1 // object.cc -- support for an object file for linking in gold
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
49 // Struct Read_symbols_data.
51 // Destroy any remaining File_view objects and buffers of decompressed
54 Read_symbols_data::~Read_symbols_data()
56 if (this->section_headers
!= NULL
)
57 delete this->section_headers
;
58 if (this->section_names
!= NULL
)
59 delete this->section_names
;
60 if (this->symbols
!= NULL
)
62 if (this->symbol_names
!= NULL
)
63 delete this->symbol_names
;
64 if (this->versym
!= NULL
)
66 if (this->verdef
!= NULL
)
68 if (this->verneed
!= NULL
)
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
78 template<int size
, bool big_endian
>
80 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
82 if (!this->symtab_xindex_
.empty())
85 gold_assert(symtab_shndx
!= 0);
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i
= object
->shnum();
93 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
96 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
101 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
108 template<int size
, bool big_endian
>
110 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
111 const unsigned char* pshdrs
)
113 section_size_type bytecount
;
114 const unsigned char* contents
;
116 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
119 const unsigned char* p
= (pshdrs
121 * elfcpp::Elf_sizes
<size
>::shdr_size
));
122 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
123 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
124 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
127 gold_assert(this->symtab_xindex_
.empty());
128 this->symtab_xindex_
.reserve(bytecount
/ 4);
129 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
131 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
141 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
143 if (symndx
>= this->symtab_xindex_
.size())
145 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
147 return elfcpp::SHN_UNDEF
;
149 unsigned int shndx
= this->symtab_xindex_
[symndx
];
150 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
152 object
->error(_("extended index for symbol %u out of range: %u"),
154 return elfcpp::SHN_UNDEF
;
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
166 Object::error(const char* format
, ...) const
169 va_start(args
, format
);
171 if (vasprintf(&buf
, format
, args
) < 0)
174 gold_error(_("%s: %s"), this->name().c_str(), buf
);
178 // Return a view of the contents of a section.
181 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
183 { return this->do_section_contents(shndx
, plen
, cache
); }
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
188 template<int size
, bool big_endian
>
190 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
191 Read_symbols_data
* sd
)
193 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
195 // Read the section headers.
196 const off_t shoff
= elf_file
->shoff();
197 const unsigned int shnum
= this->shnum();
198 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
201 // Read the section names.
202 const unsigned char* pshdrs
= sd
->section_headers
->data();
203 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
204 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
206 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames
.get_sh_type()));
210 sd
->section_names_size
=
211 convert_to_section_size_type(shdrnames
.get_sh_size());
212 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
213 sd
->section_names_size
, false,
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
222 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
223 Symbol_table
* symtab
)
225 const char warn_prefix
[] = ".gnu.warning.";
226 const int warn_prefix_len
= sizeof warn_prefix
- 1;
227 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
235 section_size_type len
;
236 const unsigned char* contents
= this->section_contents(shndx
, &len
,
240 const char* warning
= name
+ warn_prefix_len
;
241 contents
= reinterpret_cast<const unsigned char*>(warning
);
242 len
= strlen(warning
);
244 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
245 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
255 Object::handle_split_stack_section(const char* name
)
257 if (strcmp(name
, ".note.GNU-split-stack") == 0)
259 this->uses_split_stack_
= true;
262 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
264 this->has_no_split_stack_
= true;
274 Relobj::initialize_input_to_output_map(unsigned int shndx
,
275 typename
elfcpp::Elf_types
<size
>::Elf_Addr starting_address
,
276 Unordered_map
<section_offset_type
,
277 typename
elfcpp::Elf_types
<size
>::Elf_Addr
>* output_addresses
) const {
278 Object_merge_map
*map
= this->object_merge_map_
;
279 map
->initialize_input_to_output_map
<size
>(shndx
, starting_address
,
284 Relobj::add_merge_mapping(Output_section_data
*output_data
,
285 unsigned int shndx
, section_offset_type offset
,
286 section_size_type length
,
287 section_offset_type output_offset
) {
288 Object_merge_map
* object_merge_map
= this->get_or_create_merge_map();
289 object_merge_map
->add_mapping(output_data
, shndx
, offset
, length
, output_offset
);
293 Relobj::merge_output_offset(unsigned int shndx
, section_offset_type offset
,
294 section_offset_type
*poutput
) const {
295 Object_merge_map
* object_merge_map
= this->object_merge_map_
;
296 if (object_merge_map
== NULL
)
298 return object_merge_map
->get_output_offset(shndx
, offset
, poutput
);
301 const Output_section_data
*
302 Relobj::find_merge_section(unsigned int shndx
) const {
303 Object_merge_map
* object_merge_map
= this->object_merge_map_
;
304 if (object_merge_map
== NULL
)
306 return object_merge_map
->find_merge_section(shndx
);
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
314 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
315 unsigned int section_header_size
)
317 gc_sd
->section_headers_data
=
318 new unsigned char[(section_header_size
)];
319 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
320 section_header_size
);
321 gc_sd
->section_names_data
=
322 new unsigned char[sd
->section_names_size
];
323 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
324 sd
->section_names_size
);
325 gc_sd
->section_names_size
= sd
->section_names_size
;
326 if (sd
->symbols
!= NULL
)
328 gc_sd
->symbols_data
=
329 new unsigned char[sd
->symbols_size
];
330 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
335 gc_sd
->symbols_data
= NULL
;
337 gc_sd
->symbols_size
= sd
->symbols_size
;
338 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
339 if (sd
->symbol_names
!= NULL
)
341 gc_sd
->symbol_names_data
=
342 new unsigned char[sd
->symbol_names_size
];
343 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
344 sd
->symbol_names_size
);
348 gc_sd
->symbol_names_data
= NULL
;
350 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
358 Relobj::is_section_name_included(const char* name
)
360 if (is_prefix_of(".ctors", name
)
361 || is_prefix_of(".dtors", name
)
362 || is_prefix_of(".note", name
)
363 || is_prefix_of(".init", name
)
364 || is_prefix_of(".fini", name
)
365 || is_prefix_of(".gcc_except_table", name
)
366 || is_prefix_of(".jcr", name
)
367 || is_prefix_of(".preinit_array", name
)
368 || (is_prefix_of(".text", name
)
369 && strstr(name
, "personality"))
370 || (is_prefix_of(".data", name
)
371 && strstr(name
, "personality"))
372 || (is_prefix_of(".sdata", name
)
373 && strstr(name
, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name
)
375 && strstr(name
, "personality"))
376 || (is_prefix_of(".rodata", name
)
377 && strstr(name
, "nptl_version")))
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
390 Relobj::finalize_incremental_relocs(Layout
* layout
, bool clear_counts
)
392 unsigned int nsyms
= this->get_global_symbols()->size();
393 this->reloc_bases_
= new unsigned int[nsyms
];
395 gold_assert(this->reloc_bases_
!= NULL
);
396 gold_assert(layout
->incremental_inputs() != NULL
);
398 unsigned int rindex
= layout
->incremental_inputs()->get_reloc_count();
399 for (unsigned int i
= 0; i
< nsyms
; ++i
)
401 this->reloc_bases_
[i
] = rindex
;
402 rindex
+= this->reloc_counts_
[i
];
404 this->reloc_counts_
[i
] = 0;
406 layout
->incremental_inputs()->set_reloc_count(rindex
);
410 Relobj::get_or_create_merge_map()
412 if (!this->object_merge_map_
)
413 this->object_merge_map_
= new Object_merge_map();
414 return this->object_merge_map_
;
417 // Class Sized_relobj.
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
422 template<int size
, bool big_endian
>
424 Sized_relobj
<size
, big_endian
>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor
* v
) const
427 unsigned int nsyms
= this->local_symbol_count();
428 for (unsigned int i
= 0; i
< nsyms
; i
++)
430 Local_got_entry_key
key(i
);
431 Local_got_offsets::const_iterator p
= this->local_got_offsets_
.find(key
);
432 if (p
!= this->local_got_offsets_
.end())
434 const Got_offset_list
* got_offsets
= p
->second
;
435 got_offsets
->for_all_got_offsets(v
);
440 // Get the address of an output section.
442 template<int size
, bool big_endian
>
444 Sized_relobj
<size
, big_endian
>::do_output_section_address(
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx
);
452 const Output_section
* os
= this->do_output_section(shndx
);
453 gold_assert(os
!= NULL
);
454 return os
->address();
457 // Class Sized_relobj_file.
459 template<int size
, bool big_endian
>
460 Sized_relobj_file
<size
, big_endian
>::Sized_relobj_file(
461 const std::string
& name
,
462 Input_file
* input_file
,
464 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
465 : Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
),
466 elf_file_(this, ehdr
),
467 osabi_(ehdr
.get_ei_osabi()),
468 e_type_(ehdr
.get_e_type()),
470 local_symbol_count_(0),
471 output_local_symbol_count_(0),
472 output_local_dynsym_count_(0),
475 local_symbol_offset_(0),
476 local_dynsym_offset_(0),
478 local_plt_offsets_(),
479 kept_comdat_sections_(),
480 has_eh_frame_(false),
481 is_deferred_layout_(false),
483 deferred_layout_relocs_(),
488 template<int size
, bool big_endian
>
489 Sized_relobj_file
<size
, big_endian
>::~Sized_relobj_file()
493 // Set up an object file based on the file header. This sets up the
494 // section information.
496 template<int size
, bool big_endian
>
498 Sized_relobj_file
<size
, big_endian
>::do_setup()
500 const unsigned int shnum
= this->elf_file_
.shnum();
501 this->set_shnum(shnum
);
504 // Find the SHT_SYMTAB section, given the section headers. The ELF
505 // standard says that maybe in the future there can be more than one
506 // SHT_SYMTAB section. Until somebody figures out how that could
507 // work, we assume there is only one.
509 template<int size
, bool big_endian
>
511 Sized_relobj_file
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
513 const unsigned int shnum
= this->shnum();
514 this->symtab_shndx_
= 0;
517 // Look through the sections in reverse order, since gas tends
518 // to put the symbol table at the end.
519 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
520 unsigned int i
= shnum
;
521 unsigned int xindex_shndx
= 0;
522 unsigned int xindex_link
= 0;
526 p
-= This::shdr_size
;
527 typename
This::Shdr
shdr(p
);
528 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
530 this->symtab_shndx_
= i
;
531 if (xindex_shndx
> 0 && xindex_link
== i
)
534 new Xindex(this->elf_file_
.large_shndx_offset());
535 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
538 this->set_xindex(xindex
);
543 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
544 // one. This will work if it follows the SHT_SYMTAB
546 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
549 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
555 // Return the Xindex structure to use for object with lots of
558 template<int size
, bool big_endian
>
560 Sized_relobj_file
<size
, big_endian
>::do_initialize_xindex()
562 gold_assert(this->symtab_shndx_
!= -1U);
563 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
564 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
568 // Return whether SHDR has the right type and flags to be a GNU
569 // .eh_frame section.
571 template<int size
, bool big_endian
>
573 Sized_relobj_file
<size
, big_endian
>::check_eh_frame_flags(
574 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
576 elfcpp::Elf_Word sh_type
= shdr
->get_sh_type();
577 return ((sh_type
== elfcpp::SHT_PROGBITS
578 || sh_type
== parameters
->target().unwind_section_type())
579 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
582 // Find the section header with the given name.
584 template<int size
, bool big_endian
>
587 const unsigned char* pshdrs
,
590 section_size_type names_size
,
591 const unsigned char* hdr
) const
593 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
594 const unsigned int shnum
= this->shnum();
595 const unsigned char* hdr_end
= pshdrs
+ shdr_size
* shnum
;
602 // We found HDR last time we were called, continue looking.
603 typename
elfcpp::Shdr
<size
, big_endian
> shdr(hdr
);
604 sh_name
= shdr
.get_sh_name();
608 // Look for the next occurrence of NAME in NAMES.
