* libtool.m4: Update to libtool 2.2.6.
[binutils.git] / gold / output.cc
blob2a46195b2ac2af6207112c171879bb55a597d179
1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
48 namespace gold
51 // Output_data variables.
53 bool Output_data::allocated_sizes_are_fixed;
55 // Output_data methods.
57 Output_data::~Output_data()
61 // Return the default alignment for the target size.
63 uint64_t
64 Output_data::default_alignment()
66 return Output_data::default_alignment_for_size(
67 parameters->target().get_size());
70 // Return the default alignment for a size--32 or 64.
72 uint64_t
73 Output_data::default_alignment_for_size(int size)
75 if (size == 32)
76 return 4;
77 else if (size == 64)
78 return 8;
79 else
80 gold_unreachable();
83 // Output_section_header methods. This currently assumes that the
84 // segment and section lists are complete at construction time.
86 Output_section_headers::Output_section_headers(
87 const Layout* layout,
88 const Layout::Segment_list* segment_list,
89 const Layout::Section_list* section_list,
90 const Layout::Section_list* unattached_section_list,
91 const Stringpool* secnamepool,
92 const Output_section* shstrtab_section)
93 : layout_(layout),
94 segment_list_(segment_list),
95 section_list_(section_list),
96 unattached_section_list_(unattached_section_list),
97 secnamepool_(secnamepool),
98 shstrtab_section_(shstrtab_section)
100 // Count all the sections. Start with 1 for the null section.
101 off_t count = 1;
102 if (!parameters->options().relocatable())
104 for (Layout::Segment_list::const_iterator p = segment_list->begin();
105 p != segment_list->end();
106 ++p)
107 if ((*p)->type() == elfcpp::PT_LOAD)
108 count += (*p)->output_section_count();
110 else
112 for (Layout::Section_list::const_iterator p = section_list->begin();
113 p != section_list->end();
114 ++p)
115 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
116 ++count;
118 count += unattached_section_list->size();
120 const int size = parameters->target().get_size();
121 int shdr_size;
122 if (size == 32)
123 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
124 else if (size == 64)
125 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
126 else
127 gold_unreachable();
129 this->set_data_size(count * shdr_size);
132 // Write out the section headers.
134 void
135 Output_section_headers::do_write(Output_file* of)
137 switch (parameters->size_and_endianness())
139 #ifdef HAVE_TARGET_32_LITTLE
140 case Parameters::TARGET_32_LITTLE:
141 this->do_sized_write<32, false>(of);
142 break;
143 #endif
144 #ifdef HAVE_TARGET_32_BIG
145 case Parameters::TARGET_32_BIG:
146 this->do_sized_write<32, true>(of);
147 break;
148 #endif
149 #ifdef HAVE_TARGET_64_LITTLE
150 case Parameters::TARGET_64_LITTLE:
151 this->do_sized_write<64, false>(of);
152 break;
153 #endif
154 #ifdef HAVE_TARGET_64_BIG
155 case Parameters::TARGET_64_BIG:
156 this->do_sized_write<64, true>(of);
157 break;
158 #endif
159 default:
160 gold_unreachable();
164 template<int size, bool big_endian>
165 void
166 Output_section_headers::do_sized_write(Output_file* of)
168 off_t all_shdrs_size = this->data_size();
169 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
171 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
172 unsigned char* v = view;
175 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
176 oshdr.put_sh_name(0);
177 oshdr.put_sh_type(elfcpp::SHT_NULL);
178 oshdr.put_sh_flags(0);
179 oshdr.put_sh_addr(0);
180 oshdr.put_sh_offset(0);
182 size_t section_count = (this->data_size()
183 / elfcpp::Elf_sizes<size>::shdr_size);
184 if (section_count < elfcpp::SHN_LORESERVE)
185 oshdr.put_sh_size(0);
186 else
187 oshdr.put_sh_size(section_count);
189 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
190 if (shstrndx < elfcpp::SHN_LORESERVE)
191 oshdr.put_sh_link(0);
192 else
193 oshdr.put_sh_link(shstrndx);
195 oshdr.put_sh_info(0);
196 oshdr.put_sh_addralign(0);
197 oshdr.put_sh_entsize(0);
200 v += shdr_size;
202 unsigned int shndx = 1;
203 if (!parameters->options().relocatable())
205 for (Layout::Segment_list::const_iterator p =
206 this->segment_list_->begin();
207 p != this->segment_list_->end();
208 ++p)
209 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
210 this->secnamepool_,
212 &shndx);
214 else
216 for (Layout::Section_list::const_iterator p =
217 this->section_list_->begin();
218 p != this->section_list_->end();
219 ++p)
221 // We do unallocated sections below, except that group
222 // sections have to come first.
223 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
224 && (*p)->type() != elfcpp::SHT_GROUP)
225 continue;
226 gold_assert(shndx == (*p)->out_shndx());
227 elfcpp::Shdr_write<size, big_endian> oshdr(v);
228 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
229 v += shdr_size;
230 ++shndx;
234 for (Layout::Section_list::const_iterator p =
235 this->unattached_section_list_->begin();
236 p != this->unattached_section_list_->end();
237 ++p)
239 // For a relocatable link, we did unallocated group sections
240 // above, since they have to come first.
241 if ((*p)->type() == elfcpp::SHT_GROUP
242 && parameters->options().relocatable())
243 continue;
244 gold_assert(shndx == (*p)->out_shndx());
245 elfcpp::Shdr_write<size, big_endian> oshdr(v);
246 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
247 v += shdr_size;
248 ++shndx;
251 of->write_output_view(this->offset(), all_shdrs_size, view);
254 // Output_segment_header methods.
256 Output_segment_headers::Output_segment_headers(
257 const Layout::Segment_list& segment_list)
258 : segment_list_(segment_list)
260 const int size = parameters->target().get_size();
261 int phdr_size;
262 if (size == 32)
263 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
264 else if (size == 64)
265 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
266 else
267 gold_unreachable();
269 this->set_data_size(segment_list.size() * phdr_size);
272 void
273 Output_segment_headers::do_write(Output_file* of)
275 switch (parameters->size_and_endianness())
277 #ifdef HAVE_TARGET_32_LITTLE
278 case Parameters::TARGET_32_LITTLE:
279 this->do_sized_write<32, false>(of);
280 break;
281 #endif
282 #ifdef HAVE_TARGET_32_BIG
283 case Parameters::TARGET_32_BIG:
284 this->do_sized_write<32, true>(of);
285 break;
286 #endif
287 #ifdef HAVE_TARGET_64_LITTLE
288 case Parameters::TARGET_64_LITTLE:
289 this->do_sized_write<64, false>(of);
290 break;
291 #endif
292 #ifdef HAVE_TARGET_64_BIG
293 case Parameters::TARGET_64_BIG:
294 this->do_sized_write<64, true>(of);
295 break;
296 #endif
297 default:
298 gold_unreachable();
302 template<int size, bool big_endian>
303 void
304 Output_segment_headers::do_sized_write(Output_file* of)
306 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
307 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
308 gold_assert(all_phdrs_size == this->data_size());
309 unsigned char* view = of->get_output_view(this->offset(),
310 all_phdrs_size);
311 unsigned char* v = view;
312 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
313 p != this->segment_list_.end();
314 ++p)
316 elfcpp::Phdr_write<size, big_endian> ophdr(v);
317 (*p)->write_header(&ophdr);
318 v += phdr_size;
321 gold_assert(v - view == all_phdrs_size);
323 of->write_output_view(this->offset(), all_phdrs_size, view);
326 // Output_file_header methods.
328 Output_file_header::Output_file_header(const Target* target,
329 const Symbol_table* symtab,
330 const Output_segment_headers* osh,
331 const char* entry)
332 : target_(target),
333 symtab_(symtab),
334 segment_header_(osh),
335 section_header_(NULL),
336 shstrtab_(NULL),
337 entry_(entry)
339 const int size = parameters->target().get_size();
340 int ehdr_size;
341 if (size == 32)
342 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
343 else if (size == 64)
344 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
345 else
346 gold_unreachable();
348 this->set_data_size(ehdr_size);
351 // Set the section table information for a file header.
353 void
354 Output_file_header::set_section_info(const Output_section_headers* shdrs,
355 const Output_section* shstrtab)
357 this->section_header_ = shdrs;
358 this->shstrtab_ = shstrtab;
361 // Write out the file header.
363 void
364 Output_file_header::do_write(Output_file* of)
366 gold_assert(this->offset() == 0);
368 switch (parameters->size_and_endianness())
370 #ifdef HAVE_TARGET_32_LITTLE
371 case Parameters::TARGET_32_LITTLE:
372 this->do_sized_write<32, false>(of);
373 break;
374 #endif
375 #ifdef HAVE_TARGET_32_BIG
376 case Parameters::TARGET_32_BIG:
377 this->do_sized_write<32, true>(of);
378 break;
379 #endif
380 #ifdef HAVE_TARGET_64_LITTLE
381 case Parameters::TARGET_64_LITTLE:
382 this->do_sized_write<64, false>(of);
383 break;
384 #endif
385 #ifdef HAVE_TARGET_64_BIG
386 case Parameters::TARGET_64_BIG:
387 this->do_sized_write<64, true>(of);
388 break;
389 #endif
390 default:
391 gold_unreachable();
395 // Write out the file header with appropriate size and endianess.
397 template<int size, bool big_endian>
398 void
399 Output_file_header::do_sized_write(Output_file* of)
401 gold_assert(this->offset() == 0);
403 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
404 unsigned char* view = of->get_output_view(0, ehdr_size);
405 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
407 unsigned char e_ident[elfcpp::EI_NIDENT];
408 memset(e_ident, 0, elfcpp::EI_NIDENT);
409 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
410 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
411 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
412 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
413 if (size == 32)
414 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
415 else if (size == 64)
416 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
417 else
418 gold_unreachable();
419 e_ident[elfcpp::EI_DATA] = (big_endian
420 ? elfcpp::ELFDATA2MSB
421 : elfcpp::ELFDATA2LSB);
422 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
423 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
424 oehdr.put_e_ident(e_ident);
426 elfcpp::ET e_type;
427 if (parameters->options().relocatable())
428 e_type = elfcpp::ET_REL;
429 else if (parameters->options().shared())
430 e_type = elfcpp::ET_DYN;
431 else
432 e_type = elfcpp::ET_EXEC;
433 oehdr.put_e_type(e_type);
435 oehdr.put_e_machine(this->target_->machine_code());
436 oehdr.put_e_version(elfcpp::EV_CURRENT);
438 oehdr.put_e_entry(this->entry<size>());
440 if (this->segment_header_ == NULL)
441 oehdr.put_e_phoff(0);
442 else
443 oehdr.put_e_phoff(this->segment_header_->offset());
445 oehdr.put_e_shoff(this->section_header_->offset());
447 // FIXME: The target needs to set the flags.
448 oehdr.put_e_flags(0);
450 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
452 if (this->segment_header_ == NULL)
454 oehdr.put_e_phentsize(0);
455 oehdr.put_e_phnum(0);
457 else
459 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
460 oehdr.put_e_phnum(this->segment_header_->data_size()
461 / elfcpp::Elf_sizes<size>::phdr_size);
464 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
465 size_t section_count = (this->section_header_->data_size()
466 / elfcpp::Elf_sizes<size>::shdr_size);
468 if (section_count < elfcpp::SHN_LORESERVE)
469 oehdr.put_e_shnum(this->section_header_->data_size()
470 / elfcpp::Elf_sizes<size>::shdr_size);
471 else
472 oehdr.put_e_shnum(0);
474 unsigned int shstrndx = this->shstrtab_->out_shndx();
475 if (shstrndx < elfcpp::SHN_LORESERVE)
476 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
477 else
478 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
480 of->write_output_view(0, ehdr_size, view);
483 // Return the value to use for the entry address. THIS->ENTRY_ is the
484 // symbol specified on the command line, if any.
486 template<int size>
487 typename elfcpp::Elf_types<size>::Elf_Addr
488 Output_file_header::entry()
490 const bool should_issue_warning = (this->entry_ != NULL
491 && !parameters->options().relocatable()
492 && !parameters->options().shared());
494 // FIXME: Need to support target specific entry symbol.
