gdb/testsuite: fix gdb.trace/signal.exp on x86
[binutils-gdb/blckswan.git] / gdb / mep-tdep.c
blob6b3a62391c047ab562bb12b0edb704a970dc0fbe
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3 Copyright (C) 2001-2022 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "sim-regno.h"
40 #include "trad-frame.h"
41 #include "reggroups.h"
42 #include "elf-bfd.h"
43 #include "elf/mep.h"
44 #include "prologue-value.h"
45 #include "cgen/bitset.h"
46 #include "infcall.h"
47 #include "gdbarch.h"
49 /* Get the user's customized MeP coprocessor register names from
50 libopcodes. */
51 #include "opcodes/mep-desc.h"
52 #include "opcodes/mep-opc.h"
55 /* The gdbarch_tdep structure. */
57 /* A quick recap for GDB hackers not familiar with the whole Toshiba
58 Media Processor story:
60 The MeP media engine is a configureable processor: users can design
61 their own coprocessors, implement custom instructions, adjust cache
62 sizes, select optional standard facilities like add-and-saturate
63 instructions, and so on. Then, they can build custom versions of
64 the GNU toolchain to support their customized chips. The
65 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
66 tree, and a config file pointing to various files provided by the
67 user describing their customizations, and edits the source tree to
68 produce a compiler that can generate their custom instructions, an
69 assembler that can assemble them and recognize their custom
70 register names, and so on.
72 Furthermore, the user can actually specify several of these custom
73 configurations, called 'me_modules', and get a toolchain which can
74 produce code for any of them, given a compiler/assembler switch;
75 you say something like 'gcc -mconfig=mm_max' to generate code for
76 the me_module named 'mm_max'.
78 GDB, in particular, needs to:
80 - use the coprocessor control register names provided by the user
81 in their hardware description, in expressions, 'info register'
82 output, and disassembly,
84 - know the number, names, and types of the coprocessor's
85 general-purpose registers, adjust the 'info all-registers' output
86 accordingly, and print error messages if the user refers to one
87 that doesn't exist
89 - allow access to the control bus space only when the configuration
90 actually has a control bus, and recognize which regions of the
91 control bus space are actually populated,
93 - disassemble using the user's provided mnemonics for their custom
94 instructions, and
96 - recognize whether the $hi and $lo registers are present, and
97 allow access to them only when they are actually there.
99 There are three sources of information about what sort of me_module
100 we're actually dealing with:
102 - A MeP executable file indicates which me_module it was compiled
103 for, and libopcodes has tables describing each module. So, given
104 an executable file, we can find out about the processor it was
105 compiled for.
107 - There are SID command-line options to select a particular
108 me_module, overriding the one specified in the ELF file. SID
109 provides GDB with a fake read-only register, 'module', which
110 indicates which me_module GDB is communicating with an instance
113 - There are SID command-line options to enable or disable certain
114 optional processor features, overriding the defaults for the
115 selected me_module. The MeP $OPT register indicates which
116 options are present on the current processor. */
119 struct mep_gdbarch_tdep : gdbarch_tdep
121 /* A CGEN cpu descriptor for this BFD architecture and machine.
123 Note: this is *not* customized for any particular me_module; the
124 MeP libopcodes machinery actually puts off module-specific
125 customization until the last minute. So this contains
126 information about all supported me_modules. */
127 CGEN_CPU_DESC cpu_desc = nullptr;
129 /* The me_module index from the ELF file we used to select this
130 architecture, or CONFIG_NONE if there was none.
132 Note that we should prefer to use the me_module number available
133 via the 'module' register, whenever we're actually talking to a
134 real target.
136 In the absence of live information, we'd like to get the
137 me_module number from the ELF file. But which ELF file: the
138 executable file, the core file, ... ? The answer is, "the last
139 ELF file we used to set the current architecture". Thus, we
140 create a separate instance of the gdbarch structure for each
141 me_module value mep_gdbarch_init sees, and store the me_module
142 value from the ELF file here. */
143 CONFIG_ATTR me_module {};
148 /* Getting me_module information from the CGEN tables. */
151 /* Find an entry in the DESC's hardware table whose name begins with
152 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
153 intersect with GENERIC_ISA_MASK. If there is no matching entry,
154 return zero. */
155 static const CGEN_HW_ENTRY *
156 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
157 const char *prefix,
158 CGEN_BITSET *copro_isa_mask,
159 CGEN_BITSET *generic_isa_mask)
161 int prefix_len = strlen (prefix);
162 int i;
164 for (i = 0; i < desc->hw_table.num_entries; i++)
166 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
167 if (strncmp (prefix, hw->name, prefix_len) == 0)
169 CGEN_BITSET *hw_isa_mask
170 = ((CGEN_BITSET *)
171 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
173 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
174 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
175 return hw;
179 return 0;
183 /* Find an entry in DESC's hardware table whose type is TYPE. Return
184 zero if there is none. */
185 static const CGEN_HW_ENTRY *
186 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
188 int i;
190 for (i = 0; i < desc->hw_table.num_entries; i++)
192 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
194 if (hw->type == type)
195 return hw;
198 return 0;
202 /* Return the CGEN hardware table entry for the coprocessor register
203 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
204 no such register set, return zero. If ME_MODULE is the generic
205 me_module CONFIG_NONE, return the table entry for the register set
206 whose hardware type is GENERIC_TYPE. */
207 static const CGEN_HW_ENTRY *
208 me_module_register_set (CONFIG_ATTR me_module,
209 const char *prefix,
210 CGEN_HW_TYPE generic_type)
212 /* This is kind of tricky, because the hardware table is constructed
213 in a way that isn't very helpful. Perhaps we can fix that, but
214 here's how it works at the moment:
216 The configuration map, `mep_config_map', is indexed by me_module
217 number, and indicates which coprocessor and core ISAs that
218 me_module supports. The 'core_isa' mask includes all the core
219 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
220 The entry for the generic me_module, CONFIG_NONE, has an empty
221 'cop_isa', and its 'core_isa' selects only the standard MeP
222 instruction set.
224 The CGEN CPU descriptor's hardware table, desc->hw_table, has
225 entries for all the register sets, for all me_modules. Each
226 entry has a mask indicating which ISAs use that register set.
227 So, if an me_module supports some coprocessor ISA, we can find
228 applicable register sets by scanning the hardware table for
229 register sets whose masks include (at least some of) those ISAs.
231 Each hardware table entry also has a name, whose prefix says
232 whether it's a general-purpose ("h-cr") or control ("h-ccr")
233 coprocessor register set. It might be nicer to have an attribute
234 indicating what sort of register set it was, that we could use
235 instead of pattern-matching on the name.
237 When there is no hardware table entry whose mask includes a
238 particular coprocessor ISA and whose name starts with a given
239 prefix, then that means that that coprocessor doesn't have any
240 registers of that type. In such cases, this function must return
241 a null pointer.
243 Coprocessor register sets' masks may or may not include the core
244 ISA for the me_module they belong to. Those generated by a2cgen
245 do, but the sample me_module included in the unconfigured tree,
246 'ccfx', does not.
248 There are generic coprocessor register sets, intended only for
249 use with the generic me_module. Unfortunately, their masks
250 include *all* ISAs --- even those for coprocessors that don't
251 have such register sets. This makes detecting the case where a
252 coprocessor lacks a particular register set more complicated.
254 So, here's the approach we take:
256 - For CONFIG_NONE, we return the generic coprocessor register set.
258 - For any other me_module, we search for a register set whose
259 mask contains any of the me_module's coprocessor ISAs,
260 specifically excluding the generic coprocessor register sets. */
262 mep_gdbarch_tdep *tdep
263 = (mep_gdbarch_tdep *) gdbarch_tdep (target_gdbarch ());
264 CGEN_CPU_DESC desc = tdep->cpu_desc;
265 const CGEN_HW_ENTRY *hw;
267 if (me_module == CONFIG_NONE)
268 hw = find_hw_entry_by_type (desc, generic_type);
269 else
271 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
272 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
273 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
274 CGEN_BITSET *cop_and_core;
276 /* The coprocessor ISAs include the ISA for the specific core which
277 has that coprocessor. */
278 cop_and_core = cgen_bitset_copy (cop);
279 cgen_bitset_union (cop, core, cop_and_core);
280 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
283 return hw;
287 /* Given a hardware table entry HW representing a register set, return
288 a pointer to the keyword table with all the register names. If HW
289 is NULL, return NULL, to propagate the "no such register set" info
290 along. */
291 static CGEN_KEYWORD *
292 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
294 if (! hw)
295 return NULL;
297 /* Check that HW is actually a keyword table. */
298 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
300 /* The 'asm_data' field of a register set's hardware table entry
301 refers to a keyword table. */
302 return (CGEN_KEYWORD *) hw->asm_data;
306 /* Given a keyword table KEYWORD and a register number REGNUM, return
307 the name of the register, or "" if KEYWORD contains no register
308 whose number is REGNUM. */
309 static const char *
310 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
312 const CGEN_KEYWORD_ENTRY *entry
313 = cgen_keyword_lookup_value (keyword_table, regnum);
315 if (entry)
317 char *name = entry->name;
319 /* The CGEN keyword entries for register names include the
320 leading $, which appears in MeP assembly as well as in GDB.