609 // The fact that .shstrtab produced by current GNU tools is
610 // string merged means we shouldn't have both .not.foo and
611 // .foo in .shstrtab, and multiple .foo sections should all
612 // have the same sh_name. However, this is not guaranteed
613 // by the ELF spec and not all ELF object file producers may
615 size_t len
= strlen(name
) + 1;
616 const char *p
= sh_name
? names
+ sh_name
+ len
: names
;
617 p
= reinterpret_cast<const char*>(memmem(p
, names_size
- (p
- names
),
628 while (hdr
< hdr_end
)
630 typename
elfcpp::Shdr
<size
, big_endian
> shdr(hdr
);
631 if (shdr
.get_sh_name() == sh_name
)
641 // Return whether there is a GNU .eh_frame section, given the section
642 // headers and the section names.
644 template<int size
, bool big_endian
>
646 Sized_relobj_file
<size
, big_endian
>::find_eh_frame(
647 const unsigned char* pshdrs
,
649 section_size_type names_size
) const
651 const unsigned char* s
= NULL
;
655 s
= this->template find_shdr
<size
, big_endian
>(pshdrs
, ".eh_frame",
656 names
, names_size
, s
);
660 typename
This::Shdr
shdr(s
);
661 if (this->check_eh_frame_flags(&shdr
))
666 // Return TRUE if this is a section whose contents will be needed in the
667 // Add_symbols task. This function is only called for sections that have
668 // already passed the test in is_compressed_debug_section() and the debug
669 // section name prefix, ".debug"/".zdebug", has been skipped.
672 need_decompressed_section(const char* name
)
677 #ifdef ENABLE_THREADS
678 // Decompressing these sections now will help only if we're
680 if (parameters
->options().threads())
682 // We will need .zdebug_str if this is not an incremental link
683 // (i.e., we are processing string merge sections) or if we need
684 // to build a gdb index.
685 if ((!parameters
->incremental() || parameters
->options().gdb_index())
686 && strcmp(name
, "str") == 0)
689 // We will need these other sections when building a gdb index.
690 if (parameters
->options().gdb_index()
691 && (strcmp(name
, "info") == 0
692 || strcmp(name
, "types") == 0
693 || strcmp(name
, "pubnames") == 0
694 || strcmp(name
, "pubtypes") == 0
695 || strcmp(name
, "ranges") == 0
696 || strcmp(name
, "abbrev") == 0))
701 // Even when single-threaded, we will need .zdebug_str if this is
702 // not an incremental link and we are building a gdb index.
703 // Otherwise, we would decompress the section twice: once for
704 // string merge processing, and once for building the gdb index.
705 if (!parameters
->incremental()
706 && parameters
->options().gdb_index()
707 && strcmp(name
, "str") == 0)
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
716 template<int size
, bool big_endian
>
717 Compressed_section_map
*
718 build_compressed_section_map(
719 const unsigned char* pshdrs
,
722 section_size_type names_size
,
724 bool decompress_if_needed
)
726 Compressed_section_map
* uncompressed_map
= new Compressed_section_map();
727 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
728 const unsigned char* p
= pshdrs
+ shdr_size
;
730 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
732 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
733 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
734 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
736 if (shdr
.get_sh_name() >= names_size
)
738 obj
->error(_("bad section name offset for section %u: %lu"),
739 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
743 const char* name
= names
+ shdr
.get_sh_name();
744 bool is_compressed
= ((shdr
.get_sh_flags()
745 & elfcpp::SHF_COMPRESSED
) != 0);
746 bool is_zcompressed
= (!is_compressed
747 && is_compressed_debug_section(name
));
749 if (is_zcompressed
|| is_compressed
)
751 section_size_type len
;
752 const unsigned char* contents
=
753 obj
->section_contents(i
, &len
, false);
754 uint64_t uncompressed_size
;
755 Compressed_section_info info
;
758 // Skip over the ".zdebug" prefix.
760 uncompressed_size
= get_uncompressed_size(contents
, len
);
761 info
.addralign
= shdr
.get_sh_addralign();
765 // Skip over the ".debug" prefix.
767 elfcpp::Chdr
<size
, big_endian
> chdr(contents
);
768 uncompressed_size
= chdr
.get_ch_size();
769 info
.addralign
= chdr
.get_ch_addralign();
771 info
.size
= convert_to_section_size_type(uncompressed_size
);
772 info
.flag
= shdr
.get_sh_flags();
773 info
.contents
= NULL
;
774 if (uncompressed_size
!= -1ULL)
776 unsigned char* uncompressed_data
= NULL
;
777 if (decompress_if_needed
&& need_decompressed_section(name
))
779 uncompressed_data
= new unsigned char[uncompressed_size
];
780 if (decompress_input_section(contents
, len
,
784 shdr
.get_sh_flags()))
785 info
.contents
= uncompressed_data
;
787 delete[] uncompressed_data
;
789 (*uncompressed_map
)[i
] = info
;
794 return uncompressed_map
;
797 // Stash away info for a number of special sections.
798 // Return true if any of the sections found require local symbols to be read.
800 template<int size
, bool big_endian
>
802 Sized_relobj_file
<size
, big_endian
>::do_find_special_sections(
803 Read_symbols_data
* sd
)
805 const unsigned char* const pshdrs
= sd
->section_headers
->data();
806 const unsigned char* namesu
= sd
->section_names
->data();
807 const char* names
= reinterpret_cast<const char*>(namesu
);
809 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
810 this->has_eh_frame_
= true;
812 Compressed_section_map
* compressed_sections
=
813 build_compressed_section_map
<size
, big_endian
>(
814 pshdrs
, this->shnum(), names
, sd
->section_names_size
, this, true);
815 if (compressed_sections
!= NULL
)
816 this->set_compressed_sections(compressed_sections
);
818 return (this->has_eh_frame_
819 || (!parameters
->options().relocatable()
820 && parameters
->options().gdb_index()
821 && (memmem(names
, sd
->section_names_size
, "debug_info", 11) != NULL
822 || memmem(names
, sd
->section_names_size
,
823 "debug_types", 12) != NULL
)));
826 // Read the sections and symbols from an object file.
828 template<int size
, bool big_endian
>
830 Sized_relobj_file
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
832 this->base_read_symbols(sd
);
835 // Read the sections and symbols from an object file. This is common
836 // code for all target-specific overrides of do_read_symbols().
838 template<int size
, bool big_endian
>
840 Sized_relobj_file
<size
, big_endian
>::base_read_symbols(Read_symbols_data
* sd
)
842 this->read_section_data(&this->elf_file_
, sd
);
844 const unsigned char* const pshdrs
= sd
->section_headers
->data();
846 this->find_symtab(pshdrs
);
848 bool need_local_symbols
= this->do_find_special_sections(sd
);
851 sd
->symbols_size
= 0;
852 sd
->external_symbols_offset
= 0;
853 sd
->symbol_names
= NULL
;
854 sd
->symbol_names_size
= 0;
856 if (this->symtab_shndx_
== 0)
858 // No symbol table. Weird but legal.
862 // Get the symbol table section header.
863 typename
This::Shdr
symtabshdr(pshdrs
864 + this->symtab_shndx_
* This::shdr_size
);
865 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
867 // If this object has a .eh_frame section, or if building a .gdb_index
868 // section and there is debug info, we need all the symbols.
869 // Otherwise we only need the external symbols. While it would be
870 // simpler to just always read all the symbols, I've seen object
871 // files with well over 2000 local symbols, which for a 64-bit
872 // object file format is over 5 pages that we don't need to read
875 const int sym_size
= This::sym_size
;
876 const unsigned int loccount
= symtabshdr
.get_sh_info();
877 this->local_symbol_count_
= loccount
;
878 this->local_values_
.resize(loccount
);
879 section_offset_type locsize
= loccount
* sym_size
;
880 off_t dataoff
= symtabshdr
.get_sh_offset();
881 section_size_type datasize
=
882 convert_to_section_size_type(symtabshdr
.get_sh_size());
883 off_t extoff
= dataoff
+ locsize
;
884 section_size_type extsize
= datasize
- locsize
;
886 off_t readoff
= need_local_symbols
? dataoff
: extoff
;
887 section_size_type readsize
= need_local_symbols
? datasize
: extsize
;
891 // No external symbols. Also weird but also legal.
895 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
897 // Read the section header for the symbol names.
898 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
899 if (strtab_shndx
>= this->shnum())
901 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
904 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
905 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
907 this->error(_("symbol table name section has wrong type: %u"),
908 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
912 // Read the symbol names.
913 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
914 strtabshdr
.get_sh_size(),
917 sd
->symbols
= fvsymtab
;
918 sd
->symbols_size
= readsize
;
919 sd
->external_symbols_offset
= need_local_symbols
? locsize
: 0;
920 sd
->symbol_names
= fvstrtab
;
921 sd
->symbol_names_size
=
922 convert_to_section_size_type(strtabshdr
.get_sh_size());
925 // Return the section index of symbol SYM. Set *VALUE to its value in
926 // the object file. Set *IS_ORDINARY if this is an ordinary section
927 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
928 // Note that for a symbol which is not defined in this object file,
929 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
930 // the final value of the symbol in the link.
932 template<int size
, bool big_endian
>
934 Sized_relobj_file
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
938 section_size_type symbols_size
;
939 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
943 const size_t count
= symbols_size
/ This::sym_size
;
944 gold_assert(sym
< count
);
946 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
947 *value
= elfsym
.get_st_value();
949 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
952 // Return whether to include a section group in the link. LAYOUT is
953 // used to keep track of which section groups we have already seen.
954 // INDEX is the index of the section group and SHDR is the section
955 // header. If we do not want to include this group, we set bits in
956 // OMIT for each section which should be discarded.
958 template<int size
, bool big_endian
>
960 Sized_relobj_file
<size
, big_endian
>::include_section_group(
961 Symbol_table
* symtab
,
965 const unsigned char* shdrs
,
966 const char* section_names
,
967 section_size_type section_names_size
,
968 std::vector
<bool>* omit
)
970 // Read the section contents.
971 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
972 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
973 shdr
.get_sh_size(), true, false);
974 const elfcpp::Elf_Word
* pword
=
975 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
977 // The first word contains flags. We only care about COMDAT section
978 // groups. Other section groups are always included in the link
979 // just like ordinary sections.
980 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
982 // Look up the group signature, which is the name of a symbol. ELF
983 // uses a symbol name because some group signatures are long, and
984 // the name is generally already in the symbol table, so it makes
985 // sense to put the long string just once in .strtab rather than in
986 // both .strtab and .shstrtab.
988 // Get the appropriate symbol table header (this will normally be
989 // the single SHT_SYMTAB section, but in principle it need not be).
990 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
991 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
993 // Read the symbol table entry.
994 unsigned int symndx
= shdr
.get_sh_info();
995 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
997 this->error(_("section group %u info %u out of range"),
1001 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
1002 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
1004 elfcpp::Sym
<size
, big_endian
> sym(psym
);
1006 // Read the symbol table names.
1007 section_size_type symnamelen
;
1008 const unsigned char* psymnamesu
;
1009 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
1011 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
1013 // Get the section group signature.
1014 if (sym
.get_st_name() >= symnamelen
)
1016 this->error(_("symbol %u name offset %u out of range"),
1017 symndx
, sym
.get_st_name());
1021 std::string
signature(psymnames
+ sym
.get_st_name());
1023 // It seems that some versions of gas will create a section group
1024 // associated with a section symbol, and then fail to give a name to
1025 // the section symbol. In such a case, use the name of the section.
1026 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
1029 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
1032 if (!is_ordinary
|| sym_shndx
>= this->shnum())
1034 this->error(_("symbol %u invalid section index %u"),
1038 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
1039 if (member_shdr
.get_sh_name() < section_names_size
)
1040 signature
= section_names
+ member_shdr
.get_sh_name();
1043 // Record this section group in the layout, and see whether we've already
1044 // seen one with the same signature.
