gdb/testsuite: fix gdb.trace/signal.exp on x86
[binutils-gdb/blckswan.git] / gold / symtab.cc
blobd56e1f2db532f9605781161fa5d47972004cfaa8
1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
45 namespace gold
48 // Class Symbol.
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
90 static std::string
91 demangle(const char* name)
93 if (!parameters->options().do_demangle())
94 return name;
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
107 std::string
108 Symbol::demangled_name() const
110 return demangle(this->name());
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
202 // Allocate a common symbol in the base.
204 void
205 Symbol::allocate_base_common(Output_data* od)
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
285 // Initialize the fields in Sized_symbol for an undefined symbol.
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
302 std::string
303 Symbol::versioned_name() const
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
314 // Return true if SHNDX represents a common symbol.
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
324 // Allocate a common symbol.
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
330 this->allocate_base_common(od);
331 this->value_ = value;
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
404 // Not a C++ symbol, so it can't satisfy these flags
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
410 free(demangled_name);
411 return true;
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
417 free(demangled_name);
418 return true;
420 else
421 free(demangled_name);
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
437 return false;
440 // Return true if the final value of this symbol is known at link
441 // time.
443 bool
444 Symbol::final_value_is_known() const
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
459 if (this->source_ != IS_UNDEFINED)
460 return true;
462 else
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
482 // Return the output section where this symbol is defined.
484 Output_section*
485 Symbol::output_section() const
487 switch (this->source_)
489 case FROM_OBJECT:
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
499 return NULL;
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
510 default:
511 gold_unreachable();
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
519 void
520 Symbol::set_output_section(Output_section* os)
522 switch (this->source_)
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
557 void
558 Symbol::set_undefined()
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
564 // Class Symbol_table.
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), has_gnu_output_(false), table_(count),
569 namepool_(), forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
574 namepool_.reserve(count);
577 Symbol_table::~Symbol_table()
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
588 return k1.first == k2.first && k1.second == k2.second;
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
615 this->gc_mark_symbol(sym);
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
632 this->gc_mark_symbol(sym);
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
646 this->gc_mark_symbol(sym);
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
663 parameters->target().gc_mark_symbol(this, sym);
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
676 // Make TO a symbol which forwards to FROM.
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
687 // Resolve the forwards from FROM, returning the real symbol.
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
699 // Look up a symbol by name.
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
756 void
757 Symbol_table::force_local(Symbol* sym)
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
763 // We already got this one.
764 return;
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
782 prefix = name[0];
783 ++name;
786 if (parameters->options().is_wrap(name))
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
814 return name;
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
829 if (default_is_new)
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
837 else if (pdef->second == sym)
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
842 else
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
889 else
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
992 Sized_symbol<size>* ret = NULL;
993 bool was_undefined_in_reg;
994 bool was_common;
995 if (!ins.second)
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1001 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1002 // Commons from plugins are just placeholders.
1003 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1005 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006 version, is_default_version);
1007 if (parameters->options().gc_sections())
1008 this->gc_mark_dyn_syms(ret);
1010 if (is_default_version)
1011 this->define_default_version<size, big_endian>(ret, insdefault.second,
1012 insdefault.first);
1013 else
1015 bool dummy;
1016 if (version != NULL
1017 && ret->source() == Symbol::FROM_OBJECT
1018 && ret->object() == object
1019 && is_ordinary
1020 && ret->shndx(&dummy) == st_shndx
1021 && ret->is_default())
1023 // We have seen NAME/VERSION already, and marked it as the
1024 // default version, but now we see a definition for
1025 // NAME/VERSION that is not the default version. This can
1026 // happen when the assembler generates two symbols for
1027 // a symbol as a result of a ".symver foo,foo@VER"
1028 // directive. We see the first unversioned symbol and
1029 // we may mark it as the default version (from a
1030 // version script); then we see the second versioned
1031 // symbol and we need to override the first.
1032 // In any other case, the two symbols should have generated
1033 // a multiple definition error.
1034 // (See PR gold/18703.)
1035 ret->set_is_not_default();
1036 const Stringpool::Key vnull_key = 0;
1037 this->table_.erase(std::make_pair(name_key, vnull_key));
1041 else
1043 // This is the first time we have seen NAME/VERSION.
1044 gold_assert(ins.first->second == NULL);
1046 if (is_default_version && !insdefault.second)
1048 // We already have an entry for NAME/NULL. If we override
1049 // it, then change it to NAME/VERSION.
1050 ret = this->get_sized_symbol<size>(insdefault.first->second);
1052 // If the existing symbol already has a version,
1053 // don't override it with the new symbol.
1054 // This should only happen when the new symbol
1055 // is from a shared library.
1056 if (ret->version() != NULL)
1058 if (!object->is_dynamic())
1060 gold_warning(_("%s: conflicting default version definition"
1061 " for %s@@%s"),
1062 object->name().c_str(), name, version);
1063 if (ret->source() == Symbol::FROM_OBJECT)
1064 gold_info(_("%s: %s: previous definition of %s@@%s here"),
1065 program_name,
1066 ret->object()->name().c_str(),
1067 name, ret->version());
1069 ret = NULL;
1070 is_default_version = false;
1072 else
1074 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1075 // Commons from plugins are just placeholders.
1076 was_common = (ret->is_common()
1077 && ret->object()->pluginobj() == NULL);
1079 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
1080 object, version, is_default_version);
1081 if (parameters->options().gc_sections())
1082 this->gc_mark_dyn_syms(ret);
1083 ins.first->second = ret;
1087 if (ret == NULL)
1089 was_undefined_in_reg = false;
1090 was_common = false;
1092 Sized_target<size, big_endian>* target =
1093 parameters->sized_target<size, big_endian>();
1094 if (!target->has_make_symbol())
1095 ret = new Sized_symbol<size>();
1096 else
1098 ret = target->make_symbol(name, sym.get_st_type(), object,
1099 st_shndx, sym.get_st_value());
1100 if (ret == NULL)
1102 // This means that we don't want a symbol table
1103 // entry after all.
1104 if (!is_default_version)
1105 this->table_.erase(ins.first);
1106 else
1108 this->table_.erase(insdefault.first);
1109 // Inserting INSDEFAULT invalidated INS.
1110 this->table_.erase(std::make_pair(name_key,
1111 version_key));
1113 return NULL;
1117 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1119 ins.first->second = ret;
1120 if (is_default_version)
1122 // This is the first time we have seen NAME/NULL. Point
1123 // it at the new entry for NAME/VERSION.
1124 gold_assert(insdefault.second);
1125 insdefault.first->second = ret;
1129 if (is_default_version)
1130 ret->set_is_default();
1133 // Record every time we see a new undefined symbol, to speed up archive
1134 // groups. We only care about symbols undefined in regular objects here
1135 // because undefined symbols only in dynamic objects should't trigger rescans.
1136 if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
1138 ++this->saw_undefined_;
1139 if (parameters->options().has_plugins())
1140 parameters->options().plugins()->new_undefined_symbol(ret);
1143 // Keep track of common symbols, to speed up common symbol
1144 // allocation. Don't record commons from plugin objects;
1145 // we need to wait until we see the real symbol in the
1146 // replacement file.
1147 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1149 if (ret->type() == elfcpp::STT_TLS)
1150 this->tls_commons_.push_back(ret);
1151 else if (!is_ordinary
1152 && st_shndx == parameters->target().small_common_shndx())
1153 this->small_commons_.push_back(ret);
1154 else if (!is_ordinary
1155 && st_shndx == parameters->target().large_common_shndx())
1156 this->large_commons_.push_back(ret);
1157 else
1158 this->commons_.push_back(ret);
1161 // If we're not doing a relocatable link, then any symbol with
1162 // hidden or internal visibility is local.
1163 if ((ret->visibility() == elfcpp::STV_HIDDEN
1164 || ret->visibility() == elfcpp::STV_INTERNAL)
1165 && (ret->binding() == elfcpp::STB_GLOBAL
1166 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1167 || ret->binding() == elfcpp::STB_WEAK)
1168 && !parameters->options().relocatable())
1169 this->force_local(ret);
1171 return ret;
1174 // Add all the symbols in a relocatable object to the hash table.
1176 template<int size, bool big_endian>
1177 void
1178 Symbol_table::add_from_relobj(
1179 Sized_relobj_file<size, big_endian>* relobj,
1180 const unsigned char* syms,
1181 size_t count,
1182 size_t symndx_offset,
1183 const char* sym_names,
1184 size_t sym_name_size,
1185 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1186 size_t* defined)
1188 *defined = 0;
1190 gold_assert(size == parameters->target().get_size());
1192 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1194 const bool just_symbols = relobj->just_symbols();
1196 const unsigned char* p = syms;
1197 for (size_t i = 0; i < count; ++i, p += sym_size)
1199 (*sympointers)[i] = NULL;
1201 elfcpp::Sym<size, big_endian> sym(p);
1203 unsigned int st_name = sym.get_st_name();
1204 if (st_name >= sym_name_size)
1206 relobj->error(_("bad global symbol name offset %u at %zu"),
1207 st_name, i);
1208 continue;
1211 const char* name = sym_names + st_name;
1213 if (!parameters->options().relocatable()
1214 && name[0] == '_'
1215 && name[1] == '_'
1216 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1217 gold_info(_("%s: plugin needed to handle lto object"),
1218 relobj->name().c_str());
1220 bool is_ordinary;
1221 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1222 sym.get_st_shndx(),
1223 &is_ordinary);
1224 unsigned int orig_st_shndx = st_shndx;
1225 if (!is_ordinary)
1226 orig_st_shndx = elfcpp::SHN_UNDEF;
1228 if (st_shndx != elfcpp::SHN_UNDEF)
1229 ++*defined;
1231 // A symbol defined in a section which we are not including must
1232 // be treated as an undefined symbol.
1233 bool is_defined_in_discarded_section = false;
1234 if (st_shndx != elfcpp::SHN_UNDEF
1235 && is_ordinary
1236 && !relobj->is_section_included(st_shndx)
1237 && !this->is_section_folded(relobj, st_shndx))
1239 st_shndx = elfcpp::SHN_UNDEF;
1240 is_defined_in_discarded_section = true;
1243 // In an object file, an '@' in the name separates the symbol
1244 // name from the version name. If there are two '@' characters,
1245 // this is the default version.
1246 const char* ver = strchr(name, '@');
1247 Stringpool::Key ver_key = 0;
1248 int namelen = 0;
1249 // IS_DEFAULT_VERSION: is the version default?
1250 // IS_FORCED_LOCAL: is the symbol forced local?
1251 bool is_default_version = false;
1252 bool is_forced_local = false;
1254 // FIXME: For incremental links, we don't store version information,
1255 // so we need to ignore version symbols for now.
1256 if (parameters->incremental_update() && ver != NULL)
1258 namelen = ver - name;
1259 ver = NULL;
1262 if (ver != NULL)
1264 // The symbol name is of the form foo@VERSION or foo@@VERSION
1265 namelen = ver - name;
1266 ++ver;
1267 if (*ver == '@')
1269 is_default_version = true;
1270 ++ver;
1272 ver = this->namepool_.add(ver, true, &ver_key);
1274 // We don't want to assign a version to an undefined symbol,
1275 // even if it is listed in the version script. FIXME: What
1276 // about a common symbol?
