1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
48 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
49 // section and read it in. SYMTAB_SHNDX is the index of the symbol
50 // table we care about.
52 template<int size
, bool big_endian
>
54 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
56 if (!this->symtab_xindex_
.empty())
59 gold_assert(symtab_shndx
!= 0);
61 // Look through the sections in reverse order, on the theory that it
62 // is more likely to be near the end than the beginning.
63 unsigned int i
= object
->shnum();
67 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
68 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
70 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
75 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
78 // Read in the symtab_xindex_ array, given the section index of the
79 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
82 template<int size
, bool big_endian
>
84 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
85 const unsigned char* pshdrs
)
87 section_size_type bytecount
;
88 const unsigned char* contents
;
90 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
93 const unsigned char* p
= (pshdrs
95 * elfcpp::Elf_sizes
<size
>::shdr_size
));
96 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
97 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
98 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
101 gold_assert(this->symtab_xindex_
.empty());
102 this->symtab_xindex_
.reserve(bytecount
/ 4);
103 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
105 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
106 // We preadjust the section indexes we save.
107 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
111 // Symbol symndx has a section of SHN_XINDEX; return the real section
115 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
117 if (symndx
>= this->symtab_xindex_
.size())
119 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
121 return elfcpp::SHN_UNDEF
;
123 unsigned int shndx
= this->symtab_xindex_
[symndx
];
124 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
126 object
->error(_("extended index for symbol %u out of range: %u"),
128 return elfcpp::SHN_UNDEF
;
135 // Set the target based on fields in the ELF file header.
138 Object::set_target(int machine
, int size
, bool big_endian
, int osabi
,
141 Target
* target
= select_target(machine
, size
, big_endian
, osabi
, abiversion
);
143 gold_fatal(_("%s: unsupported ELF machine number %d"),
144 this->name().c_str(), machine
);
145 this->target_
= target
;
148 // Report an error for this object file. This is used by the
149 // elfcpp::Elf_file interface, and also called by the Object code
153 Object::error(const char* format
, ...) const
156 va_start(args
, format
);
158 if (vasprintf(&buf
, format
, args
) < 0)
161 gold_error(_("%s: %s"), this->name().c_str(), buf
);
165 // Return a view of the contents of a section.
168 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
171 Location
loc(this->do_section_contents(shndx
));
172 *plen
= convert_to_section_size_type(loc
.data_size
);
173 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
176 // Read the section data into SD. This is code common to Sized_relobj
177 // and Sized_dynobj, so we put it into Object.
179 template<int size
, bool big_endian
>
181 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
182 Read_symbols_data
* sd
)
184 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
186 // Read the section headers.
187 const off_t shoff
= elf_file
->shoff();
188 const unsigned int shnum
= this->shnum();
189 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
192 // Read the section names.
193 const unsigned char* pshdrs
= sd
->section_headers
->data();
194 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
195 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
197 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
198 this->error(_("section name section has wrong type: %u"),
199 static_cast<unsigned int>(shdrnames
.get_sh_type()));
201 sd
->section_names_size
=
202 convert_to_section_size_type(shdrnames
.get_sh_size());
203 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
204 sd
->section_names_size
, false,
208 // If NAME is the name of a special .gnu.warning section, arrange for
209 // the warning to be issued. SHNDX is the section index. Return
210 // whether it is a warning section.
213 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
214 Symbol_table
* symtab
)
216 const char warn_prefix
[] = ".gnu.warning.";
217 const int warn_prefix_len
= sizeof warn_prefix
- 1;
218 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
220 // Read the section contents to get the warning text. It would
221 // be nicer if we only did this if we have to actually issue a
222 // warning. Unfortunately, warnings are issued as we relocate
223 // sections. That means that we can not lock the object then,
224 // as we might try to issue the same warning multiple times
226 section_size_type len
;
227 const unsigned char* contents
= this->section_contents(shndx
, &len
,
229 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
230 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
238 // To copy the symbols data read from the file to a local data structure.
239 // This function is called from do_layout only while doing garbage
243 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
244 unsigned int section_header_size
)
246 gc_sd
->section_headers_data
=
247 new unsigned char[(section_header_size
)];
248 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
249 section_header_size
);
250 gc_sd
->section_names_data
=
251 new unsigned char[sd
->section_names_size
];
252 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
253 sd
->section_names_size
);
254 gc_sd
->section_names_size
= sd
->section_names_size
;
255 if (sd
->symbols
!= NULL
)
257 gc_sd
->symbols_data
=
258 new unsigned char[sd
->symbols_size
];
259 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
264 gc_sd
->symbols_data
= NULL
;
266 gc_sd
->symbols_size
= sd
->symbols_size
;
267 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
268 if (sd
->symbol_names
!= NULL
)
270 gc_sd
->symbol_names_data
=
271 new unsigned char[sd
->symbol_names_size
];
272 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
273 sd
->symbol_names_size
);
277 gc_sd
->symbol_names_data
= NULL
;
279 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
282 // This function determines if a particular section name must be included
283 // in the link. This is used during garbage collection to determine the
284 // roots of the worklist.
287 Relobj::is_section_name_included(const char* name
)
289 if (is_prefix_of(".ctors", name
)
290 || is_prefix_of(".dtors", name
)
291 || is_prefix_of(".note", name
)
292 || is_prefix_of(".init", name
)
293 || is_prefix_of(".fini", name
)
294 || is_prefix_of(".gcc_except_table", name
)
295 || is_prefix_of(".jcr", name
)
296 || is_prefix_of(".preinit_array", name
)
297 || (is_prefix_of(".text", name
)
298 && strstr(name
, "personality"))
299 || (is_prefix_of(".data", name
)
300 && strstr(name
, "personality"))
301 || (is_prefix_of(".gnu.linkonce.d", name
) &&
302 strstr(name
, "personality")))
309 // Class Sized_relobj.
311 template<int size
, bool big_endian
>
312 Sized_relobj
<size
, big_endian
>::Sized_relobj(
313 const std::string
& name
,
314 Input_file
* input_file
,
316 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
317 : Relobj(name
, input_file
, offset
),
318 elf_file_(this, ehdr
),
320 local_symbol_count_(0),
321 output_local_symbol_count_(0),
322 output_local_dynsym_count_(0),
325 local_symbol_offset_(0),
326 local_dynsym_offset_(0),
328 local_got_offsets_(),
329 kept_comdat_sections_(),
334 template<int size
, bool big_endian
>
335 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
339 // Set up an object file based on the file header. This sets up the
340 // target and reads the section information.
342 template<int size
, bool big_endian
>
344 Sized_relobj
<size
, big_endian
>::setup(
345 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
347 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
348 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
349 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
351 const unsigned int shnum
= this->elf_file_
.shnum();
352 this->set_shnum(shnum
);
355 // Find the SHT_SYMTAB section, given the section headers. The ELF
356 // standard says that maybe in the future there can be more than one
357 // SHT_SYMTAB section. Until somebody figures out how that could
358 // work, we assume there is only one.