321 But we don't want to return that; GDB core code adds that
322 itself. */
323 if (name[0] == '$')
324 name++;
326 return name;
328 else
329 return "";
333 /* Masks for option bits in the OPT special-purpose register. */
334 enum {
335 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
336 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
337 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
338 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
339 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
340 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
341 MEP_OPT_AVE = 1 << 19, /* average instruction option */
342 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
343 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
344 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
345 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
346 MEP_OPT_COP = 1 << 4, /* coprocessor option */
347 MEP_OPT_DSP = 1 << 2, /* DSP option */
348 MEP_OPT_UCI = 1 << 1, /* UCI option */
349 MEP_OPT_DBG = 1 << 0, /* DBG function option */
353 /* Given the option_mask value for a particular entry in
354 mep_config_map, produce the value the processor's OPT register
355 would use to represent the same set of options. */
356 static unsigned int
357 opt_from_option_mask (unsigned int option_mask)
359 /* A table mapping OPT register bits onto CGEN config map option
360 bits. */
361 struct {
362 unsigned int opt_bit, option_mask_bit;
363 } bits[] = {
364 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
365 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
368 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
369 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
370 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
371 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
372 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
373 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
374 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
375 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
376 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
379 int i;
380 unsigned int opt = 0;
382 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
383 if (option_mask & bits[i].option_mask_bit)
384 opt |= bits[i].opt_bit;
386 return opt;
390 /* Return the value the $OPT register would use to represent the set
391 of options for ME_MODULE. */
392 static unsigned int
393 me_module_opt (CONFIG_ATTR me_module)
395 return opt_from_option_mask (mep_config_map[me_module].option_mask);
399 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
400 This is either 32 or 64. */
401 static int
402 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
404 if (mep_config_map[me_module].option_mask
405 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
406 return 64;
407 else
408 return 32;
412 /* Return true if ME_MODULE is big-endian, false otherwise. */
413 static int
414 me_module_big_endian (CONFIG_ATTR me_module)
416 return mep_config_map[me_module].big_endian;
420 /* Return the name of ME_MODULE, or NULL if it has no name. */
421 static const char *
422 me_module_name (CONFIG_ATTR me_module)
424 /* The default me_module has "" as its name, but it's easier for our
425 callers to test for NULL. */
426 if (! mep_config_map[me_module].name
427 || mep_config_map[me_module].name[0] == '\0')
428 return NULL;
429 else
430 return mep_config_map[me_module].name;
433 /* Register set. */
436 /* The MeP spec defines the following registers:
437 16 general purpose registers (r0-r15)
438 32 control/special registers (csr0-csr31)
439 32 coprocessor general-purpose registers (c0 -- c31)
440 64 coprocessor control registers (ccr0 -- ccr63)
442 For the raw registers, we assign numbers here explicitly, instead
443 of letting the enum assign them for us; the numbers are a matter of
444 external protocol, and shouldn't shift around as things are edited.
446 We access the control/special registers via pseudoregisters, to
447 enforce read-only portions that some registers have.
449 We access the coprocessor general purpose and control registers via
450 pseudoregisters, to make sure they appear in the proper order in
451 the 'info all-registers' command (which uses the register number
452 ordering), and also to allow them to be renamed and resized
453 depending on the me_module in use.
455 The MeP allows coprocessor general-purpose registers to be either
456 32 or 64 bits long, depending on the configuration. Since we don't
457 want the format of the 'g' packet to vary from one core to another,
458 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
459 types of registers to change (see the implementation of
460 register_type), so we have four banks of pseudoregisters for the
461 coprocessor gprs --- 32-bit vs. 64-bit, and integer
462 vs. floating-point --- and we show or hide them depending on the
463 configuration. */
464 enum
466 MEP_FIRST_RAW_REGNUM = 0,
468 MEP_FIRST_GPR_REGNUM = 0,
469 MEP_R0_REGNUM = 0,
470 MEP_R1_REGNUM = 1,
471 MEP_R2_REGNUM = 2,
472 MEP_R3_REGNUM = 3,
473 MEP_R4_REGNUM = 4,
474 MEP_R5_REGNUM = 5,
475 MEP_R6_REGNUM = 6,
476 MEP_R7_REGNUM = 7,
477 MEP_R8_REGNUM = 8,
478 MEP_R9_REGNUM = 9,
479 MEP_R10_REGNUM = 10,
480 MEP_R11_REGNUM = 11,
481 MEP_R12_REGNUM = 12,
482 MEP_FP_REGNUM = MEP_R8_REGNUM,
483 MEP_R13_REGNUM = 13,
484 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
485 MEP_R14_REGNUM = 14,
486 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
487 MEP_R15_REGNUM = 15,
488 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
489 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
491 /* The raw control registers. These are the values as received via
492 the remote protocol, directly from the target; we only let user
493 code touch the via the pseudoregisters, which enforce read-only
494 bits. */
495 MEP_FIRST_RAW_CSR_REGNUM = 16,
496 MEP_RAW_PC_REGNUM = 16, /* Program counter */
497 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
498 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
499 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
500 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
501 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
502 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
503 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
504 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
505 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
506 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
507 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
508 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
509 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
510 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
511 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
512 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
513 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
514 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
515 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
516 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
517 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
518 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
519 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
520 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
521 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
522 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
523 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
524 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
525 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
526 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
527 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
528 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
530 /* The raw coprocessor general-purpose registers. These are all 64
531 bits wide. */
532 MEP_FIRST_RAW_CR_REGNUM = 48,
533 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
535 MEP_FIRST_RAW_CCR_REGNUM = 80,
536 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
538 /* The module number register. This is the index of the me_module
539 of which the current target is an instance. (This is not a real
540 MeP-specified register; it's provided by SID.) */
541 MEP_MODULE_REGNUM,
543 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
545 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
547 /* Pseudoregisters. See mep_pseudo_register_read and
548 mep_pseudo_register_write. */
549 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
551 /* We have a pseudoregister for every control/special register, to
552 implement registers with read-only bits. */
553 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
554 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
555 MEP_LP_REGNUM, /* Link pointer */
556 MEP_SAR_REGNUM, /* shift amount */
557 MEP_CSR3_REGNUM, /* csr3: reserved */
558 MEP_RPB_REGNUM, /* repeat begin address */
559 MEP_RPE_REGNUM, /* Repeat end address */
560 MEP_RPC_REGNUM, /* Repeat count */
561 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
562 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
563 MEP_CSR9_REGNUM, /* csr3: reserved */
564 MEP_CSR10_REGNUM, /* csr3: reserved */
565 MEP_CSR11_REGNUM, /* csr3: reserved */
566 MEP_MB0_REGNUM, /* modulo begin address 0 */
567 MEP_ME0_REGNUM, /* modulo end address 0 */
568 MEP_MB1_REGNUM, /* modulo begin address 1 */
569 MEP_ME1_REGNUM, /* modulo end address 1 */
570 MEP_PSW_REGNUM, /* program status word */
571 MEP_ID_REGNUM, /* processor ID/revision */
572 MEP_TMP_REGNUM, /* Temporary */
573 MEP_EPC_REGNUM, /* Exception program counter */
574 MEP_EXC_REGNUM, /* exception cause */
575 MEP_CFG_REGNUM, /* processor configuration*/
576 MEP_CSR22_REGNUM, /* csr3: reserved */
577 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
578 MEP_DBG_REGNUM, /* debug */
579 MEP_DEPC_REGNUM, /* Debug exception PC */
580 MEP_OPT_REGNUM, /* options */
581 MEP_RCFG_REGNUM, /* local ram config */
582 MEP_CCFG_REGNUM, /* cache config */
583 MEP_CSR29_REGNUM, /* csr3: reserved */
584 MEP_CSR30_REGNUM, /* csr3: reserved */
585 MEP_CSR31_REGNUM, /* csr3: reserved */
586 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
588 /* The 32-bit integer view of the coprocessor GPR's. */
589 MEP_FIRST_CR32_REGNUM,
590 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
592 /* The 32-bit floating-point view of the coprocessor GPR's. */
593 MEP_FIRST_FP_CR32_REGNUM,
594 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
596 /* The 64-bit integer view of the coprocessor GPR's. */
597 MEP_FIRST_CR64_REGNUM,
598 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
600 /* The 64-bit floating-point view of the coprocessor GPR's. */
601 MEP_FIRST_FP_CR64_REGNUM,
602 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
604 MEP_FIRST_CCR_REGNUM,
605 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
607 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
609 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
611 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
615 #define IN_SET(set, n) \
616 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
618 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
619 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
620 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
621 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
623 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
624 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
625 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
626 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
627 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
628 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
629 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
630 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
632 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
633 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
635 #define NUM_REGS_IN_SET(set) \
636 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
638 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
639 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
640 #define MEP_LP_SIZE (4) /* Size of the LP register. */
643 /* Many of the control/special registers contain bits that cannot be
644 written to; some are entirely read-only. So we present them all as
645 pseudoregisters.
