
185 Value(
186 type="const struct floatformat **",
187 name="bfloat16_format",
188 postdefault="floatformats_bfloat16",
189 invalid=True,
190 printer="pformat (gdbarch->bfloat16_format)",
193 Value(
194 type="int",
195 name="half_bit",
196 predefault="2*TARGET_CHAR_BIT",
197 invalid=False,
200 Value(
201 type="const struct floatformat **",
202 name="half_format",
203 postdefault="floatformats_ieee_half",
204 invalid=True,
205 printer="pformat (gdbarch->half_format)",
208 Value(
209 type="int",
210 name="float_bit",
211 predefault="4*TARGET_CHAR_BIT",
212 invalid=False,
215 Value(
216 type="const struct floatformat **",
217 name="float_format",
218 postdefault="floatformats_ieee_single",
219 invalid=True,
220 printer="pformat (gdbarch->float_format)",
223 Value(
224 type="int",
225 name="double_bit",
226 predefault="8*TARGET_CHAR_BIT",
227 invalid=False,
230 Value(
231 type="const struct floatformat **",
232 name="double_format",
233 postdefault="floatformats_ieee_double",
234 invalid=True,
235 printer="pformat (gdbarch->double_format)",
238 Value(
239 type="int",
240 name="long_double_bit",
241 predefault="8*TARGET_CHAR_BIT",
242 invalid=False,
245 Value(
246 type="const struct floatformat **",
247 name="long_double_format",
248 postdefault="floatformats_ieee_double",
249 invalid=True,
250 printer="pformat (gdbarch->long_double_format)",
253 Value(
254 comment="""
255 The ABI default bit-size for "wchar_t". wchar_t is a built-in type
256 starting with C++11.
257 """,
258 type="int",
259 name="wchar_bit",
260 predefault="4*TARGET_CHAR_BIT",
261 invalid=False,
264 Value(
265 comment="""
266 One if `wchar_t' is signed, zero if unsigned.
267 """,
268 type="int",
269 name="wchar_signed",
270 predefault="-1",
271 postdefault="1",
272 invalid=True,
275 Method(
276 comment="""
277 Returns the floating-point format to be used for values of length LENGTH.
278 NAME, if non-NULL, is the type name, which may be used to distinguish
279 different target formats of the same length.
280 """,
281 type="const struct floatformat **",
282 name="floatformat_for_type",
283 params=[("const char *", "name"), ("int", "length")],
284 predefault="default_floatformat_for_type",
285 invalid=False,
288 Value(
289 comment="""
290 For most targets, a pointer on the target and its representation as an
291 address in GDB have the same size and "look the same". For such a
292 target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
293 / addr_bit will be set from it.
295 If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
296 also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
297 gdbarch_address_to_pointer as well.
299 ptr_bit is the size of a pointer on the target
300 """,
301 type="int",
302 name="ptr_bit",
303 predefault="gdbarch->int_bit",
304 invalid=False,
307 Value(
308 comment="""
309 addr_bit is the size of a target address as represented in gdb
310 """,
311 type="int",
312 name="addr_bit",
313 predefault="0",
314 postdefault="gdbarch_ptr_bit (gdbarch)",
315 invalid=True,
318 Value(
319 comment="""
320 dwarf2_addr_size is the target address size as used in the Dwarf debug
321 info. For .debug_frame FDEs, this is supposed to be the target address
322 size from the associated CU header, and which is equivalent to the
323 DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
324 Unfortunately there is no good way to determine this value. Therefore
325 dwarf2_addr_size simply defaults to the target pointer size.
327 dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
328 defined using the target's pointer size so far.
330 Note that dwarf2_addr_size only needs to be redefined by a target if the
331 GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
332 and if Dwarf versions < 4 need to be supported.
333 """,
334 type="int",
335 name="dwarf2_addr_size",
336 predefault="0",
337 postdefault="gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT",
338 invalid=True,
341 Value(
342 comment="""
343 One if `char' acts like `signed char', zero if `unsigned char'.
344 """,
345 type="int",
346 name="char_signed",
347 predefault="-1",
348 postdefault="1",
349 invalid=True,
352 Function(
353 type="CORE_ADDR",
354 name="read_pc",
355 params=[("readable_regcache *", "regcache")],
356 predicate=True,
357 invalid=True,
360 Function(
361 type="void",
362 name="write_pc",
363 params=[("struct regcache *", "regcache"), ("CORE_ADDR", "val")],
364 predicate=True,
365 invalid=True,
368 Method(
369 comment="""
370 Function for getting target's idea of a frame pointer. FIXME: GDB's
371 whole scheme for dealing with "frames" and "frame pointers" needs a
372 serious shakedown.
373 """,
374 type="void",
375 name="virtual_frame_pointer",
376 params=[
377 ("CORE_ADDR", "pc"),
378 ("int *", "frame_regnum"),
379 ("LONGEST *", "frame_offset"),
381 predefault="legacy_virtual_frame_pointer",
382 invalid=False,
385 Method(
386 type="enum register_status",
387 name="pseudo_register_read",
388 params=[
389 ("readable_regcache *", "regcache"),
390 ("int", "cookednum"),
391 ("gdb_byte *", "buf"),
393 predicate=True,
394 invalid=True,
397 Method(
398 comment="""
399 Read a register into a new struct value. If the register is wholly
400 or partly unavailable, this should call mark_value_bytes_unavailable
401 as appropriate. If this is defined, then pseudo_register_read will
402 never be called.
403 """,
404 type="struct value *",
405 name="pseudo_register_read_value",
406 params=[("readable_regcache *", "regcache"), ("int", "cookednum")],
407 predicate=True,
408 invalid=True,
411 Method(
412 type="void",
413 name="pseudo_register_write",
414 params=[
415 ("struct regcache *", "regcache"),
416 ("int", "cookednum"),
417 ("const gdb_byte *", "buf"),
419 predicate=True,
420 invalid=True,
423 Value(
424 type="int",
425 name="num_regs",
426 predefault="-1",
427 invalid=True,
430 Value(
431 comment="""
432 This macro gives the number of pseudo-registers that live in the
433 register namespace but do not get fetched or stored on the target.
434 These pseudo-registers may be aliases for other registers,
435 combinations of other registers, or they may be computed by GDB.
436 """,
437 type="int",
438 name="num_pseudo_regs",
439 predefault="0",
440 invalid=False,
443 Method(
444 comment="""
445 Assemble agent expression bytecode to collect pseudo-register REG.
446 Return -1 if something goes wrong, 0 otherwise.
447 """,
448 type="int",
449 name="ax_pseudo_register_collect",
450 params=[("struct agent_expr *", "ax"), ("int", "reg")],
451 predicate=True,
452 invalid=True,
455 Method(
456 comment="""
457 Assemble agent expression bytecode to push the value of pseudo-register
458 REG on the interpreter stack.
459 Return -1 if something goes wrong, 0 otherwise.
460 """,
461 type="int",
462 name="ax_pseudo_register_push_stack",
463 params=[("struct agent_expr *", "ax"), ("int", "reg")],
464 predicate=True,
465 invalid=True,
468 Method(
469 comment="""
470 Some architectures can display additional information for specific
471 signals.
472 UIOUT is the output stream where the handler will place information.
473 """,
474 type="void",
475 name="report_signal_info",
476 params=[("struct ui_out *", "uiout"), ("enum gdb_signal", "siggnal")],
477 predicate=True,
478 invalid=True,
481 Value(
482 comment="""
483 GDB's standard (or well known) register numbers. These can map onto
484 a real register or a pseudo (computed) register or not be defined at
485 all (-1).
486 gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
487 """,
488 type="int",
489 name="sp_regnum",
490 predefault="-1",
491 invalid=False,
494 Value(
495 type="int",
496 name="pc_regnum",
497 predefault="-1",
498 invalid=False,
501 Value(
502 type="int",
503 name="ps_regnum",
504 predefault="-1",
505 invalid=False,
508 Value(
509 type="int",
510 name="fp0_regnum",
511 predefault="-1",
512 invalid=False,
515 Method(
516 comment="""
517 Convert stab register number (from `r' declaration) to a gdb REGNUM.
518 """,
519 type="int",
520 name="stab_reg_to_regnum",
521 params=[("int", "stab_regnr")],
522 predefault="no_op_reg_to_regnum",
523 invalid=False,
526 Method(
527 comment="""
528 Provide a default mapping from a ecoff register number to a gdb REGNUM.
529 """,
530 type="int",
531 name="ecoff_reg_to_regnum",
532 params=[("int", "ecoff_regnr")],
533 predefault="no_op_reg_to_regnum",
534 invalid=False,
537 Method(
538 comment="""
539 Convert from an sdb register number to an internal gdb register number.
540 """,
541 type="int",
542 name="sdb_reg_to_regnum",
543 params=[("int", "sdb_regnr")],
544 predefault="no_op_reg_to_regnum",
545 invalid=False,
548 Method(
549 comment="""
550 Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
551 Return -1 for bad REGNUM. Note: Several targets get this wrong.
552 """,
553 type="int",
554 name="dwarf2_reg_to_regnum",
555 params=[("int", "dwarf2_regnr")],
556 predefault="no_op_reg_to_regnum",
557 invalid=False,
560 Method(
561 type="const char *",
562 name="register_name",
563 params=[("int", "regnr")],
564 predefault="0",
565 invalid=True,
568 Method(
569 comment="""
570 Return the type of a register specified by the architecture. Only
571 the register cache should call this function directly; others should
572 use "register_type".