360 template<int size
, bool big_endian
>
362 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
364 const unsigned int shnum
= this->shnum();
365 this->symtab_shndx_
= 0;
368 // Look through the sections in reverse order, since gas tends
369 // to put the symbol table at the end.
370 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
371 unsigned int i
= shnum
;
372 unsigned int xindex_shndx
= 0;
373 unsigned int xindex_link
= 0;
377 p
-= This::shdr_size
;
378 typename
This::Shdr
shdr(p
);
379 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
381 this->symtab_shndx_
= i
;
382 if (xindex_shndx
> 0 && xindex_link
== i
)
385 new Xindex(this->elf_file_
.large_shndx_offset());
386 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
389 this->set_xindex(xindex
);
394 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
395 // one. This will work if it follows the SHT_SYMTAB
397 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
400 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
406 // Return the Xindex structure to use for object with lots of
409 template<int size
, bool big_endian
>
411 Sized_relobj
<size
, big_endian
>::do_initialize_xindex()
413 gold_assert(this->symtab_shndx_
!= -1U);
414 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
415 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
419 // Return whether SHDR has the right type and flags to be a GNU
420 // .eh_frame section.
422 template<int size
, bool big_endian
>
424 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
425 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
427 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
428 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
431 // Return whether there is a GNU .eh_frame section, given the section
432 // headers and the section names.
434 template<int size
, bool big_endian
>
436 Sized_relobj
<size
, big_endian
>::find_eh_frame(
437 const unsigned char* pshdrs
,
439 section_size_type names_size
) const
441 const unsigned int shnum
= this->shnum();
442 const unsigned char* p
= pshdrs
+ This::shdr_size
;
443 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
445 typename
This::Shdr
shdr(p
);
446 if (this->check_eh_frame_flags(&shdr
))
448 if (shdr
.get_sh_name() >= names_size
)
450 this->error(_("bad section name offset for section %u: %lu"),
451 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
455 const char* name
= names
+ shdr
.get_sh_name();
456 if (strcmp(name
, ".eh_frame") == 0)
463 // Read the sections and symbols from an object file.
465 template<int size
, bool big_endian
>
467 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
469 this->read_section_data(&this->elf_file_
, sd
);
471 const unsigned char* const pshdrs
= sd
->section_headers
->data();
473 this->find_symtab(pshdrs
);
475 const unsigned char* namesu
= sd
->section_names
->data();
476 const char* names
= reinterpret_cast<const char*>(namesu
);
477 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
479 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
480 this->has_eh_frame_
= true;
484 sd
->symbols_size
= 0;
485 sd
->external_symbols_offset
= 0;
486 sd
->symbol_names
= NULL
;
487 sd
->symbol_names_size
= 0;
489 if (this->symtab_shndx_
== 0)
491 // No symbol table. Weird but legal.
495 // Get the symbol table section header.
496 typename
This::Shdr
symtabshdr(pshdrs
497 + this->symtab_shndx_
* This::shdr_size
);
498 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
500 // If this object has a .eh_frame section, we need all the symbols.
501 // Otherwise we only need the external symbols. While it would be
502 // simpler to just always read all the symbols, I've seen object
503 // files with well over 2000 local symbols, which for a 64-bit
504 // object file format is over 5 pages that we don't need to read
507 const int sym_size
= This::sym_size
;
508 const unsigned int loccount
= symtabshdr
.get_sh_info();
509 this->local_symbol_count_
= loccount
;
510 this->local_values_
.resize(loccount
);
511 section_offset_type locsize
= loccount
* sym_size
;
512 off_t dataoff
= symtabshdr
.get_sh_offset();
513 section_size_type datasize
=
514 convert_to_section_size_type(symtabshdr
.get_sh_size());
515 off_t extoff
= dataoff
+ locsize
;
516 section_size_type extsize
= datasize
- locsize
;
518 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
519 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
523 // No external symbols. Also weird but also legal.
527 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
529 // Read the section header for the symbol names.
530 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
531 if (strtab_shndx
>= this->shnum())
533 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
536 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
537 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
539 this->error(_("symbol table name section has wrong type: %u"),
540 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
544 // Read the symbol names.
545 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
546 strtabshdr
.get_sh_size(),
549 sd
->symbols
= fvsymtab
;
550 sd
->symbols_size
= readsize
;
551 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
552 sd
->symbol_names
= fvstrtab
;
553 sd
->symbol_names_size
=
554 convert_to_section_size_type(strtabshdr
.get_sh_size());
557 // Return the section index of symbol SYM. Set *VALUE to its value in
558 // the object file. Set *IS_ORDINARY if this is an ordinary section
559 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
560 // Note that for a symbol which is not defined in this object file,
561 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
562 // the final value of the symbol in the link.
564 template<int size
, bool big_endian
>
566 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
570 section_size_type symbols_size
;
571 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
575 const size_t count
= symbols_size
/ This::sym_size
;
576 gold_assert(sym
< count
);
578 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
579 *value
= elfsym
.get_st_value();
581 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
584 // Return whether to include a section group in the link. LAYOUT is
585 // used to keep track of which section groups we have already seen.
586 // INDEX is the index of the section group and SHDR is the section
587 // header. If we do not want to include this group, we set bits in
588 // OMIT for each section which should be discarded.
590 template<int size
, bool big_endian
>
592 Sized_relobj
<size
, big_endian
>::include_section_group(
593 Symbol_table
* symtab
,
597 const unsigned char* shdrs
,
598 const char* section_names
,
599 section_size_type section_names_size
,
600 std::vector
<bool>* omit
)
602 // Read the section contents.
603 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
604 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
605 shdr
.get_sh_size(), true, false);
606 const elfcpp::Elf_Word
* pword
=
607 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
609 // The first word contains flags. We only care about COMDAT section
610 // groups. Other section groups are always included in the link
611 // just like ordinary sections.
612 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
614 // Look up the group signature, which is the name of a symbol. This
615 // is a lot of effort to go to to read a string. Why didn't they
616 // just have the group signature point into the string table, rather
617 // than indirect through a symbol?
619 // Get the appropriate symbol table header (this will normally be
620 // the single SHT_SYMTAB section, but in principle it need not be).
621 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
622 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
624 // Read the symbol table entry.
625 unsigned int symndx
= shdr
.get_sh_info();
626 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
628 this->error(_("section group %u info %u out of range"),
632 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
633 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
635 elfcpp::Sym
<size
, big_endian
> sym(psym
);
637 // Read the symbol table names.
638 section_size_type symnamelen
;
639 const unsigned char* psymnamesu
;
640 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
642 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
644 // Get the section group signature.
645 if (sym
.get_st_name() >= symnamelen
)
647 this->error(_("symbol %u name offset %u out of range"),
648 symndx
, sym
.get_st_name());
652 std::string
signature(psymnames
+ sym
.get_st_name());
654 // It seems that some versions of gas will create a section group
655 // associated with a section symbol, and then fail to give a name to
656 // the section symbol. In such a case, use the name of the section.