495 const char* entry = this->entry_;
496 if (entry == NULL)
497 entry = "_start";
499 Symbol* sym = this->symtab_->lookup(entry);
501 typename Sized_symbol<size>::Value_type v;
502 if (sym != NULL)
504 Sized_symbol<size>* ssym;
505 ssym = this->symtab_->get_sized_symbol<size>(sym);
506 if (!ssym->is_defined() && should_issue_warning)
507 gold_warning("entry symbol '%s' exists but is not defined", entry);
508 v = ssym->value();
510 else
512 // We couldn't find the entry symbol. See if we can parse it as
513 // a number. This supports, e.g., -e 0x1000.
514 char* endptr;
515 v = strtoull(entry, &endptr, 0);
516 if (*endptr != '\0')
518 if (should_issue_warning)
519 gold_warning("cannot find entry symbol '%s'", entry);
520 v = 0;
524 return v;
527 // Output_data_const methods.
529 void
530 Output_data_const::do_write(Output_file* of)
532 of->write(this->offset(), this->data_.data(), this->data_.size());
535 // Output_data_const_buffer methods.
537 void
538 Output_data_const_buffer::do_write(Output_file* of)
540 of->write(this->offset(), this->p_, this->data_size());
543 // Output_section_data methods.
545 // Record the output section, and set the entry size and such.
547 void
548 Output_section_data::set_output_section(Output_section* os)
550 gold_assert(this->output_section_ == NULL);
551 this->output_section_ = os;
552 this->do_adjust_output_section(os);
555 // Return the section index of the output section.
557 unsigned int
558 Output_section_data::do_out_shndx() const
560 gold_assert(this->output_section_ != NULL);
561 return this->output_section_->out_shndx();
564 // Set the alignment, which means we may need to update the alignment
565 // of the output section.
567 void
568 Output_section_data::set_addralign(uint64_t addralign)
570 this->addralign_ = addralign;
571 if (this->output_section_ != NULL
572 && this->output_section_->addralign() < addralign)
573 this->output_section_->set_addralign(addralign);
576 // Output_data_strtab methods.
578 // Set the final data size.
580 void
581 Output_data_strtab::set_final_data_size()
583 this->strtab_->set_string_offsets();
584 this->set_data_size(this->strtab_->get_strtab_size());
587 // Write out a string table.
589 void
590 Output_data_strtab::do_write(Output_file* of)
592 this->strtab_->write(of, this->offset());
595 // Output_reloc methods.
597 // A reloc against a global symbol.
599 template<bool dynamic, int size, bool big_endian>
600 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
601 Symbol* gsym,
602 unsigned int type,
603 Output_data* od,
604 Address address,
605 bool is_relative)
606 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
607 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
609 // this->type_ is a bitfield; make sure TYPE fits.
610 gold_assert(this->type_ == type);
611 this->u1_.gsym = gsym;
612 this->u2_.od = od;
613 if (dynamic)
614 this->set_needs_dynsym_index();
617 template<bool dynamic, int size, bool big_endian>
618 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
619 Symbol* gsym,
620 unsigned int type,
621 Sized_relobj<size, big_endian>* relobj,
622 unsigned int shndx,
623 Address address,
624 bool is_relative)
625 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
626 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
628 gold_assert(shndx != INVALID_CODE);
629 // this->type_ is a bitfield; make sure TYPE fits.
630 gold_assert(this->type_ == type);
631 this->u1_.gsym = gsym;
632 this->u2_.relobj = relobj;
633 if (dynamic)
634 this->set_needs_dynsym_index();
637 // A reloc against a local symbol.
639 template<bool dynamic, int size, bool big_endian>
640 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
641 Sized_relobj<size, big_endian>* relobj,
642 unsigned int local_sym_index,
643 unsigned int type,
644 Output_data* od,
645 Address address,
646 bool is_relative,
647 bool is_section_symbol)
648 : address_(address), local_sym_index_(local_sym_index), type_(type),
649 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
650 shndx_(INVALID_CODE)
652 gold_assert(local_sym_index != GSYM_CODE
653 && local_sym_index != INVALID_CODE);
654 // this->type_ is a bitfield; make sure TYPE fits.
655 gold_assert(this->type_ == type);
656 this->u1_.relobj = relobj;
657 this->u2_.od = od;
658 if (dynamic)
659 this->set_needs_dynsym_index();
662 template<bool dynamic, int size, bool big_endian>
663 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
664 Sized_relobj<size, big_endian>* relobj,
665 unsigned int local_sym_index,
666 unsigned int type,
667 unsigned int shndx,
668 Address address,
669 bool is_relative,
670 bool is_section_symbol)
671 : address_(address), local_sym_index_(local_sym_index), type_(type),
672 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
673 shndx_(shndx)
675 gold_assert(local_sym_index != GSYM_CODE
676 && local_sym_index != INVALID_CODE);
677 gold_assert(shndx != INVALID_CODE);
678 // this->type_ is a bitfield; make sure TYPE fits.
679 gold_assert(this->type_ == type);
680 this->u1_.relobj = relobj;
681 this->u2_.relobj = relobj;
682 if (dynamic)
683 this->set_needs_dynsym_index();
686 // A reloc against the STT_SECTION symbol of an output section.
688 template<bool dynamic, int size, bool big_endian>
689 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
690 Output_section* os,
691 unsigned int type,
692 Output_data* od,
693 Address address)
694 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
695 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
697 // this->type_ is a bitfield; make sure TYPE fits.
698 gold_assert(this->type_ == type);
699 this->u1_.os = os;
700 this->u2_.od = od;
701 if (dynamic)
702 this->set_needs_dynsym_index();
703 else
704 os->set_needs_symtab_index();
707 template<bool dynamic, int size, bool big_endian>
708 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
709 Output_section* os,
710 unsigned int type,
711 Sized_relobj<size, big_endian>* relobj,
712 unsigned int shndx,
713 Address address)
714 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
715 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
717 gold_assert(shndx != INVALID_CODE);
718 // this->type_ is a bitfield; make sure TYPE fits.
719 gold_assert(this->type_ == type);
720 this->u1_.os = os;
721 this->u2_.relobj = relobj;
722 if (dynamic)
723 this->set_needs_dynsym_index();
724 else
725 os->set_needs_symtab_index();
728 // Record that we need a dynamic symbol index for this relocation.
730 template<bool dynamic, int size, bool big_endian>
731 void
732 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
733 set_needs_dynsym_index()
735 if (this->is_relative_)
736 return;
737 switch (this->local_sym_index_)
739 case INVALID_CODE:
740 gold_unreachable();
742 case GSYM_CODE:
743 this->u1_.gsym->set_needs_dynsym_entry();
744 break;
746 case SECTION_CODE:
747 this->u1_.os->set_needs_dynsym_index();
748 break;
750 case 0:
751 break;
753 default:
755 const unsigned int lsi = this->local_sym_index_;
756 if (!this->is_section_symbol_)
757 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
758 else
759 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
761 break;
765 // Get the symbol index of a relocation.
767 template<bool dynamic, int size, bool big_endian>
768 unsigned int
769 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
770 const
772 unsigned int index;
773 switch (this->local_sym_index_)
775 case INVALID_CODE:
776 gold_unreachable();
778 case GSYM_CODE:
779 if (this->u1_.gsym == NULL)
780 index = 0;
781 else if (dynamic)
782 index = this->u1_.gsym->dynsym_index();
783 else
784 index = this->u1_.gsym->symtab_index();
785 break;
787 case SECTION_CODE:
788 if (dynamic)
789 index = this->u1_.os->dynsym_index();
790 else
791 index = this->u1_.os->symtab_index();
792 break;
794 case 0:
795 // Relocations without symbols use a symbol index of 0.
796 index = 0;
797 break;
799 default:
801 const unsigned int lsi = this->local_sym_index_;
802 if (!this->is_section_symbol_)
804 if (dynamic)
805 index = this->u1_.relobj->dynsym_index(lsi);
806 else
807 index = this->u1_.relobj->symtab_index(lsi);
809 else
811 Output_section* os = this->u1_.relobj->output_section(lsi);
812 gold_assert(os != NULL);
813 if (dynamic)
814 index = os->dynsym_index();
815 else
816 index = os->symtab_index();
819 break;
821 gold_assert(index != -1U);
822 return index;
825 // For a local section symbol, get the address of the offset ADDEND
826 // within the input section.
828 template<bool dynamic, int size, bool big_endian>
829 typename elfcpp::Elf_types<size>::Elf_Addr
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
831 local_section_offset(Addend addend) const
833 gold_assert(this->local_sym_index_ != GSYM_CODE
834 && this->local_sym_index_ != SECTION_CODE
835 && this->local_sym_index_ != INVALID_CODE
836 && this->is_section_symbol_);
837 const unsigned int lsi = this->local_sym_index_;
838 Output_section* os = this->u1_.relobj->output_section(lsi);
839 gold_assert(os != NULL);
840 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
841 if (offset != -1U)
842 return offset + addend;
843 // This is a merge section.
844 offset = os->output_address(this->u1_.relobj, lsi, addend);
845 gold_assert(offset != -1U);
846 return offset;
849 // Get the output address of a relocation.
851 template<bool dynamic, int size, bool big_endian>
852 typename elfcpp::Elf_types<size>::Elf_Addr
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
855 Address address = this->address_;
856 if (this->shndx_ != INVALID_CODE)
858 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
859 gold_assert(os != NULL);
860 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
861 if (off != -1U)
862 address += os->address() + off;
863 else
865 address = os->output_address(this->u2_.relobj, this->shndx_,
866 address);
867 gold_assert(address != -1U);
870 else if (this->u2_.od != NULL)
871 address += this->u2_.od->address();
872 return address;
875 // Write out the offset and info fields of a Rel or Rela relocation
876 // entry.
878 template<bool dynamic, int size, bool big_endian>
879 template<typename Write_rel>
880 void
881 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
882 Write_rel* wr) const
884 wr->put_r_offset(this->get_address());
885 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
886 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
889 // Write out a Rel relocation.
891 template<bool dynamic, int size, bool big_endian>
892 void
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
894 unsigned char* pov) const
896 elfcpp::Rel_write<size, big_endian> orel(pov);
897 this->write_rel(&orel);
900 // Get the value of the symbol referred to by a Rel relocation.
902 template<bool dynamic, int size, bool big_endian>
903 typename elfcpp::Elf_types<size>::Elf_Addr
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
905 Addend addend) const
907 if (this->local_sym_index_ == GSYM_CODE)
909 const Sized_symbol<size>* sym;
910 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
911 return sym->value() + addend;
913 gold_assert(this->local_sym_index_ != SECTION_CODE
914 && this->local_sym_index_ != INVALID_CODE
915 && !this->is_section_symbol_);
916 const unsigned int lsi = this->local_sym_index_;
917 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
918 return symval->value(this->u1_.relobj, addend);
921 // Reloc comparison. This function sorts the dynamic relocs for the
922 // benefit of the dynamic linker. First we sort all relative relocs
923 // to the front. Among relative relocs, we sort by output address.
924 // Among non-relative relocs, we sort by symbol index, then by output
925 // address.
927 template<bool dynamic, int size, bool big_endian>
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
931 const
933 if (this->is_relative_)
935 if (!r2.is_relative_)
936 return -1;
937 // Otherwise sort by reloc address below.
939 else if (r2.is_relative_)
940 return 1;
941 else
943 unsigned int sym1 = this->get_symbol_index();
944 unsigned int sym2 = r2.get_symbol_index();
945 if (sym1 < sym2)
946 return -1;
947 else if (sym1 > sym2)
948 return 1;
949 // Otherwise sort by reloc address.
952 section_offset_type addr1 = this->get_address();
953 section_offset_type addr2 = r2.get_address();
954 if (addr1 < addr2)
955 return -1;
956 else if (addr1 > addr2)
957 return 1;
959 // Final tie breaker, in order to generate the same output on any
960 // host: reloc type.
