1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 char *shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= (char *) i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 (*_bfd_error_handler
)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
297 ((shindex
== elf_elfheader(abfd
)->e_shstrndx
298 && strindex
== hdr
->sh_name
)
300 : elf_string_from_elf_strtab (abfd
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_local_sym_name (bfd
*abfd
, Elf_Internal_Sym
*isym
)
410 unsigned int iname
= isym
->st_name
;
411 unsigned int shindex
= elf_tdata (abfd
)->symtab_hdr
.sh_link
;
412 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 return bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
425 typedef union elf_internal_group
{
426 Elf_Internal_Shdr
*shdr
;
428 } Elf_Internal_Group
;
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
434 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
436 Elf_Internal_Shdr
*hdr
;
437 unsigned char esym
[sizeof (Elf64_External_Sym
)];
438 Elf_External_Sym_Shndx eshndx
;
439 Elf_Internal_Sym isym
;
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
445 /* Go read the symbol. */
446 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
447 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
448 &isym
, esym
, &eshndx
) == NULL
)
451 return bfd_elf_local_sym_name (abfd
, &isym
);
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
457 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
459 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
465 unsigned int i
, shnum
;
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum
= elf_numsections (abfd
);
471 for (i
= 0; i
< shnum
; i
++)
473 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
474 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
479 num_group
= (unsigned) -1;
480 elf_tdata (abfd
)->num_group
= num_group
;
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
487 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
488 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
492 for (i
= 0; i
< shnum
; i
++)
494 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
495 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
498 Elf_Internal_Group
*dest
;
500 /* Add to list of sections. */
501 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest
) >= 4);
506 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
507 shdr
->contents
= bfd_alloc (abfd
, amt
);
508 if (shdr
->contents
== NULL
509 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
510 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
518 src
= shdr
->contents
+ shdr
->sh_size
;
519 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
526 idx
= H_GET_32 (abfd
, src
);
527 if (src
== shdr
->contents
)
530 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
531 shdr
->bfd_section
->flags
532 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
537 ((*_bfd_error_handler
)
538 (_("%B: invalid SHT_GROUP entry"), abfd
));
541 dest
->shdr
= elf_elfsections (abfd
)[idx
];
548 if (num_group
!= (unsigned) -1)
552 for (i
= 0; i
< num_group
; i
++)
554 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
555 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
556 unsigned int n_elt
= shdr
->sh_size
/ 4;
558 /* Look through this group's sections to see if current
559 section is a member. */
561 if ((++idx
)->shdr
== hdr
)
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
568 idx
= (Elf_Internal_Group
*) shdr
->contents
;
569 n_elt
= shdr
->sh_size
/ 4;
571 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
572 && elf_next_in_group (s
) != NULL
)
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect
) = elf_group_name (s
);
579 elf_next_in_group (newsect
) = elf_next_in_group (s
);
580 elf_next_in_group (s
) = newsect
;
586 gname
= group_signature (abfd
, shdr
);
589 elf_group_name (newsect
) = gname
;
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect
) = newsect
;
595 /* If the group section has been created, point to the
597 if (shdr
->bfd_section
!= NULL
)
598 elf_next_in_group (shdr
->bfd_section
) = newsect
;
606 if (elf_group_name (newsect
) == NULL
)
608 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
615 _bfd_elf_setup_group_pointers (bfd
*abfd
)
618 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
619 bfd_boolean result
= TRUE
;
621 if (num_group
== (unsigned) -1)
624 for (i
= 0; i
< num_group
; i
++)
626 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
627 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
628 unsigned int n_elt
= shdr
->sh_size
/ 4;
631 if ((++idx
)->shdr
->bfd_section
)
632 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
633 else if (idx
->shdr
->sh_type
== SHT_RELA
634 || idx
->shdr
->sh_type
== SHT_REL
)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
640 shdr
->bfd_section
->size
-= 4;
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler
)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
647 (unsigned int) idx
->shdr
->sh_type
,
648 elf_string_from_elf_strtab (abfd
, idx
->shdr
->sh_name
),
649 shdr
->bfd_section
->name
);
657 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
659 return elf_next_in_group (sec
) != NULL
;
663 bfd_elf_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
,
664 asection
*group ATTRIBUTE_UNUSED
)
667 asection
*first
= elf_next_in_group (group
);
672 s
->output_section
= bfd_abs_section_ptr
;
673 s
= elf_next_in_group (s
);
674 /* These lists are circular. */
679 /* FIXME: Never used. Remove it! */
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
689 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
690 Elf_Internal_Shdr
*hdr
,
695 const struct elf_backend_data
*bed
;
697 if (hdr
->bfd_section
!= NULL
)
699 BFD_ASSERT (strcmp (name
,
700 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
704 newsect
= bfd_make_section_anyway (abfd
, name
);
708 hdr
->bfd_section
= newsect
;
709 elf_section_data (newsect
)->this_hdr
= *hdr
;
711 /* Always use the real type/flags. */
712 elf_section_type (newsect
) = hdr
->sh_type
;
713 elf_section_flags (newsect
) = hdr
->sh_flags
;
715 newsect
->filepos
= hdr
->sh_offset
;
717 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
718 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
719 || ! bfd_set_section_alignment (abfd
, newsect
,
720 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
723 flags
= SEC_NO_FLAGS
;
724 if (hdr
->sh_type
!= SHT_NOBITS
)
725 flags
|= SEC_HAS_CONTENTS
;
726 if (hdr
->sh_type
== SHT_GROUP
)
727 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
728 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
731 if (hdr
->sh_type
!= SHT_NOBITS
)
734 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
735 flags
|= SEC_READONLY
;
736 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
738 else if ((flags
& SEC_LOAD
) != 0)
740 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
743 newsect
->entsize
= hdr
->sh_entsize
;
744 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
745 flags
|= SEC_STRINGS
;
747 if (hdr
->sh_flags
& SHF_GROUP
)
748 if (!setup_group (abfd
, hdr
, newsect
))
750 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
751 flags
|= SEC_THREAD_LOCAL
;
753 /* The debugging sections appear to be recognized only by name, not
756 static const char *debug_sec_names
[] =
765 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
766 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
770 flags
|= SEC_DEBUGGING
;
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect
) == NULL
)
781 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
783 bed
= get_elf_backend_data (abfd
);
784 if (bed
->elf_backend_section_flags
)
785 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
788 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
791 if ((flags
& SEC_ALLOC
) != 0)
793 Elf_Internal_Phdr
*phdr
;
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr
= elf_tdata (abfd
)->phdr
;
800 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
802 if (phdr
->p_paddr
!= 0)
805 if (i
< elf_elfheader (abfd
)->e_phnum
)
807 phdr
= elf_tdata (abfd
)->phdr
;
808 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr
->p_type
== PT_LOAD
823 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
824 && (hdr
->sh_offset
+ hdr
->sh_size
825 <= phdr
->p_offset
+ phdr
->p_memsz
)
826 && ((flags
& SEC_LOAD
) == 0
827 || (hdr
->sh_offset
+ hdr
->sh_size
828 <= phdr
->p_offset
+ phdr
->p_filesz
)))
830 if ((flags
& SEC_LOAD
) == 0)
831 newsect
->lma
= (phdr
->p_paddr
832 + hdr
->sh_addr
- phdr
->p_vaddr
);
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect
->lma
= (phdr
->p_paddr
842 + hdr
->sh_offset
- phdr
->p_offset
);
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr
->sh_addr
>= phdr
->p_vaddr
849 && (hdr
->sh_addr
+ hdr
->sh_size
850 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
875 struct elf_internal_shdr
*
876 bfd_elf_find_section (bfd
*abfd
, char *name
)
878 Elf_Internal_Shdr
**i_shdrp
;
883 i_shdrp
= elf_elfsections (abfd
);
886 shstrtab
= bfd_elf_get_str_section (abfd
,
887 elf_elfheader (abfd
)->e_shstrndx
);
888 if (shstrtab
!= NULL
)
890 max
= elf_numsections (abfd
);
891 for (i
= 1; i
< max
; i
++)
892 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
899 const char *const bfd_elf_section_type_names
[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
917 arelent
*reloc_entry
,
919 void *data ATTRIBUTE_UNUSED
,
920 asection
*input_section
,
922 char **error_message ATTRIBUTE_UNUSED
)
924 if (output_bfd
!= NULL
925 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
926 && (! reloc_entry
->howto
->partial_inplace
927 || reloc_entry
->addend
== 0))
929 reloc_entry
->address
+= input_section
->output_offset
;
933 return bfd_reloc_continue
;
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
939 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
942 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
943 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
946 /* Finish SHF_MERGE section merging. */
949 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
954 if (!is_elf_hash_table (info
->hash
))
957 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
958 if ((ibfd
->flags
& DYNAMIC
) == 0)
959 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
960 if ((sec
->flags
& SEC_MERGE
) != 0
961 && !bfd_is_abs_section (sec
->output_section
))
963 struct bfd_elf_section_data
*secdata
;
965 secdata
= elf_section_data (sec
);
966 if (! _bfd_add_merge_section (abfd
,
967 &elf_hash_table (info
)->merge_info
,
968 sec
, &secdata
->sec_info
))
970 else if (secdata
->sec_info
)
971 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
974 if (elf_hash_table (info
)->merge_info
!= NULL
)
975 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
976 merge_sections_remove_hook
);
981 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
983 sec
->output_section
= bfd_abs_section_ptr
;
984 sec
->output_offset
= sec
->vma
;
985 if (!is_elf_hash_table (info
->hash
))
988 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
991 /* Copy the program header and other data from one object module to
995 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
997 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1001 BFD_ASSERT (!elf_flags_init (obfd
)
1002 || (elf_elfheader (obfd
)->e_flags
1003 == elf_elfheader (ibfd
)->e_flags
));
1005 elf_gp (obfd
) = elf_gp (ibfd
);
1006 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1007 elf_flags_init (obfd
) = TRUE
;
1011 /* Print out the program headers. */
1014 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1017 Elf_Internal_Phdr
*p
;
1019 bfd_byte
*dynbuf
= NULL
;
1021 p
= elf_tdata (abfd
)->phdr
;
1026 fprintf (f
, _("\nProgram Header:\n"));
1027 c
= elf_elfheader (abfd
)->e_phnum
;
1028 for (i
= 0; i
< c
; i
++, p
++)
1035 case PT_NULL
: pt
= "NULL"; break;
1036 case PT_LOAD
: pt
= "LOAD"; break;
1037 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1038 case PT_INTERP
: pt
= "INTERP"; break;
1039 case PT_NOTE
: pt
= "NOTE"; break;
1040 case PT_SHLIB
: pt
= "SHLIB"; break;
1041 case PT_PHDR
: pt
= "PHDR"; break;
1042 case PT_TLS
: pt
= "TLS"; break;
1043 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1044 case PT_GNU_STACK
: pt
= "STACK"; break;
1045 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1046 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1048 fprintf (f
, "%8s off 0x", pt
);
1049 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1050 fprintf (f
, " vaddr 0x");
1051 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1052 fprintf (f
, " paddr 0x");
1053 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1054 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1055 fprintf (f
, " filesz 0x");
1056 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1057 fprintf (f
, " memsz 0x");
1058 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1059 fprintf (f
, " flags %c%c%c",
1060 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1061 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1062 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1063 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1064 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1069 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1073 unsigned long shlink
;
1074 bfd_byte
*extdyn
, *extdynend
;
1076 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1078 fprintf (f
, _("\nDynamic Section:\n"));
1080 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1083 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1086 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1088 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1089 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1092 extdynend
= extdyn
+ s
->size
;
1093 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1095 Elf_Internal_Dyn dyn
;
1098 bfd_boolean stringp
;
1100 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1102 if (dyn
.d_tag
== DT_NULL
)
1109 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1113 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1114 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1115 case DT_PLTGOT
: name
= "PLTGOT"; break;
1116 case DT_HASH
: name
= "HASH"; break;
1117 case DT_STRTAB
: name
= "STRTAB"; break;
1118 case DT_SYMTAB
: name
= "SYMTAB"; break;
1119 case DT_RELA
: name
= "RELA"; break;
1120 case DT_RELASZ
: name
= "RELASZ"; break;
1121 case DT_RELAENT
: name
= "RELAENT"; break;
1122 case DT_STRSZ
: name
= "STRSZ"; break;
1123 case DT_SYMENT
: name
= "SYMENT"; break;
1124 case DT_INIT
: name
= "INIT"; break;
1125 case DT_FINI
: name
= "FINI"; break;
1126 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1127 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1128 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1129 case DT_REL
: name
= "REL"; break;
1130 case DT_RELSZ
: name
= "RELSZ"; break;
1131 case DT_RELENT
: name
= "RELENT"; break;
1132 case DT_PLTREL
: name
= "PLTREL"; break;
1133 case DT_DEBUG
: name
= "DEBUG"; break;
1134 case DT_TEXTREL
: name
= "TEXTREL"; break;
1135 case DT_JMPREL
: name
= "JMPREL"; break;
1136 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1137 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1142 case DT_FLAGS
: name
= "FLAGS"; break;
1143 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1146 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1147 case DT_MOVEENT
: name
= "MOVEENT"; break;
1148 case DT_MOVESZ
: name
= "MOVESZ"; break;
1149 case DT_FEATURE
: name
= "FEATURE"; break;
1150 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1151 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1152 case DT_SYMINENT
: name
= "SYMINENT"; break;
1153 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1154 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1155 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1156 case DT_PLTPAD
: name
= "PLTPAD"; break;
1157 case DT_MOVETAB
: name
= "MOVETAB"; break;
1158 case DT_SYMINFO
: name
= "SYMINFO"; break;
1159 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1160 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1161 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1162 case DT_VERSYM
: name
= "VERSYM"; break;
1163 case DT_VERDEF
: name
= "VERDEF"; break;
1164 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1165 case DT_VERNEED
: name
= "VERNEED"; break;
1166 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1167 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1168 case DT_USED
: name
= "USED"; break;
1169 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1172 fprintf (f
, " %-11s ", name
);
1174 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1178 unsigned int tagv
= dyn
.d_un
.d_val
;
1180 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1183 fprintf (f
, "%s", string
);
1192 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1193 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1195 if (! _bfd_elf_slurp_version_tables (abfd
))
1199 if (elf_dynverdef (abfd
) != 0)
1201 Elf_Internal_Verdef
*t
;
1203 fprintf (f
, _("\nVersion definitions:\n"));
1204 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1206 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1207 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1208 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1210 Elf_Internal_Verdaux
*a
;
1213 for (a
= t
->vd_auxptr
->vda_nextptr
;
1216 fprintf (f
, "%s ", a
->vda_nodename
);
1222 if (elf_dynverref (abfd
) != 0)
1224 Elf_Internal_Verneed
*t
;
1226 fprintf (f
, _("\nVersion References:\n"));
1227 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1229 Elf_Internal_Vernaux
*a
;
1231 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1232 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1233 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1234 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1246 /* Display ELF-specific fields of a symbol. */
1249 bfd_elf_print_symbol (bfd
*abfd
,
1252 bfd_print_symbol_type how
)
1257 case bfd_print_symbol_name
:
1258 fprintf (file
, "%s", symbol
->name
);
1260 case bfd_print_symbol_more
:
1261 fprintf (file
, "elf ");
1262 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1263 fprintf (file
, " %lx", (long) symbol
->flags
);
1265 case bfd_print_symbol_all
:
1267 const char *section_name
;
1268 const char *name
= NULL
;
1269 const struct elf_backend_data
*bed
;
1270 unsigned char st_other
;
1273 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1275 bed
= get_elf_backend_data (abfd
);
1276 if (bed
->elf_backend_print_symbol_all
)
1277 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1281 name
= symbol
->name
;
1282 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1285 fprintf (file
, " %s\t", section_name
);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol
->section
))
1291 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1293 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1294 bfd_fprintf_vma (abfd
, file
, val
);
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd
)->dynversym_section
!= 0
1298 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1299 || elf_tdata (abfd
)->dynverref_section
!= 0))
1301 unsigned int vernum
;
1302 const char *version_string
;
1304 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1307 version_string
= "";
1308 else if (vernum
== 1)
1309 version_string
= "Base";
1310 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1312 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1315 Elf_Internal_Verneed
*t
;
1317 version_string
= "";
1318 for (t
= elf_tdata (abfd
)->verref
;
1322 Elf_Internal_Vernaux
*a
;
1324 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1326 if (a
->vna_other
== vernum
)
1328 version_string
= a
->vna_nodename
;
1335 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1336 fprintf (file
, " %-11s", version_string
);
1341 fprintf (file
, " (%s)", version_string
);
1342 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1347 /* If the st_other field is not zero, print it. */
1348 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1353 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1354 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1355 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1357 /* Some other non-defined flags are also present, so print
1359 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1362 fprintf (file
, " %s", name
);
1368 /* Create an entry in an ELF linker hash table. */
1370 struct bfd_hash_entry
*
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1372 struct bfd_hash_table
*table
,
1375 /* Allocate the structure if it has not already been allocated by a
1379 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1384 /* Call the allocation method of the superclass. */
1385 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1388 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1389 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1391 /* Set local fields. */
1394 ret
->got
= ret
->plt
= htab
->init_refcount
;
1395 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1396 - offsetof (struct elf_link_hash_entry
, size
)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1412 struct elf_link_hash_entry
*dir
,
1413 struct elf_link_hash_entry
*ind
)
1416 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1421 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1422 dir
->ref_regular
|= ind
->ref_regular
;
1423 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1424 dir
->non_got_ref
|= ind
->non_got_ref
;
1425 dir
->needs_plt
|= ind
->needs_plt
;
1426 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1428 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp
= dir
->got
.refcount
;
1434 if (tmp
< lowest_valid
)
1436 dir
->got
.refcount
= ind
->got
.refcount
;
1437 ind
->got
.refcount
= tmp
;
1440 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1442 tmp
= dir
->plt
.refcount
;
1443 if (tmp
< lowest_valid
)
1445 dir
->plt
.refcount
= ind
->plt
.refcount
;
1446 ind
->plt
.refcount
= tmp
;
1449 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1451 if (dir
->dynindx
== -1)
1453 dir
->dynindx
= ind
->dynindx
;
1454 dir
->dynstr_index
= ind
->dynstr_index
;
1456 ind
->dynstr_index
= 0;
1459 BFD_ASSERT (ind
->dynindx
== -1);
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1464 struct elf_link_hash_entry
*h
,
1465 bfd_boolean force_local
)
1467 h
->plt
= elf_hash_table (info
)->init_offset
;
1471 h
->forced_local
= 1;
1472 if (h
->dynindx
!= -1)
1475 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1481 /* Initialize an ELF linker hash table. */
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table
*table
,
1487 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1488 struct bfd_hash_table
*,
1493 table
->dynamic_sections_created
= FALSE
;
1494 table
->dynobj
= NULL
