1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
49 // Initialize fields in Symbol. This initializes everything except u_
53 Symbol::init_fields(const char* name
, const char* version
,
54 elfcpp::STT type
, elfcpp::STB binding
,
55 elfcpp::STV visibility
, unsigned char nonvis
)
58 this->version_
= version
;
59 this->symtab_index_
= 0;
60 this->dynsym_index_
= 0;
61 this->got_offsets_
.init();
62 this->plt_offset_
= 0;
64 this->binding_
= binding
;
65 this->visibility_
= visibility
;
66 this->nonvis_
= nonvis
;
67 this->is_target_special_
= false;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_plt_offset_
= false;
75 this->has_warning_
= false;
76 this->is_copied_from_dynobj_
= false;
77 this->is_forced_local_
= false;
78 this->is_ordinary_shndx_
= false;
79 this->in_real_elf_
= false;
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
86 demangle(const char* name
)
88 if (!parameters
->options().do_demangle())
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
94 if (demangled_name
== NULL
)
97 std::string
retval(demangled_name
);
103 Symbol::demangled_name() const
105 return demangle(this->name());
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
110 template<int size
, bool big_endian
>
112 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
113 const elfcpp::Sym
<size
, big_endian
>& sym
,
114 unsigned int st_shndx
, bool is_ordinary
)
116 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
117 sym
.get_st_visibility(), sym
.get_st_nonvis());
118 this->u_
.from_object
.object
= object
;
119 this->u_
.from_object
.shndx
= st_shndx
;
120 this->is_ordinary_shndx_
= is_ordinary
;
121 this->source_
= FROM_OBJECT
;
122 this->in_reg_
= !object
->is_dynamic();
123 this->in_dyn_
= object
->is_dynamic();
124 this->in_real_elf_
= object
->pluginobj() == NULL
;
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
131 Symbol::init_base_output_data(const char* name
, const char* version
,
132 Output_data
* od
, elfcpp::STT type
,
133 elfcpp::STB binding
, elfcpp::STV visibility
,
134 unsigned char nonvis
, bool offset_is_from_end
)
136 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
137 this->u_
.in_output_data
.output_data
= od
;
138 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
139 this->source_
= IN_OUTPUT_DATA
;
140 this->in_reg_
= true;
141 this->in_real_elf_
= true;
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
148 Symbol::init_base_output_segment(const char* name
, const char* version
,
149 Output_segment
* os
, elfcpp::STT type
,
150 elfcpp::STB binding
, elfcpp::STV visibility
,
151 unsigned char nonvis
,
152 Segment_offset_base offset_base
)
154 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
155 this->u_
.in_output_segment
.output_segment
= os
;
156 this->u_
.in_output_segment
.offset_base
= offset_base
;
157 this->source_
= IN_OUTPUT_SEGMENT
;
158 this->in_reg_
= true;
159 this->in_real_elf_
= true;
162 // Initialize the fields in the base class Symbol for a symbol defined
166 Symbol::init_base_constant(const char* name
, const char* version
,
167 elfcpp::STT type
, elfcpp::STB binding
,
168 elfcpp::STV visibility
, unsigned char nonvis
)
170 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
171 this->source_
= IS_CONSTANT
;
172 this->in_reg_
= true;
173 this->in_real_elf_
= true;
176 // Initialize the fields in the base class Symbol for an undefined
180 Symbol::init_base_undefined(const char* name
, const char* version
,
181 elfcpp::STT type
, elfcpp::STB binding
,
182 elfcpp::STV visibility
, unsigned char nonvis
)
184 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
185 this->dynsym_index_
= -1U;
186 this->source_
= IS_UNDEFINED
;
187 this->in_reg_
= true;
188 this->in_real_elf_
= true;
191 // Allocate a common symbol in the base.
194 Symbol::allocate_base_common(Output_data
* od
)
196 gold_assert(this->is_common());
197 this->source_
= IN_OUTPUT_DATA
;
198 this->u_
.in_output_data
.output_data
= od
;
199 this->u_
.in_output_data
.offset_is_from_end
= false;
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
205 template<bool big_endian
>
207 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
209 const elfcpp::Sym
<size
, big_endian
>& sym
,
210 unsigned int st_shndx
, bool is_ordinary
)
212 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
213 this->value_
= sym
.get_st_value();
214 this->symsize_
= sym
.get_st_size();
217 // Initialize the fields in Sized_symbol for a symbol defined in an
222 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
223 Output_data
* od
, Value_type value
,
224 Size_type symsize
, elfcpp::STT type
,
226 elfcpp::STV visibility
,
227 unsigned char nonvis
,
228 bool offset_is_from_end
)
230 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
231 nonvis
, offset_is_from_end
);
232 this->value_
= value
;
233 this->symsize_
= symsize
;
236 // Initialize the fields in Sized_symbol for a symbol defined in an
241 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
242 Output_segment
* os
, Value_type value
,
243 Size_type symsize
, elfcpp::STT type
,
245 elfcpp::STV visibility
,
246 unsigned char nonvis
,
247 Segment_offset_base offset_base
)
249 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
250 nonvis
, offset_base
);
251 this->value_
= value
;
252 this->symsize_
= symsize
;
255 // Initialize the fields in Sized_symbol for a symbol defined as a
260 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
261 Value_type value
, Size_type symsize
,
262 elfcpp::STT type
, elfcpp::STB binding
,
263 elfcpp::STV visibility
, unsigned char nonvis
)
265 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
266 this->value_
= value
;
267 this->symsize_
= symsize
;
270 // Initialize the fields in Sized_symbol for an undefined symbol.
274 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
275 elfcpp::STT type
, elfcpp::STB binding
,
276 elfcpp::STV visibility
, unsigned char nonvis
)
278 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
283 // Allocate a common symbol.
287 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
289 this->allocate_base_common(od
);
290 this->value_
= value
;
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
296 // Return true if this symbol should be added to the dynamic symbol
300 Symbol::should_add_dynsym_entry() const
302 // If the symbol is used by a dynamic relocation, we need to add it.
303 if (this->needs_dynsym_entry())
306 // If this symbol's section is not added, the symbol need not be added.
307 // The section may have been GCed. Note that export_dynamic is being
308 // overridden here. This should not be done for shared objects.
309 if (parameters
->options().gc_sections()
310 && !parameters
->options().shared()
311 && this->source() == Symbol::FROM_OBJECT
312 && !this->object()->is_dynamic())
314 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
316 unsigned int shndx
= this->shndx(&is_ordinary
);
317 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
318 && !relobj
->is_section_included(shndx
))
322 // If the symbol was forced local in a version script, do not add it.
323 if (this->is_forced_local())
326 // If the symbol was forced dynamic in a --dynamic-list file, add it.
327 if (parameters
->options().in_dynamic_list(this->name()))
330 // If dynamic-list-data was specified, add any STT_OBJECT.
331 if (parameters
->options().dynamic_list_data()
332 && !this->is_from_dynobj()
333 && this->type() == elfcpp::STT_OBJECT
)
336 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338 if ((parameters
->options().dynamic_list_cpp_new()
339 || parameters
->options().dynamic_list_cpp_typeinfo())
340 && !this->is_from_dynobj())
342 // TODO(csilvers): We could probably figure out if we're an operator
343 // new/delete or typeinfo without the need to demangle.
344 char* demangled_name
= cplus_demangle(this->name(),
345 DMGL_ANSI
| DMGL_PARAMS
);
346 if (demangled_name
== NULL
)
348 // Not a C++ symbol, so it can't satisfy these flags
350 else if (parameters
->options().dynamic_list_cpp_new()
351 && (strprefix(demangled_name
, "operator new")
352 || strprefix(demangled_name
, "operator delete")))
354 free(demangled_name
);
357 else if (parameters
->options().dynamic_list_cpp_typeinfo()
358 && (strprefix(demangled_name
, "typeinfo name for")
359 || strprefix(demangled_name
, "typeinfo for")))
361 free(demangled_name
);
365 free(demangled_name
);
368 // If exporting all symbols or building a shared library,
369 // and the symbol is defined in a regular object and is
370 // externally visible, we need to add it.
371 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
372 && !this->is_from_dynobj()
373 && this->is_externally_visible())
379 // Return true if the final value of this symbol is known at link
383 Symbol::final_value_is_known() const
385 // If we are not generating an executable, then no final values are
386 // known, since they will change at runtime.
387 if (parameters
->options().shared() || parameters
->options().relocatable())
390 // If the symbol is not from an object file, and is not undefined,
391 // then it is defined, and known.
392 if (this->source_
!= FROM_OBJECT
)
394 if (this->source_
!= IS_UNDEFINED
)
399 // If the symbol is from a dynamic object, then the final value
401 if (this->object()->is_dynamic())
404 // If the symbol is not undefined (it is defined or common),
405 // then the final value is known.
406 if (!this->is_undefined())
410 // If the symbol is undefined, then whether the final value is known
411 // depends on whether we are doing a static link. If we are doing a
412 // dynamic link, then the final value could be filled in at runtime.
413 // This could reasonably be the case for a weak undefined symbol.