657 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
660 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
663 if (!is_ordinary
|| sym_shndx
>= this->shnum())
665 this->error(_("symbol %u invalid section index %u"),
669 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
670 if (member_shdr
.get_sh_name() < section_names_size
)
671 signature
= section_names
+ member_shdr
.get_sh_name();
674 // Record this section group in the layout, and see whether we've already
675 // seen one with the same signature.
677 Sized_relobj
<size
, big_endian
>* kept_object
= NULL
;
678 Kept_section::Comdat_group
* kept_group
= NULL
;
680 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
681 include_group
= true;
684 Kept_section
this_group(this, index
, true);
685 Kept_section
*kept_section_group
;
686 include_group
= layout
->find_or_add_kept_section(signature
,
688 &kept_section_group
);
690 kept_section_group
->group_sections
= new Kept_section::Comdat_group
;
692 kept_group
= kept_section_group
->group_sections
;
693 kept_object
= (static_cast<Sized_relobj
<size
, big_endian
>*>
694 (kept_section_group
->object
));
697 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
699 std::vector
<unsigned int> shndxes
;
700 bool relocate_group
= include_group
&& parameters
->options().relocatable();
702 shndxes
.reserve(count
- 1);
704 for (size_t i
= 1; i
< count
; ++i
)
706 elfcpp::Elf_Word secnum
=
707 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
710 shndxes
.push_back(secnum
);
712 if (secnum
>= this->shnum())
714 this->error(_("section %u in section group %u out of range"),
719 // Check for an earlier section number, since we're going to get
720 // it wrong--we may have already decided to include the section.
722 this->error(_("invalid section group %u refers to earlier section %u"),
725 // Get the name of the member section.
726 typename
This::Shdr
member_shdr(shdrs
+ secnum
* This::shdr_size
);
727 if (member_shdr
.get_sh_name() >= section_names_size
)
729 // This is an error, but it will be diagnosed eventually
730 // in do_layout, so we don't need to do anything here but
734 std::string
mname(section_names
+ member_shdr
.get_sh_name());
738 (*omit
)[secnum
] = true;
739 if (kept_group
!= NULL
)
741 // Find the corresponding kept section, and store that info
742 // in the discarded section table.
743 Kept_section::Comdat_group::const_iterator p
=
744 kept_group
->find(mname
);
745 if (p
!= kept_group
->end())
747 Kept_comdat_section
* kept
=
748 new Kept_comdat_section(kept_object
, p
->second
);
749 this->set_kept_comdat_section(secnum
, kept
);
753 else if (flags
& elfcpp::GRP_COMDAT
)
755 // Add the section to the kept group table.
756 gold_assert(kept_group
!= NULL
);
757 kept_group
->insert(std::make_pair(mname
, secnum
));
762 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
763 shdr
, flags
, &shndxes
);
765 return include_group
;
768 // Whether to include a linkonce section in the link. NAME is the
769 // name of the section and SHDR is the section header.
771 // Linkonce sections are a GNU extension implemented in the original
772 // GNU linker before section groups were defined. The semantics are
773 // that we only include one linkonce section with a given name. The
774 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
775 // where T is the type of section and SYMNAME is the name of a symbol.
776 // In an attempt to make linkonce sections interact well with section
777 // groups, we try to identify SYMNAME and use it like a section group
778 // signature. We want to block section groups with that signature,
779 // but not other linkonce sections with that signature. We also use
780 // the full name of the linkonce section as a normal section group
783 template<int size
, bool big_endian
>
785 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
789 const elfcpp::Shdr
<size
, big_endian
>&)
791 // In general the symbol name we want will be the string following
792 // the last '.'. However, we have to handle the case of
793 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
794 // some versions of gcc. So we use a heuristic: if the name starts
795 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
796 // we look for the last '.'. We can't always simply skip
797 // ".gnu.linkonce.X", because we have to deal with cases like
798 // ".gnu.linkonce.d.rel.ro.local".
799 const char* const linkonce_t
= ".gnu.linkonce.t.";
801 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
802 symname
= name
+ strlen(linkonce_t
);
804 symname
= strrchr(name
, '.') + 1;
805 std::string
sig1(symname
);
806 std::string
sig2(name
);
807 Kept_section
candidate1(this, index
, false);
808 Kept_section
candidate2(this, index
, true);
811 bool include1
= layout
->find_or_add_kept_section(sig1
, &candidate1
, &kept1
);
812 bool include2
= layout
->find_or_add_kept_section(sig2
, &candidate2
, &kept2
);
816 // The section is being discarded on the basis of its section
817 // name (i.e., the kept section was also a linkonce section).
818 // In this case, the section index stored with the layout object
819 // is the linkonce section that was kept.
820 unsigned int kept_group_index
= kept2
->shndx
;
821 Relobj
* kept_relobj
= kept2
->object
;
822 if (kept_relobj
!= NULL
)
824 Sized_relobj
<size
, big_endian
>* kept_object
=
825 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_relobj
);
826 Kept_comdat_section
* kept
=
827 new Kept_comdat_section(kept_object
, kept_group_index
);
828 this->set_kept_comdat_section(index
, kept
);
833 // The section is being discarded on the basis of its symbol
834 // name. This means that the corresponding kept section was
835 // part of a comdat group, and it will be difficult to identify
836 // the specific section within that group that corresponds to
837 // this linkonce section. We'll handle the simple case where
838 // the group has only one member section. Otherwise, it's not
840 Relobj
* kept_relobj
= kept1
->object
;
841 if (kept_relobj
!= NULL
)
843 Sized_relobj
<size
, big_endian
>* kept_object
=
844 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_relobj
);
845 Kept_section::Comdat_group
* kept_group
= kept1
->group_sections
;
846 if (kept_group
!= NULL
&& kept_group
->size() == 1)
848 Kept_section::Comdat_group::const_iterator p
=
850 gold_assert(p
!= kept_group
->end());
851 Kept_comdat_section
* kept
=
852 new Kept_comdat_section(kept_object
, p
->second
);
853 this->set_kept_comdat_section(index
, kept
);
858 return include1
&& include2
;
861 // Layout an input section.
863 template<int size
, bool big_endian
>
865 Sized_relobj
<size
, big_endian
>::layout_section(Layout
* layout
,
868 typename
This::Shdr
& shdr
,
869 unsigned int reloc_shndx
,
870 unsigned int reloc_type
)
873 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
874 reloc_shndx
, reloc_type
, &offset
);
876 this->output_sections()[shndx
] = os
;
878 this->section_offsets_
[shndx
] = invalid_address
;
880 this->section_offsets_
[shndx
] = convert_types
<Address
, off_t
>(offset
);
882 // If this section requires special handling, and if there are
883 // relocs that apply to it, then we must do the special handling
884 // before we apply the relocs.
885 if (offset
== -1 && reloc_shndx
!= 0)
886 this->set_relocs_must_follow_section_writes();
889 // Lay out the input sections. We walk through the sections and check
890 // whether they should be included in the link. If they should, we
891 // pass them to the Layout object, which will return an output section
893 // During garbage collection (gc-sections), this function is called
894 // twice. When it is called the first time, it is for setting up some
895 // sections as roots to a work-list and to do comdat processing. Actual
896 // layout happens the second time around after all the relevant sections
897 // have been determined. The first time, is_worklist_ready is false.
