1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean
add_extra_plt_sections (struct bfd_link_info
*, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
50 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
52 static xtensa_opcode
get_const16_opcode (void);
53 static xtensa_opcode
get_l32r_opcode (void);
54 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
55 static int get_relocation_opnd (xtensa_opcode
, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
59 static bfd_boolean is_l32r_relocation
60 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
61 static bfd_boolean
is_alt_relocation (int);
62 static bfd_boolean
is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
71 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
81 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
82 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela
*retrieve_internal_relocs
87 (bfd
*, asection
*, bfd_boolean
);
88 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
89 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
91 static void pin_contents (asection
*, bfd_byte
*);
92 static void release_contents (asection
*, bfd_byte
*);
93 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
95 /* Miscellaneous utility functions. */
97 static asection
*elf_xtensa_get_plt_section (struct bfd_link_info
*, int);
98 static asection
*elf_xtensa_get_gotplt_section (struct bfd_link_info
*, int);
99 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
100 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
101 (bfd
*, unsigned long);
102 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
103 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
104 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
105 static bfd_boolean
xtensa_is_property_section (asection
*);
106 static bfd_boolean
xtensa_is_insntable_section (asection
*);
107 static bfd_boolean
xtensa_is_littable_section (asection
*);
108 static bfd_boolean
xtensa_is_proptable_section (asection
*);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection
*xtensa_get_property_section (asection
*, const char *);
112 static flagword
xtensa_get_property_predef_flags (asection
*);
114 /* Other functions called directly by the linker. */
116 typedef void (*deps_callback_t
)
117 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
127 int elf32xtensa_size_opt
;
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
134 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
142 xtensa_isa xtensa_default_isa
;
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
149 static bfd_boolean relaxing_section
= FALSE
;
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
154 int elf32xtensa_no_literal_movement
= 1;
157 static reloc_howto_type elf_howto_table
[] =
159 HOWTO (R_XTENSA_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
160 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
162 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
163 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
164 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
172 NULL
, "R_XTENSA_RTLD", FALSE
, 0, 0, FALSE
),
174 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
175 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
176 FALSE
, 0, 0xffffffff, FALSE
),
177 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
178 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
179 FALSE
, 0, 0xffffffff, FALSE
),
180 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
181 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
182 FALSE
, 0, 0xffffffff, FALSE
),
183 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
184 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
185 FALSE
, 0, 0xffffffff, FALSE
),
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
191 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0", FALSE
, 0, 0, TRUE
),
192 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
193 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1", FALSE
, 0, 0, TRUE
),
194 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
195 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2", FALSE
, 0, 0, TRUE
),
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
199 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND", FALSE
, 0, 0, TRUE
),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
202 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY", FALSE
, 0, 0, TRUE
),
206 HOWTO (R_XTENSA_32_PCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_bitfield
,
207 bfd_elf_xtensa_reloc
, "R_XTENSA_32_PCREL",
208 FALSE
, 0, 0xffffffff, TRUE
),
210 /* GNU extension to record C++ vtable hierarchy. */
211 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
212 NULL
, "R_XTENSA_GNU_VTINHERIT",
214 /* GNU extension to record C++ vtable member usage. */
215 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
216 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
219 /* Relocations for supporting difference of symbols. */
220 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
221 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8", FALSE
, 0, 0xff, FALSE
),
222 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
223 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16", FALSE