1277 else
1279 namelen = strlen(name);
1280 if (!this->version_script_.empty()
1281 && st_shndx != elfcpp::SHN_UNDEF)
1283 // The symbol name did not have a version, but the
1284 // version script may assign a version anyway.
1285 std::string version;
1286 bool is_global;
1287 if (this->version_script_.get_symbol_version(name, &version,
1288 &is_global))
1290 if (!is_global)
1291 is_forced_local = true;
1292 else if (!version.empty())
1294 ver = this->namepool_.add_with_length(version.c_str(),
1295 version.length(),
1296 true,
1297 &ver_key);
1298 is_default_version = true;
1304 elfcpp::Sym<size, big_endian>* psym = &sym;
1305 unsigned char symbuf[sym_size];
1306 elfcpp::Sym<size, big_endian> sym2(symbuf);
1307 if (just_symbols)
1309 memcpy(symbuf, p, sym_size);
1310 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1311 if (orig_st_shndx != elfcpp::SHN_UNDEF
1312 && is_ordinary
1313 && relobj->e_type() == elfcpp::ET_REL)
1315 // Symbol values in relocatable object files are section
1316 // relative. This is normally what we want, but since here
1317 // we are converting the symbol to absolute we need to add
1318 // the section address. The section address in an object
1319 // file is normally zero, but people can use a linker
1320 // script to change it.
1321 sw.put_st_value(sym.get_st_value()
1322 + relobj->section_address(orig_st_shndx));
1324 st_shndx = elfcpp::SHN_ABS;
1325 is_ordinary = false;
1326 psym = &sym2;
1329 // Fix up visibility if object has no-export set.
1330 if (relobj->no_export()
1331 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1333 // We may have copied symbol already above.
1334 if (psym != &sym2)
1336 memcpy(symbuf, p, sym_size);
1337 psym = &sym2;
1340 elfcpp::STV visibility = sym2.get_st_visibility();
1341 if (visibility == elfcpp::STV_DEFAULT
1342 || visibility == elfcpp::STV_PROTECTED)
1344 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1345 unsigned char nonvis = sym2.get_st_nonvis();
1346 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1350 Stringpool::Key name_key;
1351 name = this->namepool_.add_with_length(name, namelen, true,
1352 &name_key);
1354 Sized_symbol<size>* res;
1355 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1356 is_default_version, *psym, st_shndx,
1357 is_ordinary, orig_st_shndx);
1359 if (res == NULL)
1360 continue;
1362 if (is_forced_local)
1363 this->force_local(res);
1365 // Do not treat this symbol as garbage if this symbol will be
1366 // exported to the dynamic symbol table. This is true when
1367 // building a shared library or using --export-dynamic and
1368 // the symbol is externally visible.
1369 if (parameters->options().gc_sections()
1370 && res->is_externally_visible()
1371 && !res->is_from_dynobj()
1372 && (parameters->options().shared()
1373 || parameters->options().export_dynamic()
1374 || parameters->options().in_dynamic_list(res->name())))
1375 this->gc_mark_symbol(res);
1377 if (is_defined_in_discarded_section)
1378 res->set_is_defined_in_discarded_section();
1380 (*sympointers)[i] = res;
1384 // Add a symbol from a plugin-claimed file.
1386 template<int size, bool big_endian>
1387 Symbol*
1388 Symbol_table::add_from_pluginobj(
1389 Sized_pluginobj<size, big_endian>* obj,
1390 const char* name,
1391 const char* ver,
1392 elfcpp::Sym<size, big_endian>* sym)
1394 unsigned int st_shndx = sym->get_st_shndx();
1395 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1397 Stringpool::Key ver_key = 0;
1398 bool is_default_version = false;
1399 bool is_forced_local = false;
1401 if (ver != NULL)
1403 ver = this->namepool_.add(ver, true, &ver_key);
1405 // We don't want to assign a version to an undefined symbol,
1406 // even if it is listed in the version script. FIXME: What
1407 // about a common symbol?
1408 else
1410 if (!this->version_script_.empty()
1411 && st_shndx != elfcpp::SHN_UNDEF)
1413 // The symbol name did not have a version, but the
1414 // version script may assign a version anyway.
1415 std::string version;
1416 bool is_global;
1417 if (this->version_script_.get_symbol_version(name, &version,
1418 &is_global))
1420 if (!is_global)
1421 is_forced_local = true;
1422 else if (!version.empty())
1424 ver = this->namepool_.add_with_length(version.c_str(),
1425 version.length(),
1426 true,
1427 &ver_key);
1428 is_default_version = true;
1434 Stringpool::Key name_key;
1435 name = this->namepool_.add(name, true, &name_key);
1437 Sized_symbol<size>* res;
1438 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1439 is_default_version, *sym, st_shndx,
1440 is_ordinary, st_shndx);
1442 if (res == NULL)
1443 return NULL;
1445 if (is_forced_local)
1446 this->force_local(res);
1448 return res;
1451 // Add all the symbols in a dynamic object to the hash table.
1453 template<int size, bool big_endian>
1454 void
1455 Symbol_table::add_from_dynobj(
1456 Sized_dynobj<size, big_endian>* dynobj,
1457 const unsigned char* syms,
1458 size_t count,
1459 const char* sym_names,
1460 size_t sym_name_size,
1461 const unsigned char* versym,
1462 size_t versym_size,
1463 const std::vector<const char*>* version_map,
1464 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1465 size_t* defined)
1467 *defined = 0;
1469 gold_assert(size == parameters->target().get_size());
1471 if (dynobj->just_symbols())
1473 gold_error(_("--just-symbols does not make sense with a shared object"));
1474 return;
1477 // FIXME: For incremental links, we don't store version information,
1478 // so we need to ignore version symbols for now.
1479 if (parameters->incremental_update())
1480 versym = NULL;
1482 if (versym != NULL && versym_size / 2 < count)
1484 dynobj->error(_("too few symbol versions"));
1485 return;
1488 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1490 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1491 // weak aliases. This is necessary because if the dynamic object
1492 // provides the same variable under two names, one of which is a
1493 // weak definition, and the regular object refers to the weak
1494 // definition, we have to put both the weak definition and the
1495 // strong definition into the dynamic symbol table. Given a weak
1496 // definition, the only way that we can find the corresponding
1497 // strong definition, if any, is to search the symbol table.
1498 std::vector<Sized_symbol<size>*> object_symbols;
1500 const unsigned char* p = syms;
1501 const unsigned char* vs = versym;
1502 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1504 elfcpp::Sym<size, big_endian> sym(p);
1506 if (sympointers != NULL)
1507 (*sympointers)[i] = NULL;
1509 // Ignore symbols with local binding or that have
1510 // internal or hidden visibility.
1511 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1512 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1513 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1514 continue;
1516 // A protected symbol in a shared library must be treated as a
1517 // normal symbol when viewed from outside the shared library.
1518 // Implement this by overriding the visibility here.
1519 // Likewise, an IFUNC symbol in a shared library must be treated
1520 // as a normal FUNC symbol.
1521 elfcpp::Sym<size, big_endian>* psym = &sym;
1522 unsigned char symbuf[sym_size];
1523 elfcpp::Sym<size, big_endian> sym2(symbuf);
1524 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1525 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1527 memcpy(symbuf, p, sym_size);
1528 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1529 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1530 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1531 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1532 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1533 psym = &sym2;
1536 unsigned int st_name = psym->get_st_name();
1537 if (st_name >= sym_name_size)
1539 dynobj->error(_("bad symbol name offset %u at %zu"),
1540 st_name, i);
1541 continue;
1544 const char* name = sym_names + st_name;
1546 bool is_ordinary;
1547 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1548 &is_ordinary);
1550 if (st_shndx != elfcpp::SHN_UNDEF)
1551 ++*defined;
1553 Sized_symbol<size>* res;
1555 if (versym == NULL)
1557 Stringpool::Key name_key;
1558 name = this->namepool_.add(name, true, &name_key);
1559 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1560 false, *psym, st_shndx, is_ordinary,
1561 st_shndx);
1563 else
1565 // Read the version information.
1567 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1569 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1570 v &= elfcpp::VERSYM_VERSION;
1572 // The Sun documentation says that V can be VER_NDX_LOCAL,
1573 // or VER_NDX_GLOBAL, or a version index. The meaning of
1574 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1575 // The old GNU linker will happily generate VER_NDX_LOCAL
1576 // for an undefined symbol. I don't know what the Sun
1577 // linker will generate.
1579 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1580 && st_shndx != elfcpp::SHN_UNDEF)
1582 // This symbol should not be visible outside the object.
1583 continue;
1586 // At this point we are definitely going to add this symbol.
1587 Stringpool::Key name_key;
1588 name = this->namepool_.add(name, true, &name_key);
1590 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1591 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1593 // This symbol does not have a version.
1594 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1595 false, *psym, st_shndx, is_ordinary,
1596 st_shndx);
1598 else
1600 if (v >= version_map->size())
1602 dynobj->error(_("versym for symbol %zu out of range: %u"),
1603 i, v);
1604 continue;
1607 const char* version = (*version_map)[v];
1608 if (version == NULL)
1610 dynobj->error(_("versym for symbol %zu has no name: %u"),
1611 i, v);
1612 continue;
1615 Stringpool::Key version_key;
1616 version = this->namepool_.add(version, true, &version_key);
1618 // If this is an absolute symbol, and the version name
1619 // and symbol name are the same, then this is the
1620 // version definition symbol. These symbols exist to
1621 // support using -u to pull in particular versions. We
1622 // do not want to record a version for them.
1623 if (st_shndx == elfcpp::SHN_ABS
1624 && !is_ordinary
1625 && name_key == version_key)
1626 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1627 false, *psym, st_shndx, is_ordinary,
1628 st_shndx);
1629 else
1631 const bool is_default_version =
1632 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1633 res = this->add_from_object(dynobj, name, name_key, version,
1634 version_key, is_default_version,
1635 *psym, st_shndx,
1636 is_ordinary, st_shndx);
1641 if (res == NULL)
1642 continue;
1644 // Note that it is possible that RES was overridden by an
1645 // earlier object, in which case it can't be aliased here.
1646 if (st_shndx != elfcpp::SHN_UNDEF
1647 && is_ordinary
1648 && psym->get_st_type() == elfcpp::STT_OBJECT
1649 && res->source() == Symbol::FROM_OBJECT
1650 && res->object() == dynobj)
1651 object_symbols.push_back(res);
1653 // If the symbol has protected visibility in the dynobj,
1654 // mark it as such if it was not overridden.
1655 if (res->source() == Symbol::FROM_OBJECT
1656 && res->object() == dynobj
1657 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1658 res->set_is_protected();
1660 if (sympointers != NULL)
1661 (*sympointers)[i] = res;
1664 this->record_weak_aliases(&object_symbols);
1667 // Add a symbol from a incremental object file.