1047 Kept_section
* kept_section
= NULL
;
1049 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
1051 include_group
= true;
1056 include_group
= layout
->find_or_add_kept_section(signature
,
1058 true, &kept_section
);
1062 if (is_comdat
&& include_group
)
1064 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1065 if (incremental_inputs
!= NULL
)
1066 incremental_inputs
->report_comdat_group(this, signature
.c_str());
1069 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
1071 std::vector
<unsigned int> shndxes
;
1072 bool relocate_group
= include_group
&& parameters
->options().relocatable();
1074 shndxes
.reserve(count
- 1);
1076 for (size_t i
= 1; i
< count
; ++i
)
1078 elfcpp::Elf_Word shndx
=
1079 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
1082 shndxes
.push_back(shndx
);
1084 if (shndx
>= this->shnum())
1086 this->error(_("section %u in section group %u out of range"),
1091 // Check for an earlier section number, since we're going to get
1092 // it wrong--we may have already decided to include the section.
1094 this->error(_("invalid section group %u refers to earlier section %u"),
1097 // Get the name of the member section.
1098 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
1099 if (member_shdr
.get_sh_name() >= section_names_size
)
1101 // This is an error, but it will be diagnosed eventually
1102 // in do_layout, so we don't need to do anything here but
1106 std::string
mname(section_names
+ member_shdr
.get_sh_name());
1111 kept_section
->add_comdat_section(mname
, shndx
,
1112 member_shdr
.get_sh_size());
1116 (*omit
)[shndx
] = true;
1118 // Store a mapping from this section to the Kept_section
1119 // information for the group. This mapping is used for
1120 // relocation processing and diagnostics.
1121 // If the kept section is a linkonce section, we don't
1122 // bother with it unless the comdat group contains just
1123 // a single section, making it easy to match up.
1125 && (kept_section
->is_comdat() || count
== 2))
1126 this->set_kept_comdat_section(shndx
, true, symndx
,
1127 member_shdr
.get_sh_size(),
1133 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
1134 shdr
, flags
, &shndxes
);
1136 return include_group
;
1139 // Whether to include a linkonce section in the link. NAME is the
1140 // name of the section and SHDR is the section header.
1142 // Linkonce sections are a GNU extension implemented in the original
1143 // GNU linker before section groups were defined. The semantics are
1144 // that we only include one linkonce section with a given name. The
1145 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1146 // where T is the type of section and SYMNAME is the name of a symbol.
1147 // In an attempt to make linkonce sections interact well with section
1148 // groups, we try to identify SYMNAME and use it like a section group
1149 // signature. We want to block section groups with that signature,
1150 // but not other linkonce sections with that signature. We also use
1151 // the full name of the linkonce section as a normal section group
1154 template<int size
, bool big_endian
>
1156 Sized_relobj_file
<size
, big_endian
>::include_linkonce_section(
1160 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
1162 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
1163 // In general the symbol name we want will be the string following
1164 // the last '.'. However, we have to handle the case of
1165 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1166 // some versions of gcc. So we use a heuristic: if the name starts
1167 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1168 // we look for the last '.'. We can't always simply skip
1169 // ".gnu.linkonce.X", because we have to deal with cases like
1170 // ".gnu.linkonce.d.rel.ro.local".
1171 const char* const linkonce_t
= ".gnu.linkonce.t.";
1172 const char* symname
;
1173 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
1174 symname
= name
+ strlen(linkonce_t
);
1176 symname
= strrchr(name
, '.') + 1;
1177 std::string
sig1(symname
);
1178 std::string
sig2(name
);
1179 Kept_section
* kept1
;
1180 Kept_section
* kept2
;
1181 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
1183 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
1188 // We are not including this section because we already saw the
1189 // name of the section as a signature. This normally implies
1190 // that the kept section is another linkonce section. If it is
1191 // the same size, record it as the section which corresponds to
1193 if (kept2
->object() != NULL
&& !kept2
->is_comdat())
1194 this->set_kept_comdat_section(index
, false, 0, sh_size
, kept2
);
1198 // The section is being discarded on the basis of its symbol
1199 // name. This means that the corresponding kept section was
1200 // part of a comdat group, and it will be difficult to identify
1201 // the specific section within that group that corresponds to
1202 // this linkonce section. We'll handle the simple case where
1203 // the group has only one member section. Otherwise, it's not
1204 // worth the effort.
1205 if (kept1
->object() != NULL
&& kept1
->is_comdat())
1206 this->set_kept_comdat_section(index
, false, 0, sh_size
, kept1
);
1210 kept1
->set_linkonce_size(sh_size
);
1211 kept2
->set_linkonce_size(sh_size
);
1214 return include1
&& include2
;
1217 // Layout an input section.
1219 template<int size
, bool big_endian
>
1221 Sized_relobj_file
<size
, big_endian
>::layout_section(
1225 const typename
This::Shdr
& shdr
,
1226 unsigned int sh_type
,
1227 unsigned int reloc_shndx
,
1228 unsigned int reloc_type
)
1231 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
, sh_type
,
1232 reloc_shndx
, reloc_type
, &offset
);
1234 this->output_sections()[shndx
] = os
;
1236 this->section_offsets()[shndx
] = invalid_address
;
1238 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1240 // If this section requires special handling, and if there are
1241 // relocs that apply to it, then we must do the special handling
1242 // before we apply the relocs.
1243 if (offset
== -1 && reloc_shndx
!= 0)
1244 this->set_relocs_must_follow_section_writes();
1247 // Layout an input .eh_frame section.
1249 template<int size
, bool big_endian
>
1251 Sized_relobj_file
<size
, big_endian
>::layout_eh_frame_section(
1253 const unsigned char* symbols_data
,
1254 section_size_type symbols_size
,
1255 const unsigned char* symbol_names_data
,
1256 section_size_type symbol_names_size
,
1258 const typename
This::Shdr
& shdr
,
1259 unsigned int reloc_shndx
,
1260 unsigned int reloc_type
)
1262 gold_assert(this->has_eh_frame_
);
1265 Output_section
* os
= layout
->layout_eh_frame(this,
1275 this->output_sections()[shndx
] = os
;
1276 if (os
== NULL
|| offset
== -1)
1277 this->section_offsets()[shndx
] = invalid_address
;
1279 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1281 // If this section requires special handling, and if there are
1282 // relocs that aply to it, then we must do the special handling
1283 // before we apply the relocs.
1284 if (os
!= NULL
&& offset
== -1 && reloc_shndx
!= 0)
1285 this->set_relocs_must_follow_section_writes();
1288 // Layout an input .note.gnu.property section.
1290 // This note section has an *extremely* non-standard layout.
1291 // The gABI spec says that ELF-64 files should have 8-byte fields and
1292 // 8-byte alignment in the note section, but the Gnu tools generally
1293 // use 4-byte fields and 4-byte alignment (see the comment for
1294 // Layout::create_note). This section uses 4-byte fields (i.e.,
1295 // namesz, descsz, and type are always 4 bytes), the name field is
1296 // padded to a multiple of 4 bytes, but the desc field is padded
1297 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1298 // The individual properties within the desc field always use
1299 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1300 // a multiple of 4 or 8 bytes, depending on the ELF class.
1302 template<int size
, bool big_endian
>
1304 Sized_relobj_file
<size
, big_endian
>::layout_gnu_property_section(
1308 // We ignore Gnu property sections on incremental links.
1309 if (parameters
->incremental())
1312 section_size_type contents_len
;
1313 const unsigned char* pcontents
= this->section_contents(shndx
,
1316 const unsigned char* pcontents_end
= pcontents
+ contents_len
;
1318 // Loop over all the notes in this section.
1319 while (pcontents
< pcontents_end
)
1321 if (pcontents
+ 16 > pcontents_end
)
1323 gold_warning(_("%s: corrupt .note.gnu.property section "
1324 "(note too short)"),
1325 this->name().c_str());
1329 size_t namesz
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
);
1330 size_t descsz
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
+ 4);
1331 unsigned int ntype
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
+ 8);
1332 const unsigned char* pname
= pcontents
+ 12;
1334 if (namesz
!= 4 || strcmp(reinterpret_cast<const char*>(pname
), "GNU") != 0)
1336 gold_warning(_("%s: corrupt .note.gnu.property section "
1337 "(name is not 'GNU')"),
1338 this->name().c_str());
1342 if (ntype
!= elfcpp::NT_GNU_PROPERTY_TYPE_0
)
1344 gold_warning(_("%s: unsupported note type %d "
1345 "in .note.gnu.property section"),
1346 this->name().c_str(), ntype
);
1350 size_t aligned_namesz
= align_address(namesz
, 4);
1351 const unsigned char* pdesc
= pname
+ aligned_namesz
;
1353 if (pdesc
+ descsz
> pcontents
+ contents_len
)
1355 gold_warning(_("%s: corrupt .note.gnu.property section"),
1356 this->name().c_str());
1360 const unsigned char* pprop
= pdesc
;
1362 // Loop over the program properties in this note.
1363 while (pprop
< pdesc
+ descsz
)
1365 if (pprop
+ 8 > pdesc
+ descsz
)
1367 gold_warning(_("%s: corrupt .note.gnu.property section"),
1368 this->name().c_str());
1371 unsigned int pr_type
= elfcpp::Swap
<32, big_endian
>::readval(pprop
);
1372 size_t pr_datasz
= elfcpp::Swap
<32, big_endian
>::readval(pprop
+ 4);
1374 if (pprop
+ pr_datasz
> pdesc
+ descsz
)
1376 gold_warning(_("%s: corrupt .note.gnu.property section"),
1377 this->name().c_str());
1380 layout
->layout_gnu_property(ntype
, pr_type
, pr_datasz
, pprop
, this);
1381 pprop
+= align_address(pr_datasz
, size
/ 8);
1384 pcontents
= pdesc
+ align_address(descsz
, size
/ 8);
1388 // This a copy of lto_section defined in GCC (lto-streamer.h)
1392 int16_t major_version
;
1393 int16_t minor_version
;
1394 unsigned char slim_object
;
1396 /* Flags is a private field that is not defined publicly. */
1400 // Lay out the input sections. We walk through the sections and check
1401 // whether they should be included in the link. If they should, we
1402 // pass them to the Layout object, which will return an output section
1404 // This function is called twice sometimes, two passes, when mapping
1405 // of input sections to output sections must be delayed.
1406 // This is true for the following :
1407 // * Garbage collection (--gc-sections): Some input sections will be
1408 // discarded and hence the assignment must wait until the second pass.
1409 // In the first pass, it is for setting up some sections as roots to
1410 // a work-list for --gc-sections and to do comdat processing.
1411 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1412 // will be folded and hence the assignment must wait.
1413 // * Using plugins to map some sections to unique segments: Mapping
1414 // some sections to unique segments requires mapping them to unique
1415 // output sections too. This can be done via plugins now and this
1416 // information is not available in the first pass.
1418 template<int size
, bool big_endian
>
1420 Sized_relobj_file
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1422 Read_symbols_data
* sd
)
1424 const unsigned int unwind_section_type
=
1425 parameters
->target().unwind_section_type();
1426 const unsigned int shnum
= this->shnum();
1428 /* Should this function be called twice? */
1429 bool is_two_pass
= (parameters
->options().gc_sections()
1430 || parameters
->options().icf_enabled()
1431 || layout
->is_unique_segment_for_sections_specified());
1433 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1434 a two-pass approach is not needed. */
1435 bool is_pass_one
= false;
1436 bool is_pass_two
= false;
1438 Symbols_data
* gc_sd
= NULL
;
1440 /* Check if do_layout needs to be two-pass. If so, find out which pass
1441 should happen. In the first pass, the data in sd is saved to be used
1442 later in the second pass. */
1445 gc_sd
= this->get_symbols_data();
1448 gold_assert(sd
!= NULL
);
1453 if (parameters
->options().gc_sections())
1454 gold_assert(symtab
->gc()->is_worklist_ready());
1455 if (parameters
->options().icf_enabled())
1456 gold_assert(symtab
->icf()->is_icf_ready());
1466 // During garbage collection save the symbols data to use it when
1467 // re-entering this function.