, 0, 0xffff, FALSE
),
224 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
225 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32", FALSE
, 0, 0xffffffff, FALSE
),
227 /* General immediate operand relocations. */
228 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
229 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP", FALSE
, 0, 0, TRUE
),
230 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
231 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP", FALSE
, 0, 0, TRUE
),
232 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
233 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP", FALSE
, 0, 0, TRUE
),
234 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
235 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP", FALSE
, 0, 0, TRUE
),
236 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
237 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP", FALSE
, 0, 0, TRUE
),
238 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
239 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP", FALSE
, 0, 0, TRUE
),
240 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
241 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP", FALSE
, 0, 0, TRUE
),
242 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
243 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP", FALSE
, 0, 0, TRUE
),
244 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
245 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP", FALSE
, 0, 0, TRUE
),
246 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
247 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP", FALSE
, 0, 0, TRUE
),
248 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
249 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP", FALSE
, 0, 0, TRUE
),
250 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
251 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP", FALSE
, 0, 0, TRUE
),
252 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
253 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP", FALSE
, 0, 0, TRUE
),
254 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
255 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP", FALSE
, 0, 0, TRUE
),
256 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
257 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP", FALSE
, 0, 0, TRUE
),
259 /* "Alternate" relocations. The meaning of these is opcode-specific. */
260 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
261 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT", FALSE
, 0, 0, TRUE
),
262 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
263 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT", FALSE
, 0, 0, TRUE
),
264 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
265 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT", FALSE
, 0, 0, TRUE
),
266 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
267 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT", FALSE
, 0, 0, TRUE
),
268 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
269 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT", FALSE
, 0, 0, TRUE
),
270 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
271 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT", FALSE
, 0, 0, TRUE
),
272 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
273 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT", FALSE
, 0, 0, TRUE
),
274 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
275 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT", FALSE
, 0, 0, TRUE
),
276 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
277 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT", FALSE
, 0, 0, TRUE
),
278 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
279 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT", FALSE
, 0, 0, TRUE
),
280 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
281 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT", FALSE
, 0, 0, TRUE
),
282 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
283 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT", FALSE
, 0, 0, TRUE
),
284 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
285 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT", FALSE
, 0, 0, TRUE
),
286 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
287 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT", FALSE
, 0, 0, TRUE
),
288 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
289 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT", FALSE
, 0, 0, TRUE
),
294 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
299 static reloc_howto_type
*
300 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
301 bfd_reloc_code_real_type code
)
306 TRACE ("BFD_RELOC_NONE");
307 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
310 TRACE ("BFD_RELOC_32");
311 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
313 case BFD_RELOC_32_PCREL
:
314 TRACE ("BFD_RELOC_32_PCREL");
315 return &elf_howto_table
[(unsigned) R_XTENSA_32_PCREL
];
317 case BFD_RELOC_XTENSA_DIFF8
:
318 TRACE ("BFD_RELOC_XTENSA_DIFF8");
319 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
321 case BFD_RELOC_XTENSA_DIFF16
:
322 TRACE ("BFD_RELOC_XTENSA_DIFF16");