898 // It is then set to true after the worklist is processed and the relevant
899 // sections are determined. Then, this function is called again to
900 // layout the sections.
902 template<int size
, bool big_endian
>
904 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
906 Read_symbols_data
* sd
)
908 const unsigned int shnum
= this->shnum();
909 bool is_gc_pass_one
= (parameters
->options().gc_sections()
910 && !symtab
->gc()->is_worklist_ready());
911 bool is_gc_pass_two
= (parameters
->options().gc_sections()
912 && symtab
->gc()->is_worklist_ready());
915 Symbols_data
* gc_sd
= NULL
;
918 // During garbage collection save the symbols data to use it when
919 // re-entering this function.
920 gc_sd
= new Symbols_data
;
921 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
922 this->set_symbols_data(gc_sd
);
924 else if (is_gc_pass_two
)
926 gc_sd
= this->get_symbols_data();
929 const unsigned char* section_headers_data
= NULL
;
930 section_size_type section_names_size
;
931 const unsigned char* symbols_data
= NULL
;
932 section_size_type symbols_size
;
933 section_offset_type external_symbols_offset
;
934 const unsigned char* symbol_names_data
= NULL
;
935 section_size_type symbol_names_size
;
937 if (parameters
->options().gc_sections())
939 section_headers_data
= gc_sd
->section_headers_data
;
940 section_names_size
= gc_sd
->section_names_size
;
941 symbols_data
= gc_sd
->symbols_data
;
942 symbols_size
= gc_sd
->symbols_size
;
943 external_symbols_offset
= gc_sd
->external_symbols_offset
;
944 symbol_names_data
= gc_sd
->symbol_names_data
;
945 symbol_names_size
= gc_sd
->symbol_names_size
;
949 section_headers_data
= sd
->section_headers
->data();
950 section_names_size
= sd
->section_names_size
;
951 if (sd
->symbols
!= NULL
)
952 symbols_data
= sd
->symbols
->data();
953 symbols_size
= sd
->symbols_size
;
954 external_symbols_offset
= sd
->external_symbols_offset
;
955 if (sd
->symbol_names
!= NULL
)
956 symbol_names_data
= sd
->symbol_names
->data();
957 symbol_names_size
= sd
->symbol_names_size
;
960 // Get the section headers.
961 const unsigned char* shdrs
= section_headers_data
;
962 const unsigned char* pshdrs
;
964 // Get the section names.
965 const unsigned char* pnamesu
= parameters
->options().gc_sections() ?
966 gc_sd
->section_names_data
:
967 sd
->section_names
->data();
968 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
970 // If any input files have been claimed by plugins, we need to defer
971 // actual layout until the replacement files have arrived.
972 const bool should_defer_layout
=
973 (parameters
->options().has_plugins()
974 && parameters
->options().plugins()->should_defer_layout());
975 unsigned int num_sections_to_defer
= 0;
977 // For each section, record the index of the reloc section if any.
978 // Use 0 to mean that there is no reloc section, -1U to mean that
979 // there is more than one.
980 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
981 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
982 // Skip the first, dummy, section.
983 pshdrs
= shdrs
+ This::shdr_size
;
984 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
986 typename
This::Shdr
shdr(pshdrs
);
988 // Count the number of sections whose layout will be deferred.
989 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
990 ++num_sections_to_defer
;
992 unsigned int sh_type
= shdr
.get_sh_type();
993 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
995 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
996 if (target_shndx
== 0 || target_shndx
>= shnum
)
998 this->error(_("relocation section %u has bad info %u"),
1003 if (reloc_shndx
[target_shndx
] != 0)
1004 reloc_shndx
[target_shndx
] = -1U;
1007 reloc_shndx
[target_shndx
] = i
;
1008 reloc_type
[target_shndx
] = sh_type
;
1013 Output_sections
& out_sections(this->output_sections());
1014 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1016 if (!is_gc_pass_two
)
1018 out_sections
.resize(shnum
);
1019 out_section_offsets
.resize(shnum
);
1022 // If we are only linking for symbols, then there is nothing else to
1024 if (this->input_file()->just_symbols())
1026 if (!is_gc_pass_two
)
1028 delete sd
->section_headers
;
1029 sd
->section_headers
= NULL
;
1030 delete sd
->section_names
;
1031 sd
->section_names
= NULL
;
1036 if (num_sections_to_defer
> 0)
1038 parameters
->options().plugins()->add_deferred_layout_object(this);
1039 this->deferred_layout_
.reserve(num_sections_to_defer
);
1042 // Whether we've seen a .note.GNU-stack section.
1043 bool seen_gnu_stack
= false;
1044 // The flags of a .note.GNU-stack section.
1045 uint64_t gnu_stack_flags
= 0;
1047 // Keep track of which sections to omit.
1048 std::vector
<bool> omit(shnum
, false);
1050 // Keep track of reloc sections when emitting relocations.
1051 const bool relocatable
= parameters
->options().relocatable();
1052 const bool emit_relocs
= (relocatable
1053 || parameters
->options().emit_relocs());
1054 std::vector
<unsigned int> reloc_sections
;
1056 // Keep track of .eh_frame sections.
1057 std::vector
<unsigned int> eh_frame_sections
;
1059 // Skip the first, dummy, section.
1060 pshdrs
= shdrs
+ This::shdr_size
;
1061 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1063 typename
This::Shdr
shdr(pshdrs
);
1065 if (shdr
.get_sh_name() >= section_names_size
)
1067 this->error(_("bad section name offset for section %u: %lu"),
1068 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1072 const char* name
= pnames
+ shdr
.get_sh_name();
1074 if (!is_gc_pass_two
)
1076 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1082 // The .note.GNU-stack section is special. It gives the
1083 // protection flags that this object file requires for the stack
1085 if (strcmp(name
, ".note.GNU-stack") == 0)
1087 seen_gnu_stack
= true;
1088 gnu_stack_flags
|= shdr
.get_sh_flags();
1092 bool discard
= omit
[i
];
1095 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1097 if (!this->include_section_group(symtab
, layout
, i
, name
,
1103 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1104 && Layout::is_linkonce(name
))
1106 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1113 // Do not include this section in the link.
1114 out_sections
[i
] = NULL
;
1115 out_section_offsets
[i
] = invalid_address
;
1122 if (is_section_name_included(name
)
1123 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1124 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1126 symtab
->gc()->worklist().push(Section_id(this, i
));
1130 // When doing a relocatable link we are going to copy input
1131 // reloc sections into the output. We only want to copy the
1132 // ones associated with sections which are not being discarded.
1133 // However, we don't know that yet for all sections. So save
1134 // reloc sections and process them later. Garbage collection is
1135 // not triggered when relocatable code is desired.
1137 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1138 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1140 reloc_sections
.push_back(i
);
1144 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1147 // The .eh_frame section is special. It holds exception frame
1148 // information that we need to read in order to generate the
1149 // exception frame header. We process these after all the other
1150 // sections so that the exception frame reader can reliably
1151 // determine which sections are being discarded, and discard the
1152 // corresponding information.