573 """,
574 type="struct type *",
575 name="register_type",
576 params=[("int", "reg_nr")],
577 invalid=True,
580 Method(
581 comment="""
582 Generate a dummy frame_id for THIS_FRAME assuming that the frame is
583 a dummy frame. A dummy frame is created before an inferior call,
584 the frame_id returned here must match the frame_id that was built
585 for the inferior call. Usually this means the returned frame_id's
586 stack address should match the address returned by
587 gdbarch_push_dummy_call, and the returned frame_id's code address
588 should match the address at which the breakpoint was set in the dummy
589 frame.
590 """,
591 type="struct frame_id",
592 name="dummy_id",
593 params=[("struct frame_info *", "this_frame")],
594 predefault="default_dummy_id",
595 invalid=False,
598 Value(
599 comment="""
600 Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
601 deprecated_fp_regnum.
602 """,
603 type="int",
604 name="deprecated_fp_regnum",
605 predefault="-1",
606 invalid=False,
609 Method(
610 type="CORE_ADDR",
611 name="push_dummy_call",
612 params=[
613 ("struct value *", "function"),
614 ("struct regcache *", "regcache"),
615 ("CORE_ADDR", "bp_addr"),
616 ("int", "nargs"),
617 ("struct value **", "args"),
618 ("CORE_ADDR", "sp"),
619 ("function_call_return_method", "return_method"),
620 ("CORE_ADDR", "struct_addr"),
622 predicate=True,
623 invalid=True,
626 Value(
627 type="int",
628 name="call_dummy_location",
629 predefault="AT_ENTRY_POINT",
630 invalid=False,
633 Method(
634 type="CORE_ADDR",
635 name="push_dummy_code",
636 params=[
637 ("CORE_ADDR", "sp"),
638 ("CORE_ADDR", "funaddr"),
639 ("struct value **", "args"),
640 ("int", "nargs"),
641 ("struct type *", "value_type"),
642 ("CORE_ADDR *", "real_pc"),
643 ("CORE_ADDR *", "bp_addr"),
644 ("struct regcache *", "regcache"),
646 predicate=True,
647 invalid=True,
650 Method(
651 comment="""
652 Return true if the code of FRAME is writable.
653 """,
654 type="int",
655 name="code_of_frame_writable",
656 params=[("struct frame_info *", "frame")],
657 predefault="default_code_of_frame_writable",
658 invalid=False,
661 Method(
662 type="void",
663 name="print_registers_info",
664 params=[
665 ("struct ui_file *", "file"),
666 ("struct frame_info *", "frame"),
667 ("int", "regnum"),
668 ("int", "all"),
670 predefault="default_print_registers_info",
671 invalid=False,
674 Method(
675 type="void",
676 name="print_float_info",
677 params=[
678 ("struct ui_file *", "file"),
679 ("struct frame_info *", "frame"),
680 ("const char *", "args"),
682 predefault="default_print_float_info",
683 invalid=False,
686 Method(
687 type="void",
688 name="print_vector_info",
689 params=[
690 ("struct ui_file *", "file"),
691 ("struct frame_info *", "frame"),
692 ("const char *", "args"),
694 predicate=True,
695 invalid=True,
698 Method(
699 comment="""
700 MAP a GDB RAW register number onto a simulator register number. See
701 also include/...-sim.h.
702 """,
703 type="int",
704 name="register_sim_regno",
705 params=[("int", "reg_nr")],
706 predefault="legacy_register_sim_regno",
707 invalid=False,
710 Method(
711 type="int",
712 name="cannot_fetch_register",
713 params=[("int", "regnum")],
714 predefault="cannot_register_not",
715 invalid=False,
718 Method(
719 type="int",
720 name="cannot_store_register",
721 params=[("int", "regnum")],
722 predefault="cannot_register_not",
723 invalid=False,
726 Function(
727 comment="""
728 Determine the address where a longjmp will land and save this address
729 in PC. Return nonzero on success.
731 FRAME corresponds to the longjmp frame.
732 """,
733 type="int",
734 name="get_longjmp_target",
735 params=[("struct frame_info *", "frame"), ("CORE_ADDR *", "pc")],
736 predicate=True,
737 invalid=True,
740 Value(
741 type="int",
742 name="believe_pcc_promotion",
743 invalid=False,
746 Method(
747 type="int",
748 name="convert_register_p",
749 params=[("int", "regnum"), ("struct type *", "type")],
750 predefault="generic_convert_register_p",
751 invalid=False,
754 Function(
755 type="int",
756 name="register_to_value",
757 params=[
758 ("struct frame_info *", "frame"),
759 ("int", "regnum"),
760 ("struct type *", "type"),
761 ("gdb_byte *", "buf"),
762 ("int *", "optimizedp"),
763 ("int *", "unavailablep"),
765 invalid=False,
768 Function(
769 type="void",
770 name="value_to_register",
771 params=[
772 ("struct frame_info *", "frame"),
773 ("int", "regnum"),
774 ("struct type *", "type"),
775 ("const gdb_byte *", "buf"),
777 invalid=False,
780 Method(
781 comment="""
782 Construct a value representing the contents of register REGNUM in
783 frame FRAME_ID, interpreted as type TYPE. The routine needs to
784 allocate and return a struct value with all value attributes
785 (but not the value contents) filled in.
786 """,
787 type="struct value *",
788 name="value_from_register",
789 params=[
790 ("struct type *", "type"),
791 ("int", "regnum"),
792 ("struct frame_id", "frame_id"),
794 predefault="default_value_from_register",
795 invalid=False,
798 Method(
799 type="CORE_ADDR",
800 name="pointer_to_address",
801 params=[("struct type *", "type"), ("const gdb_byte *", "buf")],
802 predefault="unsigned_pointer_to_address",
803 invalid=False,
806 Method(
807 type="void",
808 name="address_to_pointer",
809 params=[("struct type *", "type"), ("gdb_byte *", "buf"), ("CORE_ADDR", "addr")],
810 predefault="unsigned_address_to_pointer",
811 invalid=False,
814 Method(
815 type="CORE_ADDR",
816 name="integer_to_address",
817 params=[("struct type *", "type"), ("const gdb_byte *", "buf")],
818 predicate=True,
819 invalid=True,
822 Method(
823 comment="""
824 Return the return-value convention that will be used by FUNCTION
825 to return a value of type VALTYPE. FUNCTION may be NULL in which
826 case the return convention is computed based only on VALTYPE.
828 If READBUF is not NULL, extract the return value and save it in this buffer.
830 If WRITEBUF is not NULL, it contains a return value which will be
831 stored into the appropriate register. This can be used when we want
832 to force the value returned by a function (see the "return" command
833 for instance).
834 """,
835 type="enum return_value_convention",
836 name="return_value",
837 params=[
838 ("struct value *", "function"),
839 ("struct type *", "valtype"),
840 ("struct regcache *", "regcache"),
841 ("gdb_byte *", "readbuf"),
842 ("const gdb_byte *", "writebuf"),
844 predicate=True,
845 invalid=True,
848 Method(
849 comment="""
850 Return true if the return value of function is stored in the first hidden
851 parameter. In theory, this feature should be language-dependent, specified
852 by language and its ABI, such as C++. Unfortunately, compiler may
853 implement it to a target-dependent feature. So that we need such hook here
854 to be aware of this in GDB.
855 """,
856 type="int",
857 name="return_in_first_hidden_param_p",
858 params=[("struct type *", "type")],
859 predefault="default_return_in_first_hidden_param_p",
860 invalid=False,
863 Method(
864 type="CORE_ADDR",
865 name="skip_prologue",
866 params=[("CORE_ADDR", "ip")],
867 predefault="0",
868 invalid=True,
871 Method(
872 type="CORE_ADDR",
873 name="skip_main_prologue",
874 params=[("CORE_ADDR", "ip")],
875 predicate=True,
876 invalid=True,
879 Method(
880 comment="""
881 On some platforms, a single function may provide multiple entry points,
882 e.g. one that is used for function-pointer calls and a different one
883 that is used for direct function calls.