323 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
325 case BFD_RELOC_XTENSA_DIFF32
:
326 TRACE ("BFD_RELOC_XTENSA_DIFF32");
327 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
329 case BFD_RELOC_XTENSA_RTLD
:
330 TRACE ("BFD_RELOC_XTENSA_RTLD");
331 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
333 case BFD_RELOC_XTENSA_GLOB_DAT
:
334 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
335 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
337 case BFD_RELOC_XTENSA_JMP_SLOT
:
338 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
339 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
341 case BFD_RELOC_XTENSA_RELATIVE
:
342 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
343 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
345 case BFD_RELOC_XTENSA_PLT
:
346 TRACE ("BFD_RELOC_XTENSA_PLT");
347 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
349 case BFD_RELOC_XTENSA_OP0
:
350 TRACE ("BFD_RELOC_XTENSA_OP0");
351 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
353 case BFD_RELOC_XTENSA_OP1
:
354 TRACE ("BFD_RELOC_XTENSA_OP1");
355 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
357 case BFD_RELOC_XTENSA_OP2
:
358 TRACE ("BFD_RELOC_XTENSA_OP2");
359 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
361 case BFD_RELOC_XTENSA_ASM_EXPAND
:
362 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
363 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
365 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
366 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
367 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
369 case BFD_RELOC_VTABLE_INHERIT
:
370 TRACE ("BFD_RELOC_VTABLE_INHERIT");
371 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
373 case BFD_RELOC_VTABLE_ENTRY
:
374 TRACE ("BFD_RELOC_VTABLE_ENTRY");
375 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
378 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
379 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
381 unsigned n
= (R_XTENSA_SLOT0_OP
+
382 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
383 return &elf_howto_table
[n
];
386 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
387 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
389 unsigned n
= (R_XTENSA_SLOT0_ALT
+
390 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
391 return &elf_howto_table
[n
];
401 static reloc_howto_type
*
402 elf_xtensa_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
407 for (i
= 0; i
< sizeof (elf_howto_table
) / sizeof (elf_howto_table
[0]); i
++)
408 if (elf_howto_table
[i
].name
!= NULL
409 && strcasecmp (elf_howto_table
[i
].name
, r_name
) == 0)
410 return &elf_howto_table
[i
];
416 /* Given an ELF "rela" relocation, find the corresponding howto and record
417 it in the BFD internal arelent representation of the relocation. */
420 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
422 Elf_Internal_Rela
*dst
)
424 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
426 BFD_ASSERT (r_type
< (unsigned int) R_XTENSA_max
);
427 cache_ptr
->howto
= &elf_howto_table
[r_type
];
431 /* Functions for the Xtensa ELF linker. */
433 /* The name of the dynamic interpreter. This is put in the .interp
436 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
438 /* The size in bytes of an entry in the procedure linkage table.
439 (This does _not_ include the space for the literals associated with
442 #define PLT_ENTRY_SIZE 16
444 /* For _really_ large PLTs, we may need to alternate between literals
445 and code to keep the literals within the 256K range of the L32R
446 instructions in the code. It's unlikely that anyone would ever need
447 such a big PLT, but an arbitrary limit on the PLT size would be bad.
448 Thus, we split the PLT into chunks. Since there's very little
449 overhead (2 extra literals) for each chunk, the chunk size is kept
450 small so that the code for handling multiple chunks get used and
451 tested regularly. With 254 entries, there are 1K of literals for
452 each chunk, and that seems like a nice round number. */
454 #define PLT_ENTRIES_PER_CHUNK 254
456 /* PLT entries are actually used as stub functions for lazy symbol
457 resolution. Once the symbol is resolved, the stub function is never
458 invoked. Note: the 32-byte frame size used here cannot be changed
459 without a corresponding change in the runtime linker. */
461 static const bfd_byte elf_xtensa_be_plt_entry
[PLT_ENTRY_SIZE
] =
463 0x6c, 0x10, 0x04, /* entry sp, 32 */
464 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
465 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
466 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
467 0x0a, 0x80, 0x00, /* jx a8 */
471 static const bfd_byte elf_xtensa_le_plt_entry
[PLT_ENTRY_SIZE
] =
473 0x36, 0x41, 0x00, /* entry sp, 32 */
474 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
475 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
476 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
477 0xa0, 0x08, 0x00, /* jx a8 */
481 /* Xtensa ELF linker hash table. */
483 struct elf_xtensa_link_hash_table
485 struct elf_link_hash_table elf
;
487 /* Short-cuts to get to dynamic linker sections. */
494 asection
*spltlittbl
;
496 /* Total count of PLT relocations seen during check_relocs.