1154 && strcmp(name
, ".eh_frame") == 0
1155 && this->check_eh_frame_flags(&shdr
))
1159 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1160 out_section_offsets
[i
] = invalid_address
;
1163 eh_frame_sections
.push_back(i
);
1169 // This is executed during the second pass of garbage
1170 // collection. do_layout has been called before and some
1171 // sections have been already discarded. Simply ignore
1172 // such sections this time around.
1173 if (out_sections
[i
] == NULL
)
1175 gold_assert(out_section_offsets
[i
] == invalid_address
);
1178 if ((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1179 if (symtab
->gc()->referenced_list().find(Section_id(this,i
))
1180 == symtab
->gc()->referenced_list().end())
1182 if (parameters
->options().print_gc_sections())
1183 gold_info(_("%s: removing unused section from '%s'"
1185 program_name
, this->section_name(i
).c_str(),
1186 this->name().c_str());
1187 out_sections
[i
] = NULL
;
1188 out_section_offsets
[i
] = invalid_address
;
1192 // Defer layout here if input files are claimed by plugins. When gc
1193 // is turned on this function is called twice. For the second call
1194 // should_defer_layout should be false.
1195 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1197 gold_assert(!is_gc_pass_two
);
1198 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1202 // Put dummy values here; real values will be supplied by
1203 // do_layout_deferred_sections.
1204 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1205 out_section_offsets
[i
] = invalid_address
;
1208 // During gc_pass_two if a section that was previously deferred is
1209 // found, do not layout the section as layout_deferred_sections will
1210 // do it later from gold.cc.
1212 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1217 // This is during garbage collection. The out_sections are
1218 // assigned in the second call to this function.
1219 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1220 out_section_offsets
[i
] = invalid_address
;
1224 // When garbage collection is switched on the actual layout
1225 // only happens in the second call.
1226 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1231 if (!is_gc_pass_one
)
1232 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
1234 // When doing a relocatable link handle the reloc sections at the
1235 // end. Garbage collection is not turned on for relocatable code.
1237 this->size_relocatable_relocs();
1238 gold_assert(!parameters
->options().gc_sections() || reloc_sections
.empty());
1239 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1240 p
!= reloc_sections
.end();
1243 unsigned int i
= *p
;
1244 const unsigned char* pshdr
;
1245 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1246 typename
This::Shdr
shdr(pshdr
);
1248 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1249 if (data_shndx
>= shnum
)
1251 // We already warned about this above.
1255 Output_section
* data_section
= out_sections
[data_shndx
];
1256 if (data_section
== NULL
)
1258 out_sections
[i
] = NULL
;
1259 out_section_offsets
[i
] = invalid_address
;
1263 Relocatable_relocs
* rr
= new Relocatable_relocs();
1264 this->set_relocatable_relocs(i
, rr
);
1266 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1268 out_sections
[i
] = os
;
1269 out_section_offsets
[i
] = invalid_address
;
1272 // Handle the .eh_frame sections at the end.
1273 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1274 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1275 p
!= eh_frame_sections
.end();
1278 gold_assert(this->has_eh_frame_
);
1279 gold_assert(external_symbols_offset
!= 0);
1281 unsigned int i
= *p
;
1282 const unsigned char *pshdr
;
1283 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1284 typename
This::Shdr
shdr(pshdr
);
1287 Output_section
* os
= layout
->layout_eh_frame(this,
1296 out_sections
[i
] = os
;
1298 out_section_offsets
[i
] = invalid_address
;
1300 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
1302 // If this section requires special handling, and if there are
1303 // relocs that apply to it, then we must do the special handling
1304 // before we apply the relocs.
1305 if (offset
== -1 && reloc_shndx
[i
] != 0)
1306 this->set_relocs_must_follow_section_writes();
1311 delete[] gc_sd
->section_headers_data
;
1312 delete[] gc_sd
->section_names_data
;
1313 delete[] gc_sd
->symbols_data
;
1314 delete[] gc_sd
->symbol_names_data
;
1318 delete sd
->section_headers
;
1319 sd
->section_headers
= NULL
;
1320 delete sd
->section_names
;
1321 sd
->section_names
= NULL
;
1325 // Layout sections whose layout was deferred while waiting for
1326 // input files from a plugin.
1328 template<int size
, bool big_endian
>
1330 Sized_relobj
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1332 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1334 for (deferred
= this->deferred_layout_
.begin();
1335 deferred
!= this->deferred_layout_
.end();
1338 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1339 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1340 shdr
, deferred
->reloc_shndx_
, deferred
->reloc_type_
);
1343 this->deferred_layout_
.clear();
1346 // Add the symbols to the symbol table.
1348 template<int size
, bool big_endian
>
1350 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1351 Read_symbols_data
* sd
,
1354 if (sd
->symbols
== NULL
)
1356 gold_assert(sd
->symbol_names
== NULL
);
1360 const int sym_size
= This::sym_size
;
1361 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1363 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1365 this->error(_("size of symbols is not multiple of symbol size"));
1369 this->symbols_
.resize(symcount
);
1371 const char* sym_names
=
1372 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1373 symtab
->add_from_relobj(this,
1374 sd
->symbols
->data() + sd
->external_symbols_offset
,
1375 symcount
, this->local_symbol_count_
,
1376 sym_names
, sd
->symbol_names_size
,
1378 &this->defined_count_
);
1382 delete sd
->symbol_names
;
1383 sd
->symbol_names
= NULL
;
1386 // First pass over the local symbols. Here we add their names to
1387 // *POOL and *DYNPOOL, and we store the symbol value in
1388 // THIS->LOCAL_VALUES_. This function is always called from a
1389 // singleton thread. This is followed by a call to
1390 // finalize_local_symbols.
1392 template<int size
, bool big_endian
>
1394 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1395 Stringpool
* dynpool
)
1397 gold_assert(this->symtab_shndx_
!= -1U);
1398 if (this->symtab_shndx_
== 0)
1400 // This object has no symbols. Weird but legal.
1404 // Read the symbol table section header.
1405 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1406 typename
This::Shdr
symtabshdr(this,
1407 this->elf_file_
.section_header(symtab_shndx
));
1408 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1410 // Read the local symbols.
1411 const int sym_size
= This::sym_size
;
1412 const unsigned int loccount
= this->local_symbol_count_
;
1413 gold_assert(loccount
== symtabshdr
.get_sh_info());
1414 off_t locsize
= loccount
* sym_size
;
1415 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1416 locsize
, true, true);
1418 // Read the symbol names.
1419 const unsigned int strtab_shndx
=
1420 this->adjust_shndx(symtabshdr
.get_sh_link());
1421 section_size_type strtab_size
;
1422 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1425 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1427 // Loop over the local symbols.
1429 const Output_sections
& out_sections(this->output_sections());
1430 unsigned int shnum
= this->shnum();
1431 unsigned int count
= 0;
1432 unsigned int dyncount
= 0;
1433 // Skip the first, dummy, symbol.