414 return parameters
->doing_static_link();
417 // Return the output section where this symbol is defined.
420 Symbol::output_section() const
422 switch (this->source_
)
426 unsigned int shndx
= this->u_
.from_object
.shndx
;
427 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
429 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
430 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
431 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
432 return relobj
->output_section(shndx
);
438 return this->u_
.in_output_data
.output_data
->output_section();
440 case IN_OUTPUT_SEGMENT
:
450 // Set the symbol's output section. This is used for symbols defined
451 // in scripts. This should only be called after the symbol table has
455 Symbol::set_output_section(Output_section
* os
)
457 switch (this->source_
)
461 gold_assert(this->output_section() == os
);
464 this->source_
= IN_OUTPUT_DATA
;
465 this->u_
.in_output_data
.output_data
= os
;
466 this->u_
.in_output_data
.offset_is_from_end
= false;
468 case IN_OUTPUT_SEGMENT
:
475 // Class Symbol_table.
477 Symbol_table::Symbol_table(unsigned int count
,
478 const Version_script_info
& version_script
)
479 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
480 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481 version_script_(version_script
), gc_(NULL
)
483 namepool_
.reserve(count
);
486 Symbol_table::~Symbol_table()
490 // The hash function. The key values are Stringpool keys.
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
495 return key
.first
^ key
.second
;
498 // The symbol table key equality function. This is called with
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
503 const Symbol_table_key
& k2
) const
505 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
512 Symbol_table::gc_mark_undef_symbols()
514 for (options::String_set::const_iterator p
=
515 parameters
->options().undefined_begin();
516 p
!= parameters
->options().undefined_end();
519 const char* name
= p
->c_str();
520 Symbol
* sym
= this->lookup(name
);
521 gold_assert (sym
!= NULL
);
522 if (sym
->source() == Symbol::FROM_OBJECT
523 && !sym
->object()->is_dynamic())
525 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
527 unsigned int shndx
= sym
->shndx(&is_ordinary
);
530 gold_assert(this->gc_
!= NULL
);
531 this->gc_
->worklist().push(Section_id(obj
, shndx
));
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
540 if (!sym
->is_from_dynobj()
541 && sym
->is_externally_visible())
543 //Add the object and section to the work list.
544 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
546 unsigned int shndx
= sym
->shndx(&is_ordinary
);
547 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
549 gold_assert(this->gc_
!= NULL
);
550 this->gc_
->worklist().push(Section_id(obj
, shndx
));
555 // When doing garbage collection, keep symbols that have been seen in
558 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
560 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
561 && !sym
->object()->is_dynamic())
563 Relobj
*obj
= static_cast<Relobj
*>(sym
->object());
565 unsigned int shndx
= sym
->shndx(&is_ordinary
);
566 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
568 gold_assert(this->gc_
!= NULL
);
569 this->gc_
->worklist().push(Section_id(obj
, shndx
));
574 // Make TO a symbol which forwards to FROM.
577 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
579 gold_assert(from
!= to
);
580 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
581 this->forwarders_
[from
] = to
;
582 from
->set_forwarder();
585 // Resolve the forwards from FROM, returning the real symbol.
588 Symbol_table::resolve_forwards(const Symbol
* from
) const
590 gold_assert(from
->is_forwarder());
591 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
592 this->forwarders_
.find(from
);
593 gold_assert(p
!= this->forwarders_
.end());
597 // Look up a symbol by name.
600 Symbol_table::lookup(const char* name
, const char* version
) const
602 Stringpool::Key name_key
;
603 name
= this->namepool_
.find(name
, &name_key
);
607 Stringpool::Key version_key
= 0;
610 version
= this->namepool_
.find(version
, &version_key
);
615 Symbol_table_key
key(name_key
, version_key
);
616 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
617 if (p
== this->table_
.end())
622 // Resolve a Symbol with another Symbol. This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version. Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
628 template<int size
, bool big_endian
>
630 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
632 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
633 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
634 // We don't bother to set the st_name or the st_shndx field.
635 esym
.put_st_value(from
->value());
636 esym
.put_st_size(from
->symsize());
637 esym
.put_st_info(from
->binding(), from
->type());
638 esym
.put_st_other(from
->visibility(), from
->nonvis());
640 unsigned int shndx
= from
->shndx(&is_ordinary
);
641 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
647 if (parameters
->options().gc_sections())
648 this->gc_mark_dyn_syms(to
);
651 // Record that a symbol is forced to be local by a version script or
655 Symbol_table::force_local(Symbol
* sym
)
657 if (!sym
->is_defined() && !sym
->is_common())
659 if (sym
->is_forced_local())
661 // We already got this one.
664 sym
->set_is_forced_local();
665 this->forced_locals_
.push_back(sym
);
668 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
669 // is only called for undefined symbols, when at least one --wrap
673 Symbol_table::wrap_symbol(Object
* object
, const char* name
,
674 Stringpool::Key
* name_key
)
676 // For some targets, we need to ignore a specific character when
677 // wrapping, and add it back later.
679 if (name
[0] == object
->target()->wrap_char())
685 if (parameters
->options().is_wrap(name
))
687 // Turn NAME into __wrap_NAME.
694 // This will give us both the old and new name in NAMEPOOL_, but
695 // that is OK. Only the versions we need will wind up in the
696 // real string table in the output file.
697 return this->namepool_
.add(s
.c_str(), true, name_key
);
700 const char* const real_prefix
= "__real_";
701 const size_t real_prefix_length
= strlen(real_prefix
);
702 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
703 && parameters
->options().is_wrap(name
+ real_prefix_length
))
705 // Turn __real_NAME into NAME.
709 s
+= name
+ real_prefix_length
;
710 return this->namepool_
.add(s
.c_str(), true, name_key
);
716 // This is called when we see a symbol NAME/VERSION, and the symbol
717 // already exists in the symbol table, and VERSION is marked as being
718 // the default version. SYM is the NAME/VERSION symbol we just added.
719 // DEFAULT_IS_NEW is true if this is the first time we have seen the
720 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
722 template<int size
, bool big_endian
>
724 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
726 Symbol_table_type::iterator pdef
)
730 // This is the first time we have seen NAME/NULL. Make
731 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
734 sym
->set_is_default();
736 else if (pdef
->second
== sym
)
738 // NAME/NULL already points to NAME/VERSION. Don't mark the
739 // symbol as the default if it is not already the default.
743 // This is the unfortunate case where we already have entries
744 // for both NAME/VERSION and NAME/NULL. We now see a symbol
745 // NAME/VERSION where VERSION is the default version. We have
746 // already resolved this new symbol with the existing
747 // NAME/VERSION symbol.
749 // It's possible that NAME/NULL and NAME/VERSION are both
750 // defined in regular objects. This can only happen if one
751 // object file defines foo and another defines foo@@ver. This
752 // is somewhat obscure, but we call it a multiple definition
755 // It's possible that NAME/NULL actually has a version, in which
756 // case it won't be the same as VERSION. This happens with
757 // ver_test_7.so in the testsuite for the symbol t2_2. We see
758 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
759 // then see an unadorned t2_2 in an object file and give it
760 // version VER1 from the version script. This looks like a
761 // default definition for VER1, so it looks like we should merge
762 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
763 // not obvious that this is an error, either. So we just punt.
765 // If one of the symbols has non-default visibility, and the
766 // other is defined in a shared object, then they are different
769 // Otherwise, we just resolve the symbols as though they were
772 if (pdef
->second
->version() != NULL
)
773 gold_assert(pdef
->second
->version() != sym
->version());
774 else if (sym
->visibility() != elfcpp::STV_DEFAULT
775 && pdef
->second
->is_from_dynobj())
777 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
778 && sym
->is_from_dynobj())
782 const Sized_symbol
<size
>* symdef
;
783 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
784 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
785 this->make_forwarder(pdef
->second
, sym
);
787 sym
->set_is_default();
792 // Add one symbol from OBJECT to the symbol table. NAME is symbol
793 // name and VERSION is the version; both are canonicalized. DEF is
794 // whether this is the default version. ST_SHNDX is the symbol's
795 // section index; IS_ORDINARY is whether this is a normal section
796 // rather than a special code.
798 // If DEF is true, then this is the definition of a default version of
799 // a symbol. That means that any lookup of NAME/NULL and any lookup
800 // of NAME/VERSION should always return the same symbol. This is
801 // obvious for references, but in particular we want to do this for
802 // definitions: overriding NAME/NULL should also override
803 // NAME/VERSION. If we don't do that, it would be very hard to
804 // override functions in a shared library which uses versioning.
806 // We implement this by simply making both entries in the hash table
807 // point to the same Symbol structure. That is easy enough if this is
808 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
809 // that we have seen both already, in which case they will both have
810 // independent entries in the symbol table. We can't simply change
811 // the symbol table entry, because we have pointers to the entries
812 // attached to the object files. So we mark the entry attached to the
813 // object file as a forwarder, and record it in the forwarders_ map.
814 // Note that entries in the hash table will never be marked as
817 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
818 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
819 // for a special section code. ST_SHNDX may be modified if the symbol
820 // is defined in a section being discarded.