497 The actual PLT code must be split into multiple sections and all
498 the sections have to be created before size_dynamic_sections,
499 where we figure out the exact number of PLT entries that will be
500 needed. It is OK if this count is an overestimate, e.g., some
501 relocations may be removed by GC. */
505 /* Get the Xtensa ELF linker hash table from a link_info structure. */
507 #define elf_xtensa_hash_table(p) \
508 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
510 /* Create an Xtensa ELF linker hash table. */
512 static struct bfd_link_hash_table
*
513 elf_xtensa_link_hash_table_create (bfd
*abfd
)
515 struct elf_xtensa_link_hash_table
*ret
;
516 bfd_size_type amt
= sizeof (struct elf_xtensa_link_hash_table
);
518 ret
= bfd_malloc (amt
);
522 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
523 _bfd_elf_link_hash_newfunc
,
524 sizeof (struct elf_link_hash_entry
)))
536 ret
->spltlittbl
= NULL
;
538 ret
->plt_reloc_count
= 0;
540 return &ret
->elf
.root
;
543 static inline bfd_boolean
544 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
545 struct bfd_link_info
*info
)
547 /* Check if we should do dynamic things to this symbol. The
548 "ignore_protected" argument need not be set, because Xtensa code
549 does not require special handling of STV_PROTECTED to make function
550 pointer comparisons work properly. The PLT addresses are never
551 used for function pointers. */
553 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
558 property_table_compare (const void *ap
, const void *bp
)
560 const property_table_entry
*a
= (const property_table_entry
*) ap
;
561 const property_table_entry
*b
= (const property_table_entry
*) bp
;
563 if (a
->address
== b
->address
)
565 if (a
->size
!= b
->size
)
566 return (a
->size
- b
->size
);
568 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
569 return ((b
->flags
& XTENSA_PROP_ALIGN
)
570 - (a
->flags
& XTENSA_PROP_ALIGN
));
572 if ((a
->flags
& XTENSA_PROP_ALIGN
)
573 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
574 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
575 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
576 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
578 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
579 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
580 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
581 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
583 return (a
->flags
- b
->flags
);
586 return (a
->address
- b
->address
);
591 property_table_matches (const void *ap
, const void *bp
)
593 const property_table_entry
*a
= (const property_table_entry
*) ap
;
594 const property_table_entry
*b
= (const property_table_entry
*) bp
;
596 /* Check if one entry overlaps with the other. */
597 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
598 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
601 return (a
->address
- b
->address
);
605 /* Get the literal table or property table entries for the given
606 section. Sets TABLE_P and returns the number of entries. On
607 error, returns a negative value. */
610 xtensa_read_table_entries (bfd
*abfd
,
612 property_table_entry
**table_p
,
613 const char *sec_name
,
614 bfd_boolean output_addr
)
616 asection
*table_section
;
617 bfd_size_type table_size
= 0;
618 bfd_byte
*table_data
;
619 property_table_entry
*blocks
;
620 int blk
, block_count
;
621 bfd_size_type num_records
;
622 Elf_Internal_Rela
*internal_relocs
, *irel
, *rel_end
;
623 bfd_vma section_addr
, off
;
624 flagword predef_flags
;
625 bfd_size_type table_entry_size
, section_limit
;
628 || !(section
->flags
& SEC_ALLOC
)
629 || (section
->flags
& SEC_DEBUGGING
))
635 table_section
= xtensa_get_property_section (section
, sec_name
);
637 table_size
= table_section
->size
;
645 predef_flags
= xtensa_get_property_predef_flags (table_section
);
646 table_entry_size
= 12;
648 table_entry_size
-= 4;
650 num_records
= table_size
/ table_entry_size
;
651 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
652 blocks
= (property_table_entry
*)
653 bfd_malloc (num_records
* sizeof (property_table_entry
));
657 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
659 section_addr
= section
->vma
;
661 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
662 if (internal_relocs
&& !table_section
->reloc_done
)
664 qsort (internal_relocs
, table_section
->reloc_count
,
665 sizeof (Elf_Internal_Rela
), internal_reloc_compare
);
666 irel
= internal_relocs
;
671 section_limit
= bfd_get_section_limit (abfd
, section
);
672 rel_end
= internal_relocs
+ table_section
->reloc_count
;
674 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
676 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
678 /* Skip any relocations before the current offset. This should help
679 avoid confusion caused by unexpected relocations for the preceding
682 (irel
->r_offset
< off
683 || (irel
->r_offset
== off
684 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_NONE
)))
691 if (irel
&& irel
->r_offset
== off
)
694 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
695 BFD_ASSERT (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
);
697 if (get_elf_r_symndx_section (abfd
, r_symndx
) != section
)
700 sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
701 BFD_ASSERT (sym_off
== 0);
702 address
+= (section_addr
+ sym_off
+ irel
->r_addend
);
706 if (address
< section_addr
707 || address
>= section_addr
+ section_limit
)
711 blocks
[block_count
].address
= address
;
712 blocks
[block_count
].size
= bfd_get_32 (abfd
, table_data
+ off
+ 4);
714 blocks
[block_count
].flags
= predef_flags
;
716 blocks
[block_count
].flags
= bfd_get_32 (abfd
, table_data
+ off
+ 8);
720 release_contents (table_section
, table_data
);
721 release_internal_relocs (table_section
, internal_relocs
);
725 /* Now sort them into address order for easy reference. */
726 qsort (blocks
, block_count
, sizeof (property_table_entry
),
727 property_table_compare
);
729 /* Check that the table contents are valid. Problems may occur,
730 for example, if an unrelocated object file is stripped. */
731 for (blk
= 1; blk
< block_count
; blk
++)
733 /* The only circumstance where two entries may legitimately
734 have the same address is when one of them is a zero-size
735 placeholder to mark a place where fill can be inserted.