1669 template<int size, bool big_endian>
1670 Sized_symbol<size>*
1671 Symbol_table::add_from_incrobj(
1672 Object* obj,
1673 const char* name,
1674 const char* ver,
1675 elfcpp::Sym<size, big_endian>* sym)
1677 unsigned int st_shndx = sym->get_st_shndx();
1678 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1680 Stringpool::Key ver_key = 0;
1681 bool is_default_version = false;
1683 Stringpool::Key name_key;
1684 name = this->namepool_.add(name, true, &name_key);
1686 Sized_symbol<size>* res;
1687 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1688 is_default_version, *sym, st_shndx,
1689 is_ordinary, st_shndx);
1691 return res;
1694 // This is used to sort weak aliases. We sort them first by section
1695 // index, then by offset, then by weak ahead of strong.
1697 template<int size>
1698 class Weak_alias_sorter
1700 public:
1701 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1704 template<int size>
1705 bool
1706 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1707 const Sized_symbol<size>* s2) const
1709 bool is_ordinary;
1710 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1711 gold_assert(is_ordinary);
1712 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1713 gold_assert(is_ordinary);
1714 if (s1_shndx != s2_shndx)
1715 return s1_shndx < s2_shndx;
1717 if (s1->value() != s2->value())
1718 return s1->value() < s2->value();
1719 if (s1->binding() != s2->binding())
1721 if (s1->binding() == elfcpp::STB_WEAK)
1722 return true;
1723 if (s2->binding() == elfcpp::STB_WEAK)
1724 return false;
1726 return std::string(s1->name()) < std::string(s2->name());
1729 // SYMBOLS is a list of object symbols from a dynamic object. Look
1730 // for any weak aliases, and record them so that if we add the weak
1731 // alias to the dynamic symbol table, we also add the corresponding
1732 // strong symbol.
1734 template<int size>
1735 void
1736 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1738 // Sort the vector by section index, then by offset, then by weak
1739 // ahead of strong.
1740 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1742 // Walk through the vector. For each weak definition, record
1743 // aliases.
1744 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1745 symbols->begin();
1746 p != symbols->end();
1747 ++p)
1749 if ((*p)->binding() != elfcpp::STB_WEAK)
1750 continue;
1752 // Build a circular list of weak aliases. Each symbol points to
1753 // the next one in the circular list.
1755 Sized_symbol<size>* from_sym = *p;
1756 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1757 for (q = p + 1; q != symbols->end(); ++q)
1759 bool dummy;
1760 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1761 || (*q)->value() != from_sym->value())
1762 break;
1764 this->weak_aliases_[from_sym] = *q;
1765 from_sym->set_has_alias();
1766 from_sym = *q;
1769 if (from_sym != *p)
1771 this->weak_aliases_[from_sym] = *p;
1772 from_sym->set_has_alias();
1775 p = q - 1;
1779 // Create and return a specially defined symbol. If ONLY_IF_REF is
1780 // true, then only create the symbol if there is a reference to it.
1781 // If this does not return NULL, it sets *POLDSYM to the existing
1782 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1783 // resolve the newly created symbol to the old one. This
1784 // canonicalizes *PNAME and *PVERSION.
1786 template<int size, bool big_endian>
1787 Sized_symbol<size>*
1788 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1789 bool only_if_ref,
1790 elfcpp::STV visibility,
1791 Sized_symbol<size>** poldsym,
1792 bool* resolve_oldsym, bool is_forced_local)
1794 *resolve_oldsym = false;
1795 *poldsym = NULL;
1797 // If the caller didn't give us a version, see if we get one from
1798 // the version script.
1799 std::string v;
1800 bool is_default_version = false;
1801 if (!is_forced_local && *pversion == NULL)
1803 bool is_global;
1804 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1806 if (is_global && !v.empty())
1808 *pversion = v.c_str();
1809 // If we get the version from a version script, then we
1810 // are also the default version.
1811 is_default_version = true;
1816 Symbol* oldsym;
1817 Sized_symbol<size>* sym;
1819 bool add_to_table = false;
1820 typename Symbol_table_type::iterator add_loc = this->table_.end();
1821 bool add_def_to_table = false;
1822 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1824 if (only_if_ref)
1826 oldsym = this->lookup(*pname, *pversion);
1827 if (oldsym == NULL && is_default_version)
1828 oldsym = this->lookup(*pname, NULL);
1829 if (oldsym == NULL)
1830 return NULL;
1831 if (!oldsym->is_undefined())
1833 // Skip if the old definition is from a regular object.
1834 if (!oldsym->is_from_dynobj())
1835 return NULL;
1837 // If the symbol has hidden or internal visibility, ignore
1838 // definition and reference from a dynamic object.
1839 if ((visibility == elfcpp::STV_HIDDEN
1840 || visibility == elfcpp::STV_INTERNAL)
1841 && !oldsym->in_reg())
1842 return NULL;
1845 *pname = oldsym->name();
1846 if (is_default_version)
1847 *pversion = this->namepool_.add(*pversion, true, NULL);
1848 else
1849 *pversion = oldsym->version();
1851 else
1853 // Canonicalize NAME and VERSION.
1854 Stringpool::Key name_key;
1855 *pname = this->namepool_.add(*pname, true, &name_key);
1857 Stringpool::Key version_key = 0;
1858 if (*pversion != NULL)
1859 *pversion = this->namepool_.add(*pversion, true, &version_key);
1861 Symbol* const snull = NULL;
1862 std::pair<typename Symbol_table_type::iterator, bool> ins =
1863 this->table_.insert(std::make_pair(std::make_pair(name_key,
1864 version_key),
1865 snull));
1867 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1868 std::make_pair(this->table_.end(), false);
1869 if (is_default_version)
1871 const Stringpool::Key vnull = 0;
1872 insdefault =
1873 this->table_.insert(std::make_pair(std::make_pair(name_key,
1874 vnull),
1875 snull));
1878 if (!ins.second)
1880 // We already have a symbol table entry for NAME/VERSION.
1881 oldsym = ins.first->second;
1882 gold_assert(oldsym != NULL);
1884 if (is_default_version)
1886 Sized_symbol<size>* soldsym =
1887 this->get_sized_symbol<size>(oldsym);
1888 this->define_default_version<size, big_endian>(soldsym,
1889 insdefault.second,
1890 insdefault.first);
1893 else
1895 // We haven't seen this symbol before.
1896 gold_assert(ins.first->second == NULL);
1898 add_to_table = true;
1899 add_loc = ins.first;
1901 if (is_default_version
1902 && !insdefault.second
1903 && insdefault.first->second->version() == NULL)
1905 // We are adding NAME/VERSION, and it is the default
1906 // version. We already have an entry for NAME/NULL
1907 // that does not already have a version.
1908 oldsym = insdefault.first->second;
1909 *resolve_oldsym = true;
1911 else
1913 oldsym = NULL;
1915 if (is_default_version)
1917 add_def_to_table = true;
1918 add_def_loc = insdefault.first;
1924 const Target& target = parameters->target();
1925 if (!target.has_make_symbol())
1926 sym = new Sized_symbol<size>();
1927 else
1929 Sized_target<size, big_endian>* sized_target =
1930 parameters->sized_target<size, big_endian>();
1931 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1932 NULL, elfcpp::SHN_UNDEF, 0);
1933 if (sym == NULL)
1934 return NULL;
1937 if (add_to_table)
1938 add_loc->second = sym;
1939 else
1940 gold_assert(oldsym != NULL);
1942 if (add_def_to_table)
1943 add_def_loc->second = sym;
1945 *poldsym = this->get_sized_symbol<size>(oldsym);
1947 return sym;
1950 // Define a symbol based on an Output_data.
1952 Symbol*
1953 Symbol_table::define_in_output_data(const char* name,
1954 const char* version,
1955 Defined defined,
1956 Output_data* od,
1957 uint64_t value,
1958 uint64_t symsize,
1959 elfcpp::STT type,
1960 elfcpp::STB binding,
1961 elfcpp::STV visibility,
1962 unsigned char nonvis,
1963 bool offset_is_from_end,
1964 bool only_if_ref)
1966 if (parameters->target().get_size() == 32)
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1969 return this->do_define_in_output_data<32>(name, version, defined, od,
1970 value, symsize, type, binding,
1971 visibility, nonvis,
1972 offset_is_from_end,
1973 only_if_ref);
1974 #else
1975 gold_unreachable();
1976 #endif
1978 else if (parameters->target().get_size() == 64)
1980 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1981 return this->do_define_in_output_data<64>(name, version, defined, od,
1982 value, symsize, type, binding,
1983 visibility, nonvis,
1984 offset_is_from_end,
1985 only_if_ref);
1986 #else
1987 gold_unreachable();
1988 #endif
1990 else
1991 gold_unreachable();
1994 // Define a symbol in an Output_data, sized version.
1996 template<int size>
1997 Sized_symbol<size>*
1998 Symbol_table::do_define_in_output_data(
1999 const char* name,
2000 const char* version,
2001 Defined defined,
2002 Output_data* od,
2003 typename elfcpp::Elf_types<size>::Elf_Addr value,
2004 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2005 elfcpp::STT type,
2006 elfcpp::STB binding,
2007 elfcpp::STV visibility,
2008 unsigned char nonvis,
2009 bool offset_is_from_end,
2010 bool only_if_ref)
2012 Sized_symbol<size>* sym;
2013 Sized_symbol<size>* oldsym;
2014 bool resolve_oldsym;
2015 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2017 if (parameters->target().is_big_endian())
2019 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2020 sym = this->define_special_symbol<size, true>(&name, &version,
2021 only_if_ref,
2022 visibility,
2023 &oldsym,
2024 &resolve_oldsym,
2025 is_forced_local);
2026 #else
2027 gold_unreachable();
2028 #endif
2030 else
2032 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2033 sym = this->define_special_symbol<size, false>(&name, &version,
2034 only_if_ref,
2035 visibility,
2036 &oldsym,
2037 &resolve_oldsym,
2038 is_forced_local);
2039 #else
2040 gold_unreachable();
2041 #endif
2044 if (sym == NULL)
2045 return NULL;
2047 sym->init_output_data(name, version, od, value, symsize, type, binding,
2048 visibility, nonvis, offset_is_from_end,
2049 defined == PREDEFINED);
2051 if (oldsym == NULL)
2053 if (is_forced_local || this->version_script_.symbol_is_local(name))
2054 this->force_local(sym);
2055 else if (version != NULL)
2056 sym->set_is_default();
2057 return sym;
2060 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2061 this->override_with_special(oldsym, sym);
2063 if (resolve_oldsym)
2064 return sym;
2065 else
2067 if (defined == PREDEFINED
2068 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2069 this->force_local(oldsym);
2070 delete sym;
2071 return oldsym;
2075 // Define a symbol based on an Output_segment.
2077 Symbol*
2078 Symbol_table::define_in_output_segment(const char* name,
2079 const char* version,
2080 Defined defined,
2081 Output_segment* os,
2082 uint64_t value,
2083 uint64_t symsize,
2084 elfcpp::STT type,
2085 elfcpp::STB binding,
2086 elfcpp::STV visibility,
2087 unsigned char nonvis,
2088 Symbol::Segment_offset_base offset_base,
2089 bool only_if_ref)
2091 if (parameters->target().get_size() == 32)
2093 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2094 return this->do_define_in_output_segment<32>(name, version, defined, os,
2095 value, symsize, type,
2096 binding, visibility, nonvis,
2097 offset_base, only_if_ref);
2098 #else
2099 gold_unreachable();
2100 #endif
2102 else if (parameters->target().get_size() == 64)
2104 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2105 return this->do_define_in_output_segment<64>(name, version, defined, os,
2106 value, symsize, type,
2107 binding, visibility, nonvis,
2108 offset_base, only_if_ref);
2109 #else
2110 gold_unreachable();
2111 #endif
2113 else
2114 gold_unreachable();
2117 // Define a symbol in an Output_segment, sized version.