;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1498 table
->init_refcount
.refcount
-= 1;
1499 table
->init_offset
.offset
= -(bfd_vma
) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table
->dynsymcount
= 1;
1502 table
->dynstr
= NULL
;
1503 table
->bucketcount
= 0;
1504 table
->needed
= NULL
;
1506 table
->merge_info
= NULL
;
1507 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1508 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1509 table
->dynlocal
= NULL
;
1510 table
->runpath
= NULL
;
1511 table
->tls_sec
= NULL
;
1512 table
->tls_size
= 0;
1513 table
->loaded
= NULL
;
1515 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1516 table
->root
.type
= bfd_link_elf_hash_table
;
1521 /* Create an ELF linker hash table. */
1523 struct bfd_link_hash_table
*
1524 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1526 struct elf_link_hash_table
*ret
;
1527 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1529 ret
= bfd_malloc (amt
);
1533 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1542 /* This is a hook for the ELF emulation code in the generic linker to
1543 tell the backend linker what file name to use for the DT_NEEDED
1544 entry for a dynamic object. */
1547 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1549 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1550 && bfd_get_format (abfd
) == bfd_object
)
1551 elf_dt_name (abfd
) = name
;
1555 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1558 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1559 && bfd_get_format (abfd
) == bfd_object
)
1560 lib_class
= elf_dyn_lib_class (abfd
);
1567 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1569 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1570 && bfd_get_format (abfd
) == bfd_object
)
1571 elf_dyn_lib_class (abfd
) = lib_class
;
1574 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1575 the linker ELF emulation code. */
1577 struct bfd_link_needed_list
*
1578 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1579 struct bfd_link_info
*info
)
1581 if (! is_elf_hash_table (info
->hash
))
1583 return elf_hash_table (info
)->needed
;
1586 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1587 hook for the linker ELF emulation code. */
1589 struct bfd_link_needed_list
*
1590 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1591 struct bfd_link_info
*info
)
1593 if (! is_elf_hash_table (info
->hash
))
1595 return elf_hash_table (info
)->runpath
;
1598 /* Get the name actually used for a dynamic object for a link. This
1599 is the SONAME entry if there is one. Otherwise, it is the string
1600 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1603 bfd_elf_get_dt_soname (bfd
*abfd
)
1605 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd
) == bfd_object
)
1607 return elf_dt_name (abfd
);
1611 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1612 the ELF linker emulation code. */
1615 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1616 struct bfd_link_needed_list
**pneeded
)
1619 bfd_byte
*dynbuf
= NULL
;
1621 unsigned long shlink
;
1622 bfd_byte
*extdyn
, *extdynend
;
1624 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1628 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1629 || bfd_get_format (abfd
) != bfd_object
)
1632 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1633 if (s
== NULL
|| s
->size
== 0)
1636 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1639 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1643 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1645 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1646 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1649 extdynend
= extdyn
+ s
->size
;
1650 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1652 Elf_Internal_Dyn dyn
;
1654 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1656 if (dyn
.d_tag
== DT_NULL
)
1659 if (dyn
.d_tag
== DT_NEEDED
)
1662 struct bfd_link_needed_list
*l
;
1663 unsigned int tagv
= dyn
.d_un
.d_val
;
1666 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1671 l
= bfd_alloc (abfd
, amt
);
1692 /* Allocate an ELF string table--force the first byte to be zero. */
1694 struct bfd_strtab_hash
*
1695 _bfd_elf_stringtab_init (void)
1697 struct bfd_strtab_hash
*ret
;
1699 ret
= _bfd_stringtab_init ();
1704 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1705 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1706 if (loc
== (bfd_size_type
) -1)
1708 _bfd_stringtab_free (ret
);
1715 /* ELF .o/exec file reading */
1717 /* Create a new bfd section from an ELF section header. */
1720 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1722 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1723 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1724 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1727 name
= elf_string_from_elf_strtab (abfd
, hdr
->sh_name
);
1729 switch (hdr
->sh_type
)
1732 /* Inactive section. Throw it away. */
1735 case SHT_PROGBITS
: /* Normal section with contents. */
1736 case SHT_NOBITS
: /* .bss section. */
1737 case SHT_HASH
: /* .hash section. */
1738 case SHT_NOTE
: /* .note section. */
1739 case SHT_INIT_ARRAY
: /* .init_array section. */
1740 case SHT_FINI_ARRAY
: /* .fini_array section. */
1741 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1742 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1743 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1745 case SHT_DYNAMIC
: /* Dynamic linking information. */
1746 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1748 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1750 Elf_Internal_Shdr
*dynsymhdr
;
1752 /* The shared libraries distributed with hpux11 have a bogus
1753 sh_link field for the ".dynamic" section. Find the
1754 string table for the ".dynsym" section instead. */
1755 if (elf_dynsymtab (abfd
) != 0)
1757 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1758 hdr
->sh_link
= dynsymhdr
->sh_link
;
1762 unsigned int i
, num_sec
;
1764 num_sec
= elf_numsections (abfd
);
1765 for (i
= 1; i
< num_sec
; i
++)
1767 dynsymhdr
= elf_elfsections (abfd
)[i
];
1768 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1770 hdr
->sh_link
= dynsymhdr
->sh_link
;
1778 case SHT_SYMTAB
: /* A symbol table */
1779 if (elf_onesymtab (abfd
) == shindex
)
1782 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1783 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1784 elf_onesymtab (abfd
) = shindex
;
1785 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1786 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1787 abfd
->flags
|= HAS_SYMS
;
1789 /* Sometimes a shared object will map in the symbol table. If
1790 SHF_ALLOC is set, and this is a shared object, then we also
1791 treat this section as a BFD section. We can not base the
1792 decision purely on SHF_ALLOC, because that flag is sometimes
1793 set in a relocatable object file, which would confuse the
1795 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1796 && (abfd
->flags
& DYNAMIC
) != 0
1797 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1802 case SHT_DYNSYM
: /* A dynamic symbol table */
1803 if (elf_dynsymtab (abfd
) == shindex
)
1806 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1807 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1808 elf_dynsymtab (abfd
) = shindex
;
1809 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1810 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1811 abfd
->flags
|= HAS_SYMS
;
1813 /* Besides being a symbol table, we also treat this as a regular
1814 section, so that objcopy can handle it. */
1815 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1817 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1818 if (elf_symtab_shndx (abfd
) == shindex
)
1821 /* Get the associated symbol table. */
1822 if (! bfd_section_from_shdr (abfd
, hdr
->sh_link
)
1823 || hdr
->sh_link
!= elf_onesymtab (abfd
))
1826 elf_symtab_shndx (abfd
) = shindex
;
1827 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1828 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1831 case SHT_STRTAB
: /* A string table */
1832 if (hdr
->bfd_section
!= NULL
)
1834 if (ehdr
->e_shstrndx
== shindex
)
1836 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1837 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1841 unsigned int i
, num_sec
;
1843 num_sec
= elf_numsections (abfd
);
1844 for (i
= 1; i
< num_sec
; i
++)
1846 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1847 if (hdr2
->sh_link
== shindex
)
1849 if (! bfd_section_from_shdr (abfd
, i
))
1851 if (elf_onesymtab (abfd
) == i
)
1853 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1854 elf_elfsections (abfd
)[shindex
] =
1855 &elf_tdata (abfd
)->strtab_hdr
;
1858 if (elf_dynsymtab (abfd
) == i
)
1860 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1861 elf_elfsections (abfd
)[shindex
] = hdr
=
1862 &elf_tdata (abfd
)->dynstrtab_hdr
;
1863 /* We also treat this as a regular section, so
1864 that objcopy can handle it. */
1867 #if 0 /* Not handling other string tables specially right now. */
1868 hdr2
= elf_elfsections (abfd
)[i
]; /* in case it moved */
1869 /* We have a strtab for some random other section. */
1870 newsect
= (asection
*) hdr2
->bfd_section
;
1873 hdr
->bfd_section
= newsect
;
1874 hdr2
= &elf_section_data (newsect
)->str_hdr
;
1876 elf_elfsections (abfd
)[shindex
] = hdr2
;
1882 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1886 /* *These* do a lot of work -- but build no sections! */
1888 asection
*target_sect
;
1889 Elf_Internal_Shdr
*hdr2
;
1890 unsigned int num_sec
= elf_numsections (abfd
);
1892 /* Check for a bogus link to avoid crashing. */
1893 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1894 || hdr
->sh_link
>= num_sec
)
1896 ((*_bfd_error_handler
)
1897 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1898 abfd
, hdr
->sh_link
, name
, shindex
));
1899 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1902 /* For some incomprehensible reason Oracle distributes
1903 libraries for Solaris in which some of the objects have
1904 bogus sh_link fields. It would be nice if we could just
1905 reject them, but, unfortunately, some people need to use
1906 them. We scan through the section headers; if we find only
1907 one suitable symbol table, we clobber the sh_link to point
1908 to it. I hope this doesn't break anything. */
1909 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1910 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1916 for (scan
= 1; scan
< num_sec
; scan
++)
1918 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1919 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1930 hdr
->sh_link
= found
;
1933 /* Get the symbol table. */
1934 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1935 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1938 /* If this reloc section does not use the main symbol table we
1939 don't treat it as a reloc section. BFD can't adequately
1940 represent such a section, so at least for now, we don't
1941 try. We just present it as a normal section. We also
1942 can't use it as a reloc section if it points to the null
1944 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1945 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1947 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1949 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1950 if (target_sect
== NULL
)
1953 if ((target_sect
->flags
& SEC_RELOC
) == 0
1954 || target_sect
->reloc_count
== 0)
1955 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1959 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1960 amt
= sizeof (*hdr2
);
1961 hdr2
= bfd_alloc (abfd
, amt
);
1962 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1965 elf_elfsections (abfd
)[shindex
] = hdr2
;
1966 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1967 target_sect
->flags
|= SEC_RELOC
;
1968 target_sect
->relocation
= NULL
;
1969 target_sect
->rel_filepos
= hdr
->sh_offset
;
1970 /* In the section to which the relocations apply, mark whether
1971 its relocations are of the REL or RELA variety. */
1972 if (hdr
->sh_size
!= 0)
1973 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1974 abfd
->flags
|= HAS_RELOC
;
1979 case SHT_GNU_verdef
:
1980 elf_dynverdef (abfd
) = shindex
;
1981 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1982 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1985 case SHT_GNU_versym
:
1986 elf_dynversym (abfd
) = shindex
;
1987 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1988 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1991 case SHT_GNU_verneed
:
1992 elf_dynverref (abfd
) = shindex
;
1993 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1994 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
2001 /* We need a BFD section for objcopy and relocatable linking,
2002 and it's handy to have the signature available as the section
2004 name
= group_signature (abfd
, hdr
);
2007 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
2009 if (hdr
->contents
!= NULL
)
2011 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2012 unsigned int n_elt
= hdr
->sh_size
/ 4;
2015 if (idx
->flags
& GRP_COMDAT
)
2016 hdr
->bfd_section
->flags
2017 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2019 /* We try to keep the same section order as it comes in. */
2021 while (--n_elt
!= 0)
2022 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2023 && elf_next_in_group (s
) != NULL
)
2025 elf_next_in_group (hdr
->bfd_section
) = s
;
2032 /* Check for any processor-specific section types. */
2034 if (bed
->elf_backend_section_from_shdr
)
2035 (*bed
->elf_backend_section_from_shdr
) (abfd
, hdr
, name
);
2043 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2044 Return SEC for sections that have no elf section, and NULL on error. */
2047 bfd_section_from_r_symndx (bfd
*abfd
,
2048 struct sym_sec_cache
*cache
,
2050 unsigned long r_symndx
)
2052 Elf_Internal_Shdr
*symtab_hdr
;
2053 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2054 Elf_External_Sym_Shndx eshndx
;
2055 Elf_Internal_Sym isym
;
2056 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2058 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2059 return cache
->sec
[ent
];
2061 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2062 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2063 &isym
, esym
, &eshndx
) == NULL
)
2066 if (cache
->abfd
!= abfd
)
2068 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2071 cache
->indx
[ent
] = r_symndx
;
2072 cache
->sec
[ent
] = sec
;
2073 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2074 || isym
.st_shndx
> SHN_HIRESERVE
)
2077 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2079 cache
->sec
[ent
] = s
;
2081 return cache
->sec
[ent
];
2084 /* Given an ELF section number, retrieve the corresponding BFD
2088 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2090 if (index
>= elf_numsections (abfd
))
2092 return elf_elfsections (abfd
)[index
]->bfd_section
;
2095 static struct bfd_elf_special_section
const special_sections
[] =
2097 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2098 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2099 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2100 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2101 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2102 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2103 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2104 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2105 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2106 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2107 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2108 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2109 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2110 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2111 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2112 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2113 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2114 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2115 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2116 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2117 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2118 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2119 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2120 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2121 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2122 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2123 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2124 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2125 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2126 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2127 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2128 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2129 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2130 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2131 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2132 { ".note", 5, -1, SHT_NOTE
, 0 },
2133 { ".rela", 5, -1, SHT_RELA
, 0 },
2134 { ".rel", 4, -1, SHT_REL
, 0 },
2135 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2136 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2137 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2138 { NULL
, 0, 0, 0, 0 }
2141 static const struct bfd_elf_special_section
*
2142 get_special_section (const char *name
,
2143 const struct bfd_elf_special_section
*special_sections
,
2147 int len
= strlen (name
);
2149 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2152 int prefix_len
= special_sections
[i
].prefix_length
;
2154 if (len
< prefix_len
)
2156 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2159 suffix_len
= special_sections
[i
].suffix_length
;
2160 if (suffix_len
<= 0)
2162 if (name
[prefix_len
] != 0)
2164 if (suffix_len
== 0)
2166 if (name
[prefix_len
] != '.'
2167 && (suffix_len
== -2
2168 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2174 if (len
< prefix_len
+ suffix_len
)
2176 if (memcmp (name
+ len
- suffix_len
,
2177 special_sections
[i
].prefix
+ prefix_len
,
2181 return &special_sections
[i
];
2187 const struct bfd_elf_special_section
*
2188 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2190 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2191 const struct bfd_elf_special_section
*ssect
= NULL
;
2193 /* See if this is one of the special sections. */
2196 unsigned int rela
= bed
->default_use_rela_p
;
2198 if (bed
->special_sections
)
2199 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2202 ssect
= get_special_section (name
, special_sections
, rela
);
2209 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2211 struct bfd_elf_section_data
*sdata
;
2212 const struct bfd_elf_special_section
*ssect
;
2214 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2217 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2220 sec
->used_by_bfd
= sdata
;
2223 elf_section_type (sec
) = SHT_NULL
;
2224 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2227 elf_section_type (sec
) = ssect
->type
;
2228 elf_section_flags (sec
) = ssect
->attr
;
2231 /* Indicate whether or not this section should use RELA relocations. */
2232 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2237 /* Create a new bfd section from an ELF program header.
2239 Since program segments have no names, we generate a synthetic name
2240 of the form segment<NUM>, where NUM is generally the index in the
2241 program header table. For segments that are split (see below) we
2242 generate the names segment<NUM>a and segment<NUM>b.
2244 Note that some program segments may have a file size that is different than
2245 (less than) the memory size. All this means is that at execution the
2246 system must allocate the amount of memory specified by the memory size,
2247 but only initialize it with the first "file size" bytes read from the
2248 file. This would occur for example, with program segments consisting
2249 of combined data+bss.
2251 To handle the above situation, this routine generates TWO bfd sections
2252 for the single program segment. The first has the length specified by
2253 the file size of the segment, and the second has the length specified
2254 by the difference between the two sizes. In effect, the segment is split
2255 into it's initialized and uninitialized parts.
2260 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2261 Elf_Internal_Phdr
*hdr
,
2263 const char *typename
)
2271 split
= ((hdr
->p_memsz
> 0)
2272 && (hdr
->p_filesz
> 0)
2273 && (hdr
->p_memsz
> hdr
->p_filesz
));
2274 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2275 len
= strlen (namebuf
) + 1;
2276 name
= bfd_alloc (abfd
, len
);
2279 memcpy (name
, namebuf
, len
);
2280 newsect
= bfd_make_section (abfd
, name
);
2281 if (newsect
== NULL
)
2283 newsect
->vma
= hdr
->p_vaddr
;
2284 newsect
->lma
= hdr
->p_paddr
;
2285 newsect
->size
= hdr
->p_filesz
;
2286 newsect
->filepos
= hdr
->p_offset
;
2287 newsect
->flags
|= SEC_HAS_CONTENTS
;
2288 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2289 if (hdr
->p_type
== PT_LOAD
)
2291 newsect
->flags
|= SEC_ALLOC
;
2292 newsect
->flags
|= SEC_LOAD
;
2293 if (hdr
->p_flags
& PF_X
)
2295 /* FIXME: all we known is that it has execute PERMISSION,
2297 newsect
->flags
|= SEC_CODE
;
2300 if (!(hdr
->p_flags
& PF_W
))
2302 newsect
->flags
|= SEC_READONLY
;
2307 sprintf (namebuf
, "%s%db", typename
, index
);
2308 len
= strlen (namebuf
) + 1;
2309 name
= bfd_alloc (abfd
, len
);
2312 memcpy (name
, namebuf
, len
);
2313 newsect
= bfd_make_section (abfd
, name
);
2314 if (newsect
== NULL
)
2316 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2317 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2318 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2319 if (hdr
->p_type
== PT_LOAD
)
2321 newsect
->flags
|= SEC_ALLOC
;
2322 if (hdr
->p_flags
& PF_X
)
2323 newsect
->flags
|= SEC_CODE
;
2325 if (!(hdr
->p_flags
& PF_W
))
2326 newsect
->flags
|= SEC_READONLY
;
2333 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2335 const struct elf_backend_data
*bed
;
2337 switch (hdr
->p_type
)
2340 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2343 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2346 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2349 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2352 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2354 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2359 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2362 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2364 case PT_GNU_EH_FRAME
:
2365 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2369 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2372 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2375 /* Check for any processor-specific program segment types.