1435 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1437 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1439 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1442 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1444 lv
.set_input_shndx(shndx
, is_ordinary
);
1446 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1447 lv
.set_is_section_symbol();
1448 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1449 lv
.set_is_tls_symbol();
1451 // Save the input symbol value for use in do_finalize_local_symbols().
1452 lv
.set_input_value(sym
.get_st_value());
1454 // Decide whether this symbol should go into the output file.
1456 if (shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1458 lv
.set_no_output_symtab_entry();
1459 gold_assert(!lv
.needs_output_dynsym_entry());
1463 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1465 lv
.set_no_output_symtab_entry();
1466 gold_assert(!lv
.needs_output_dynsym_entry());
1470 if (sym
.get_st_name() >= strtab_size
)
1472 this->error(_("local symbol %u section name out of range: %u >= %u"),
1473 i
, sym
.get_st_name(),
1474 static_cast<unsigned int>(strtab_size
));
1475 lv
.set_no_output_symtab_entry();
1479 // Add the symbol to the symbol table string pool.
1480 const char* name
= pnames
+ sym
.get_st_name();
1481 pool
->add(name
, true, NULL
);
1484 // If needed, add the symbol to the dynamic symbol table string pool.
1485 if (lv
.needs_output_dynsym_entry())
1487 dynpool
->add(name
, true, NULL
);
1492 this->output_local_symbol_count_
= count
;
1493 this->output_local_dynsym_count_
= dyncount
;
1496 // Finalize the local symbols. Here we set the final value in
1497 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1498 // This function is always called from a singleton thread. The actual
1499 // output of the local symbols will occur in a separate task.
1501 template<int size
, bool big_endian
>
1503 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
1506 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1508 const unsigned int loccount
= this->local_symbol_count_
;
1509 this->local_symbol_offset_
= off
;
1511 const bool relocatable
= parameters
->options().relocatable();
1512 const Output_sections
& out_sections(this->output_sections());
1513 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
1514 unsigned int shnum
= this->shnum();
1516 for (unsigned int i
= 1; i
< loccount
; ++i
)
1518 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1521 unsigned int shndx
= lv
.input_shndx(&is_ordinary
);
1523 // Set the output symbol value.
1527 if (shndx
== elfcpp::SHN_ABS
|| shndx
== elfcpp::SHN_COMMON
)
1528 lv
.set_output_value(lv
.input_value());
1531 this->error(_("unknown section index %u for local symbol %u"),
1533 lv
.set_output_value(0);
1540 this->error(_("local symbol %u section index %u out of range"),
1545 Output_section
* os
= out_sections
[shndx
];
1549 // This local symbol belongs to a section we are discarding.
1550 // In some cases when applying relocations later, we will
1551 // attempt to match it to the corresponding kept section,
1552 // so we leave the input value unchanged here.
1555 else if (out_offsets
[shndx
] == invalid_address
)
1559 // This is a SHF_MERGE section or one which otherwise
1560 // requires special handling.
1561 if (!lv
.is_section_symbol())
1563 // This is not a section symbol. We can determine
1564 // the final value now.
1565 lv
.set_output_value(os
->output_address(this, shndx
,
1568 else if (!os
->find_starting_output_address(this, shndx
, &start
))
1570 // This is a section symbol, but apparently not one
1571 // in a merged section. Just use the start of the
1572 // output section. This happens with relocatable
1573 // links when the input object has section symbols
1574 // for arbitrary non-merge sections.
1575 lv
.set_output_value(os
->address());
1579 // We have to consider the addend to determine the
1580 // value to use in a relocation. START is the start
1581 // of this input section.
1582 Merged_symbol_value
<size
>* msv
=
1583 new Merged_symbol_value
<size
>(lv
.input_value(), start
);
1584 lv
.set_merged_symbol_value(msv
);
1587 else if (lv
.is_tls_symbol())
1588 lv
.set_output_value(os
->tls_offset()
1589 + out_offsets
[shndx
]
1590 + lv
.input_value());
1592 lv
.set_output_value((relocatable
? 0 : os
->address())
1593 + out_offsets
[shndx
]
1594 + lv
.input_value());
1597 if (lv
.needs_output_symtab_entry())
1599 lv
.set_output_symtab_index(index
);
1606 // Set the output dynamic symbol table indexes for the local variables.
1608 template<int size
, bool big_endian
>
1610 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
1612 const unsigned int loccount
= this->local_symbol_count_
;
1613 for (unsigned int i
= 1; i
< loccount
; ++i
)
1615 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1616 if (lv
.needs_output_dynsym_entry())
1618 lv
.set_output_dynsym_index(index
);
1625 // Set the offset where local dynamic symbol information will be stored.
1626 // Returns the count of local symbols contributed to the symbol table by
1629 template<int size
, bool big_endian
>
1631 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
1633 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1634 this->local_dynsym_offset_
= off
;
1635 return this->output_local_dynsym_count_
;
1638 // Write out the local symbols.
1640 template<int size
, bool big_endian
>
1642 Sized_relobj
<size
, big_endian
>::write_local_symbols(
1644 const Stringpool
* sympool
,
1645 const Stringpool
* dynpool
,
1646 Output_symtab_xindex
* symtab_xindex
,
1647 Output_symtab_xindex
* dynsym_xindex
)
1649 const bool strip_all
= parameters
->options().strip_all();
1652 if (this->output_local_dynsym_count_
== 0)
1654 this->output_local_symbol_count_
= 0;
1657 gold_assert(this->symtab_shndx_
!= -1U);
1658 if (this->symtab_shndx_
== 0)
1660 // This object has no symbols. Weird but legal.
1664 // Read the symbol table section header.
1665 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1666 typename
This::Shdr
symtabshdr(this,
1667 this->elf_file_
.section_header(symtab_shndx
));
1668 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1669 const unsigned int loccount
= this->local_symbol_count_
;
1670 gold_assert(loccount
== symtabshdr
.get_sh_info());
1672 // Read the local symbols.
1673 const int sym_size
= This::sym_size
;
1674 off_t locsize
= loccount
* sym_size
;
1675 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1676 locsize
, true, false);
1678 // Read the symbol names.
1679 const unsigned int strtab_shndx
=
1680 this->adjust_shndx(symtabshdr
.get_sh_link());
1681 section_size_type strtab_size
;
1682 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1685 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1687 // Get views into the output file for the portions of the symbol table
1688 // and the dynamic symbol table that we will be writing.
1689 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
1690 unsigned char* oview
= NULL
;
1691 if (output_size
> 0)
1692 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
1694 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
1695 unsigned char* dyn_oview
= NULL
;
1696 if (dyn_output_size
> 0)
1697 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
1700 const Output_sections
out_sections(this->output_sections());
1702 gold_assert(this->local_values_
.size() == loccount
);
1704 unsigned char* ov
= oview
;
1705 unsigned char* dyn_ov
= dyn_oview
;
1707 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1709 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
1711 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1714 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
1718 gold_assert(st_shndx
< out_sections
.size());
1719 if (out_sections
[st_shndx
] == NULL
)
1721 st_shndx
= out_sections
[st_shndx
]->out_shndx();
1722 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
1724 if (lv
.needs_output_symtab_entry() && !strip_all
)
1725 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
1726 if (lv
.needs_output_dynsym_entry())
1727 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
1728 st_shndx
= elfcpp::SHN_XINDEX
;
1732 // Write the symbol to the output symbol table.