884 In order to ensure that breakpoints set on the function will trigger
885 no matter via which entry point the function is entered, a platform
886 may provide the skip_entrypoint callback. It is called with IP set
887 to the main entry point of a function (as determined by the symbol table),
888 and should return the address of the innermost entry point, where the
889 actual breakpoint needs to be set. Note that skip_entrypoint is used
890 by GDB common code even when debugging optimized code, where skip_prologue
891 is not used.
892 """,
893 type="CORE_ADDR",
894 name="skip_entrypoint",
895 params=[("CORE_ADDR", "ip")],
896 predicate=True,
897 invalid=True,
900 Function(
901 type="int",
902 name="inner_than",
903 params=[("CORE_ADDR", "lhs"), ("CORE_ADDR", "rhs")],
904 predefault="0",
905 invalid=True,
908 Method(
909 type="const gdb_byte *",
910 name="breakpoint_from_pc",
911 params=[("CORE_ADDR *", "pcptr"), ("int *", "lenptr")],
912 predefault="default_breakpoint_from_pc",
913 invalid=False,
916 Method(
917 comment="""
918 Return the breakpoint kind for this target based on *PCPTR.
919 """,
920 type="int",
921 name="breakpoint_kind_from_pc",
922 params=[("CORE_ADDR *", "pcptr")],
923 predefault="0",
924 invalid=True,
927 Method(
928 comment="""
929 Return the software breakpoint from KIND. KIND can have target
930 specific meaning like the Z0 kind parameter.
931 SIZE is set to the software breakpoint's length in memory.
932 """,
933 type="const gdb_byte *",
934 name="sw_breakpoint_from_kind",
935 params=[("int", "kind"), ("int *", "size")],
936 predefault="NULL",
937 invalid=False,
940 Method(
941 comment="""
942 Return the breakpoint kind for this target based on the current
943 processor state (e.g. the current instruction mode on ARM) and the
944 *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
945 """,
946 type="int",
947 name="breakpoint_kind_from_current_state",
948 params=[("struct regcache *", "regcache"), ("CORE_ADDR *", "pcptr")],
949 predefault="default_breakpoint_kind_from_current_state",
950 invalid=False,
953 Method(
954 type="CORE_ADDR",
955 name="adjust_breakpoint_address",
956 params=[("CORE_ADDR", "bpaddr")],
957 predicate=True,
958 invalid=True,
961 Method(
962 type="int",
963 name="memory_insert_breakpoint",
964 params=[("struct bp_target_info *", "bp_tgt")],
965 predefault="default_memory_insert_breakpoint",
966 invalid=False,
969 Method(
970 type="int",
971 name="memory_remove_breakpoint",
972 params=[("struct bp_target_info *", "bp_tgt")],
973 predefault="default_memory_remove_breakpoint",
974 invalid=False,
977 Value(
978 type="CORE_ADDR",
979 name="decr_pc_after_break",
980 invalid=False,
983 Value(
984 comment="""
985 A function can be addressed by either it's "pointer" (possibly a
986 descriptor address) or "entry point" (first executable instruction).
987 The method "convert_from_func_ptr_addr" converting the former to the
988 latter. gdbarch_deprecated_function_start_offset is being used to implement
989 a simplified subset of that functionality - the function's address
990 corresponds to the "function pointer" and the function's start
991 corresponds to the "function entry point" - and hence is redundant.
992 """,
993 type="CORE_ADDR",
994 name="deprecated_function_start_offset",
995 invalid=False,
998 Method(
999 comment="""
1000 Return the remote protocol register number associated with this
1001 register. Normally the identity mapping.
1002 """,
1003 type="int",
1004 name="remote_register_number",
1005 params=[("int", "regno")],
1006 predefault="default_remote_register_number",
1007 invalid=False,
1010 Function(
1011 comment="""
1012 Fetch the target specific address used to represent a load module.
1013 """,
1014 type="CORE_ADDR",
1015 name="fetch_tls_load_module_address",
1016 params=[("struct objfile *", "objfile")],
1017 predicate=True,
1018 invalid=True,
1021 Method(
1022 comment="""
1023 Return the thread-local address at OFFSET in the thread-local
1024 storage for the thread PTID and the shared library or executable
1025 file given by LM_ADDR. If that block of thread-local storage hasn't
1026 been allocated yet, this function may throw an error. LM_ADDR may
1027 be zero for statically linked multithreaded inferiors.
1028 """,
1029 type="CORE_ADDR",
1030 name="get_thread_local_address",
1031 params=[("ptid_t", "ptid"), ("CORE_ADDR", "lm_addr"), ("CORE_ADDR", "offset")],
1032 predicate=True,
1033 invalid=True,
1036 Value(
1037 type="CORE_ADDR",
1038 name="frame_args_skip",
1039 invalid=False,
1042 Method(
1043 type="CORE_ADDR",
1044 name="unwind_pc",
1045 params=[("struct frame_info *", "next_frame")],
1046 predefault="default_unwind_pc",
1047 invalid=False,
1050 Method(
1051 type="CORE_ADDR",
1052 name="unwind_sp",
1053 params=[("struct frame_info *", "next_frame")],
1054 predefault="default_unwind_sp",
1055 invalid=False,
1058 Function(
1059 comment="""
1060 DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
1061 frame-base. Enable frame-base before frame-unwind.
1062 """,
1063 type="int",
1064 name="frame_num_args",
1065 params=[("struct frame_info *", "frame")],
1066 predicate=True,
1067 invalid=True,
1070 Method(
1071 type="CORE_ADDR",
1072 name="frame_align",
1073 params=[("CORE_ADDR", "address")],
1074 predicate=True,
1075 invalid=True,
1078 Method(
1079 type="int",
1080 name="stabs_argument_has_addr",
1081 params=[("struct type *", "type")],
1082 predefault="default_stabs_argument_has_addr",
1083 invalid=False,
1086 Value(
1087 type="int",
1088 name="frame_red_zone_size",
1089 invalid=False,
1092 Method(
1093 type="CORE_ADDR",
1094 name="convert_from_func_ptr_addr",
1095 params=[("CORE_ADDR", "addr"), ("struct target_ops *", "targ")],
1096 predefault="convert_from_func_ptr_addr_identity",
1097 invalid=False,
1100 Method(
1101 comment="""
1102 On some machines there are bits in addresses which are not really
1103 part of the address, but are used by the kernel, the hardware, etc.
1104 for special purposes. gdbarch_addr_bits_remove takes out any such bits so
1105 we get a "real" address such as one would find in a symbol table.
1106 This is used only for addresses of instructions, and even then I'm
1107 not sure it's used in all contexts. It exists to deal with there
1108 being a few stray bits in the PC which would mislead us, not as some
1109 sort of generic thing to handle alignment or segmentation (it's
1110 possible it should be in TARGET_READ_PC instead).
1111 """,
1112 type="CORE_ADDR",
1113 name="addr_bits_remove",
1114 params=[("CORE_ADDR", "addr")],
1115 predefault="core_addr_identity",
1116 invalid=False,
1119 Value(
1120 comment="""
1121 On some machines, not all bits of an address word are significant.
1122 For example, on AArch64, the top bits of an address known as the "tag"
1123 are ignored by the kernel, the hardware, etc. and can be regarded as
1124 additional data associated with the address.
1125 """,
1126 type="int",
1127 name="significant_addr_bit",
1128 invalid=False,
1131 Method(
1132 comment="""
1133 Return a string representation of the memory tag TAG.
1134 """,
1135 type="std::string",
1136 name="memtag_to_string",
1137 params=[("struct value *", "tag")],
1138 predefault="default_memtag_to_string",
1139 invalid=False,
1142 Method(
1143 comment="""
1144 Return true if ADDRESS contains a tag and false otherwise. ADDRESS
1145 must be either a pointer or a reference type.
1146 """,
1147 type="bool",
1148 name="tagged_address_p",
1149 params=[("struct value *", "address")],
1150 predefault="default_tagged_address_p",
1151 invalid=False,
1154 Method(
1155 comment="""
1156 Return true if the tag from ADDRESS matches the memory tag for that
1157 particular address. Return false otherwise.
1158 """,
1159 type="bool",
1160 name="memtag_matches_p",
1161 params=[("struct value *", "address")],
1162 predefault="default_memtag_matches_p",
1163 invalid=False,
1166 Method(
1167 comment="""
1168 Set the tags of type TAG_TYPE, for the memory address range
1169 [ADDRESS, ADDRESS + LENGTH) to TAGS.
1170 Return true if successful and false otherwise.
1171 """,
1172 type="bool",
1173 name="set_memtags",
1174 params=[
1175 ("struct value *", "address"),
1176 ("size_t", "length"),
1177 ("const gdb::byte_vector &", "tags"),
1178 ("memtag_type", "tag_type"),
1180 predefault="default_set_memtags",
1181 invalid=False,
1184 Method(
1185 comment="""
1186 Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
1187 assuming ADDRESS is tagged.