647 The following table describes the special properties of each CSR. */
648 struct mep_csr_register
650 /* The number of this CSR's raw register. */
651 int raw;
653 /* The number of this CSR's pseudoregister. */
654 int pseudo;
656 /* A mask of the bits that are writeable: if a bit is set here, then
657 it can be modified; if the bit is clear, then it cannot. */
658 LONGEST writeable_bits;
662 /* mep_csr_registers[i] describes the i'th CSR.
663 We just list the register numbers here explicitly to help catch
664 typos. */
665 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
666 static mep_csr_register mep_csr_registers[] = {
667 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
668 { CSR(LP), 0xffffffff },
669 { CSR(SAR), 0x0000003f },
670 { CSR(CSR3), 0xffffffff },
671 { CSR(RPB), 0xfffffffe },
672 { CSR(RPE), 0xffffffff },
673 { CSR(RPC), 0xffffffff },
674 { CSR(HI), 0xffffffff },
675 { CSR(LO), 0xffffffff },
676 { CSR(CSR9), 0xffffffff },
677 { CSR(CSR10), 0xffffffff },
678 { CSR(CSR11), 0xffffffff },
679 { CSR(MB0), 0x0000ffff },
680 { CSR(ME0), 0x0000ffff },
681 { CSR(MB1), 0x0000ffff },
682 { CSR(ME1), 0x0000ffff },
683 { CSR(PSW), 0x000003ff },
684 { CSR(ID), 0x00000000 },
685 { CSR(TMP), 0xffffffff },
686 { CSR(EPC), 0xffffffff },
687 { CSR(EXC), 0x000030f0 },
688 { CSR(CFG), 0x00c0001b },
689 { CSR(CSR22), 0xffffffff },
690 { CSR(NPC), 0xffffffff },
691 { CSR(DBG), 0x00000580 },
692 { CSR(DEPC), 0xffffffff },
693 { CSR(OPT), 0x00000000 },
694 { CSR(RCFG), 0x00000000 },
695 { CSR(CCFG), 0x00000000 },
696 { CSR(CSR29), 0xffffffff },
697 { CSR(CSR30), 0xffffffff },
698 { CSR(CSR31), 0xffffffff },
702 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
703 the number of the corresponding pseudoregister. Otherwise,
704 mep_raw_to_pseudo[R] == R. */
705 static int mep_raw_to_pseudo[MEP_NUM_REGS];
707 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
708 is the number of the underlying raw register. Otherwise
709 mep_pseudo_to_raw[R] == R. */
710 static int mep_pseudo_to_raw[MEP_NUM_REGS];
712 static void
713 mep_init_pseudoregister_maps (void)
715 int i;
717 /* Verify that mep_csr_registers covers all the CSRs, in order. */
718 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
719 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
721 /* Verify that the raw and pseudo ranges have matching sizes. */
722 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
724 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
727 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
729 struct mep_csr_register *r = &mep_csr_registers[i];
731 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
732 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
735 /* Set up the initial raw<->pseudo mappings. */
736 for (i = 0; i < MEP_NUM_REGS; i++)
738 mep_raw_to_pseudo[i] = i;
739 mep_pseudo_to_raw[i] = i;
742 /* Add the CSR raw<->pseudo mappings. */
743 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
745 struct mep_csr_register *r = &mep_csr_registers[i];
747 mep_raw_to_pseudo[r->raw] = r->pseudo;
748 mep_pseudo_to_raw[r->pseudo] = r->raw;
751 /* Add the CR raw<->pseudo mappings. */
752 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
754 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
755 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
756 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
757 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
758 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
760 /* Truly, the raw->pseudo mapping depends on the current module.
761 But we use the raw->pseudo mapping when we read the debugging
762 info; at that point, we don't know what module we'll actually
763 be running yet. So, we always supply the 64-bit register
764 numbers; GDB knows how to pick a smaller value out of a
765 larger register properly. */
766 mep_raw_to_pseudo[raw] = pseudo64;
767 mep_pseudo_to_raw[pseudo32] = raw;
768 mep_pseudo_to_raw[pseudofp32] = raw;
769 mep_pseudo_to_raw[pseudo64] = raw;
770 mep_pseudo_to_raw[pseudofp64] = raw;
773 /* Add the CCR raw<->pseudo mappings. */
774 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
776 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
777 int pseudo = MEP_FIRST_CCR_REGNUM + i;
778 mep_raw_to_pseudo[raw] = pseudo;
779 mep_pseudo_to_raw[pseudo] = raw;
784 static int
785 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
787 /* The debug info uses the raw register numbers. */
788 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
789 return mep_raw_to_pseudo[debug_reg];
790 return -1;
794 /* Return the size, in bits, of the coprocessor pseudoregister
795 numbered PSEUDO. */
796 static int
797 mep_pseudo_cr_size (int pseudo)
799 if (IS_CR32_REGNUM (pseudo)
800 || IS_FP_CR32_REGNUM (pseudo))
801 return 32;
802 else if (IS_CR64_REGNUM (pseudo)
803 || IS_FP_CR64_REGNUM (pseudo))
804 return 64;
805 else
806 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
810 /* If the coprocessor pseudoregister numbered PSEUDO is a
811 floating-point register, return non-zero; if it is an integer
812 register, return zero. */
813 static int
814 mep_pseudo_cr_is_float (int pseudo)
816 return (IS_FP_CR32_REGNUM (pseudo)
817 || IS_FP_CR64_REGNUM (pseudo));
821 /* Given a coprocessor GPR pseudoregister number, return its index
822 within that register bank. */
823 static int
824 mep_pseudo_cr_index (int pseudo)
826 if (IS_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_CR32_REGNUM;
828 else if (IS_FP_CR32_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
830 else if (IS_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_CR64_REGNUM;
832 else if (IS_FP_CR64_REGNUM (pseudo))
833 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
834 else
835 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
839 /* Return the me_module index describing the current target.
841 If the current target has registers (e.g., simulator, remote
842 target), then this uses the value of the 'module' register, raw
843 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
844 from the ELF header's e_flags field of the current executable
845 file. */
846 static CONFIG_ATTR
847 current_me_module (void)
849 if (target_has_registers ())
851 ULONGEST regval;
852 regcache_cooked_read_unsigned (get_current_regcache (),
853 MEP_MODULE_REGNUM, &regval);
854 return (CONFIG_ATTR) regval;
856 else
858 mep_gdbarch_tdep *tdep
859 = (mep_gdbarch_tdep *) gdbarch_tdep (target_gdbarch ());
860 return tdep->me_module;
865 /* Return the set of options for the current target, in the form that
866 the OPT register would use.