961 unsigned int type1 = this->type_;
962 unsigned int type2 = r2.type_;
963 if (type1 < type2)
964 return -1;
965 else if (type1 > type2)
966 return 1;
968 // These relocs appear to be exactly the same.
969 return 0;
972 // Write out a Rela relocation.
974 template<bool dynamic, int size, bool big_endian>
975 void
976 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
977 unsigned char* pov) const
979 elfcpp::Rela_write<size, big_endian> orel(pov);
980 this->rel_.write_rel(&orel);
981 Addend addend = this->addend_;
982 if (this->rel_.is_relative())
983 addend = this->rel_.symbol_value(addend);
984 else if (this->rel_.is_local_section_symbol())
985 addend = this->rel_.local_section_offset(addend);
986 orel.put_r_addend(addend);
989 // Output_data_reloc_base methods.
991 // Adjust the output section.
993 template<int sh_type, bool dynamic, int size, bool big_endian>
994 void
995 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
996 ::do_adjust_output_section(Output_section* os)
998 if (sh_type == elfcpp::SHT_REL)
999 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000 else if (sh_type == elfcpp::SHT_RELA)
1001 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1002 else
1003 gold_unreachable();
1004 if (dynamic)
1005 os->set_should_link_to_dynsym();
1006 else
1007 os->set_should_link_to_symtab();
1010 // Write out relocation data.
1012 template<int sh_type, bool dynamic, int size, bool big_endian>
1013 void
1014 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1015 Output_file* of)
1017 const off_t off = this->offset();
1018 const off_t oview_size = this->data_size();
1019 unsigned char* const oview = of->get_output_view(off, oview_size);
1021 if (this->sort_relocs_)
1023 gold_assert(dynamic);
1024 std::sort(this->relocs_.begin(), this->relocs_.end(),
1025 Sort_relocs_comparison());
1028 unsigned char* pov = oview;
1029 for (typename Relocs::const_iterator p = this->relocs_.begin();
1030 p != this->relocs_.end();
1031 ++p)
1033 p->write(pov);
1034 pov += reloc_size;
1037 gold_assert(pov - oview == oview_size);
1039 of->write_output_view(off, oview_size, oview);
1041 // We no longer need the relocation entries.
1042 this->relocs_.clear();
1045 // Class Output_relocatable_relocs.
1047 template<int sh_type, int size, bool big_endian>
1048 void
1049 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1051 this->set_data_size(this->rr_->output_reloc_count()
1052 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1055 // class Output_data_group.
1057 template<int size, bool big_endian>
1058 Output_data_group<size, big_endian>::Output_data_group(
1059 Sized_relobj<size, big_endian>* relobj,
1060 section_size_type entry_count,
1061 elfcpp::Elf_Word flags,
1062 std::vector<unsigned int>* input_shndxes)
1063 : Output_section_data(entry_count * 4, 4),
1064 relobj_(relobj),
1065 flags_(flags)
1067 this->input_shndxes_.swap(*input_shndxes);
1070 // Write out the section group, which means translating the section
1071 // indexes to apply to the output file.
1073 template<int size, bool big_endian>
1074 void
1075 Output_data_group<size, big_endian>::do_write(Output_file* of)
1077 const off_t off = this->offset();
1078 const section_size_type oview_size =
1079 convert_to_section_size_type(this->data_size());
1080 unsigned char* const oview = of->get_output_view(off, oview_size);
1082 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1083 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1084 ++contents;
1086 for (std::vector<unsigned int>::const_iterator p =
1087 this->input_shndxes_.begin();
1088 p != this->input_shndxes_.end();
1089 ++p, ++contents)
1091 Output_section* os = this->relobj_->output_section(*p);
1093 unsigned int output_shndx;
1094 if (os != NULL)
1095 output_shndx = os->out_shndx();
1096 else
1098 this->relobj_->error(_("section group retained but "
1099 "group element discarded"));
1100 output_shndx = 0;
1103 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1106 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1107 gold_assert(wrote == oview_size);
1109 of->write_output_view(off, oview_size, oview);
1111 // We no longer need this information.
1112 this->input_shndxes_.clear();
1115 // Output_data_got::Got_entry methods.
1117 // Write out the entry.
1119 template<int size, bool big_endian>
1120 void
1121 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1123 Valtype val = 0;
1125 switch (this->local_sym_index_)
1127 case GSYM_CODE:
1129 // If the symbol is resolved locally, we need to write out the
1130 // link-time value, which will be relocated dynamically by a
1131 // RELATIVE relocation.
1132 Symbol* gsym = this->u_.gsym;
1133 Sized_symbol<size>* sgsym;
1134 // This cast is a bit ugly. We don't want to put a
1135 // virtual method in Symbol, because we want Symbol to be
1136 // as small as possible.
1137 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1138 val = sgsym->value();
1140 break;
1142 case CONSTANT_CODE:
1143 val = this->u_.constant;
1144 break;
1146 default:
1148 const unsigned int lsi = this->local_sym_index_;
1149 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1150 val = symval->value(this->u_.object, 0);
1152 break;
1155 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1158 // Output_data_got methods.
1160 // Add an entry for a global symbol to the GOT. This returns true if
1161 // this is a new GOT entry, false if the symbol already had a GOT
1162 // entry.
1164 template<int size, bool big_endian>
1165 bool
1166 Output_data_got<size, big_endian>::add_global(
1167 Symbol* gsym,
1168 unsigned int got_type)
1170 if (gsym->has_got_offset(got_type))
1171 return false;
1173 this->entries_.push_back(Got_entry(gsym));
1174 this->set_got_size();
1175 gsym->set_got_offset(got_type, this->last_got_offset());
1176 return true;
1179 // Add an entry for a global symbol to the GOT, and add a dynamic
1180 // relocation of type R_TYPE for the GOT entry.
1181 template<int size, bool big_endian>
1182 void
1183 Output_data_got<size, big_endian>::add_global_with_rel(
1184 Symbol* gsym,
1185 unsigned int got_type,
1186 Rel_dyn* rel_dyn,
1187 unsigned int r_type)
1189 if (gsym->has_got_offset(got_type))
1190 return;
1192 this->entries_.push_back(Got_entry());
1193 this->set_got_size();
1194 unsigned int got_offset = this->last_got_offset();
1195 gsym->set_got_offset(got_type, got_offset);
1196 rel_dyn->add_global(gsym, r_type, this, got_offset);
1199 template<int size, bool big_endian>
1200 void
1201 Output_data_got<size, big_endian>::add_global_with_rela(
1202 Symbol* gsym,
1203 unsigned int got_type,
1204 Rela_dyn* rela_dyn,
1205 unsigned int r_type)
1207 if (gsym->has_got_offset(got_type))
1208 return;
1210 this->entries_.push_back(Got_entry());
1211 this->set_got_size();
1212 unsigned int got_offset = this->last_got_offset();
1213 gsym->set_got_offset(got_type, got_offset);
1214 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1217 // Add a pair of entries for a global symbol to the GOT, and add
1218 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1219 // If R_TYPE_2 == 0, add the second entry with no relocation.
1220 template<int size, bool big_endian>
1221 void
1222 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1223 Symbol* gsym,
1224 unsigned int got_type,
1225 Rel_dyn* rel_dyn,
1226 unsigned int r_type_1,
1227 unsigned int r_type_2)
1229 if (gsym->has_got_offset(got_type))
1230 return;
1232 this->entries_.push_back(Got_entry());
1233 unsigned int got_offset = this->last_got_offset();
1234 gsym->set_got_offset(got_type, got_offset);
1235 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1237 this->entries_.push_back(Got_entry());
1238 if (r_type_2 != 0)
1240 got_offset = this->last_got_offset();
1241 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1244 this->set_got_size();
1247 template<int size, bool big_endian>
1248 void
1249 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1250 Symbol* gsym,
1251 unsigned int got_type,
1252 Rela_dyn* rela_dyn,
1253 unsigned int r_type_1,
1254 unsigned int r_type_2)
1256 if (gsym->has_got_offset(got_type))
1257 return;
1259 this->entries_.push_back(Got_entry());
1260 unsigned int got_offset = this->last_got_offset();
1261 gsym->set_got_offset(got_type, got_offset);
1262 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1264 this->entries_.push_back(Got_entry());
1265 if (r_type_2 != 0)
1267 got_offset = this->last_got_offset();
1268 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1271 this->set_got_size();
1274 // Add an entry for a local symbol to the GOT. This returns true if
1275 // this is a new GOT entry, false if the symbol already has a GOT
1276 // entry.
1278 template<int size, bool big_endian>
1279 bool
1280 Output_data_got<size, big_endian>::add_local(
1281 Sized_relobj<size, big_endian>* object,
1282 unsigned int symndx,
1283 unsigned int got_type)
1285 if (object->local_has_got_offset(symndx, got_type))
1286 return false;
1288 this->entries_.push_back(Got_entry(object, symndx));
1289 this->set_got_size();
1290 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1291 return true;
1294 // Add an entry for a local symbol to the GOT, and add a dynamic
1295 // relocation of type R_TYPE for the GOT entry.
1296 template<int size, bool big_endian>
1297 void
1298 Output_data_got<size, big_endian>::add_local_with_rel(
1299 Sized_relobj<size, big_endian>* object,
1300 unsigned int symndx,
1301 unsigned int got_type,
1302 Rel_dyn* rel_dyn,
1303 unsigned int r_type)
1305 if (object->local_has_got_offset(symndx, got_type))
1306 return;
1308 this->entries_.push_back(Got_entry());
1309 this->set_got_size();
1310 unsigned int got_offset = this->last_got_offset();
1311 object->set_local_got_offset(symndx, got_type, got_offset);
1312 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1315 template<int size, bool big_endian>
1316 void
1317 Output_data_got<size, big_endian>::add_local_with_rela(
1318 Sized_relobj<size, big_endian>* object,
1319 unsigned int symndx,
1320 unsigned int got_type,
1321 Rela_dyn* rela_dyn,
1322 unsigned int r_type)
1324 if (object->local_has_got_offset(symndx, got_type))
1325 return;
1327 this->entries_.push_back(Got_entry());
1328 this->set_got_size();
1329 unsigned int got_offset = this->last_got_offset();
1330 object->set_local_got_offset(symndx, got_type, got_offset);
1331 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1334 // Add a pair of entries for a local symbol to the GOT, and add
1335 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1336 // If R_TYPE_2 == 0, add the second entry with no relocation.
1337 template<int size, bool big_endian>
1338 void
1339 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1340 Sized_relobj<size, big_endian>* object,
1341 unsigned int symndx,
1342 unsigned int shndx,
1343 unsigned int got_type,
1344 Rel_dyn* rel_dyn,
1345 unsigned int r_type_1,
1346 unsigned int r_type_2)
1348 if (object->local_has_got_offset(symndx, got_type))
1349 return;
1351 this->entries_.push_back(Got_entry());
1352 unsigned int got_offset = this->last_got_offset();
1353 object->set_local_got_offset(symndx, got_type, got_offset);
1354 Output_section* os = object->output_section(shndx);
1355 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1357 this->entries_.push_back(Got_entry(object, symndx));
1358 if (r_type_2 != 0)
1360 got_offset = this->last_got_offset();
1361 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1364 this->set_got_size();
1367 template<int size, bool big_endian>
1368 void
1369 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1370 Sized_relobj<size, big_endian>* object,
1371 unsigned int symndx,
1372 unsigned int shndx,
1373 unsigned int got_type,
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type_1,
1376 unsigned int r_type_2)
1378 if (object->local_has_got_offset(symndx, got_type))
1379 return;
1381 this->entries_.push_back(Got_entry());
1382 unsigned int got_offset = this->last_got_offset();
1383 object->set_local_got_offset(symndx, got_type, got_offset);
1384 Output_section* os = object->output_section(shndx);
1385 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1387 this->entries_.push_back(Got_entry(object, symndx));
1388 if (r_type_2 != 0)
1390 got_offset = this->last_got_offset();
1391 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1394 this->set_got_size();
1397 // Write out the GOT.