1188 """,
1189 type="struct value *",
1190 name="get_memtag",
1191 params=[("struct value *", "address"), ("memtag_type", "tag_type")],
1192 predefault="default_get_memtag",
1193 invalid=False,
1196 Value(
1197 comment="""
1198 memtag_granule_size is the size of the allocation tag granule, for
1199 architectures that support memory tagging.
1200 This is 0 for architectures that do not support memory tagging.
1201 For a non-zero value, this represents the number of bytes of memory per tag.
1202 """,
1203 type="CORE_ADDR",
1204 name="memtag_granule_size",
1205 invalid=False,
1208 Function(
1209 comment="""
1210 FIXME/cagney/2001-01-18: This should be split in two. A target method that
1211 indicates if the target needs software single step. An ISA method to
1212 implement it.
1214 FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
1215 target can single step. If not, then implement single step using breakpoints.
1217 Return a vector of addresses on which the software single step
1218 breakpoints should be inserted. NULL means software single step is
1219 not used.
1220 Multiple breakpoints may be inserted for some instructions such as
1221 conditional branch. However, each implementation must always evaluate
1222 the condition and only put the breakpoint at the branch destination if
1223 the condition is true, so that we ensure forward progress when stepping
1224 past a conditional branch to self.
1225 """,
1226 type="std::vector<CORE_ADDR>",
1227 name="software_single_step",
1228 params=[("struct regcache *", "regcache")],
1229 predicate=True,
1230 invalid=True,
1233 Method(
1234 comment="""
1235 Return non-zero if the processor is executing a delay slot and a
1236 further single-step is needed before the instruction finishes.
1237 """,
1238 type="int",
1239 name="single_step_through_delay",
1240 params=[("struct frame_info *", "frame")],
1241 predicate=True,
1242 invalid=True,
1245 Function(
1246 comment="""
1247 FIXME: cagney/2003-08-28: Need to find a better way of selecting the
1248 disassembler. Perhaps objdump can handle it?
1249 """,
1250 type="int",
1251 name="print_insn",
1252 params=[("bfd_vma", "vma"), ("struct disassemble_info *", "info")],
1253 predefault="default_print_insn",
1254 invalid=False,
1257 Function(
1258 type="CORE_ADDR",
1259 name="skip_trampoline_code",
1260 params=[("struct frame_info *", "frame"), ("CORE_ADDR", "pc")],
1261 predefault="generic_skip_trampoline_code",
1262 invalid=False,
1265 Method(
1266 comment="""
1267 If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
1268 evaluates non-zero, this is the address where the debugger will place
1269 a step-resume breakpoint to get us past the dynamic linker.
1270 """,
1271 type="CORE_ADDR",
1272 name="skip_solib_resolver",
1273 params=[("CORE_ADDR", "pc")],
1274 predefault="generic_skip_solib_resolver",
1275 invalid=False,
1278 Method(
1279 comment="""
1280 Some systems also have trampoline code for returning from shared libs.
1281 """,
1282 type="int",
1283 name="in_solib_return_trampoline",
1284 params=[("CORE_ADDR", "pc"), ("const char *", "name")],
1285 predefault="generic_in_solib_return_trampoline",
1286 invalid=False,
1289 Method(
1290 comment="""
1291 Return true if PC lies inside an indirect branch thunk.
1292 """,
1293 type="bool",
1294 name="in_indirect_branch_thunk",
1295 params=[("CORE_ADDR", "pc")],
1296 predefault="default_in_indirect_branch_thunk",
1297 invalid=False,
1300 Method(
1301 comment="""
1302 A target might have problems with watchpoints as soon as the stack
1303 frame of the current function has been destroyed. This mostly happens
1304 as the first action in a function's epilogue. stack_frame_destroyed_p()
1305 is defined to return a non-zero value if either the given addr is one
1306 instruction after the stack destroying instruction up to the trailing
1307 return instruction or if we can figure out that the stack frame has
1308 already been invalidated regardless of the value of addr. Targets
1309 which don't suffer from that problem could just let this functionality
1310 untouched.
1311 """,
1312 type="int",
1313 name="stack_frame_destroyed_p",
1314 params=[("CORE_ADDR", "addr")],
1315 predefault="generic_stack_frame_destroyed_p",
1316 invalid=False,
1319 Function(
1320 comment="""
1321 Process an ELF symbol in the minimal symbol table in a backend-specific
1322 way. Normally this hook is supposed to do nothing, however if required,
1323 then this hook can be used to apply tranformations to symbols that are
1324 considered special in some way. For example the MIPS backend uses it
1325 to interpret `st_other' information to mark compressed code symbols so
1326 that they can be treated in the appropriate manner in the processing of
1327 the main symbol table and DWARF-2 records.
1328 """,
1329 type="void",
1330 name="elf_make_msymbol_special",
1331 params=[("asymbol *", "sym"), ("struct minimal_symbol *", "msym")],
1332 predicate=True,
1333 invalid=True,
1336 Function(
1337 type="void",
1338 name="coff_make_msymbol_special",
1339 params=[("int", "val"), ("struct minimal_symbol *", "msym")],
1340 predefault="default_coff_make_msymbol_special",
1341 invalid=False,
1344 Function(
1345 comment="""
1346 Process a symbol in the main symbol table in a backend-specific way.
1347 Normally this hook is supposed to do nothing, however if required,
1348 then this hook can be used to apply tranformations to symbols that
1349 are considered special in some way. This is currently used by the
1350 MIPS backend to make sure compressed code symbols have the ISA bit
1351 set. This in turn is needed for symbol values seen in GDB to match
1352 the values used at the runtime by the program itself, for function
1353 and label references.
1354 """,
1355 type="void",
1356 name="make_symbol_special",
1357 params=[("struct symbol *", "sym"), ("struct objfile *", "objfile")],
1358 predefault="default_make_symbol_special",
1359 invalid=False,
1362 Function(
1363 comment="""
1364 Adjust the address retrieved from a DWARF-2 record other than a line
1365 entry in a backend-specific way. Normally this hook is supposed to
1366 return the address passed unchanged, however if that is incorrect for
1367 any reason, then this hook can be used to fix the address up in the
1368 required manner. This is currently used by the MIPS backend to make
1369 sure addresses in FDE, range records, etc. referring to compressed
1370 code have the ISA bit set, matching line information and the symbol
1371 table.
1372 """,
1373 type="CORE_ADDR",
1374 name="adjust_dwarf2_addr",
1375 params=[("CORE_ADDR", "pc")],
1376 predefault="default_adjust_dwarf2_addr",
1377 invalid=False,
1380 Function(
1381 comment="""
1382 Adjust the address updated by a line entry in a backend-specific way.
1383 Normally this hook is supposed to return the address passed unchanged,
1384 however in the case of inconsistencies in these records, this hook can
1385 be used to fix them up in the required manner. This is currently used
1386 by the MIPS backend to make sure all line addresses in compressed code
1387 are presented with the ISA bit set, which is not always the case. This
1388 in turn ensures breakpoint addresses are correctly matched against the
1389 stop PC.
1390 """,
1391 type="CORE_ADDR",
1392 name="adjust_dwarf2_line",
1393 params=[("CORE_ADDR", "addr"), ("int", "rel")],
1394 predefault="default_adjust_dwarf2_line",
1395 invalid=False,
1398 Value(
1399 type="int",
1400 name="cannot_step_breakpoint",
1401 predefault="0",
1402 invalid=False,
1405 Value(
1406 comment="""
1407 See comment in target.h about continuable, steppable and
1408 non-steppable watchpoints.
1409 """,
1410 type="int",
1411 name="have_nonsteppable_watchpoint",
1412 predefault="0",
1413 invalid=False,
1416 Function(
1417 type="type_instance_flags",
1418 name="address_class_type_flags",
1419 params=[("int", "byte_size"), ("int", "dwarf2_addr_class")],
1420 predicate=True,
1421 invalid=True,
1424 Method(
1425 type="const char *",
1426 name="address_class_type_flags_to_name",
1427 params=[("type_instance_flags", "type_flags")],
1428 predicate=True,
1429 invalid=True,
1432 Method(
1433 comment="""
1434 Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
1435 FS are passed from the generic execute_cfa_program function.
1436 """,
1437 type="bool",
1438 name="execute_dwarf_cfa_vendor_op",
1439 params=[("gdb_byte", "op"), ("struct dwarf2_frame_state *", "fs")],
1440 predefault="default_execute_dwarf_cfa_vendor_op",
1441 invalid=False,
1444 Method(
1445 comment="""
1446 Return the appropriate type_flags for the supplied address class.
1447 This function should return true if the address class was recognized and
1448 type_flags was set, false otherwise.