1468 gc_sd
= new Symbols_data
;
1469 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1470 this->set_symbols_data(gc_sd
);
1473 const unsigned char* section_headers_data
= NULL
;
1474 section_size_type section_names_size
;
1475 const unsigned char* symbols_data
= NULL
;
1476 section_size_type symbols_size
;
1477 const unsigned char* symbol_names_data
= NULL
;
1478 section_size_type symbol_names_size
;
1482 section_headers_data
= gc_sd
->section_headers_data
;
1483 section_names_size
= gc_sd
->section_names_size
;
1484 symbols_data
= gc_sd
->symbols_data
;
1485 symbols_size
= gc_sd
->symbols_size
;
1486 symbol_names_data
= gc_sd
->symbol_names_data
;
1487 symbol_names_size
= gc_sd
->symbol_names_size
;
1491 section_headers_data
= sd
->section_headers
->data();
1492 section_names_size
= sd
->section_names_size
;
1493 if (sd
->symbols
!= NULL
)
1494 symbols_data
= sd
->symbols
->data();
1495 symbols_size
= sd
->symbols_size
;
1496 if (sd
->symbol_names
!= NULL
)
1497 symbol_names_data
= sd
->symbol_names
->data();
1498 symbol_names_size
= sd
->symbol_names_size
;
1501 // Get the section headers.
1502 const unsigned char* shdrs
= section_headers_data
;
1503 const unsigned char* pshdrs
;
1505 // Get the section names.
1506 const unsigned char* pnamesu
= (is_two_pass
1507 ? gc_sd
->section_names_data
1508 : sd
->section_names
->data());
1510 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1512 // If any input files have been claimed by plugins, we need to defer
1513 // actual layout until the replacement files have arrived.
1514 const bool should_defer_layout
=
1515 (parameters
->options().has_plugins()
1516 && parameters
->options().plugins()->should_defer_layout());
1517 unsigned int num_sections_to_defer
= 0;
1519 // For each section, record the index of the reloc section if any.
1520 // Use 0 to mean that there is no reloc section, -1U to mean that
1521 // there is more than one.
1522 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1523 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1524 // Skip the first, dummy, section.
1525 pshdrs
= shdrs
+ This::shdr_size
;
1526 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1528 typename
This::Shdr
shdr(pshdrs
);
1530 // Count the number of sections whose layout will be deferred.
1531 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1532 ++num_sections_to_defer
;
1534 unsigned int sh_type
= shdr
.get_sh_type();
1535 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1537 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1538 if (target_shndx
== 0 || target_shndx
>= shnum
)
1540 this->error(_("relocation section %u has bad info %u"),
1545 if (reloc_shndx
[target_shndx
] != 0)
1546 reloc_shndx
[target_shndx
] = -1U;
1549 reloc_shndx
[target_shndx
] = i
;
1550 reloc_type
[target_shndx
] = sh_type
;
1555 Output_sections
& out_sections(this->output_sections());
1556 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1560 out_sections
.resize(shnum
);
1561 out_section_offsets
.resize(shnum
);
1564 // If we are only linking for symbols, then there is nothing else to
1566 if (this->input_file()->just_symbols())
1570 delete sd
->section_headers
;
1571 sd
->section_headers
= NULL
;
1572 delete sd
->section_names
;
1573 sd
->section_names
= NULL
;
1578 if (num_sections_to_defer
> 0)
1580 parameters
->options().plugins()->add_deferred_layout_object(this);
1581 this->deferred_layout_
.reserve(num_sections_to_defer
);
1582 this->is_deferred_layout_
= true;
1585 // Whether we've seen a .note.GNU-stack section.
1586 bool seen_gnu_stack
= false;
1587 // The flags of a .note.GNU-stack section.
1588 uint64_t gnu_stack_flags
= 0;
1590 // Keep track of which sections to omit.
1591 std::vector
<bool> omit(shnum
, false);
1593 // Keep track of reloc sections when emitting relocations.
1594 const bool relocatable
= parameters
->options().relocatable();
1595 const bool emit_relocs
= (relocatable
1596 || parameters
->options().emit_relocs());
1597 std::vector
<unsigned int> reloc_sections
;
1599 // Keep track of .eh_frame sections.
1600 std::vector
<unsigned int> eh_frame_sections
;
1602 // Keep track of .debug_info and .debug_types sections.
1603 std::vector
<unsigned int> debug_info_sections
;
1604 std::vector
<unsigned int> debug_types_sections
;
1606 // Skip the first, dummy, section.
1607 pshdrs
= shdrs
+ This::shdr_size
;
1608 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1610 typename
This::Shdr
shdr(pshdrs
);
1611 const unsigned int sh_name
= shdr
.get_sh_name();
1612 unsigned int sh_type
= shdr
.get_sh_type();
1614 if (sh_name
>= section_names_size
)
1616 this->error(_("bad section name offset for section %u: %lu"),
1617 i
, static_cast<unsigned long>(sh_name
));
1621 const char* name
= pnames
+ sh_name
;
1625 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1627 if (!relocatable
&& !parameters
->options().shared())
1631 // The .note.GNU-stack section is special. It gives the
1632 // protection flags that this object file requires for the stack
1634 if (strcmp(name
, ".note.GNU-stack") == 0)
1636 seen_gnu_stack
= true;
1637 gnu_stack_flags
|= shdr
.get_sh_flags();
1641 // The .note.GNU-split-stack section is also special. It
1642 // indicates that the object was compiled with
1644 if (this->handle_split_stack_section(name
))
1646 if (!relocatable
&& !parameters
->options().shared())
1650 // Skip attributes section.
1651 if (parameters
->target().is_attributes_section(name
))
1656 // Handle .note.gnu.property sections.
1657 if (sh_type
== elfcpp::SHT_NOTE
1658 && strcmp(name
, ".note.gnu.property") == 0)
1660 this->layout_gnu_property_section(layout
, i
);
1664 bool discard
= omit
[i
];
1667 if (sh_type
== elfcpp::SHT_GROUP
)
1669 if (!this->include_section_group(symtab
, layout
, i
, name
,
1675 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1676 && Layout::is_linkonce(name
))
1678 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1683 // Add the section to the incremental inputs layout.
1684 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1685 if (incremental_inputs
!= NULL
1687 && can_incremental_update(sh_type
))
1689 off_t sh_size
= shdr
.get_sh_size();
1690 section_size_type uncompressed_size
;
1691 if (this->section_is_compressed(i
, &uncompressed_size
))
1692 sh_size
= uncompressed_size
;
1693 incremental_inputs
->report_input_section(this, i
, name
, sh_size
);
1698 // Do not include this section in the link.
1699 out_sections
[i
] = NULL
;
1700 out_section_offsets
[i
] = invalid_address
;
1705 if (is_pass_one
&& parameters
->options().gc_sections())
1707 if (this->is_section_name_included(name
)
1708 || layout
->keep_input_section (this, name
)
1709 || sh_type
== elfcpp::SHT_INIT_ARRAY
1710 || sh_type
== elfcpp::SHT_FINI_ARRAY
1711 || this->osabi().has_shf_retain(shdr
.get_sh_flags()))
1713 symtab
->gc()->worklist().push_back(Section_id(this, i
));
1715 // If the section name XXX can be represented as a C identifier
1716 // it cannot be discarded if there are references to
1717 // __start_XXX and __stop_XXX symbols. These need to be
1718 // specially handled.
1719 if (is_cident(name
))
1721 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1725 // When doing a relocatable link we are going to copy input
1726 // reloc sections into the output. We only want to copy the
1727 // ones associated with sections which are not being discarded.
1728 // However, we don't know that yet for all sections. So save
1729 // reloc sections and process them later. Garbage collection is
1730 // not triggered when relocatable code is desired.
1732 && (sh_type
== elfcpp::SHT_REL
1733 || sh_type
== elfcpp::SHT_RELA
))
1735 reloc_sections
.push_back(i
);
1739 if (relocatable
&& sh_type
== elfcpp::SHT_GROUP
)
1742 // The .eh_frame section is special. It holds exception frame
1743 // information that we need to read in order to generate the
1744 // exception frame header. We process these after all the other
1745 // sections so that the exception frame reader can reliably
1746 // determine which sections are being discarded, and discard the
1747 // corresponding information.
1748 if (this->check_eh_frame_flags(&shdr
)
1749 && strcmp(name
, ".eh_frame") == 0)
1751 // If the target has a special unwind section type, let's
1752 // canonicalize it here.
1753 sh_type
= unwind_section_type
;
1758 if (this->is_deferred_layout())
1759 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1761 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1762 out_section_offsets
[i
] = invalid_address
;
1764 else if (this->is_deferred_layout())
1766 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1767 out_section_offsets
[i
] = invalid_address
;
1768 this->deferred_layout_
.push_back(
1769 Deferred_layout(i
, name
, sh_type
, pshdrs
,
1770 reloc_shndx
[i
], reloc_type
[i
]));
1773 eh_frame_sections
.push_back(i
);
1778 if (is_pass_two
&& parameters
->options().gc_sections())
1780 // This is executed during the second pass of garbage
1781 // collection. do_layout has been called before and some
1782 // sections have been already discarded. Simply ignore
1783 // such sections this time around.
1784 if (out_sections
[i
] == NULL
)
1786 gold_assert(out_section_offsets
[i
] == invalid_address
);
1789 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1790 && symtab
->gc()->is_section_garbage(this, i
))
1792 if (parameters
->options().print_gc_sections())
1793 gold_info(_("%s: removing unused section from '%s'"
1795 program_name
, this->section_name(i
).c_str(),
1796 this->name().c_str());
1797 out_sections
[i
] = NULL
;
1798 out_section_offsets
[i
] = invalid_address
;
1803 if (is_pass_two
&& parameters
->options().icf_enabled())
1805 if (out_sections
[i
] == NULL
)
1807 gold_assert(out_section_offsets
[i
] == invalid_address
);
1810 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1811 && symtab
->icf()->is_section_folded(this, i
))
1813 if (parameters
->options().print_icf_sections())
1816 symtab
->icf()->get_folded_section(this, i
);
1817 Relobj
* folded_obj
=
1818 reinterpret_cast<Relobj
*>(folded
.first
);
1819 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1820 "into '%s' in file '%s'"),
1821 program_name
, this->section_name(i
).c_str(),
1822 this->name().c_str(),
1823 folded_obj
->section_name(folded
.second
).c_str(),
1824 folded_obj
->name().c_str());
1826 out_sections
[i
] = NULL
;
1827 out_section_offsets
[i
] = invalid_address
;
1832 // Defer layout here if input files are claimed by plugins. When gc
1833 // is turned on this function is called twice; we only want to do this
1834 // on the first pass.
1836 && this->is_deferred_layout()
1837 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1839 this->deferred_layout_
.push_back(Deferred_layout(i
, name
, sh_type
,
1843 // Put dummy values here; real values will be supplied by
1844 // do_layout_deferred_sections.
1845 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1846 out_section_offsets
[i
] = invalid_address
;
1850 // During gc_pass_two if a section that was previously deferred is
1851 // found, do not layout the section as layout_deferred_sections will
1852 // do it later from gold.cc.
1854 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1859 // This is during garbage collection. The out_sections are
1860 // assigned in the second call to this function.
1861 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1862 out_section_offsets
[i
] = invalid_address
;
1866 // When garbage collection is switched on the actual layout
1867 // only happens in the second call.
1868 this->layout_section(layout
, i
, name
, shdr
, sh_type
, reloc_shndx
[i
],
1871 // When generating a .gdb_index section, we do additional
1872 // processing of .debug_info and .debug_types sections after all
1873 // the other sections for the same reason as above.