2119 template<int size>
2120 Sized_symbol<size>*
2121 Symbol_table::do_define_in_output_segment(
2122 const char* name,
2123 const char* version,
2124 Defined defined,
2125 Output_segment* os,
2126 typename elfcpp::Elf_types<size>::Elf_Addr value,
2127 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2128 elfcpp::STT type,
2129 elfcpp::STB binding,
2130 elfcpp::STV visibility,
2131 unsigned char nonvis,
2132 Symbol::Segment_offset_base offset_base,
2133 bool only_if_ref)
2135 Sized_symbol<size>* sym;
2136 Sized_symbol<size>* oldsym;
2137 bool resolve_oldsym;
2138 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2140 if (parameters->target().is_big_endian())
2142 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2143 sym = this->define_special_symbol<size, true>(&name, &version,
2144 only_if_ref,
2145 visibility,
2146 &oldsym,
2147 &resolve_oldsym,
2148 is_forced_local);
2149 #else
2150 gold_unreachable();
2151 #endif
2153 else
2155 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2156 sym = this->define_special_symbol<size, false>(&name, &version,
2157 only_if_ref,
2158 visibility,
2159 &oldsym,
2160 &resolve_oldsym,
2161 is_forced_local);
2162 #else
2163 gold_unreachable();
2164 #endif
2167 if (sym == NULL)
2168 return NULL;
2170 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2171 visibility, nonvis, offset_base,
2172 defined == PREDEFINED);
2174 if (oldsym == NULL)
2176 if (is_forced_local || this->version_script_.symbol_is_local(name))
2177 this->force_local(sym);
2178 else if (version != NULL)
2179 sym->set_is_default();
2180 return sym;
2183 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2184 this->override_with_special(oldsym, sym);
2186 if (resolve_oldsym)
2187 return sym;
2188 else
2190 if (is_forced_local || this->version_script_.symbol_is_local(name))
2191 this->force_local(oldsym);
2192 delete sym;
2193 return oldsym;
2197 // Define a special symbol with a constant value. It is a multiple
2198 // definition error if this symbol is already defined.
2200 Symbol*
2201 Symbol_table::define_as_constant(const char* name,
2202 const char* version,
2203 Defined defined,
2204 uint64_t value,
2205 uint64_t symsize,
2206 elfcpp::STT type,
2207 elfcpp::STB binding,
2208 elfcpp::STV visibility,
2209 unsigned char nonvis,
2210 bool only_if_ref,
2211 bool force_override)
2213 if (parameters->target().get_size() == 32)
2215 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2216 return this->do_define_as_constant<32>(name, version, defined, value,
2217 symsize, type, binding,
2218 visibility, nonvis, only_if_ref,
2219 force_override);
2220 #else
2221 gold_unreachable();
2222 #endif
2224 else if (parameters->target().get_size() == 64)
2226 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2227 return this->do_define_as_constant<64>(name, version, defined, value,
2228 symsize, type, binding,
2229 visibility, nonvis, only_if_ref,
2230 force_override);
2231 #else
2232 gold_unreachable();
2233 #endif
2235 else
2236 gold_unreachable();
2239 // Define a symbol as a constant, sized version.
2241 template<int size>
2242 Sized_symbol<size>*
2243 Symbol_table::do_define_as_constant(
2244 const char* name,
2245 const char* version,
2246 Defined defined,
2247 typename elfcpp::Elf_types<size>::Elf_Addr value,
2248 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2249 elfcpp::STT type,
2250 elfcpp::STB binding,
2251 elfcpp::STV visibility,
2252 unsigned char nonvis,
2253 bool only_if_ref,
2254 bool force_override)
2256 Sized_symbol<size>* sym;
2257 Sized_symbol<size>* oldsym;
2258 bool resolve_oldsym;
2259 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2261 if (parameters->target().is_big_endian())
2263 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2264 sym = this->define_special_symbol<size, true>(&name, &version,
2265 only_if_ref,
2266 visibility,
2267 &oldsym,
2268 &resolve_oldsym,
2269 is_forced_local);
2270 #else
2271 gold_unreachable();
2272 #endif
2274 else
2276 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2277 sym = this->define_special_symbol<size, false>(&name, &version,
2278 only_if_ref,
2279 visibility,
2280 &oldsym,
2281 &resolve_oldsym,
2282 is_forced_local);
2283 #else
2284 gold_unreachable();
2285 #endif
2288 if (sym == NULL)
2289 return NULL;
2291 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2292 nonvis, defined == PREDEFINED);
2294 if (oldsym == NULL)
2296 // Version symbols are absolute symbols with name == version.
2297 // We don't want to force them to be local.
2298 if ((version == NULL
2299 || name != version
2300 || value != 0)
2301 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2302 this->force_local(sym);
2303 else if (version != NULL
2304 && (name != version || value != 0))
2305 sym->set_is_default();
2306 return sym;
2309 if (force_override
2310 || Symbol_table::should_override_with_special(oldsym, type, defined))
2311 this->override_with_special(oldsym, sym);
2313 if (resolve_oldsym)
2314 return sym;
2315 else
2317 if (is_forced_local || this->version_script_.symbol_is_local(name))
2318 this->force_local(oldsym);
2319 delete sym;
2320 return oldsym;
2324 // Define a set of symbols in output sections.
2326 void
2327 Symbol_table::define_symbols(const Layout* layout, int count,
2328 const Define_symbol_in_section* p,
2329 bool only_if_ref)
2331 for (int i = 0; i < count; ++i, ++p)
2333 Output_section* os = layout->find_output_section(p->output_section);
2334 if (os != NULL)
2335 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2336 p->size, p->type, p->binding,
2337 p->visibility, p->nonvis,
2338 p->offset_is_from_end,
2339 only_if_ref || p->only_if_ref);
2340 else
2341 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2342 p->type, p->binding, p->visibility, p->nonvis,
2343 only_if_ref || p->only_if_ref,
2344 false);
2348 // Define a set of symbols in output segments.
2350 void
2351 Symbol_table::define_symbols(const Layout* layout, int count,
2352 const Define_symbol_in_segment* p,
2353 bool only_if_ref)
2355 for (int i = 0; i < count; ++i, ++p)
2357 Output_segment* os = layout->find_output_segment(p->segment_type,
2358 p->segment_flags_set,
2359 p->segment_flags_clear);
2360 if (os != NULL)
2361 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2362 p->size, p->type, p->binding,
2363 p->visibility, p->nonvis,
2364 p->offset_base,
2365 only_if_ref || p->only_if_ref);
2366 else
2367 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2368 p->type, p->binding, p->visibility, p->nonvis,
2369 only_if_ref || p->only_if_ref,
2370 false);
2374 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2375 // symbol should be defined--typically a .dyn.bss section. VALUE is
2376 // the offset within POSD.
2378 template<int size>
2379 void
2380 Symbol_table::define_with_copy_reloc(
2381 Sized_symbol<size>* csym,
2382 Output_data* posd,
2383 typename elfcpp::Elf_types<size>::Elf_Addr value)
2385 gold_assert(csym->is_from_dynobj());
2386 gold_assert(!csym->is_copied_from_dynobj());
2387 Object* object = csym->object();
2388 gold_assert(object->is_dynamic());
2389 Dynobj* dynobj = static_cast<Dynobj*>(object);
2391 // Our copied variable has to override any variable in a shared
2392 // library.
2393 elfcpp::STB binding = csym->binding();
2394 if (binding == elfcpp::STB_WEAK)
2395 binding = elfcpp::STB_GLOBAL;
2397 this->define_in_output_data(csym->name(), csym->version(), COPY,
2398 posd, value, csym->symsize(),
2399 csym->type(), binding,
2400 csym->visibility(), csym->nonvis(),
2401 false, false);
2403 csym->set_is_copied_from_dynobj();
2404 csym->set_needs_dynsym_entry();
2406 this->copied_symbol_dynobjs_[csym] = dynobj;
2408 // We have now defined all aliases, but we have not entered them all
2409 // in the copied_symbol_dynobjs_ map.
2410 if (csym->has_alias())
2412 Symbol* sym = csym;
2413 while (true)
2415 sym = this->weak_aliases_[sym];
2416 if (sym == csym)
2417 break;
2418 gold_assert(sym->output_data() == posd);
2420 sym->set_is_copied_from_dynobj();
2421 this->copied_symbol_dynobjs_[sym] = dynobj;
2426 // SYM is defined using a COPY reloc. Return the dynamic object where
2427 // the original definition was found.
2429 Dynobj*
2430 Symbol_table::get_copy_source(const Symbol* sym) const
2432 gold_assert(sym->is_copied_from_dynobj());
2433 Copied_symbol_dynobjs::const_iterator p =
2434 this->copied_symbol_dynobjs_.find(sym);
2435 gold_assert(p != this->copied_symbol_dynobjs_.end());
2436 return p->second;
2439 // Add any undefined symbols named on the command line.
2441 void
2442 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2444 if (parameters->options().any_undefined()
2445 || layout->script_options()->any_unreferenced())
2447 if (parameters->target().get_size() == 32)
2449 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2450 this->do_add_undefined_symbols_from_command_line<32>(layout);
2451 #else
2452 gold_unreachable();
2453 #endif
2455 else if (parameters->target().get_size() == 64)
2457 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2458 this->do_add_undefined_symbols_from_command_line<64>(layout);
2459 #else
2460 gold_unreachable();
2461 #endif
2463 else
2464 gold_unreachable();
2468 template<int size>
2469 void
2470 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2472 for (options::String_set::const_iterator p =
2473 parameters->options().undefined_begin();
2474 p != parameters->options().undefined_end();
2475 ++p)
2476 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2478 for (Script_options::referenced_const_iterator p =
2479 layout->script_options()->referenced_begin();
2480 p != layout->script_options()->referenced_end();
2481 ++p)
2482 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2485 template<int size>
2486 void
2487 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2489 if (this->lookup(name) != NULL)
2490 return;
2492 const char* version = NULL;
2494 Sized_symbol<size>* sym;
2495 Sized_symbol<size>* oldsym;
2496 bool resolve_oldsym;
2497 if (parameters->target().is_big_endian())
2499 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2500 sym = this->define_special_symbol<size, true>(&name, &version,
2501 false,
2502 elfcpp::STV_DEFAULT,
2503 &oldsym,
2504 &resolve_oldsym,
2505 false);
2506 #else
2507 gold_unreachable();
2508 #endif
2510 else
2512 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2513 sym = this->define_special_symbol<size, false>(&name, &version,
2514 false,
2515 elfcpp::STV_DEFAULT,
2516 &oldsym,
2517 &resolve_oldsym,
2518 false);
2519 #else
2520 gold_unreachable();
2521 #endif
2524 gold_assert(oldsym == NULL);
2526 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2527 elfcpp::STV_DEFAULT, 0);
2528 ++this->saw_undefined_;
2531 // Set the dynamic symbol indexes. INDEX is the index of the first
2532 // global dynamic symbol. Pointers to the global symbols are stored
2533 // into the vector SYMS. The names are added to DYNPOOL.