868 If the current target has registers (e.g., simulator, remote
869 target), then this is the actual value of the OPT register. If the
870 current target does not have registers (e.g., an executable file),
871 then use the 'module_opt' field we computed when we build the
872 gdbarch object for this module. */
873 static unsigned int
874 current_options (void)
876 if (target_has_registers ())
878 ULONGEST regval;
879 regcache_cooked_read_unsigned (get_current_regcache (),
880 MEP_OPT_REGNUM, &regval);
881 return regval;
883 else
884 return me_module_opt (current_me_module ());
888 /* Return the width of the current me_module's coprocessor data bus,
889 in bits. This is either 32 or 64. */
890 static int
891 current_cop_data_bus_width (void)
893 return me_module_cop_data_bus_width (current_me_module ());
897 /* Return the keyword table of coprocessor general-purpose register
898 names appropriate for the me_module we're dealing with. */
899 static CGEN_KEYWORD *
900 current_cr_names (void)
902 const CGEN_HW_ENTRY *hw
903 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
905 return register_set_keyword_table (hw);
909 /* Return non-zero if the coprocessor general-purpose registers are
910 floating-point values, zero otherwise. */
911 static int
912 current_cr_is_float (void)
914 const CGEN_HW_ENTRY *hw
915 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
917 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
921 /* Return the keyword table of coprocessor control register names
922 appropriate for the me_module we're dealing with. */
923 static CGEN_KEYWORD *
924 current_ccr_names (void)
926 const CGEN_HW_ENTRY *hw
927 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
929 return register_set_keyword_table (hw);
933 static const char *
934 mep_register_name (struct gdbarch *gdbarch, int regnr)
936 /* General-purpose registers. */
937 static const char *gpr_names[] = {
938 "r0", "r1", "r2", "r3", /* 0 */
939 "r4", "r5", "r6", "r7", /* 4 */
940 "fp", "r9", "r10", "r11", /* 8 */
941 "r12", "tp", "gp", "sp" /* 12 */
944 /* Special-purpose registers. */
945 static const char *csr_names[] = {
946 "pc", "lp", "sar", "", /* 0 csr3: reserved */
947 "rpb", "rpe", "rpc", "hi", /* 4 */
948 "lo", "", "", "", /* 8 csr9-csr11: reserved */
949 "mb0", "me0", "mb1", "me1", /* 12 */
951 "psw", "id", "tmp", "epc", /* 16 */
952 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
953 "dbg", "depc", "opt", "rcfg", /* 24 */
954 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
957 if (IS_GPR_REGNUM (regnr))
958 return gpr_names[regnr - MEP_R0_REGNUM];
959 else if (IS_CSR_REGNUM (regnr))
961 /* The 'hi' and 'lo' registers are only present on processors
962 that have the 'MUL' or 'DIV' instructions enabled. */
963 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
964 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
965 return "";
967 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
969 else if (IS_CR_REGNUM (regnr))
971 CGEN_KEYWORD *names;
972 int cr_size;
973 int cr_is_float;
975 /* Does this module have a coprocessor at all? */
976 if (! (current_options () & MEP_OPT_COP))
977 return "";
979 names = current_cr_names ();
980 if (! names)
981 /* This module's coprocessor has no general-purpose registers. */
982 return "";
984 cr_size = current_cop_data_bus_width ();
985 if (cr_size != mep_pseudo_cr_size (regnr))
986 /* This module's coprocessor's GPR's are of a different size. */
987 return "";
989 cr_is_float = current_cr_is_float ();
990 /* The extra ! operators ensure we get boolean equality, not
991 numeric equality. */
992 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
993 /* This module's coprocessor's GPR's are of a different type. */
994 return "";
996 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
998 else if (IS_CCR_REGNUM (regnr))
1000 /* Does this module have a coprocessor at all? */
1001 if (! (current_options () & MEP_OPT_COP))
1002 return "";
1005 CGEN_KEYWORD *names = current_ccr_names ();
1007 if (! names)
1008 /* This me_module's coprocessor has no control registers. */
1009 return "";
1011 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1015 /* It might be nice to give the 'module' register a name, but that
1016 would affect the output of 'info all-registers', which would
1017 disturb the test suites. So we leave it invisible. */
1018 else
1019 return NULL;
1023 /* Custom register groups for the MeP. */
1024 static const reggroup *mep_csr_reggroup; /* control/special */
1025 static const reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1026 static const reggroup *mep_ccr_reggroup; /* coprocessor control */
1029 static int
1030 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1031 const struct reggroup *group)
1033 /* Filter reserved or unused register numbers. */
1035 const char *name = mep_register_name (gdbarch, regnum);
1037 if (! name || name[0] == '\0')
1038 return 0;
1041 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1042 the existing behavior, so we'd want to run that by them. */
1043 if (group == general_reggroup)
1044 return (IS_GPR_REGNUM (regnum)
1045 || IS_CSR_REGNUM (regnum));
1047 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1048 else if (group == all_reggroup)
1049 return (IS_GPR_REGNUM (regnum)
1050 || IS_CSR_REGNUM (regnum)
1051 || IS_CR_REGNUM (regnum)
1052 || IS_CCR_REGNUM (regnum));
1054 /* All registers should be saved and restored, except for the raw
1055 CSR's.
1057 This is probably right if the coprocessor is something like a
1058 floating-point unit, but would be wrong if the coprocessor is
1059 something that does I/O, where register accesses actually cause
1060 externally-visible actions. But I get the impression that the
1061 coprocessor isn't supposed to do things like that --- you'd use a
1062 hardware engine, perhaps. */
1063 else if (group == save_reggroup || group == restore_reggroup)
1064 return (IS_GPR_REGNUM (regnum)
1065 || IS_CSR_REGNUM (regnum)
1066 || IS_CR_REGNUM (regnum)
1067 || IS_CCR_REGNUM (regnum));
1069 else if (group == mep_csr_reggroup)
1070 return IS_CSR_REGNUM (regnum);
1071 else if (group == mep_cr_reggroup)
1072 return IS_CR_REGNUM (regnum);
1073 else if (group == mep_ccr_reggroup)
1074 return IS_CCR_REGNUM (regnum);
1075 else
1076 return 0;
1080 static struct type *
1081 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1083 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1084 long. So for them, the raw registers are always 64 bits long (to
1085 keep the 'g' packet format fixed), and the pseudoregisters vary
1086 in length. */
1087 if (IS_RAW_CR_REGNUM (reg_nr))
1088 return builtin_type (gdbarch)->builtin_uint64;
1090 /* Since GDB doesn't allow registers to change type, we have two
1091 banks of pseudoregisters for the coprocessor general-purpose
1092 registers: one that gives a 32-bit view, and one that gives a
1093 64-bit view. We hide or show one or the other depending on the
1094 current module. */
1095 if (IS_CR_REGNUM (reg_nr))
1097 int size = mep_pseudo_cr_size (reg_nr);
1098 if (size == 32)
1100 if (mep_pseudo_cr_is_float (reg_nr))
1101 return builtin_type (gdbarch)->builtin_float;
1102 else
1103 return builtin_type (gdbarch)->builtin_uint32;
1105 else if (size == 64)
1107 if (mep_pseudo_cr_is_float (reg_nr))
1108 return builtin_type (gdbarch)->builtin_double;
1109 else
1110 return builtin_type (gdbarch)->builtin_uint64;
1112 else
1113 gdb_assert_not_reached ("unexpected cr size");
1116 /* All other registers are 32 bits long. */
1117 else
1118 return builtin_type (gdbarch)->builtin_uint32;
1121 static enum register_status
1122 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1123 readable_regcache *regcache,
1124 int cookednum,
1125 gdb_byte *buf)
1127 enum register_status status;
1128 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1129 /* Read the raw register into a 64-bit buffer, and then return the
1130 appropriate end of that buffer. */
1131 int rawnum = mep_pseudo_to_raw[cookednum];
1132 gdb_byte buf64[8];
1134 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1135 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1136 status = regcache->raw_read (rawnum, buf64);
1137 if (status == REG_VALID)
1139 /* Slow, but legible. */
1140 store_unsigned_integer (buf, 4, byte_order,
1141 extract_unsigned_integer (buf64, 8, byte_order));
1143 return status;
1147 static enum register_status
1148 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1149 readable_regcache *regcache,
1150 int cookednum,
1151 gdb_byte *buf)
1153 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1157 static enum register_status
1158 mep_pseudo_register_read (struct gdbarch *gdbarch,
1159 readable_regcache *regcache,
1160 int cookednum,
1161 gdb_byte *buf)
1163 if (IS_CSR_REGNUM (cookednum)
1164 || IS_CCR_REGNUM (cookednum))
1165 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1166 else if (IS_CR32_REGNUM (cookednum)
1167 || IS_FP_CR32_REGNUM (cookednum))
1168 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1169 else if (IS_CR64_REGNUM (cookednum)
1170 || IS_FP_CR64_REGNUM (cookednum))
1171 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1172 else
1173 gdb_assert_not_reached ("unexpected pseudo register");
1177 static void
1178 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1179 struct regcache *regcache,
1180 int cookednum,
1181 const gdb_byte *buf)
1183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1184 int size = register_size (gdbarch, cookednum);
1185 struct mep_csr_register *r
1186 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1188 if (r->writeable_bits == 0)
1189 /* A completely read-only register; avoid the read-modify-
1190 write cycle, and juts ignore the entire write. */
1192 else
1194 /* A partially writeable register; do a read-modify-write cycle. */
1195 ULONGEST old_bits;
1196 ULONGEST new_bits;
1197 ULONGEST mixed_bits;
1199 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1200 new_bits = extract_unsigned_integer (buf, size, byte_order);
1201 mixed_bits = ((r->writeable_bits & new_bits)
1202 | (~r->writeable_bits & old_bits));
1203 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1208 static void
1209 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1210 struct regcache *regcache,
1211 int cookednum,
1212 const gdb_byte *buf)
1214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1215 /* Expand the 32-bit value into a 64-bit value, and write that to
1216 the pseudoregister. */
1217 int rawnum = mep_pseudo_to_raw[cookednum];
1218 gdb_byte buf64[8];
1220 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1221 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1222 /* Slow, but legible. */
1223 store_unsigned_integer (buf64, 8, byte_order,
1224 extract_unsigned_integer (buf, 4, byte_order));
1225 regcache->raw_write (rawnum, buf64);
1229 static void
1230 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1231 struct regcache *regcache,
1232 int cookednum,
1233 const gdb_byte *buf)
1235 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf);
1239 static void
1240 mep_pseudo_register_write (struct gdbarch *gdbarch,
1241 struct regcache *regcache,
1242 int cookednum,
1243 const gdb_byte *buf)
1245 if (IS_CSR_REGNUM (cookednum))
1246 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1247 else if (IS_CR32_REGNUM (cookednum)
1248 || IS_FP_CR32_REGNUM (cookednum))
1249 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1250 else if (IS_CR64_REGNUM (cookednum)
1251 || IS_FP_CR64_REGNUM (cookednum))
1252 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1253 else if (IS_CCR_REGNUM (cookednum))
1254 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf);
1255 else
1256 gdb_assert_not_reached ("unexpected pseudo register");
1261 /* Disassembly. */
1263 static int
1264 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1266 struct obj_section * s = find_pc_section (pc);
1268 info->arch = bfd_arch_mep;
1269 if (s)
1271 /* The libopcodes disassembly code uses the section to find the
1272 BFD, the BFD to find the ELF header, the ELF header to find
1273 the me_module index, and the me_module index to select the
1274 right instructions to print. */
1275 info->section = s->the_bfd_section;
1278 return print_insn_mep (pc, info);
1282 /* Prologue analysis. */
1285 /* The MeP has two classes of instructions: "core" instructions, which
1286 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1287 which are mostly concerned with moving data in and out of
1288 coprocessor registers, and branching on coprocessor condition
1289 codes. There's space in the instruction set for custom coprocessor
1290 instructions, too.