1875 && parameters
->options().gdb_index()
1876 && !(shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1878 if (strcmp(name
, ".debug_info") == 0
1879 || strcmp(name
, ".zdebug_info") == 0)
1880 debug_info_sections
.push_back(i
);
1881 else if (strcmp(name
, ".debug_types") == 0
1882 || strcmp(name
, ".zdebug_types") == 0)
1883 debug_types_sections
.push_back(i
);
1887 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1889 const char *lto_section_name
= ".gnu.lto_.lto.";
1890 if (strncmp (name
, lto_section_name
, strlen (lto_section_name
)) == 0)
1892 section_size_type contents_len
;
1893 const unsigned char* pcontents
1894 = this->section_contents(i
, &contents_len
, false);
1895 if (contents_len
>= sizeof(lto_section
))
1897 const lto_section
* lsection
1898 = reinterpret_cast<const lto_section
*>(pcontents
);
1899 if (lsection
->slim_object
)
1900 layout
->set_lto_slim_object();
1907 layout
->merge_gnu_properties(this);
1908 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
, this);
1911 // Handle the .eh_frame sections after the other sections.
1912 gold_assert(!is_pass_one
|| eh_frame_sections
.empty());
1913 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1914 p
!= eh_frame_sections
.end();
1917 unsigned int i
= *p
;
1918 const unsigned char* pshdr
;
1919 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1920 typename
This::Shdr
shdr(pshdr
);
1922 this->layout_eh_frame_section(layout
,
1933 // When doing a relocatable link handle the reloc sections at the
1934 // end. Garbage collection and Identical Code Folding is not
1935 // turned on for relocatable code.
1937 this->size_relocatable_relocs();
1939 gold_assert(!is_two_pass
|| reloc_sections
.empty());
1941 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1942 p
!= reloc_sections
.end();
1945 unsigned int i
= *p
;
1946 const unsigned char* pshdr
;
1947 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1948 typename
This::Shdr
shdr(pshdr
);
1950 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1951 if (data_shndx
>= shnum
)
1953 // We already warned about this above.
1957 Output_section
* data_section
= out_sections
[data_shndx
];
1958 if (data_section
== reinterpret_cast<Output_section
*>(2))
1962 // The layout for the data section was deferred, so we need
1963 // to defer the relocation section, too.
1964 const char* name
= pnames
+ shdr
.get_sh_name();
1965 this->deferred_layout_relocs_
.push_back(
1966 Deferred_layout(i
, name
, shdr
.get_sh_type(), pshdr
, 0,
1968 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1969 out_section_offsets
[i
] = invalid_address
;
1972 if (data_section
== NULL
)
1974 out_sections
[i
] = NULL
;
1975 out_section_offsets
[i
] = invalid_address
;
1979 Relocatable_relocs
* rr
= new Relocatable_relocs();
1980 this->set_relocatable_relocs(i
, rr
);
1982 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1984 out_sections
[i
] = os
;
1985 out_section_offsets
[i
] = invalid_address
;
1988 // When building a .gdb_index section, scan the .debug_info and
1989 // .debug_types sections.
1990 gold_assert(!is_pass_one
1991 || (debug_info_sections
.empty() && debug_types_sections
.empty()));
1992 for (std::vector
<unsigned int>::const_iterator p
1993 = debug_info_sections
.begin();
1994 p
!= debug_info_sections
.end();
1997 unsigned int i
= *p
;
1998 layout
->add_to_gdb_index(false, this, symbols_data
, symbols_size
,
1999 i
, reloc_shndx
[i
], reloc_type
[i
]);
2001 for (std::vector
<unsigned int>::const_iterator p
2002 = debug_types_sections
.begin();
2003 p
!= debug_types_sections
.end();
2006 unsigned int i
= *p
;
2007 layout
->add_to_gdb_index(true, this, symbols_data
, symbols_size
,
2008 i
, reloc_shndx
[i
], reloc_type
[i
]);
2013 delete[] gc_sd
->section_headers_data
;
2014 delete[] gc_sd
->section_names_data
;
2015 delete[] gc_sd
->symbols_data
;
2016 delete[] gc_sd
->symbol_names_data
;
2017 this->set_symbols_data(NULL
);
2021 delete sd
->section_headers
;
2022 sd
->section_headers
= NULL
;
2023 delete sd
->section_names
;
2024 sd
->section_names
= NULL
;
2028 // Layout sections whose layout was deferred while waiting for
2029 // input files from a plugin.
2031 template<int size
, bool big_endian
>
2033 Sized_relobj_file
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
2035 typename
std::vector
<Deferred_layout
>::iterator deferred
;
2037 for (deferred
= this->deferred_layout_
.begin();
2038 deferred
!= this->deferred_layout_
.end();
2041 typename
This::Shdr
shdr(deferred
->shdr_data_
);
2043 if (!parameters
->options().relocatable()
2044 && deferred
->name_
== ".eh_frame"
2045 && this->check_eh_frame_flags(&shdr
))
2047 // Checking is_section_included is not reliable for
2048 // .eh_frame sections, because they do not have an output
2049 // section. This is not a problem normally because we call
2050 // layout_eh_frame_section unconditionally, but when
2051 // deferring sections that is not true. We don't want to
2052 // keep all .eh_frame sections because that will cause us to
2053 // keep all sections that they refer to, which is the wrong
2054 // way around. Instead, the eh_frame code will discard
2055 // .eh_frame sections that refer to discarded sections.
2057 // Reading the symbols again here may be slow.
2058 Read_symbols_data sd
;
2059 this->base_read_symbols(&sd
);
2060 this->layout_eh_frame_section(layout
,
2063 sd
.symbol_names
->data(),
2064 sd
.symbol_names_size
,
2067 deferred
->reloc_shndx_
,
2068 deferred
->reloc_type_
);
2072 // If the section is not included, it is because the garbage collector
2073 // decided it is not needed. Avoid reverting that decision.
2074 if (!this->is_section_included(deferred
->shndx_
))
2077 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
2078 shdr
, shdr
.get_sh_type(), deferred
->reloc_shndx_
,
2079 deferred
->reloc_type_
);
2082 this->deferred_layout_
.clear();
2084 // Now handle the deferred relocation sections.
2086 Output_sections
& out_sections(this->output_sections());
2087 std::vector
<Address
>& out_section_offsets(this->section_offsets());
2089 for (deferred
= this->deferred_layout_relocs_
.begin();
2090 deferred
!= this->deferred_layout_relocs_
.end();
2093 unsigned int shndx
= deferred
->shndx_
;
2094 typename
This::Shdr
shdr(deferred
->shdr_data_
);
2095 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
2097 Output_section
* data_section
= out_sections
[data_shndx
];
2098 if (data_section
== NULL
)
2100 out_sections
[shndx
] = NULL
;
2101 out_section_offsets
[shndx
] = invalid_address
;
2105 Relocatable_relocs
* rr
= new Relocatable_relocs();
2106 this->set_relocatable_relocs(shndx
, rr
);
2108 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
2110 out_sections
[shndx
] = os
;
2111 out_section_offsets
[shndx
] = invalid_address
;
2115 // Add the symbols to the symbol table.
2117 template<int size
, bool big_endian
>
2119 Sized_relobj_file
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
2120 Read_symbols_data
* sd
,
2123 if (sd
->symbols
== NULL
)
2125 gold_assert(sd
->symbol_names
== NULL
);
2129 const int sym_size
= This::sym_size
;
2130 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2132 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
2134 this->error(_("size of symbols is not multiple of symbol size"));
2138 this->symbols_
.resize(symcount
);
2140 if (!parameters
->options().relocatable()
2141 && layout
->is_lto_slim_object ())
2142 gold_info(_("%s: plugin needed to handle lto object"),
2143 this->name().c_str());
2145 const char* sym_names
=
2146 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2147 symtab
->add_from_relobj(this,
2148 sd
->symbols
->data() + sd
->external_symbols_offset
,
2149 symcount
, this->local_symbol_count_
,
2150 sym_names
, sd
->symbol_names_size
,
2152 &this->defined_count_
);
2156 delete sd
->symbol_names
;
2157 sd
->symbol_names
= NULL
;
2160 // Find out if this object, that is a member of a lib group, should be included
2161 // in the link. We check every symbol defined by this object. If the symbol
2162 // table has a strong undefined reference to that symbol, we have to include
2165 template<int size
, bool big_endian
>
2166 Archive::Should_include
2167 Sized_relobj_file
<size
, big_endian
>::do_should_include_member(
2168 Symbol_table
* symtab
,
2170 Read_symbols_data
* sd
,
2173 char* tmpbuf
= NULL
;
2174 size_t tmpbuflen
= 0;
2175 const char* sym_names
=
2176 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2177 const unsigned char* syms
=
2178 sd
->symbols
->data() + sd
->external_symbols_offset
;
2179 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2180 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2183 const unsigned char* p
= syms
;
2185 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
2187 elfcpp::Sym
<size
, big_endian
> sym(p
);
2188 unsigned int st_shndx
= sym
.get_st_shndx();
2189 if (st_shndx
== elfcpp::SHN_UNDEF
)
2192 unsigned int st_name
= sym
.get_st_name();
2193 const char* name
= sym_names
+ st_name
;
2195 Archive::Should_include t
= Archive::should_include_member(symtab
,
2201 if (t
== Archive::SHOULD_INCLUDE_YES
)
2210 return Archive::SHOULD_INCLUDE_UNKNOWN
;
2213 // Iterate over global defined symbols, calling a visitor class V for each.
2215 template<int size
, bool big_endian
>
2217 Sized_relobj_file
<size
, big_endian
>::do_for_all_global_symbols(
2218 Read_symbols_data
* sd
,
2219 Library_base::Symbol_visitor_base
* v
)
2221 const char* sym_names
=
2222 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2223 const unsigned char* syms
=
2224 sd
->symbols
->data() + sd
->external_symbols_offset
;
2225 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2226 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2228 const unsigned char* p
= syms
;
2230 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
2232 elfcpp::Sym
<size
, big_endian
> sym(p
);
2233 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
2234 v
->visit(sym_names
+ sym
.get_st_name());
2238 // Return whether the local symbol SYMNDX has a PLT offset.
2240 template<int size
, bool big_endian
>
2242 Sized_relobj_file
<size
, big_endian
>::local_has_plt_offset(
2243 unsigned int symndx
) const
2245 typename
Local_plt_offsets::const_iterator p
=
2246 this->local_plt_offsets_
.find(symndx
);
2247 return p
!= this->local_plt_offsets_
.end();
2250 // Get the PLT offset of a local symbol.
2252 template<int size
, bool big_endian
>
2254 Sized_relobj_file
<size
, big_endian
>::do_local_plt_offset(
2255 unsigned int symndx
) const
2257 typename
Local_plt_offsets::const_iterator p
=
2258 this->local_plt_offsets_
.find(symndx
);
2259 gold_assert(p
!= this->local_plt_offsets_
.end());
2263 // Set the PLT offset of a local symbol.
2265 template<int size
, bool big_endian
>
2267 Sized_relobj_file
<size
, big_endian
>::set_local_plt_offset(
2268 unsigned int symndx
, unsigned int plt_offset
)
2270 std::pair
<typename
Local_plt_offsets::iterator
, bool> ins
=
2271 this->local_plt_offsets_
.insert(std::make_pair(symndx
, plt_offset
));
2272 gold_assert(ins
.second
);
2275 // First pass over the local symbols. Here we add their names to
2276 // *POOL and *DYNPOOL, and we store the symbol value in
2277 // THIS->LOCAL_VALUES_. This function is always called from a
2278 // singleton thread. This is followed by a call to
2279 // finalize_local_symbols.
2281 template<int size
, bool big_endian
>
2283 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
2284 Stringpool
* dynpool
)
2286 gold_assert(this->symtab_shndx_
!= -1U);
2287 if (this->symtab_shndx_
== 0)
2289 // This object has no symbols. Weird but legal.
2293 // Read the symbol table section header.
2294 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2295 typename
This::Shdr
symtabshdr(this,
2296 this->elf_file_
.section_header(symtab_shndx
));
2297 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2299 // Read the local symbols.
2300 const int sym_size
= This::sym_size
;
2301 const unsigned int loccount
= this->local_symbol_count_
;
2302 gold_assert(loccount
== symtabshdr
.get_sh_info());
2303 off_t locsize
= loccount
* sym_size
;
2304 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2305 locsize
, true, true);
2307 // Read the symbol names.
