gdb/testsuite: fix gdb.trace/signal.exp on x86
[binutils-gdb/blckswan.git] / gdb / solib-frv.c
bloba6d6fe070882e247dfd2ff3f039104ddbd57a135
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2022 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
49 struct ext_elf32_fdpic_loadseg
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
110 /* Problem reading the target's memory. */
111 return NULL;
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
120 /* We only handle version 0. */
121 return NULL;
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
129 if (nsegs <= 0)
130 return NULL;
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181 typedef gdb_byte ext_ptr[4];
183 struct ext_elf32_fdpic_loadaddr
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
189 struct ext_link_map
191 struct ext_elf32_fdpic_loadaddr l_addr;
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203 /* Link map info to include in an allocated so_list entry. */
205 struct lm_info_frv : public lm_info_base
207 ~lm_info_frv ()
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
214 /* The loadmap, digested into an easier to use form. */
215 int_elf32_fdpic_loadmap *map = NULL;
216 /* The GOT address for this link map entry. */
217 CORE_ADDR got_value = 0;
218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
219 CORE_ADDR lm_addr = 0;
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
236 /* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
240 static lm_info_frv *main_executable_lm_info;
242 static void frv_relocate_main_executable (void);
243 static CORE_ADDR main_got (void);
244 static int enable_break2 (void);
246 /* Implement the "open_symbol_file_object" target_so_ops method. */
248 static int
249 open_symbol_file_object (int from_tty)
251 /* Unimplemented. */
252 return 0;
255 /* Cached value for lm_base(), below. */
256 static CORE_ADDR lm_base_cache = 0;
258 /* Link map address for main module. */
259 static CORE_ADDR main_lm_addr = 0;
261 /* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
269 static CORE_ADDR
270 lm_base (void)
272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
273 struct bound_minimal_symbol got_sym;
274 CORE_ADDR addr;
275 gdb_byte buf[FRV_PTR_SIZE];
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 current_program_space->symfile_object_file);
291 if (got_sym.minsym == 0)
293 if (solib_frv_debug)
294 gdb_printf (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
299 addr = got_sym.value_address () + 8;
301 if (solib_frv_debug)
302 gdb_printf (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
304 hex_string_custom (addr, 8));
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
310 if (solib_frv_debug)
311 gdb_printf (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
313 hex_string_custom (lm_base_cache, 8));
315 return lm_base_cache;
319 /* Implement the "current_sos" target_so_ops method. */
321 static struct so_list *
322 frv_current_sos (void)
324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
334 Note that the relocation of the main executable is also performed
335 by solib_create_inferior_hook(), however, in the case of core
336 files, this hook is called too late in order to be of benefit to
337 solib_add. solib_add eventually calls this this function,
338 frv_current_sos, and also precedes the call to
339 solib_create_inferior_hook(). (See post_create_inferior() in
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
344 /* Fetch the GOT corresponding to the main executable. */
345 mgot = main_got ();
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
350 /* We have at least one link map entry. Fetch the lot of them,
351 building the solist chain. */
352 while (lm_addr)
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
357 if (solib_frv_debug)
358 gdb_printf (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
360 hex_string_custom (lm_addr, 8));
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
367 break;
370 got_addr
371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
379 struct int_elf32_fdpic_loadmap *loadmap;
380 struct so_list *sop;
381 CORE_ADDR addr;
383 /* Fetch the load map address. */
384 addr = extract_unsigned_integer (lm_buf.l_addr.map,
385 sizeof lm_buf.l_addr.map,
386 byte_order);
387 loadmap = fetch_loadmap (addr);
388 if (loadmap == NULL)
390 warning (_("frv_current_sos: Unable to fetch load map. "
391 "Shared object chain may be incomplete."));
392 break;
395 sop = XCNEW (struct so_list);