2534 // This returns an updated dynamic symbol index.
2536 unsigned int
2537 Symbol_table::set_dynsym_indexes(unsigned int index,
2538 unsigned int* pforced_local_count,
2539 std::vector<Symbol*>* syms,
2540 Stringpool* dynpool,
2541 Versions* versions)
2543 // First process all the symbols which have been forced to be local,
2544 // as they must appear before all global symbols.
2545 unsigned int forced_local_count = 0;
2546 for (Forced_locals::iterator p = this->forced_locals_.begin();
2547 p != this->forced_locals_.end();
2548 ++p)
2550 Symbol* sym = *p;
2551 gold_assert(sym->is_forced_local());
2552 if (sym->has_dynsym_index())
2553 continue;
2554 if (!sym->should_add_dynsym_entry(this))
2555 sym->set_dynsym_index(-1U);
2556 else
2558 sym->set_dynsym_index(index);
2559 ++index;
2560 ++forced_local_count;
2561 dynpool->add(sym->name(), false, NULL);
2562 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2563 this->set_has_gnu_output();
2566 *pforced_local_count = forced_local_count;
2568 // Allow a target to set dynsym indexes.
2569 if (parameters->target().has_custom_set_dynsym_indexes())
2571 std::vector<Symbol*> dyn_symbols;
2572 for (Symbol_table_type::iterator p = this->table_.begin();
2573 p != this->table_.end();
2574 ++p)
2576 Symbol* sym = p->second;
2577 if (sym->is_forced_local())
2578 continue;
2579 if (!sym->should_add_dynsym_entry(this))
2580 sym->set_dynsym_index(-1U);
2581 else
2583 dyn_symbols.push_back(sym);
2584 if (sym->type() == elfcpp::STT_GNU_IFUNC
2585 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2586 && parameters->options().gnu_unique()))
2587 this->set_has_gnu_output();
2591 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2592 dynpool, versions, this);
2595 for (Symbol_table_type::iterator p = this->table_.begin();
2596 p != this->table_.end();
2597 ++p)
2599 Symbol* sym = p->second;
2601 if (sym->is_forced_local())
2602 continue;
2604 // Note that SYM may already have a dynamic symbol index, since
2605 // some symbols appear more than once in the symbol table, with
2606 // and without a version.
2608 if (!sym->should_add_dynsym_entry(this))
2609 sym->set_dynsym_index(-1U);
2610 else if (!sym->has_dynsym_index())
2612 sym->set_dynsym_index(index);
2613 ++index;
2614 syms->push_back(sym);
2615 dynpool->add(sym->name(), false, NULL);
2616 if (sym->type() == elfcpp::STT_GNU_IFUNC
2617 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2618 && parameters->options().gnu_unique()))
2619 this->set_has_gnu_output();
2621 // Record any version information, except those from
2622 // as-needed libraries not seen to be needed. Note that the
2623 // is_needed state for such libraries can change in this loop.
2624 if (sym->version() != NULL)
2626 if (!sym->is_from_dynobj()
2627 || !sym->object()->as_needed()
2628 || sym->object()->is_needed())
2629 versions->record_version(this, dynpool, sym);
2630 else
2632 if (parameters->options().warn_drop_version())
2633 gold_warning(_("discarding version information for "
2634 "%s@%s, defined in unused shared library %s "
2635 "(linked with --as-needed)"),
2636 sym->name(), sym->version(),
2637 sym->object()->name().c_str());
2638 sym->clear_version();
2644 // Finish up the versions. In some cases this may add new dynamic
2645 // symbols.
2646 index = versions->finalize(this, index, syms);
2648 // Process target-specific symbols.
2649 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2650 p != this->target_symbols_.end();
2651 ++p)
2653 (*p)->set_dynsym_index(index);
2654 ++index;
2655 syms->push_back(*p);
2656 dynpool->add((*p)->name(), false, NULL);
2659 return index;
2662 // Set the final values for all the symbols. The index of the first
2663 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2664 // file offset OFF. Add their names to POOL. Return the new file
2665 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2666 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2667 // written from the global symbol table in Symtab::write_globals(),
2668 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2669 // not necessarily the same as the sh_info field for the .dynsym
2670 // section, which will point to the first real global symbol.
2672 off_t
2673 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2674 size_t dyncount, Stringpool* pool,
2675 unsigned int* plocal_symcount)
2677 off_t ret;
2679 gold_assert(*plocal_symcount != 0);
2680 this->first_global_index_ = *plocal_symcount;
2682 this->dynamic_offset_ = dynoff;
2683 this->first_dynamic_global_index_ = dyn_global_index;
2684 this->dynamic_count_ = dyncount;
2686 if (parameters->target().get_size() == 32)
2688 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2689 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2690 #else
2691 gold_unreachable();
2692 #endif
2694 else if (parameters->target().get_size() == 64)
2696 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2697 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2698 #else
2699 gold_unreachable();
2700 #endif
2702 else
2703 gold_unreachable();
2705 if (this->has_gnu_output_)
2707 Target* target = const_cast<Target*>(&parameters->target());
2708 if (target->osabi() == elfcpp::ELFOSABI_NONE)
2709 target->set_osabi(elfcpp::ELFOSABI_GNU);
2712 // Now that we have the final symbol table, we can reliably note
2713 // which symbols should get warnings.
2714 this->warnings_.note_warnings(this);
2716 return ret;
2719 // SYM is going into the symbol table at *PINDEX. Add the name to
2720 // POOL, update *PINDEX and *POFF.
2722 template<int size>
2723 void
2724 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2725 unsigned int* pindex, off_t* poff)
2727 sym->set_symtab_index(*pindex);
2728 if (sym->version() == NULL || !parameters->options().relocatable())
2729 pool->add(sym->name(), false, NULL);
2730 else
2731 pool->add(sym->versioned_name(), true, NULL);
2732 ++*pindex;
2733 *poff += elfcpp::Elf_sizes<size>::sym_size;
2736 // Set the final value for all the symbols. This is called after
2737 // Layout::finalize, so all the output sections have their final
2738 // address.
2740 template<int size>
2741 off_t
2742 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2743 unsigned int* plocal_symcount)
2745 off = align_address(off, size >> 3);
2746 this->offset_ = off;
2748 unsigned int index = *plocal_symcount;
2749 const unsigned int orig_index = index;
2751 // First do all the symbols which have been forced to be local, as
2752 // they must appear before all global symbols.
2753 for (Forced_locals::iterator p = this->forced_locals_.begin();
2754 p != this->forced_locals_.end();
2755 ++p)
2757 Symbol* sym = *p;
2758 gold_assert(sym->is_forced_local());
2759 if (this->sized_finalize_symbol<size>(sym))
2761 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2762 ++*plocal_symcount;
2763 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2764 this->set_has_gnu_output();
2768 // Now do all the remaining symbols.
2769 for (Symbol_table_type::iterator p = this->table_.begin();
2770 p != this->table_.end();
2771 ++p)
2773 Symbol* sym = p->second;
2774 if (this->sized_finalize_symbol<size>(sym))
2776 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2777 if (sym->type() == elfcpp::STT_GNU_IFUNC
2778 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2779 && parameters->options().gnu_unique()))
2780 this->set_has_gnu_output();
2784 // Now do target-specific symbols.
2785 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2786 p != this->target_symbols_.end();
2787 ++p)
2789 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2792 this->output_count_ = index - orig_index;
2794 return off;
2797 // Compute the final value of SYM and store status in location PSTATUS.
2798 // During relaxation, this may be called multiple times for a symbol to
2799 // compute its would-be final value in each relaxation pass.
2801 template<int size>
2802 typename Sized_symbol<size>::Value_type
2803 Symbol_table::compute_final_value(
2804 const Sized_symbol<size>* sym,
2805 Compute_final_value_status* pstatus) const
2807 typedef typename Sized_symbol<size>::Value_type Value_type;
2808 Value_type value;
2810 switch (sym->source())
2812 case Symbol::FROM_OBJECT:
2814 bool is_ordinary;
2815 unsigned int shndx = sym->shndx(&is_ordinary);
2817 if (!is_ordinary
2818 && shndx != elfcpp::SHN_ABS
2819 && !Symbol::is_common_shndx(shndx))
2821 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2822 return 0;
2825 Object* symobj = sym->object();
2826 if (symobj->is_dynamic())
2828 value = 0;
2829 shndx = elfcpp::SHN_UNDEF;
2831 else if (symobj->pluginobj() != NULL)
2833 value = 0;
2834 shndx = elfcpp::SHN_UNDEF;
2836 else if (shndx == elfcpp::SHN_UNDEF)
2837 value = 0;
2838 else if (!is_ordinary
2839 && (shndx == elfcpp::SHN_ABS
2840 || Symbol::is_common_shndx(shndx)))
2841 value = sym->value();
2842 else
2844 Relobj* relobj = static_cast<Relobj*>(symobj);
2845 Output_section* os = relobj->output_section(shndx);
2847 if (this->is_section_folded(relobj, shndx))
2849 gold_assert(os == NULL);
2850 // Get the os of the section it is folded onto.
2851 Section_id folded = this->icf_->get_folded_section(relobj,
2852 shndx);
2853 gold_assert(folded.first != NULL);
2854 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2855 unsigned folded_shndx = folded.second;
2857 os = folded_obj->output_section(folded_shndx);
2858 gold_assert(os != NULL);
2860 // Replace (relobj, shndx) with canonical ICF input section.
2861 shndx = folded_shndx;
2862 relobj = folded_obj;
2865 uint64_t secoff64 = relobj->output_section_offset(shndx);
2866 if (os == NULL)
2868 bool static_or_reloc = (parameters->doing_static_link() ||
2869 parameters->options().relocatable());
2870 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2872 *pstatus = CFVS_NO_OUTPUT_SECTION;
2873 return 0;
2876 if (secoff64 == -1ULL)
2878 // The section needs special handling (e.g., a merge section).
2880 value = os->output_address(relobj, shndx, sym->value());
2882 else
2884 Value_type secoff =
2885 convert_types<Value_type, uint64_t>(secoff64);
2886 if (sym->type() == elfcpp::STT_TLS)
2887 value = sym->value() + os->tls_offset() + secoff;
2888 else
2889 value = sym->value() + os->address() + secoff;
2893 break;
2895 case Symbol::IN_OUTPUT_DATA:
2897 Output_data* od = sym->output_data();
2898 value = sym->value();
2899 if (sym->type() != elfcpp::STT_TLS)
2900 value += od->address();
2901 else
2903 Output_section* os = od->output_section();
2904 gold_assert(os != NULL);
2905 value += os->tls_offset() + (od->address() - os->address());
2907 if (sym->offset_is_from_end())
2908 value += od->data_size();
2910 break;
2912 case Symbol::IN_OUTPUT_SEGMENT:
2914 Output_segment* os = sym->output_segment();
2915 value = sym->value();
2916 if (sym->type() != elfcpp::STT_TLS)
2917 value += os->vaddr();
2918 switch (sym->offset_base())
2920 case Symbol::SEGMENT_START:
2921 break;
2922 case Symbol::SEGMENT_END:
2923 value += os->memsz();
2924 break;
2925 case Symbol::SEGMENT_BSS:
2926 value += os->filesz();
2927 break;
2928 default:
2929 gold_unreachable();
2932 break;
2934 case Symbol::IS_CONSTANT:
2935 value = sym->value();
2936 break;
2938 case Symbol::IS_UNDEFINED:
2939 value = 0;
2940 break;
2942 default:
2943 gold_unreachable();
2946 *pstatus = CFVS_OK;
2947 return value;
2950 // Finalize the symbol SYM. This returns true if the symbol should be
2951 // added to the symbol table, false otherwise.