2308 const unsigned int strtab_shndx
=
2309 this->adjust_shndx(symtabshdr
.get_sh_link());
2310 section_size_type strtab_size
;
2311 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2314 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2316 // Loop over the local symbols.
2318 const Output_sections
& out_sections(this->output_sections());
2319 std::vector
<Address
>& out_section_offsets(this->section_offsets());
2320 unsigned int shnum
= this->shnum();
2321 unsigned int count
= 0;
2322 unsigned int dyncount
= 0;
2323 // Skip the first, dummy, symbol.
2325 bool strip_all
= parameters
->options().strip_all();
2326 bool discard_all
= parameters
->options().discard_all();
2327 bool discard_locals
= parameters
->options().discard_locals();
2328 bool discard_sec_merge
= parameters
->options().discard_sec_merge();
2329 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2331 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
2333 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2336 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2338 lv
.set_input_shndx(shndx
, is_ordinary
);
2340 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
2341 lv
.set_is_section_symbol();
2342 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
2343 lv
.set_is_tls_symbol();
2344 else if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
2345 lv
.set_is_ifunc_symbol();
2347 // Save the input symbol value for use in do_finalize_local_symbols().
2348 lv
.set_input_value(sym
.get_st_value());
2350 // Decide whether this symbol should go into the output file.
2354 && (out_sections
[shndx
] == NULL
2355 || (out_sections
[shndx
]->order() == ORDER_EHFRAME
2356 && out_section_offsets
[shndx
] == invalid_address
)))
2358 // This is either a discarded section or an optimized .eh_frame
2360 lv
.set_no_output_symtab_entry();
2361 gold_assert(!lv
.needs_output_dynsym_entry());
2365 if (sym
.get_st_type() == elfcpp::STT_SECTION
2366 || !this->adjust_local_symbol(&lv
))
2368 lv
.set_no_output_symtab_entry();
2369 gold_assert(!lv
.needs_output_dynsym_entry());
2373 if (sym
.get_st_name() >= strtab_size
)
2375 this->error(_("local symbol %u section name out of range: %u >= %u"),
2376 i
, sym
.get_st_name(),
2377 static_cast<unsigned int>(strtab_size
));
2378 lv
.set_no_output_symtab_entry();
2382 const char* name
= pnames
+ sym
.get_st_name();
2384 // If needed, add the symbol to the dynamic symbol table string pool.
2385 if (lv
.needs_output_dynsym_entry())
2387 dynpool
->add(name
, true, NULL
);
2392 || (discard_all
&& lv
.may_be_discarded_from_output_symtab()))
2394 lv
.set_no_output_symtab_entry();
2398 // By default, discard temporary local symbols in merge sections.
2399 // If --discard-locals option is used, discard all temporary local
2400 // symbols. These symbols start with system-specific local label
2401 // prefixes, typically .L for ELF system. We want to be compatible
2402 // with GNU ld so here we essentially use the same check in
2403 // bfd_is_local_label(). The code is different because we already
2406 // - the symbol is local and thus cannot have global or weak binding.
2407 // - the symbol is not a section symbol.
2408 // - the symbol has a name.
2410 // We do not discard a symbol if it needs a dynamic symbol entry.
2412 || (discard_sec_merge
2414 && out_section_offsets
[shndx
] == invalid_address
))
2415 && sym
.get_st_type() != elfcpp::STT_FILE
2416 && !lv
.needs_output_dynsym_entry()
2417 && lv
.may_be_discarded_from_output_symtab()
2418 && parameters
->target().is_local_label_name(name
))
2420 lv
.set_no_output_symtab_entry();
2424 // Discard the local symbol if -retain_symbols_file is specified
2425 // and the local symbol is not in that file.
2426 if (!parameters
->options().should_retain_symbol(name
))
2428 lv
.set_no_output_symtab_entry();
2432 // Add the symbol to the symbol table string pool.
2433 pool
->add(name
, true, NULL
);
2437 this->output_local_symbol_count_
= count
;
2438 this->output_local_dynsym_count_
= dyncount
;
2441 // Compute the final value of a local symbol.
2443 template<int size
, bool big_endian
>
2444 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2445 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value_internal(
2447 const Symbol_value
<size
>* lv_in
,
2448 Symbol_value
<size
>* lv_out
,
2450 const Output_sections
& out_sections
,
2451 const std::vector
<Address
>& out_offsets
,
2452 const Symbol_table
* symtab
)
2454 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2455 // we may have a memory leak.
2456 gold_assert(lv_out
->has_output_value());
2459 unsigned int shndx
= lv_in
->input_shndx(&is_ordinary
);
2461 // Set the output symbol value.
2465 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
2466 lv_out
->set_output_value(lv_in
->input_value());
2469 this->error(_("unknown section index %u for local symbol %u"),
2471 lv_out
->set_output_value(0);
2472 return This::CFLV_ERROR
;
2477 if (shndx
>= this->shnum())
2479 this->error(_("local symbol %u section index %u out of range"),
2481 lv_out
->set_output_value(0);
2482 return This::CFLV_ERROR
;
2485 Output_section
* os
= out_sections
[shndx
];
2486 Address secoffset
= out_offsets
[shndx
];
2487 if (symtab
->is_section_folded(this, shndx
))
2489 gold_assert(os
== NULL
&& secoffset
== invalid_address
);
2490 // Get the os of the section it is folded onto.
2491 Section_id folded
= symtab
->icf()->get_folded_section(this,
2493 gold_assert(folded
.first
!= NULL
);
2494 Sized_relobj_file
<size
, big_endian
>* folded_obj
= reinterpret_cast
2495 <Sized_relobj_file
<size
, big_endian
>*>(folded
.first
);
2496 os
= folded_obj
->output_section(folded
.second
);
2497 gold_assert(os
!= NULL
);
2498 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
2500 // This could be a relaxed input section.
2501 if (secoffset
== invalid_address
)
2503 const Output_relaxed_input_section
* relaxed_section
=
2504 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
2505 gold_assert(relaxed_section
!= NULL
);
2506 secoffset
= relaxed_section
->address() - os
->address();
2512 // This local symbol belongs to a section we are discarding.
2513 // In some cases when applying relocations later, we will
2514 // attempt to match it to the corresponding kept section,
2515 // so we leave the input value unchanged here.
2516 return This::CFLV_DISCARDED
;
2518 else if (secoffset
== invalid_address
)
2522 // This is a SHF_MERGE section or one which otherwise
2523 // requires special handling.
2524 if (os
->order() == ORDER_EHFRAME
)
2526 // This local symbol belongs to a discarded or optimized
2527 // .eh_frame section. Just treat it like the case in which
2528 // os == NULL above.
2529 gold_assert(this->has_eh_frame_
);
2530 return This::CFLV_DISCARDED
;
2532 else if (!lv_in
->is_section_symbol())
2534 // This is not a section symbol. We can determine
2535 // the final value now.
2537 os
->output_address(this, shndx
, lv_in
->input_value());
2539 value
-= os
->address();
2540 lv_out
->set_output_value(value
);
2542 else if (!os
->find_starting_output_address(this, shndx
, &start
))
2544 // This is a section symbol, but apparently not one in a
2545 // merged section. First check to see if this is a relaxed
2546 // input section. If so, use its address. Otherwise just
2547 // use the start of the output section. This happens with
2548 // relocatable links when the input object has section
2549 // symbols for arbitrary non-merge sections.
2550 const Output_section_data
* posd
=
2551 os
->find_relaxed_input_section(this, shndx
);
2554 uint64_t value
= posd
->address();
2556 value
-= os
->address();
2557 lv_out
->set_output_value(value
);
2560 lv_out
->set_output_value(os
->address());
2564 // We have to consider the addend to determine the
2565 // value to use in a relocation. START is the start
2566 // of this input section. If we are doing a relocatable
2567 // link, use offset from start output section instead of
2569 Address adjusted_start
=
2570 relocatable
? start
- os
->address() : start
;
2571 Merged_symbol_value
<size
>* msv
=
2572 new Merged_symbol_value
<size
>(lv_in
->input_value(),
2574 lv_out
->set_merged_symbol_value(msv
);
2577 else if (lv_in
->is_tls_symbol()
2578 || (lv_in
->is_section_symbol()
2579 && (os
->flags() & elfcpp::SHF_TLS
)))
2580 lv_out
->set_output_value(os
->tls_offset()
2582 + lv_in
->input_value());
2584 lv_out
->set_output_value((relocatable
? 0 : os
->address())
2586 + lv_in
->input_value());
2588 return This::CFLV_OK
;
2591 // Compute final local symbol value. R_SYM is the index of a local
2592 // symbol in symbol table. LV points to a symbol value, which is
2593 // expected to hold the input value and to be over-written by the
2594 // final value. SYMTAB points to a symbol table. Some targets may want
2595 // to know would-be-finalized local symbol values in relaxation.
2596 // Hence we provide this method. Since this method updates *LV, a
2597 // callee should make a copy of the original local symbol value and
2598 // use the copy instead of modifying an object's local symbols before
2599 // everything is finalized. The caller should also free up any allocated
2600 // memory in the return value in *LV.
2601 template<int size
, bool big_endian
>
2602 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2603 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value(
2605 const Symbol_value
<size
>* lv_in
,
2606 Symbol_value
<size
>* lv_out
,
2607 const Symbol_table
* symtab
)
2609 // This is just a wrapper of compute_final_local_value_internal.
2610 const bool relocatable
= parameters
->options().relocatable();
2611 const Output_sections
& out_sections(this->output_sections());
2612 const std::vector
<Address
>& out_offsets(this->section_offsets());
2613 return this->compute_final_local_value_internal(r_sym
, lv_in
, lv_out
,
2614 relocatable
, out_sections
,
2615 out_offsets
, symtab
);
2618 // Finalize the local symbols. Here we set the final value in
2619 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2620 // This function is always called from a singleton thread. The actual
2621 // output of the local symbols will occur in a separate task.
2623 template<int size
, bool big_endian
>
2625 Sized_relobj_file
<size
, big_endian
>::do_finalize_local_symbols(
2628 Symbol_table
* symtab
)
2630 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2632 const unsigned int loccount
= this->local_symbol_count_
;
2633 this->local_symbol_offset_
= off
;
2635 const bool relocatable
= parameters
->options().relocatable();
2636 const Output_sections
& out_sections(this->output_sections());
2637 const std::vector
<Address
>& out_offsets(this->section_offsets());
2639 for (unsigned int i
= 1; i
< loccount
; ++i
)
2641 Symbol_value
<size
>* lv
= &this->local_values_
[i
];
2643 Compute_final_local_value_status cflv_status
=
2644 this->compute_final_local_value_internal(i
, lv
, lv
, relocatable
,
2645 out_sections
, out_offsets
,
2647 switch (cflv_status
)
2650 if (!lv
->is_output_symtab_index_set())
2652 lv
->set_output_symtab_index(index
);
2655 if (lv
->is_ifunc_symbol()
2656 && (lv
->has_output_symtab_entry()
2657 || lv
->needs_output_dynsym_entry()))
2658 symtab
->set_has_gnu_output();
2660 case CFLV_DISCARDED
:
2671 // Set the output dynamic symbol table indexes for the local variables.
2673 template<int size
, bool big_endian
>
2675 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_indexes(
2678 const unsigned int loccount
= this->local_symbol_count_
;
2679 for (unsigned int i
= 1; i
< loccount
; ++i
)
2681 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2682 if (lv
.needs_output_dynsym_entry())
2684 lv
.set_output_dynsym_index(index
);
2691 // Set the offset where local dynamic symbol information will be stored.
2692 // Returns the count of local symbols contributed to the symbol table by
2695 template<int size
, bool big_endian
>
2697 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
2699 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2700 this->local_dynsym_offset_
= off
;
2701 return this->output_local_dynsym_count_
;
2704 // If Symbols_data is not NULL get the section flags from here otherwise
2705 // get it from the file.