396 lm_info_frv *li = new lm_info_frv;
397 sop->lm_info = li;
398 li->map = loadmap;
399 li->got_value = got_addr;
400 li->lm_addr = lm_addr;
401 /* Fetch the name. */
402 addr = extract_unsigned_integer (lm_buf.l_name,
403 sizeof (lm_buf.l_name),
404 byte_order);
405 gdb::unique_xmalloc_ptr<char> name_buf
406 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
408 if (solib_frv_debug)
409 gdb_printf (gdb_stdlog, "current_sos: name = %s\n",
410 name_buf.get ());
412 if (name_buf == nullptr)
413 warning (_("Can't read pathname for link map entry."));
414 else
416 strncpy (sop->so_name, name_buf.get (),
417 SO_NAME_MAX_PATH_SIZE - 1);
418 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
419 strcpy (sop->so_original_name, sop->so_name);
422 *sos_next_ptr = sop;
423 sos_next_ptr = &sop->next;
425 else
427 main_lm_addr = lm_addr;
430 lm_addr = extract_unsigned_integer (lm_buf.l_next,
431 sizeof (lm_buf.l_next), byte_order);
434 enable_break2 ();
436 return sos_head;
440 /* Return 1 if PC lies in the dynamic symbol resolution code of the
441 run time loader. */
443 static CORE_ADDR interp_text_sect_low;
444 static CORE_ADDR interp_text_sect_high;
445 static CORE_ADDR interp_plt_sect_low;
446 static CORE_ADDR interp_plt_sect_high;
448 static int
449 frv_in_dynsym_resolve_code (CORE_ADDR pc)
451 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
452 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
453 || in_plt_section (pc));
456 /* Given a loadmap and an address, return the displacement needed
457 to relocate the address. */
459 static CORE_ADDR
460 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
461 CORE_ADDR addr)
463 int seg;
465 for (seg = 0; seg < map->nsegs; seg++)
467 if (map->segs[seg].p_vaddr <= addr
468 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
470 return map->segs[seg].addr - map->segs[seg].p_vaddr;
474 return 0;
477 /* Print a warning about being unable to set the dynamic linker
478 breakpoint. */
480 static void
481 enable_break_failure_warning (void)
483 warning (_("Unable to find dynamic linker breakpoint function.\n"
484 "GDB will be unable to debug shared library initializers\n"
485 "and track explicitly loaded dynamic code."));
488 /* Helper function for gdb_bfd_lookup_symbol. */
490 static int
491 cmp_name (const asymbol *sym, const void *data)
493 return (strcmp (sym->name, (const char *) data) == 0);
496 /* Arrange for dynamic linker to hit breakpoint.
498 The dynamic linkers has, as part of its debugger interface, support
499 for arranging for the inferior to hit a breakpoint after mapping in
500 the shared libraries. This function enables that breakpoint.
502 On the FR-V, using the shared library (FDPIC) ABI, the symbol
503 _dl_debug_addr points to the r_debug struct which contains
504 a field called r_brk. r_brk is the address of the function
505 descriptor upon which a breakpoint must be placed. Being a
506 function descriptor, we must extract the entry point in order
507 to set the breakpoint.
509 Our strategy will be to get the .interp section from the
510 executable. This section will provide us with the name of the
511 interpreter. We'll open the interpreter and then look up
512 the address of _dl_debug_addr. We then relocate this address
513 using the interpreter's loadmap. Once the relocated address
514 is known, we fetch the value (address) corresponding to r_brk
515 and then use that value to fetch the entry point of the function
516 we're interested in. */
518 static int enable_break2_done = 0;
520 static int
521 enable_break2 (void)
523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
524 asection *interp_sect;
526 if (enable_break2_done)
527 return 1;
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
535 ".interp");
536 if (interp_sect)
538 unsigned int interp_sect_size;
539 char *buf;
540 int status;
541 CORE_ADDR addr, interp_loadmap_addr;
542 gdb_byte addr_buf[FRV_PTR_SIZE];
543 struct int_elf32_fdpic_loadmap *ldm;
545 /* Read the contents of the .interp section into a local buffer;
546 the contents specify the dynamic linker this program uses. */
547 interp_sect_size = bfd_section_size (interp_sect);
548 buf = (char *) alloca (interp_sect_size);
549 bfd_get_section_contents (current_program_space->exec_bfd (),
550 interp_sect, buf, 0, interp_sect_size);
552 /* Now we need to figure out where the dynamic linker was
553 loaded so that we can load its symbols and place a breakpoint
554 in the dynamic linker itself.