1292 Instructions can be 16 or 32 bits long; the top two bits of the
1293 first byte indicate the length. The coprocessor instructions are
1294 mixed in with the core instructions, and there's no easy way to
1295 distinguish them; you have to completely decode them to tell one
1296 from the other.
1298 The MeP also supports a "VLIW" operation mode, where instructions
1299 always occur in fixed-width bundles. The bundles are either 32
1300 bits or 64 bits long, depending on a fixed configuration flag. You
1301 decode the first part of the bundle as normal; if it's a core
1302 instruction, and there's any space left in the bundle, the
1303 remainder of the bundle is a coprocessor instruction, which will
1304 execute in parallel with the core instruction. If the first part
1305 of the bundle is a coprocessor instruction, it occupies the entire
1306 bundle.
1308 So, here are all the cases:
1310 - 32-bit VLIW mode:
1311 Every bundle is four bytes long, and naturally aligned, and can hold
1312 one or two instructions:
1313 - 16-bit core instruction; 16-bit coprocessor instruction
1314 These execute in parallel.
1315 - 32-bit core instruction
1316 - 32-bit coprocessor instruction
1318 - 64-bit VLIW mode:
1319 Every bundle is eight bytes long, and naturally aligned, and can hold
1320 one or two instructions:
1321 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1322 These execute in parallel.
1323 - 32-bit core instruction; 32-bit coprocessor instruction
1324 These execute in parallel.
1325 - 64-bit coprocessor instruction
1327 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1328 instruction, so I don't really know what's up there; perhaps these
1329 are always the user-defined coprocessor instructions. */
1332 /* Return non-zero if PC is in a VLIW code section, zero
1333 otherwise. */
1334 static int
1335 mep_pc_in_vliw_section (CORE_ADDR pc)
1337 struct obj_section *s = find_pc_section (pc);
1338 if (s)
1339 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1340 return 0;
1344 /* Set *INSN to the next core instruction at PC, and return the
1345 address of the next instruction.
1347 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1348 instructions are encoded as one or two two-byte parts, and each
1349 part is byte-swapped independently. Thus:
1351 void
1352 foo (void)
1354 asm ("movu $1, 0x123456");
1355 asm ("sb $1,0x5678($2)");
1356 asm ("clip $1, 19");
1359 compiles to this big-endian code:
1361 0: d1 56 12 34 movu $1,0x123456
1362 4: c1 28 56 78 sb $1,22136($2)
1363 8: f1 01 10 98 clip $1,0x13
1364 c: 70 02 ret
1366 and this little-endian code:
1368 0: 56 d1 34 12 movu $1,0x123456
1369 4: 28 c1 78 56 sb $1,22136($2)
1370 8: 01 f1 98 10 clip $1,0x13
1371 c: 02 70 ret
1373 Instructions are returned in *INSN in an endian-independent form: a
1374 given instruction always appears in *INSN the same way, regardless
1375 of whether the instruction stream is big-endian or little-endian.
1377 *INSN's most significant 16 bits are the first (i.e., at lower
1378 addresses) 16 bit part of the instruction. Its least significant
1379 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1380 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1381 are fetched using the current endianness.
1383 So, the *INSN values for the instruction sequence above would be
1384 the following, in either endianness:
1386 0xd1561234 movu $1,0x123456
1387 0xc1285678 sb $1,22136($2)
1388 0xf1011098 clip $1,0x13
1389 0x70020000 ret
1391 (In a sense, it would be more natural to return 16-bit instructions
1392 in the least significant 16 bits of *INSN, but that would be
1393 ambiguous. In order to tell whether you're looking at a 16- or a
1394 32-bit instruction, you have to consult the major opcode field ---
1395 the most significant four bits of the instruction's first 16-bit
1396 part. But if we put 16-bit instructions at the least significant
1397 end of *INSN, then you don't know where to find the major opcode
1398 field until you know if it's a 16- or a 32-bit instruction ---
1399 which is where we started.)
1401 If PC points to a core / coprocessor bundle in a VLIW section, set
1402 *INSN to the core instruction, and return the address of the next
1403 bundle. This has the effect of skipping the bundled coprocessor
1404 instruction. That's okay, since coprocessor instructions aren't
1405 significant to prologue analysis --- for the time being,
1406 anyway. */
1408 static CORE_ADDR
1409 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1411 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1412 int pc_in_vliw_section;
1413 int vliw_mode;
1414 int insn_len;
1415 gdb_byte buf[2];
1417 *insn = 0;
1419 /* Are we in a VLIW section? */
1420 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1421 if (pc_in_vliw_section)
1423 /* Yes, find out which bundle size. */
1424 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1426 /* If PC is in a VLIW section, but the current core doesn't say
1427 that it supports either VLIW mode, then we don't have enough
1428 information to parse the instruction stream it contains.
1429 Since the "undifferentiated" standard core doesn't have
1430 either VLIW mode bit set, this could happen.
1432 But it shouldn't be an error to (say) set a breakpoint in a
1433 VLIW section, if you know you'll never reach it. (Perhaps
1434 you have a script that sets a bunch of standard breakpoints.)
1436 So we'll just return zero here, and hope for the best. */
1437 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1438 return 0;
1440 /* If both VL32 and VL64 are set, that's bogus, too. */
1441 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1442 return 0;
1444 else
1445 vliw_mode = 0;
1447 read_memory (pc, buf, sizeof (buf));
1448 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1450 /* The major opcode --- the top four bits of the first 16-bit
1451 part --- indicates whether this instruction is 16 or 32 bits
1452 long. All 32-bit instructions have a major opcode whose top
1453 two bits are 11; all the rest are 16-bit instructions. */
1454 if ((*insn & 0xc0000000) == 0xc0000000)
1456 /* Fetch the second 16-bit part of the instruction. */
1457 read_memory (pc + 2, buf, sizeof (buf));
1458 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1461 /* If we're in VLIW code, then the VLIW width determines the address
1462 of the next instruction. */
1463 if (vliw_mode)
1465 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1466 coprocessor half of a core / copro bundle. */
1467 if (vliw_mode == MEP_OPT_VL32)
1468 insn_len = 4;
1470 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1471 coprocessor half of a core / copro bundle. */
1472 else if (vliw_mode == MEP_OPT_VL64)
1473 insn_len = 8;
1475 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1476 else
1477 gdb_assert_not_reached ("unexpected vliw mode");
1480 /* Otherwise, the top two bits of the major opcode are (again) what
1481 we need to check. */
1482 else if ((*insn & 0xc0000000) == 0xc0000000)
1483 insn_len = 4;
1484 else
1485 insn_len = 2;
1487 return pc + insn_len;
1491 /* Sign-extend the LEN-bit value N. */
1492 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1494 /* Return the LEN-bit field at POS from I. */
1495 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1497 /* Like FIELD, but sign-extend the field's value. */
1498 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1501 /* Macros for decoding instructions.