1449 """,
1450 type="bool",
1451 name="address_class_name_to_type_flags",
1452 params=[("const char *", "name"), ("type_instance_flags *", "type_flags_ptr")],
1453 predicate=True,
1454 invalid=True,
1457 Method(
1458 comment="""
1459 Is a register in a group
1460 """,
1461 type="int",
1462 name="register_reggroup_p",
1463 params=[("int", "regnum"), ("const struct reggroup *", "reggroup")],
1464 predefault="default_register_reggroup_p",
1465 invalid=False,
1468 Function(
1469 comment="""
1470 Fetch the pointer to the ith function argument.
1471 """,
1472 type="CORE_ADDR",
1473 name="fetch_pointer_argument",
1474 params=[
1475 ("struct frame_info *", "frame"),
1476 ("int", "argi"),
1477 ("struct type *", "type"),
1479 predicate=True,
1480 invalid=True,
1483 Method(
1484 comment="""
1485 Iterate over all supported register notes in a core file. For each
1486 supported register note section, the iterator must call CB and pass
1487 CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
1488 the supported register note sections based on the current register
1489 values. Otherwise it should enumerate all supported register note
1490 sections.
1491 """,
1492 type="void",
1493 name="iterate_over_regset_sections",
1494 params=[
1495 ("iterate_over_regset_sections_cb *", "cb"),
1496 ("void *", "cb_data"),
1497 ("const struct regcache *", "regcache"),
1499 predicate=True,
1500 invalid=True,
1503 Method(
1504 comment="""
1505 Create core file notes
1506 """,
1507 type="gdb::unique_xmalloc_ptr<char>",
1508 name="make_corefile_notes",
1509 params=[("bfd *", "obfd"), ("int *", "note_size")],
1510 predicate=True,
1511 invalid=True,
1514 Method(
1515 comment="""
1516 Find core file memory regions
1517 """,
1518 type="int",
1519 name="find_memory_regions",
1520 params=[("find_memory_region_ftype", "func"), ("void *", "data")],
1521 predicate=True,
1522 invalid=True,
1525 Method(
1526 comment="""
1527 Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
1528 core file into buffer READBUF with length LEN. Return the number of bytes read
1529 (zero indicates failure).
1530 failed, otherwise, return the red length of READBUF.
1531 """,
1532 type="ULONGEST",
1533 name="core_xfer_shared_libraries",
1534 params=[("gdb_byte *", "readbuf"), ("ULONGEST", "offset"), ("ULONGEST", "len")],
1535 predicate=True,
1536 invalid=True,
1539 Method(
1540 comment="""
1541 Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
1542 libraries list from core file into buffer READBUF with length LEN.
1543 Return the number of bytes read (zero indicates failure).
1544 """,
1545 type="ULONGEST",
1546 name="core_xfer_shared_libraries_aix",
1547 params=[("gdb_byte *", "readbuf"), ("ULONGEST", "offset"), ("ULONGEST", "len")],
1548 predicate=True,
1549 invalid=True,
1552 Method(
1553 comment="""
1554 How the core target converts a PTID from a core file to a string.
1555 """,
1556 type="std::string",
1557 name="core_pid_to_str",
1558 params=[("ptid_t", "ptid")],
1559 predicate=True,
1560 invalid=True,
1563 Method(
1564 comment="""
1565 How the core target extracts the name of a thread from a core file.
1566 """,
1567 type="const char *",
1568 name="core_thread_name",
1569 params=[("struct thread_info *", "thr")],
1570 predicate=True,
1571 invalid=True,
1574 Method(
1575 comment="""
1576 Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
1577 from core file into buffer READBUF with length LEN. Return the number
1578 of bytes read (zero indicates EOF, a negative value indicates failure).
1579 """,
1580 type="LONGEST",
1581 name="core_xfer_siginfo",
1582 params=[("gdb_byte *", "readbuf"), ("ULONGEST", "offset"), ("ULONGEST", "len")],
1583 predicate=True,
1584 invalid=True,
1587 Value(
1588 comment="""
1589 BFD target to use when generating a core file.
1590 """,
1591 type="const char *",
1592 name="gcore_bfd_target",
1593 predicate=True,
1594 predefault="0",
1595 invalid=True,
1596 printer="pstring (gdbarch->gcore_bfd_target)",
1599 Value(
1600 comment="""
1601 If the elements of C++ vtables are in-place function descriptors rather
1602 than normal function pointers (which may point to code or a descriptor),
1603 set this to one.
1604 """,
1605 type="int",
1606 name="vtable_function_descriptors",
1607 predefault="0",
1608 invalid=False,
1611 Value(
1612 comment="""
1613 Set if the least significant bit of the delta is used instead of the least
1614 significant bit of the pfn for pointers to virtual member functions.
1615 """,
1616 type="int",
1617 name="vbit_in_delta",
1618 predefault="0",
1619 invalid=False,
1622 Function(
1623 comment="""
1624 Advance PC to next instruction in order to skip a permanent breakpoint.
1625 """,
1626 type="void",
1627 name="skip_permanent_breakpoint",
1628 params=[("struct regcache *", "regcache")],
1629 predefault="default_skip_permanent_breakpoint",
1630 invalid=False,
1633 Value(
1634 comment="""
1635 The maximum length of an instruction on this architecture in bytes.
1636 """,
1637 type="ULONGEST",
1638 name="max_insn_length",
1639 predicate=True,
1640 predefault="0",
1641 invalid=True,
1644 Method(
1645 comment="""
1646 Copy the instruction at FROM to TO, and make any adjustments
1647 necessary to single-step it at that address.
1649 REGS holds the state the thread's registers will have before
1650 executing the copied instruction; the PC in REGS will refer to FROM,
1651 not the copy at TO. The caller should update it to point at TO later.
1653 Return a pointer to data of the architecture's choice to be passed
1654 to gdbarch_displaced_step_fixup.
1656 For a general explanation of displaced stepping and how GDB uses it,
1657 see the comments in infrun.c.
1659 The TO area is only guaranteed to have space for
1660 gdbarch_max_insn_length (arch) bytes, so this function must not
1661 write more bytes than that to that area.
1663 If you do not provide this function, GDB assumes that the
1664 architecture does not support displaced stepping.
1666 If the instruction cannot execute out of line, return NULL. The
1667 core falls back to stepping past the instruction in-line instead in
1668 that case.
1669 """,
1670 type="displaced_step_copy_insn_closure_up",
1671 name="displaced_step_copy_insn",
1672 params=[("CORE_ADDR", "from"), ("CORE_ADDR", "to"), ("struct regcache *", "regs")],
1673 predicate=True,
1674 invalid=True,
1677 Method(
1678 comment="""
1679 Return true if GDB should use hardware single-stepping to execute a displaced
1680 step instruction. If false, GDB will simply restart execution at the
1681 displaced instruction location, and it is up to the target to ensure GDB will
1682 receive control again (e.g. by placing a software breakpoint instruction into
1683 the displaced instruction buffer).
1685 The default implementation returns false on all targets that provide a
1686 gdbarch_software_single_step routine, and true otherwise.
1687 """,
1688 type="bool",
1689 name="displaced_step_hw_singlestep",
1690 params=[],
1691 predefault="default_displaced_step_hw_singlestep",
1692 invalid=False,
1695 Method(
1696 comment="""
1697 Fix up the state resulting from successfully single-stepping a
1698 displaced instruction, to give the result we would have gotten from
1699 stepping the instruction in its original location.
1701 REGS is the register state resulting from single-stepping the
1702 displaced instruction.
1704 CLOSURE is the result from the matching call to
1705 gdbarch_displaced_step_copy_insn.
1707 If you provide gdbarch_displaced_step_copy_insn.but not this
1708 function, then GDB assumes that no fixup is needed after
1709 single-stepping the instruction.
1711 For a general explanation of displaced stepping and how GDB uses it,
1712 see the comments in infrun.c.