822 template<int size
, bool big_endian
>
824 Symbol_table::add_from_object(Object
* object
,
826 Stringpool::Key name_key
,
828 Stringpool::Key version_key
,
830 const elfcpp::Sym
<size
, big_endian
>& sym
,
831 unsigned int st_shndx
,
833 unsigned int orig_st_shndx
)
835 // Print a message if this symbol is being traced.
836 if (parameters
->options().is_trace_symbol(name
))
838 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
839 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
841 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
844 // For an undefined symbol, we may need to adjust the name using
846 if (orig_st_shndx
== elfcpp::SHN_UNDEF
847 && parameters
->options().any_wrap())
849 const char* wrap_name
= this->wrap_symbol(object
, name
, &name_key
);
850 if (wrap_name
!= name
)
852 // If we see a reference to malloc with version GLIBC_2.0,
853 // and we turn it into a reference to __wrap_malloc, then we
854 // discard the version number. Otherwise the user would be
855 // required to specify the correct version for
863 Symbol
* const snull
= NULL
;
864 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
865 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
868 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
869 std::make_pair(this->table_
.end(), false);
872 const Stringpool::Key vnull_key
= 0;
873 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
878 // ins.first: an iterator, which is a pointer to a pair.
879 // ins.first->first: the key (a pair of name and version).
880 // ins.first->second: the value (Symbol*).
881 // ins.second: true if new entry was inserted, false if not.
883 Sized_symbol
<size
>* ret
;
888 // We already have an entry for NAME/VERSION.
889 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
890 gold_assert(ret
!= NULL
);
892 was_undefined
= ret
->is_undefined();
893 was_common
= ret
->is_common();
895 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
897 if (parameters
->options().gc_sections())
898 this->gc_mark_dyn_syms(ret
);
901 this->define_default_version
<size
, big_endian
>(ret
, insdef
.second
,
906 // This is the first time we have seen NAME/VERSION.
907 gold_assert(ins
.first
->second
== NULL
);
909 if (def
&& !insdef
.second
)
911 // We already have an entry for NAME/NULL. If we override
912 // it, then change it to NAME/VERSION.
913 ret
= this->get_sized_symbol
<size
>(insdef
.first
->second
);
915 was_undefined
= ret
->is_undefined();
916 was_common
= ret
->is_common();
918 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
920 if (parameters
->options().gc_sections())
921 this->gc_mark_dyn_syms(ret
);
922 ins
.first
->second
= ret
;
926 was_undefined
= false;
929 Sized_target
<size
, big_endian
>* target
=
930 object
->sized_target
<size
, big_endian
>();
931 if (!target
->has_make_symbol())
932 ret
= new Sized_symbol
<size
>();
935 ret
= target
->make_symbol();
938 // This means that we don't want a symbol table
941 this->table_
.erase(ins
.first
);
944 this->table_
.erase(insdef
.first
);
945 // Inserting insdef invalidated ins.
946 this->table_
.erase(std::make_pair(name_key
,
953 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
955 ins
.first
->second
= ret
;
958 // This is the first time we have seen NAME/NULL. Point
959 // it at the new entry for NAME/VERSION.
960 gold_assert(insdef
.second
);
961 insdef
.first
->second
= ret
;
966 ret
->set_is_default();
969 // Record every time we see a new undefined symbol, to speed up
971 if (!was_undefined
&& ret
->is_undefined())
972 ++this->saw_undefined_
;
974 // Keep track of common symbols, to speed up common symbol
976 if (!was_common
&& ret
->is_common())
978 if (ret
->type() != elfcpp::STT_TLS
)
979 this->commons_
.push_back(ret
);
981 this->tls_commons_
.push_back(ret
);
984 // If we're not doing a relocatable link, then any symbol with
985 // hidden or internal visibility is local.
986 if ((ret
->visibility() == elfcpp::STV_HIDDEN
987 || ret
->visibility() == elfcpp::STV_INTERNAL
)
988 && (ret
->binding() == elfcpp::STB_GLOBAL
989 || ret
->binding() == elfcpp::STB_WEAK
)
990 && !parameters
->options().relocatable())
991 this->force_local(ret
);
996 // Add all the symbols in a relocatable object to the hash table.
998 template<int size
, bool big_endian
>
1000 Symbol_table::add_from_relobj(
1001 Sized_relobj
<size
, big_endian
>* relobj
,
1002 const unsigned char* syms
,
1004 size_t symndx_offset
,
1005 const char* sym_names
,
1006 size_t sym_name_size
,
1007 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1012 gold_assert(size
== relobj
->target()->get_size());
1013 gold_assert(size
== parameters
->target().get_size());
1015 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1017 const bool just_symbols
= relobj
->just_symbols();
1019 const unsigned char* p
= syms
;
1020 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1022 (*sympointers
)[i
] = NULL
;
1024 elfcpp::Sym
<size
, big_endian
> sym(p
);
1026 unsigned int st_name
= sym
.get_st_name();
1027 if (st_name
>= sym_name_size
)
1029 relobj
->error(_("bad global symbol name offset %u at %zu"),
1034 const char* name
= sym_names
+ st_name
;
1037 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1040 unsigned int orig_st_shndx
= st_shndx
;
1042 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1044 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1047 // A symbol defined in a section which we are not including must
1048 // be treated as an undefined symbol.
1049 if (st_shndx
!= elfcpp::SHN_UNDEF
1051 && !relobj
->is_section_included(st_shndx
))
1052 st_shndx
= elfcpp::SHN_UNDEF
;
1054 // In an object file, an '@' in the name separates the symbol
1055 // name from the version name. If there are two '@' characters,
1056 // this is the default version.
1057 const char* ver
= strchr(name
, '@');
1058 Stringpool::Key ver_key
= 0;
1060 // DEF: is the version default? LOCAL: is the symbol forced local?
1066 // The symbol name is of the form foo@VERSION or foo@@VERSION
1067 namelen
= ver
- name
;
1074 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1076 // We don't want to assign a version to an undefined symbol,
1077 // even if it is listed in the version script. FIXME: What
1078 // about a common symbol?
1081 namelen
= strlen(name
);
1082 if (!this->version_script_
.empty()
1083 && st_shndx
!= elfcpp::SHN_UNDEF
)
1085 // The symbol name did not have a version, but the
1086 // version script may assign a version anyway.
1087 std::string version
;
1088 if (this->version_script_
.get_symbol_version(name
, &version
))
1090 // The version can be empty if the version script is
1091 // only used to force some symbols to be local.
1092 if (!version
.empty())
1094 ver
= this->namepool_
.add_with_length(version
.c_str(),
1101 else if (this->version_script_
.symbol_is_local(name
))
1106 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1107 unsigned char symbuf
[sym_size
];
1108 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1111 memcpy(symbuf
, p
, sym_size
);
1112 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1113 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1115 // Symbol values in object files are section relative.
1116 // This is normally what we want, but since here we are
1117 // converting the symbol to absolute we need to add the
1118 // section address. The section address in an object
1119 // file is normally zero, but people can use a linker
1120 // script to change it.
1121 sw
.put_st_value(sym
.get_st_value()
1122 + relobj
->section_address(orig_st_shndx
));
1124 st_shndx
= elfcpp::SHN_ABS
;
1125 is_ordinary
= false;
1129 Stringpool::Key name_key
;
1130 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1133 Sized_symbol
<size
>* res
;
1134 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1135 def
, *psym
, st_shndx
, is_ordinary
,
1138 // If building a shared library using garbage collection, do not
1139 // treat externally visible symbols as garbage.
1140 if (parameters
->options().gc_sections()
1141 && parameters
->options().shared())
1142 this->gc_mark_symbol_for_shlib(res
);
1145 this->force_local(res
);
1147 (*sympointers
)[i
] = res
;
1151 // Add a symbol from a plugin-claimed file.
1153 template<int size
, bool big_endian
>
1155 Symbol_table::add_from_pluginobj(
1156 Sized_pluginobj
<size
, big_endian
>* obj
,
1159 elfcpp::Sym
<size
, big_endian
>* sym
)
1161 unsigned int st_shndx
= sym
->get_st_shndx();
1163 Stringpool::Key ver_key
= 0;
1169 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1171 // We don't want to assign a version to an undefined symbol,
1172 // even if it is listed in the version script. FIXME: What
1173 // about a common symbol?
1176 if (!this->version_script_
.empty()
1177 && st_shndx
!= elfcpp::SHN_UNDEF
)
1179 // The symbol name did not have a version, but the
1180 // version script may assign a version anyway.
1181 std::string version
;
1182 if (this->version_script_
.get_symbol_version(name
, &version
))
1184 // The version can be empty if the version script is
1185 // only used to force some symbols to be local.
1186 if (!version
.empty())
1188 ver
= this->namepool_
.add_with_length(version
.c_str(),
1195 else if (this->version_script_
.symbol_is_local(name
))
1200 Stringpool::Key name_key
;
1201 name
= this->namepool_
.add(name
, true, &name_key
);
1203 Sized_symbol
<size
>* res
;
1204 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1205 def
, *sym
, st_shndx
, true, st_shndx
);
1208 this->force_local(res
);
1213 // Add all the symbols in a dynamic object to the hash table.