1733 if (!strip_all
&& lv
.needs_output_symtab_entry())
1735 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
1737 gold_assert(isym
.get_st_name() < strtab_size
);
1738 const char* name
= pnames
+ isym
.get_st_name();
1739 osym
.put_st_name(sympool
->get_offset(name
));
1740 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1741 osym
.put_st_size(isym
.get_st_size());
1742 osym
.put_st_info(isym
.get_st_info());
1743 osym
.put_st_other(isym
.get_st_other());
1744 osym
.put_st_shndx(st_shndx
);
1749 // Write the symbol to the output dynamic symbol table.
1750 if (lv
.needs_output_dynsym_entry())
1752 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
1753 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
1755 gold_assert(isym
.get_st_name() < strtab_size
);
1756 const char* name
= pnames
+ isym
.get_st_name();
1757 osym
.put_st_name(dynpool
->get_offset(name
));
1758 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1759 osym
.put_st_size(isym
.get_st_size());
1760 osym
.put_st_info(isym
.get_st_info());
1761 osym
.put_st_other(isym
.get_st_other());
1762 osym
.put_st_shndx(st_shndx
);
1769 if (output_size
> 0)
1771 gold_assert(ov
- oview
== output_size
);
1772 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
1775 if (dyn_output_size
> 0)
1777 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
1778 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
1783 // Set *INFO to symbolic information about the offset OFFSET in the
1784 // section SHNDX. Return true if we found something, false if we
1787 template<int size
, bool big_endian
>
1789 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
1792 Symbol_location_info
* info
)
1794 if (this->symtab_shndx_
== 0)
1797 section_size_type symbols_size
;
1798 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
1802 unsigned int symbol_names_shndx
=
1803 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
1804 section_size_type names_size
;
1805 const unsigned char* symbol_names_u
=
1806 this->section_contents(symbol_names_shndx
, &names_size
, false);
1807 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
1809 const int sym_size
= This::sym_size
;
1810 const size_t count
= symbols_size
/ sym_size
;
1812 const unsigned char* p
= symbols
;
1813 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1815 elfcpp::Sym
<size
, big_endian
> sym(p
);
1817 if (sym
.get_st_type() == elfcpp::STT_FILE
)
1819 if (sym
.get_st_name() >= names_size
)
1820 info
->source_file
= "(invalid)";
1822 info
->source_file
= symbol_names
+ sym
.get_st_name();
1827 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1830 && st_shndx
== shndx
1831 && static_cast<off_t
>(sym
.get_st_value()) <= offset
1832 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
1835 if (sym
.get_st_name() > names_size
)
1836 info
->enclosing_symbol_name
= "(invalid)";
1839 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
1840 if (parameters
->options().do_demangle())
1842 char* demangled_name
= cplus_demangle(
1843 info
->enclosing_symbol_name
.c_str(),
1844 DMGL_ANSI
| DMGL_PARAMS
);
1845 if (demangled_name
!= NULL
)
1847 info
->enclosing_symbol_name
.assign(demangled_name
);
1848 free(demangled_name
);
1859 // Look for a kept section corresponding to the given discarded section,
1860 // and return its output address. This is used only for relocations in
1861 // debugging sections. If we can't find the kept section, return 0.
1863 template<int size
, bool big_endian
>
1864 typename Sized_relobj
<size
, big_endian
>::Address
1865 Sized_relobj
<size
, big_endian
>::map_to_kept_section(
1869 Kept_comdat_section
*kept
= this->get_kept_comdat_section(shndx
);
1872 gold_assert(kept
->object_
!= NULL
);
1874 Output_section
* os
= kept
->object_
->output_section(kept
->shndx_
);
1875 Address offset
= kept
->object_
->get_output_section_offset(kept
->shndx_
);
1876 gold_assert(os
!= NULL
&& offset
!= invalid_address
);
1877 return os
->address() + offset
;
1883 // Get symbol counts.
1885 template<int size
, bool big_endian
>
1887 Sized_relobj
<size
, big_endian
>::do_get_global_symbol_counts(
1888 const Symbol_table
*,
1892 *defined
= this->defined_count_
;
1894 for (Symbols::const_iterator p
= this->symbols_
.begin();
1895 p
!= this->symbols_
.end();
1898 && (*p
)->source() == Symbol::FROM_OBJECT
1899 && (*p
)->object() == this
1900 && (*p
)->is_defined())
1905 // Input_objects methods.
1907 // Add a regular relocatable object to the list. Return false if this
1908 // object should be ignored.
1911 Input_objects::add_object(Object
* obj
)
1913 // Set the global target from the first object file we recognize.
1914 Target
* target
= obj
->target();
1915 if (!parameters
->target_valid())
1916 set_parameters_target(target
);
1917 else if (target
!= ¶meters
->target())
1919 obj
->error(_("incompatible target"));
1923 // Print the filename if the -t/--trace option is selected.
1924 if (parameters
->options().trace())
1925 gold_info("%s", obj
->name().c_str());
1927 if (!obj
->is_dynamic())
1928 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
1931 // See if this is a duplicate SONAME.
1932 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
1933 const char* soname
= dynobj
->soname();
1935 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
1936 this->sonames_
.insert(soname
);
1939 // We have already seen a dynamic object with this soname.
1943 this->dynobj_list_
.push_back(dynobj
);
1946 // Add this object to the cross-referencer if requested.
1947 if (parameters
->options().user_set_print_symbol_counts())
1949 if (this->cref_
== NULL
)
1950 this->cref_
= new Cref();
1951 this->cref_
->add_object(obj
);
1957 // For each dynamic object, record whether we've seen all of its
1958 // explicit dependencies.
1961 Input_objects::check_dynamic_dependencies() const
1963 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
1964 p
!= this->dynobj_list_
.end();
1967 const Dynobj::Needed
& needed((*p
)->needed());
1968 bool found_all
= true;
1969 for (Dynobj::Needed::const_iterator pneeded
= needed
.begin();
1970 pneeded
!= needed
.end();
1973 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
1979 (*p
)->set_has_unknown_needed_entries(!found_all
);
1983 // Start processing an archive.
1986 Input_objects::archive_start(Archive
* archive
)
1988 if (parameters
->options().user_set_print_symbol_counts())
1990 if (this->cref_
== NULL
)
1991 this->cref_
= new Cref();
1992 this->cref_
->add_archive_start(archive
);
1996 // Stop processing an archive.
1999 Input_objects::archive_stop(Archive
* archive
)
2001 if (parameters
->options().user_set_print_symbol_counts())
2002 this->cref_
->add_archive_stop(archive
);
2005 // Print symbol counts
2008 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2010 if (parameters
->options().user_set_print_symbol_counts()
2011 && this->cref_
!= NULL
)
2012 this->cref_
->print_symbol_counts(symtab
);
2015 // Relocate_info methods.
2017 // Return a string describing the location of a relocation. This is
2018 // only used in error messages.