556 This address is stored on the stack. However, I've been unable
557 to find any magic formula to find it for Solaris (appears to
558 be trivial on GNU/Linux). Therefore, we have to try an alternate
559 mechanism to find the dynamic linker's base address. */
561 gdb_bfd_ref_ptr tmp_bfd;
564 tmp_bfd = solib_bfd_open (buf);
566 catch (const gdb_exception &ex)
570 if (tmp_bfd == NULL)
572 enable_break_failure_warning ();
573 return 0;
576 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
577 &interp_loadmap_addr, 0);
578 if (status < 0)
580 warning (_("Unable to determine dynamic linker loadmap address."));
581 enable_break_failure_warning ();
582 return 0;
585 if (solib_frv_debug)
586 gdb_printf (gdb_stdlog,
587 "enable_break: interp_loadmap_addr = %s\n",
588 hex_string_custom (interp_loadmap_addr, 8));
590 ldm = fetch_loadmap (interp_loadmap_addr);
591 if (ldm == NULL)
593 warning (_("Unable to load dynamic linker loadmap at address %s."),
594 hex_string_custom (interp_loadmap_addr, 8));
595 enable_break_failure_warning ();
596 return 0;
599 /* Record the relocated start and end address of the dynamic linker
600 text and plt section for svr4_in_dynsym_resolve_code. */
601 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
602 if (interp_sect)
604 interp_text_sect_low = bfd_section_vma (interp_sect);
605 interp_text_sect_low
606 += displacement_from_map (ldm, interp_text_sect_low);
607 interp_text_sect_high
608 = interp_text_sect_low + bfd_section_size (interp_sect);
610 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
611 if (interp_sect)
613 interp_plt_sect_low = bfd_section_vma (interp_sect);
614 interp_plt_sect_low
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
617 interp_plt_sect_low + bfd_section_size (interp_sect);
620 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
622 if (addr == 0)
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
626 enable_break_failure_warning ();
627 return 0;
630 if (solib_frv_debug)
631 gdb_printf (gdb_stdlog,
632 "enable_break: _dl_debug_addr "
633 "(prior to relocation) = %s\n",
634 hex_string_custom (addr, 8));
636 addr += displacement_from_map (ldm, addr);
638 if (solib_frv_debug)
639 gdb_printf (gdb_stdlog,
640 "enable_break: _dl_debug_addr "
641 "(after relocation) = %s\n",
642 hex_string_custom (addr, 8));
644 /* Fetch the address of the r_debug struct. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
647 warning (_("Unable to fetch contents of _dl_debug_addr "
648 "(at address %s) from dynamic linker"),
649 hex_string_custom (addr, 8));
651 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
653 if (solib_frv_debug)
654 gdb_printf (gdb_stdlog,
655 "enable_break: _dl_debug_addr[0..3] = %s\n",
656 hex_string_custom (addr, 8));
658 /* If it's zero, then the ldso hasn't initialized yet, and so
659 there are no shared libs yet loaded. */
660 if (addr == 0)
662 if (solib_frv_debug)
663 gdb_printf (gdb_stdlog,
664 "enable_break: ldso not yet initialized\n");
665 /* Do not warn, but mark to run again. */
666 return 0;
669 /* Fetch the r_brk field. It's 8 bytes from the start of
670 _dl_debug_addr. */
671 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
673 warning (_("Unable to fetch _dl_debug_addr->r_brk "
674 "(at address %s) from dynamic linker"),
675 hex_string_custom (addr + 8, 8));
676 enable_break_failure_warning ();
677 return 0;
679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
686 hex_string_custom (addr, 8));