1215 template<int size
, bool big_endian
>
1217 Symbol_table::add_from_dynobj(
1218 Sized_dynobj
<size
, big_endian
>* dynobj
,
1219 const unsigned char* syms
,
1221 const char* sym_names
,
1222 size_t sym_name_size
,
1223 const unsigned char* versym
,
1225 const std::vector
<const char*>* version_map
,
1226 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1231 gold_assert(size
== dynobj
->target()->get_size());
1232 gold_assert(size
== parameters
->target().get_size());
1234 if (dynobj
->just_symbols())
1236 gold_error(_("--just-symbols does not make sense with a shared object"));
1240 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1242 dynobj
->error(_("too few symbol versions"));
1246 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1248 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1249 // weak aliases. This is necessary because if the dynamic object
1250 // provides the same variable under two names, one of which is a
1251 // weak definition, and the regular object refers to the weak
1252 // definition, we have to put both the weak definition and the
1253 // strong definition into the dynamic symbol table. Given a weak
1254 // definition, the only way that we can find the corresponding
1255 // strong definition, if any, is to search the symbol table.
1256 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1258 const unsigned char* p
= syms
;
1259 const unsigned char* vs
= versym
;
1260 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1262 elfcpp::Sym
<size
, big_endian
> sym(p
);
1264 if (sympointers
!= NULL
)
1265 (*sympointers
)[i
] = NULL
;
1267 // Ignore symbols with local binding or that have
1268 // internal or hidden visibility.
1269 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1270 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1271 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1274 // A protected symbol in a shared library must be treated as a
1275 // normal symbol when viewed from outside the shared library.
1276 // Implement this by overriding the visibility here.
1277 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1278 unsigned char symbuf
[sym_size
];
1279 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1280 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1282 memcpy(symbuf
, p
, sym_size
);
1283 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1284 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1288 unsigned int st_name
= psym
->get_st_name();
1289 if (st_name
>= sym_name_size
)
1291 dynobj
->error(_("bad symbol name offset %u at %zu"),
1296 const char* name
= sym_names
+ st_name
;
1299 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1302 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1305 Sized_symbol
<size
>* res
;
1309 Stringpool::Key name_key
;
1310 name
= this->namepool_
.add(name
, true, &name_key
);
1311 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1312 false, *psym
, st_shndx
, is_ordinary
,
1317 // Read the version information.
1319 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1321 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1322 v
&= elfcpp::VERSYM_VERSION
;
1324 // The Sun documentation says that V can be VER_NDX_LOCAL,
1325 // or VER_NDX_GLOBAL, or a version index. The meaning of
1326 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1327 // The old GNU linker will happily generate VER_NDX_LOCAL
1328 // for an undefined symbol. I don't know what the Sun
1329 // linker will generate.
1331 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1332 && st_shndx
!= elfcpp::SHN_UNDEF
)
1334 // This symbol should not be visible outside the object.
1338 // At this point we are definitely going to add this symbol.
1339 Stringpool::Key name_key
;
1340 name
= this->namepool_
.add(name
, true, &name_key
);
1342 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1343 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1345 // This symbol does not have a version.
1346 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1347 false, *psym
, st_shndx
, is_ordinary
,
1352 if (v
>= version_map
->size())
1354 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1359 const char* version
= (*version_map
)[v
];
1360 if (version
== NULL
)
1362 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1367 Stringpool::Key version_key
;
1368 version
= this->namepool_
.add(version
, true, &version_key
);
1370 // If this is an absolute symbol, and the version name
1371 // and symbol name are the same, then this is the
1372 // version definition symbol. These symbols exist to
1373 // support using -u to pull in particular versions. We
1374 // do not want to record a version for them.
1375 if (st_shndx
== elfcpp::SHN_ABS
1377 && name_key
== version_key
)
1378 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1379 false, *psym
, st_shndx
, is_ordinary
,
1383 const bool def
= (!hidden
1384 && st_shndx
!= elfcpp::SHN_UNDEF
);
1385 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1386 version_key
, def
, *psym
, st_shndx
,
1387 is_ordinary
, st_shndx
);
1392 // Note that it is possible that RES was overridden by an
1393 // earlier object, in which case it can't be aliased here.
1394 if (st_shndx
!= elfcpp::SHN_UNDEF
1396 && psym
->get_st_type() == elfcpp::STT_OBJECT
1397 && res
->source() == Symbol::FROM_OBJECT
1398 && res
->object() == dynobj
)
1399 object_symbols
.push_back(res
);
1401 if (sympointers
!= NULL
)
1402 (*sympointers
)[i
] = res
;
1405 this->record_weak_aliases(&object_symbols
);
1408 // This is used to sort weak aliases. We sort them first by section
1409 // index, then by offset, then by weak ahead of strong.
1412 class Weak_alias_sorter
1415 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1420 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1421 const Sized_symbol
<size
>* s2
) const
1424 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1425 gold_assert(is_ordinary
);
1426 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1427 gold_assert(is_ordinary
);
1428 if (s1_shndx
!= s2_shndx
)
1429 return s1_shndx
< s2_shndx
;
1431 if (s1
->value() != s2
->value())
1432 return s1
->value() < s2
->value();
1433 if (s1
->binding() != s2
->binding())
1435 if (s1
->binding() == elfcpp::STB_WEAK
)
1437 if (s2
->binding() == elfcpp::STB_WEAK
)
1440 return std::string(s1
->name()) < std::string(s2
->name());
1443 // SYMBOLS is a list of object symbols from a dynamic object. Look
1444 // for any weak aliases, and record them so that if we add the weak
1445 // alias to the dynamic symbol table, we also add the corresponding
1450 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1452 // Sort the vector by section index, then by offset, then by weak
1454 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1456 // Walk through the vector. For each weak definition, record
1458 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1460 p
!= symbols
->end();
1463 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1466 // Build a circular list of weak aliases. Each symbol points to
1467 // the next one in the circular list.
1469 Sized_symbol
<size
>* from_sym
= *p
;
1470 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1471 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1474 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1475 || (*q
)->value() != from_sym
->value())
1478 this->weak_aliases_
[from_sym
] = *q
;
1479 from_sym
->set_has_alias();
1485 this->weak_aliases_
[from_sym
] = *p
;
1486 from_sym
->set_has_alias();
1493 // Create and return a specially defined symbol. If ONLY_IF_REF is
1494 // true, then only create the symbol if there is a reference to it.
1495 // If this does not return NULL, it sets *POLDSYM to the existing
1496 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1497 // resolve the newly created symbol to the old one. This
1498 // canonicalizes *PNAME and *PVERSION.
1500 template<int size
, bool big_endian
>
1502 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1504 Sized_symbol
<size
>** poldsym
,
1505 bool *resolve_oldsym
)
1507 *resolve_oldsym
= false;
1509 // If the caller didn't give us a version, see if we get one from
1510 // the version script.
1512 bool is_default_version
= false;
1513 if (*pversion
== NULL
)
1515 if (this->version_script_
.get_symbol_version(*pname
, &v
))
1518 *pversion
= v
.c_str();
1520 // If we get the version from a version script, then we are
1521 // also the default version.
1522 is_default_version
= true;
1527 Sized_symbol
<size
>* sym
;
1529 bool add_to_table
= false;
1530 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1531 bool add_def_to_table
= false;
1532 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1536 oldsym
= this->lookup(*pname
, *pversion
);
1537 if (oldsym
== NULL
&& is_default_version
)
1538 oldsym
= this->lookup(*pname
, NULL
);
1539 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1542 *pname
= oldsym
->name();
1543 if (!is_default_version
)
1544 *pversion
= oldsym
->version();
1548 // Canonicalize NAME and VERSION.
1549 Stringpool::Key name_key
;
1550 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1552 Stringpool::Key version_key
= 0;
1553 if (*pversion
!= NULL
)
1554 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1556 Symbol
* const snull
= NULL
;
1557 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1558 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1562 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
1563 std::make_pair(this->table_
.end(), false);
1564 if (is_default_version
)
1566 const Stringpool::Key vnull
= 0;
1567 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1574 // We already have a symbol table entry for NAME/VERSION.
1575 oldsym
= ins
.first
->second
;
1576 gold_assert(oldsym
!= NULL
);
1578 if (is_default_version
)
1580 Sized_symbol
<size
>* soldsym
=
1581 this->get_sized_symbol
<size
>(oldsym
);
1582 this->define_default_version
<size
, big_endian
>(soldsym
,
1589 // We haven't seen this symbol before.
1590 gold_assert(ins
.first
->second
== NULL
);
1592 add_to_table
= true;
1593 add_loc
= ins
.first
;
1595 if (is_default_version
&& !insdef
.second
)
1597 // We are adding NAME/VERSION, and it is the default
1598 // version. We already have an entry for NAME/NULL.