2376 If no handler for them, default to making "segment" sections. */
2377 bed
= get_elf_backend_data (abfd
);
2378 if (bed
->elf_backend_section_from_phdr
)
2379 return (*bed
->elf_backend_section_from_phdr
) (abfd
, hdr
, index
);
2381 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "segment");
2385 /* Initialize REL_HDR, the section-header for new section, containing
2386 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2387 relocations; otherwise, we use REL relocations. */
2390 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2391 Elf_Internal_Shdr
*rel_hdr
,
2393 bfd_boolean use_rela_p
)
2396 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2397 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2399 name
= bfd_alloc (abfd
, amt
);
2402 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2404 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2406 if (rel_hdr
->sh_name
== (unsigned int) -1)
2408 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2409 rel_hdr
->sh_entsize
= (use_rela_p
2410 ? bed
->s
->sizeof_rela
2411 : bed
->s
->sizeof_rel
);
2412 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2413 rel_hdr
->sh_flags
= 0;
2414 rel_hdr
->sh_addr
= 0;
2415 rel_hdr
->sh_size
= 0;
2416 rel_hdr
->sh_offset
= 0;
2421 /* Set up an ELF internal section header for a section. */
2424 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2426 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2427 bfd_boolean
*failedptr
= failedptrarg
;
2428 Elf_Internal_Shdr
*this_hdr
;
2432 /* We already failed; just get out of the bfd_map_over_sections
2437 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2439 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2440 asect
->name
, FALSE
);
2441 if (this_hdr
->sh_name
== (unsigned int) -1)
2447 this_hdr
->sh_flags
= 0;
2449 if ((asect
->flags
& SEC_ALLOC
) != 0
2450 || asect
->user_set_vma
)
2451 this_hdr
->sh_addr
= asect
->vma
;
2453 this_hdr
->sh_addr
= 0;
2455 this_hdr
->sh_offset
= 0;
2456 this_hdr
->sh_size
= asect
->size
;
2457 this_hdr
->sh_link
= 0;
2458 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2459 /* The sh_entsize and sh_info fields may have been set already by
2460 copy_private_section_data. */
2462 this_hdr
->bfd_section
= asect
;
2463 this_hdr
->contents
= NULL
;
2465 /* If the section type is unspecified, we set it based on
2467 if (this_hdr
->sh_type
== SHT_NULL
)
2469 if ((asect
->flags
& SEC_GROUP
) != 0)
2471 /* We also need to mark SHF_GROUP here for relocatable
2473 struct bfd_link_order
*l
;
2476 for (l
= asect
->link_order_head
; l
!= NULL
; l
= l
->next
)
2477 if (l
->type
== bfd_indirect_link_order
2478 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2481 /* The name is not important. Anything will do. */
2482 elf_group_name (elt
->output_section
) = "G";
2483 elf_section_flags (elt
->output_section
) |= SHF_GROUP
;
2485 elt
= elf_next_in_group (elt
);
2486 /* During a relocatable link, the lists are
2489 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2491 this_hdr
->sh_type
= SHT_GROUP
;
2493 else if ((asect
->flags
& SEC_ALLOC
) != 0
2494 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2495 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2496 this_hdr
->sh_type
= SHT_NOBITS
;
2498 this_hdr
->sh_type
= SHT_PROGBITS
;
2501 switch (this_hdr
->sh_type
)
2507 case SHT_INIT_ARRAY
:
2508 case SHT_FINI_ARRAY
:
2509 case SHT_PREINIT_ARRAY
:
2516 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2520 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2524 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2528 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2529 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2533 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2534 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2537 case SHT_GNU_versym
:
2538 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2541 case SHT_GNU_verdef
:
2542 this_hdr
->sh_entsize
= 0;
2543 /* objcopy or strip will copy over sh_info, but may not set
2544 cverdefs. The linker will set cverdefs, but sh_info will be
2546 if (this_hdr
->sh_info
== 0)
2547 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2549 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2550 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2553 case SHT_GNU_verneed
:
2554 this_hdr
->sh_entsize
= 0;
2555 /* objcopy or strip will copy over sh_info, but may not set
2556 cverrefs. The linker will set cverrefs, but sh_info will be
2558 if (this_hdr
->sh_info
== 0)
2559 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2561 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2562 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2566 this_hdr
->sh_entsize
= 4;
2570 if ((asect
->flags
& SEC_ALLOC
) != 0)
2571 this_hdr
->sh_flags
|= SHF_ALLOC
;
2572 if ((asect
->flags
& SEC_READONLY
) == 0)
2573 this_hdr
->sh_flags
|= SHF_WRITE
;
2574 if ((asect
->flags
& SEC_CODE
) != 0)
2575 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2576 if ((asect
->flags
& SEC_MERGE
) != 0)
2578 this_hdr
->sh_flags
|= SHF_MERGE
;
2579 this_hdr
->sh_entsize
= asect
->entsize
;
2580 if ((asect
->flags
& SEC_STRINGS
) != 0)
2581 this_hdr
->sh_flags
|= SHF_STRINGS
;
2583 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2584 this_hdr
->sh_flags
|= SHF_GROUP
;
2585 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2587 this_hdr
->sh_flags
|= SHF_TLS
;
2588 if (asect
->size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2590 struct bfd_link_order
*o
;
2592 this_hdr
->sh_size
= 0;
2593 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2594 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2595 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2596 if (this_hdr
->sh_size
)
2597 this_hdr
->sh_type
= SHT_NOBITS
;
2601 /* Check for processor-specific section types. */
2602 if (bed
->elf_backend_fake_sections
2603 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2606 /* If the section has relocs, set up a section header for the
2607 SHT_REL[A] section. If two relocation sections are required for
2608 this section, it is up to the processor-specific back-end to
2609 create the other. */
2610 if ((asect
->flags
& SEC_RELOC
) != 0
2611 && !_bfd_elf_init_reloc_shdr (abfd
,
2612 &elf_section_data (asect
)->rel_hdr
,
2618 /* Fill in the contents of a SHT_GROUP section. */
2621 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2623 bfd_boolean
*failedptr
= failedptrarg
;
2624 unsigned long symindx
;
2625 asection
*elt
, *first
;
2627 struct bfd_link_order
*l
;
2630 if (elf_section_data (sec
)->this_hdr
.sh_type
!= SHT_GROUP
2635 if (elf_group_id (sec
) != NULL
)
2636 symindx
= elf_group_id (sec
)->udata
.i
;
2640 /* If called from the assembler, swap_out_syms will have set up
2641 elf_section_syms; If called for "ld -r", use target_index. */
2642 if (elf_section_syms (abfd
) != NULL
)
2643 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2645 symindx
= sec
->target_index
;
2647 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2649 /* The contents won't be allocated for "ld -r" or objcopy. */
2651 if (sec
->contents
== NULL
)
2654 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2656 /* Arrange for the section to be written out. */
2657 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2658 if (sec
->contents
== NULL
)
2665 loc
= sec
->contents
+ sec
->size
;
2667 /* Get the pointer to the first section in the group that gas
2668 squirreled away here. objcopy arranges for this to be set to the
2669 start of the input section group. */
2670 first
= elt
= elf_next_in_group (sec
);
2672 /* First element is a flag word. Rest of section is elf section
2673 indices for all the sections of the group. Write them backwards
2674 just to keep the group in the same order as given in .section
2675 directives, not that it matters. */
2684 s
= s
->output_section
;
2687 idx
= elf_section_data (s
)->this_idx
;
2688 H_PUT_32 (abfd
, idx
, loc
);
2689 elt
= elf_next_in_group (elt
);
2694 /* If this is a relocatable link, then the above did nothing because
2695 SEC is the output section. Look through the input sections
2697 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2698 if (l
->type
== bfd_indirect_link_order
2699 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2704 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2705 elt
= elf_next_in_group (elt
);
2706 /* During a relocatable link, the lists are circular. */
2708 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2710 if ((loc
-= 4) != sec
->contents
)
2713 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2716 /* Assign all ELF section numbers. The dummy first section is handled here
2717 too. The link/info pointers for the standard section types are filled
2718 in here too, while we're at it. */
2721 assign_section_numbers (bfd
*abfd
)
2723 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2725 unsigned int section_number
, secn
;
2726 Elf_Internal_Shdr
**i_shdrp
;
2731 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2733 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2735 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2737 if (section_number
== SHN_LORESERVE
)
2738 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2739 d
->this_idx
= section_number
++;
2740 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2741 if ((sec
->flags
& SEC_RELOC
) == 0)
2745 if (section_number
== SHN_LORESERVE
)
2746 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2747 d
->rel_idx
= section_number
++;
2748 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2753 if (section_number
== SHN_LORESERVE
)
2754 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2755 d
->rel_idx2
= section_number
++;
2756 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2762 if (section_number
== SHN_LORESERVE
)
2763 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2764 t
->shstrtab_section
= section_number
++;
2765 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2766 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2768 if (bfd_get_symcount (abfd
) > 0)
2770 if (section_number
== SHN_LORESERVE
)
2771 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2772 t
->symtab_section
= section_number
++;
2773 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2774 if (section_number
> SHN_LORESERVE
- 2)
2776 if (section_number
== SHN_LORESERVE
)
2777 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2778 t
->symtab_shndx_section
= section_number
++;
2779 t
->symtab_shndx_hdr
.sh_name
2780 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2781 ".symtab_shndx", FALSE
);
2782 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2785 if (section_number
== SHN_LORESERVE
)
2786 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2787 t
->strtab_section
= section_number
++;
2788 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2791 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2792 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2794 elf_numsections (abfd
) = section_number
;
2795 elf_elfheader (abfd
)->e_shnum
= section_number
;
2796 if (section_number
> SHN_LORESERVE
)
2797 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2799 /* Set up the list of section header pointers, in agreement with the
2801 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2802 i_shdrp
= bfd_zalloc (abfd
, amt
);
2803 if (i_shdrp
== NULL
)
2806 amt
= sizeof (Elf_Internal_Shdr
);
2807 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2808 if (i_shdrp
[0] == NULL
)
2810 bfd_release (abfd
, i_shdrp
);
2814 elf_elfsections (abfd
) = i_shdrp
;
2816 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2817 if (bfd_get_symcount (abfd
) > 0)
2819 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2820 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2822 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2823 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2825 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2826 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2829 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2831 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2835 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2836 if (d
->rel_idx
!= 0)
2837 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2838 if (d
->rel_idx2
!= 0)
2839 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2841 /* Fill in the sh_link and sh_info fields while we're at it. */
2843 /* sh_link of a reloc section is the section index of the symbol
2844 table. sh_info is the section index of the section to which
2845 the relocation entries apply. */
2846 if (d
->rel_idx
!= 0)
2848 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2849 d
->rel_hdr
.sh_info
= d
->this_idx
;
2851 if (d
->rel_idx2
!= 0)
2853 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2854 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2857 /* We need to set up sh_link for SHF_LINK_ORDER. */
2858 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2860 s
= elf_linked_to_section (sec
);
2862 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2865 struct bfd_link_order
*p
;
2867 /* Find out what the corresponding section in output
2869 for (p
= sec
->link_order_head
; p
!= NULL
; p
= p
->next
)
2871 s
= p
->u
.indirect
.section
;
2872 if (p
->type
== bfd_indirect_link_order
2873 && (bfd_get_flavour (s
->owner
)
2874 == bfd_target_elf_flavour
))
2876 Elf_Internal_Shdr
** const elf_shdrp
2877 = elf_elfsections (s
->owner
);
2879 = _bfd_elf_section_from_bfd_section (s
->owner
, s
);
2880 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
2882 The Intel C compiler generates SHT_IA_64_UNWIND with
2883 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2884 sh_info fields. Hence we could get the situation
2885 where elfsec is 0. */
2888 const struct elf_backend_data
*bed
2889 = get_elf_backend_data (abfd
);
2890 if (bed
->link_order_error_handler
)
2891 bed
->link_order_error_handler
2892 (_("%B: warning: sh_link not set for section `%S'"),
2897 s
= elf_shdrp
[elfsec
]->bfd_section
->output_section
;
2898 BFD_ASSERT (s
!= NULL
);
2899 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2907 switch (d
->this_hdr
.sh_type
)
2911 /* A reloc section which we are treating as a normal BFD
2912 section. sh_link is the section index of the symbol
2913 table. sh_info is the section index of the section to
2914 which the relocation entries apply. We assume that an
2915 allocated reloc section uses the dynamic symbol table.
2916 FIXME: How can we be sure? */
2917 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2919 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2921 /* We look up the section the relocs apply to by name. */
2923 if (d
->this_hdr
.sh_type
== SHT_REL
)
2927 s
= bfd_get_section_by_name (abfd
, name
);
2929 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2933 /* We assume that a section named .stab*str is a stabs
2934 string section. We look for a section with the same name
2935 but without the trailing ``str'', and set its sh_link
2936 field to point to this section. */
2937 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
2938 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2943 len
= strlen (sec
->name
);
2944 alc
= bfd_malloc (len
- 2);
2947 memcpy (alc
, sec
->name
, len
- 3);
2948 alc
[len
- 3] = '\0';
2949 s
= bfd_get_section_by_name (abfd
, alc
);
2953 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
2955 /* This is a .stab section. */
2956 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
2957 elf_section_data (s
)->this_hdr
.sh_entsize
2958 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
2965 case SHT_GNU_verneed
:
2966 case SHT_GNU_verdef
:
2967 /* sh_link is the section header index of the string table
2968 used for the dynamic entries, or the symbol table, or the
2970 s
= bfd_get_section_by_name (abfd
, ".dynstr");
2972 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2975 case SHT_GNU_LIBLIST
:
2976 /* sh_link is the section header index of the prelink library
2978 used for the dynamic entries, or the symbol table, or the
2980 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
2981 ? ".dynstr" : ".gnu.libstr");
2983 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2987 case SHT_GNU_versym
:
2988 /* sh_link is the section header index of the symbol table
2989 this hash table or version table is for. */
2990 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2992 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2996 d
->this_hdr
.sh_link
= t
->symtab_section
;
3000 for (secn
= 1; secn
< section_number
; ++secn
)
3001 if (i_shdrp
[secn
] == NULL
)
3002 i_shdrp
[secn
] = i_shdrp
[0];
3004 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3005 i_shdrp
[secn
]->sh_name
);
3009 /* Map symbol from it's internal number to the external number, moving
3010 all local symbols to be at the head of the list. */
3013 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3015 /* If the backend has a special mapping, use it. */
3016 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3017 if (bed
->elf_backend_sym_is_global
)
3018 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3020 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3021 || bfd_is_und_section (bfd_get_section (sym
))
3022 || bfd_is_com_section (bfd_get_section (sym
)));
3026 elf_map_symbols (bfd
*abfd
)
3028 unsigned int symcount
= bfd_get_symcount (abfd
);
3029 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3030 asymbol
**sect_syms
;
3031 unsigned int num_locals
= 0;
3032 unsigned int num_globals
= 0;
3033 unsigned int num_locals2
= 0;
3034 unsigned int num_globals2
= 0;
3042 fprintf (stderr
, "elf_map_symbols\n");
3046 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3048 if (max_index
< asect
->index
)
3049 max_index
= asect
->index
;
3053 amt
= max_index
* sizeof (asymbol
*);
3054 sect_syms
= bfd_zalloc (abfd
, amt
);
3055 if (sect_syms
== NULL
)
3057 elf_section_syms (abfd
) = sect_syms
;
3058 elf_num_section_syms (abfd
) = max_index
;
3060 /* Init sect_syms entries for any section symbols we have already
3061 decided to output. */
3062 for (idx
= 0; idx
< symcount
; idx
++)
3064 asymbol
*sym
= syms
[idx
];
3066 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3073 if (sec
->owner
!= NULL
)
3075 if (sec
->owner
!= abfd
)
3077 if (sec
->output_offset
!= 0)
3080 sec
= sec
->output_section
;
3082 /* Empty sections in the input files may have had a
3083 section symbol created for them. (See the comment
3084 near the end of _bfd_generic_link_output_symbols in
3085 linker.c). If the linker script discards such
3086 sections then we will reach this point. Since we know
3087 that we cannot avoid this case, we detect it and skip
3088 the abort and the assignment to the sect_syms array.
3089 To reproduce this particular case try running the
3090 linker testsuite test ld-scripts/weak.exp for an ELF
3091 port that uses the generic linker. */
3092 if (sec
->owner
== NULL
)
3095 BFD_ASSERT (sec
->owner
== abfd
);
3097 sect_syms
[sec
->index
] = syms
[idx
];
3102 /* Classify all of the symbols. */
3103 for (idx
= 0; idx
< symcount
; idx
++)
3105 if (!sym_is_global (abfd
, syms
[idx
]))
3111 /* We will be adding a section symbol for each BFD section. Most normal
3112 sections will already have a section symbol in outsymbols, but
3113 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3114 at least in that case. */
3115 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3117 if (sect_syms
[asect
->index
] == NULL
)
3119 if (!sym_is_global (abfd
, asect
->symbol
))
3126 /* Now sort the symbols so the local symbols are first. */
3127 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
3128 new_syms
= bfd_alloc (abfd
, amt
);
3130 if (new_syms
== NULL
)
3133 for (idx
= 0; idx
< symcount
; idx
++)
3135 asymbol
*sym
= syms
[idx
];
3138 if (!sym_is_global (abfd
, sym
))
3141 i
= num_locals
+ num_globals2
++;
3143 sym
->udata
.i
= i
+ 1;
3145 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3147 if (sect_syms
[asect
->index
] == NULL
)
3149 asymbol
*sym
= asect
->symbol
;
3152 sect_syms
[asect
->index
] = sym
;
3153 if (!sym_is_global (abfd
, sym
))
3156 i
= num_locals
+ num_globals2
++;
3158 sym
->udata
.i
= i
+ 1;
3162 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3164 elf_num_locals (abfd
) = num_locals
;
3165 elf_num_globals (abfd
) = num_globals
;
3169 /* Align to the maximum file alignment that could be required for any
3170 ELF data structure. */
3172 static inline file_ptr
3173 align_file_position (file_ptr off
, int align
)
3175 return (off
+ align
- 1) & ~(align
- 1);
3178 /* Assign a file position to a section, optionally aligning to the
3179 required section alignment. */
3182 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3190 al
= i_shdrp
->sh_addralign
;
3192 offset
= BFD_ALIGN (offset
, al
);
3194 i_shdrp
->sh_offset
= offset
;
3195 if (i_shdrp
->bfd_section
!= NULL
)
3196 i_shdrp
->bfd_section
->filepos
= offset
;
3197 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3198 offset
+= i_shdrp
->sh_size
;
3202 /* Compute the file positions we are going to put the sections at, and
3203 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3204 is not NULL, this is being called by the ELF backend linker. */
3207 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3208 struct bfd_link_info
*link_info
)
3210 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3212 struct bfd_strtab_hash
*strtab
;
3213 Elf_Internal_Shdr
*shstrtab_hdr
;
3215 if (abfd
->output_has_begun
)
3218 /* Do any elf backend specific processing first. */
3219 if (bed
->elf_backend_begin_write_processing
)
3220 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3222 if (! prep_headers (abfd
))
3225 /* Post process the headers if necessary. */
3226 if (bed
->elf_backend_post_process_headers
)
3227 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3230 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3234 if (!assign_section_numbers (abfd
))
3237 /* The backend linker builds symbol table information itself. */
3238 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3240 /* Non-zero if doing a relocatable link. */
3241 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3243 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3247 if (link_info
== NULL
)
3249 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3254 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3255 /* sh_name was set in prep_headers. */
3256 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3257 shstrtab_hdr
->sh_flags
= 0;
3258 shstrtab_hdr
->sh_addr
= 0;
3259 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3260 shstrtab_hdr
->sh_entsize
= 0;
3261 shstrtab_hdr
->sh_link
= 0;
3262 shstrtab_hdr
->sh_info
= 0;
3263 /* sh_offset is set in assign_file_positions_except_relocs. */
3264 shstrtab_hdr
->sh_addralign
= 1;
3266 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3269 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3272 Elf_Internal_Shdr
*hdr
;
3274 off
= elf_tdata (abfd
)->next_file_pos
;
3276 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3277 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3279 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3280 if (hdr
->sh_size
!= 0)
3281 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3283 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3284 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3286 elf_tdata (abfd
)->next_file_pos
= off
;
3288 /* Now that we know where the .strtab section goes, write it
3290 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3291 || ! _bfd_stringtab_emit (abfd
, strtab
))
3293 _bfd_stringtab_free (strtab
);
3296 abfd
->output_has_begun
= TRUE
;
3301 /* Create a mapping from a set of sections to a program segment. */
3303 static struct elf_segment_map
*
3304 make_mapping (bfd
*abfd
,
3305 asection
**sections
,
3310 struct elf_segment_map
*m
;
3315 amt
= sizeof (struct elf_segment_map
);
3316 amt
+= (to
- from
- 1) * sizeof (asection
*);
3317 m
= bfd_zalloc (abfd
, amt
);
3321 m
->p_type
= PT_LOAD
;
3322 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3323 m
->sections
[i
- from
] = *hdrpp
;
3324 m
->count
= to
- from
;
3326 if (from
== 0 && phdr
)
3328 /* Include the headers in the first PT_LOAD segment. */
3329 m
->includes_filehdr
= 1;
3330 m
->includes_phdrs
= 1;
3336 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3339 struct elf_segment_map
*
3340 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3342 struct elf_segment_map
*m
;
3344 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3348 m
->p_type
= PT_DYNAMIC
;
3350 m
->sections
[0] = dynsec
;
3355 /* Set up a mapping from BFD sections to program segments. */
3358 map_sections_to_segments (bfd
*abfd
)
3360 asection
**sections
= NULL
;
3364 struct elf_segment_map
*mfirst
;
3365 struct elf_segment_map
**pm
;
3366 struct elf_segment_map
*m
;
3369 unsigned int phdr_index
;
3370 bfd_vma maxpagesize
;
3372 bfd_boolean phdr_in_segment
= TRUE
;
3373 bfd_boolean writable
;
3375 asection
*first_tls
= NULL
;
3376 asection
*dynsec
, *eh_frame_hdr
;
3379 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3382 if (bfd_count_sections (abfd
) == 0)
3385 /* Select the allocated sections, and sort them. */
3387 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3388 sections
= bfd_malloc (amt
);
3389 if (sections
== NULL
)
3393 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3395 if ((s
->flags
& SEC_ALLOC
) != 0)
3401 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3404 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3406 /* Build the mapping. */
3411 /* If we have a .interp section, then create a PT_PHDR segment for
3412 the program headers and a PT_INTERP segment for the .interp
3414 s
= bfd_get_section_by_name (abfd
, ".interp");
3415 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3417 amt
= sizeof (struct elf_segment_map
);
3418 m
= bfd_zalloc (abfd
, amt
);
3422 m
->p_type
= PT_PHDR
;
3423 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3424 m
->p_flags
= PF_R
| PF_X
;
3425 m
->p_flags_valid
= 1;
3426 m
->includes_phdrs
= 1;
3431 amt
= sizeof (struct elf_segment_map
);
3432 m
= bfd_zalloc (abfd
, amt
);
3436 m
->p_type
= PT_INTERP
;
3444 /* Look through the sections. We put sections in the same program
3445 segment when the start of the second section can be placed within
3446 a few bytes of the end of the first section. */
3450 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3452 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3454 && (dynsec
->flags
& SEC_LOAD
) == 0)
3457 /* Deal with -Ttext or something similar such that the first section
3458 is not adjacent to the program headers. This is an
3459 approximation, since at this point we don't know exactly how many
3460 program headers we will need. */
3463 bfd_size_type phdr_size
;
3465 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3467 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3468 if ((abfd
->flags
& D_PAGED
) == 0
3469 || sections
[0]->lma
< phdr_size
3470 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3471 phdr_in_segment
= FALSE
;
3474 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3477 bfd_boolean new_segment
;
3481 /* See if this section and the last one will fit in the same
3484 if (last_hdr
== NULL
)
3486 /* If we don't have a segment yet, then we don't need a new
3487 one (we build the last one after this loop). */
3488 new_segment
= FALSE
;
3490 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3492 /* If this section has a different relation between the
3493 virtual address and the load address, then we need a new
3497 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3498 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3500 /* If putting this section in this segment would force us to
3501 skip a page in the segment, then we need a new segment. */
3504 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3505 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3507 /* We don't want to put a loadable section after a
3508 nonloadable section in the same segment.