1503 Remember that 16-bit instructions are placed in bits 16..31 of i,
1504 not at the least significant end; this means that the major opcode
1505 field is always in the same place, regardless of the width of the
1506 instruction. As a reminder of this, we show the lower 16 bits of a
1507 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1509 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1510 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1511 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1513 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1514 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1515 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1516 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1517 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1518 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1519 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1520 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1521 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1523 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1524 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1525 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1526 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1528 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1529 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1530 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1531 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1533 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1534 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1535 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1536 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1538 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1539 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1540 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1541 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1542 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1544 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1545 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1546 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1547 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1549 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1550 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1551 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1552 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1554 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1555 imm5 = I||i[7:4] */
1556 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1557 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1558 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1560 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1561 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1562 #define LW_TARGET(i) (FIELD (i, 24, 4))
1563 #define LW_BASE(i) (FIELD (i, 20, 4))
1564 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1566 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1567 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1568 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1569 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1571 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1572 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1573 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1576 /* This structure holds the results of a prologue analysis. */
1577 struct mep_prologue
1579 /* The architecture for which we generated this prologue info. */
1580 struct gdbarch *gdbarch;
1582 /* The offset from the frame base to the stack pointer --- always
1583 zero or negative.
1585 Calling this a "size" is a bit misleading, but given that the
1586 stack grows downwards, using offsets for everything keeps one
1587 from going completely sign-crazy: you never change anything's
1588 sign for an ADD instruction; always change the second operand's
1589 sign for a SUB instruction; and everything takes care of
1590 itself. */
1591 int frame_size;
1593 /* Non-zero if this function has initialized the frame pointer from
1594 the stack pointer, zero otherwise. */
1595 int has_frame_ptr;
1597 /* If has_frame_ptr is non-zero, this is the offset from the frame
1598 base to where the frame pointer points. This is always zero or
1599 negative. */
1600 int frame_ptr_offset;
1602 /* The address of the first instruction at which the frame has been
1603 set up and the arguments are where the debug info says they are
1604 --- as best as we can tell. */
1605 CORE_ADDR prologue_end;
1607 /* reg_offset[R] is the offset from the CFA at which register R is
1608 saved, or 1 if register R has not been saved. (Real values are
1609 always zero or negative.) */
1610 int reg_offset[MEP_NUM_REGS];
1613 /* Return non-zero if VALUE is an incoming argument register. */
1615 static int
1616 is_arg_reg (pv_t value)
1618 return (value.kind == pvk_register
1619 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1620 && value.k == 0);
1623 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1624 probably spilling an argument register to its stack slot in STACK.
1625 Such instructions should be included in the prologue, if possible.
1627 The store is a spill if:
1628 - the value being stored is REG's original value;
1629 - the value has not already been stored somewhere in STACK; and
1630 - ADDR is a stack slot's address (e.g., relative to the original
1631 value of the SP). */
1632 static int
1633 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1634 struct pv_area *stack)
1636 return (is_arg_reg (value)
1637 && pv_is_register (addr, MEP_SP_REGNUM)
1638 && ! stack->find_reg (gdbarch, value.reg, 0));
1642 /* Function for finding saved registers in a 'struct pv_area'; we pass
1643 this to pv_area::scan.
1645 If VALUE is a saved register, ADDR says it was saved at a constant
1646 offset from the frame base, and SIZE indicates that the whole
1647 register was saved, record its offset in RESULT_UNTYPED. */
1648 static void
1649 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1651 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1653 if (value.kind == pvk_register
1654 && value.k == 0
1655 && pv_is_register (addr, MEP_SP_REGNUM)
1656 && size == register_size (result->gdbarch, value.reg))
1657 result->reg_offset[value.reg] = addr.k;
1661 /* Analyze a prologue starting at START_PC, going no further than
1662 LIMIT_PC. Fill in RESULT as appropriate. */
1663 static void
1664 mep_analyze_prologue (struct gdbarch *gdbarch,
1665 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1666 struct mep_prologue *result)
1668 CORE_ADDR pc;
1669 unsigned long insn;
1670 pv_t reg[MEP_NUM_REGS];
1671 CORE_ADDR after_last_frame_setup_insn = start_pc;
1673 memset (result, 0, sizeof (*result));
1674 result->gdbarch = gdbarch;
1676 for (int rn = 0; rn < MEP_NUM_REGS; rn++)
1678 reg[rn] = pv_register (rn, 0);
1679 result->reg_offset[rn] = 1;
1682 pv_area stack (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1684 pc = start_pc;
1685 while (pc < limit_pc)
1687 CORE_ADDR next_pc;
1688 pv_t pre_insn_fp, pre_insn_sp;
1690 next_pc = mep_get_insn (gdbarch, pc, &insn);
1692 /* A zero return from mep_get_insn means that either we weren't
1693 able to read the instruction from memory, or that we don't
1694 have enough information to be able to reliably decode it. So
1695 we'll store here and hope for the best. */
1696 if (! next_pc)
1697 break;
1699 /* Note the current values of the SP and FP, so we can tell if
1700 this instruction changed them, below. */
1701 pre_insn_fp = reg[MEP_FP_REGNUM];
1702 pre_insn_sp = reg[MEP_SP_REGNUM];
1704 if (IS_ADD (insn))
1706 int rn = ADD_TARGET (insn);
1707 CORE_ADDR imm6 = ADD_OFFSET (insn);
1709 reg[rn] = pv_add_constant (reg[rn], imm6);
1711 else if (IS_ADD3_16 (insn))
1713 int rn = ADD3_16_TARGET (insn);
1714 int imm7 = ADD3_16_OFFSET (insn);
1716 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1718 else if (IS_ADD3_32 (insn))
1720 int rn = ADD3_32_TARGET (insn);
1721 int rm = ADD3_32_SOURCE (insn);
1722 int imm16 = ADD3_32_OFFSET (insn);
1724 reg[rn] = pv_add_constant (reg[rm], imm16);
1726 else if (IS_SW_REG (insn))
1728 int rn = SW_REG_SOURCE (insn);
1729 int rm = SW_REG_BASE (insn);
1731 /* If simulating this store would require us to forget
1732 everything we know about the stack frame in the name of
1733 accuracy, it would be better to just quit now. */
1734 if (stack.store_would_trash (reg[rm]))
1735 break;
1737 if (is_arg_spill (gdbarch, reg[rn], reg[rm], &stack))
1738 after_last_frame_setup_insn = next_pc;
1740 stack.store (reg[rm], 4, reg[rn]);
1742 else if (IS_SW_IMMD (insn))
1744 int rn = SW_IMMD_SOURCE (insn);
1745 int offset = SW_IMMD_OFFSET (insn);
1746 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1748 /* If simulating this store would require us to forget
1749 everything we know about the stack frame in the name of
1750 accuracy, it would be better to just quit now. */
1751 if (stack.store_would_trash (addr))
1752 break;
1754 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1755 after_last_frame_setup_insn = next_pc;
1757 stack.store (addr, 4, reg[rn]);
1759 else if (IS_MOV (insn))
1761 int rn = MOV_TARGET (insn);
1762 int rm = MOV_SOURCE (insn);
1764 reg[rn] = reg[rm];
1766 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1767 after_last_frame_setup_insn = next_pc;
1769 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1771 int rn = SWBH_32_SOURCE (insn);
1772 int rm = SWBH_32_BASE (insn);
1773 int disp = SWBH_32_OFFSET (insn);
1774 int size = (IS_SB (insn) ? 1
1775 : IS_SH (insn) ? 2
1776 : (gdb_assert (IS_SW (insn)), 4));
1777 pv_t addr = pv_add_constant (reg[rm], disp);
1779 if (stack.store_would_trash (addr))
1780 break;
1782 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1783 after_last_frame_setup_insn = next_pc;
1785 stack.store (addr, size, reg[rn]);
1787 else if (IS_LDC (insn))
1789 int rn = LDC_TARGET (insn);
1790 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1792 reg[rn] = reg[cr];
1794 else if (IS_LW (insn))
1796 int rn = LW_TARGET (insn);
1797 int rm = LW_BASE (insn);
1798 int offset = LW_OFFSET (insn);
1799 pv_t addr = pv_add_constant (reg[rm], offset);
1801 reg[rn] = stack.fetch (addr, 4);
1803 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1805 /* When a loop appears as the first statement of a function
1806 body, gcc 4.x will use a BRA instruction to branch to the
1807 loop condition checking code. This BRA instruction is
1808 marked as part of the prologue. We therefore set next_pc
1809 to this branch target and also stop the prologue scan.