1599 oldsym
= insdef
.first
->second
;
1600 *resolve_oldsym
= true;
1606 if (is_default_version
)
1608 add_def_to_table
= true;
1609 add_def_loc
= insdef
.first
;
1615 const Target
& target
= parameters
->target();
1616 if (!target
.has_make_symbol())
1617 sym
= new Sized_symbol
<size
>();
1620 gold_assert(target
.get_size() == size
);
1621 gold_assert(target
.is_big_endian() ? big_endian
: !big_endian
);
1622 typedef Sized_target
<size
, big_endian
> My_target
;
1623 const My_target
* sized_target
=
1624 static_cast<const My_target
*>(&target
);
1625 sym
= sized_target
->make_symbol();
1631 add_loc
->second
= sym
;
1633 gold_assert(oldsym
!= NULL
);
1635 if (add_def_to_table
)
1636 add_def_loc
->second
= sym
;
1638 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1643 // Define a symbol based on an Output_data.
1646 Symbol_table::define_in_output_data(const char* name
,
1647 const char* version
,
1652 elfcpp::STB binding
,
1653 elfcpp::STV visibility
,
1654 unsigned char nonvis
,
1655 bool offset_is_from_end
,
1658 if (parameters
->target().get_size() == 32)
1660 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1661 return this->do_define_in_output_data
<32>(name
, version
, od
,
1662 value
, symsize
, type
, binding
,
1670 else if (parameters
->target().get_size() == 64)
1672 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1673 return this->do_define_in_output_data
<64>(name
, version
, od
,
1674 value
, symsize
, type
, binding
,
1686 // Define a symbol in an Output_data, sized version.
1690 Symbol_table::do_define_in_output_data(
1692 const char* version
,
1694 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1695 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1697 elfcpp::STB binding
,
1698 elfcpp::STV visibility
,
1699 unsigned char nonvis
,
1700 bool offset_is_from_end
,
1703 Sized_symbol
<size
>* sym
;
1704 Sized_symbol
<size
>* oldsym
;
1705 bool resolve_oldsym
;
1707 if (parameters
->target().is_big_endian())
1709 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1710 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1711 only_if_ref
, &oldsym
,
1719 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1720 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1721 only_if_ref
, &oldsym
,
1731 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1732 visibility
, nonvis
, offset_is_from_end
);
1736 if (binding
== elfcpp::STB_LOCAL
1737 || this->version_script_
.symbol_is_local(name
))
1738 this->force_local(sym
);
1739 else if (version
!= NULL
)
1740 sym
->set_is_default();
1744 if (Symbol_table::should_override_with_special(oldsym
))
1745 this->override_with_special(oldsym
, sym
);
1756 // Define a symbol based on an Output_segment.
1759 Symbol_table::define_in_output_segment(const char* name
,
1760 const char* version
, Output_segment
* os
,
1764 elfcpp::STB binding
,
1765 elfcpp::STV visibility
,
1766 unsigned char nonvis
,
1767 Symbol::Segment_offset_base offset_base
,
1770 if (parameters
->target().get_size() == 32)
1772 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1773 return this->do_define_in_output_segment
<32>(name
, version
, os
,
1774 value
, symsize
, type
,
1775 binding
, visibility
, nonvis
,
1776 offset_base
, only_if_ref
);
1781 else if (parameters
->target().get_size() == 64)
1783 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1784 return this->do_define_in_output_segment
<64>(name
, version
, os
,
1785 value
, symsize
, type
,
1786 binding
, visibility
, nonvis
,
1787 offset_base
, only_if_ref
);
1796 // Define a symbol in an Output_segment, sized version.
1800 Symbol_table::do_define_in_output_segment(
1802 const char* version
,
1804 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1805 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1807 elfcpp::STB binding
,
1808 elfcpp::STV visibility
,
1809 unsigned char nonvis
,
1810 Symbol::Segment_offset_base offset_base
,
1813 Sized_symbol
<size
>* sym
;
1814 Sized_symbol
<size
>* oldsym
;
1815 bool resolve_oldsym
;
1817 if (parameters
->target().is_big_endian())
1819 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1820 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1821 only_if_ref
, &oldsym
,
1829 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1830 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1831 only_if_ref
, &oldsym
,
1841 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1842 visibility
, nonvis
, offset_base
);
1846 if (binding
== elfcpp::STB_LOCAL
1847 || this->version_script_
.symbol_is_local(name
))
1848 this->force_local(sym
);
1849 else if (version
!= NULL
)
1850 sym
->set_is_default();
1854 if (Symbol_table::should_override_with_special(oldsym
))
1855 this->override_with_special(oldsym
, sym
);
1866 // Define a special symbol with a constant value. It is a multiple
1867 // definition error if this symbol is already defined.
1870 Symbol_table::define_as_constant(const char* name
,
1871 const char* version
,
1875 elfcpp::STB binding
,
1876 elfcpp::STV visibility
,
1877 unsigned char nonvis
,
1879 bool force_override
)
1881 if (parameters
->target().get_size() == 32)
1883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1884 return this->do_define_as_constant
<32>(name
, version
, value
,
1885 symsize
, type
, binding
,
1886 visibility
, nonvis
, only_if_ref
,
1892 else if (parameters
->target().get_size() == 64)
1894 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1895 return this->do_define_as_constant
<64>(name
, version
, value
,
1896 symsize
, type
, binding
,
1897 visibility
, nonvis
, only_if_ref
,
1907 // Define a symbol as a constant, sized version.
1911 Symbol_table::do_define_as_constant(
1913 const char* version
,
1914 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1915 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1917 elfcpp::STB binding
,
1918 elfcpp::STV visibility
,
1919 unsigned char nonvis
,
1921 bool force_override
)
1923 Sized_symbol
<size
>* sym
;
1924 Sized_symbol
<size
>* oldsym
;
1925 bool resolve_oldsym
;
1927 if (parameters
->target().is_big_endian())
1929 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1930 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1931 only_if_ref
, &oldsym
,
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1940 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1941 only_if_ref
, &oldsym
,
1951 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
1956 // Version symbols are absolute symbols with name == version.
1957 // We don't want to force them to be local.
1958 if ((version
== NULL
1961 && (binding
== elfcpp::STB_LOCAL
1962 || this->version_script_
.symbol_is_local(name
)))
1963 this->force_local(sym
);
1964 else if (version
!= NULL
1965 && (name
!= version
|| value
!= 0))
1966 sym
->set_is_default();
1970 if (force_override
|| Symbol_table::should_override_with_special(oldsym
))
1971 this->override_with_special(oldsym
, sym
);
1982 // Define a set of symbols in output sections.
1985 Symbol_table::define_symbols(const Layout
* layout
, int count
,
1986 const Define_symbol_in_section
* p
,
1989 for (int i
= 0; i
< count
; ++i
, ++p
)
1991 Output_section
* os
= layout
->find_output_section(p
->output_section
);
1993 this->define_in_output_data(p
->name
, NULL
, os
, p
->value
,
1994 p
->size
, p
->type
, p
->binding
,
1995 p
->visibility
, p
->nonvis
,
1996 p
->offset_is_from_end
,
1997 only_if_ref
|| p
->only_if_ref
);
1999 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2000 p
->binding
, p
->visibility
, p
->nonvis
,
2001 only_if_ref
|| p
->only_if_ref
,
2006 // Define a set of symbols in output segments.
2009 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2010 const Define_symbol_in_segment
* p
,
2013 for (int i
= 0; i
< count
; ++i
, ++p
)
2015 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2016 p
->segment_flags_set
,
2017 p
->segment_flags_clear
);
2019 this->define_in_output_segment(p
->name
, NULL
, os
, p
->value
,
2020 p
->size
, p
->type
, p
->binding
,
2021 p
->visibility
, p
->nonvis
,
2023 only_if_ref
|| p
->only_if_ref
);
2025 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2026 p
->binding
, p
->visibility
, p
->nonvis
,
2027 only_if_ref
|| p
->only_if_ref
,
2032 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2033 // symbol should be defined--typically a .dyn.bss section. VALUE is
2034 // the offset within POSD.
2038 Symbol_table::define_with_copy_reloc(
2039 Sized_symbol
<size
>* csym
,
2041 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2043 gold_assert(csym
->is_from_dynobj());
2044 gold_assert(!csym
->is_copied_from_dynobj());
2045 Object
* object
= csym
->object();
2046 gold_assert(object
->is_dynamic());
2047 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2049 // Our copied variable has to override any variable in a shared
2051 elfcpp::STB binding
= csym
->binding();
2052 if (binding
== elfcpp::STB_WEAK
)
2053 binding
= elfcpp::STB_GLOBAL
;
2055 this->define_in_output_data(csym
->name(), csym
->version(),
2056 posd
, value
, csym
->symsize(),
2057 csym
->type(), binding
,
2058 csym
->visibility(), csym
->nonvis(),
2061 csym
->set_is_copied_from_dynobj();
2062 csym
->set_needs_dynsym_entry();
2064 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2066 // We have now defined all aliases, but we have not entered them all
2067 // in the copied_symbol_dynobjs_ map.