3509 Consider .tbss sections as loadable for this purpose. */
3512 else if ((abfd
->flags
& D_PAGED
) == 0)
3514 /* If the file is not demand paged, which means that we
3515 don't require the sections to be correctly aligned in the
3516 file, then there is no other reason for a new segment. */
3517 new_segment
= FALSE
;
3520 && (hdr
->flags
& SEC_READONLY
) == 0
3521 && (((last_hdr
->lma
+ last_size
- 1)
3522 & ~(maxpagesize
- 1))
3523 != (hdr
->lma
& ~(maxpagesize
- 1))))
3525 /* We don't want to put a writable section in a read only
3526 segment, unless they are on the same page in memory
3527 anyhow. We already know that the last section does not
3528 bring us past the current section on the page, so the
3529 only case in which the new section is not on the same
3530 page as the previous section is when the previous section
3531 ends precisely on a page boundary. */
3536 /* Otherwise, we can use the same segment. */
3537 new_segment
= FALSE
;
3542 if ((hdr
->flags
& SEC_READONLY
) == 0)
3545 /* .tbss sections effectively have zero size. */
3546 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3547 last_size
= hdr
->size
;
3553 /* We need a new program segment. We must create a new program
3554 header holding all the sections from phdr_index until hdr. */
3556 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3563 if ((hdr
->flags
& SEC_READONLY
) == 0)
3569 /* .tbss sections effectively have zero size. */
3570 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3571 last_size
= hdr
->size
;
3575 phdr_in_segment
= FALSE
;
3578 /* Create a final PT_LOAD program segment. */
3579 if (last_hdr
!= NULL
)
3581 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3589 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3592 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3599 /* For each loadable .note section, add a PT_NOTE segment. We don't
3600 use bfd_get_section_by_name, because if we link together
3601 nonloadable .note sections and loadable .note sections, we will
3602 generate two .note sections in the output file. FIXME: Using
3603 names for section types is bogus anyhow. */
3604 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3606 if ((s
->flags
& SEC_LOAD
) != 0
3607 && strncmp (s
->name
, ".note", 5) == 0)
3609 amt
= sizeof (struct elf_segment_map
);
3610 m
= bfd_zalloc (abfd
, amt
);
3614 m
->p_type
= PT_NOTE
;
3621 if (s
->flags
& SEC_THREAD_LOCAL
)
3629 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3634 amt
= sizeof (struct elf_segment_map
);
3635 amt
+= (tls_count
- 1) * sizeof (asection
*);
3636 m
= bfd_zalloc (abfd
, amt
);
3641 m
->count
= tls_count
;
3642 /* Mandated PF_R. */
3644 m
->p_flags_valid
= 1;
3645 for (i
= 0; i
< tls_count
; ++i
)
3647 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3648 m
->sections
[i
] = first_tls
;
3649 first_tls
= first_tls
->next
;
3656 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3658 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3659 if (eh_frame_hdr
!= NULL
3660 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3662 amt
= sizeof (struct elf_segment_map
);
3663 m
= bfd_zalloc (abfd
, amt
);
3667 m
->p_type
= PT_GNU_EH_FRAME
;
3669 m
->sections
[0] = eh_frame_hdr
->output_section
;
3675 if (elf_tdata (abfd
)->stack_flags
)
3677 amt
= sizeof (struct elf_segment_map
);
3678 m
= bfd_zalloc (abfd
, amt
);
3682 m
->p_type
= PT_GNU_STACK
;
3683 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3684 m
->p_flags_valid
= 1;
3690 if (elf_tdata (abfd
)->relro
)
3692 amt
= sizeof (struct elf_segment_map
);
3693 m
= bfd_zalloc (abfd
, amt
);
3697 m
->p_type
= PT_GNU_RELRO
;
3699 m
->p_flags_valid
= 1;
3708 elf_tdata (abfd
)->segment_map
= mfirst
;
3712 if (sections
!= NULL
)
3717 /* Sort sections by address. */
3720 elf_sort_sections (const void *arg1
, const void *arg2
)
3722 const asection
*sec1
= *(const asection
**) arg1
;
3723 const asection
*sec2
= *(const asection
**) arg2
;
3724 bfd_size_type size1
, size2
;
3726 /* Sort by LMA first, since this is the address used to
3727 place the section into a segment. */
3728 if (sec1
->lma
< sec2
->lma
)
3730 else if (sec1
->lma
> sec2
->lma
)
3733 /* Then sort by VMA. Normally the LMA and the VMA will be
3734 the same, and this will do nothing. */
3735 if (sec1
->vma
< sec2
->vma
)
3737 else if (sec1
->vma
> sec2
->vma
)
3740 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3742 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3748 /* If the indicies are the same, do not return 0
3749 here, but continue to try the next comparison. */
3750 if (sec1
->target_index
- sec2
->target_index
!= 0)
3751 return sec1
->target_index
- sec2
->target_index
;
3756 else if (TOEND (sec2
))
3761 /* Sort by size, to put zero sized sections
3762 before others at the same address. */
3764 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3765 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3772 return sec1
->target_index
- sec2
->target_index
;
3775 /* Ian Lance Taylor writes:
3777 We shouldn't be using % with a negative signed number. That's just
3778 not good. We have to make sure either that the number is not
3779 negative, or that the number has an unsigned type. When the types
3780 are all the same size they wind up as unsigned. When file_ptr is a
3781 larger signed type, the arithmetic winds up as signed long long,
3784 What we're trying to say here is something like ``increase OFF by
3785 the least amount that will cause it to be equal to the VMA modulo
3787 /* In other words, something like:
3789 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3790 off_offset = off % bed->maxpagesize;
3791 if (vma_offset < off_offset)
3792 adjustment = vma_offset + bed->maxpagesize - off_offset;
3794 adjustment = vma_offset - off_offset;
3796 which can can be collapsed into the expression below. */
3799 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
3801 return ((vma
- off
) % maxpagesize
);
3804 /* Assign file positions to the sections based on the mapping from
3805 sections to segments. This function also sets up some fields in
3806 the file header, and writes out the program headers. */
3809 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
3811 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3813 struct elf_segment_map
*m
;
3815 Elf_Internal_Phdr
*phdrs
;
3817 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3818 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3819 Elf_Internal_Phdr
*p
;
3822 if (elf_tdata (abfd
)->segment_map
== NULL
)
3824 if (! map_sections_to_segments (abfd
))
3829 /* The placement algorithm assumes that non allocated sections are
3830 not in PT_LOAD segments. We ensure this here by removing such
3831 sections from the segment map. */
3832 for (m
= elf_tdata (abfd
)->segment_map
;
3836 unsigned int new_count
;
3839 if (m
->p_type
!= PT_LOAD
)
3843 for (i
= 0; i
< m
->count
; i
++)
3845 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3848 m
->sections
[new_count
] = m
->sections
[i
];
3854 if (new_count
!= m
->count
)
3855 m
->count
= new_count
;
3859 if (bed
->elf_backend_modify_segment_map
)
3861 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
3866 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3869 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3870 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3871 elf_elfheader (abfd
)->e_phnum
= count
;
3875 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
3879 /* If we already counted the number of program segments, make sure
3880 that we allocated enough space. This happens when SIZEOF_HEADERS
3881 is used in a linker script. */
3882 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3883 if (alloc
!= 0 && count
> alloc
)
3885 ((*_bfd_error_handler
)
3886 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3887 abfd
, alloc
, count
));
3888 bfd_set_error (bfd_error_bad_value
);
3895 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3896 phdrs
= bfd_alloc (abfd
, amt
);
3900 off
= bed
->s
->sizeof_ehdr
;
3901 off
+= alloc
* bed
->s
->sizeof_phdr
;
3908 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3915 /* If elf_segment_map is not from map_sections_to_segments, the
3916 sections may not be correctly ordered. NOTE: sorting should
3917 not be done to the PT_NOTE section of a corefile, which may
3918 contain several pseudo-sections artificially created by bfd.
3919 Sorting these pseudo-sections breaks things badly. */
3921 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
3922 && m
->p_type
== PT_NOTE
))
3923 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
3926 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3927 number of sections with contents contributing to both p_filesz
3928 and p_memsz, followed by a number of sections with no contents
3929 that just contribute to p_memsz. In this loop, OFF tracks next
3930 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3931 an adjustment we use for segments that have no file contents
3932 but need zero filled memory allocation. */
3934 p
->p_type
= m
->p_type
;
3935 p
->p_flags
= m
->p_flags
;
3937 if (p
->p_type
== PT_LOAD
3940 bfd_size_type align
;
3943 if ((abfd
->flags
& D_PAGED
) != 0)
3944 align
= bed
->maxpagesize
;
3947 unsigned int align_power
= 0;
3948 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3950 unsigned int secalign
;
3952 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
3953 if (secalign
> align_power
)
3954 align_power
= secalign
;
3956 align
= (bfd_size_type
) 1 << align_power
;
3959 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
3962 && !m
->includes_filehdr
3963 && !m
->includes_phdrs
3964 && (ufile_ptr
) off
>= align
)
3966 /* If the first section isn't loadable, the same holds for
3967 any other sections. Since the segment won't need file
3968 space, we can make p_offset overlap some prior segment.
3969 However, .tbss is special. If a segment starts with
3970 .tbss, we need to look at the next section to decide
3971 whether the segment has any loadable sections. */
3973 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
3975 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
3979 voff
= adjust
- align
;
3985 /* Make sure the .dynamic section is the first section in the
3986 PT_DYNAMIC segment. */
3987 else if (p
->p_type
== PT_DYNAMIC
3989 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
3992 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3994 bfd_set_error (bfd_error_bad_value
);
4001 p
->p_vaddr
= m
->sections
[0]->vma
;
4003 if (m
->p_paddr_valid
)
4004 p
->p_paddr
= m
->p_paddr
;
4005 else if (m
->count
== 0)
4008 p
->p_paddr
= m
->sections
[0]->lma
;
4010 if (p
->p_type
== PT_LOAD
4011 && (abfd
->flags
& D_PAGED
) != 0)
4012 p
->p_align
= bed
->maxpagesize
;
4013 else if (m
->count
== 0)
4014 p
->p_align
= 1 << bed
->s
->log_file_align
;
4022 if (m
->includes_filehdr
)
4024 if (! m
->p_flags_valid
)
4027 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4028 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4031 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4033 if (p
->p_vaddr
< (bfd_vma
) off
)
4035 (*_bfd_error_handler
)
4036 (_("%B: Not enough room for program headers, try linking with -N"),
4038 bfd_set_error (bfd_error_bad_value
);
4043 if (! m
->p_paddr_valid
)
4046 if (p
->p_type
== PT_LOAD
)
4048 filehdr_vaddr
= p
->p_vaddr
;
4049 filehdr_paddr
= p
->p_paddr
;
4053 if (m
->includes_phdrs
)
4055 if (! m
->p_flags_valid
)
4058 if (m
->includes_filehdr
)
4060 if (p
->p_type
== PT_LOAD
)
4062 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4063 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4068 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4072 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4073 p
->p_vaddr
-= off
- p
->p_offset
;
4074 if (! m
->p_paddr_valid
)
4075 p
->p_paddr
-= off
- p
->p_offset
;
4078 if (p
->p_type
== PT_LOAD
)
4080 phdrs_vaddr
= p
->p_vaddr
;
4081 phdrs_paddr
= p
->p_paddr
;
4084 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4087 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4088 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4091 if (p
->p_type
== PT_LOAD
4092 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4094 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4095 p
->p_offset
= off
+ voff
;
4100 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4101 p
->p_filesz
+= adjust
;
4102 p
->p_memsz
+= adjust
;
4106 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4110 bfd_size_type align
;
4114 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4116 if (p
->p_type
== PT_LOAD
4117 || p
->p_type
== PT_TLS
)
4119 bfd_signed_vma adjust
;
4121 if ((flags
& SEC_LOAD
) != 0)
4123 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4126 (*_bfd_error_handler
)
4127 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4128 abfd
, sec
, (unsigned long) sec
->lma
);
4132 p
->p_filesz
+= adjust
;
4133 p
->p_memsz
+= adjust
;
4135 /* .tbss is special. It doesn't contribute to p_memsz of
4137 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4138 || p
->p_type
== PT_TLS
)
4140 /* The section VMA must equal the file position
4141 modulo the page size. */
4142 bfd_size_type page
= align
;
4143 if ((abfd
->flags
& D_PAGED
) != 0)
4144 page
= bed
->maxpagesize
;
4145 adjust
= vma_page_aligned_bias (sec
->vma
,
4146 p
->p_vaddr
+ p
->p_memsz
,
4148 p
->p_memsz
+= adjust
;
4152 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4154 /* The section at i == 0 is the one that actually contains
4160 p
->p_filesz
= sec
->size
;
4166 /* The rest are fake sections that shouldn't be written. */
4175 if (p
->p_type
== PT_LOAD
)
4178 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4179 1997, and the exact reason for it isn't clear. One
4180 plausible explanation is that it is to work around
4181 a problem we have with linker scripts using data
4182 statements in NOLOAD sections. I don't think it
4183 makes a great deal of sense to have such a section
4184 assigned to a PT_LOAD segment, but apparently
4185 people do this. The data statement results in a
4186 bfd_data_link_order being built, and these need
4187 section contents to write into. Eventually, we get
4188 to _bfd_elf_write_object_contents which writes any
4189 section with contents to the output. Make room
4190 here for the write, so that following segments are
4192 if ((flags
& SEC_LOAD
) != 0
4193 || (flags
& SEC_HAS_CONTENTS
) != 0)
4197 if ((flags
& SEC_LOAD
) != 0)
4199 p
->p_filesz
+= sec
->size
;
4200 p
->p_memsz
+= sec
->size
;
4202 /* .tbss is special. It doesn't contribute to p_memsz of
4204 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4205 || p
->p_type
== PT_TLS
)
4206 p
->p_memsz
+= sec
->size
;
4208 if (p
->p_type
== PT_TLS
4210 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4212 struct bfd_link_order
*o
;
4213 bfd_vma tbss_size
= 0;
4215 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
4216 if (tbss_size
< o
->offset
+ o
->size
)
4217 tbss_size
= o
->offset
+ o
->size
;
4219 p
->p_memsz
+= tbss_size
;
4222 if (align
> p
->p_align
4223 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4227 if (! m
->p_flags_valid
)
4230 if ((flags
& SEC_CODE
) != 0)
4232 if ((flags
& SEC_READONLY
) == 0)
4238 /* Now that we have set the section file positions, we can set up
4239 the file positions for the non PT_LOAD segments. */
4240 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4244 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4246 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4247 /* If the section has not yet been assigned a file position,
4248 do so now. The ARM BPABI requires that .dynamic section
4249 not be marked SEC_ALLOC because it is not part of any
4250 PT_LOAD segment, so it will not be processed above. */
4251 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4254 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4257 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4259 off
= (_bfd_elf_assign_file_position_for_section
4260 (i_shdrpp
[i
], off
, TRUE
));
4261 p
->p_filesz
= m
->sections
[0]->size
;
4263 p
->p_offset
= m
->sections
[0]->filepos
;
4267 if (m
->includes_filehdr
)
4269 p
->p_vaddr
= filehdr_vaddr
;
4270 if (! m
->p_paddr_valid
)
4271 p
->p_paddr
= filehdr_paddr
;
4273 else if (m
->includes_phdrs
)
4275 p
->p_vaddr
= phdrs_vaddr
;
4276 if (! m
->p_paddr_valid
)
4277 p
->p_paddr
= phdrs_paddr
;
4279 else if (p
->p_type
== PT_GNU_RELRO
)
4281 Elf_Internal_Phdr
*lp
;
4283 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4285 if (lp
->p_type
== PT_LOAD
4286 && lp
->p_vaddr
<= link_info
->relro_end
4287 && lp
->p_vaddr
>= link_info
->relro_start
4288 && lp
->p_vaddr
+ lp
->p_filesz
4289 >= link_info
->relro_end
)
4293 if (lp
< phdrs
+ count
4294 && link_info
->relro_end
> lp
->p_vaddr
)
4296 p
->p_vaddr
= lp
->p_vaddr
;
4297 p
->p_paddr
= lp
->p_paddr
;
4298 p
->p_offset
= lp
->p_offset
;
4299 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4300 p
->p_memsz
= p
->p_filesz
;
4302 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4306 memset (p
, 0, sizeof *p
);
4307 p
->p_type
= PT_NULL
;
4313 /* Clear out any program headers we allocated but did not use. */
4314 for (; count
< alloc
; count
++, p
++)
4316 memset (p
, 0, sizeof *p
);
4317 p
->p_type
= PT_NULL
;
4320 elf_tdata (abfd
)->phdr
= phdrs
;
4322 elf_tdata (abfd
)->next_file_pos
= off
;
4324 /* Write out the program headers. */
4325 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4326 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4332 /* Get the size of the program header.