1713 """,
1714 type="void",
1715 name="displaced_step_fixup",
1716 params=[
1717 ("struct displaced_step_copy_insn_closure *", "closure"),
1718 ("CORE_ADDR", "from"),
1719 ("CORE_ADDR", "to"),
1720 ("struct regcache *", "regs"),
1722 predicate=True,
1723 predefault="NULL",
1724 invalid=True,
1727 Method(
1728 comment="""
1729 Prepare THREAD for it to displaced step the instruction at its current PC.
1731 Throw an exception if any unexpected error happens.
1732 """,
1733 type="displaced_step_prepare_status",
1734 name="displaced_step_prepare",
1735 params=[("thread_info *", "thread"), ("CORE_ADDR &", "displaced_pc")],
1736 predicate=True,
1737 invalid=True,
1740 Method(
1741 comment="""
1742 Clean up after a displaced step of THREAD.
1743 """,
1744 type="displaced_step_finish_status",
1745 name="displaced_step_finish",
1746 params=[("thread_info *", "thread"), ("gdb_signal", "sig")],
1747 predefault="NULL",
1748 invalid="(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)",
1751 Function(
1752 comment="""
1753 Return the closure associated to the displaced step buffer that is at ADDR.
1754 """,
1755 type="const displaced_step_copy_insn_closure *",
1756 name="displaced_step_copy_insn_closure_by_addr",
1757 params=[("inferior *", "inf"), ("CORE_ADDR", "addr")],
1758 predicate=True,
1759 invalid=True,
1762 Function(
1763 comment="""
1764 PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
1765 contents of all displaced step buffers in the child's address space.
1766 """,
1767 type="void",
1768 name="displaced_step_restore_all_in_ptid",
1769 params=[("inferior *", "parent_inf"), ("ptid_t", "child_ptid")],
1770 invalid=False,
1773 Method(
1774 comment="""
1775 Relocate an instruction to execute at a different address. OLDLOC
1776 is the address in the inferior memory where the instruction to
1777 relocate is currently at. On input, TO points to the destination
1778 where we want the instruction to be copied (and possibly adjusted)
1779 to. On output, it points to one past the end of the resulting
1780 instruction(s). The effect of executing the instruction at TO shall
1781 be the same as if executing it at FROM. For example, call
1782 instructions that implicitly push the return address on the stack
1783 should be adjusted to return to the instruction after OLDLOC;
1784 relative branches, and other PC-relative instructions need the
1785 offset adjusted; etc.
1786 """,
1787 type="void",
1788 name="relocate_instruction",
1789 params=[("CORE_ADDR *", "to"), ("CORE_ADDR", "from")],
1790 predicate=True,
1791 predefault="NULL",
1792 invalid=True,
1795 Function(
1796 comment="""
1797 Refresh overlay mapped state for section OSECT.
1798 """,
1799 type="void",
1800 name="overlay_update",
1801 params=[("struct obj_section *", "osect")],
1802 predicate=True,
1803 invalid=True,
1806 Method(
1807 type="const struct target_desc *",
1808 name="core_read_description",
1809 params=[("struct target_ops *", "target"), ("bfd *", "abfd")],
1810 predicate=True,
1811 invalid=True,
1814 Value(
1815 comment="""
1816 Set if the address in N_SO or N_FUN stabs may be zero.
1817 """,
1818 type="int",
1819 name="sofun_address_maybe_missing",
1820 predefault="0",
1821 invalid=False,
1824 Method(
1825 comment="""
1826 Parse the instruction at ADDR storing in the record execution log
1827 the registers REGCACHE and memory ranges that will be affected when
1828 the instruction executes, along with their current values.
1829 Return -1 if something goes wrong, 0 otherwise.
1830 """,
1831 type="int",
1832 name="process_record",
1833 params=[("struct regcache *", "regcache"), ("CORE_ADDR", "addr")],
1834 predicate=True,
1835 invalid=True,
1838 Method(
1839 comment="""
1840 Save process state after a signal.
1841 Return -1 if something goes wrong, 0 otherwise.
1842 """,
1843 type="int",
1844 name="process_record_signal",
1845 params=[("struct regcache *", "regcache"), ("enum gdb_signal", "signal")],
1846 predicate=True,
1847 invalid=True,
1850 Method(
1851 comment="""
1852 Signal translation: translate inferior's signal (target's) number
1853 into GDB's representation. The implementation of this method must
1854 be host independent. IOW, don't rely on symbols of the NAT_FILE
1855 header (the nm-*.h files), the host <signal.h> header, or similar
1856 headers. This is mainly used when cross-debugging core files ---
1857 "Live" targets hide the translation behind the target interface
1858 (target_wait, target_resume, etc.).
1859 """,
1860 type="enum gdb_signal",
1861 name="gdb_signal_from_target",
1862 params=[("int", "signo")],
1863 predicate=True,
1864 invalid=True,
1867 Method(
1868 comment="""
1869 Signal translation: translate the GDB's internal signal number into
1870 the inferior's signal (target's) representation. The implementation
1871 of this method must be host independent. IOW, don't rely on symbols
1872 of the NAT_FILE header (the nm-*.h files), the host <signal.h>
1873 header, or similar headers.
1874 Return the target signal number if found, or -1 if the GDB internal
1875 signal number is invalid.
1876 """,
1877 type="int",
1878 name="gdb_signal_to_target",
1879 params=[("enum gdb_signal", "signal")],
1880 predicate=True,
1881 invalid=True,
1884 Method(
1885 comment="""
1886 Extra signal info inspection.
1888 Return a type suitable to inspect extra signal information.
1889 """,
1890 type="struct type *",
1891 name="get_siginfo_type",
1892 params=[],
1893 predicate=True,
1894 invalid=True,
1897 Method(
1898 comment="""
1899 Record architecture-specific information from the symbol table.
1900 """,
1901 type="void",
1902 name="record_special_symbol",
1903 params=[("struct objfile *", "objfile"), ("asymbol *", "sym")],
1904 predicate=True,
1905 invalid=True,
1908 Method(
1909 comment="""
1910 Function for the 'catch syscall' feature.
1911 Get architecture-specific system calls information from registers.
1912 """,
1913 type="LONGEST",
1914 name="get_syscall_number",
1915 params=[("thread_info *", "thread")],
1916 predicate=True,
1917 invalid=True,
1920 Value(
1921 comment="""
1922 The filename of the XML syscall for this architecture.
1923 """,
1924 type="const char *",
1925 name="xml_syscall_file",
1926 predefault="0",
1927 invalid=False,
1928 printer="pstring (gdbarch->xml_syscall_file)",
1931 Value(
1932 comment="""
1933 Information about system calls from this architecture
1934 """,
1935 type="struct syscalls_info *",
1936 name="syscalls_info",
1937 predefault="0",
1938 invalid=False,
1939 printer="host_address_to_string (gdbarch->syscalls_info)",
1942 Value(
1943 comment="""
1944 SystemTap related fields and functions.
1945 A NULL-terminated array of prefixes used to mark an integer constant
1946 on the architecture's assembly.
1947 For example, on x86 integer constants are written as:
1949 $10 ;; integer constant 10
1951 in this case, this prefix would be the character `$'.
1952 """,
1953 type="const char *const *",
1954 name="stap_integer_prefixes",
1955 predefault="0",
1956 invalid=False,
1957 printer="pstring_list (gdbarch->stap_integer_prefixes)",
1960 Value(
1961 comment="""
1962 A NULL-terminated array of suffixes used to mark an integer constant
1963 on the architecture's assembly.
1964 """,
1965 type="const char *const *",
1966 name="stap_integer_suffixes",
1967 predefault="0",
1968 invalid=False,
1969 printer="pstring_list (gdbarch->stap_integer_suffixes)",
1972 Value(
1973 comment="""
1974 A NULL-terminated array of prefixes used to mark a register name on
1975 the architecture's assembly.
1976 For example, on x86 the register name is written as:
1978 %eax ;; register eax
1980 in this case, this prefix would be the character `%'.
1981 """,
1982 type="const char *const *",
1983 name="stap_register_prefixes",
1984 predefault="0",
1985 invalid=False,
1986 printer="pstring_list (gdbarch->stap_register_prefixes)",
1989 Value(
1990 comment="""
1991 A NULL-terminated array of suffixes used to mark a register name on
1992 the architecture's assembly.
1993 """,
1994 type="const char *const *",
1995 name="stap_register_suffixes",
1996 predefault="0",
1997 invalid=False,
1998 printer="pstring_list (gdbarch->stap_register_suffixes)",
2001 Value(
2002 comment="""
2003 A NULL-terminated array of prefixes used to mark a register
2004 indirection on the architecture's assembly.
2005 For example, on x86 the register indirection is written as:
2007 (%eax) ;; indirecting eax
2009 in this case, this prefix would be the charater `('.
2011 Please note that we use the indirection prefix also for register
2012 displacement, e.g., `4(%eax)' on x86.
2013 """,
2014 type="const char *const *",
2015 name="stap_register_indirection_prefixes",
2016 predefault="0",
2017 invalid=False,
2018 printer="pstring_list (gdbarch->stap_register_indirection_prefixes)",
2021 Value(
2022 comment="""
2023 A NULL-terminated array of suffixes used to mark a register
2024 indirection on the architecture's assembly.
2025 For example, on x86 the register indirection is written as:
2027 (%eax) ;; indirecting eax
2029 in this case, this prefix would be the charater `)'.
2031 Please note that we use the indirection suffix also for register
2032 displacement, e.g., `4(%eax)' on x86.