1810 The instructions at and beyond the branch target should
1811 no longer be associated with the prologue.
1813 Note that we only consider forward branches here. We
1814 presume that a forward branch is being used to skip over
1815 a loop body.
1817 A backwards branch is covered by the default case below.
1818 If we were to encounter a backwards branch, that would
1819 most likely mean that we've scanned through a loop body.
1820 We definitely want to stop the prologue scan when this
1821 happens and that is precisely what is done by the default
1822 case below. */
1823 next_pc = pc + BRA_DISP (insn);
1824 after_last_frame_setup_insn = next_pc;
1825 break;
1827 else
1828 /* We've hit some instruction we don't know how to simulate.
1829 Strictly speaking, we should set every value we're
1830 tracking to "unknown". But we'll be optimistic, assume
1831 that we have enough information already, and stop
1832 analysis here. */
1833 break;
1835 /* If this instruction changed the FP or decreased the SP (i.e.,
1836 allocated more stack space), then this may be a good place to
1837 declare the prologue finished. However, there are some
1838 exceptions:
1840 - If the instruction just changed the FP back to its original
1841 value, then that's probably a restore instruction. The
1842 prologue should definitely end before that.
1844 - If the instruction increased the value of the SP (that is,
1845 shrunk the frame), then it's probably part of a frame
1846 teardown sequence, and the prologue should end before that. */
1848 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1850 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1851 after_last_frame_setup_insn = next_pc;
1853 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1855 /* The comparison of constants looks odd, there, because .k
1856 is unsigned. All it really means is that the new value
1857 is lower than it was before the instruction. */
1858 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1859 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1860 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1861 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1862 after_last_frame_setup_insn = next_pc;
1865 pc = next_pc;
1868 /* Is the frame size (offset, really) a known constant? */
1869 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1870 result->frame_size = reg[MEP_SP_REGNUM].k;
1872 /* Was the frame pointer initialized? */
1873 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1875 result->has_frame_ptr = 1;
1876 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1879 /* Record where all the registers were saved. */
1880 stack.scan (check_for_saved, (void *) result);
1882 result->prologue_end = after_last_frame_setup_insn;
1886 static CORE_ADDR
1887 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1889 const char *name;
1890 CORE_ADDR func_addr, func_end;
1891 struct mep_prologue p;
1893 /* Try to find the extent of the function that contains PC. */
1894 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1895 return pc;
1897 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1898 return p.prologue_end;
1903 /* Breakpoints. */
1904 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1906 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1909 /* Frames and frame unwinding. */
1912 static struct mep_prologue *
1913 mep_analyze_frame_prologue (struct frame_info *this_frame,
1914 void **this_prologue_cache)
1916 if (! *this_prologue_cache)
1918 CORE_ADDR func_start, stop_addr;
1920 *this_prologue_cache
1921 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1923 func_start = get_frame_func (this_frame);
1924 stop_addr = get_frame_pc (this_frame);
1926 /* If we couldn't find any function containing the PC, then
1927 just initialize the prologue cache, but don't do anything. */
1928 if (! func_start)
1929 stop_addr = func_start;
1931 mep_analyze_prologue (get_frame_arch (this_frame),
1932 func_start, stop_addr,
1933 (struct mep_prologue *) *this_prologue_cache);
1936 return (struct mep_prologue *) *this_prologue_cache;
1940 /* Given the next frame and a prologue cache, return this frame's
1941 base. */
1942 static CORE_ADDR
1943 mep_frame_base (struct frame_info *this_frame,
1944 void **this_prologue_cache)
1946 struct mep_prologue *p
1947 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1949 /* In functions that use alloca, the distance between the stack
1950 pointer and the frame base varies dynamically, so we can't use
1951 the SP plus static information like prologue analysis to find the
1952 frame base. However, such functions must have a frame pointer,
1953 to be able to restore the SP on exit. So whenever we do have a
1954 frame pointer, use that to find the base. */
1955 if (p->has_frame_ptr)
1957 CORE_ADDR fp
1958 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1959 return fp - p->frame_ptr_offset;
1961 else
1963 CORE_ADDR sp
1964 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1965 return sp - p->frame_size;
1970 static void
1971 mep_frame_this_id (struct frame_info *this_frame,
1972 void **this_prologue_cache,
1973 struct frame_id *this_id)
1975 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1976 get_frame_func (this_frame));
1980 static struct value *
1981 mep_frame_prev_register (struct frame_info *this_frame,
1982 void **this_prologue_cache, int regnum)
1984 struct mep_prologue *p
1985 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1987 /* There are a number of complications in unwinding registers on the
1988 MeP, having to do with core functions calling VLIW functions and
1989 vice versa.
1991 The least significant bit of the link register, LP.LTOM, is the
1992 VLIW mode toggle bit: it's set if a core function called a VLIW
1993 function, or vice versa, and clear when the caller and callee
1994 were both in the same mode.
1996 So, if we're asked to unwind the PC, then we really want to
1997 unwind the LP and clear the least significant bit. (Real return
1998 addresses are always even.) And if we want to unwind the program
1999 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2001 Tweaking the register values we return in this way means that the
2002 bits in BUFFERP[] are not the same as the bits you'd find at
2003 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2004 do this. */
2005 if (regnum == MEP_PC_REGNUM)
2007 struct value *value;
2008 CORE_ADDR lp;
2009 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2010 MEP_LP_REGNUM);
2011 lp = value_as_long (value);
2012 release_value (value);
2014 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2016 else
2018 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2019 struct value *value;
2021 /* Our caller's SP is our frame base. */
2022 if (regnum == MEP_SP_REGNUM)
2023 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2025 /* If prologue analysis says we saved this register somewhere,
2026 return a description of the stack slot holding it. */
2027 if (p->reg_offset[regnum] != 1)
2028 value = frame_unwind_got_memory (this_frame, regnum,
2029 frame_base + p->reg_offset[regnum]);
2031 /* Otherwise, presume we haven't changed the value of this
2032 register, and get it from the next frame. */
2033 else
2034 value = frame_unwind_got_register (this_frame, regnum, regnum);
2036 /* If we need to toggle the operating mode, do so. */
2037 if (regnum == MEP_PSW_REGNUM)
2039 CORE_ADDR psw, lp;
2041 psw = value_as_long (value);
2042 release_value (value);
2044 /* Get the LP's value, too. */
2045 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2046 lp = value_as_long (value);
2047 release_value (value);
2049 /* If LP.LTOM is set, then toggle PSW.OM. */
2050 if (lp & 0x1)
2051 psw ^= 0x1000;
2053 return frame_unwind_got_constant (this_frame, regnum, psw);
2056 return value;
2061 static const struct frame_unwind mep_frame_unwind = {
2062 "mep prologue",
2063 NORMAL_FRAME,
2064 default_frame_unwind_stop_reason,
2065 mep_frame_this_id,
2066 mep_frame_prev_register,
2067 NULL,
2068 default_frame_sniffer
2072 /* Return values. */
2075 static int
2076 mep_use_struct_convention (struct type *type)
2078 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2082 static void
2083 mep_extract_return_value (struct gdbarch *arch,
2084 struct type *type,
2085 struct regcache *regcache,
2086 gdb_byte *valbuf)
2088 int byte_order = gdbarch_byte_order (arch);
2090 /* Values that don't occupy a full register appear at the less
2091 significant end of the value. This is the offset to where the
2092 value starts. */
2093 int offset;
2095 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2096 pointed to by R0. */
2097 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2099 if (byte_order == BFD_ENDIAN_BIG)
2100 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2101 else
2102 offset = 0;
2104 /* Return values that do fit in a single register are returned in R0. */
2105 regcache->cooked_read_part (MEP_R0_REGNUM, offset, TYPE_LENGTH (type),
2106 valbuf);
2110 static void
2111 mep_store_return_value (struct gdbarch *arch,
2112 struct type *type,
2113 struct regcache *regcache,
2114 const gdb_byte *valbuf)
2116 int byte_order = gdbarch_byte_order (arch);
2118 /* Values that fit in a single register go in R0. */
2119 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2121 /* Values that don't occupy a full register appear at the least
2122 significant end of the value. This is the offset to where the
2123 value starts. */
2124 int offset;
2126 if (byte_order == BFD_ENDIAN_BIG)
2127 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2128 else
2129 offset = 0;
2131 regcache->cooked_write_part (MEP_R0_REGNUM, offset, TYPE_LENGTH (type),
2132 valbuf);
2135 /* Return values larger than a single register are returned in
2136 memory, pointed to by R0. Unfortunately, we can't count on R0
2137 pointing to the return buffer, so we raise an error here. */
2138 else
2139 error (_("\
2140 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2141 calling conventions do not provide enough information to do this.\n\
2142 Try using the 'return' command with no argument."));
2145 static enum return_value_convention
2146 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2147 struct type *type, struct regcache *regcache,
2148 gdb_byte *readbuf, const gdb_byte *writebuf)
2150 if (mep_use_struct_convention (type))
2152 if (readbuf)
2154 ULONGEST addr;
2155 /* Although the address of the struct buffer gets passed in R1, it's
2156 returned in R0. Fetch R0's value and then read the memory
2157 at that address. */
2158 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2159 read_memory (addr, readbuf, TYPE_LENGTH (type));
2161 if (writebuf)
2163 /* Return values larger than a single register are returned in
2164 memory, pointed to by R0. Unfortunately, we can't count on R0
2165 pointing to the return buffer, so we raise an error here. */
2166 error (_("\
2167 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2168 calling conventions do not provide enough information to do this.\n\
2169 Try using the 'return' command with no argument."));
2171 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2174 if (readbuf)
2175 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2176 if (writebuf)
2177 mep_store_return_value (gdbarch, type, regcache, writebuf);
2179 return RETURN_VALUE_REGISTER_CONVENTION;
2183 /* Inferior calls. */
2186 static CORE_ADDR
2187 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2189 /* Require word alignment. */
2190 return sp & -4;
2194 /* From "lang_spec2.txt":
2196 4.2 Calling conventions
2198 4.2.1 Core register conventions
2200 - Parameters should be evaluated from left to right, and they
2201 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2202 after should be held in the stack. If the size is larger than 4
2203 bytes in the first four parameters, the pointer should be held in
2204 the registers instead. If the size is larger than 4 bytes in the
2205 fifth parameter or after, the pointer should be held in the stack.