736 The zero-size entry should come first. */
737 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
738 blocks
[blk
- 1].size
!= 0)
740 (*_bfd_error_handler
) (_("%B(%A): invalid property table"),
742 bfd_set_error (bfd_error_bad_value
);
754 static property_table_entry
*
755 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
756 int property_table_size
,
759 property_table_entry entry
;
760 property_table_entry
*rv
;
762 if (property_table_size
== 0)
765 entry
.address
= addr
;
769 rv
= bsearch (&entry
, property_table
, property_table_size
,
770 sizeof (property_table_entry
), property_table_matches
);
776 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
780 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
787 /* Look through the relocs for a section during the first phase, and
788 calculate needed space in the dynamic reloc sections. */
791 elf_xtensa_check_relocs (bfd
*abfd
,
792 struct bfd_link_info
*info
,
794 const Elf_Internal_Rela
*relocs
)
796 struct elf_xtensa_link_hash_table
*htab
;
797 Elf_Internal_Shdr
*symtab_hdr
;
798 struct elf_link_hash_entry
**sym_hashes
;
799 const Elf_Internal_Rela
*rel
;
800 const Elf_Internal_Rela
*rel_end
;
802 if (info
->relocatable
)
805 htab
= elf_xtensa_hash_table (info
);
806 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
807 sym_hashes
= elf_sym_hashes (abfd
);
809 rel_end
= relocs
+ sec
->reloc_count
;
810 for (rel
= relocs
; rel
< rel_end
; rel
++)
813 unsigned long r_symndx
;
814 struct elf_link_hash_entry
*h
;
816 r_symndx
= ELF32_R_SYM (rel
->r_info
);
817 r_type
= ELF32_R_TYPE (rel
->r_info
);
819 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
821 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
826 if (r_symndx
< symtab_hdr
->sh_info
)
830 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
831 while (h
->root
.type
== bfd_link_hash_indirect
832 || h
->root
.type
== bfd_link_hash_warning
)
833 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
842 if ((sec
->flags
& SEC_ALLOC
) != 0)
844 if (h
->got
.refcount
<= 0)
847 h
->got
.refcount
+= 1;
852 /* If this relocation is against a local symbol, then it's
853 exactly the same as a normal local GOT entry. */
857 if ((sec
->flags
& SEC_ALLOC
) != 0)
859 if (h
->plt
.refcount
<= 0)
865 h
->plt
.refcount
+= 1;
867 /* Keep track of the total PLT relocation count even if we
868 don't yet know whether the dynamic sections will be
870 htab
->plt_reloc_count
+= 1;
872 if (elf_hash_table (info
)->dynamic_sections_created
)
874 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
881 if ((sec
->flags
& SEC_ALLOC
) != 0)
883 bfd_signed_vma
*local_got_refcounts
;
885 /* This is a global offset table entry for a local symbol. */
886 local_got_refcounts
= elf_local_got_refcounts (abfd
);
887 if (local_got_refcounts
== NULL
)
891 size
= symtab_hdr
->sh_info
;
892 size
*= sizeof (bfd_signed_vma
);
893 local_got_refcounts
=
894 (bfd_signed_vma
*) bfd_zalloc (abfd
, size
);
895 if (local_got_refcounts
== NULL
)
897 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
899 local_got_refcounts
[r_symndx
] += 1;
903 case R_XTENSA_GNU_VTINHERIT
:
904 /* This relocation describes the C++ object vtable hierarchy.