2068 if (csym
->has_alias())
2073 sym
= this->weak_aliases_
[sym
];
2076 gold_assert(sym
->output_data() == posd
);
2078 sym
->set_is_copied_from_dynobj();
2079 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2084 // SYM is defined using a COPY reloc. Return the dynamic object where
2085 // the original definition was found.
2088 Symbol_table::get_copy_source(const Symbol
* sym
) const
2090 gold_assert(sym
->is_copied_from_dynobj());
2091 Copied_symbol_dynobjs::const_iterator p
=
2092 this->copied_symbol_dynobjs_
.find(sym
);
2093 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2097 // Add any undefined symbols named on the command line.
2100 Symbol_table::add_undefined_symbols_from_command_line()
2102 if (parameters
->options().any_undefined())
2104 if (parameters
->target().get_size() == 32)
2106 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2107 this->do_add_undefined_symbols_from_command_line
<32>();
2112 else if (parameters
->target().get_size() == 64)
2114 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2115 this->do_add_undefined_symbols_from_command_line
<64>();
2127 Symbol_table::do_add_undefined_symbols_from_command_line()
2129 for (options::String_set::const_iterator p
=
2130 parameters
->options().undefined_begin();
2131 p
!= parameters
->options().undefined_end();
2134 const char* name
= p
->c_str();
2136 if (this->lookup(name
) != NULL
)
2139 const char* version
= NULL
;
2141 Sized_symbol
<size
>* sym
;
2142 Sized_symbol
<size
>* oldsym
;
2143 bool resolve_oldsym
;
2144 if (parameters
->target().is_big_endian())
2146 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2147 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2157 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2165 gold_assert(oldsym
== NULL
);
2167 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2168 elfcpp::STV_DEFAULT
, 0);
2169 ++this->saw_undefined_
;
2173 // Set the dynamic symbol indexes. INDEX is the index of the first
2174 // global dynamic symbol. Pointers to the symbols are stored into the
2175 // vector SYMS. The names are added to DYNPOOL. This returns an
2176 // updated dynamic symbol index.
2179 Symbol_table::set_dynsym_indexes(unsigned int index
,
2180 std::vector
<Symbol
*>* syms
,
2181 Stringpool
* dynpool
,
2184 for (Symbol_table_type::iterator p
= this->table_
.begin();
2185 p
!= this->table_
.end();
2188 Symbol
* sym
= p
->second
;
2190 // Note that SYM may already have a dynamic symbol index, since
2191 // some symbols appear more than once in the symbol table, with
2192 // and without a version.
2194 if (!sym
->should_add_dynsym_entry())
2195 sym
->set_dynsym_index(-1U);
2196 else if (!sym
->has_dynsym_index())
2198 sym
->set_dynsym_index(index
);
2200 syms
->push_back(sym
);
2201 dynpool
->add(sym
->name(), false, NULL
);
2203 // Record any version information.
2204 if (sym
->version() != NULL
)
2205 versions
->record_version(this, dynpool
, sym
);
2209 // Finish up the versions. In some cases this may add new dynamic
2211 index
= versions
->finalize(this, index
, syms
);
2216 // Set the final values for all the symbols. The index of the first
2217 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2218 // file offset OFF. Add their names to POOL. Return the new file
2219 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2222 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2223 size_t dyncount
, Stringpool
* pool
,
2224 unsigned int *plocal_symcount
)
2228 gold_assert(*plocal_symcount
!= 0);
2229 this->first_global_index_
= *plocal_symcount
;
2231 this->dynamic_offset_
= dynoff
;
2232 this->first_dynamic_global_index_
= dyn_global_index
;
2233 this->dynamic_count_
= dyncount
;
2235 if (parameters
->target().get_size() == 32)
2237 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2238 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2243 else if (parameters
->target().get_size() == 64)
2245 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2246 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2254 // Now that we have the final symbol table, we can reliably note
2255 // which symbols should get warnings.
2256 this->warnings_
.note_warnings(this);
2261 // SYM is going into the symbol table at *PINDEX. Add the name to
2262 // POOL, update *PINDEX and *POFF.
2266 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2267 unsigned int* pindex
, off_t
* poff
)
2269 sym
->set_symtab_index(*pindex
);
2270 pool
->add(sym
->name(), false, NULL
);
2272 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2275 // Set the final value for all the symbols. This is called after
2276 // Layout::finalize, so all the output sections have their final
2281 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2282 unsigned int* plocal_symcount
)
2284 off
= align_address(off
, size
>> 3);
2285 this->offset_
= off
;
2287 unsigned int index
= *plocal_symcount
;
2288 const unsigned int orig_index
= index
;
2290 // First do all the symbols which have been forced to be local, as
2291 // they must appear before all global symbols.
2292 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2293 p
!= this->forced_locals_
.end();
2297 gold_assert(sym
->is_forced_local());
2298 if (this->sized_finalize_symbol
<size
>(sym
))
2300 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2305 // Now do all the remaining symbols.
2306 for (Symbol_table_type::iterator p
= this->table_
.begin();
2307 p
!= this->table_
.end();
2310 Symbol
* sym
= p
->second
;
2311 if (this->sized_finalize_symbol
<size
>(sym
))
2312 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2315 this->output_count_
= index
- orig_index
;
2320 // Finalize the symbol SYM. This returns true if the symbol should be
2321 // added to the symbol table, false otherwise.
2325 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2327 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2329 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2331 // The default version of a symbol may appear twice in the symbol
2332 // table. We only need to finalize it once.
2333 if (sym
->has_symtab_index())
2338 gold_assert(!sym
->has_symtab_index());
2339 sym
->set_symtab_index(-1U);
2340 gold_assert(sym
->dynsym_index() == -1U);
2346 switch (sym
->source())
2348 case Symbol::FROM_OBJECT
:
2351 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2353 // FIXME: We need some target specific support here.
2355 && shndx
!= elfcpp::SHN_ABS
2356 && shndx
!= elfcpp::SHN_COMMON
)
2358 gold_error(_("%s: unsupported symbol section 0x%x"),
2359 sym
->demangled_name().c_str(), shndx
);
2360 shndx
= elfcpp::SHN_UNDEF
;
2363 Object
* symobj
= sym
->object();
2364 if (symobj
->is_dynamic())
2367 shndx
= elfcpp::SHN_UNDEF
;
2369 else if (symobj
->pluginobj() != NULL
)
2372 shndx
= elfcpp::SHN_UNDEF
;
2374 else if (shndx
== elfcpp::SHN_UNDEF
)
2376 else if (!is_ordinary
2377 && (shndx
== elfcpp::SHN_ABS
|| shndx
== elfcpp::SHN_COMMON
))
2378 value
= sym
->value();
2381 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2382 Output_section
* os
= relobj
->output_section(shndx
);
2386 sym
->set_symtab_index(-1U);
2387 bool static_or_reloc
= (parameters
->doing_static_link() ||
2388 parameters
->options().relocatable());
2389 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2394 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2395 if (secoff64
== -1ULL)
2397 // The section needs special handling (e.g., a merge section).
2398 value
= os
->output_address(relobj
, shndx
, sym
->value());
2403 convert_types
<Value_type
, uint64_t>(secoff64
);
2404 if (sym
->type() == elfcpp::STT_TLS
)
2405 value
= sym
->value() + os
->tls_offset() + secoff
;
2407 value
= sym
->value() + os
->address() + secoff
;
2413 case Symbol::IN_OUTPUT_DATA
:
2415 Output_data
* od
= sym
->output_data();
2416 value
= sym
->value();
2417 if (sym
->type() != elfcpp::STT_TLS
)
2418 value
+= od
->address();
2421 Output_section
* os
= od
->output_section();
2422 gold_assert(os
!= NULL
);
2423 value
+= os
->tls_offset() + (od
->address() - os
->address());
2425 if (sym
->offset_is_from_end())
2426 value
+= od
->data_size();
2430 case Symbol::IN_OUTPUT_SEGMENT
:
2432 Output_segment
* os
= sym
->output_segment();
2433 value
= sym
->value();
2434 if (sym
->type() != elfcpp::STT_TLS
)
2435 value
+= os
->vaddr();
2436 switch (sym
->offset_base())
2438 case Symbol::SEGMENT_START
:
2440 case Symbol::SEGMENT_END
:
2441 value
+= os
->memsz();
2443 case Symbol::SEGMENT_BSS
:
2444 value
+= os
->filesz();
2452 case Symbol::IS_CONSTANT
:
2453 value
= sym
->value();
2456 case Symbol::IS_UNDEFINED
:
2464 sym
->set_value(value
);
2466 if (parameters
->options().strip_all())
2468 sym
->set_symtab_index(-1U);
2475 // Write out the global symbols.
2478 Symbol_table::write_globals(const Stringpool
* sympool
,
2479 const Stringpool
* dynpool
,
2480 Output_symtab_xindex
* symtab_xindex
,
2481 Output_symtab_xindex
* dynsym_xindex
,
2482 Output_file
* of
) const
2484 switch (parameters
->size_and_endianness())
2486 #ifdef HAVE_TARGET_32_LITTLE
2487 case Parameters::TARGET_32_LITTLE
:
2488 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2492 #ifdef HAVE_TARGET_32_BIG
2493 case Parameters::TARGET_32_BIG
:
2494 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2498 #ifdef HAVE_TARGET_64_LITTLE
2499 case Parameters::TARGET_64_LITTLE
:
2500 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2504 #ifdef HAVE_TARGET_64_BIG
2505 case Parameters::TARGET_64_BIG
:
2506 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2515 // Write out the global symbols.