1399 template<int size, bool big_endian>
1400 void
1401 Output_data_got<size, big_endian>::do_write(Output_file* of)
1403 const int add = size / 8;
1405 const off_t off = this->offset();
1406 const off_t oview_size = this->data_size();
1407 unsigned char* const oview = of->get_output_view(off, oview_size);
1409 unsigned char* pov = oview;
1410 for (typename Got_entries::const_iterator p = this->entries_.begin();
1411 p != this->entries_.end();
1412 ++p)
1414 p->write(pov);
1415 pov += add;
1418 gold_assert(pov - oview == oview_size);
1420 of->write_output_view(off, oview_size, oview);
1422 // We no longer need the GOT entries.
1423 this->entries_.clear();
1426 // Output_data_dynamic::Dynamic_entry methods.
1428 // Write out the entry.
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_dynamic::Dynamic_entry::write(
1433 unsigned char* pov,
1434 const Stringpool* pool) const
1436 typename elfcpp::Elf_types<size>::Elf_WXword val;
1437 switch (this->offset_)
1439 case DYNAMIC_NUMBER:
1440 val = this->u_.val;
1441 break;
1443 case DYNAMIC_SECTION_SIZE:
1444 val = this->u_.od->data_size();
1445 break;
1447 case DYNAMIC_SYMBOL:
1449 const Sized_symbol<size>* s =
1450 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1451 val = s->value();
1453 break;
1455 case DYNAMIC_STRING:
1456 val = pool->get_offset(this->u_.str);
1457 break;
1459 default:
1460 val = this->u_.od->address() + this->offset_;
1461 break;
1464 elfcpp::Dyn_write<size, big_endian> dw(pov);
1465 dw.put_d_tag(this->tag_);
1466 dw.put_d_val(val);
1469 // Output_data_dynamic methods.
1471 // Adjust the output section to set the entry size.
1473 void
1474 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1476 if (parameters->target().get_size() == 32)
1477 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1478 else if (parameters->target().get_size() == 64)
1479 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1480 else
1481 gold_unreachable();
1484 // Set the final data size.
1486 void
1487 Output_data_dynamic::set_final_data_size()
1489 // Add the terminating entry.
1490 this->add_constant(elfcpp::DT_NULL, 0);
1492 int dyn_size;
1493 if (parameters->target().get_size() == 32)
1494 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1495 else if (parameters->target().get_size() == 64)
1496 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1497 else
1498 gold_unreachable();
1499 this->set_data_size(this->entries_.size() * dyn_size);
1502 // Write out the dynamic entries.
1504 void
1505 Output_data_dynamic::do_write(Output_file* of)
1507 switch (parameters->size_and_endianness())
1509 #ifdef HAVE_TARGET_32_LITTLE
1510 case Parameters::TARGET_32_LITTLE:
1511 this->sized_write<32, false>(of);
1512 break;
1513 #endif
1514 #ifdef HAVE_TARGET_32_BIG
1515 case Parameters::TARGET_32_BIG:
1516 this->sized_write<32, true>(of);
1517 break;
1518 #endif
1519 #ifdef HAVE_TARGET_64_LITTLE
1520 case Parameters::TARGET_64_LITTLE:
1521 this->sized_write<64, false>(of);
1522 break;
1523 #endif
1524 #ifdef HAVE_TARGET_64_BIG
1525 case Parameters::TARGET_64_BIG:
1526 this->sized_write<64, true>(of);
1527 break;
1528 #endif
1529 default:
1530 gold_unreachable();
1534 template<int size, bool big_endian>
1535 void
1536 Output_data_dynamic::sized_write(Output_file* of)
1538 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1540 const off_t offset = this->offset();
1541 const off_t oview_size = this->data_size();
1542 unsigned char* const oview = of->get_output_view(offset, oview_size);
1544 unsigned char* pov = oview;
1545 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1546 p != this->entries_.end();
1547 ++p)
1549 p->write<size, big_endian>(pov, this->pool_);
1550 pov += dyn_size;
1553 gold_assert(pov - oview == oview_size);
1555 of->write_output_view(offset, oview_size, oview);
1557 // We no longer need the dynamic entries.
1558 this->entries_.clear();
1561 // Class Output_symtab_xindex.
1563 void
1564 Output_symtab_xindex::do_write(Output_file* of)
1566 const off_t offset = this->offset();
1567 const off_t oview_size = this->data_size();
1568 unsigned char* const oview = of->get_output_view(offset, oview_size);
1570 memset(oview, 0, oview_size);
1572 if (parameters->target().is_big_endian())
1573 this->endian_do_write<true>(oview);
1574 else
1575 this->endian_do_write<false>(oview);
1577 of->write_output_view(offset, oview_size, oview);
1579 // We no longer need the data.
1580 this->entries_.clear();
1583 template<bool big_endian>
1584 void
1585 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1587 for (Xindex_entries::const_iterator p = this->entries_.begin();
1588 p != this->entries_.end();
1589 ++p)
1590 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1593 // Output_section::Input_section methods.
1595 // Return the data size. For an input section we store the size here.
1596 // For an Output_section_data, we have to ask it for the size.
1598 off_t
1599 Output_section::Input_section::data_size() const
1601 if (this->is_input_section())
1602 return this->u1_.data_size;
1603 else
1604 return this->u2_.posd->data_size();
1607 // Set the address and file offset.
1609 void
1610 Output_section::Input_section::set_address_and_file_offset(
1611 uint64_t address,
1612 off_t file_offset,
1613 off_t section_file_offset)
1615 if (this->is_input_section())
1616 this->u2_.object->set_section_offset(this->shndx_,
1617 file_offset - section_file_offset);
1618 else
1619 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1622 // Reset the address and file offset.
1624 void
1625 Output_section::Input_section::reset_address_and_file_offset()
1627 if (!this->is_input_section())
1628 this->u2_.posd->reset_address_and_file_offset();
1631 // Finalize the data size.
1633 void
1634 Output_section::Input_section::finalize_data_size()
1636 if (!this->is_input_section())
1637 this->u2_.posd->finalize_data_size();
1640 // Try to turn an input offset into an output offset. We want to
1641 // return the output offset relative to the start of this
1642 // Input_section in the output section.
1644 inline bool
1645 Output_section::Input_section::output_offset(
1646 const Relobj* object,
1647 unsigned int shndx,
1648 section_offset_type offset,
1649 section_offset_type *poutput) const
1651 if (!this->is_input_section())
1652 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1653 else
1655 if (this->shndx_ != shndx || this->u2_.object != object)
1656 return false;
1657 *poutput = offset;
1658 return true;
1662 // Return whether this is the merge section for the input section
1663 // SHNDX in OBJECT.
1665 inline bool
1666 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1667 unsigned int shndx) const
1669 if (this->is_input_section())
1670 return false;
1671 return this->u2_.posd->is_merge_section_for(object, shndx);
1674 // Write out the data. We don't have to do anything for an input
1675 // section--they are handled via Object::relocate--but this is where
1676 // we write out the data for an Output_section_data.
1678 void
1679 Output_section::Input_section::write(Output_file* of)
1681 if (!this->is_input_section())
1682 this->u2_.posd->write(of);
1685 // Write the data to a buffer. As for write(), we don't have to do
1686 // anything for an input section.
1688 void
1689 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1691 if (!this->is_input_section())
1692 this->u2_.posd->write_to_buffer(buffer);
1695 // Print to a map file.
1697 void
1698 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1700 switch (this->shndx_)
1702 case OUTPUT_SECTION_CODE:
1703 case MERGE_DATA_SECTION_CODE:
1704 case MERGE_STRING_SECTION_CODE:
1705 this->u2_.posd->print_to_mapfile(mapfile);
1706 break;
1708 default:
1709 mapfile->print_input_section(this->u2_.object, this->shndx_);
1710 break;
1714 // Output_section methods.
1716 // Construct an Output_section. NAME will point into a Stringpool.
1718 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1719 elfcpp::Elf_Xword flags)
1720 : name_(name),
1721 addralign_(0),
1722 entsize_(0),
1723 load_address_(0),
1724 link_section_(NULL),
1725 link_(0),
1726 info_section_(NULL),
1727 info_symndx_(NULL),
1728 info_(0),
1729 type_(type),
1730 flags_(flags),
1731 out_shndx_(-1U),
1732 symtab_index_(0),
1733 dynsym_index_(0),
1734 input_sections_(),
1735 first_input_offset_(0),
1736 fills_(),
1737 postprocessing_buffer_(NULL),
1738 needs_symtab_index_(false),
1739 needs_dynsym_index_(false),
1740 should_link_to_symtab_(false),
1741 should_link_to_dynsym_(false),
1742 after_input_sections_(false),
1743 requires_postprocessing_(false),
1744 found_in_sections_clause_(false),
1745 has_load_address_(false),
1746 info_uses_section_index_(false),
1747 may_sort_attached_input_sections_(false),
1748 must_sort_attached_input_sections_(false),
1749 attached_input_sections_are_sorted_(false),
1750 is_relro_(false),
1751 is_relro_local_(false),
1752 tls_offset_(0)
1754 // An unallocated section has no address. Forcing this means that
1755 // we don't need special treatment for symbols defined in debug
1756 // sections.
1757 if ((flags & elfcpp::SHF_ALLOC) == 0)
1758 this->set_address(0);
1761 Output_section::~Output_section()
1765 // Set the entry size.
1767 void
1768 Output_section::set_entsize(uint64_t v)
1770 if (this->entsize_ == 0)
1771 this->entsize_ = v;
1772 else
1773 gold_assert(this->entsize_ == v);
1776 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1777 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1778 // relocation section which applies to this section, or 0 if none, or
1779 // -1U if more than one. Return the offset of the input section
1780 // within the output section. Return -1 if the input section will
1781 // receive special handling. In the normal case we don't always keep
1782 // track of input sections for an Output_section. Instead, each
1783 // Object keeps track of the Output_section for each of its input
1784 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1785 // track of input sections here; this is used when SECTIONS appears in
1786 // a linker script.
1788 template<int size, bool big_endian>
1789 off_t
1790 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1791 unsigned int shndx,
1792 const char* secname,
1793 const elfcpp::Shdr<size, big_endian>& shdr,
1794 unsigned int reloc_shndx,
1795 bool have_sections_script)
1797 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1798 if ((addralign & (addralign - 1)) != 0)
1800 object->error(_("invalid alignment %lu for section \"%s\""),
1801 static_cast<unsigned long>(addralign), secname);
1802 addralign = 1;
1805 if (addralign > this->addralign_)
1806 this->addralign_ = addralign;
1808 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1809 this->update_flags_for_input_section(sh_flags);
1811 uint64_t entsize = shdr.get_sh_entsize();
1813 // .debug_str is a mergeable string section, but is not always so
1814 // marked by compilers. Mark manually here so we can optimize.
1815 if (strcmp(secname, ".debug_str") == 0)
1817 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1818 entsize = 1;
1821 // If this is a SHF_MERGE section, we pass all the input sections to
1822 // a Output_data_merge. We don't try to handle relocations for such
1823 // a section. We don't try to handle empty merge sections--they
1824 // mess up the mappings, and are useless anyhow.
1825 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1826 && reloc_shndx == 0
1827 && shdr.get_sh_size() > 0)
1829 if (this->add_merge_input_section(object, shndx, sh_flags,
1830 entsize, addralign))
1832 // Tell the relocation routines that they need to call the
1833 // output_offset method to determine the final address.
1834 return -1;
1838 off_t offset_in_section = this->current_data_size_for_child();
1839 off_t aligned_offset_in_section = align_address(offset_in_section,
1840 addralign);
1842 if (aligned_offset_in_section > offset_in_section
1843 && !have_sections_script
1844 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1845 && object->target()->has_code_fill())
1847 // We need to add some fill data. Using fill_list_ when
1848 // possible is an optimization, since we will often have fill
1849 // sections without input sections.
1850 off_t fill_len = aligned_offset_in_section - offset_in_section;
1851 if (this->input_sections_.empty())
1852 this->fills_.push_back(Fill(offset_in_section, fill_len));
1853 else
1855 // FIXME: When relaxing, the size needs to adjust to
1856 // maintain a constant alignment.