687 enable_break_failure_warning ();
688 return 0;
690 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
692 /* We're done with the loadmap. */
693 xfree (ldm);
695 /* Remove all the solib event breakpoints. Their addresses
696 may have changed since the last time we ran the program. */
697 remove_solib_event_breakpoints ();
699 /* Now (finally!) create the solib breakpoint. */
700 create_solib_event_breakpoint (target_gdbarch (), addr);
702 enable_break2_done = 1;
704 return 1;
707 /* Tell the user we couldn't set a dynamic linker breakpoint. */
708 enable_break_failure_warning ();
710 /* Failure return. */
711 return 0;
714 static int
715 enable_break (void)
717 asection *interp_sect;
718 CORE_ADDR entry_point;
720 if (current_program_space->symfile_object_file == NULL)
722 if (solib_frv_debug)
723 gdb_printf (gdb_stdlog,
724 "enable_break: No symbol file found.\n");
725 return 0;
728 if (!entry_point_address_query (&entry_point))
730 if (solib_frv_debug)
731 gdb_printf (gdb_stdlog,
732 "enable_break: Symbol file has no entry point.\n");
733 return 0;
736 /* Check for the presence of a .interp section. If there is no
737 such section, the executable is statically linked. */
739 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
740 ".interp");
742 if (interp_sect == NULL)
744 if (solib_frv_debug)
745 gdb_printf (gdb_stdlog,
746 "enable_break: No .interp section found.\n");
747 return 0;
750 create_solib_event_breakpoint (target_gdbarch (), entry_point);
752 if (solib_frv_debug)
753 gdb_printf (gdb_stdlog,
754 "enable_break: solib event breakpoint "
755 "placed at entry point: %s\n",
756 hex_string_custom (entry_point, 8));
757 return 1;
760 static void
761 frv_relocate_main_executable (void)
763 int status;
764 CORE_ADDR exec_addr, interp_addr;
765 struct int_elf32_fdpic_loadmap *ldm;
766 int changed;
767 struct obj_section *osect;
769 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
770 &interp_addr, &exec_addr);
772 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
774 /* Not using FDPIC ABI, so do nothing. */
775 return;
778 /* Fetch the loadmap located at ``exec_addr''. */
779 ldm = fetch_loadmap (exec_addr);
780 if (ldm == NULL)
781 error (_("Unable to load the executable's loadmap."));
783 delete main_executable_lm_info;
784 main_executable_lm_info = new lm_info_frv;
785 main_executable_lm_info->map = ldm;
787 objfile *objf = current_program_space->symfile_object_file;
788 section_offsets new_offsets (objf->section_offsets.size ());
789 changed = 0;
791 ALL_OBJFILE_OSECTIONS (objf, osect)
793 CORE_ADDR orig_addr, addr, offset;
794 int osect_idx;
795 int seg;
797 osect_idx = osect - objf->sections;
799 /* Current address of section. */
800 addr = osect->addr ();
801 /* Offset from where this section started. */
802 offset = objf->section_offsets[osect_idx];
803 /* Original address prior to any past relocations. */
804 orig_addr = addr - offset;
806 for (seg = 0; seg < ldm->nsegs; seg++)
808 if (ldm->segs[seg].p_vaddr <= orig_addr
809 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
811 new_offsets[osect_idx]
812 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
814 if (new_offsets[osect_idx] != offset)
815 changed = 1;
816 break;
821 if (changed)
822 objfile_relocate (objf, new_offsets);
824 /* Now that OBJF has been relocated, we can compute the GOT value
825 and stash it away. */
826 main_executable_lm_info->got_value = main_got ();
829 /* Implement the "create_inferior_hook" target_solib_ops method.