2707 template<int size
, bool big_endian
>
2709 Sized_relobj_file
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2711 Symbols_data
* sd
= this->get_symbols_data();
2714 const unsigned char* pshdrs
= sd
->section_headers_data
2715 + This::shdr_size
* shndx
;
2716 typename
This::Shdr
shdr(pshdrs
);
2717 return shdr
.get_sh_flags();
2719 // If sd is NULL, read the section header from the file.
2720 return this->elf_file_
.section_flags(shndx
);
2723 // Get the section's ent size from Symbols_data. Called by get_section_contents
2726 template<int size
, bool big_endian
>
2728 Sized_relobj_file
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2730 Symbols_data
* sd
= this->get_symbols_data();
2731 gold_assert(sd
!= NULL
);
2733 const unsigned char* pshdrs
= sd
->section_headers_data
2734 + This::shdr_size
* shndx
;
2735 typename
This::Shdr
shdr(pshdrs
);
2736 return shdr
.get_sh_entsize();
2739 // Write out the local symbols.
2741 template<int size
, bool big_endian
>
2743 Sized_relobj_file
<size
, big_endian
>::write_local_symbols(
2745 const Stringpool
* sympool
,
2746 const Stringpool
* dynpool
,
2747 Output_symtab_xindex
* symtab_xindex
,
2748 Output_symtab_xindex
* dynsym_xindex
,
2751 const bool strip_all
= parameters
->options().strip_all();
2754 if (this->output_local_dynsym_count_
== 0)
2756 this->output_local_symbol_count_
= 0;
2759 gold_assert(this->symtab_shndx_
!= -1U);
2760 if (this->symtab_shndx_
== 0)
2762 // This object has no symbols. Weird but legal.
2766 // Read the symbol table section header.
2767 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2768 typename
This::Shdr
symtabshdr(this,
2769 this->elf_file_
.section_header(symtab_shndx
));
2770 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2771 const unsigned int loccount
= this->local_symbol_count_
;
2772 gold_assert(loccount
== symtabshdr
.get_sh_info());
2774 // Read the local symbols.
2775 const int sym_size
= This::sym_size
;
2776 off_t locsize
= loccount
* sym_size
;
2777 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2778 locsize
, true, false);
2780 // Read the symbol names.
2781 const unsigned int strtab_shndx
=
2782 this->adjust_shndx(symtabshdr
.get_sh_link());
2783 section_size_type strtab_size
;
2784 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2787 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2789 // Get views into the output file for the portions of the symbol table
2790 // and the dynamic symbol table that we will be writing.
2791 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2792 unsigned char* oview
= NULL
;
2793 if (output_size
> 0)
2794 oview
= of
->get_output_view(symtab_off
+ this->local_symbol_offset_
,
2797 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2798 unsigned char* dyn_oview
= NULL
;
2799 if (dyn_output_size
> 0)
2800 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2803 const Output_sections
& out_sections(this->output_sections());
2805 gold_assert(this->local_values_
.size() == loccount
);
2807 unsigned char* ov
= oview
;
2808 unsigned char* dyn_ov
= dyn_oview
;
2810 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2812 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2814 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2817 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2821 gold_assert(st_shndx
< out_sections
.size());
2822 if (out_sections
[st_shndx
] == NULL
)
2824 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2825 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2827 if (lv
.has_output_symtab_entry())
2828 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2829 if (lv
.has_output_dynsym_entry())
2830 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2831 st_shndx
= elfcpp::SHN_XINDEX
;
2835 // Write the symbol to the output symbol table.
2836 if (lv
.has_output_symtab_entry())
2838 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2840 gold_assert(isym
.get_st_name() < strtab_size
);
2841 const char* name
= pnames
+ isym
.get_st_name();
2842 osym
.put_st_name(sympool
->get_offset(name
));
2843 osym
.put_st_value(lv
.value(this, 0));
2844 osym
.put_st_size(isym
.get_st_size());
2845 osym
.put_st_info(isym
.get_st_info());
2846 osym
.put_st_other(isym
.get_st_other());
2847 osym
.put_st_shndx(st_shndx
);
2852 // Write the symbol to the output dynamic symbol table.
2853 if (lv
.has_output_dynsym_entry())
2855 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2856 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2858 gold_assert(isym
.get_st_name() < strtab_size
);
2859 const char* name
= pnames
+ isym
.get_st_name();
2860 osym
.put_st_name(dynpool
->get_offset(name
));
2861 osym
.put_st_value(lv
.value(this, 0));
2862 osym
.put_st_size(isym
.get_st_size());
2863 osym
.put_st_info(isym
.get_st_info());
2864 osym
.put_st_other(isym
.get_st_other());
2865 osym
.put_st_shndx(st_shndx
);
2872 if (output_size
> 0)
2874 gold_assert(ov
- oview
== output_size
);
2875 of
->write_output_view(symtab_off
+ this->local_symbol_offset_
,
2876 output_size
, oview
);
2879 if (dyn_output_size
> 0)
2881 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2882 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2887 // Set *INFO to symbolic information about the offset OFFSET in the
2888 // section SHNDX. Return true if we found something, false if we
2891 template<int size
, bool big_endian
>
2893 Sized_relobj_file
<size
, big_endian
>::get_symbol_location_info(
2896 Symbol_location_info
* info
)
2898 if (this->symtab_shndx_
== 0)
2901 section_size_type symbols_size
;
2902 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2906 unsigned int symbol_names_shndx
=
2907 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2908 section_size_type names_size
;
2909 const unsigned char* symbol_names_u
=
2910 this->section_contents(symbol_names_shndx
, &names_size
, false);
2911 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2913 const int sym_size
= This::sym_size
;
2914 const size_t count
= symbols_size
/ sym_size
;
2916 const unsigned char* p
= symbols
;
2917 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2919 elfcpp::Sym
<size
, big_endian
> sym(p
);
2921 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2923 if (sym
.get_st_name() >= names_size
)
2924 info
->source_file
= "(invalid)";
2926 info
->source_file
= symbol_names
+ sym
.get_st_name();
2931 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2934 && st_shndx
== shndx
2935 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2936 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2939 info
->enclosing_symbol_type
= sym
.get_st_type();
2940 if (sym
.get_st_name() > names_size
)
2941 info
->enclosing_symbol_name
= "(invalid)";
2944 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2945 if (parameters
->options().do_demangle())
2947 char* demangled_name
= cplus_demangle(
2948 info
->enclosing_symbol_name
.c_str(),
2949 DMGL_ANSI
| DMGL_PARAMS
);
2950 if (demangled_name
!= NULL
)
2952 info
->enclosing_symbol_name
.assign(demangled_name
);
2953 free(demangled_name
);
2964 // Look for a kept section corresponding to the given discarded section,
2965 // and return its output address. This is used only for relocations in
2966 // debugging sections. If we can't find the kept section, return 0.
2968 template<int size
, bool big_endian
>
2969 typename Sized_relobj_file
<size
, big_endian
>::Address
2970 Sized_relobj_file
<size
, big_endian
>::map_to_kept_section(
2972 std::string
& section_name
,
2975 Kept_section
* kept_section
;
2978 unsigned int symndx
;
2981 if (this->get_kept_comdat_section(shndx
, &is_comdat
, &symndx
, &sh_size
,
2984 Relobj
* kept_object
= kept_section
->object();
2985 unsigned int kept_shndx
= 0;
2986 if (!kept_section
->is_comdat())
2988 // The kept section is a linkonce section.
2989 if (sh_size
== kept_section
->linkonce_size())
2991 kept_shndx
= kept_section
->shndx();
2997 uint64_t kept_size
= 0;
3000 // Find the corresponding kept section.
3001 // Since we're using this mapping for relocation processing,
3002 // we don't want to match sections unless they have the same
3004 if (kept_section
->find_comdat_section(section_name
, &kept_shndx
,
3007 if (sh_size
== kept_size
)
3013 if (kept_section
->find_single_comdat_section(&kept_shndx
,
3015 && sh_size
== kept_size
)
3022 Sized_relobj_file
<size
, big_endian
>* kept_relobj
=
3023 static_cast<Sized_relobj_file
<size
, big_endian
>*>(kept_object
);
3024 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
3025 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
3026 if (os
!= NULL
&& offset
!= invalid_address
)
3029 return os
->address() + offset
;
3037 // Look for a kept section corresponding to the given discarded section,
3038 // and return its object file.
3040 template<int size
, bool big_endian
>
3042 Sized_relobj_file
<size
, big_endian
>::find_kept_section_object(
3043 unsigned int shndx
, unsigned int *symndx_p
) const
3045 Kept_section
* kept_section
;
3048 if (this->get_kept_comdat_section(shndx
, &is_comdat
, symndx_p
, &sh_size
,
3050 return kept_section
->object();
3054 // Return the name of symbol SYMNDX.
3056 template<int size
, bool big_endian
>
3058 Sized_relobj_file
<size
, big_endian
>::get_symbol_name(unsigned int symndx
)
3060 if (this->symtab_shndx_
== 0)
3063 section_size_type symbols_size
;
3064 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
3068 unsigned int symbol_names_shndx
=
3069 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
3070 section_size_type names_size
;
3071 const unsigned char* symbol_names_u
=
3072 this->section_contents(symbol_names_shndx
, &names_size
, false);
3073 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
3075 const unsigned char* p
= symbols
+ symndx
* This::sym_size
;
3077 if (p
>= symbols
+ symbols_size
)
3080 elfcpp::Sym
<size
, big_endian
> sym(p
);
3082 return symbol_names
+ sym
.get_st_name();
3085 // Get symbol counts.
3087 template<int size
, bool big_endian
>
3089 Sized_relobj_file
<size
, big_endian
>::do_get_global_symbol_counts(
3090 const Symbol_table
*,
3094 *defined
= this->defined_count_
;
3096 for (typename
Symbols::const_iterator p
= this->symbols_
.begin();
3097 p
!= this->symbols_
.end();
3100 && (*p
)->source() == Symbol::FROM_OBJECT
3101 && (*p
)->object() == this
3102 && (*p
)->is_defined())
3107 // Return a view of the decompressed contents of a section. Set *PLEN
3108 // to the size. Set *IS_NEW to true if the contents need to be freed
3111 const unsigned char*
3112 Object::decompressed_section_contents(
3114 section_size_type
* plen
,
3118 section_size_type buffer_size
;
3119 const unsigned char* buffer
= this->do_section_contents(shndx
, &buffer_size
,
3122 if (this->compressed_sections_
== NULL
)
3124 *plen
= buffer_size
;
3129 Compressed_section_map::const_iterator p
=
3130 this->compressed_sections_
->find(shndx
);
3131 if (p
== this->compressed_sections_
->end())
3133 *plen
= buffer_size
;
3138 section_size_type uncompressed_size
= p
->second
.size
;
3139 if (p
->second
.contents
!= NULL
)
3141 *plen
= uncompressed_size
;
3144 *palign
= p
->second
.addralign
;
3145 return p
->second
.contents
;
3148 unsigned char* uncompressed_data
= new unsigned char[uncompressed_size
];
3149 if (!decompress_input_section(buffer
,
3156 this->error(_("could not decompress section %s"),
3157 this->do_section_name(shndx
).c_str());
3159 // We could cache the results in p->second.contents and store
3160 // false in *IS_NEW, but build_compressed_section_map() would
3161 // have done so if it had expected it to be profitable. If
3162 // we reach this point, we expect to need the contents only
3163 // once in this pass.
3164 *plen
= uncompressed_size
;
3167 *palign
= p
->second
.addralign
;
3168 return uncompressed_data
;
3171 // Discard any buffers of uncompressed sections. This is done
3172 // at the end of the Add_symbols task.
3175 Object::discard_decompressed_sections()
3177 if (this->compressed_sections_
== NULL
)
3180 for (Compressed_section_map::iterator p
= this->compressed_sections_
->begin();
3181 p
!= this->compressed_sections_
->end();
3184 if (p
->second
.contents
!= NULL
)
3186 delete[] p
->second
.contents
;
3187 p
->second
.contents
= NULL
;
3192 // Input_objects methods.