1857 std::string fill_data(object->target()->code_fill(fill_len));
1858 Output_data_const* odc = new Output_data_const(fill_data, 1);
1859 this->input_sections_.push_back(Input_section(odc));
1863 this->set_current_data_size_for_child(aligned_offset_in_section
1864 + shdr.get_sh_size());
1866 // We need to keep track of this section if we are already keeping
1867 // track of sections, or if we are relaxing. Also, if this is a
1868 // section which requires sorting, or which may require sorting in
1869 // the future, we keep track of the sections. FIXME: Add test for
1870 // relaxing.
1871 if (have_sections_script
1872 || !this->input_sections_.empty()
1873 || this->may_sort_attached_input_sections()
1874 || this->must_sort_attached_input_sections()
1875 || parameters->options().user_set_Map())
1876 this->input_sections_.push_back(Input_section(object, shndx,
1877 shdr.get_sh_size(),
1878 addralign));
1880 return aligned_offset_in_section;
1883 // Add arbitrary data to an output section.
1885 void
1886 Output_section::add_output_section_data(Output_section_data* posd)
1888 Input_section inp(posd);
1889 this->add_output_section_data(&inp);
1891 if (posd->is_data_size_valid())
1893 off_t offset_in_section = this->current_data_size_for_child();
1894 off_t aligned_offset_in_section = align_address(offset_in_section,
1895 posd->addralign());
1896 this->set_current_data_size_for_child(aligned_offset_in_section
1897 + posd->data_size());
1901 // Add arbitrary data to an output section by Input_section.
1903 void
1904 Output_section::add_output_section_data(Input_section* inp)
1906 if (this->input_sections_.empty())
1907 this->first_input_offset_ = this->current_data_size_for_child();
1909 this->input_sections_.push_back(*inp);
1911 uint64_t addralign = inp->addralign();
1912 if (addralign > this->addralign_)
1913 this->addralign_ = addralign;
1915 inp->set_output_section(this);
1918 // Add a merge section to an output section.
1920 void
1921 Output_section::add_output_merge_section(Output_section_data* posd,
1922 bool is_string, uint64_t entsize)
1924 Input_section inp(posd, is_string, entsize);
1925 this->add_output_section_data(&inp);
1928 // Add an input section to a SHF_MERGE section.
1930 bool
1931 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1932 uint64_t flags, uint64_t entsize,
1933 uint64_t addralign)
1935 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1937 // We only merge strings if the alignment is not more than the
1938 // character size. This could be handled, but it's unusual.
1939 if (is_string && addralign > entsize)
1940 return false;
1942 Input_section_list::iterator p;
1943 for (p = this->input_sections_.begin();
1944 p != this->input_sections_.end();
1945 ++p)
1946 if (p->is_merge_section(is_string, entsize, addralign))
1948 p->add_input_section(object, shndx);
1949 return true;
1952 // We handle the actual constant merging in Output_merge_data or
1953 // Output_merge_string_data.
1954 Output_section_data* posd;
1955 if (!is_string)
1956 posd = new Output_merge_data(entsize, addralign);
1957 else
1959 switch (entsize)
1961 case 1:
1962 posd = new Output_merge_string<char>(addralign);
1963 break;
1964 case 2:
1965 posd = new Output_merge_string<uint16_t>(addralign);
1966 break;
1967 case 4:
1968 posd = new Output_merge_string<uint32_t>(addralign);
1969 break;
1970 default:
1971 return false;
1975 this->add_output_merge_section(posd, is_string, entsize);
1976 posd->add_input_section(object, shndx);
1978 return true;
1981 // Given an address OFFSET relative to the start of input section
1982 // SHNDX in OBJECT, return whether this address is being included in
1983 // the final link. This should only be called if SHNDX in OBJECT has
1984 // a special mapping.
1986 bool
1987 Output_section::is_input_address_mapped(const Relobj* object,
1988 unsigned int shndx,
1989 off_t offset) const
1991 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1992 p != this->input_sections_.end();
1993 ++p)
1995 section_offset_type output_offset;
1996 if (p->output_offset(object, shndx, offset, &output_offset))
1997 return output_offset != -1;
2000 // By default we assume that the address is mapped. This should
2001 // only be called after we have passed all sections to Layout. At
2002 // that point we should know what we are discarding.
2003 return true;
2006 // Given an address OFFSET relative to the start of input section
2007 // SHNDX in object OBJECT, return the output offset relative to the
2008 // start of the input section in the output section. This should only
2009 // be called if SHNDX in OBJECT has a special mapping.
2011 section_offset_type
2012 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2013 section_offset_type offset) const
2015 // This can only be called meaningfully when layout is complete.
2016 gold_assert(Output_data::is_layout_complete());
2018 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2019 p != this->input_sections_.end();
2020 ++p)
2022 section_offset_type output_offset;
2023 if (p->output_offset(object, shndx, offset, &output_offset))
2024 return output_offset;
2026 gold_unreachable();
2029 // Return the output virtual address of OFFSET relative to the start
2030 // of input section SHNDX in object OBJECT.
2032 uint64_t
2033 Output_section::output_address(const Relobj* object, unsigned int shndx,
2034 off_t offset) const
2036 uint64_t addr = this->address() + this->first_input_offset_;
2037 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2038 p != this->input_sections_.end();
2039 ++p)
2041 addr = align_address(addr, p->addralign());
2042 section_offset_type output_offset;
2043 if (p->output_offset(object, shndx, offset, &output_offset))
2045 if (output_offset == -1)
2046 return -1U;
2047 return addr + output_offset;
2049 addr += p->data_size();
2052 // If we get here, it means that we don't know the mapping for this
2053 // input section. This might happen in principle if
2054 // add_input_section were called before add_output_section_data.
2055 // But it should never actually happen.
2057 gold_unreachable();
2060 // Return the output address of the start of the merged section for
2061 // input section SHNDX in object OBJECT.
2063 uint64_t
2064 Output_section::starting_output_address(const Relobj* object,
2065 unsigned int shndx) const
2067 uint64_t addr = this->address() + this->first_input_offset_;
2068 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2069 p != this->input_sections_.end();
2070 ++p)
2072 addr = align_address(addr, p->addralign());
2074 // It would be nice if we could use the existing output_offset
2075 // method to get the output offset of input offset 0.
2076 // Unfortunately we don't know for sure that input offset 0 is
2077 // mapped at all.
2078 if (p->is_merge_section_for(object, shndx))
2079 return addr;
2081 addr += p->data_size();
2083 gold_unreachable();
2086 // Set the data size of an Output_section. This is where we handle
2087 // setting the addresses of any Output_section_data objects.
2089 void
2090 Output_section::set_final_data_size()
2092 if (this->input_sections_.empty())
2094 this->set_data_size(this->current_data_size_for_child());
2095 return;
2098 if (this->must_sort_attached_input_sections())
2099 this->sort_attached_input_sections();
2101 uint64_t address = this->address();
2102 off_t startoff = this->offset();
2103 off_t off = startoff + this->first_input_offset_;
2104 for (Input_section_list::iterator p = this->input_sections_.begin();
2105 p != this->input_sections_.end();
2106 ++p)
2108 off = align_address(off, p->addralign());
2109 p->set_address_and_file_offset(address + (off - startoff), off,
2110 startoff);
2111 off += p->data_size();
2114 this->set_data_size(off - startoff);
2117 // Reset the address and file offset.
2119 void
2120 Output_section::do_reset_address_and_file_offset()
2122 for (Input_section_list::iterator p = this->input_sections_.begin();
2123 p != this->input_sections_.end();
2124 ++p)
2125 p->reset_address_and_file_offset();
2128 // Set the TLS offset. Called only for SHT_TLS sections.
2130 void
2131 Output_section::do_set_tls_offset(uint64_t tls_base)
2133 this->tls_offset_ = this->address() - tls_base;
2136 // In a few cases we need to sort the input sections attached to an
2137 // output section. This is used to implement the type of constructor
2138 // priority ordering implemented by the GNU linker, in which the
2139 // priority becomes part of the section name and the sections are
2140 // sorted by name. We only do this for an output section if we see an
2141 // attached input section matching ".ctor.*", ".dtor.*",
2142 // ".init_array.*" or ".fini_array.*".
2144 class Output_section::Input_section_sort_entry
2146 public:
2147 Input_section_sort_entry()
2148 : input_section_(), index_(-1U), section_has_name_(false),
2149 section_name_()
2152 Input_section_sort_entry(const Input_section& input_section,
2153 unsigned int index)
2154 : input_section_(input_section), index_(index),
2155 section_has_name_(input_section.is_input_section())
2157 if (this->section_has_name_)
2159 // This is only called single-threaded from Layout::finalize,
2160 // so it is OK to lock. Unfortunately we have no way to pass
2161 // in a Task token.
2162 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2163 Object* obj = input_section.relobj();
2164 Task_lock_obj<Object> tl(dummy_task, obj);
2166 // This is a slow operation, which should be cached in
2167 // Layout::layout if this becomes a speed problem.
2168 this->section_name_ = obj->section_name(input_section.shndx());
2172 // Return the Input_section.
2173 const Input_section&
2174 input_section() const
2176 gold_assert(this->index_ != -1U);
2177 return this->input_section_;
2180 // The index of this entry in the original list. This is used to
2181 // make the sort stable.
2182 unsigned int
2183 index() const
2185 gold_assert(this->index_ != -1U);
2186 return this->index_;
2189 // Whether there is a section name.
2190 bool
2191 section_has_name() const
2192 { return this->section_has_name_; }
2194 // The section name.
2195 const std::string&
2196 section_name() const
2198 gold_assert(this->section_has_name_);
2199 return this->section_name_;
2202 // Return true if the section name has a priority. This is assumed
2203 // to be true if it has a dot after the initial dot.
2204 bool
2205 has_priority() const
2207 gold_assert(this->section_has_name_);
2208 return this->section_name_.find('.', 1);
2211 // Return true if this an input file whose base name matches
2212 // FILE_NAME. The base name must have an extension of ".o", and
2213 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2214 // This is to match crtbegin.o as well as crtbeginS.o without
2215 // getting confused by other possibilities. Overall matching the
2216 // file name this way is a dreadful hack, but the GNU linker does it
2217 // in order to better support gcc, and we need to be compatible.
2218 bool
2219 match_file_name(const char* match_file_name) const
2221 const std::string& file_name(this->input_section_.relobj()->name());
2222 const char* base_name = lbasename(file_name.c_str());
2223 size_t match_len = strlen(match_file_name);
2224 if (strncmp(base_name, match_file_name, match_len) != 0)
2225 return false;
2226 size_t base_len = strlen(base_name);
2227 if (base_len != match_len + 2 && base_len != match_len + 3)
2228 return false;
2229 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2232 private:
2233 // The Input_section we are sorting.
2234 Input_section input_section_;
2235 // The index of this Input_section in the original list.
2236 unsigned int index_;
2237 // Whether this Input_section has a section name--it won't if this
2238 // is some random Output_section_data.
2239 bool section_has_name_;
2240 // The section name if there is one.
2241 std::string section_name_;
2244 // Return true if S1 should come before S2 in the output section.
2246 bool
2247 Output_section::Input_section_sort_compare::operator()(
2248 const Output_section::Input_section_sort_entry& s1,
2249 const Output_section::Input_section_sort_entry& s2) const
2251 // crtbegin.o must come first.
2252 bool s1_begin = s1.match_file_name("crtbegin");
2253 bool s2_begin = s2.match_file_name("crtbegin");
2254 if (s1_begin || s2_begin)
2256 if (!s1_begin)
2257 return false;
2258 if (!s2_begin)
2259 return true;
2260 return s1.index() < s2.index();
2263 // crtend.o must come last.
2264 bool s1_end = s1.match_file_name("crtend");
2265 bool s2_end = s2.match_file_name("crtend");
2266 if (s1_end || s2_end)
2268 if (!s1_end)
2269 return true;
2270 if (!s2_end)
2271 return false;
2272 return s1.index() < s2.index();
2275 // We sort all the sections with no names to the end.