4334 If this is called by the linker before any of the section VMA's are set, it
4335 can't calculate the correct value for a strange memory layout. This only
4336 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4337 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4338 data segment (exclusive of .interp and .dynamic).
4340 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4341 will be two segments. */
4343 static bfd_size_type
4344 get_program_header_size (bfd
*abfd
)
4348 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4350 /* We can't return a different result each time we're called. */
4351 if (elf_tdata (abfd
)->program_header_size
!= 0)
4352 return elf_tdata (abfd
)->program_header_size
;
4354 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4356 struct elf_segment_map
*m
;
4359 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4361 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4362 return elf_tdata (abfd
)->program_header_size
;
4365 /* Assume we will need exactly two PT_LOAD segments: one for text
4366 and one for data. */
4369 s
= bfd_get_section_by_name (abfd
, ".interp");
4370 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4372 /* If we have a loadable interpreter section, we need a
4373 PT_INTERP segment. In this case, assume we also need a
4374 PT_PHDR segment, although that may not be true for all
4379 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4381 /* We need a PT_DYNAMIC segment. */
4385 if (elf_tdata (abfd
)->eh_frame_hdr
)
4387 /* We need a PT_GNU_EH_FRAME segment. */
4391 if (elf_tdata (abfd
)->stack_flags
)
4393 /* We need a PT_GNU_STACK segment. */
4397 if (elf_tdata (abfd
)->relro
)
4399 /* We need a PT_GNU_RELRO segment. */
4403 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4405 if ((s
->flags
& SEC_LOAD
) != 0
4406 && strncmp (s
->name
, ".note", 5) == 0)
4408 /* We need a PT_NOTE segment. */
4413 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4415 if (s
->flags
& SEC_THREAD_LOCAL
)
4417 /* We need a PT_TLS segment. */
4423 /* Let the backend count up any program headers it might need. */
4424 if (bed
->elf_backend_additional_program_headers
)
4428 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4434 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4435 return elf_tdata (abfd
)->program_header_size
;
4438 /* Work out the file positions of all the sections. This is called by
4439 _bfd_elf_compute_section_file_positions. All the section sizes and
4440 VMAs must be known before this is called.
4442 Reloc sections come in two flavours: Those processed specially as
4443 "side-channel" data attached to a section to which they apply, and
4444 those that bfd doesn't process as relocations. The latter sort are
4445 stored in a normal bfd section by bfd_section_from_shdr. We don't
4446 consider the former sort here, unless they form part of the loadable
4447 image. Reloc sections not assigned here will be handled later by
4448 assign_file_positions_for_relocs.
4450 We also don't set the positions of the .symtab and .strtab here. */
4453 assign_file_positions_except_relocs (bfd
*abfd
,
4454 struct bfd_link_info
*link_info
)
4456 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4457 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4458 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4459 unsigned int num_sec
= elf_numsections (abfd
);
4461 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4463 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4464 && bfd_get_format (abfd
) != bfd_core
)
4466 Elf_Internal_Shdr
**hdrpp
;
4469 /* Start after the ELF header. */
4470 off
= i_ehdrp
->e_ehsize
;
4472 /* We are not creating an executable, which means that we are
4473 not creating a program header, and that the actual order of
4474 the sections in the file is unimportant. */
4475 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4477 Elf_Internal_Shdr
*hdr
;
4480 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4481 && hdr
->bfd_section
== NULL
)
4482 || i
== tdata
->symtab_section
4483 || i
== tdata
->symtab_shndx_section
4484 || i
== tdata
->strtab_section
)
4486 hdr
->sh_offset
= -1;
4489 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4491 if (i
== SHN_LORESERVE
- 1)
4493 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4494 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4501 Elf_Internal_Shdr
**hdrpp
;
4503 /* Assign file positions for the loaded sections based on the
4504 assignment of sections to segments. */
4505 if (! assign_file_positions_for_segments (abfd
, link_info
))
4508 /* Assign file positions for the other sections. */
4510 off
= elf_tdata (abfd
)->next_file_pos
;
4511 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4513 Elf_Internal_Shdr
*hdr
;
4516 if (hdr
->bfd_section
!= NULL
4517 && hdr
->bfd_section
->filepos
!= 0)
4518 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4519 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4521 ((*_bfd_error_handler
)
4522 (_("%B: warning: allocated section `%s' not in segment"),
4524 (hdr
->bfd_section
== NULL
4526 : hdr
->bfd_section
->name
)));
4527 if ((abfd
->flags
& D_PAGED
) != 0)
4528 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4531 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4533 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4536 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4537 && hdr
->bfd_section
== NULL
)
4538 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4539 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4540 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4541 hdr
->sh_offset
= -1;
4543 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4545 if (i
== SHN_LORESERVE
- 1)
4547 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4548 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4553 /* Place the section headers. */
4554 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4555 i_ehdrp
->e_shoff
= off
;
4556 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4558 elf_tdata (abfd
)->next_file_pos
= off
;
4564 prep_headers (bfd
*abfd
)
4566 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4567 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4568 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4569 struct elf_strtab_hash
*shstrtab
;
4570 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4572 i_ehdrp
= elf_elfheader (abfd
);
4573 i_shdrp
= elf_elfsections (abfd
);
4575 shstrtab
= _bfd_elf_strtab_init ();
4576 if (shstrtab
== NULL
)
4579 elf_shstrtab (abfd
) = shstrtab
;
4581 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4582 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4583 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4584 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4586 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4587 i_ehdrp
->e_ident
[EI_DATA
] =
4588 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4589 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4591 if ((abfd
->flags
& DYNAMIC
) != 0)
4592 i_ehdrp
->e_type
= ET_DYN
;
4593 else if ((abfd
->flags
& EXEC_P
) != 0)
4594 i_ehdrp
->e_type
= ET_EXEC
;
4595 else if (bfd_get_format (abfd
) == bfd_core
)
4596 i_ehdrp
->e_type
= ET_CORE
;
4598 i_ehdrp
->e_type
= ET_REL
;
4600 switch (bfd_get_arch (abfd
))
4602 case bfd_arch_unknown
:
4603 i_ehdrp
->e_machine
= EM_NONE
;
4606 /* There used to be a long list of cases here, each one setting
4607 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4608 in the corresponding bfd definition. To avoid duplication,
4609 the switch was removed. Machines that need special handling
4610 can generally do it in elf_backend_final_write_processing(),
4611 unless they need the information earlier than the final write.
4612 Such need can generally be supplied by replacing the tests for
4613 e_machine with the conditions used to determine it. */
4615 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4618 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4619 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4621 /* No program header, for now. */
4622 i_ehdrp
->e_phoff
= 0;
4623 i_ehdrp
->e_phentsize
= 0;
4624 i_ehdrp
->e_phnum
= 0;
4626 /* Each bfd section is section header entry. */
4627 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4628 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4630 /* If we're building an executable, we'll need a program header table. */
4631 if (abfd
->flags
& EXEC_P
)
4633 /* It all happens later. */
4635 i_ehdrp
->e_phentsize
= sizeof (Elf_External_Phdr
);
4637 /* elf_build_phdrs() returns a (NULL-terminated) array of
4638 Elf_Internal_Phdrs. */
4639 i_phdrp
= elf_build_phdrs (abfd
, i_ehdrp
, i_shdrp
, &i_ehdrp
->e_phnum
);
4640 i_ehdrp
->e_phoff
= outbase
;
4641 outbase
+= i_ehdrp
->e_phentsize
* i_ehdrp
->e_phnum
;
4646 i_ehdrp
->e_phentsize
= 0;
4648 i_ehdrp
->e_phoff
= 0;
4651 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4652 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4653 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4654 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4655 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4656 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4657 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4658 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4659 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4665 /* Assign file positions for all the reloc sections which are not part
4666 of the loadable file image. */
4669 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4672 unsigned int i
, num_sec
;
4673 Elf_Internal_Shdr
**shdrpp
;
4675 off
= elf_tdata (abfd
)->next_file_pos
;
4677 num_sec
= elf_numsections (abfd
);
4678 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4680 Elf_Internal_Shdr
*shdrp
;
4683 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4684 && shdrp
->sh_offset
== -1)
4685 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4688 elf_tdata (abfd
)->next_file_pos
= off
;
4692 _bfd_elf_write_object_contents (bfd
*abfd
)
4694 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4695 Elf_Internal_Ehdr
*i_ehdrp
;
4696 Elf_Internal_Shdr
**i_shdrp
;
4698 unsigned int count
, num_sec
;
4700 if (! abfd
->output_has_begun
4701 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4704 i_shdrp
= elf_elfsections (abfd
);
4705 i_ehdrp
= elf_elfheader (abfd
);
4708 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4712 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4714 /* After writing the headers, we need to write the sections too... */
4715 num_sec
= elf_numsections (abfd
);
4716 for (count
= 1; count
< num_sec
; count
++)
4718 if (bed
->elf_backend_section_processing
)
4719 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4720 if (i_shdrp
[count
]->contents
)
4722 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4724 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4725 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4728 if (count
== SHN_LORESERVE
- 1)
4729 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4732 /* Write out the section header names. */
4733 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4734 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4737 if (bed
->elf_backend_final_write_processing
)
4738 (*bed
->elf_backend_final_write_processing
) (abfd
,
4739 elf_tdata (abfd
)->linker
);
4741 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4745 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4747 /* Hopefully this can be done just like an object file. */
4748 return _bfd_elf_write_object_contents (abfd
);
4751 /* Given a section, search the header to find them. */
4754 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4756 const struct elf_backend_data
*bed
;
4759 if (elf_section_data (asect
) != NULL
4760 && elf_section_data (asect
)->this_idx
!= 0)
4761 return elf_section_data (asect
)->this_idx
;
4763 if (bfd_is_abs_section (asect
))
4765 else if (bfd_is_com_section (asect
))
4767 else if (bfd_is_und_section (asect
))
4771 Elf_Internal_Shdr
**i_shdrp
= elf_elfsections (abfd
);
4772 int maxindex
= elf_numsections (abfd
);
4774 for (index
= 1; index
< maxindex
; index
++)
4776 Elf_Internal_Shdr
*hdr
= i_shdrp
[index
];
4778 if (hdr
!= NULL
&& hdr
->bfd_section
== asect
)
4784 bed
= get_elf_backend_data (abfd
);
4785 if (bed
->elf_backend_section_from_bfd_section
)
4789 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4794 bfd_set_error (bfd_error_nonrepresentable_section
);
4799 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4803 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4805 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4807 flagword flags
= asym_ptr
->flags
;
4809 /* When gas creates relocations against local labels, it creates its
4810 own symbol for the section, but does put the symbol into the
4811 symbol chain, so udata is 0. When the linker is generating
4812 relocatable output, this section symbol may be for one of the
4813 input sections rather than the output section. */
4814 if (asym_ptr
->udata
.i
== 0
4815 && (flags
& BSF_SECTION_SYM
)
4816 && asym_ptr
->section
)
4820 if (asym_ptr
->section
->output_section
!= NULL
)
4821 indx
= asym_ptr
->section
->output_section
->index
;
4823 indx
= asym_ptr
->section
->index
;
4824 if (indx
< elf_num_section_syms (abfd
)
4825 && elf_section_syms (abfd
)[indx
] != NULL
)
4826 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4829 idx
= asym_ptr
->udata
.i
;
4833 /* This case can occur when using --strip-symbol on a symbol
4834 which is used in a relocation entry. */
4835 (*_bfd_error_handler
)
4836 (_("%B: symbol `%s' required but not present"),
4837 abfd
, bfd_asymbol_name (asym_ptr
));
4838 bfd_set_error (bfd_error_no_symbols
);
4845 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4846 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4847 elf_symbol_flags (flags
));
4855 /* Copy private BFD data. This copies any program header information. */
4858 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4860 Elf_Internal_Ehdr
*iehdr
;
4861 struct elf_segment_map
*map
;
4862 struct elf_segment_map
*map_first
;
4863 struct elf_segment_map
**pointer_to_map
;
4864 Elf_Internal_Phdr
*segment
;
4867 unsigned int num_segments
;
4868 bfd_boolean phdr_included
= FALSE
;
4869 bfd_vma maxpagesize
;
4870 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4871 unsigned int phdr_adjust_num
= 0;
4872 const struct elf_backend_data
*bed
;
4874 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4875 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4878 if (elf_tdata (ibfd
)->phdr
== NULL
)
4881 bed
= get_elf_backend_data (ibfd
);
4882 iehdr
= elf_elfheader (ibfd
);
4885 pointer_to_map
= &map_first
;
4887 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4888 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4890 /* Returns the end address of the segment + 1. */
4891 #define SEGMENT_END(segment, start) \
4892 (start + (segment->p_memsz > segment->p_filesz \
4893 ? segment->p_memsz : segment->p_filesz))
4895 #define SECTION_SIZE(section, segment) \
4896 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4897 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4898 ? section->size : 0)
4900 /* Returns TRUE if the given section is contained within
4901 the given segment. VMA addresses are compared. */
4902 #define IS_CONTAINED_BY_VMA(section, segment) \
4903 (section->vma >= segment->p_vaddr \
4904 && (section->vma + SECTION_SIZE (section, segment) \
4905 <= (SEGMENT_END (segment, segment->p_vaddr))))
4907 /* Returns TRUE if the given section is contained within
4908 the given segment. LMA addresses are compared. */
4909 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4910 (section->lma >= base \
4911 && (section->lma + SECTION_SIZE (section, segment) \
4912 <= SEGMENT_END (segment, base)))
4914 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4915 #define IS_COREFILE_NOTE(p, s) \
4916 (p->p_type == PT_NOTE \
4917 && bfd_get_format (ibfd) == bfd_core \
4918 && s->vma == 0 && s->lma == 0 \
4919 && (bfd_vma) s->filepos >= p->p_offset \
4920 && ((bfd_vma) s->filepos + s->size \
4921 <= p->p_offset + p->p_filesz))
4923 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4924 linker, which generates a PT_INTERP section with p_vaddr and
4925 p_memsz set to 0. */
4926 #define IS_SOLARIS_PT_INTERP(p, s) \
4928 && p->p_paddr == 0 \
4929 && p->p_memsz == 0 \
4930 && p->p_filesz > 0 \
4931 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4933 && (bfd_vma) s->filepos >= p->p_offset \
4934 && ((bfd_vma) s->filepos + s->size \
4935 <= p->p_offset + p->p_filesz))
4937 /* Decide if the given section should be included in the given segment.
4938 A section will be included if:
4939 1. It is within the address space of the segment -- we use the LMA
4940 if that is set for the segment and the VMA otherwise,
4941 2. It is an allocated segment,
4942 3. There is an output section associated with it,
4943 4. The section has not already been allocated to a previous segment.
4944 5. PT_GNU_STACK segments do not include any sections.
4945 6. PT_TLS segment includes only SHF_TLS sections.
4946 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4947 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4948 ((((segment->p_paddr \
4949 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4950 : IS_CONTAINED_BY_VMA (section, segment)) \
4951 && (section->flags & SEC_ALLOC) != 0) \
4952 || IS_COREFILE_NOTE (segment, section)) \
4953 && section->output_section != NULL \
4954 && segment->p_type != PT_GNU_STACK \
4955 && (segment->p_type != PT_TLS \
4956 || (section->flags & SEC_THREAD_LOCAL)) \
4957 && (segment->p_type == PT_LOAD \
4958 || segment->p_type == PT_TLS \
4959 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4960 && ! section->segment_mark)
4962 /* Returns TRUE iff seg1 starts after the end of seg2. */
4963 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4964 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4966 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4967 their VMA address ranges and their LMA address ranges overlap.
4968 It is possible to have overlapping VMA ranges without overlapping LMA
4969 ranges. RedBoot images for example can have both .data and .bss mapped
4970 to the same VMA range, but with the .data section mapped to a different
4972 #define SEGMENT_OVERLAPS(seg1, seg2) \
4973 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4974 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4975 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4976 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4978 /* Initialise the segment mark field. */
4979 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
4980 section
->segment_mark
= FALSE
;
4982 /* Scan through the segments specified in the program header
4983 of the input BFD. For this first scan we look for overlaps
4984 in the loadable segments. These can be created by weird
4985 parameters to objcopy. Also, fix some solaris weirdness. */
4986 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4991 Elf_Internal_Phdr
*segment2
;
4993 if (segment
->p_type
== PT_INTERP
)
4994 for (section
= ibfd
->sections
; section
; section
= section
->next
)
4995 if (IS_SOLARIS_PT_INTERP (segment
, section
))
4997 /* Mininal change so that the normal section to segment
4998 assignment code will work. */
4999 segment
->p_vaddr
= section
->vma
;
5003 if (segment
->p_type
!= PT_LOAD
)
5006 /* Determine if this segment overlaps any previous segments. */
5007 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5009 bfd_signed_vma extra_length
;
5011 if (segment2
->p_type
!= PT_LOAD
5012 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5015 /* Merge the two segments together. */
5016 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5018 /* Extend SEGMENT2 to include SEGMENT and then delete
5021 SEGMENT_END (segment
, segment
->p_vaddr
)
5022 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5024 if (extra_length
> 0)
5026 segment2
->p_memsz
+= extra_length
;
5027 segment2
->p_filesz
+= extra_length
;
5030 segment
->p_type
= PT_NULL
;
5032 /* Since we have deleted P we must restart the outer loop. */
5034 segment
= elf_tdata (ibfd
)->phdr
;
5039 /* Extend SEGMENT to include SEGMENT2 and then delete
5042 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5043 - SEGMENT_END (segment
, segment
->p_vaddr
);
5045 if (extra_length
> 0)
5047 segment
->p_memsz
+= extra_length
;
5048 segment
->p_filesz
+= extra_length
;
5051 segment2
->p_type
= PT_NULL
;
5056 /* The second scan attempts to assign sections to segments. */
5057 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5061 unsigned int section_count
;
5062 asection
** sections
;
5063 asection
* output_section
;
5065 bfd_vma matching_lma
;
5066 bfd_vma suggested_lma
;
5070 if (segment
->p_type
== PT_NULL
)
5073 /* Compute how many sections might be placed into this segment. */
5074 for (section
= ibfd
->sections
, section_count
= 0;
5076 section
= section
->next
)
5077 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5080 /* Allocate a segment map big enough to contain
5081 all of the sections we have selected. */
5082 amt
= sizeof (struct elf_segment_map
);
5083 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5084 map
= bfd_alloc (obfd
, amt
);
5088 /* Initialise the fields of the segment map. Default to
5089 using the physical address of the segment in the input BFD. */
5091 map
->p_type
= segment
->p_type
;
5092 map
->p_flags
= segment
->p_flags
;
5093 map
->p_flags_valid
= 1;
5094 map
->p_paddr
= segment
->p_paddr
;
5095 map
->p_paddr_valid
= 1;
5097 /* Determine if this segment contains the ELF file header
5098 and if it contains the program headers themselves. */
5099 map
->includes_filehdr
= (segment
->p_offset
== 0
5100 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5102 map
->includes_phdrs
= 0;
5104 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5106 map
->includes_phdrs
=
5107 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5108 && (segment
->p_offset
+ segment
->p_filesz
5109 >= ((bfd_vma
) iehdr
->e_phoff
5110 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5112 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5113 phdr_included
= TRUE
;
5116 if (section_count
== 0)
5118 /* Special segments, such as the PT_PHDR segment, may contain
5119 no sections, but ordinary, loadable segments should contain
5120 something. They are allowed by the ELF spec however, so only
5121 a warning is produced. */
5122 if (segment
->p_type
== PT_LOAD
)
5123 (*_bfd_error_handler
)
5124 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5128 *pointer_to_map
= map
;
5129 pointer_to_map
= &map
->next
;
5134 /* Now scan the sections in the input BFD again and attempt
5135 to add their corresponding output sections to the segment map.