2953 template<int size>
2954 bool
2955 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2957 typedef typename Sized_symbol<size>::Value_type Value_type;
2959 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2961 // The default version of a symbol may appear twice in the symbol
2962 // table. We only need to finalize it once.
2963 if (sym->has_symtab_index())
2964 return false;
2966 if (!sym->in_reg())
2968 gold_assert(!sym->has_symtab_index());
2969 sym->set_symtab_index(-1U);
2970 gold_assert(sym->dynsym_index() == -1U);
2971 return false;
2974 // If the symbol is only present on plugin files, the plugin decided we
2975 // don't need it.
2976 if (!sym->in_real_elf())
2978 gold_assert(!sym->has_symtab_index());
2979 sym->set_symtab_index(-1U);
2980 return false;
2983 // Compute final symbol value.
2984 Compute_final_value_status status;
2985 Value_type value = this->compute_final_value(sym, &status);
2987 switch (status)
2989 case CFVS_OK:
2990 break;
2991 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2993 bool is_ordinary;
2994 unsigned int shndx = sym->shndx(&is_ordinary);
2995 gold_error(_("%s: unsupported symbol section 0x%x"),
2996 sym->demangled_name().c_str(), shndx);
2998 break;
2999 case CFVS_NO_OUTPUT_SECTION:
3000 sym->set_symtab_index(-1U);
3001 return false;
3002 default:
3003 gold_unreachable();
3006 sym->set_value(value);
3008 if (parameters->options().strip_all()
3009 || !parameters->options().should_retain_symbol(sym->name()))
3011 sym->set_symtab_index(-1U);
3012 return false;
3015 return true;
3018 // Write out the global symbols.
3020 void
3021 Symbol_table::write_globals(const Stringpool* sympool,
3022 const Stringpool* dynpool,
3023 Output_symtab_xindex* symtab_xindex,
3024 Output_symtab_xindex* dynsym_xindex,
3025 Output_file* of) const
3027 switch (parameters->size_and_endianness())
3029 #ifdef HAVE_TARGET_32_LITTLE
3030 case Parameters::TARGET_32_LITTLE:
3031 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
3032 dynsym_xindex, of);
3033 break;
3034 #endif
3035 #ifdef HAVE_TARGET_32_BIG
3036 case Parameters::TARGET_32_BIG:
3037 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3038 dynsym_xindex, of);
3039 break;
3040 #endif
3041 #ifdef HAVE_TARGET_64_LITTLE
3042 case Parameters::TARGET_64_LITTLE:
3043 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3044 dynsym_xindex, of);
3045 break;
3046 #endif
3047 #ifdef HAVE_TARGET_64_BIG
3048 case Parameters::TARGET_64_BIG:
3049 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3050 dynsym_xindex, of);
3051 break;
3052 #endif
3053 default:
3054 gold_unreachable();
3058 // Write out the global symbols.
3060 template<int size, bool big_endian>
3061 void
3062 Symbol_table::sized_write_globals(const Stringpool* sympool,
3063 const Stringpool* dynpool,
3064 Output_symtab_xindex* symtab_xindex,
3065 Output_symtab_xindex* dynsym_xindex,
3066 Output_file* of) const
3068 const Target& target = parameters->target();
3070 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3072 const unsigned int output_count = this->output_count_;
3073 const section_size_type oview_size = output_count * sym_size;
3074 const unsigned int first_global_index = this->first_global_index_;
3075 unsigned char* psyms;
3076 if (this->offset_ == 0 || output_count == 0)
3077 psyms = NULL;
3078 else
3079 psyms = of->get_output_view(this->offset_, oview_size);
3081 const unsigned int dynamic_count = this->dynamic_count_;
3082 const section_size_type dynamic_size = dynamic_count * sym_size;
3083 const unsigned int first_dynamic_global_index =
3084 this->first_dynamic_global_index_;
3085 unsigned char* dynamic_view;
3086 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3087 dynamic_view = NULL;
3088 else
3089 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3091 for (Symbol_table_type::const_iterator p = this->table_.begin();
3092 p != this->table_.end();
3093 ++p)
3095 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3097 // Possibly warn about unresolved symbols in shared libraries.
3098 this->warn_about_undefined_dynobj_symbol(sym);
3100 unsigned int sym_index = sym->symtab_index();
3101 unsigned int dynsym_index;
3102 if (dynamic_view == NULL)
3103 dynsym_index = -1U;
3104 else
3105 dynsym_index = sym->dynsym_index();
3107 if (sym_index == -1U && dynsym_index == -1U)
3109 // This symbol is not included in the output file.
3110 continue;
3113 unsigned int shndx;
3114 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3115 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3116 elfcpp::STB binding = sym->binding();
3118 // If --weak-unresolved-symbols is set, change binding of unresolved
3119 // global symbols to STB_WEAK.
3120 if (parameters->options().weak_unresolved_symbols()
3121 && binding == elfcpp::STB_GLOBAL
3122 && sym->is_undefined())
3123 binding = elfcpp::STB_WEAK;
3125 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3126 if (binding == elfcpp::STB_GNU_UNIQUE
3127 && !parameters->options().gnu_unique())
3128 binding = elfcpp::STB_GLOBAL;
3130 switch (sym->source())
3132 case Symbol::FROM_OBJECT:
3134 bool is_ordinary;
3135 unsigned int in_shndx = sym->shndx(&is_ordinary);
3137 if (!is_ordinary
3138 && in_shndx != elfcpp::SHN_ABS
3139 && !Symbol::is_common_shndx(in_shndx))
3141 gold_error(_("%s: unsupported symbol section 0x%x"),
3142 sym->demangled_name().c_str(), in_shndx);
3143 shndx = in_shndx;
3145 else
3147 Object* symobj = sym->object();
3148 if (symobj->is_dynamic())
3150 if (sym->needs_dynsym_value())
3151 dynsym_value = target.dynsym_value(sym);
3152 shndx = elfcpp::SHN_UNDEF;
3153 if (sym->is_undef_binding_weak())
3154 binding = elfcpp::STB_WEAK;
3155 else
3156 binding = elfcpp::STB_GLOBAL;
3158 else if (symobj->pluginobj() != NULL)
3159 shndx = elfcpp::SHN_UNDEF;
3160 else if (in_shndx == elfcpp::SHN_UNDEF
3161 || (!is_ordinary
3162 && (in_shndx == elfcpp::SHN_ABS
3163 || Symbol::is_common_shndx(in_shndx))))
3164 shndx = in_shndx;
3165 else
3167 Relobj* relobj = static_cast<Relobj*>(symobj);
3168 Output_section* os = relobj->output_section(in_shndx);
3169 if (this->is_section_folded(relobj, in_shndx))
3171 // This global symbol must be written out even though
3172 // it is folded.
3173 // Get the os of the section it is folded onto.
3174 Section_id folded =
3175 this->icf_->get_folded_section(relobj, in_shndx);
3176 gold_assert(folded.first !=NULL);
3177 Relobj* folded_obj =
3178 reinterpret_cast<Relobj*>(folded.first);
3179 os = folded_obj->output_section(folded.second);
3180 gold_assert(os != NULL);
3182 gold_assert(os != NULL);
3183 shndx = os->out_shndx();
3185 if (shndx >= elfcpp::SHN_LORESERVE)
3187 if (sym_index != -1U)
3188 symtab_xindex->add(sym_index, shndx);
3189 if (dynsym_index != -1U)
3190 dynsym_xindex->add(dynsym_index, shndx);
3191 shndx = elfcpp::SHN_XINDEX;
3194 // In object files symbol values are section
3195 // relative.
3196 if (parameters->options().relocatable())
3197 sym_value -= os->address();
3201 break;
3203 case Symbol::IN_OUTPUT_DATA:
3205 Output_data* od = sym->output_data();
3207 shndx = od->out_shndx();
3208 if (shndx >= elfcpp::SHN_LORESERVE)
3210 if (sym_index != -1U)
3211 symtab_xindex->add(sym_index, shndx);
3212 if (dynsym_index != -1U)
3213 dynsym_xindex->add(dynsym_index, shndx);
3214 shndx = elfcpp::SHN_XINDEX;
3217 // In object files symbol values are section
3218 // relative.
3219 if (parameters->options().relocatable())
3221 Output_section* os = od->output_section();
3222 gold_assert(os != NULL);
3223 sym_value -= os->address();
3226 break;
3228 case Symbol::IN_OUTPUT_SEGMENT:
3230 Output_segment* oseg = sym->output_segment();
3231 Output_section* osect = oseg->first_section();
3232 if (osect == NULL)
3233 shndx = elfcpp::SHN_ABS;
3234 else
3235 shndx = osect->out_shndx();
3237 break;
3239 case Symbol::IS_CONSTANT:
3240 shndx = elfcpp::SHN_ABS;
3241 break;
3243 case Symbol::IS_UNDEFINED:
3244 shndx = elfcpp::SHN_UNDEF;
3245 break;
3247 default:
3248 gold_unreachable();
3251 if (sym_index != -1U)
3253 sym_index -= first_global_index;
3254 gold_assert(sym_index < output_count);
3255 unsigned char* ps = psyms + (sym_index * sym_size);
3256 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3257 binding, sympool, ps);
3260 if (dynsym_index != -1U)
3262 dynsym_index -= first_dynamic_global_index;
3263 gold_assert(dynsym_index < dynamic_count);
3264 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3265 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3266 binding, dynpool, pd);
3267 // Allow a target to adjust dynamic symbol value.
3268 parameters->target().adjust_dyn_symbol(sym, pd);
3272 // Write the target-specific symbols.
3273 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3274 p != this->target_symbols_.end();
3275 ++p)
3277 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3279 unsigned int sym_index = sym->symtab_index();
3280 unsigned int dynsym_index;
3281 if (dynamic_view == NULL)
3282 dynsym_index = -1U;
3283 else
3284 dynsym_index = sym->dynsym_index();
3286 unsigned int shndx;
3287 switch (sym->source())
3289 case Symbol::IS_CONSTANT:
3290 shndx = elfcpp::SHN_ABS;
3291 break;
3292 case Symbol::IS_UNDEFINED:
3293 shndx = elfcpp::SHN_UNDEF;
3294 break;
3295 default:
3296 gold_unreachable();
3299 if (sym_index != -1U)
3301 sym_index -= first_global_index;
3302 gold_assert(sym_index < output_count);
3303 unsigned char* ps = psyms + (sym_index * sym_size);
3304 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3305 sym->binding(), sympool,
3306 ps);
3309 if (dynsym_index != -1U)
3311 dynsym_index -= first_dynamic_global_index;
3312 gold_assert(dynsym_index < dynamic_count);
3313 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3314 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3315 sym->binding(), dynpool,
3316 pd);
3320 of->write_output_view(this->offset_, oview_size, psyms);
3321 if (dynamic_view != NULL)
3322 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3325 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3326 // strtab holding the name.