2276 if (!s1.section_has_name() || !s2.section_has_name())
2278 if (s1.section_has_name())
2279 return true;
2280 if (s2.section_has_name())
2281 return false;
2282 return s1.index() < s2.index();
2285 // A section with a priority follows a section without a priority.
2286 // The GNU linker does this for all but .init_array sections; until
2287 // further notice we'll assume that that is an mistake.
2288 bool s1_has_priority = s1.has_priority();
2289 bool s2_has_priority = s2.has_priority();
2290 if (s1_has_priority && !s2_has_priority)
2291 return false;
2292 if (!s1_has_priority && s2_has_priority)
2293 return true;
2295 // Otherwise we sort by name.
2296 int compare = s1.section_name().compare(s2.section_name());
2297 if (compare != 0)
2298 return compare < 0;
2300 // Otherwise we keep the input order.
2301 return s1.index() < s2.index();
2304 // Sort the input sections attached to an output section.
2306 void
2307 Output_section::sort_attached_input_sections()
2309 if (this->attached_input_sections_are_sorted_)
2310 return;
2312 // The only thing we know about an input section is the object and
2313 // the section index. We need the section name. Recomputing this
2314 // is slow but this is an unusual case. If this becomes a speed
2315 // problem we can cache the names as required in Layout::layout.
2317 // We start by building a larger vector holding a copy of each
2318 // Input_section, plus its current index in the list and its name.
2319 std::vector<Input_section_sort_entry> sort_list;
2321 unsigned int i = 0;
2322 for (Input_section_list::iterator p = this->input_sections_.begin();
2323 p != this->input_sections_.end();
2324 ++p, ++i)
2325 sort_list.push_back(Input_section_sort_entry(*p, i));
2327 // Sort the input sections.
2328 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2330 // Copy the sorted input sections back to our list.
2331 this->input_sections_.clear();
2332 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2333 p != sort_list.end();
2334 ++p)
2335 this->input_sections_.push_back(p->input_section());
2337 // Remember that we sorted the input sections, since we might get
2338 // called again.
2339 this->attached_input_sections_are_sorted_ = true;
2342 // Write the section header to *OSHDR.
2344 template<int size, bool big_endian>
2345 void
2346 Output_section::write_header(const Layout* layout,
2347 const Stringpool* secnamepool,
2348 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2350 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2351 oshdr->put_sh_type(this->type_);
2353 elfcpp::Elf_Xword flags = this->flags_;
2354 if (this->info_section_ != NULL && this->info_uses_section_index_)
2355 flags |= elfcpp::SHF_INFO_LINK;
2356 oshdr->put_sh_flags(flags);
2358 oshdr->put_sh_addr(this->address());
2359 oshdr->put_sh_offset(this->offset());
2360 oshdr->put_sh_size(this->data_size());
2361 if (this->link_section_ != NULL)
2362 oshdr->put_sh_link(this->link_section_->out_shndx());
2363 else if (this->should_link_to_symtab_)
2364 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2365 else if (this->should_link_to_dynsym_)
2366 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2367 else
2368 oshdr->put_sh_link(this->link_);
2370 elfcpp::Elf_Word info;
2371 if (this->info_section_ != NULL)
2373 if (this->info_uses_section_index_)
2374 info = this->info_section_->out_shndx();
2375 else
2376 info = this->info_section_->symtab_index();
2378 else if (this->info_symndx_ != NULL)
2379 info = this->info_symndx_->symtab_index();
2380 else
2381 info = this->info_;
2382 oshdr->put_sh_info(info);
2384 oshdr->put_sh_addralign(this->addralign_);
2385 oshdr->put_sh_entsize(this->entsize_);
2388 // Write out the data. For input sections the data is written out by
2389 // Object::relocate, but we have to handle Output_section_data objects
2390 // here.
2392 void
2393 Output_section::do_write(Output_file* of)
2395 gold_assert(!this->requires_postprocessing());
2397 off_t output_section_file_offset = this->offset();
2398 for (Fill_list::iterator p = this->fills_.begin();
2399 p != this->fills_.end();
2400 ++p)
2402 std::string fill_data(parameters->target().code_fill(p->length()));
2403 of->write(output_section_file_offset + p->section_offset(),
2404 fill_data.data(), fill_data.size());
2407 for (Input_section_list::iterator p = this->input_sections_.begin();
2408 p != this->input_sections_.end();
2409 ++p)
2410 p->write(of);
2413 // If a section requires postprocessing, create the buffer to use.
2415 void
2416 Output_section::create_postprocessing_buffer()
2418 gold_assert(this->requires_postprocessing());
2420 if (this->postprocessing_buffer_ != NULL)
2421 return;
2423 if (!this->input_sections_.empty())
2425 off_t off = this->first_input_offset_;
2426 for (Input_section_list::iterator p = this->input_sections_.begin();
2427 p != this->input_sections_.end();
2428 ++p)
2430 off = align_address(off, p->addralign());
2431 p->finalize_data_size();
2432 off += p->data_size();
2434 this->set_current_data_size_for_child(off);
2437 off_t buffer_size = this->current_data_size_for_child();
2438 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2441 // Write all the data of an Output_section into the postprocessing
2442 // buffer. This is used for sections which require postprocessing,
2443 // such as compression. Input sections are handled by
2444 // Object::Relocate.
2446 void
2447 Output_section::write_to_postprocessing_buffer()
2449 gold_assert(this->requires_postprocessing());
2451 unsigned char* buffer = this->postprocessing_buffer();
2452 for (Fill_list::iterator p = this->fills_.begin();
2453 p != this->fills_.end();
2454 ++p)
2456 std::string fill_data(parameters->target().code_fill(p->length()));
2457 memcpy(buffer + p->section_offset(), fill_data.data(),
2458 fill_data.size());
2461 off_t off = this->first_input_offset_;
2462 for (Input_section_list::iterator p = this->input_sections_.begin();
2463 p != this->input_sections_.end();
2464 ++p)
2466 off = align_address(off, p->addralign());
2467 p->write_to_buffer(buffer + off);
2468 off += p->data_size();
2472 // Get the input sections for linker script processing. We leave
2473 // behind the Output_section_data entries. Note that this may be
2474 // slightly incorrect for merge sections. We will leave them behind,
2475 // but it is possible that the script says that they should follow
2476 // some other input sections, as in:
2477 // .rodata { *(.rodata) *(.rodata.cst*) }
2478 // For that matter, we don't handle this correctly:
2479 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2480 // With luck this will never matter.
2482 uint64_t
2483 Output_section::get_input_sections(
2484 uint64_t address,
2485 const std::string& fill,
2486 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2488 uint64_t orig_address = address;
2490 address = align_address(address, this->addralign());
2492 Input_section_list remaining;
2493 for (Input_section_list::iterator p = this->input_sections_.begin();
2494 p != this->input_sections_.end();
2495 ++p)
2497 if (p->is_input_section())
2498 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2499 else
2501 uint64_t aligned_address = align_address(address, p->addralign());
2502 if (aligned_address != address && !fill.empty())
2504 section_size_type length =
2505 convert_to_section_size_type(aligned_address - address);
2506 std::string this_fill;
2507 this_fill.reserve(length);
2508 while (this_fill.length() + fill.length() <= length)
2509 this_fill += fill;
2510 if (this_fill.length() < length)
2511 this_fill.append(fill, 0, length - this_fill.length());
2513 Output_section_data* posd = new Output_data_const(this_fill, 0);
2514 remaining.push_back(Input_section(posd));
2516 address = aligned_address;
2518 remaining.push_back(*p);
2520 p->finalize_data_size();
2521 address += p->data_size();
2525 this->input_sections_.swap(remaining);
2526 this->first_input_offset_ = 0;
2528 uint64_t data_size = address - orig_address;
2529 this->set_current_data_size_for_child(data_size);
2530 return data_size;
2533 // Add an input section from a script.
2535 void
2536 Output_section::add_input_section_for_script(Relobj* object,
2537 unsigned int shndx,
2538 off_t data_size,
2539 uint64_t addralign)
2541 if (addralign > this->addralign_)
2542 this->addralign_ = addralign;
2544 off_t offset_in_section = this->current_data_size_for_child();
2545 off_t aligned_offset_in_section = align_address(offset_in_section,
2546 addralign);
2548 this->set_current_data_size_for_child(aligned_offset_in_section
2549 + data_size);
2551 this->input_sections_.push_back(Input_section(object, shndx,
2552 data_size, addralign));
2555 // Print to the map file.
2557 void
2558 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2560 mapfile->print_output_section(this);
2562 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2563 p != this->input_sections_.end();
2564 ++p)
2565 p->print_to_mapfile(mapfile);
2568 // Print stats for merge sections to stderr.
2570 void
2571 Output_section::print_merge_stats()
2573 Input_section_list::iterator p;
2574 for (p = this->input_sections_.begin();
2575 p != this->input_sections_.end();
2576 ++p)
2577 p->print_merge_stats(this->name_);
2580 // Output segment methods.
2582 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2583 : output_data_(),
2584 output_bss_(),
2585 vaddr_(0),
2586 paddr_(0),
2587 memsz_(0),
2588 max_align_(0),
2589 min_p_align_(0),
2590 offset_(0),
2591 filesz_(0),
2592 type_(type),
2593 flags_(flags),
2594 is_max_align_known_(false),
2595 are_addresses_set_(false)
2599 // Add an Output_section to an Output_segment.
2601 void
2602 Output_segment::add_output_section(Output_section* os,
2603 elfcpp::Elf_Word seg_flags)
2605 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2606 gold_assert(!this->is_max_align_known_);
2608 // Update the segment flags.
2609 this->flags_ |= seg_flags;
2611 Output_segment::Output_data_list* pdl;
2612 if (os->type() == elfcpp::SHT_NOBITS)
2613 pdl = &this->output_bss_;
2614 else
2615 pdl = &this->output_data_;
2617 // So that PT_NOTE segments will work correctly, we need to ensure
2618 // that all SHT_NOTE sections are adjacent. This will normally
2619 // happen automatically, because all the SHT_NOTE input sections
2620 // will wind up in the same output section. However, it is possible
2621 // for multiple SHT_NOTE input sections to have different section
2622 // flags, and thus be in different output sections, but for the
2623 // different section flags to map into the same segment flags and
2624 // thus the same output segment.
2626 // Note that while there may be many input sections in an output
2627 // section, there are normally only a few output sections in an
2628 // output segment. This loop is expected to be fast.
2630 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2632 Output_segment::Output_data_list::iterator p = pdl->end();
2635 --p;
2636 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2638 ++p;
2639 pdl->insert(p, os);
2640 return;
2643 while (p != pdl->begin());
2646 // Similarly, so that PT_TLS segments will work, we need to group
2647 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2648 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2649 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2650 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2651 // and the PT_TLS segment -- we do this grouping only for the
2652 // PT_LOAD segment.
2653 if (this->type_ != elfcpp::PT_TLS
2654 && (os->flags() & elfcpp::SHF_TLS) != 0)
2656 pdl = &this->output_data_;
2657 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2658 bool sawtls = false;
2659 Output_segment::Output_data_list::iterator p = pdl->end();
2662 --p;
2663 bool insert;
2664 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2666 sawtls = true;
2667 // Put a NOBITS section after the first TLS section.
2668 // Put a PROGBITS section after the first TLS/PROGBITS
2669 // section.
2670 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2672 else
2674 // If we've gone past the TLS sections, but we've seen a
2675 // TLS section, then we need to insert this section now.
2676 insert = sawtls;
2679 if (insert)
2681 ++p;
2682 pdl->insert(p, os);
2683 return;
2686 while (p != pdl->begin());
2688 // There are no TLS sections yet; put this one at the requested
2689 // location in the section list.
2692 // For the PT_GNU_RELRO segment, we need to group relro sections,
2693 // and we need to put them before any non-relro sections. Also,
2694 // relro local sections go before relro non-local sections.