5136 The problem here is how to handle an output section which has
5137 been moved (ie had its LMA changed). There are four possibilities:
5139 1. None of the sections have been moved.
5140 In this case we can continue to use the segment LMA from the
5143 2. All of the sections have been moved by the same amount.
5144 In this case we can change the segment's LMA to match the LMA
5145 of the first section.
5147 3. Some of the sections have been moved, others have not.
5148 In this case those sections which have not been moved can be
5149 placed in the current segment which will have to have its size,
5150 and possibly its LMA changed, and a new segment or segments will
5151 have to be created to contain the other sections.
5153 4. The sections have been moved, but not by the same amount.
5154 In this case we can change the segment's LMA to match the LMA
5155 of the first section and we will have to create a new segment
5156 or segments to contain the other sections.
5158 In order to save time, we allocate an array to hold the section
5159 pointers that we are interested in. As these sections get assigned
5160 to a segment, they are removed from this array. */
5162 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5163 to work around this long long bug. */
5164 amt
= section_count
* sizeof (asection
*);
5165 sections
= bfd_malloc (amt
);
5166 if (sections
== NULL
)
5169 /* Step One: Scan for segment vs section LMA conflicts.
5170 Also add the sections to the section array allocated above.
5171 Also add the sections to the current segment. In the common
5172 case, where the sections have not been moved, this means that
5173 we have completely filled the segment, and there is nothing
5179 for (j
= 0, section
= ibfd
->sections
;
5181 section
= section
->next
)
5183 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5185 output_section
= section
->output_section
;
5187 sections
[j
++] = section
;
5189 /* The Solaris native linker always sets p_paddr to 0.
5190 We try to catch that case here, and set it to the
5191 correct value. Note - some backends require that
5192 p_paddr be left as zero. */
5193 if (segment
->p_paddr
== 0
5194 && segment
->p_vaddr
!= 0
5195 && (! bed
->want_p_paddr_set_to_zero
)
5197 && output_section
->lma
!= 0
5198 && (output_section
->vma
== (segment
->p_vaddr
5199 + (map
->includes_filehdr
5202 + (map
->includes_phdrs
5204 * iehdr
->e_phentsize
)
5206 map
->p_paddr
= segment
->p_vaddr
;
5208 /* Match up the physical address of the segment with the
5209 LMA address of the output section. */
5210 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5211 || IS_COREFILE_NOTE (segment
, section
)
5212 || (bed
->want_p_paddr_set_to_zero
&&
5213 IS_CONTAINED_BY_VMA (output_section
, segment
))
5216 if (matching_lma
== 0)
5217 matching_lma
= output_section
->lma
;
5219 /* We assume that if the section fits within the segment
5220 then it does not overlap any other section within that
5222 map
->sections
[isec
++] = output_section
;
5224 else if (suggested_lma
== 0)
5225 suggested_lma
= output_section
->lma
;
5229 BFD_ASSERT (j
== section_count
);
5231 /* Step Two: Adjust the physical address of the current segment,
5233 if (isec
== section_count
)
5235 /* All of the sections fitted within the segment as currently
5236 specified. This is the default case. Add the segment to
5237 the list of built segments and carry on to process the next
5238 program header in the input BFD. */
5239 map
->count
= section_count
;
5240 *pointer_to_map
= map
;
5241 pointer_to_map
= &map
->next
;
5248 if (matching_lma
!= 0)
5250 /* At least one section fits inside the current segment.
5251 Keep it, but modify its physical address to match the
5252 LMA of the first section that fitted. */
5253 map
->p_paddr
= matching_lma
;
5257 /* None of the sections fitted inside the current segment.
5258 Change the current segment's physical address to match
5259 the LMA of the first section. */
5260 map
->p_paddr
= suggested_lma
;
5263 /* Offset the segment physical address from the lma
5264 to allow for space taken up by elf headers. */
5265 if (map
->includes_filehdr
)
5266 map
->p_paddr
-= iehdr
->e_ehsize
;
5268 if (map
->includes_phdrs
)
5270 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5272 /* iehdr->e_phnum is just an estimate of the number
5273 of program headers that we will need. Make a note
5274 here of the number we used and the segment we chose
5275 to hold these headers, so that we can adjust the
5276 offset when we know the correct value. */
5277 phdr_adjust_num
= iehdr
->e_phnum
;
5278 phdr_adjust_seg
= map
;
5282 /* Step Three: Loop over the sections again, this time assigning
5283 those that fit to the current segment and removing them from the
5284 sections array; but making sure not to leave large gaps. Once all
5285 possible sections have been assigned to the current segment it is
5286 added to the list of built segments and if sections still remain
5287 to be assigned, a new segment is constructed before repeating
5295 /* Fill the current segment with sections that fit. */
5296 for (j
= 0; j
< section_count
; j
++)
5298 section
= sections
[j
];
5300 if (section
== NULL
)
5303 output_section
= section
->output_section
;
5305 BFD_ASSERT (output_section
!= NULL
);
5307 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5308 || IS_COREFILE_NOTE (segment
, section
))
5310 if (map
->count
== 0)
5312 /* If the first section in a segment does not start at
5313 the beginning of the segment, then something is
5315 if (output_section
->lma
!=
5317 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5318 + (map
->includes_phdrs
5319 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5325 asection
* prev_sec
;
5327 prev_sec
= map
->sections
[map
->count
- 1];
5329 /* If the gap between the end of the previous section
5330 and the start of this section is more than
5331 maxpagesize then we need to start a new segment. */
5332 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5334 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5335 || ((prev_sec
->lma
+ prev_sec
->size
)
5336 > output_section
->lma
))
5338 if (suggested_lma
== 0)
5339 suggested_lma
= output_section
->lma
;
5345 map
->sections
[map
->count
++] = output_section
;
5348 section
->segment_mark
= TRUE
;
5350 else if (suggested_lma
== 0)
5351 suggested_lma
= output_section
->lma
;
5354 BFD_ASSERT (map
->count
> 0);
5356 /* Add the current segment to the list of built segments. */
5357 *pointer_to_map
= map
;
5358 pointer_to_map
= &map
->next
;
5360 if (isec
< section_count
)
5362 /* We still have not allocated all of the sections to
5363 segments. Create a new segment here, initialise it
5364 and carry on looping. */
5365 amt
= sizeof (struct elf_segment_map
);
5366 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5367 map
= bfd_alloc (obfd
, amt
);
5374 /* Initialise the fields of the segment map. Set the physical
5375 physical address to the LMA of the first section that has
5376 not yet been assigned. */
5378 map
->p_type
= segment
->p_type
;
5379 map
->p_flags
= segment
->p_flags
;
5380 map
->p_flags_valid
= 1;
5381 map
->p_paddr
= suggested_lma
;
5382 map
->p_paddr_valid
= 1;
5383 map
->includes_filehdr
= 0;
5384 map
->includes_phdrs
= 0;
5387 while (isec
< section_count
);
5392 /* The Solaris linker creates program headers in which all the
5393 p_paddr fields are zero. When we try to objcopy or strip such a
5394 file, we get confused. Check for this case, and if we find it
5395 reset the p_paddr_valid fields. */
5396 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5397 if (map
->p_paddr
!= 0)
5400 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5401 map
->p_paddr_valid
= 0;
5403 elf_tdata (obfd
)->segment_map
= map_first
;
5405 /* If we had to estimate the number of program headers that were
5406 going to be needed, then check our estimate now and adjust
5407 the offset if necessary. */
5408 if (phdr_adjust_seg
!= NULL
)
5412 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5415 if (count
> phdr_adjust_num
)
5416 phdr_adjust_seg
->p_paddr
5417 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5421 /* Final Step: Sort the segments into ascending order of physical
5423 if (map_first
!= NULL
)
5425 struct elf_segment_map
*prev
;
5428 for (map
= map_first
->next
; map
!= NULL
; prev
= map
, map
= map
->next
)
5430 /* Yes I know - its a bubble sort.... */
5431 if (map
->next
!= NULL
&& (map
->next
->p_paddr
< map
->p_paddr
))
5433 /* Swap map and map->next. */
5434 prev
->next
= map
->next
;
5435 map
->next
= map
->next
->next
;
5436 prev
->next
->next
= map
;
5447 #undef IS_CONTAINED_BY_VMA
5448 #undef IS_CONTAINED_BY_LMA
5449 #undef IS_COREFILE_NOTE
5450 #undef IS_SOLARIS_PT_INTERP
5451 #undef INCLUDE_SECTION_IN_SEGMENT
5452 #undef SEGMENT_AFTER_SEGMENT
5453 #undef SEGMENT_OVERLAPS
5457 /* Copy private section information. This copies over the entsize
5458 field, and sometimes the info field. */
5461 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5466 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5468 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5469 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5472 ihdr
= &elf_section_data (isec
)->this_hdr
;
5473 ohdr
= &elf_section_data (osec
)->this_hdr
;
5475 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5477 if (ihdr
->sh_type
== SHT_SYMTAB
5478 || ihdr
->sh_type
== SHT_DYNSYM
5479 || ihdr
->sh_type
== SHT_GNU_verneed
5480 || ihdr
->sh_type
== SHT_GNU_verdef
)
5481 ohdr
->sh_info
= ihdr
->sh_info
;
5483 /* Set things up for objcopy. The output SHT_GROUP section will
5484 have its elf_next_in_group pointing back to the input group
5486 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5487 elf_group_name (osec
) = elf_group_name (isec
);
5489 osec
->use_rela_p
= isec
->use_rela_p
;
5494 /* Copy private header information. */
5497 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5499 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5500 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5503 /* Copy over private BFD data if it has not already been copied.
5504 This must be done here, rather than in the copy_private_bfd_data
5505 entry point, because the latter is called after the section
5506 contents have been set, which means that the program headers have
5507 already been worked out. */
5508 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5510 if (! copy_private_bfd_data (ibfd
, obfd
))
5517 /* Copy private symbol information. If this symbol is in a section
5518 which we did not map into a BFD section, try to map the section
5519 index correctly. We use special macro definitions for the mapped
5520 section indices; these definitions are interpreted by the
5521 swap_out_syms function. */
5523 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5524 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5525 #define MAP_STRTAB (SHN_HIOS + 3)
5526 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5527 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5530 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5535 elf_symbol_type
*isym
, *osym
;
5537 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5538 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5541 isym
= elf_symbol_from (ibfd
, isymarg
);
5542 osym
= elf_symbol_from (obfd
, osymarg
);
5546 && bfd_is_abs_section (isym
->symbol
.section
))
5550 shndx
= isym
->internal_elf_sym
.st_shndx
;
5551 if (shndx
== elf_onesymtab (ibfd
))
5552 shndx
= MAP_ONESYMTAB
;
5553 else if (shndx
== elf_dynsymtab (ibfd
))
5554 shndx
= MAP_DYNSYMTAB
;
5555 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5557 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5558 shndx
= MAP_SHSTRTAB
;
5559 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5560 shndx
= MAP_SYM_SHNDX
;
5561 osym
->internal_elf_sym
.st_shndx
= shndx
;
5567 /* Swap out the symbols. */
5570 swap_out_syms (bfd
*abfd
,
5571 struct bfd_strtab_hash
**sttp
,
5574 const struct elf_backend_data
*bed
;
5577 struct bfd_strtab_hash
*stt
;
5578 Elf_Internal_Shdr
*symtab_hdr
;
5579 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5580 Elf_Internal_Shdr
*symstrtab_hdr
;
5581 char *outbound_syms
;
5582 char *outbound_shndx
;
5585 bfd_boolean name_local_sections
;
5587 if (!elf_map_symbols (abfd
))
5590 /* Dump out the symtabs. */
5591 stt
= _bfd_elf_stringtab_init ();
5595 bed
= get_elf_backend_data (abfd
);
5596 symcount
= bfd_get_symcount (abfd
);
5597 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5598 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5599 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5600 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5601 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5602 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5604 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5605 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5607 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5608 outbound_syms
= bfd_alloc (abfd
, amt
);
5609 if (outbound_syms
== NULL
)
5611 _bfd_stringtab_free (stt
);
5614 symtab_hdr
->contents
= outbound_syms
;
5616 outbound_shndx
= NULL
;
5617 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5618 if (symtab_shndx_hdr
->sh_name
!= 0)
5620 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5621 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5622 if (outbound_shndx
== NULL
)
5624 _bfd_stringtab_free (stt
);
5628 symtab_shndx_hdr
->contents
= outbound_shndx
;
5629 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5630 symtab_shndx_hdr
->sh_size
= amt
;
5631 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5632 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5635 /* Now generate the data (for "contents"). */
5637 /* Fill in zeroth symbol and swap it out. */
5638 Elf_Internal_Sym sym
;
5644 sym
.st_shndx
= SHN_UNDEF
;
5645 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5646 outbound_syms
+= bed
->s
->sizeof_sym
;
5647 if (outbound_shndx
!= NULL
)
5648 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5652 = (bed
->elf_backend_name_local_section_symbols
5653 && bed
->elf_backend_name_local_section_symbols (abfd
));
5655 syms
= bfd_get_outsymbols (abfd
);
5656 for (idx
= 0; idx
< symcount
; idx
++)
5658 Elf_Internal_Sym sym
;
5659 bfd_vma value
= syms
[idx
]->value
;
5660 elf_symbol_type
*type_ptr
;
5661 flagword flags
= syms
[idx
]->flags
;
5664 if (!name_local_sections
5665 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5667 /* Local section symbols have no name. */
5672 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5675 if (sym
.st_name
== (unsigned long) -1)
5677 _bfd_stringtab_free (stt
);
5682 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5684 if ((flags
& BSF_SECTION_SYM
) == 0
5685 && bfd_is_com_section (syms
[idx
]->section
))
5687 /* ELF common symbols put the alignment into the `value' field,
5688 and the size into the `size' field. This is backwards from
5689 how BFD handles it, so reverse it here. */
5690 sym
.st_size
= value
;
5691 if (type_ptr
== NULL
5692 || type_ptr
->internal_elf_sym
.st_value
== 0)
5693 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5695 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5696 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5697 (abfd
, syms
[idx
]->section
);
5701 asection
*sec
= syms
[idx
]->section
;
5704 if (sec
->output_section
)
5706 value
+= sec
->output_offset
;
5707 sec
= sec
->output_section
;
5710 /* Don't add in the section vma for relocatable output. */
5711 if (! relocatable_p
)
5713 sym
.st_value
= value
;
5714 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5716 if (bfd_is_abs_section (sec
)
5718 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5720 /* This symbol is in a real ELF section which we did
5721 not create as a BFD section. Undo the mapping done
5722 by copy_private_symbol_data. */
5723 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5727 shndx
= elf_onesymtab (abfd
);
5730 shndx
= elf_dynsymtab (abfd
);
5733 shndx
= elf_tdata (abfd
)->strtab_section
;
5736 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5739 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5747 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5753 /* Writing this would be a hell of a lot easier if
5754 we had some decent documentation on bfd, and
5755 knew what to expect of the library, and what to
5756 demand of applications. For example, it
5757 appears that `objcopy' might not set the
5758 section of a symbol to be a section that is
5759 actually in the output file. */
5760 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5763 _bfd_error_handler (_("\
5764 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5765 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5767 bfd_set_error (bfd_error_invalid_operation
);
5768 _bfd_stringtab_free (stt
);
5772 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5773 BFD_ASSERT (shndx
!= -1);
5777 sym
.st_shndx
= shndx
;
5780 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5782 else if ((flags
& BSF_FUNCTION
) != 0)
5784 else if ((flags
& BSF_OBJECT
) != 0)
5789 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5792 /* Processor-specific types. */
5793 if (type_ptr
!= NULL
5794 && bed
->elf_backend_get_symbol_type
)
5795 type
= ((*bed
->elf_backend_get_symbol_type
)
5796 (&type_ptr
->internal_elf_sym
, type
));
5798 if (flags
& BSF_SECTION_SYM
)
5800 if (flags
& BSF_GLOBAL
)
5801 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5803 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5805 else if (bfd_is_com_section (syms
[idx
]->section
))
5806 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5807 else if (bfd_is_und_section (syms
[idx
]->section
))
5808 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5812 else if (flags
& BSF_FILE
)
5813 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5816 int bind
= STB_LOCAL
;
5818 if (flags
& BSF_LOCAL
)
5820 else if (flags
& BSF_WEAK
)
5822 else if (flags
& BSF_GLOBAL
)
5825 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5828 if (type_ptr
!= NULL
)
5829 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5833 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5834 outbound_syms
+= bed
->s
->sizeof_sym
;
5835 if (outbound_shndx
!= NULL
)
5836 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5840 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5841 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5843 symstrtab_hdr
->sh_flags
= 0;
5844 symstrtab_hdr
->sh_addr
= 0;
5845 symstrtab_hdr
->sh_entsize
= 0;
5846 symstrtab_hdr
->sh_link
= 0;
5847 symstrtab_hdr
->sh_info
= 0;
5848 symstrtab_hdr
->sh_addralign
= 1;
5853 /* Return the number of bytes required to hold the symtab vector.