3328 template<int size, bool big_endian>
3329 void
3330 Symbol_table::sized_write_symbol(
3331 Sized_symbol<size>* sym,
3332 typename elfcpp::Elf_types<size>::Elf_Addr value,
3333 unsigned int shndx,
3334 elfcpp::STB binding,
3335 const Stringpool* pool,
3336 unsigned char* p) const
3338 elfcpp::Sym_write<size, big_endian> osym(p);
3339 if (sym->version() == NULL || !parameters->options().relocatable())
3340 osym.put_st_name(pool->get_offset(sym->name()));
3341 else
3342 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3343 osym.put_st_value(value);
3344 // Use a symbol size of zero for undefined symbols from shared libraries.
3345 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3346 osym.put_st_size(0);
3347 else
3348 osym.put_st_size(sym->symsize());
3349 elfcpp::STT type = sym->type();
3350 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3351 // A version script may have overridden the default binding.
3352 if (sym->is_forced_local())
3353 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3354 else
3355 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3356 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3357 osym.put_st_shndx(shndx);
3360 // Check for unresolved symbols in shared libraries. This is
3361 // controlled by the --allow-shlib-undefined option.
3363 // We only warn about libraries for which we have seen all the
3364 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3365 // which were not seen in this link. If we didn't see a DT_NEEDED
3366 // entry, we aren't going to be able to reliably report whether the
3367 // symbol is undefined.
3369 // We also don't warn about libraries found in a system library
3370 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3371 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3372 // can have undefined references satisfied by ld-linux.so.
3374 inline void
3375 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3377 bool dummy;
3378 if (sym->source() == Symbol::FROM_OBJECT
3379 && sym->object()->is_dynamic()
3380 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3381 && sym->binding() != elfcpp::STB_WEAK
3382 && !parameters->options().allow_shlib_undefined()
3383 && !parameters->target().is_defined_by_abi(sym)
3384 && !sym->object()->is_in_system_directory())
3386 // A very ugly cast.
3387 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3388 if (!dynobj->has_unknown_needed_entries())
3389 gold_undefined_symbol(sym);
3393 // Write out a section symbol. Return the update offset.
3395 void
3396 Symbol_table::write_section_symbol(const Output_section* os,
3397 Output_symtab_xindex* symtab_xindex,
3398 Output_file* of,
3399 off_t offset) const
3401 switch (parameters->size_and_endianness())
3403 #ifdef HAVE_TARGET_32_LITTLE
3404 case Parameters::TARGET_32_LITTLE:
3405 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3406 offset);
3407 break;
3408 #endif
3409 #ifdef HAVE_TARGET_32_BIG
3410 case Parameters::TARGET_32_BIG:
3411 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3412 offset);
3413 break;
3414 #endif
3415 #ifdef HAVE_TARGET_64_LITTLE
3416 case Parameters::TARGET_64_LITTLE:
3417 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3418 offset);
3419 break;
3420 #endif
3421 #ifdef HAVE_TARGET_64_BIG
3422 case Parameters::TARGET_64_BIG:
3423 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3424 offset);
3425 break;
3426 #endif
3427 default:
3428 gold_unreachable();
3432 // Write out a section symbol, specialized for size and endianness.
3434 template<int size, bool big_endian>
3435 void
3436 Symbol_table::sized_write_section_symbol(const Output_section* os,
3437 Output_symtab_xindex* symtab_xindex,
3438 Output_file* of,
3439 off_t offset) const
3441 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3443 unsigned char* pov = of->get_output_view(offset, sym_size);
3445 elfcpp::Sym_write<size, big_endian> osym(pov);
3446 osym.put_st_name(0);
3447 if (parameters->options().relocatable())
3448 osym.put_st_value(0);
3449 else
3450 osym.put_st_value(os->address());
3451 osym.put_st_size(0);
3452 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3453 elfcpp::STT_SECTION));
3454 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3456 unsigned int shndx = os->out_shndx();
3457 if (shndx >= elfcpp::SHN_LORESERVE)
3459 symtab_xindex->add(os->symtab_index(), shndx);
3460 shndx = elfcpp::SHN_XINDEX;
3462 osym.put_st_shndx(shndx);
3464 of->write_output_view(offset, sym_size, pov);
3467 // Print statistical information to stderr. This is used for --stats.
3469 void
3470 Symbol_table::print_stats() const
3472 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3473 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3474 program_name, this->table_.size(), this->table_.bucket_count());
3475 #else
3476 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3477 program_name, this->table_.size());
3478 #endif
3479 this->namepool_.print_stats("symbol table stringpool");
3482 // We check for ODR violations by looking for symbols with the same
3483 // name for which the debugging information reports that they were
3484 // defined in disjoint source locations. When comparing the source
3485 // location, we consider instances with the same base filename to be
3486 // the same. This is because different object files/shared libraries
3487 // can include the same header file using different paths, and
3488 // different optimization settings can make the line number appear to
3489 // be a couple lines off, and we don't want to report an ODR violation
3490 // in those cases.
3492 // This struct is used to compare line information, as returned by
3493 // Dwarf_line_info::one_addr2line. It implements a < comparison
3494 // operator used with std::sort.
3496 struct Odr_violation_compare
3498 bool
3499 operator()(const std::string& s1, const std::string& s2) const
3501 // Inputs should be of the form "dirname/filename:linenum" where
3502 // "dirname/" is optional. We want to compare just the filename:linenum.
3504 // Find the last '/' in each string.
3505 std::string::size_type s1begin = s1.rfind('/');
3506 std::string::size_type s2begin = s2.rfind('/');
3507 // If there was no '/' in a string, start at the beginning.
3508 if (s1begin == std::string::npos)
3509 s1begin = 0;
3510 if (s2begin == std::string::npos)
3511 s2begin = 0;
3512 return s1.compare(s1begin, std::string::npos,
3513 s2, s2begin, std::string::npos) < 0;
3517 // Returns all of the lines attached to LOC, not just the one the
3518 // instruction actually came from.
3519 std::vector<std::string>
3520 Symbol_table::linenos_from_loc(const Task* task,
3521 const Symbol_location& loc)
3523 // We need to lock the object in order to read it. This
3524 // means that we have to run in a singleton Task. If we
3525 // want to run this in a general Task for better
3526 // performance, we will need one Task for object, plus
3527 // appropriate locking to ensure that we don't conflict with
3528 // other uses of the object. Also note, one_addr2line is not
3529 // currently thread-safe.
3530 Task_lock_obj<Object> tl(task, loc.object);
3532 std::vector<std::string> result;
3533 Symbol_location code_loc = loc;
3534 parameters->target().function_location(&code_loc);
3535 // 16 is the size of the object-cache that one_addr2line should use.
3536 std::string canonical_result = Dwarf_line_info::one_addr2line(
3537 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3538 if (!canonical_result.empty())
3539 result.push_back(canonical_result);
3540 return result;
3543 // OutputIterator that records if it was ever assigned to. This
3544 // allows it to be used with std::set_intersection() to check for
3545 // intersection rather than computing the intersection.
3546 struct Check_intersection
3548 Check_intersection()
3549 : value_(false)
3552 bool had_intersection() const
3553 { return this->value_; }
3555 Check_intersection& operator++()
3556 { return *this; }
3558 Check_intersection& operator*()
3559 { return *this; }
3561 template<typename T>
3562 Check_intersection& operator=(const T&)
3564 this->value_ = true;
3565 return *this;
3568 private:
3569 bool value_;
3572 // Check candidate_odr_violations_ to find symbols with the same name
3573 // but apparently different definitions (different source-file/line-no
3574 // for each line assigned to the first instruction).
3576 void
3577 Symbol_table::detect_odr_violations(const Task* task,
3578 const char* output_file_name) const
3580 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3581 it != candidate_odr_violations_.end();
3582 ++it)
3584 const char* const symbol_name = it->first;
3586 std::string first_object_name;
3587 std::vector<std::string> first_object_linenos;
3589 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3590 locs = it->second.begin();
3591 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3592 locs_end = it->second.end();
3593 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3595 // Save the line numbers from the first definition to
3596 // compare to the other definitions. Ideally, we'd compare
3597 // every definition to every other, but we don't want to
3598 // take O(N^2) time to do this. This shortcut may cause
3599 // false negatives that appear or disappear depending on the
3600 // link order, but it won't cause false positives.
3601 first_object_name = locs->object->name();
3602 first_object_linenos = this->linenos_from_loc(task, *locs);
3604 if (first_object_linenos.empty())
3605 continue;
3607 // Sort by Odr_violation_compare to make std::set_intersection work.
3608 std::string first_object_canonical_result = first_object_linenos.back();
3609 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3610 Odr_violation_compare());
3612 for (; locs != locs_end; ++locs)
3614 std::vector<std::string> linenos =
3615 this->linenos_from_loc(task, *locs);
3616 // linenos will be empty if we couldn't parse the debug info.
3617 if (linenos.empty())
3618 continue;
3619 // Sort by Odr_violation_compare to make std::set_intersection work.
3620 gold_assert(!linenos.empty());
3621 std::string second_object_canonical_result = linenos.back();
3622 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3624 Check_intersection intersection_result =
3625 std::set_intersection(first_object_linenos.begin(),
3626 first_object_linenos.end(),
3627 linenos.begin(),
3628 linenos.end(),
3629 Check_intersection(),
3630 Odr_violation_compare());
3631 if (!intersection_result.had_intersection())
3633 gold_warning(_("while linking %s: symbol '%s' defined in "
3634 "multiple places (possible ODR violation):"),
3635 output_file_name, demangle(symbol_name).c_str());
3636 // This only prints one location from each definition,
3637 // which may not be the location we expect to intersect
3638 // with another definition. We could print the whole
3639 // set of locations, but that seems too verbose.
3640 fprintf(stderr, _(" %s from %s\n"),
3641 first_object_canonical_result.c_str(),
3642 first_object_name.c_str());
3643 fprintf(stderr, _(" %s from %s\n"),
3644 second_object_canonical_result.c_str(),
3645 locs->object->name().c_str());
3646 // Only print one broken pair, to avoid needing to
3647 // compare against a list of the disjoint definition
3648 // locations we've found so far. (If we kept comparing
3649 // against just the first one, we'd get a lot of
3650 // redundant complaints about the second definition
3651 // location.)
3652 break;
3656 // We only call one_addr2line() in this function, so we can clear its cache.
3657 Dwarf_line_info::clear_addr2line_cache();
3660 // Warnings functions.
3662 // Add a new warning.
3664 void
3665 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3666 const std::string& warning)
3668 name = symtab->canonicalize_name(name);
3669 this->warnings_[name].set(obj, warning);
3672 // Look through the warnings and mark the symbols for which we should
3673 // warn. This is called during Layout::finalize when we know the
3674 // sources for all the symbols.