2695 if (parameters->options().relro() && os->is_relro())
2697 gold_assert(pdl == &this->output_data_);
2698 Output_segment::Output_data_list::iterator p;
2699 for (p = pdl->begin(); p != pdl->end(); ++p)
2701 if (!(*p)->is_section())
2702 break;
2704 Output_section* pos = (*p)->output_section();
2705 if (!pos->is_relro()
2706 || (os->is_relro_local() && !pos->is_relro_local()))
2707 break;
2710 pdl->insert(p, os);
2711 return;
2714 pdl->push_back(os);
2717 // Remove an Output_section from this segment. It is an error if it
2718 // is not present.
2720 void
2721 Output_segment::remove_output_section(Output_section* os)
2723 // We only need this for SHT_PROGBITS.
2724 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2725 for (Output_data_list::iterator p = this->output_data_.begin();
2726 p != this->output_data_.end();
2727 ++p)
2729 if (*p == os)
2731 this->output_data_.erase(p);
2732 return;
2735 gold_unreachable();
2738 // Add an Output_data (which is not an Output_section) to the start of
2739 // a segment.
2741 void
2742 Output_segment::add_initial_output_data(Output_data* od)
2744 gold_assert(!this->is_max_align_known_);
2745 this->output_data_.push_front(od);
2748 // Return whether the first data section is a relro section.
2750 bool
2751 Output_segment::is_first_section_relro() const
2753 return (!this->output_data_.empty()
2754 && this->output_data_.front()->is_section()
2755 && this->output_data_.front()->output_section()->is_relro());
2758 // Return the maximum alignment of the Output_data in Output_segment.
2760 uint64_t
2761 Output_segment::maximum_alignment()
2763 if (!this->is_max_align_known_)
2765 uint64_t addralign;
2767 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2768 if (addralign > this->max_align_)
2769 this->max_align_ = addralign;
2771 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2772 if (addralign > this->max_align_)
2773 this->max_align_ = addralign;
2775 // If -z relro is in effect, and the first section in this
2776 // segment is a relro section, then the segment must be aligned
2777 // to at least the common page size. This ensures that the
2778 // PT_GNU_RELRO segment will start at a page boundary.
2779 if (this->type_ == elfcpp::PT_LOAD
2780 && parameters->options().relro()
2781 && this->is_first_section_relro())
2783 addralign = parameters->target().common_pagesize();
2784 if (addralign > this->max_align_)
2785 this->max_align_ = addralign;
2788 this->is_max_align_known_ = true;
2791 return this->max_align_;
2794 // Return the maximum alignment of a list of Output_data.
2796 uint64_t
2797 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2799 uint64_t ret = 0;
2800 for (Output_data_list::const_iterator p = pdl->begin();
2801 p != pdl->end();
2802 ++p)
2804 uint64_t addralign = (*p)->addralign();
2805 if (addralign > ret)
2806 ret = addralign;
2808 return ret;
2811 // Return the number of dynamic relocs applied to this segment.
2813 unsigned int
2814 Output_segment::dynamic_reloc_count() const
2816 return (this->dynamic_reloc_count_list(&this->output_data_)
2817 + this->dynamic_reloc_count_list(&this->output_bss_));
2820 // Return the number of dynamic relocs applied to an Output_data_list.
2822 unsigned int
2823 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2825 unsigned int count = 0;
2826 for (Output_data_list::const_iterator p = pdl->begin();
2827 p != pdl->end();
2828 ++p)
2829 count += (*p)->dynamic_reloc_count();
2830 return count;
2833 // Set the section addresses for an Output_segment. If RESET is true,
2834 // reset the addresses first. ADDR is the address and *POFF is the
2835 // file offset. Set the section indexes starting with *PSHNDX.
2836 // Return the address of the immediately following segment. Update
2837 // *POFF and *PSHNDX.
2839 uint64_t
2840 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2841 uint64_t addr, off_t* poff,
2842 unsigned int* pshndx)
2844 gold_assert(this->type_ == elfcpp::PT_LOAD);
2846 if (!reset && this->are_addresses_set_)
2848 gold_assert(this->paddr_ == addr);
2849 addr = this->vaddr_;
2851 else
2853 this->vaddr_ = addr;
2854 this->paddr_ = addr;
2855 this->are_addresses_set_ = true;
2858 bool in_tls = false;
2860 bool in_relro = (parameters->options().relro()
2861 && this->is_first_section_relro());
2863 off_t orig_off = *poff;
2864 this->offset_ = orig_off;
2866 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2867 addr, poff, pshndx, &in_tls,
2868 &in_relro);
2869 this->filesz_ = *poff - orig_off;
2871 off_t off = *poff;
2873 uint64_t ret = this->set_section_list_addresses(layout, reset,
2874 &this->output_bss_,
2875 addr, poff, pshndx,
2876 &in_tls, &in_relro);
2878 // If the last section was a TLS section, align upward to the
2879 // alignment of the TLS segment, so that the overall size of the TLS
2880 // segment is aligned.
2881 if (in_tls)
2883 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2884 *poff = align_address(*poff, segment_align);
2887 // If all the sections were relro sections, align upward to the
2888 // common page size.
2889 if (in_relro)
2891 uint64_t page_align = parameters->target().common_pagesize();
2892 *poff = align_address(*poff, page_align);
2895 this->memsz_ = *poff - orig_off;
2897 // Ignore the file offset adjustments made by the BSS Output_data
2898 // objects.
2899 *poff = off;
2901 return ret;
2904 // Set the addresses and file offsets in a list of Output_data
2905 // structures.
2907 uint64_t
2908 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2909 Output_data_list* pdl,
2910 uint64_t addr, off_t* poff,
2911 unsigned int* pshndx,
2912 bool* in_tls, bool* in_relro)
2914 off_t startoff = *poff;
2916 off_t off = startoff;
2917 for (Output_data_list::iterator p = pdl->begin();
2918 p != pdl->end();
2919 ++p)
2921 if (reset)
2922 (*p)->reset_address_and_file_offset();
2924 // When using a linker script the section will most likely
2925 // already have an address.
2926 if (!(*p)->is_address_valid())
2928 uint64_t align = (*p)->addralign();
2930 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2932 // Give the first TLS section the alignment of the
2933 // entire TLS segment. Otherwise the TLS segment as a
2934 // whole may be misaligned.
2935 if (!*in_tls)
2937 Output_segment* tls_segment = layout->tls_segment();
2938 gold_assert(tls_segment != NULL);
2939 uint64_t segment_align = tls_segment->maximum_alignment();
2940 gold_assert(segment_align >= align);
2941 align = segment_align;
2943 *in_tls = true;
2946 else
2948 // If this is the first section after the TLS segment,
2949 // align it to at least the alignment of the TLS
2950 // segment, so that the size of the overall TLS segment
2951 // is aligned.
2952 if (*in_tls)
2954 uint64_t segment_align =
2955 layout->tls_segment()->maximum_alignment();
2956 if (segment_align > align)
2957 align = segment_align;
2959 *in_tls = false;
2963 // If this is a non-relro section after a relro section,
2964 // align it to a common page boundary so that the dynamic
2965 // linker has a page to mark as read-only.
2966 if (*in_relro
2967 && (!(*p)->is_section()
2968 || !(*p)->output_section()->is_relro()))
2970 uint64_t page_align = parameters->target().common_pagesize();
2971 if (page_align > align)
2972 align = page_align;
2973 *in_relro = false;
2976 off = align_address(off, align);
2977 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2979 else
2981 // The script may have inserted a skip forward, but it
2982 // better not have moved backward.
2983 gold_assert((*p)->address() >= addr + (off - startoff));
2984 off += (*p)->address() - (addr + (off - startoff));
2985 (*p)->set_file_offset(off);
2986 (*p)->finalize_data_size();
2989 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2990 // section. Such a section does not affect the size of a
2991 // PT_LOAD segment.
2992 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2993 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2994 off += (*p)->data_size();
2996 if ((*p)->is_section())
2998 (*p)->set_out_shndx(*pshndx);
2999 ++*pshndx;
3003 *poff = off;
3004 return addr + (off - startoff);
3007 // For a non-PT_LOAD segment, set the offset from the sections, if
3008 // any.
3010 void
3011 Output_segment::set_offset()
3013 gold_assert(this->type_ != elfcpp::PT_LOAD);
3015 gold_assert(!this->are_addresses_set_);
3017 if (this->output_data_.empty() && this->output_bss_.empty())
3019 this->vaddr_ = 0;
3020 this->paddr_ = 0;
3021 this->are_addresses_set_ = true;
3022 this->memsz_ = 0;
3023 this->min_p_align_ = 0;
3024 this->offset_ = 0;
3025 this->filesz_ = 0;
3026 return;
3029 const Output_data* first;
3030 if (this->output_data_.empty())
3031 first = this->output_bss_.front();
3032 else
3033 first = this->output_data_.front();
3034 this->vaddr_ = first->address();
3035 this->paddr_ = (first->has_load_address()
3036 ? first->load_address()
3037 : this->vaddr_);
3038 this->are_addresses_set_ = true;
3039 this->offset_ = first->offset();
3041 if (this->output_data_.empty())
3042 this->filesz_ = 0;
3043 else
3045 const Output_data* last_data = this->output_data_.back();
3046 this->filesz_ = (last_data->address()
3047 + last_data->data_size()
3048 - this->vaddr_);
3051 const Output_data* last;
3052 if (this->output_bss_.empty())
3053 last = this->output_data_.back();
3054 else
3055 last = this->output_bss_.back();
3056 this->memsz_ = (last->address()
3057 + last->data_size()
3058 - this->vaddr_);
3060 // If this is a TLS segment, align the memory size. The code in
3061 // set_section_list ensures that the section after the TLS segment
3062 // is aligned to give us room.
3063 if (this->type_ == elfcpp::PT_TLS)
3065 uint64_t segment_align = this->maximum_alignment();
3066 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3067 this->memsz_ = align_address(this->memsz_, segment_align);
3070 // If this is a RELRO segment, align the memory size. The code in
3071 // set_section_list ensures that the section after the RELRO segment
3072 // is aligned to give us room.
3073 if (this->type_ == elfcpp::PT_GNU_RELRO)
3075 uint64_t page_align = parameters->target().common_pagesize();
3076 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3077 this->memsz_ = align_address(this->memsz_, page_align);
3081 // Set the TLS offsets of the sections in the PT_TLS segment.
3083 void
3084 Output_segment::set_tls_offsets()
3086 gold_assert(this->type_ == elfcpp::PT_TLS);
3088 for (Output_data_list::iterator p = this->output_data_.begin();
3089 p != this->output_data_.end();
3090 ++p)
3091 (*p)->set_tls_offset(this->vaddr_);
3093 for (Output_data_list::iterator p = this->output_bss_.begin();
3094 p != this->output_bss_.end();
3095 ++p)
3096 (*p)->set_tls_offset(this->vaddr_);
3099 // Return the address of the first section.
3101 uint64_t
3102 Output_segment::first_section_load_address() const
3104 for (Output_data_list::const_iterator p = this->output_data_.begin();
3105 p != this->output_data_.end();
3106 ++p)
3107 if ((*p)->is_section())
3108 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3110 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3111 p != this->output_bss_.end();
3112 ++p)
3113 if ((*p)->is_section())
3114 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3116 gold_unreachable();
3119 // Return the number of Output_sections in an Output_segment.
3121 unsigned int
3122 Output_segment::output_section_count() const
3124 return (this->output_section_count_list(&this->output_data_)
3125 + this->output_section_count_list(&this->output_bss_));
3128 // Return the number of Output_sections in an Output_data_list.
3130 unsigned int
3131 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3133 unsigned int count = 0;
3134 for (Output_data_list::const_iterator p = pdl->begin();
3135 p != pdl->end();
3136 ++p)
3138 if ((*p)->is_section())
3139 ++count;
3141 return count;
3144 // Return the section attached to the list segment with the lowest
3145 // load address. This is used when handling a PHDRS clause in a
3146 // linker script.
3148 Output_section*
3149 Output_segment::section_with_lowest_load_address() const
3151 Output_section* found = NULL;
3152 uint64_t found_lma = 0;
3153 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3155 Output_section* found_data = found;
3156 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3157 if (found != found_data && found_data != NULL)
3159 gold_error(_("nobits section %s may not precede progbits section %s "
3160 "in same segment"),
3161 found->name(), found_data->name());
3162 return NULL;
3165 return found;
3168 // Look through a list for a section with a lower load address.