2207 - Return value of a function should be held in register $0. If the
2208 size of return value is larger than 4 bytes, $1 should hold the
2209 pointer pointing memory that would hold the return value. In this
2210 case, the first parameter should be held in $2, the second one in
2211 $3, and the third one in $4, and the forth parameter or after
2212 should be held in the stack.
2214 [This doesn't say so, but arguments shorter than four bytes are
2215 passed in the least significant end of a four-byte word when
2216 they're passed on the stack.] */
2219 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2220 large to fit in a register, save it on the stack, and place its
2221 address in COPY[i]. SP is the initial stack pointer; return the
2222 new stack pointer. */
2223 static CORE_ADDR
2224 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2225 CORE_ADDR copy[])
2227 int i;
2229 for (i = 0; i < argc; i++)
2231 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2233 if (arg_len > MEP_GPR_SIZE)
2235 /* Reserve space for the copy, and then round the SP down, to
2236 make sure it's all aligned properly. */
2237 sp = (sp - arg_len) & -4;
2238 write_memory (sp, value_contents (argv[i]).data (), arg_len);
2239 copy[i] = sp;
2243 return sp;
2247 static CORE_ADDR
2248 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2249 struct regcache *regcache, CORE_ADDR bp_addr,
2250 int argc, struct value **argv, CORE_ADDR sp,
2251 function_call_return_method return_method,
2252 CORE_ADDR struct_addr)
2254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2255 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2256 int i;
2258 /* The number of the next register available to hold an argument. */
2259 int arg_reg;
2261 /* The address of the next stack slot available to hold an argument. */
2262 CORE_ADDR arg_stack;
2264 /* The address of the end of the stack area for arguments. This is
2265 just for error checking. */
2266 CORE_ADDR arg_stack_end;
2268 sp = push_large_arguments (sp, argc, argv, copy);
2270 /* Reserve space for the stack arguments, if any. */
2271 arg_stack_end = sp;
2272 if (argc + (struct_addr ? 1 : 0) > 4)
2273 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2275 arg_reg = MEP_R1_REGNUM;
2276 arg_stack = sp;
2278 /* If we're returning a structure by value, push the pointer to the
2279 buffer as the first argument. */
2280 if (return_method == return_method_struct)
2282 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2283 arg_reg++;
2286 for (i = 0; i < argc; i++)
2288 ULONGEST value;
2290 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2291 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2292 value = extract_unsigned_integer (value_contents (argv[i]).data (),
2293 TYPE_LENGTH (value_type (argv[i])),
2294 byte_order);
2296 /* Arguments too large to fit in a GPR get copied to the stack,
2297 and we pass a pointer to the copy. */
2298 else
2299 value = copy[i];
2301 /* We use $1 -- $4 for passing arguments, then use the stack. */
2302 if (arg_reg <= MEP_R4_REGNUM)
2304 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2305 arg_reg++;
2307 else
2309 gdb_byte buf[MEP_GPR_SIZE];
2310 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2311 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2312 arg_stack += MEP_GPR_SIZE;
2316 gdb_assert (arg_stack <= arg_stack_end);
2318 /* Set the return address. */
2319 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2321 /* Update the stack pointer. */
2322 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2324 return sp;
2328 /* Initialization. */
2331 static struct gdbarch *
2332 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2334 struct gdbarch *gdbarch;
2336 /* Which me_module are we building a gdbarch object for? */
2337 CONFIG_ATTR me_module;
2339 /* If we have a BFD in hand, figure out which me_module it was built
2340 for. Otherwise, use the no-particular-me_module code. */
2341 if (info.abfd)
2343 /* The way to get the me_module code depends on the object file
2344 format. At the moment, we only know how to handle ELF. */
2345 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2347 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2348 me_module = (CONFIG_ATTR) flag;
2350 else
2351 me_module = CONFIG_NONE;
2353 else
2354 me_module = CONFIG_NONE;
2356 /* If we're setting the architecture from a file, check the
2357 endianness of the file against that of the me_module. */
2358 if (info.abfd)
2360 /* The negations on either side make the comparison treat all
2361 non-zero (true) values as equal. */
2362 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2364 const char *module_name = me_module_name (me_module);
2365 const char *module_endianness
2366 = me_module_big_endian (me_module) ? "big" : "little";
2367 const char *file_name = bfd_get_filename (info.abfd);
2368 const char *file_endianness
2369 = bfd_big_endian (info.abfd) ? "big" : "little";
2371 gdb_putc ('\n', gdb_stderr);
2372 if (module_name)
2373 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2374 "%s is %s-endian."),
2375 module_name, module_endianness,
2376 file_name, file_endianness);
2377 else
2378 warning (_("the selected MeP module is %s-endian, but the "
2379 "executable\n"
2380 "%s is %s-endian."),
2381 module_endianness, file_name, file_endianness);
2385 /* Find a candidate among the list of architectures we've created
2386 already. info->bfd_arch_info needs to match, but we also want
2387 the right me_module: the ELF header's e_flags field needs to
2388 match as well. */
2389 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2390 arches != NULL;
2391 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2393 mep_gdbarch_tdep *tdep
2394 = (mep_gdbarch_tdep *) gdbarch_tdep (arches->gdbarch);
2396 if (tdep->me_module == me_module)
2397 return arches->gdbarch;
2400 mep_gdbarch_tdep *tdep = new mep_gdbarch_tdep;
2401 gdbarch = gdbarch_alloc (&info, tdep);
2403 /* Get a CGEN CPU descriptor for this architecture. */
2405 const char *mach_name = info.bfd_arch_info->printable_name;
2406 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2407 ? CGEN_ENDIAN_BIG
2408 : CGEN_ENDIAN_LITTLE);
2410 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2411 CGEN_CPU_OPEN_ENDIAN, endian,
2412 CGEN_CPU_OPEN_END);
2415 tdep->me_module = me_module;
2417 /* Register set. */
2418 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2419 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2420 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2421 set_gdbarch_register_name (gdbarch, mep_register_name);
2422 set_gdbarch_register_type (gdbarch, mep_register_type);
2423 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2424 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2425 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2426 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2427 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2429 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2430 reggroup_add (gdbarch, mep_csr_reggroup);
2431 reggroup_add (gdbarch, mep_cr_reggroup);
2432 reggroup_add (gdbarch, mep_ccr_reggroup);
2434 /* Disassembly. */
2435 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2437 /* Breakpoints. */
2438 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2439 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2440 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2441 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2443 /* Frames and frame unwinding. */
2444 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2445 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2446 set_gdbarch_frame_args_skip (gdbarch, 0);
2448 /* Return values. */
2449 set_gdbarch_return_value (gdbarch, mep_return_value);
2451 /* Inferior function calls. */
2452 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2453 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2455 return gdbarch;
2458 void _initialize_mep_tdep ();
2459 void
2460 _initialize_mep_tdep ()
2462 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2463 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2464 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2466 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2468 mep_init_pseudoregister_maps ();