2517 template<int size
, bool big_endian
>
2519 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2520 const Stringpool
* dynpool
,
2521 Output_symtab_xindex
* symtab_xindex
,
2522 Output_symtab_xindex
* dynsym_xindex
,
2523 Output_file
* of
) const
2525 const Target
& target
= parameters
->target();
2527 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2529 const unsigned int output_count
= this->output_count_
;
2530 const section_size_type oview_size
= output_count
* sym_size
;
2531 const unsigned int first_global_index
= this->first_global_index_
;
2532 unsigned char* psyms
;
2533 if (this->offset_
== 0 || output_count
== 0)
2536 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2538 const unsigned int dynamic_count
= this->dynamic_count_
;
2539 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2540 const unsigned int first_dynamic_global_index
=
2541 this->first_dynamic_global_index_
;
2542 unsigned char* dynamic_view
;
2543 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2544 dynamic_view
= NULL
;
2546 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2548 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2549 p
!= this->table_
.end();
2552 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2554 // Possibly warn about unresolved symbols in shared libraries.
2555 this->warn_about_undefined_dynobj_symbol(sym
);
2557 unsigned int sym_index
= sym
->symtab_index();
2558 unsigned int dynsym_index
;
2559 if (dynamic_view
== NULL
)
2562 dynsym_index
= sym
->dynsym_index();
2564 if (sym_index
== -1U && dynsym_index
== -1U)
2566 // This symbol is not included in the output file.
2571 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2572 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2573 switch (sym
->source())
2575 case Symbol::FROM_OBJECT
:
2578 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2580 // FIXME: We need some target specific support here.
2582 && in_shndx
!= elfcpp::SHN_ABS
2583 && in_shndx
!= elfcpp::SHN_COMMON
)
2585 gold_error(_("%s: unsupported symbol section 0x%x"),
2586 sym
->demangled_name().c_str(), in_shndx
);
2591 Object
* symobj
= sym
->object();
2592 if (symobj
->is_dynamic())
2594 if (sym
->needs_dynsym_value())
2595 dynsym_value
= target
.dynsym_value(sym
);
2596 shndx
= elfcpp::SHN_UNDEF
;
2598 else if (symobj
->pluginobj() != NULL
)
2599 shndx
= elfcpp::SHN_UNDEF
;
2600 else if (in_shndx
== elfcpp::SHN_UNDEF
2602 && (in_shndx
== elfcpp::SHN_ABS
2603 || in_shndx
== elfcpp::SHN_COMMON
)))
2607 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2608 Output_section
* os
= relobj
->output_section(in_shndx
);
2609 gold_assert(os
!= NULL
);
2610 shndx
= os
->out_shndx();
2612 if (shndx
>= elfcpp::SHN_LORESERVE
)
2614 if (sym_index
!= -1U)
2615 symtab_xindex
->add(sym_index
, shndx
);
2616 if (dynsym_index
!= -1U)
2617 dynsym_xindex
->add(dynsym_index
, shndx
);
2618 shndx
= elfcpp::SHN_XINDEX
;
2621 // In object files symbol values are section
2623 if (parameters
->options().relocatable())
2624 sym_value
-= os
->address();
2630 case Symbol::IN_OUTPUT_DATA
:
2631 shndx
= sym
->output_data()->out_shndx();
2632 if (shndx
>= elfcpp::SHN_LORESERVE
)
2634 if (sym_index
!= -1U)
2635 symtab_xindex
->add(sym_index
, shndx
);
2636 if (dynsym_index
!= -1U)
2637 dynsym_xindex
->add(dynsym_index
, shndx
);
2638 shndx
= elfcpp::SHN_XINDEX
;
2642 case Symbol::IN_OUTPUT_SEGMENT
:
2643 shndx
= elfcpp::SHN_ABS
;
2646 case Symbol::IS_CONSTANT
:
2647 shndx
= elfcpp::SHN_ABS
;
2650 case Symbol::IS_UNDEFINED
:
2651 shndx
= elfcpp::SHN_UNDEF
;
2658 if (sym_index
!= -1U)
2660 sym_index
-= first_global_index
;
2661 gold_assert(sym_index
< output_count
);
2662 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2663 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2667 if (dynsym_index
!= -1U)
2669 dynsym_index
-= first_dynamic_global_index
;
2670 gold_assert(dynsym_index
< dynamic_count
);
2671 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2672 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2677 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2678 if (dynamic_view
!= NULL
)
2679 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2682 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2683 // strtab holding the name.
2685 template<int size
, bool big_endian
>
2687 Symbol_table::sized_write_symbol(
2688 Sized_symbol
<size
>* sym
,
2689 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2691 const Stringpool
* pool
,
2692 unsigned char* p
) const
2694 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2695 osym
.put_st_name(pool
->get_offset(sym
->name()));
2696 osym
.put_st_value(value
);
2697 // Use a symbol size of zero for undefined symbols from shared libraries.
2698 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2699 osym
.put_st_size(0);
2701 osym
.put_st_size(sym
->symsize());
2702 // A version script may have overridden the default binding.
2703 if (sym
->is_forced_local())
2704 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, sym
->type()));
2706 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
2707 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2708 osym
.put_st_shndx(shndx
);
2711 // Check for unresolved symbols in shared libraries. This is
2712 // controlled by the --allow-shlib-undefined option.
2714 // We only warn about libraries for which we have seen all the
2715 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2716 // which were not seen in this link. If we didn't see a DT_NEEDED
2717 // entry, we aren't going to be able to reliably report whether the
2718 // symbol is undefined.
2720 // We also don't warn about libraries found in a system library
2721 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2722 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2723 // can have undefined references satisfied by ld-linux.so.
2726 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2729 if (sym
->source() == Symbol::FROM_OBJECT
2730 && sym
->object()->is_dynamic()
2731 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2732 && sym
->binding() != elfcpp::STB_WEAK
2733 && !parameters
->options().allow_shlib_undefined()
2734 && !parameters
->target().is_defined_by_abi(sym
)
2735 && !sym
->object()->is_in_system_directory())
2737 // A very ugly cast.
2738 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2739 if (!dynobj
->has_unknown_needed_entries())
2740 gold_undefined_symbol(sym
);
2744 // Write out a section symbol. Return the update offset.
2747 Symbol_table::write_section_symbol(const Output_section
*os
,
2748 Output_symtab_xindex
* symtab_xindex
,
2752 switch (parameters
->size_and_endianness())
2754 #ifdef HAVE_TARGET_32_LITTLE
2755 case Parameters::TARGET_32_LITTLE
:
2756 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2760 #ifdef HAVE_TARGET_32_BIG
2761 case Parameters::TARGET_32_BIG
:
2762 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2766 #ifdef HAVE_TARGET_64_LITTLE
2767 case Parameters::TARGET_64_LITTLE
:
2768 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2772 #ifdef HAVE_TARGET_64_BIG
2773 case Parameters::TARGET_64_BIG
:
2774 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2783 // Write out a section symbol, specialized for size and endianness.
2785 template<int size
, bool big_endian
>
2787 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2788 Output_symtab_xindex
* symtab_xindex
,
2792 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2794 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2796 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2797 osym
.put_st_name(0);
2798 if (parameters
->options().relocatable())
2799 osym
.put_st_value(0);
2801 osym
.put_st_value(os
->address());
2802 osym
.put_st_size(0);
2803 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2804 elfcpp::STT_SECTION
));
2805 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2807 unsigned int shndx
= os
->out_shndx();
2808 if (shndx
>= elfcpp::SHN_LORESERVE
)
2810 symtab_xindex
->add(os
->symtab_index(), shndx
);
2811 shndx
= elfcpp::SHN_XINDEX
;
2813 osym
.put_st_shndx(shndx
);
2815 of
->write_output_view(offset
, sym_size
, pov
);
2818 // Print statistical information to stderr. This is used for --stats.
2821 Symbol_table::print_stats() const
2823 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2824 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2825 program_name
, this->table_
.size(), this->table_
.bucket_count());
2827 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2828 program_name
, this->table_
.size());
2830 this->namepool_
.print_stats("symbol table stringpool");
2833 // We check for ODR violations by looking for symbols with the same
2834 // name for which the debugging information reports that they were
2835 // defined in different source locations. When comparing the source
2836 // location, we consider instances with the same base filename and
2837 // line number to be the same. This is because different object
2838 // files/shared libraries can include the same header file using
2839 // different paths, and we don't want to report an ODR violation in
2842 // This struct is used to compare line information, as returned by
2843 // Dwarf_line_info::one_addr2line. It implements a < comparison
2844 // operator used with std::set.