5855 Note that we base it on the count plus 1, since we will null terminate
5856 the vector allocated based on this size. However, the ELF symbol table
5857 always has a dummy entry as symbol #0, so it ends up even. */
5860 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5864 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5866 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5867 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5869 symtab_size
-= sizeof (asymbol
*);
5875 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5879 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5881 if (elf_dynsymtab (abfd
) == 0)
5883 bfd_set_error (bfd_error_invalid_operation
);
5887 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5888 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5890 symtab_size
-= sizeof (asymbol
*);
5896 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5899 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5902 /* Canonicalize the relocs. */
5905 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5912 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5914 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5917 tblptr
= section
->relocation
;
5918 for (i
= 0; i
< section
->reloc_count
; i
++)
5919 *relptr
++ = tblptr
++;
5923 return section
->reloc_count
;
5927 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5929 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5930 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5933 bfd_get_symcount (abfd
) = symcount
;
5938 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5939 asymbol
**allocation
)
5941 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5942 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
5945 bfd_get_dynamic_symcount (abfd
) = symcount
;
5949 /* Return the size required for the dynamic reloc entries. Any
5950 section that was actually installed in the BFD, and has type
5951 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5952 considered to be a dynamic reloc section. */
5955 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
5960 if (elf_dynsymtab (abfd
) == 0)
5962 bfd_set_error (bfd_error_invalid_operation
);
5966 ret
= sizeof (arelent
*);
5967 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5968 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5969 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5970 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5971 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
5972 * sizeof (arelent
*));
5977 /* Canonicalize the dynamic relocation entries. Note that we return
5978 the dynamic relocations as a single block, although they are
5979 actually associated with particular sections; the interface, which
5980 was designed for SunOS style shared libraries, expects that there
5981 is only one set of dynamic relocs. Any section that was actually
5982 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5983 the dynamic symbol table, is considered to be a dynamic reloc
5987 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
5991 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
5995 if (elf_dynsymtab (abfd
) == 0)
5997 bfd_set_error (bfd_error_invalid_operation
);
6001 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6003 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6005 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6006 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6007 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6012 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6014 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6016 for (i
= 0; i
< count
; i
++)
6027 /* Read in the version information. */
6030 _bfd_elf_slurp_version_tables (bfd
*abfd
)
6032 bfd_byte
*contents
= NULL
;
6035 if (elf_dynverdef (abfd
) != 0)
6037 Elf_Internal_Shdr
*hdr
;
6038 Elf_External_Verdef
*everdef
;
6039 Elf_Internal_Verdef
*iverdef
;
6040 Elf_Internal_Verdef
*iverdefarr
;
6041 Elf_Internal_Verdef iverdefmem
;
6043 unsigned int maxidx
;
6045 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6047 contents
= bfd_malloc (hdr
->sh_size
);
6048 if (contents
== NULL
)
6050 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6051 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6054 /* We know the number of entries in the section but not the maximum
6055 index. Therefore we have to run through all entries and find
6057 everdef
= (Elf_External_Verdef
*) contents
;
6059 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6061 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6063 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6064 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6066 everdef
= ((Elf_External_Verdef
*)
6067 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6070 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
6071 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6072 if (elf_tdata (abfd
)->verdef
== NULL
)
6075 elf_tdata (abfd
)->cverdefs
= maxidx
;
6077 everdef
= (Elf_External_Verdef
*) contents
;
6078 iverdefarr
= elf_tdata (abfd
)->verdef
;
6079 for (i
= 0; i
< hdr
->sh_info
; i
++)
6081 Elf_External_Verdaux
*everdaux
;
6082 Elf_Internal_Verdaux
*iverdaux
;
6085 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6087 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6088 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6090 iverdef
->vd_bfd
= abfd
;
6092 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
6093 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6094 if (iverdef
->vd_auxptr
== NULL
)
6097 everdaux
= ((Elf_External_Verdaux
*)
6098 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6099 iverdaux
= iverdef
->vd_auxptr
;
6100 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6102 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6104 iverdaux
->vda_nodename
=
6105 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6106 iverdaux
->vda_name
);
6107 if (iverdaux
->vda_nodename
== NULL
)
6110 if (j
+ 1 < iverdef
->vd_cnt
)
6111 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6113 iverdaux
->vda_nextptr
= NULL
;
6115 everdaux
= ((Elf_External_Verdaux
*)
6116 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6119 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6121 if (i
+ 1 < hdr
->sh_info
)
6122 iverdef
->vd_nextdef
= iverdef
+ 1;
6124 iverdef
->vd_nextdef
= NULL
;
6126 everdef
= ((Elf_External_Verdef
*)
6127 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6134 if (elf_dynverref (abfd
) != 0)
6136 Elf_Internal_Shdr
*hdr
;
6137 Elf_External_Verneed
*everneed
;
6138 Elf_Internal_Verneed
*iverneed
;
6141 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6143 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
6144 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
6145 if (elf_tdata (abfd
)->verref
== NULL
)
6148 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6150 contents
= bfd_malloc (hdr
->sh_size
);
6151 if (contents
== NULL
)
6153 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6154 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6157 everneed
= (Elf_External_Verneed
*) contents
;
6158 iverneed
= elf_tdata (abfd
)->verref
;
6159 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6161 Elf_External_Vernaux
*evernaux
;
6162 Elf_Internal_Vernaux
*ivernaux
;
6165 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6167 iverneed
->vn_bfd
= abfd
;
6169 iverneed
->vn_filename
=
6170 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6172 if (iverneed
->vn_filename
== NULL
)
6175 amt
= iverneed
->vn_cnt
;
6176 amt
*= sizeof (Elf_Internal_Vernaux
);
6177 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
6179 evernaux
= ((Elf_External_Vernaux
*)
6180 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6181 ivernaux
= iverneed
->vn_auxptr
;
6182 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6184 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6186 ivernaux
->vna_nodename
=
6187 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6188 ivernaux
->vna_name
);
6189 if (ivernaux
->vna_nodename
== NULL
)
6192 if (j
+ 1 < iverneed
->vn_cnt
)
6193 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6195 ivernaux
->vna_nextptr
= NULL
;
6197 evernaux
= ((Elf_External_Vernaux
*)
6198 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6201 if (i
+ 1 < hdr
->sh_info
)
6202 iverneed
->vn_nextref
= iverneed
+ 1;
6204 iverneed
->vn_nextref
= NULL
;
6206 everneed
= ((Elf_External_Verneed
*)
6207 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6217 if (contents
!= NULL
)
6223 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6225 elf_symbol_type
*newsym
;
6226 bfd_size_type amt
= sizeof (elf_symbol_type
);
6228 newsym
= bfd_zalloc (abfd
, amt
);
6233 newsym
->symbol
.the_bfd
= abfd
;
6234 return &newsym
->symbol
;
6239 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6243 bfd_symbol_info (symbol
, ret
);
6246 /* Return whether a symbol name implies a local symbol. Most targets
6247 use this function for the is_local_label_name entry point, but some
6251 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6254 /* Normal local symbols start with ``.L''. */
6255 if (name
[0] == '.' && name
[1] == 'L')
6258 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6259 DWARF debugging symbols starting with ``..''. */
6260 if (name
[0] == '.' && name
[1] == '.')
6263 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6264 emitting DWARF debugging output. I suspect this is actually a
6265 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6266 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6267 underscore to be emitted on some ELF targets). For ease of use,
6268 we treat such symbols as local. */
6269 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6276 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6277 asymbol
*symbol ATTRIBUTE_UNUSED
)
6284 _bfd_elf_set_arch_mach (bfd
*abfd
,
6285 enum bfd_architecture arch
,
6286 unsigned long machine
)
6288 /* If this isn't the right architecture for this backend, and this
6289 isn't the generic backend, fail. */
6290 if (arch
!= get_elf_backend_data (abfd
)->arch
6291 && arch
!= bfd_arch_unknown
6292 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6295 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6298 /* Find the function to a particular section and offset,
6299 for error reporting. */
6302 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6306 const char **filename_ptr
,
6307 const char **functionname_ptr
)
6309 const char *filename
;
6318 for (p
= symbols
; *p
!= NULL
; p
++)
6322 q
= (elf_symbol_type
*) *p
;
6324 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6329 filename
= bfd_asymbol_name (&q
->symbol
);
6333 if (bfd_get_section (&q
->symbol
) == section
6334 && q
->symbol
.value
>= low_func
6335 && q
->symbol
.value
<= offset
)
6337 func
= (asymbol
*) q
;
6338 low_func
= q
->symbol
.value
;
6348 *filename_ptr
= filename
;
6349 if (functionname_ptr
)
6350 *functionname_ptr
= bfd_asymbol_name (func
);
6355 /* Find the nearest line to a particular section and offset,
6356 for error reporting. */
6359 _bfd_elf_find_nearest_line (bfd
*abfd
,
6363 const char **filename_ptr
,
6364 const char **functionname_ptr
,
6365 unsigned int *line_ptr
)
6369 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6370 filename_ptr
, functionname_ptr
,
6373 if (!*functionname_ptr
)
6374 elf_find_function (abfd
, section
, symbols
, offset
,
6375 *filename_ptr
? NULL
: filename_ptr
,
6381 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6382 filename_ptr
, functionname_ptr
,
6384 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6386 if (!*functionname_ptr
)
6387 elf_find_function (abfd
, section
, symbols
, offset
,
6388 *filename_ptr
? NULL
: filename_ptr
,
6394 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6395 &found
, filename_ptr
,
6396 functionname_ptr
, line_ptr
,
6397 &elf_tdata (abfd
)->line_info
))
6399 if (found
&& (*functionname_ptr
|| *line_ptr
))
6402 if (symbols
== NULL
)
6405 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6406 filename_ptr
, functionname_ptr
))
6414 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6418 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6420 ret
+= get_program_header_size (abfd
);
6425 _bfd_elf_set_section_contents (bfd
*abfd
,
6427 const void *location
,
6429 bfd_size_type count
)
6431 Elf_Internal_Shdr
*hdr
;
6434 if (! abfd
->output_has_begun
6435 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6438 hdr
= &elf_section_data (section
)->this_hdr
;
6439 pos
= hdr
->sh_offset
+ offset
;
6440 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6441 || bfd_bwrite (location
, count
, abfd
) != count
)
6448 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6449 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6450 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6455 /* Try to convert a non-ELF reloc into an ELF one. */
6458 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6460 /* Check whether we really have an ELF howto. */
6462 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6464 bfd_reloc_code_real_type code
;
6465 reloc_howto_type
*howto
;
6467 /* Alien reloc: Try to determine its type to replace it with an
6468 equivalent ELF reloc. */
6470 if (areloc
->howto
->pc_relative
)
6472 switch (areloc
->howto
->bitsize
)
6475 code
= BFD_RELOC_8_PCREL
;
6478 code
= BFD_RELOC_12_PCREL
;
6481 code
= BFD_RELOC_16_PCREL
;
6484 code
= BFD_RELOC_24_PCREL
;
6487 code
= BFD_RELOC_32_PCREL
;
6490 code
= BFD_RELOC_64_PCREL
;
6496 howto
= bfd_reloc_type_lookup (abfd
, code
);
6498 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6500 if (howto
->pcrel_offset
)
6501 areloc
->addend
+= areloc
->address
;
6503 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6508 switch (areloc
->howto
->bitsize
)
6514 code
= BFD_RELOC_14
;
6517 code
= BFD_RELOC_16
;
6520 code
= BFD_RELOC_26
;
6523 code
= BFD_RELOC_32
;
6526 code
= BFD_RELOC_64
;
6532 howto
= bfd_reloc_type_lookup (abfd
, code
);
6536 areloc
->howto
= howto
;
6544 (*_bfd_error_handler
)
6545 (_("%B: unsupported relocation type %s"),
6546 abfd
, areloc
->howto
->name
);
6547 bfd_set_error (bfd_error_bad_value
);
6552 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6554 if (bfd_get_format (abfd
) == bfd_object
)
6556 if (elf_shstrtab (abfd
) != NULL
)
6557 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6560 return _bfd_generic_close_and_cleanup (abfd
);
6563 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6564 in the relocation's offset. Thus we cannot allow any sort of sanity
6565 range-checking to interfere. There is nothing else to do in processing
6568 bfd_reloc_status_type
6569 _bfd_elf_rel_vtable_reloc_fn
6570 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6571 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6572 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6573 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6575 return bfd_reloc_ok
;
6578 /* Elf core file support. Much of this only works on native
6579 toolchains, since we rely on knowing the
6580 machine-dependent procfs structure in order to pick
6581 out details about the corefile. */
6583 #ifdef HAVE_SYS_PROCFS_H
6584 # include <sys/procfs.h>
6587 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6590 elfcore_make_pid (bfd
*abfd
)
6592 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6593 + (elf_tdata (abfd
)->core_pid
));
6596 /* If there isn't a section called NAME, make one, using
6597 data from SECT. Note, this function will generate a
6598 reference to NAME, so you shouldn't deallocate or
6602 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6606 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6609 sect2
= bfd_make_section (abfd
, name
);
6613 sect2
->size
= sect
->size
;
6614 sect2
->filepos
= sect
->filepos
;
6615 sect2
->flags
= sect
->flags
;
6616 sect2
->alignment_power
= sect
->alignment_power
;
6620 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6621 actually creates up to two pseudosections:
6622 - For the single-threaded case, a section named NAME, unless
6623 such a section already exists.
6624 - For the multi-threaded case, a section named "NAME/PID", where
6625 PID is elfcore_make_pid (abfd).
6626 Both pseudosections have identical contents. */
6628 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6634 char *threaded_name
;
6638 /* Build the section name. */
6640 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6641 len
= strlen (buf
) + 1;
6642 threaded_name
= bfd_alloc (abfd
, len
);
6643 if (threaded_name
== NULL
)
6645 memcpy (threaded_name
, buf
, len
);
6647 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6651 sect
->filepos
= filepos
;
6652 sect
->flags
= SEC_HAS_CONTENTS
;
6653 sect
->alignment_power
= 2;
6655 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6658 /* prstatus_t exists on:
6660 linux 2.[01] + glibc
6664 #if defined (HAVE_PRSTATUS_T)
6667 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6672 if (note
->descsz
== sizeof (prstatus_t
))
6676 size
= sizeof (prstat
.pr_reg
);
6677 offset
= offsetof (prstatus_t
, pr_reg
);
6678 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6680 /* Do not overwrite the core signal if it
6681 has already been set by another thread. */
6682 if (elf_tdata (abfd
)->core_signal
== 0)
6683 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6684 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6686 /* pr_who exists on:
6689 pr_who doesn't exist on:
6692 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6693 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6696 #if defined (HAVE_PRSTATUS32_T)
6697 else if (note
->descsz
== sizeof (prstatus32_t
))
6699 /* 64-bit host, 32-bit corefile */
6700 prstatus32_t prstat
;
6702 size
= sizeof (prstat
.pr_reg
);
6703 offset
= offsetof (prstatus32_t
, pr_reg
);
6704 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6706 /* Do not overwrite the core signal if it
6707 has already been set by another thread. */
6708 if (elf_tdata (abfd
)->core_signal
== 0)
6709 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6710 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6712 /* pr_who exists on:
6715 pr_who doesn't exist on:
6718 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6719 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6722 #endif /* HAVE_PRSTATUS32_T */
6725 /* Fail - we don't know how to handle any other
6726 note size (ie. data object type). */
6730 /* Make a ".reg/999" section and a ".reg" section. */
6731 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6732 size
, note
->descpos
+ offset
);
6734 #endif /* defined (HAVE_PRSTATUS_T) */
6736 /* Create a pseudosection containing the exact contents of NOTE. */
6738 elfcore_make_note_pseudosection (bfd
*abfd
,
6740 Elf_Internal_Note
*note
)
6742 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6743 note
->descsz
, note
->descpos
);
6746 /* There isn't a consistent prfpregset_t across platforms,
6747 but it doesn't matter, because we don't have to pick this
6748 data structure apart. */
6751 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6753 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6756 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6757 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6761 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6763 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6766 #if defined (HAVE_PRPSINFO_T)
6767 typedef prpsinfo_t elfcore_psinfo_t
;
6768 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6769 typedef prpsinfo32_t elfcore_psinfo32_t
;
6773 #if defined (HAVE_PSINFO_T)
6774 typedef psinfo_t elfcore_psinfo_t
;
6775 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6776 typedef psinfo32_t elfcore_psinfo32_t
;
6780 /* return a malloc'ed copy of a string at START which is at
6781 most MAX bytes long, possibly without a terminating '\0'.