831 For the FR-V shared library ABI (FDPIC), the main executable needs
832 to be relocated. The shared library breakpoints also need to be
833 enabled. */
835 static void
836 frv_solib_create_inferior_hook (int from_tty)
838 /* Relocate main executable. */
839 frv_relocate_main_executable ();
841 /* Enable shared library breakpoints. */
842 if (!enable_break ())
844 warning (_("shared library handler failed to enable breakpoint"));
845 return;
849 static void
850 frv_clear_solib (void)
852 lm_base_cache = 0;
853 enable_break2_done = 0;
854 main_lm_addr = 0;
856 delete main_executable_lm_info;
857 main_executable_lm_info = NULL;
860 static void
861 frv_free_so (struct so_list *so)
863 lm_info_frv *li = (lm_info_frv *) so->lm_info;
865 delete li;
868 static void
869 frv_relocate_section_addresses (struct so_list *so,
870 struct target_section *sec)
872 int seg;
873 lm_info_frv *li = (lm_info_frv *) so->lm_info;
874 int_elf32_fdpic_loadmap *map = li->map;
876 for (seg = 0; seg < map->nsegs; seg++)
878 if (map->segs[seg].p_vaddr <= sec->addr
879 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
881 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
883 sec->addr += displ;
884 sec->endaddr += displ;
885 break;
890 /* Return the GOT address associated with the main executable. Return
891 0 if it can't be found. */
893 static CORE_ADDR
894 main_got (void)
896 struct bound_minimal_symbol got_sym;
898 objfile *objf = current_program_space->symfile_object_file;
899 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf);
900 if (got_sym.minsym == 0)
901 return 0;
903 return got_sym.value_address ();
906 /* Find the global pointer for the given function address ADDR. */
908 CORE_ADDR
909 frv_fdpic_find_global_pointer (CORE_ADDR addr)
911 for (struct so_list *so : current_program_space->solibs ())
913 int seg;
914 lm_info_frv *li = (lm_info_frv *) so->lm_info;
915 int_elf32_fdpic_loadmap *map = li->map;
917 for (seg = 0; seg < map->nsegs; seg++)
919 if (map->segs[seg].addr <= addr
920 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
921 return li->got_value;
925 /* Didn't find it in any of the shared objects. So assume it's in the
926 main executable. */
927 return main_got ();
930 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
931 static CORE_ADDR find_canonical_descriptor_in_load_object
932 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
934 /* Given a function entry point, attempt to find the canonical descriptor
935 associated with that entry point. Return 0 if no canonical descriptor
936 could be found. */
938 CORE_ADDR
939 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
941 const char *name;
942 CORE_ADDR addr;
943 CORE_ADDR got_value;
944 struct symbol *sym;
946 /* Fetch the corresponding global pointer for the entry point. */
947 got_value = frv_fdpic_find_global_pointer (entry_point);
949 /* Attempt to find the name of the function. If the name is available,
950 it'll be used as an aid in finding matching functions in the dynamic
951 symbol table. */
952 sym = find_pc_function (entry_point);
953 if (sym == 0)
954 name = 0;
955 else
956 name = sym->linkage_name ();
958 /* Check the main executable. */
959 objfile *objf = current_program_space->symfile_object_file;
960 addr = find_canonical_descriptor_in_load_object
961 (entry_point, got_value, name, objf->obfd,
962 main_executable_lm_info);
964 /* If descriptor not found via main executable, check each load object
965 in list of shared objects. */
966 if (addr == 0)
968 for (struct so_list *so : current_program_space->solibs ())
970 lm_info_frv *li = (lm_info_frv *) so->lm_info;
972 addr = find_canonical_descriptor_in_load_object
973 (entry_point, got_value, name, so->abfd, li);
975 if (addr != 0)
976 break;
980 return addr;
983 static CORE_ADDR
984 find_canonical_descriptor_in_load_object
985 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
986 lm_info_frv *lm)
988 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
989 arelent *rel;
990 unsigned int i;
991 CORE_ADDR addr = 0;
993 /* Nothing to do if no bfd. */
994 if (abfd == 0)
995 return 0;
997 /* Nothing to do if no link map. */
998 if (lm == 0)
999 return 0;
1001 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1002 (More about this later.) But in order to fetch the relocs, we
1003 need to first fetch the dynamic symbols. These symbols need to
1004 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1005 works. (See the comments in the declaration of struct lm_info
1006 for more information.) */
1007 if (lm->dyn_syms == NULL)
1009 long storage_needed;
1010 unsigned int number_of_symbols;
1012 /* Determine amount of space needed to hold the dynamic symbol table. */
1013 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1015 /* If there are no dynamic symbols, there's nothing to do. */
1016 if (storage_needed <= 0)
1017 return 0;
1019 /* Allocate space for the dynamic symbol table. */
1020 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1022 /* Fetch the dynamic symbol table. */
1023 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1025 if (number_of_symbols == 0)
1026 return 0;
1029 /* Fetch the dynamic relocations if not already cached. */
1030 if (lm->dyn_relocs == NULL)
1032 long storage_needed;
1034 /* Determine amount of space needed to hold the dynamic relocs. */
1035 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1037 /* Bail out if there are no dynamic relocs. */
1038 if (storage_needed <= 0)
1039 return 0;
1041 /* Allocate space for the relocs. */
1042 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1044 /* Fetch the dynamic relocs. */
1045 lm->dyn_reloc_count
1046 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1049 /* Search the dynamic relocs. */
1050 for (i = 0; i < lm->dyn_reloc_count; i++)
1052 rel = lm->dyn_relocs[i];
1054 /* Relocs of interest are those which meet the following
1055 criteria:
1057 - the names match (assuming the caller could provide
1058 a name which matches ``entry_point'').