2020 template<int size
, bool big_endian
>
2022 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2024 // See if we can get line-number information from debugging sections.
2025 std::string filename
;
2026 std::string file_and_lineno
; // Better than filename-only, if available.
2028 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2029 // This will be "" if we failed to parse the debug info for any reason.
2030 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
2032 std::string
ret(this->object
->name());
2034 Symbol_location_info info
;
2035 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2037 ret
+= " in function ";
2038 ret
+= info
.enclosing_symbol_name
;
2040 filename
= info
.source_file
;
2043 if (!file_and_lineno
.empty())
2044 ret
+= file_and_lineno
;
2047 if (!filename
.empty())
2050 ret
+= this->object
->section_name(this->data_shndx
);
2052 // Offsets into sections have to be positive.
2053 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
2060 } // End namespace gold.
2065 using namespace gold
;
2067 // Read an ELF file with the header and return the appropriate
2068 // instance of Object.
2070 template<int size
, bool big_endian
>
2072 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2073 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
2075 int et
= ehdr
.get_e_type();
2076 if (et
== elfcpp::ET_REL
)
2078 Sized_relobj
<size
, big_endian
>* obj
=
2079 new Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
2083 else if (et
== elfcpp::ET_DYN
)
2085 Sized_dynobj
<size
, big_endian
>* obj
=
2086 new Sized_dynobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
2092 gold_error(_("%s: unsupported ELF file type %d"),
2098 } // End anonymous namespace.
2103 // Return whether INPUT_FILE is an ELF object.
2106 is_elf_object(Input_file
* input_file
, off_t offset
,
2107 const unsigned char** start
, int *read_size
)
2109 off_t filesize
= input_file
->file().filesize();
2110 int want
= elfcpp::Elf_sizes
<64>::ehdr_size
;
2111 if (filesize
- offset
< want
)
2112 want
= filesize
- offset
;
2114 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2122 static unsigned char elfmagic
[4] =
2124 elfcpp::ELFMAG0
, elfcpp::ELFMAG1
,
2125 elfcpp::ELFMAG2
, elfcpp::ELFMAG3
2127 return memcmp(p
, elfmagic
, 4) == 0;
2130 // Read an ELF file and return the appropriate instance of Object.
2133 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2134 const unsigned char* p
, section_offset_type bytes
,
2135 bool* punconfigured
)
2137 if (punconfigured
!= NULL
)
2138 *punconfigured
= false;
2140 if (bytes
< elfcpp::EI_NIDENT
)
2142 gold_error(_("%s: ELF file too short"), name
.c_str());
2146 int v
= p
[elfcpp::EI_VERSION
];
2147 if (v
!= elfcpp::EV_CURRENT
)
2149 if (v
== elfcpp::EV_NONE
)
2150 gold_error(_("%s: invalid ELF version 0"), name
.c_str());
2152 gold_error(_("%s: unsupported ELF version %d"), name
.c_str(), v
);
2156 int c
= p
[elfcpp::EI_CLASS
];
2157 if (c
== elfcpp::ELFCLASSNONE
)
2159 gold_error(_("%s: invalid ELF class 0"), name
.c_str());
2162 else if (c
!= elfcpp::ELFCLASS32
2163 && c
!= elfcpp::ELFCLASS64
)
2165 gold_error(_("%s: unsupported ELF class %d"), name
.c_str(), c
);
2169 int d
= p
[elfcpp::EI_DATA
];
2170 if (d
== elfcpp::ELFDATANONE
)
2172 gold_error(_("%s: invalid ELF data encoding"), name
.c_str());
2175 else if (d
!= elfcpp::ELFDATA2LSB
2176 && d
!= elfcpp::ELFDATA2MSB
)
2178 gold_error(_("%s: unsupported ELF data encoding %d"), name
.c_str(), d
);
2182 bool big_endian
= d
== elfcpp::ELFDATA2MSB
;
2184 if (c
== elfcpp::ELFCLASS32
)
2186 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
2188 gold_error(_("%s: ELF file too short"), name
.c_str());
2193 #ifdef HAVE_TARGET_32_BIG
2194 elfcpp::Ehdr
<32, true> ehdr(p
);
2195 return make_elf_sized_object
<32, true>(name
, input_file
,
2198 if (punconfigured
!= NULL
)
2199 *punconfigured
= true;
2201 gold_error(_("%s: not configured to support "
2202 "32-bit big-endian object"),
2209 #ifdef HAVE_TARGET_32_LITTLE
2210 elfcpp::Ehdr
<32, false> ehdr(p
);
2211 return make_elf_sized_object
<32, false>(name
, input_file
,
2214 if (punconfigured
!= NULL
)
2215 *punconfigured
= true;
2217 gold_error(_("%s: not configured to support "
2218 "32-bit little-endian object"),
2226 if (bytes
< elfcpp::Elf_sizes
<64>::ehdr_size
)
2228 gold_error(_("%s: ELF file too short"), name
.c_str());
2233 #ifdef HAVE_TARGET_64_BIG
2234 elfcpp::Ehdr
<64, true> ehdr(p
);
2235 return make_elf_sized_object
<64, true>(name
, input_file
,
2238 if (punconfigured
!= NULL
)
2239 *punconfigured
= true;
2241 gold_error(_("%s: not configured to support "
2242 "64-bit big-endian object"),
2249 #ifdef HAVE_TARGET_64_LITTLE
2250 elfcpp::Ehdr
<64, false> ehdr(p
);
2251 return make_elf_sized_object
<64, false>(name
, input_file
,
2254 if (punconfigured
!= NULL
)
2255 *punconfigured
= true;
2257 gold_error(_("%s: not configured to support "
2258 "64-bit little-endian object"),
2266 // Instantiate the templates we need.
2268 #ifdef HAVE_TARGET_32_LITTLE
2271 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
2272 Read_symbols_data
*);
2275 #ifdef HAVE_TARGET_32_BIG
2278 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
2279 Read_symbols_data
*);
2282 #ifdef HAVE_TARGET_64_LITTLE
2285 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
2286 Read_symbols_data
*);
2289 #ifdef HAVE_TARGET_64_BIG
2292 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
2293 Read_symbols_data
*);
2296 #ifdef HAVE_TARGET_32_LITTLE
2298 class Sized_relobj
<32, false>;
2301 #ifdef HAVE_TARGET_32_BIG
2303 class Sized_relobj
<32, true>;
2306 #ifdef HAVE_TARGET_64_LITTLE
2308 class Sized_relobj
<64, false>;
2311 #ifdef HAVE_TARGET_64_BIG
2313 class Sized_relobj
<64, true>;
2316 #ifdef HAVE_TARGET_32_LITTLE
2318 struct Relocate_info
<32, false>;
2321 #ifdef HAVE_TARGET_32_BIG
2323 struct Relocate_info
<32, true>;
2326 #ifdef HAVE_TARGET_64_LITTLE
2328 struct Relocate_info
<64, false>;
2331 #ifdef HAVE_TARGET_64_BIG
2333 struct Relocate_info
<64, true>;
2336 } // End namespace gold.