2846 struct Odr_violation_compare
2849 operator()(const std::string
& s1
, const std::string
& s2
) const
2851 std::string::size_type pos1
= s1
.rfind('/');
2852 std::string::size_type pos2
= s2
.rfind('/');
2853 if (pos1
== std::string::npos
2854 || pos2
== std::string::npos
)
2856 return s1
.compare(pos1
, std::string::npos
,
2857 s2
, pos2
, std::string::npos
) < 0;
2861 // Check candidate_odr_violations_ to find symbols with the same name
2862 // but apparently different definitions (different source-file/line-no).
2865 Symbol_table::detect_odr_violations(const Task
* task
,
2866 const char* output_file_name
) const
2868 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
2869 it
!= candidate_odr_violations_
.end();
2872 const char* symbol_name
= it
->first
;
2873 // We use a sorted set so the output is deterministic.
2874 std::set
<std::string
, Odr_violation_compare
> line_nums
;
2876 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
2877 locs
= it
->second
.begin();
2878 locs
!= it
->second
.end();
2881 // We need to lock the object in order to read it. This
2882 // means that we have to run in a singleton Task. If we
2883 // want to run this in a general Task for better
2884 // performance, we will need one Task for object, plus
2885 // appropriate locking to ensure that we don't conflict with
2886 // other uses of the object. Also note, one_addr2line is not
2887 // currently thread-safe.
2888 Task_lock_obj
<Object
> tl(task
, locs
->object
);
2889 // 16 is the size of the object-cache that one_addr2line should use.
2890 std::string lineno
= Dwarf_line_info::one_addr2line(
2891 locs
->object
, locs
->shndx
, locs
->offset
, 16);
2892 if (!lineno
.empty())
2893 line_nums
.insert(lineno
);
2896 if (line_nums
.size() > 1)
2898 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2899 "places (possible ODR violation):"),
2900 output_file_name
, demangle(symbol_name
).c_str());
2901 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
2902 it2
!= line_nums
.end();
2904 fprintf(stderr
, " %s\n", it2
->c_str());
2907 // We only call one_addr2line() in this function, so we can clear its cache.
2908 Dwarf_line_info::clear_addr2line_cache();
2911 // Warnings functions.
2913 // Add a new warning.
2916 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
2917 const std::string
& warning
)
2919 name
= symtab
->canonicalize_name(name
);
2920 this->warnings_
[name
].set(obj
, warning
);
2923 // Look through the warnings and mark the symbols for which we should
2924 // warn. This is called during Layout::finalize when we know the
2925 // sources for all the symbols.
2928 Warnings::note_warnings(Symbol_table
* symtab
)
2930 for (Warning_table::iterator p
= this->warnings_
.begin();
2931 p
!= this->warnings_
.end();
2934 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
2936 && sym
->source() == Symbol::FROM_OBJECT
2937 && sym
->object() == p
->second
.object
)
2938 sym
->set_has_warning();
2942 // Issue a warning. This is called when we see a relocation against a
2943 // symbol for which has a warning.
2945 template<int size
, bool big_endian
>
2947 Warnings::issue_warning(const Symbol
* sym
,
2948 const Relocate_info
<size
, big_endian
>* relinfo
,
2949 size_t relnum
, off_t reloffset
) const
2951 gold_assert(sym
->has_warning());
2952 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
2953 gold_assert(p
!= this->warnings_
.end());
2954 gold_warning_at_location(relinfo
, relnum
, reloffset
,
2955 "%s", p
->second
.text
.c_str());
2958 // Instantiate the templates we need. We could use the configure
2959 // script to restrict this to only the ones needed for implemented
2962 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2965 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
2968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2971 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
2974 #ifdef HAVE_TARGET_32_LITTLE
2977 Symbol_table::add_from_relobj
<32, false>(
2978 Sized_relobj
<32, false>* relobj
,
2979 const unsigned char* syms
,
2981 size_t symndx_offset
,
2982 const char* sym_names
,
2983 size_t sym_name_size
,
2984 Sized_relobj
<32, false>::Symbols
* sympointers
,
2988 #ifdef HAVE_TARGET_32_BIG
2991 Symbol_table::add_from_relobj
<32, true>(
2992 Sized_relobj
<32, true>* relobj
,
2993 const unsigned char* syms
,
2995 size_t symndx_offset
,
2996 const char* sym_names
,
2997 size_t sym_name_size
,
2998 Sized_relobj
<32, true>::Symbols
* sympointers
,
3002 #ifdef HAVE_TARGET_64_LITTLE
3005 Symbol_table::add_from_relobj
<64, false>(
3006 Sized_relobj
<64, false>* relobj
,
3007 const unsigned char* syms
,
3009 size_t symndx_offset
,
3010 const char* sym_names
,
3011 size_t sym_name_size
,
3012 Sized_relobj
<64, false>::Symbols
* sympointers
,
3016 #ifdef HAVE_TARGET_64_BIG
3019 Symbol_table::add_from_relobj
<64, true>(
3020 Sized_relobj
<64, true>* relobj
,
3021 const unsigned char* syms
,
3023 size_t symndx_offset
,
3024 const char* sym_names
,
3025 size_t sym_name_size
,
3026 Sized_relobj
<64, true>::Symbols
* sympointers
,
3030 #ifdef HAVE_TARGET_32_LITTLE
3033 Symbol_table::add_from_pluginobj
<32, false>(
3034 Sized_pluginobj
<32, false>* obj
,
3037 elfcpp::Sym
<32, false>* sym
);
3040 #ifdef HAVE_TARGET_32_BIG
3043 Symbol_table::add_from_pluginobj
<32, true>(
3044 Sized_pluginobj
<32, true>* obj
,
3047 elfcpp::Sym
<32, true>* sym
);
3050 #ifdef HAVE_TARGET_64_LITTLE
3053 Symbol_table::add_from_pluginobj
<64, false>(
3054 Sized_pluginobj
<64, false>* obj
,
3057 elfcpp::Sym
<64, false>* sym
);
3060 #ifdef HAVE_TARGET_64_BIG
3063 Symbol_table::add_from_pluginobj
<64, true>(
3064 Sized_pluginobj
<64, true>* obj
,
3067 elfcpp::Sym
<64, true>* sym
);
3070 #ifdef HAVE_TARGET_32_LITTLE
3073 Symbol_table::add_from_dynobj
<32, false>(
3074 Sized_dynobj
<32, false>* dynobj
,
3075 const unsigned char* syms
,
3077 const char* sym_names
,
3078 size_t sym_name_size
,
3079 const unsigned char* versym
,
3081 const std::vector
<const char*>* version_map
,
3082 Sized_relobj
<32, false>::Symbols
* sympointers
,
3086 #ifdef HAVE_TARGET_32_BIG
3089 Symbol_table::add_from_dynobj
<32, true>(
3090 Sized_dynobj
<32, true>* dynobj
,
3091 const unsigned char* syms
,
3093 const char* sym_names
,
3094 size_t sym_name_size
,
3095 const unsigned char* versym
,
3097 const std::vector
<const char*>* version_map
,
3098 Sized_relobj
<32, true>::Symbols
* sympointers
,
3102 #ifdef HAVE_TARGET_64_LITTLE
3105 Symbol_table::add_from_dynobj
<64, false>(
3106 Sized_dynobj
<64, false>* dynobj
,
3107 const unsigned char* syms
,
3109 const char* sym_names
,
3110 size_t sym_name_size
,
3111 const unsigned char* versym
,
3113 const std::vector
<const char*>* version_map
,
3114 Sized_relobj
<64, false>::Symbols
* sympointers
,
3118 #ifdef HAVE_TARGET_64_BIG
3121 Symbol_table::add_from_dynobj
<64, true>(
3122 Sized_dynobj
<64, true>* dynobj
,
3123 const unsigned char* syms
,
3125 const char* sym_names
,
3126 size_t sym_name_size
,
3127 const unsigned char* versym
,
3129 const std::vector
<const char*>* version_map
,
3130 Sized_relobj
<64, true>::Symbols
* sympointers
,
3134 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3137 Symbol_table::define_with_copy_reloc
<32>(
3138 Sized_symbol
<32>* sym
,
3140 elfcpp::Elf_types
<32>::Elf_Addr value
);
3143 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3146 Symbol_table::define_with_copy_reloc
<64>(
3147 Sized_symbol
<64>* sym
,
3149 elfcpp::Elf_types
<64>::Elf_Addr value
);
3152 #ifdef HAVE_TARGET_32_LITTLE
3155 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3156 const Relocate_info
<32, false>* relinfo
,
3157 size_t relnum
, off_t reloffset
) const;
3160 #ifdef HAVE_TARGET_32_BIG
3163 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3164 const Relocate_info
<32, true>* relinfo
,
3165 size_t relnum
, off_t reloffset
) const;
3168 #ifdef HAVE_TARGET_64_LITTLE
3171 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3172 const Relocate_info
<64, false>* relinfo
,
3173 size_t relnum
, off_t reloffset
) const;
3176 #ifdef HAVE_TARGET_64_BIG
3179 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3180 const Relocate_info
<64, true>* relinfo
,
3181 size_t relnum
, off_t reloffset
) const;
3184 } // End namespace gold.