2033 """,
2034 type="const char *const *",
2035 name="stap_register_indirection_suffixes",
2036 predefault="0",
2037 invalid=False,
2038 printer="pstring_list (gdbarch->stap_register_indirection_suffixes)",
2041 Value(
2042 comment="""
2043 Prefix(es) used to name a register using GDB's nomenclature.
2045 For example, on PPC a register is represented by a number in the assembly
2046 language (e.g., `10' is the 10th general-purpose register). However,
2047 inside GDB this same register has an `r' appended to its name, so the 10th
2048 register would be represented as `r10' internally.
2049 """,
2050 type="const char *",
2051 name="stap_gdb_register_prefix",
2052 predefault="0",
2053 invalid=False,
2054 printer="pstring (gdbarch->stap_gdb_register_prefix)",
2057 Value(
2058 comment="""
2059 Suffix used to name a register using GDB's nomenclature.
2060 """,
2061 type="const char *",
2062 name="stap_gdb_register_suffix",
2063 predefault="0",
2064 invalid=False,
2065 printer="pstring (gdbarch->stap_gdb_register_suffix)",
2068 Method(
2069 comment="""
2070 Check if S is a single operand.
2072 Single operands can be:
2073 - Literal integers, e.g. `$10' on x86
2074 - Register access, e.g. `%eax' on x86
2075 - Register indirection, e.g. `(%eax)' on x86
2076 - Register displacement, e.g. `4(%eax)' on x86
2078 This function should check for these patterns on the string
2079 and return 1 if some were found, or zero otherwise. Please try to match
2080 as much info as you can from the string, i.e., if you have to match
2081 something like `(%', do not match just the `('.
2082 """,
2083 type="int",
2084 name="stap_is_single_operand",
2085 params=[("const char *", "s")],
2086 predicate=True,
2087 invalid=True,
2090 Method(
2091 comment="""
2092 Function used to handle a "special case" in the parser.
2094 A "special case" is considered to be an unknown token, i.e., a token
2095 that the parser does not know how to parse. A good example of special
2096 case would be ARM's register displacement syntax:
2098 [R0, #4] ;; displacing R0 by 4
2100 Since the parser assumes that a register displacement is of the form:
2102 <number> <indirection_prefix> <register_name> <indirection_suffix>
2104 it means that it will not be able to recognize and parse this odd syntax.
2105 Therefore, we should add a special case function that will handle this token.
2107 This function should generate the proper expression form of the expression
2108 using GDB's internal expression mechanism (e.g., `write_exp_elt_opcode'
2109 and so on). It should also return 1 if the parsing was successful, or zero
2110 if the token was not recognized as a special token (in this case, returning
2111 zero means that the special parser is deferring the parsing to the generic
2112 parser), and should advance the buffer pointer (p->arg).
2113 """,
2114 type="expr::operation_up",
2115 name="stap_parse_special_token",
2116 params=[("struct stap_parse_info *", "p")],
2117 predicate=True,
2118 invalid=True,
2121 Method(
2122 comment="""
2123 Perform arch-dependent adjustments to a register name.
2125 In very specific situations, it may be necessary for the register
2126 name present in a SystemTap probe's argument to be handled in a
2127 special way. For example, on i386, GCC may over-optimize the
2128 register allocation and use smaller registers than necessary. In
2129 such cases, the client that is reading and evaluating the SystemTap
2130 probe (ourselves) will need to actually fetch values from the wider
2131 version of the register in question.
2133 To illustrate the example, consider the following probe argument
2134 (i386):
2136 4@%ax
2138 This argument says that its value can be found at the %ax register,
2139 which is a 16-bit register. However, the argument's prefix says
2140 that its type is "uint32_t", which is 32-bit in size. Therefore, in
2141 this case, GDB should actually fetch the probe's value from register
2142 %eax, not %ax. In this scenario, this function would actually
2143 replace the register name from %ax to %eax.
2145 The rationale for this can be found at PR breakpoints/24541.
2146 """,
2147 type="std::string",
2148 name="stap_adjust_register",
2149 params=[
2150 ("struct stap_parse_info *", "p"),
2151 ("const std::string &", "regname"),
2152 ("int", "regnum"),
2154 predicate=True,
2155 invalid=True,
2158 Method(
2159 comment="""
2160 DTrace related functions.
2161 The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
2162 NARG must be >= 0.
2163 """,
2164 type="expr::operation_up",
2165 name="dtrace_parse_probe_argument",
2166 params=[("int", "narg")],
2167 predicate=True,
2168 invalid=True,
2171 Method(
2172 comment="""
2173 True if the given ADDR does not contain the instruction sequence
2174 corresponding to a disabled DTrace is-enabled probe.
2175 """,
2176 type="int",
2177 name="dtrace_probe_is_enabled",
2178 params=[("CORE_ADDR", "addr")],
2179 predicate=True,
2180 invalid=True,
2183 Method(
2184 comment="""
2185 Enable a DTrace is-enabled probe at ADDR.
2186 """,
2187 type="void",
2188 name="dtrace_enable_probe",
2189 params=[("CORE_ADDR", "addr")],
2190 predicate=True,
2191 invalid=True,
2194 Method(
2195 comment="""
2196 Disable a DTrace is-enabled probe at ADDR.
2197 """,
2198 type="void",
2199 name="dtrace_disable_probe",
2200 params=[("CORE_ADDR", "addr")],
2201 predicate=True,
2202 invalid=True,
2205 Value(
2206 comment="""
2207 True if the list of shared libraries is one and only for all
2208 processes, as opposed to a list of shared libraries per inferior.
2209 This usually means that all processes, although may or may not share
2210 an address space, will see the same set of symbols at the same
2211 addresses.
2212 """,
2213 type="int",
2214 name="has_global_solist",
2215 predefault="0",
2216 invalid=False,
2219 Value(
2220 comment="""
2221 On some targets, even though each inferior has its own private
2222 address space, the debug interface takes care of making breakpoints
2223 visible to all address spaces automatically. For such cases,
2224 this property should be set to true.
2225 """,
2226 type="int",
2227 name="has_global_breakpoints",
2228 predefault="0",
2229 invalid=False,
2232 Method(
2233 comment="""
2234 True if inferiors share an address space (e.g., uClinux).
2235 """,
2236 type="int",
2237 name="has_shared_address_space",
2238 params=[],
2239 predefault="default_has_shared_address_space",
2240 invalid=False,
2243 Method(
2244 comment="""
2245 True if a fast tracepoint can be set at an address.
2246 """,
2247 type="int",
2248 name="fast_tracepoint_valid_at",
2249 params=[("CORE_ADDR", "addr"), ("std::string *", "msg")],
2250 predefault="default_fast_tracepoint_valid_at",
2251 invalid=False,
2254 Method(
2255 comment="""
2256 Guess register state based on tracepoint location. Used for tracepoints
2257 where no registers have been collected, but there's only one location,
2258 allowing us to guess the PC value, and perhaps some other registers.
2259 On entry, regcache has all registers marked as unavailable.
2260 """,
2261 type="void",
2262 name="guess_tracepoint_registers",
2263 params=[("struct regcache *", "regcache"), ("CORE_ADDR", "addr")],
2264 predefault="default_guess_tracepoint_registers",
2265 invalid=False,
2268 Function(
2269 comment="""
2270 Return the "auto" target charset.
2271 """,
2272 type="const char *",
2273 name="auto_charset",
2274 params=[],
2275 predefault="default_auto_charset",
2276 invalid=False,
2279 Function(
2280 comment="""
2281 Return the "auto" target wide charset.
2282 """,
2283 type="const char *",
2284 name="auto_wide_charset",
2285 params=[],
2286 predefault="default_auto_wide_charset",
2287 invalid=False,
2290 Value(
2291 comment="""
2292 If non-empty, this is a file extension that will be opened in place
2293 of the file extension reported by the shared library list.
2295 This is most useful for toolchains that use a post-linker tool,
2296 where the names of the files run on the target differ in extension
2297 compared to the names of the files GDB should load for debug info.
2298 """,
2299 type="const char *",
2300 name="solib_symbols_extension",
2301 invalid=False,
2302 printer="pstring (gdbarch->solib_symbols_extension)",
2305 Value(
2306 comment="""
2307 If true, the target OS has DOS-based file system semantics. That
2308 is, absolute paths include a drive name, and the backslash is
2309 considered a directory separator.
2310 """,
2311 type="int",
2312 name="has_dos_based_file_system",
2313 predefault="0",
2314 invalid=False,
2317 Method(
2318 comment="""
2319 Generate bytecodes to collect the return address in a frame.
2320 Since the bytecodes run on the target, possibly with GDB not even
2321 connected, the full unwinding machinery is not available, and
2322 typically this function will issue bytecodes for one or more likely
2323 places that the return address may be found.