3676 void
3677 Warnings::note_warnings(Symbol_table* symtab)
3679 for (Warning_table::iterator p = this->warnings_.begin();
3680 p != this->warnings_.end();
3681 ++p)
3683 Symbol* sym = symtab->lookup(p->first, NULL);
3684 if (sym != NULL
3685 && sym->source() == Symbol::FROM_OBJECT
3686 && sym->object() == p->second.object)
3687 sym->set_has_warning();
3691 // Issue a warning. This is called when we see a relocation against a
3692 // symbol for which has a warning.
3694 template<int size, bool big_endian>
3695 void
3696 Warnings::issue_warning(const Symbol* sym,
3697 const Relocate_info<size, big_endian>* relinfo,
3698 size_t relnum, off_t reloffset) const
3700 gold_assert(sym->has_warning());
3702 // We don't want to issue a warning for a relocation against the
3703 // symbol in the same object file in which the symbol is defined.
3704 if (sym->object() == relinfo->object)
3705 return;
3707 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3708 gold_assert(p != this->warnings_.end());
3709 gold_warning_at_location(relinfo, relnum, reloffset,
3710 "%s", p->second.text.c_str());
3713 // Instantiate the templates we need. We could use the configure
3714 // script to restrict this to only the ones needed for implemented
3715 // targets.
3717 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3718 template
3719 void
3720 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3721 #endif
3723 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3724 template
3725 void
3726 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3727 #endif
3729 #ifdef HAVE_TARGET_32_LITTLE
3730 template
3731 void
3732 Symbol_table::add_from_relobj<32, false>(
3733 Sized_relobj_file<32, false>* relobj,
3734 const unsigned char* syms,
3735 size_t count,
3736 size_t symndx_offset,
3737 const char* sym_names,
3738 size_t sym_name_size,
3739 Sized_relobj_file<32, false>::Symbols* sympointers,
3740 size_t* defined);
3741 #endif
3743 #ifdef HAVE_TARGET_32_BIG
3744 template
3745 void
3746 Symbol_table::add_from_relobj<32, true>(
3747 Sized_relobj_file<32, true>* relobj,
3748 const unsigned char* syms,
3749 size_t count,
3750 size_t symndx_offset,
3751 const char* sym_names,
3752 size_t sym_name_size,
3753 Sized_relobj_file<32, true>::Symbols* sympointers,
3754 size_t* defined);
3755 #endif
3757 #ifdef HAVE_TARGET_64_LITTLE
3758 template
3759 void
3760 Symbol_table::add_from_relobj<64, false>(
3761 Sized_relobj_file<64, false>* relobj,
3762 const unsigned char* syms,
3763 size_t count,
3764 size_t symndx_offset,
3765 const char* sym_names,
3766 size_t sym_name_size,
3767 Sized_relobj_file<64, false>::Symbols* sympointers,
3768 size_t* defined);
3769 #endif
3771 #ifdef HAVE_TARGET_64_BIG
3772 template
3773 void
3774 Symbol_table::add_from_relobj<64, true>(
3775 Sized_relobj_file<64, true>* relobj,
3776 const unsigned char* syms,
3777 size_t count,
3778 size_t symndx_offset,
3779 const char* sym_names,
3780 size_t sym_name_size,
3781 Sized_relobj_file<64, true>::Symbols* sympointers,
3782 size_t* defined);
3783 #endif
3785 #ifdef HAVE_TARGET_32_LITTLE
3786 template
3787 Symbol*
3788 Symbol_table::add_from_pluginobj<32, false>(
3789 Sized_pluginobj<32, false>* obj,
3790 const char* name,
3791 const char* ver,
3792 elfcpp::Sym<32, false>* sym);
3793 #endif
3795 #ifdef HAVE_TARGET_32_BIG
3796 template
3797 Symbol*
3798 Symbol_table::add_from_pluginobj<32, true>(
3799 Sized_pluginobj<32, true>* obj,
3800 const char* name,
3801 const char* ver,
3802 elfcpp::Sym<32, true>* sym);
3803 #endif
3805 #ifdef HAVE_TARGET_64_LITTLE
3806 template
3807 Symbol*
3808 Symbol_table::add_from_pluginobj<64, false>(
3809 Sized_pluginobj<64, false>* obj,
3810 const char* name,
3811 const char* ver,
3812 elfcpp::Sym<64, false>* sym);
3813 #endif
3815 #ifdef HAVE_TARGET_64_BIG
3816 template
3817 Symbol*
3818 Symbol_table::add_from_pluginobj<64, true>(
3819 Sized_pluginobj<64, true>* obj,
3820 const char* name,
3821 const char* ver,
3822 elfcpp::Sym<64, true>* sym);
3823 #endif
3825 #ifdef HAVE_TARGET_32_LITTLE
3826 template
3827 void
3828 Symbol_table::add_from_dynobj<32, false>(
3829 Sized_dynobj<32, false>* dynobj,
3830 const unsigned char* syms,
3831 size_t count,
3832 const char* sym_names,
3833 size_t sym_name_size,
3834 const unsigned char* versym,
3835 size_t versym_size,
3836 const std::vector<const char*>* version_map,
3837 Sized_relobj_file<32, false>::Symbols* sympointers,
3838 size_t* defined);
3839 #endif
3841 #ifdef HAVE_TARGET_32_BIG
3842 template
3843 void
3844 Symbol_table::add_from_dynobj<32, true>(
3845 Sized_dynobj<32, true>* dynobj,
3846 const unsigned char* syms,
3847 size_t count,
3848 const char* sym_names,
3849 size_t sym_name_size,
3850 const unsigned char* versym,
3851 size_t versym_size,
3852 const std::vector<const char*>* version_map,
3853 Sized_relobj_file<32, true>::Symbols* sympointers,
3854 size_t* defined);
3855 #endif
3857 #ifdef HAVE_TARGET_64_LITTLE
3858 template
3859 void
3860 Symbol_table::add_from_dynobj<64, false>(
3861 Sized_dynobj<64, false>* dynobj,
3862 const unsigned char* syms,
3863 size_t count,
3864 const char* sym_names,
3865 size_t sym_name_size,
3866 const unsigned char* versym,
3867 size_t versym_size,
3868 const std::vector<const char*>* version_map,
3869 Sized_relobj_file<64, false>::Symbols* sympointers,
3870 size_t* defined);
3871 #endif
3873 #ifdef HAVE_TARGET_64_BIG
3874 template
3875 void
3876 Symbol_table::add_from_dynobj<64, true>(
3877 Sized_dynobj<64, true>* dynobj,
3878 const unsigned char* syms,
3879 size_t count,
3880 const char* sym_names,
3881 size_t sym_name_size,
3882 const unsigned char* versym,
3883 size_t versym_size,
3884 const std::vector<const char*>* version_map,
3885 Sized_relobj_file<64, true>::Symbols* sympointers,
3886 size_t* defined);
3887 #endif
3889 #ifdef HAVE_TARGET_32_LITTLE
3890 template
3891 Sized_symbol<32>*
3892 Symbol_table::add_from_incrobj(
3893 Object* obj,
3894 const char* name,
3895 const char* ver,
3896 elfcpp::Sym<32, false>* sym);
3897 #endif
3899 #ifdef HAVE_TARGET_32_BIG
3900 template
3901 Sized_symbol<32>*
3902 Symbol_table::add_from_incrobj(
3903 Object* obj,
3904 const char* name,
3905 const char* ver,
3906 elfcpp::Sym<32, true>* sym);
3907 #endif
3909 #ifdef HAVE_TARGET_64_LITTLE
3910 template
3911 Sized_symbol<64>*
3912 Symbol_table::add_from_incrobj(
3913 Object* obj,
3914 const char* name,
3915 const char* ver,
3916 elfcpp::Sym<64, false>* sym);
3917 #endif
3919 #ifdef HAVE_TARGET_64_BIG
3920 template
3921 Sized_symbol<64>*
3922 Symbol_table::add_from_incrobj(
3923 Object* obj,
3924 const char* name,
3925 const char* ver,
3926 elfcpp::Sym<64, true>* sym);
3927 #endif
3929 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3930 template
3931 void
3932 Symbol_table::define_with_copy_reloc<32>(
3933 Sized_symbol<32>* sym,
3934 Output_data* posd,
3935 elfcpp::Elf_types<32>::Elf_Addr value);
3936 #endif
3938 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3939 template
3940 void
3941 Symbol_table::define_with_copy_reloc<64>(
3942 Sized_symbol<64>* sym,
3943 Output_data* posd,
3944 elfcpp::Elf_types<64>::Elf_Addr value);
3945 #endif
3947 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3948 template
3949 void
3950 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3951 Output_data* od, Value_type value,
3952 Size_type symsize, elfcpp::STT type,
3953 elfcpp::STB binding,
3954 elfcpp::STV visibility,
3955 unsigned char nonvis,
3956 bool offset_is_from_end,
3957 bool is_predefined);
3959 template
3960 void
3961 Sized_symbol<32>::init_constant(const char* name, const char* version,
3962 Value_type value, Size_type symsize,
3963 elfcpp::STT type, elfcpp::STB binding,
3964 elfcpp::STV visibility, unsigned char nonvis,
3965 bool is_predefined);
3967 template
3968 void
3969 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3970 Value_type value, elfcpp::STT type,
3971 elfcpp::STB binding, elfcpp::STV visibility,
3972 unsigned char nonvis);
3973 #endif
3975 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3976 template
3977 void
3978 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3979 Output_data* od, Value_type value,
3980 Size_type symsize, elfcpp::STT type,
3981 elfcpp::STB binding,
3982 elfcpp::STV visibility,
3983 unsigned char nonvis,
3984 bool offset_is_from_end,
3985 bool is_predefined);
3987 template
3988 void
3989 Sized_symbol<64>::init_constant(const char* name, const char* version,
3990 Value_type value, Size_type symsize,
3991 elfcpp::STT type, elfcpp::STB binding,
3992 elfcpp::STV visibility, unsigned char nonvis,
3993 bool is_predefined);
3995 template
3996 void
3997 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3998 Value_type value, elfcpp::STT type,
3999 elfcpp::STB binding, elfcpp::STV visibility,
4000 unsigned char nonvis);
4001 #endif
4003 #ifdef HAVE_TARGET_32_LITTLE
4004 template
4005 void
4006 Warnings::issue_warning<32, false>(const Symbol* sym,
4007 const Relocate_info<32, false>* relinfo,
4008 size_t relnum, off_t reloffset) const;
4009 #endif
4011 #ifdef HAVE_TARGET_32_BIG
4012 template
4013 void
4014 Warnings::issue_warning<32, true>(const Symbol* sym,
4015 const Relocate_info<32, true>* relinfo,
4016 size_t relnum, off_t reloffset) const;
4017 #endif
4019 #ifdef HAVE_TARGET_64_LITTLE
4020 template
4021 void
4022 Warnings::issue_warning<64, false>(const Symbol* sym,
4023 const Relocate_info<64, false>* relinfo,
4024 size_t relnum, off_t reloffset) const;
4025 #endif
4027 #ifdef HAVE_TARGET_64_BIG
4028 template
4029 void
4030 Warnings::issue_warning<64, true>(const Symbol* sym,
4031 const Relocate_info<64, true>* relinfo,
4032 size_t relnum, off_t reloffset) const;
4033 #endif
4035 } // End namespace gold.