3194 // Add a regular relocatable object to the list. Return false if this
3195 // object should be ignored.
3198 Input_objects::add_object(Object
* obj
)
3200 // Print the filename if the -t/--trace option is selected.
3201 if (parameters
->options().trace())
3202 gold_trace("%s", obj
->name().c_str());
3204 if (!obj
->is_dynamic())
3205 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
3208 // See if this is a duplicate SONAME.
3209 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
3210 const char* soname
= dynobj
->soname();
3212 Unordered_map
<std::string
, Object
*>::value_type
val(soname
, obj
);
3213 std::pair
<Unordered_map
<std::string
, Object
*>::iterator
, bool> ins
=
3214 this->sonames_
.insert(val
);
3217 // We have already seen a dynamic object with this soname.
3218 // If any instances of this object on the command line have
3219 // the --no-as-needed flag, make sure the one we keep is
3221 if (!obj
->as_needed())
3223 gold_assert(ins
.first
->second
!= NULL
);
3224 ins
.first
->second
->clear_as_needed();
3229 this->dynobj_list_
.push_back(dynobj
);
3232 // Add this object to the cross-referencer if requested.
3233 if (parameters
->options().user_set_print_symbol_counts()
3234 || parameters
->options().cref())
3236 if (this->cref_
== NULL
)
3237 this->cref_
= new Cref();
3238 this->cref_
->add_object(obj
);
3244 // For each dynamic object, record whether we've seen all of its
3245 // explicit dependencies.
3248 Input_objects::check_dynamic_dependencies() const
3250 bool issued_copy_dt_needed_error
= false;
3251 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
3252 p
!= this->dynobj_list_
.end();
3255 const Dynobj::Needed
& needed((*p
)->needed());
3256 bool found_all
= true;
3257 Dynobj::Needed::const_iterator pneeded
;
3258 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
3260 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
3266 (*p
)->set_has_unknown_needed_entries(!found_all
);
3268 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3269 // that gold does not support. However, they cause no trouble
3270 // unless there is a DT_NEEDED entry that we don't know about;
3271 // warn only in that case.
3273 && !issued_copy_dt_needed_error
3274 && (parameters
->options().copy_dt_needed_entries()
3275 || parameters
->options().add_needed()))
3277 const char* optname
;
3278 if (parameters
->options().copy_dt_needed_entries())
3279 optname
= "--copy-dt-needed-entries";
3281 optname
= "--add-needed";
3282 gold_error(_("%s is not supported but is required for %s in %s"),
3283 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
3284 issued_copy_dt_needed_error
= true;
3289 // Start processing an archive.
3292 Input_objects::archive_start(Archive
* archive
)
3294 if (parameters
->options().user_set_print_symbol_counts()
3295 || parameters
->options().cref())
3297 if (this->cref_
== NULL
)
3298 this->cref_
= new Cref();
3299 this->cref_
->add_archive_start(archive
);
3303 // Stop processing an archive.
3306 Input_objects::archive_stop(Archive
* archive
)
3308 if (parameters
->options().user_set_print_symbol_counts()
3309 || parameters
->options().cref())
3310 this->cref_
->add_archive_stop(archive
);
3313 // Print symbol counts
3316 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
3318 if (parameters
->options().user_set_print_symbol_counts()
3319 && this->cref_
!= NULL
)
3320 this->cref_
->print_symbol_counts(symtab
);
3323 // Print a cross reference table.
3326 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
3328 if (parameters
->options().cref() && this->cref_
!= NULL
)
3329 this->cref_
->print_cref(symtab
, f
);
3332 // Relocate_info methods.
3334 // Return a string describing the location of a relocation when file
3335 // and lineno information is not available. This is only used in
3338 template<int size
, bool big_endian
>
3340 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
3342 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
3343 std::string ret
= line_info
.addr2line(this->data_shndx
, offset
, NULL
);
3347 ret
= this->object
->name();
3349 Symbol_location_info info
;
3350 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
3352 if (!info
.source_file
.empty())
3355 ret
+= info
.source_file
;
3358 if (info
.enclosing_symbol_type
== elfcpp::STT_FUNC
)
3359 ret
+= _("function ");
3360 ret
+= info
.enclosing_symbol_name
;
3365 ret
+= this->object
->section_name(this->data_shndx
);
3367 snprintf(buf
, sizeof buf
, "+0x%lx)", static_cast<long>(offset
));
3372 } // End namespace gold.
3377 using namespace gold
;
3379 // Read an ELF file with the header and return the appropriate
3380 // instance of Object.
3382 template<int size
, bool big_endian
>
3384 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
3385 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
3386 bool* punconfigured
)
3388 Target
* target
= select_target(input_file
, offset
,
3389 ehdr
.get_e_machine(), size
, big_endian
,
3390 ehdr
.get_ei_osabi(),
3391 ehdr
.get_ei_abiversion());
3393 gold_fatal(_("%s: unsupported ELF machine number %d"),
3394 name
.c_str(), ehdr
.get_e_machine());
3396 if (!parameters
->target_valid())
3397 set_parameters_target(target
);
3398 else if (target
!= ¶meters
->target())
3400 if (punconfigured
!= NULL
)
3401 *punconfigured
= true;
3403 gold_error(_("%s: incompatible target"), name
.c_str());
3407 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
3411 } // End anonymous namespace.
3416 // Return whether INPUT_FILE is an ELF object.
3419 is_elf_object(Input_file
* input_file
, off_t offset
,
3420 const unsigned char** start
, int* read_size
)
3422 off_t filesize
= input_file
->file().filesize();
3423 int want
= elfcpp::Elf_recognizer::max_header_size
;
3424 if (filesize
- offset
< want
)
3425 want
= filesize
- offset
;
3427 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
3432 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
3435 // Read an ELF file and return the appropriate instance of Object.
3438 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
3439 const unsigned char* p
, section_offset_type bytes
,
3440 bool* punconfigured
)
3442 if (punconfigured
!= NULL
)
3443 *punconfigured
= false;
3446 bool big_endian
= false;
3448 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
3449 &big_endian
, &error
))
3451 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
3459 #ifdef HAVE_TARGET_32_BIG
3460 elfcpp::Ehdr
<32, true> ehdr(p
);
3461 return make_elf_sized_object
<32, true>(name
, input_file
,
3462 offset
, ehdr
, punconfigured
);
3464 if (punconfigured
!= NULL
)
3465 *punconfigured
= true;
3467 gold_error(_("%s: not configured to support "
3468 "32-bit big-endian object"),
3475 #ifdef HAVE_TARGET_32_LITTLE
3476 elfcpp::Ehdr
<32, false> ehdr(p
);
3477 return make_elf_sized_object
<32, false>(name
, input_file
,
3478 offset
, ehdr
, punconfigured
);
3480 if (punconfigured
!= NULL
)
3481 *punconfigured
= true;
3483 gold_error(_("%s: not configured to support "
3484 "32-bit little-endian object"),
3490 else if (size
== 64)
3494 #ifdef HAVE_TARGET_64_BIG
3495 elfcpp::Ehdr
<64, true> ehdr(p
);
3496 return make_elf_sized_object
<64, true>(name
, input_file
,
3497 offset
, ehdr
, punconfigured
);
3499 if (punconfigured
!= NULL
)
3500 *punconfigured
= true;
3502 gold_error(_("%s: not configured to support "
3503 "64-bit big-endian object"),
3510 #ifdef HAVE_TARGET_64_LITTLE
3511 elfcpp::Ehdr
<64, false> ehdr(p
);
3512 return make_elf_sized_object
<64, false>(name
, input_file
,
3513 offset
, ehdr
, punconfigured
);
3515 if (punconfigured
!= NULL
)
3516 *punconfigured
= true;
3518 gold_error(_("%s: not configured to support "
3519 "64-bit little-endian object"),
3529 // Instantiate the templates we need.
3531 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3534 Relobj::initialize_input_to_output_map
<64>(unsigned int shndx
,
3535 elfcpp::Elf_types
<64>::Elf_Addr starting_address
,
3536 Unordered_map
<section_offset_type
,
3537 elfcpp::Elf_types
<64>::Elf_Addr
>* output_addresses
) const;
3540 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3543 Relobj::initialize_input_to_output_map
<32>(unsigned int shndx
,
3544 elfcpp::Elf_types
<32>::Elf_Addr starting_address
,
3545 Unordered_map
<section_offset_type
,
3546 elfcpp::Elf_types
<32>::Elf_Addr
>* output_addresses
) const;
3549 #ifdef HAVE_TARGET_32_LITTLE
3552 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
3553 Read_symbols_data
*);
3555 const unsigned char*
3556 Object::find_shdr
<32,false>(const unsigned char*, const char*, const char*,
3557 section_size_type
, const unsigned char*) const;
3560 #ifdef HAVE_TARGET_32_BIG
3563 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
3564 Read_symbols_data
*);
3566 const unsigned char*
3567 Object::find_shdr
<32,true>(const unsigned char*, const char*, const char*,
3568 section_size_type
, const unsigned char*) const;
3571 #ifdef HAVE_TARGET_64_LITTLE
3574 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
3575 Read_symbols_data
*);
3577 const unsigned char*
3578 Object::find_shdr
<64,false>(const unsigned char*, const char*, const char*,
3579 section_size_type
, const unsigned char*) const;
3582 #ifdef HAVE_TARGET_64_BIG
3585 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
3586 Read_symbols_data
*);
3588 const unsigned char*
3589 Object::find_shdr
<64,true>(const unsigned char*, const char*, const char*,
3590 section_size_type
, const unsigned char*) const;
3593 #ifdef HAVE_TARGET_32_LITTLE
3595 class Sized_relobj
<32, false>;
3598 class Sized_relobj_file
<32, false>;
3601 #ifdef HAVE_TARGET_32_BIG
3603 class Sized_relobj
<32, true>;
3606 class Sized_relobj_file
<32, true>;
3609 #ifdef HAVE_TARGET_64_LITTLE
3611 class Sized_relobj
<64, false>;
3614 class Sized_relobj_file
<64, false>;
3617 #ifdef HAVE_TARGET_64_BIG
3619 class Sized_relobj
<64, true>;
3622 class Sized_relobj_file
<64, true>;
3625 #ifdef HAVE_TARGET_32_LITTLE
3627 struct Relocate_info
<32, false>;
3630 #ifdef HAVE_TARGET_32_BIG
3632 struct Relocate_info
<32, true>;
3635 #ifdef HAVE_TARGET_64_LITTLE
3637 struct Relocate_info
<64, false>;
3640 #ifdef HAVE_TARGET_64_BIG
3642 struct Relocate_info
<64, true>;
3645 #ifdef HAVE_TARGET_32_LITTLE
3648 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
3652 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
3653 const unsigned char*);
3656 #ifdef HAVE_TARGET_32_BIG
3659 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
3663 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
3664 const unsigned char*);
3667 #ifdef HAVE_TARGET_64_LITTLE
3670 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
3674 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
3675 const unsigned char*);
3678 #ifdef HAVE_TARGET_64_BIG
3681 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
3685 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
3686 const unsigned char*);
3689 #ifdef HAVE_TARGET_32_LITTLE
3691 Compressed_section_map
*
3692 build_compressed_section_map
<32, false>(const unsigned char*, unsigned int,
3693 const char*, section_size_type
,
3697 #ifdef HAVE_TARGET_32_BIG
3699 Compressed_section_map
*
3700 build_compressed_section_map
<32, true>(const unsigned char*, unsigned int,
3701 const char*, section_size_type
,
3705 #ifdef HAVE_TARGET_64_LITTLE
3707 Compressed_section_map
*
3708 build_compressed_section_map
<64, false>(const unsigned char*, unsigned int,
3709 const char*, section_size_type
,
3713 #ifdef HAVE_TARGET_64_BIG
3715 Compressed_section_map
*
3716 build_compressed_section_map
<64, true>(const unsigned char*, unsigned int,
3717 const char*, section_size_type
,
3721 } // End namespace gold.