2324 """,
2325 type="void",
2326 name="gen_return_address",
2327 params=[
2328 ("struct agent_expr *", "ax"),
2329 ("struct axs_value *", "value"),
2330 ("CORE_ADDR", "scope"),
2332 predefault="default_gen_return_address",
2333 invalid=False,
2336 Method(
2337 comment="""
2338 Implement the "info proc" command.
2339 """,
2340 type="void",
2341 name="info_proc",
2342 params=[("const char *", "args"), ("enum info_proc_what", "what")],
2343 predicate=True,
2344 invalid=True,
2347 Method(
2348 comment="""
2349 Implement the "info proc" command for core files. Noe that there
2350 are two "info_proc"-like methods on gdbarch -- one for core files,
2351 one for live targets.
2352 """,
2353 type="void",
2354 name="core_info_proc",
2355 params=[("const char *", "args"), ("enum info_proc_what", "what")],
2356 predicate=True,
2357 invalid=True,
2360 Method(
2361 comment="""
2362 Iterate over all objfiles in the order that makes the most sense
2363 for the architecture to make global symbol searches.
2365 CB is a callback function passed an objfile to be searched. The iteration stops
2366 if this function returns nonzero.
2368 If not NULL, CURRENT_OBJFILE corresponds to the objfile being
2369 inspected when the symbol search was requested.
2370 """,
2371 type="void",
2372 name="iterate_over_objfiles_in_search_order",
2373 params=[
2374 ("iterate_over_objfiles_in_search_order_cb_ftype", "cb"),
2375 ("struct objfile *", "current_objfile"),
2377 predefault="default_iterate_over_objfiles_in_search_order",
2378 invalid=False,
2381 Value(
2382 comment="""
2383 Ravenscar arch-dependent ops.
2384 """,
2385 type="struct ravenscar_arch_ops *",
2386 name="ravenscar_ops",
2387 predefault="NULL",
2388 invalid=False,
2389 printer="host_address_to_string (gdbarch->ravenscar_ops)",
2392 Method(
2393 comment="""
2394 Return non-zero if the instruction at ADDR is a call; zero otherwise.
2395 """,
2396 type="int",
2397 name="insn_is_call",
2398 params=[("CORE_ADDR", "addr")],
2399 predefault="default_insn_is_call",
2400 invalid=False,
2403 Method(
2404 comment="""
2405 Return non-zero if the instruction at ADDR is a return; zero otherwise.
2406 """,
2407 type="int",
2408 name="insn_is_ret",
2409 params=[("CORE_ADDR", "addr")],
2410 predefault="default_insn_is_ret",
2411 invalid=False,
2414 Method(
2415 comment="""
2416 Return non-zero if the instruction at ADDR is a jump; zero otherwise.
2417 """,
2418 type="int",
2419 name="insn_is_jump",
2420 params=[("CORE_ADDR", "addr")],
2421 predefault="default_insn_is_jump",
2422 invalid=False,
2425 Method(
2426 comment="""
2427 Return true if there's a program/permanent breakpoint planted in
2428 memory at ADDRESS, return false otherwise.
2429 """,
2430 type="bool",
2431 name="program_breakpoint_here_p",
2432 params=[("CORE_ADDR", "address")],
2433 predefault="default_program_breakpoint_here_p",
2434 invalid=False,
2437 Method(
2438 comment="""
2439 Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
2440 Return 0 if *READPTR is already at the end of the buffer.
2441 Return -1 if there is insufficient buffer for a whole entry.
2442 Return 1 if an entry was read into *TYPEP and *VALP.
2443 """,
2444 type="int",
2445 name="auxv_parse",
2446 params=[
2447 ("gdb_byte **", "readptr"),
2448 ("gdb_byte *", "endptr"),
2449 ("CORE_ADDR *", "typep"),
2450 ("CORE_ADDR *", "valp"),
2452 predicate=True,
2453 invalid=True,
2456 Method(
2457 comment="""
2458 Print the description of a single auxv entry described by TYPE and VAL
2459 to FILE.
2460 """,
2461 type="void",
2462 name="print_auxv_entry",
2463 params=[("struct ui_file *", "file"), ("CORE_ADDR", "type"), ("CORE_ADDR", "val")],
2464 predefault="default_print_auxv_entry",
2465 invalid=False,
2468 Method(
2469 comment="""
2470 Find the address range of the current inferior's vsyscall/vDSO, and
2471 write it to *RANGE. If the vsyscall's length can't be determined, a
2472 range with zero length is returned. Returns true if the vsyscall is
2473 found, false otherwise.
2474 """,
2475 type="int",
2476 name="vsyscall_range",
2477 params=[("struct mem_range *", "range")],
2478 predefault="default_vsyscall_range",
2479 invalid=False,
2482 Function(
2483 comment="""
2484 Allocate SIZE bytes of PROT protected page aligned memory in inferior.
2485 PROT has GDB_MMAP_PROT_* bitmask format.
2486 Throw an error if it is not possible. Returned address is always valid.
2487 """,
2488 type="CORE_ADDR",
2489 name="infcall_mmap",
2490 params=[("CORE_ADDR", "size"), ("unsigned", "prot")],
2491 predefault="default_infcall_mmap",
2492 invalid=False,
2495 Function(
2496 comment="""
2497 Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
2498 Print a warning if it is not possible.
2499 """,
2500 type="void",
2501 name="infcall_munmap",
2502 params=[("CORE_ADDR", "addr"), ("CORE_ADDR", "size")],
2503 predefault="default_infcall_munmap",
2504 invalid=False,
2507 Method(
2508 comment="""
2509 Return string (caller has to use xfree for it) with options for GCC
2510 to produce code for this target, typically "-m64", "-m32" or "-m31".
2511 These options are put before CU's DW_AT_producer compilation options so that
2512 they can override it.
2513 """,
2514 type="std::string",
2515 name="gcc_target_options",
2516 params=[],
2517 predefault="default_gcc_target_options",
2518 invalid=False,
2521 Method(
2522 comment="""
2523 Return a regular expression that matches names used by this
2524 architecture in GNU configury triplets. The result is statically
2525 allocated and must not be freed. The default implementation simply
2526 returns the BFD architecture name, which is correct in nearly every
2527 case.
2528 """,
2529 type="const char *",
2530 name="gnu_triplet_regexp",
2531 params=[],
2532 predefault="default_gnu_triplet_regexp",
2533 invalid=False,
2536 Method(
2537 comment="""
2538 Return the size in 8-bit bytes of an addressable memory unit on this
2539 architecture. This corresponds to the number of 8-bit bytes associated to
2540 each address in memory.
2541 """,
2542 type="int",
2543 name="addressable_memory_unit_size",
2544 params=[],
2545 predefault="default_addressable_memory_unit_size",
2546 invalid=False,
2549 Value(
2550 comment="""
2551 Functions for allowing a target to modify its disassembler options.
2552 """,
2553 type="const char *",
2554 name="disassembler_options_implicit",
2555 predefault="0",
2556 invalid=False,
2557 printer="pstring (gdbarch->disassembler_options_implicit)",
2560 Value(
2561 type="char **",
2562 name="disassembler_options",
2563 predefault="0",
2564 invalid=False,
2565 printer="pstring_ptr (gdbarch->disassembler_options)",
2568 Value(
2569 type="const disasm_options_and_args_t *",
2570 name="valid_disassembler_options",
2571 predefault="0",
2572 invalid=False,
2573 printer="host_address_to_string (gdbarch->valid_disassembler_options)",
2576 Method(
2577 comment="""
2578 Type alignment override method. Return the architecture specific
2579 alignment required for TYPE. If there is no special handling
2580 required for TYPE then return the value 0, GDB will then apply the
2581 default rules as laid out in gdbtypes.c:type_align.
2582 """,
2583 type="ULONGEST",
2584 name="type_align",
2585 params=[("struct type *", "type")],
2586 predefault="default_type_align",
2587 invalid=False,
2590 Function(
2591 comment="""
2592 Return a string containing any flags for the given PC in the given FRAME.
2593 """,
2594 type="std::string",
2595 name="get_pc_address_flags",
2596 params=[("frame_info *", "frame"), ("CORE_ADDR", "pc")],
2597 predefault="default_get_pc_address_flags",
2598 invalid=False,
2601 Method(
2602 comment="""
2603 Read core file mappings
2604 """,
2605 type="void",
2606 name="read_core_file_mappings",
2607 params=[
2608 ("struct bfd *", "cbfd"),
2609 ("read_core_file_mappings_pre_loop_ftype", "pre_loop_cb"),
2610 ("read_core_file_mappings_loop_ftype", "loop_cb"),
2612 predefault="default_read_core_file_mappings",
2613 invalid=False,