905 Reconstruct it for later use during GC. */
906 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
910 case R_XTENSA_GNU_VTENTRY
:
911 /* This relocation describes which C++ vtable entries are actually
912 used. Record for later use during GC. */
913 BFD_ASSERT (h
!= NULL
);
915 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
929 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
930 struct elf_link_hash_entry
*h
)
934 if (h
->plt
.refcount
> 0)
936 /* For shared objects, there's no need for PLT entries for local
937 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
938 if (h
->got
.refcount
< 0)
940 h
->got
.refcount
+= h
->plt
.refcount
;
946 /* Don't need any dynamic relocations at all. */
954 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
955 struct elf_link_hash_entry
*h
,
956 bfd_boolean force_local
)
958 /* For a shared link, move the plt refcount to the got refcount to leave
959 space for RELATIVE relocs. */
960 elf_xtensa_make_sym_local (info
, h
);
962 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
966 /* Return the section that should be marked against GC for a given
970 elf_xtensa_gc_mark_hook (asection
*sec
,
971 struct bfd_link_info
*info
,
972 Elf_Internal_Rela
*rel
,
973 struct elf_link_hash_entry
*h
,
974 Elf_Internal_Sym
*sym
)
976 /* Property sections are marked "KEEP" in the linker scripts, but they
977 should not cause other sections to be marked. (This approach relies
978 on elf_xtensa_discard_info to remove property table entries that
979 describe discarded sections. Alternatively, it might be more
980 efficient to avoid using "KEEP" in the linker scripts and instead use
981 the gc_mark_extra_sections hook to mark only the property sections
982 that describe marked sections. That alternative does not work well
983 with the current property table sections, which do not correspond
984 one-to-one with the sections they describe, but that should be fixed
986 if (xtensa_is_property_section (sec
))
990 switch (ELF32_R_TYPE (rel
->r_info
))
992 case R_XTENSA_GNU_VTINHERIT
:
993 case R_XTENSA_GNU_VTENTRY
:
997 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1001 /* Update the GOT & PLT entry reference counts
1002 for the section being removed. */
1005 elf_xtensa_gc_sweep_hook (bfd
*abfd
,
1006 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1008 const Elf_Internal_Rela
*relocs
)
1010 Elf_Internal_Shdr
*symtab_hdr
;
1011 struct elf_link_hash_entry
**sym_hashes
;
1012 bfd_signed_vma
*local_got_refcounts
;
1013 const Elf_Internal_Rela
*rel
, *relend
;
1015 if ((sec
->flags
& SEC_ALLOC
) == 0)
1018 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1019 sym_hashes
= elf_sym_hashes (abfd
);
1020 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1022 relend
= relocs
+ sec
->reloc_count
;
1023 for (rel
= relocs
; rel
< relend
; rel
++)
1025 unsigned long r_symndx
;
1026 unsigned int r_type
;
1027 struct elf_link_hash_entry
*h
= NULL
;
1029 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1030 if (r_symndx
>= symtab_hdr
->sh_info
)
1032 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1033 while (h
->root
.type
== bfd_link_hash_indirect
1034 || h
->root
.type
== bfd_link_hash_warning
)
1035 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1038 r_type
= ELF32_R_TYPE (rel
->r_info
);
1044 if (h
->got
.refcount
> 0)
1051 if (h
->plt
.refcount
> 0)
1056 if (local_got_refcounts
[r_symndx
] > 0)
1057 local_got_refcounts
[r_symndx
] -= 1;
1069 /* Create all the dynamic sections. */
1072 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1074 struct elf_xtensa_link_hash_table
*htab
;
1075 flagword flags
, noalloc_flags
;
1077 htab
= elf_xtensa_hash_table (info
);
1079 /* First do all the standard stuff. */
1080 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1082 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
1083 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1084 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