3170 void
3171 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3172 Output_section** found,
3173 uint64_t* found_lma) const
3175 for (Output_data_list::const_iterator p = pdl->begin();
3176 p != pdl->end();
3177 ++p)
3179 if (!(*p)->is_section())
3180 continue;
3181 Output_section* os = static_cast<Output_section*>(*p);
3182 uint64_t lma = (os->has_load_address()
3183 ? os->load_address()
3184 : os->address());
3185 if (*found == NULL || lma < *found_lma)
3187 *found = os;
3188 *found_lma = lma;
3193 // Write the segment data into *OPHDR.
3195 template<int size, bool big_endian>
3196 void
3197 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3199 ophdr->put_p_type(this->type_);
3200 ophdr->put_p_offset(this->offset_);
3201 ophdr->put_p_vaddr(this->vaddr_);
3202 ophdr->put_p_paddr(this->paddr_);
3203 ophdr->put_p_filesz(this->filesz_);
3204 ophdr->put_p_memsz(this->memsz_);
3205 ophdr->put_p_flags(this->flags_);
3206 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3209 // Write the section headers into V.
3211 template<int size, bool big_endian>
3212 unsigned char*
3213 Output_segment::write_section_headers(const Layout* layout,
3214 const Stringpool* secnamepool,
3215 unsigned char* v,
3216 unsigned int *pshndx) const
3218 // Every section that is attached to a segment must be attached to a
3219 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3220 // segments.
3221 if (this->type_ != elfcpp::PT_LOAD)
3222 return v;
3224 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3225 &this->output_data_,
3226 v, pshndx);
3227 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3228 &this->output_bss_,
3229 v, pshndx);
3230 return v;
3233 template<int size, bool big_endian>
3234 unsigned char*
3235 Output_segment::write_section_headers_list(const Layout* layout,
3236 const Stringpool* secnamepool,
3237 const Output_data_list* pdl,
3238 unsigned char* v,
3239 unsigned int* pshndx) const
3241 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3242 for (Output_data_list::const_iterator p = pdl->begin();
3243 p != pdl->end();
3244 ++p)
3246 if ((*p)->is_section())
3248 const Output_section* ps = static_cast<const Output_section*>(*p);
3249 gold_assert(*pshndx == ps->out_shndx());
3250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3251 ps->write_header(layout, secnamepool, &oshdr);
3252 v += shdr_size;
3253 ++*pshndx;
3256 return v;
3259 // Print the output sections to the map file.
3261 void
3262 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3264 if (this->type() != elfcpp::PT_LOAD)
3265 return;
3266 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3267 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3270 // Print an output section list to the map file.
3272 void
3273 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3274 const Output_data_list* pdl) const
3276 for (Output_data_list::const_iterator p = pdl->begin();
3277 p != pdl->end();
3278 ++p)
3279 (*p)->print_to_mapfile(mapfile);
3282 // Output_file methods.
3284 Output_file::Output_file(const char* name)
3285 : name_(name),
3286 o_(-1),
3287 file_size_(0),
3288 base_(NULL),
3289 map_is_anonymous_(false),
3290 is_temporary_(false)
3294 // Open the output file.
3296 void
3297 Output_file::open(off_t file_size)
3299 this->file_size_ = file_size;
3301 // Unlink the file first; otherwise the open() may fail if the file
3302 // is busy (e.g. it's an executable that's currently being executed).
3304 // However, the linker may be part of a system where a zero-length
3305 // file is created for it to write to, with tight permissions (gcc
3306 // 2.95 did something like this). Unlinking the file would work
3307 // around those permission controls, so we only unlink if the file
3308 // has a non-zero size. We also unlink only regular files to avoid
3309 // trouble with directories/etc.
3311 // If we fail, continue; this command is merely a best-effort attempt
3312 // to improve the odds for open().
3314 // We let the name "-" mean "stdout"
3315 if (!this->is_temporary_)
3317 if (strcmp(this->name_, "-") == 0)
3318 this->o_ = STDOUT_FILENO;
3319 else
3321 struct stat s;
3322 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3323 unlink_if_ordinary(this->name_);
3325 int mode = parameters->options().relocatable() ? 0666 : 0777;
3326 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3327 mode);
3328 if (o < 0)
3329 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3330 this->o_ = o;
3334 this->map();
3337 // Resize the output file.
3339 void
3340 Output_file::resize(off_t file_size)
3342 // If the mmap is mapping an anonymous memory buffer, this is easy:
3343 // just mremap to the new size. If it's mapping to a file, we want
3344 // to unmap to flush to the file, then remap after growing the file.
3345 if (this->map_is_anonymous_)
3347 void* base = ::mremap(this->base_, this->file_size_, file_size,
3348 MREMAP_MAYMOVE);
3349 if (base == MAP_FAILED)
3350 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3351 this->base_ = static_cast<unsigned char*>(base);
3352 this->file_size_ = file_size;
3354 else
3356 this->unmap();
3357 this->file_size_ = file_size;
3358 this->map();
3362 // Map the file into memory.
3364 void
3365 Output_file::map()
3367 const int o = this->o_;
3369 // If the output file is not a regular file, don't try to mmap it;
3370 // instead, we'll mmap a block of memory (an anonymous buffer), and
3371 // then later write the buffer to the file.
3372 void* base;
3373 struct stat statbuf;
3374 if (o == STDOUT_FILENO || o == STDERR_FILENO
3375 || ::fstat(o, &statbuf) != 0
3376 || !S_ISREG(statbuf.st_mode)
3377 || this->is_temporary_)
3379 this->map_is_anonymous_ = true;
3380 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3381 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3383 else
3385 // Write out one byte to make the file the right size.
3386 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3387 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3388 char b = 0;
3389 if (::write(o, &b, 1) != 1)
3390 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3392 // Map the file into memory.
3393 this->map_is_anonymous_ = false;
3394 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3395 MAP_SHARED, o, 0);
3397 if (base == MAP_FAILED)
3398 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3399 this->base_ = static_cast<unsigned char*>(base);
3402 // Unmap the file from memory.
3404 void
3405 Output_file::unmap()
3407 if (::munmap(this->base_, this->file_size_) < 0)
3408 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3409 this->base_ = NULL;
3412 // Close the output file.
3414 void
3415 Output_file::close()
3417 // If the map isn't file-backed, we need to write it now.
3418 if (this->map_is_anonymous_ && !this->is_temporary_)
3420 size_t bytes_to_write = this->file_size_;
3421 while (bytes_to_write > 0)
3423 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3424 if (bytes_written == 0)
3425 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3426 else if (bytes_written < 0)
3427 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3428 else
3429 bytes_to_write -= bytes_written;
3432 this->unmap();
3434 // We don't close stdout or stderr
3435 if (this->o_ != STDOUT_FILENO
3436 && this->o_ != STDERR_FILENO
3437 && !this->is_temporary_)
3438 if (::close(this->o_) < 0)
3439 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3440 this->o_ = -1;
3443 // Instantiate the templates we need. We could use the configure
3444 // script to restrict this to only the ones for implemented targets.
3446 #ifdef HAVE_TARGET_32_LITTLE
3447 template
3448 off_t
3449 Output_section::add_input_section<32, false>(
3450 Sized_relobj<32, false>* object,
3451 unsigned int shndx,
3452 const char* secname,
3453 const elfcpp::Shdr<32, false>& shdr,
3454 unsigned int reloc_shndx,
3455 bool have_sections_script);
3456 #endif
3458 #ifdef HAVE_TARGET_32_BIG
3459 template
3460 off_t
3461 Output_section::add_input_section<32, true>(
3462 Sized_relobj<32, true>* object,
3463 unsigned int shndx,
3464 const char* secname,
3465 const elfcpp::Shdr<32, true>& shdr,
3466 unsigned int reloc_shndx,
3467 bool have_sections_script);
3468 #endif
3470 #ifdef HAVE_TARGET_64_LITTLE
3471 template
3472 off_t
3473 Output_section::add_input_section<64, false>(
3474 Sized_relobj<64, false>* object,
3475 unsigned int shndx,
3476 const char* secname,
3477 const elfcpp::Shdr<64, false>& shdr,
3478 unsigned int reloc_shndx,
3479 bool have_sections_script);
3480 #endif
3482 #ifdef HAVE_TARGET_64_BIG
3483 template
3484 off_t
3485 Output_section::add_input_section<64, true>(
3486 Sized_relobj<64, true>* object,
3487 unsigned int shndx,
3488 const char* secname,
3489 const elfcpp::Shdr<64, true>& shdr,
3490 unsigned int reloc_shndx,
3491 bool have_sections_script);
3492 #endif
3494 #ifdef HAVE_TARGET_32_LITTLE
3495 template
3496 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3497 #endif
3499 #ifdef HAVE_TARGET_32_BIG
3500 template
3501 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3502 #endif
3504 #ifdef HAVE_TARGET_64_LITTLE
3505 template
3506 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3507 #endif
3509 #ifdef HAVE_TARGET_64_BIG
3510 template
3511 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3512 #endif
3514 #ifdef HAVE_TARGET_32_LITTLE
3515 template
3516 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3517 #endif
3519 #ifdef HAVE_TARGET_32_BIG
3520 template
3521 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3522 #endif
3524 #ifdef HAVE_TARGET_64_LITTLE
3525 template
3526 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3527 #endif
3529 #ifdef HAVE_TARGET_64_BIG
3530 template
3531 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3532 #endif
3534 #ifdef HAVE_TARGET_32_LITTLE
3535 template
3536 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3537 #endif
3539 #ifdef HAVE_TARGET_32_BIG
3540 template
3541 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3542 #endif
3544 #ifdef HAVE_TARGET_64_LITTLE
3545 template
3546 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3547 #endif
3549 #ifdef HAVE_TARGET_64_BIG
3550 template
3551 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3552 #endif
3554 #ifdef HAVE_TARGET_32_LITTLE
3555 template
3556 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3557 #endif
3559 #ifdef HAVE_TARGET_32_BIG
3560 template
3561 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3562 #endif
3564 #ifdef HAVE_TARGET_64_LITTLE
3565 template
3566 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3567 #endif
3569 #ifdef HAVE_TARGET_64_BIG
3570 template
3571 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3572 #endif
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3577 #endif
3579 #ifdef HAVE_TARGET_32_BIG
3580 template
3581 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3582 #endif
3584 #ifdef HAVE_TARGET_64_LITTLE
3585 template
3586 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3587 #endif
3589 #ifdef HAVE_TARGET_64_BIG
3590 template
3591 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3592 #endif
3594 #ifdef HAVE_TARGET_32_LITTLE
3595 template
3596 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3597 #endif
3599 #ifdef HAVE_TARGET_32_BIG
3600 template
3601 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3602 #endif
3604 #ifdef HAVE_TARGET_64_LITTLE
3605 template
3606 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3607 #endif
3609 #ifdef HAVE_TARGET_64_BIG
3610 template
3611 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3612 #endif
3614 #ifdef HAVE_TARGET_32_LITTLE
3615 template
3616 class Output_data_group<32, false>;
3617 #endif
3619 #ifdef HAVE_TARGET_32_BIG
3620 template
3621 class Output_data_group<32, true>;
3622 #endif
3624 #ifdef HAVE_TARGET_64_LITTLE
3625 template
3626 class Output_data_group<64, false>;
3627 #endif
3629 #ifdef HAVE_TARGET_64_BIG
3630 template
3631 class Output_data_group<64, true>;
3632 #endif
3634 #ifdef HAVE_TARGET_32_LITTLE
3635 template
3636 class Output_data_got<32, false>;
3637 #endif
3639 #ifdef HAVE_TARGET_32_BIG
3640 template
3641 class Output_data_got<32, true>;
3642 #endif
3644 #ifdef HAVE_TARGET_64_LITTLE
3645 template
3646 class Output_data_got<64, false>;
3647 #endif
3649 #ifdef HAVE_TARGET_64_BIG
3650 template
3651 class Output_data_got<64, true>;
3652 #endif
3654 } // End namespace gold.