1059 - the relocation type must be R_FRV_FUNCDESC. Relocs
1060 of this type are used (by the dynamic linker) to
1061 look up the address of a canonical descriptor (allocating
1062 it if need be) and initializing the GOT entry referred
1063 to by the offset to the address of the descriptor.
1065 These relocs of interest may be used to obtain a
1066 candidate descriptor by first adjusting the reloc's
1067 address according to the link map and then dereferencing
1068 this address (which is a GOT entry) to obtain a descriptor
1069 address. */
1070 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1071 && rel->howto->type == R_FRV_FUNCDESC)
1073 gdb_byte buf [FRV_PTR_SIZE];
1075 /* Compute address of address of candidate descriptor. */
1076 addr = rel->address + displacement_from_map (lm->map, rel->address);
1078 /* Fetch address of candidate descriptor. */
1079 if (target_read_memory (addr, buf, sizeof buf) != 0)
1080 continue;
1081 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1083 /* Check for matching entry point. */
1084 if (target_read_memory (addr, buf, sizeof buf) != 0)
1085 continue;
1086 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1087 != entry_point)
1088 continue;
1090 /* Check for matching got value. */
1091 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1092 continue;
1093 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1094 != got_value)
1095 continue;
1097 /* Match was successful! Exit loop. */
1098 break;
1102 return addr;
1105 /* Given an objfile, return the address of its link map. This value is
1106 needed for TLS support. */
1107 CORE_ADDR
1108 frv_fetch_objfile_link_map (struct objfile *objfile)
1110 /* Cause frv_current_sos() to be run if it hasn't been already. */
1111 if (main_lm_addr == 0)
1112 solib_add (0, 0, 1);
1114 /* frv_current_sos() will set main_lm_addr for the main executable. */
1115 if (objfile == current_program_space->symfile_object_file)
1116 return main_lm_addr;
1118 /* The other link map addresses may be found by examining the list
1119 of shared libraries. */
1120 for (struct so_list *so : current_program_space->solibs ())
1122 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1124 if (so->objfile == objfile)
1125 return li->lm_addr;
1128 /* Not found! */
1129 return 0;
1132 struct target_so_ops frv_so_ops;
1134 void _initialize_frv_solib ();
1135 void
1136 _initialize_frv_solib ()
1138 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1139 frv_so_ops.free_so = frv_free_so;
1140 frv_so_ops.clear_solib = frv_clear_solib;
1141 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1142 frv_so_ops.current_sos = frv_current_sos;
1143 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1144 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1145 frv_so_ops.bfd_open = solib_bfd_open;
1147 /* Debug this file's internals. */
1148 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1149 &solib_frv_debug, _("\
1150 Set internal debugging of shared library code for FR-V."), _("\
1151 Show internal debugging of shared library code for FR-V."), _("\
1152 When non-zero, FR-V solib specific internal debugging is enabled."),
1153 NULL,
1154 NULL, /* FIXME: i18n: */
1155 &setdebuglist, &showdebuglist);