1085 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1092 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED
| SEC_READONLY
);
1094 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1096 /* Mark the ".got.plt" section READONLY. */
1097 if (htab
->sgotplt
== NULL
1098 || ! bfd_set_section_flags (dynobj
, htab
->sgotplt
, flags
))
1101 /* Create ".rela.got". */
1102 htab
->srelgot
= bfd_make_section_with_flags (dynobj
, ".rela.got", flags
);
1103 if (htab
->srelgot
== NULL
1104 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
1107 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1108 htab
->sgotloc
= bfd_make_section_with_flags (dynobj
, ".got.loc", flags
);
1109 if (htab
->sgotloc
== NULL
1110 || ! bfd_set_section_alignment (dynobj
, htab
->sgotloc
, 2))
1113 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1114 htab
->spltlittbl
= bfd_make_section_with_flags (dynobj
, ".xt.lit.plt",
1116 if (htab
->spltlittbl
== NULL
1117 || ! bfd_set_section_alignment (dynobj
, htab
->spltlittbl
, 2))
1125 add_extra_plt_sections (struct bfd_link_info
*info
, int count
)
1127 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (info
, chunk
))
1142 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED
| SEC_READONLY
);
1145 sname
= (char *) bfd_malloc (10);
1146 sprintf (sname
, ".plt.%u", chunk
);
1147 s
= bfd_make_section_with_flags (dynobj
, sname
, flags
| SEC_CODE
);
1149 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1152 sname
= (char *) bfd_malloc (14);
1153 sprintf (sname
, ".got.plt.%u", chunk
);
1154 s
= bfd_make_section_with_flags (dynobj
, sname
, flags
);
1156 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1164 /* Adjust a symbol defined by a dynamic object and referenced by a
1165 regular object. The current definition is in some section of the
1166 dynamic object, but we're not including those sections. We have to
1167 change the definition to something the rest of the link can
1171 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1172 struct elf_link_hash_entry
*h
)
1174 /* If this is a weak symbol, and there is a real definition, the
1175 processor independent code will have arranged for us to see the
1176 real definition first, and we can just use the same value. */
1179 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1180 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1181 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1182 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1186 /* This is a reference to a symbol defined by a dynamic object. The
1187 reference must go through the GOT, so there's no need for COPY relocs,
1195 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *arg
)
1197 struct bfd_link_info
*info
;
1198 struct elf_xtensa_link_hash_table
*htab
;
1199 bfd_boolean is_dynamic
;
1201 if (h
->root
.type
== bfd_link_hash_indirect
)
1204 if (h
->root
.type
== bfd_link_hash_warning
)
1205 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1207 info
= (struct bfd_link_info
*) arg
;
1208 htab
= elf_xtensa_hash_table (info
);
1210 is_dynamic
= elf_xtensa_dynamic_symbol_p (h
, info
);
1213 elf_xtensa_make_sym_local (info
, h
);
1215 if (h
->plt
.refcount
> 0)
1216 htab
->srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1218 if (h
->got
.refcount
> 0)
1219 htab
->srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1226 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
)
1228 struct elf_xtensa_link_hash_table
*htab
;
1231 htab
= elf_xtensa_hash_table (info
);
1233 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
1235 bfd_signed_vma
*local_got_refcounts
;
1236 bfd_size_type j
, cnt
;
1237 Elf_Internal_Shdr
*symtab_hdr
;
1239 local_got_refcounts
= elf_local_got_refcounts (i
);
1240 if (!local_got_refcounts
)
1243 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1244 cnt
= symtab_hdr
->sh_info
;
1246 for (j
= 0; j
< cnt
; ++j
)
1248 if (local_got_refcounts
[j
] > 0)
1249 htab
->srelgot
->size
+= (local_got_refcounts
[j
]
1250 * sizeof (Elf32_External_Rela
));