6782 the copy will always have a terminating '\0'. */
6785 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6788 char *end
= memchr (start
, '\0', max
);
6796 dups
= bfd_alloc (abfd
, len
+ 1);
6800 memcpy (dups
, start
, len
);
6806 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6808 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6810 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6812 elfcore_psinfo_t psinfo
;
6814 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6816 elf_tdata (abfd
)->core_program
6817 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6818 sizeof (psinfo
.pr_fname
));
6820 elf_tdata (abfd
)->core_command
6821 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6822 sizeof (psinfo
.pr_psargs
));
6824 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6825 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6827 /* 64-bit host, 32-bit corefile */
6828 elfcore_psinfo32_t psinfo
;
6830 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6832 elf_tdata (abfd
)->core_program
6833 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6834 sizeof (psinfo
.pr_fname
));
6836 elf_tdata (abfd
)->core_command
6837 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6838 sizeof (psinfo
.pr_psargs
));
6844 /* Fail - we don't know how to handle any other
6845 note size (ie. data object type). */
6849 /* Note that for some reason, a spurious space is tacked
6850 onto the end of the args in some (at least one anyway)
6851 implementations, so strip it off if it exists. */
6854 char *command
= elf_tdata (abfd
)->core_command
;
6855 int n
= strlen (command
);
6857 if (0 < n
&& command
[n
- 1] == ' ')
6858 command
[n
- 1] = '\0';
6863 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6865 #if defined (HAVE_PSTATUS_T)
6867 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6869 if (note
->descsz
== sizeof (pstatus_t
)
6870 #if defined (HAVE_PXSTATUS_T)
6871 || note
->descsz
== sizeof (pxstatus_t
)
6877 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6879 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6881 #if defined (HAVE_PSTATUS32_T)
6882 else if (note
->descsz
== sizeof (pstatus32_t
))
6884 /* 64-bit host, 32-bit corefile */
6887 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6889 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6892 /* Could grab some more details from the "representative"
6893 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6894 NT_LWPSTATUS note, presumably. */
6898 #endif /* defined (HAVE_PSTATUS_T) */
6900 #if defined (HAVE_LWPSTATUS_T)
6902 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6904 lwpstatus_t lwpstat
;
6910 if (note
->descsz
!= sizeof (lwpstat
)
6911 #if defined (HAVE_LWPXSTATUS_T)
6912 && note
->descsz
!= sizeof (lwpxstatus_t
)
6917 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
6919 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
6920 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
6922 /* Make a ".reg/999" section. */
6924 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
6925 len
= strlen (buf
) + 1;
6926 name
= bfd_alloc (abfd
, len
);
6929 memcpy (name
, buf
, len
);
6931 sect
= bfd_make_section_anyway (abfd
, name
);
6935 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6936 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
6937 sect
->filepos
= note
->descpos
6938 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
6941 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6942 sect
->size
= sizeof (lwpstat
.pr_reg
);
6943 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
6946 sect
->flags
= SEC_HAS_CONTENTS
;
6947 sect
->alignment_power
= 2;
6949 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6952 /* Make a ".reg2/999" section */
6954 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
6955 len
= strlen (buf
) + 1;
6956 name
= bfd_alloc (abfd
, len
);
6959 memcpy (name
, buf
, len
);
6961 sect
= bfd_make_section_anyway (abfd
, name
);
6965 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6966 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
6967 sect
->filepos
= note
->descpos
6968 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
6971 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6972 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
6973 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
6976 sect
->flags
= SEC_HAS_CONTENTS
;
6977 sect
->alignment_power
= 2;
6979 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
6981 #endif /* defined (HAVE_LWPSTATUS_T) */
6983 #if defined (HAVE_WIN32_PSTATUS_T)
6985 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6991 win32_pstatus_t pstatus
;
6993 if (note
->descsz
< sizeof (pstatus
))
6996 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
6998 switch (pstatus
.data_type
)
7000 case NOTE_INFO_PROCESS
:
7001 /* FIXME: need to add ->core_command. */
7002 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7003 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7006 case NOTE_INFO_THREAD
:
7007 /* Make a ".reg/999" section. */
7008 sprintf (buf
, ".reg/%d", pstatus
.data
.thread_info
.tid
);
7010 len
= strlen (buf
) + 1;
7011 name
= bfd_alloc (abfd
, len
);
7015 memcpy (name
, buf
, len
);
7017 sect
= bfd_make_section_anyway (abfd
, name
);
7021 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7022 sect
->filepos
= (note
->descpos
7023 + offsetof (struct win32_pstatus
,
7024 data
.thread_info
.thread_context
));
7025 sect
->flags
= SEC_HAS_CONTENTS
;
7026 sect
->alignment_power
= 2;
7028 if (pstatus
.data
.thread_info
.is_active_thread
)
7029 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7033 case NOTE_INFO_MODULE
:
7034 /* Make a ".module/xxxxxxxx" section. */
7035 sprintf (buf
, ".module/%08x", pstatus
.data
.module_info
.base_address
);
7037 len
= strlen (buf
) + 1;
7038 name
= bfd_alloc (abfd
, len
);
7042 memcpy (name
, buf
, len
);
7044 sect
= bfd_make_section_anyway (abfd
, name
);
7049 sect
->size
= note
->descsz
;
7050 sect
->filepos
= note
->descpos
;
7051 sect
->flags
= SEC_HAS_CONTENTS
;
7052 sect
->alignment_power
= 2;
7061 #endif /* HAVE_WIN32_PSTATUS_T */
7064 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7066 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7074 if (bed
->elf_backend_grok_prstatus
)
7075 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7077 #if defined (HAVE_PRSTATUS_T)
7078 return elfcore_grok_prstatus (abfd
, note
);
7083 #if defined (HAVE_PSTATUS_T)
7085 return elfcore_grok_pstatus (abfd
, note
);
7088 #if defined (HAVE_LWPSTATUS_T)
7090 return elfcore_grok_lwpstatus (abfd
, note
);
7093 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7094 return elfcore_grok_prfpreg (abfd
, note
);
7096 #if defined (HAVE_WIN32_PSTATUS_T)
7097 case NT_WIN32PSTATUS
:
7098 return elfcore_grok_win32pstatus (abfd
, note
);
7101 case NT_PRXFPREG
: /* Linux SSE extension */
7102 if (note
->namesz
== 6
7103 && strcmp (note
->namedata
, "LINUX") == 0)
7104 return elfcore_grok_prxfpreg (abfd
, note
);
7110 if (bed
->elf_backend_grok_psinfo
)
7111 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7113 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7114 return elfcore_grok_psinfo (abfd
, note
);
7121 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7125 sect
->size
= note
->descsz
;
7126 sect
->filepos
= note
->descpos
;
7127 sect
->flags
= SEC_HAS_CONTENTS
;
7128 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7136 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7140 cp
= strchr (note
->namedata
, '@');
7143 *lwpidp
= atoi(cp
+ 1);
7150 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7153 /* Signal number at offset 0x08. */
7154 elf_tdata (abfd
)->core_signal
7155 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7157 /* Process ID at offset 0x50. */
7158 elf_tdata (abfd
)->core_pid
7159 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7161 /* Command name at 0x7c (max 32 bytes, including nul). */
7162 elf_tdata (abfd
)->core_command
7163 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7165 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7170 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7174 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7175 elf_tdata (abfd
)->core_lwpid
= lwp
;
7177 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7179 /* NetBSD-specific core "procinfo". Note that we expect to
7180 find this note before any of the others, which is fine,
7181 since the kernel writes this note out first when it
7182 creates a core file. */
7184 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7187 /* As of Jan 2002 there are no other machine-independent notes
7188 defined for NetBSD core files. If the note type is less
7189 than the start of the machine-dependent note types, we don't
7192 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7196 switch (bfd_get_arch (abfd
))
7198 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7199 PT_GETFPREGS == mach+2. */
7201 case bfd_arch_alpha
:
7202 case bfd_arch_sparc
:
7205 case NT_NETBSDCORE_FIRSTMACH
+0:
7206 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7208 case NT_NETBSDCORE_FIRSTMACH
+2:
7209 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7215 /* On all other arch's, PT_GETREGS == mach+1 and
7216 PT_GETFPREGS == mach+3. */
7221 case NT_NETBSDCORE_FIRSTMACH
+1:
7222 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7224 case NT_NETBSDCORE_FIRSTMACH
+3:
7225 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7235 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7237 void *ddata
= note
->descdata
;
7244 /* nto_procfs_status 'pid' field is at offset 0. */
7245 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7247 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7248 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7250 /* nto_procfs_status 'flags' field is at offset 8. */
7251 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7253 /* nto_procfs_status 'what' field is at offset 14. */
7254 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7256 elf_tdata (abfd
)->core_signal
= sig
;
7257 elf_tdata (abfd
)->core_lwpid
= *tid
;
7260 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7261 do not come from signals so we make sure we set the current
7262 thread just in case. */
7263 if (flags
& 0x00000080)
7264 elf_tdata (abfd
)->core_lwpid
= *tid
;
7266 /* Make a ".qnx_core_status/%d" section. */
7267 sprintf (buf
, ".qnx_core_status/%d", *tid
);
7269 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7274 sect
= bfd_make_section_anyway (abfd
, name
);
7278 sect
->size
= note
->descsz
;
7279 sect
->filepos
= note
->descpos
;
7280 sect
->flags
= SEC_HAS_CONTENTS
;
7281 sect
->alignment_power
= 2;
7283 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7287 elfcore_grok_nto_gregs (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t tid
)
7293 /* Make a ".reg/%d" section. */
7294 sprintf (buf
, ".reg/%d", tid
);
7296 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7301 sect
= bfd_make_section_anyway (abfd
, name
);
7305 sect
->size
= note
->descsz
;
7306 sect
->filepos
= note
->descpos
;
7307 sect
->flags
= SEC_HAS_CONTENTS
;
7308 sect
->alignment_power
= 2;
7310 /* This is the current thread. */
7311 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7312 return elfcore_maybe_make_sect (abfd
, ".reg", sect
);
7317 #define BFD_QNT_CORE_INFO 7
7318 #define BFD_QNT_CORE_STATUS 8
7319 #define BFD_QNT_CORE_GREG 9
7320 #define BFD_QNT_CORE_FPREG 10
7323 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7325 /* Every GREG section has a STATUS section before it. Store the
7326 tid from the previous call to pass down to the next gregs
7328 static pid_t tid
= 1;
7332 case BFD_QNT_CORE_INFO
: return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7333 case BFD_QNT_CORE_STATUS
: return elfcore_grok_nto_status (abfd
, note
, &tid
);
7334 case BFD_QNT_CORE_GREG
: return elfcore_grok_nto_gregs (abfd
, note
, tid
);
7335 case BFD_QNT_CORE_FPREG
: return elfcore_grok_prfpreg (abfd
, note
);
7336 default: return TRUE
;
7340 /* Function: elfcore_write_note
7347 size of data for note
7350 End of buffer containing note. */
7353 elfcore_write_note (bfd
*abfd
,
7361 Elf_External_Note
*xnp
;
7371 const struct elf_backend_data
*bed
;
7373 namesz
= strlen (name
) + 1;
7374 bed
= get_elf_backend_data (abfd
);
7375 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7378 newspace
= 12 + namesz
+ pad
+ size
;
7380 p
= realloc (buf
, *bufsiz
+ newspace
);
7382 *bufsiz
+= newspace
;
7383 xnp
= (Elf_External_Note
*) dest
;
7384 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7385 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7386 H_PUT_32 (abfd
, type
, xnp
->type
);
7390 memcpy (dest
, name
, namesz
);
7398 memcpy (dest
, input
, size
);
7402 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7404 elfcore_write_prpsinfo (bfd
*abfd
,
7411 char *note_name
= "CORE";
7413 #if defined (HAVE_PSINFO_T)
7415 note_type
= NT_PSINFO
;
7418 note_type
= NT_PRPSINFO
;
7421 memset (&data
, 0, sizeof (data
));
7422 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7423 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7424 return elfcore_write_note (abfd
, buf
, bufsiz
,
7425 note_name
, note_type
, &data
, sizeof (data
));
7427 #endif /* PSINFO_T or PRPSINFO_T */
7429 #if defined (HAVE_PRSTATUS_T)
7431 elfcore_write_prstatus (bfd
*abfd
,
7439 char *note_name
= "CORE";
7441 memset (&prstat
, 0, sizeof (prstat
));
7442 prstat
.pr_pid
= pid
;
7443 prstat
.pr_cursig
= cursig
;
7444 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7445 return elfcore_write_note (abfd
, buf
, bufsiz
,
7446 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7448 #endif /* HAVE_PRSTATUS_T */
7450 #if defined (HAVE_LWPSTATUS_T)
7452 elfcore_write_lwpstatus (bfd
*abfd
,
7459 lwpstatus_t lwpstat
;
7460 char *note_name
= "CORE";
7462 memset (&lwpstat
, 0, sizeof (lwpstat
));
7463 lwpstat
.pr_lwpid
= pid
>> 16;
7464 lwpstat
.pr_cursig
= cursig
;
7465 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7466 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7467 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7469 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7470 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7472 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7473 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7476 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7477 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7479 #endif /* HAVE_LWPSTATUS_T */
7481 #if defined (HAVE_PSTATUS_T)
7483 elfcore_write_pstatus (bfd
*abfd
,
7491 char *note_name
= "CORE";
7493 memset (&pstat
, 0, sizeof (pstat
));
7494 pstat
.pr_pid
= pid
& 0xffff;
7495 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7496 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7499 #endif /* HAVE_PSTATUS_T */
7502 elfcore_write_prfpreg (bfd
*abfd
,
7508 char *note_name
= "CORE";
7509 return elfcore_write_note (abfd
, buf
, bufsiz
,
7510 note_name
, NT_FPREGSET
, fpregs
, size
);
7514 elfcore_write_prxfpreg (bfd
*abfd
,
7517 const void *xfpregs
,
7520 char *note_name
= "LINUX";
7521 return elfcore_write_note (abfd
, buf
, bufsiz
,
7522 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7526 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7534 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7537 buf
= bfd_malloc (size
);
7541 if (bfd_bread (buf
, size
, abfd
) != size
)
7549 while (p
< buf
+ size
)
7551 /* FIXME: bad alignment assumption. */
7552 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7553 Elf_Internal_Note in
;
7555 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7557 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7558 in
.namedata
= xnp
->name
;
7560 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7561 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7562 in
.descpos
= offset
+ (in
.descdata
- buf
);
7564 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7566 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7569 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7571 if (! elfcore_grok_nto_note (abfd
, &in
))
7576 if (! elfcore_grok_note (abfd
, &in
))
7580 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7587 /* Providing external access to the ELF program header table. */
7589 /* Return an upper bound on the number of bytes required to store a
7590 copy of ABFD's program header table entries. Return -1 if an error
7591 occurs; bfd_get_error will return an appropriate code. */
7594 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7596 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7598 bfd_set_error (bfd_error_wrong_format
);
7602 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7605 /* Copy ABFD's program header table entries to *PHDRS. The entries
7606 will be stored as an array of Elf_Internal_Phdr structures, as
7607 defined in include/elf/internal.h. To find out how large the
7608 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7610 Return the number of program header table entries read, or -1 if an
7611 error occurs; bfd_get_error will return an appropriate code. */
7614 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7618 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7620 bfd_set_error (bfd_error_wrong_format
);
7624 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7625 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7626 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7632 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7635 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7637 i_ehdrp
= elf_elfheader (abfd
);
7638 if (i_ehdrp
== NULL
)
7639 sprintf_vma (buf
, value
);
7642 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7644 #if BFD_HOST_64BIT_LONG
7645 sprintf (buf
, "%016lx", value
);
7647 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7648 _bfd_int64_low (value
));
7652 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7655 sprintf_vma (buf
, value
);
7660 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7663 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7665 i_ehdrp
= elf_elfheader (abfd
);
7666 if (i_ehdrp
== NULL
)
7667 fprintf_vma ((FILE *) stream
, value
);
7670 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7672 #if BFD_HOST_64BIT_LONG
7673 fprintf ((FILE *) stream
, "%016lx", value
);
7675 fprintf ((FILE *) stream
, "%08lx%08lx",
7676 _bfd_int64_high (value
), _bfd_int64_low (value
));
7680 fprintf ((FILE *) stream
, "%08lx",
7681 (unsigned long) (value
& 0xffffffff));
7684 fprintf_vma ((FILE *) stream
, value
);
7688 enum elf_reloc_type_class
7689 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7691 return reloc_class_normal
;
7694 /* For RELA architectures, return the relocation value for a
7695 relocation against a local symbol. */
7698 _bfd_elf_rela_local_sym (bfd
*abfd
,
7699 Elf_Internal_Sym
*sym
,
7701 Elf_Internal_Rela
*rel
)
7703 asection
*sec
= *psec
;
7706 relocation
= (sec
->output_section
->vma
7707 + sec
->output_offset
7709 if ((sec
->flags
& SEC_MERGE
)
7710 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7711 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7714 _bfd_merged_section_offset (abfd
, psec
,
7715 elf_section_data (sec
)->sec_info
,
7716 sym
->st_value
+ rel
->r_addend
);
7719 /* If we have changed the section, and our original section is
7720 marked with SEC_EXCLUDE, it means that the original
7721 SEC_MERGE section has been completely subsumed in some
7722 other SEC_MERGE section. In this case, we need to leave
7723 some info around for --emit-relocs. */
7724 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7725 sec
->kept_section
= *psec
;
7728 rel
->r_addend
-= relocation
;
7729 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
7735 _bfd_elf_rel_local_sym (bfd
*abfd
,
7736 Elf_Internal_Sym
*sym
,
7740 asection
*sec
= *psec
;
7742 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7743 return sym
->st_value
+ addend
;
7745 return _bfd_merged_section_offset (abfd
, psec
,
7746 elf_section_data (sec
)->sec_info
,
7747 sym
->st_value
+ addend
);
7751 _bfd_elf_section_offset (bfd
*abfd
,
7752 struct bfd_link_info
*info
,
7756 switch (sec
->sec_info_type
)
7758 case ELF_INFO_TYPE_STABS
:
7759 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
7761 case ELF_INFO_TYPE_EH_FRAME
:
7762 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
7768 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7769 reconstruct an ELF file by reading the segments out of remote memory
7770 based on the ELF file header at EHDR_VMA and the ELF program headers it
7771 points to. If not null, *LOADBASEP is filled in with the difference
7772 between the VMAs from which the segments were read, and the VMAs the
7773 file headers (and hence BFD's idea of each section's VMA) put them at.
7775 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7776 remote memory at target address VMA into the local buffer at MYADDR; it
7777 should return zero on success or an `errno' code on failure. TEMPL must
7778 be a BFD for an ELF target with the word size and byte order found in
7779 the remote memory. */
7782 bfd_elf_bfd_from_remote_memory
7786 int (*target_read_memory
) (bfd_vma
, char *, int))
7788 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7789 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
7793 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
7794 long symcount ATTRIBUTE_UNUSED
,
7795 asymbol
**syms ATTRIBUTE_UNUSED
,
7796 long dynsymcount ATTRIBUTE_UNUSED
,
7800 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7803 const char *relplt_name
;
7804 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7808 Elf_Internal_Shdr
*hdr
;
7812 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
7816 if (!bed
->plt_sym_val
)
7819 relplt_name
= bed
->relplt_name
;
7820 if (relplt_name
== NULL
)
7821 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
7822 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
7826 hdr
= &elf_section_data (relplt
)->this_hdr
;
7827 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
7828 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
7831 plt
= bfd_get_section_by_name (abfd
, ".plt");
7835 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7836 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
7839 count
= relplt
->size
/ hdr
->sh_entsize
;
7840 size
= count
* sizeof (asymbol
);
7841 p
= relplt
->relocation
;
7842 for (i
= 0; i
< count
; i
++, s
++, p
++)
7843 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
7845 s
= *ret
= bfd_malloc (size
);
7849 names
= (char *) (s
+ count
);
7850 p
= relplt
->relocation
;
7852 for (i
= 0; i
< count
; i
++, s
++, p
++)
7857 addr
= bed
->plt_sym_val (i
, plt
, p
);
7858 if (addr
== (bfd_vma
) -1)
7861 *s
= **p
->sym_ptr_ptr
;
7863 s
->value
= addr
- plt
->vma
;
7865 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
7866 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
7868 memcpy (names
, "@plt", sizeof ("@plt"));
7869 names
+= sizeof ("@plt");
7876 /* Sort symbol by binding and section. We want to put definitions
7877 sorted by section at the beginning. */
7880 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7882 const Elf_Internal_Sym
*s1
;
7883 const Elf_Internal_Sym
*s2
;
7886 /* Make sure that undefined symbols are at the end. */
7887 s1
= (const Elf_Internal_Sym
*) arg1
;
7888 if (s1
->st_shndx
== SHN_UNDEF
)
7890 s2
= (const Elf_Internal_Sym
*) arg2
;
7891 if (s2
->st_shndx
== SHN_UNDEF
)
7894 /* Sorted by section index. */
7895 shndx
= s1
->st_shndx
- s2
->st_shndx
;
7899 /* Sorted by binding. */
7900 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
7905 Elf_Internal_Sym
*sym
;
7910 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7912 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7913 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7914 return strcmp (s1
->name
, s2
->name
);
7917 /* Check if 2 sections define the same set of local and global
7921 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
7924 const struct elf_backend_data
*bed1
, *bed2
;
7925 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7926 bfd_size_type symcount1
, symcount2
;
7927 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7928 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
7929 Elf_Internal_Sym
*isymend
;
7930 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
7931 bfd_size_type count1
, count2
, i
;
7938 /* If both are .gnu.linkonce sections, they have to have the same
7940 if (strncmp (sec1
->name
, ".gnu.linkonce",
7941 sizeof ".gnu.linkonce" - 1) == 0
7942 && strncmp (sec2
->name
, ".gnu.linkonce",
7943 sizeof ".gnu.linkonce" - 1) == 0)
7944 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
7945 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
7947 /* Both sections have to be in ELF. */
7948 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7949 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7952 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7955 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
7956 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
7958 /* If both are members of section groups, they have to have the
7960 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
7964 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7965 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7966 if (shndx1
== -1 || shndx2
== -1)
7969 bed1
= get_elf_backend_data (bfd1
);
7970 bed2
= get_elf_backend_data (bfd2
);
7971 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7972 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7973 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7974 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7976 if (symcount1
== 0 || symcount2
== 0)
7979 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7981 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7985 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
7988 /* Sort symbols by binding and section. Global definitions are at
7990 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
7991 elf_sort_elf_symbol
);
7992 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
7993 elf_sort_elf_symbol
);
7995 /* Count definitions in the section. */
7997 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
7998 isym
< isymend
; isym
++)
8000 if (isym
->st_shndx
== (unsigned int) shndx1
)
8007 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8012 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8013 isym
< isymend
; isym
++)
8015 if (isym
->st_shndx
== (unsigned int) shndx2
)
8022 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8026 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8029 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8030 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8032 if (symtable1
== NULL
|| symtable2
== NULL
)
8036 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8037 isym
< isymend
; isym
++)
8040 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8047 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8048 isym
< isymend
; isym
++)
8051 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8057 /* Sort symbol by name. */
8058 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8059 elf_sym_name_compare
);
8060 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8061 elf_sym_name_compare
);
8063 for (i
= 0; i
< count1
; i
++)
8064 /* Two symbols must have the same binding, type and name. */
8065 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8066 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8067 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)