1256 /* Set the sizes of the dynamic sections. */
1259 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1260 struct bfd_link_info
*info
)
1262 struct elf_xtensa_link_hash_table
*htab
;
1264 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1265 bfd_boolean relplt
, relgot
;
1266 int plt_entries
, plt_chunks
, chunk
;
1271 htab
= elf_xtensa_hash_table (info
);
1272 dynobj
= elf_hash_table (info
)->dynobj
;
1275 srelgot
= htab
->srelgot
;
1276 srelplt
= htab
->srelplt
;
1278 if (elf_hash_table (info
)->dynamic_sections_created
)
1280 BFD_ASSERT (htab
->srelgot
!= NULL
1281 && htab
->srelplt
!= NULL
1282 && htab
->sgot
!= NULL
1283 && htab
->spltlittbl
!= NULL
1284 && htab
->sgotloc
!= NULL
);
1286 /* Set the contents of the .interp section to the interpreter. */
1287 if (info
->executable
)
1289 s
= bfd_get_section_by_name (dynobj
, ".interp");
1292 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1293 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1296 /* Allocate room for one word in ".got". */
1297 htab
->sgot
->size
= 4;
1299 /* Allocate space in ".rela.got" for literals that reference global
1300 symbols and space in ".rela.plt" for literals that have PLT
1302 elf_link_hash_traverse (elf_hash_table (info
),
1303 elf_xtensa_allocate_dynrelocs
,
1306 /* If we are generating a shared object, we also need space in
1307 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1308 reference local symbols. */
1310 elf_xtensa_allocate_local_got_size (info
);
1312 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1313 each PLT entry, we need the PLT code plus a 4-byte literal.
1314 For each chunk of ".plt", we also need two more 4-byte
1315 literals, two corresponding entries in ".rela.got", and an
1316 8-byte entry in ".xt.lit.plt". */
1317 spltlittbl
= htab
->spltlittbl
;
1318 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1320 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1322 /* Iterate over all the PLT chunks, including any extra sections
1323 created earlier because the initial count of PLT relocations
1324 was an overestimate. */
1326 (splt
= elf_xtensa_get_plt_section (info
, chunk
)) != NULL
;
1331 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
1332 BFD_ASSERT (sgotplt
!= NULL
);
1334 if (chunk
< plt_chunks
- 1)
1335 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1336 else if (chunk
== plt_chunks
- 1)
1337 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1341 if (chunk_entries
!= 0)
1343 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1344 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1345 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1346 spltlittbl
->size
+= 8;
1355 /* Allocate space in ".got.loc" to match the total size of all the
1357 sgotloc
= htab
->sgotloc
;
1358 sgotloc
->size
= spltlittbl
->size
;
1359 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
1361 if (abfd
->flags
& DYNAMIC
)
1363 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1365 if (! elf_discarded_section (s
)
1366 && xtensa_is_littable_section (s
)
1368 sgotloc
->size
+= s
->size
;
1373 /* Allocate memory for dynamic sections. */
1376 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1380 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1383 /* It's OK to base decisions on the section name, because none
1384 of the dynobj section names depend upon the input files. */
1385 name
= bfd_get_section_name (dynobj
, s
);
1387 if (CONST_STRNEQ (name
, ".rela"))
1391 if (strcmp (name
, ".rela.plt") == 0)
1393 else if (strcmp (name
, ".rela.got") == 0)
1396 /* We use the reloc_count field as a counter if we need
1397 to copy relocs into the output file. */
1401 else if (! CONST_STRNEQ (name
, ".plt.")
1402 && ! CONST_STRNEQ (name
, ".got.plt.")
1403 && strcmp (name
, ".got") != 0
1404 && strcmp (name
, ".plt") != 0
1405 && strcmp (name
, ".got.plt") != 0
1406 && strcmp (name
, ".xt.lit.plt") != 0
1407 && strcmp (name
, ".got.loc") != 0)
1409 /* It's not one of our sections, so don't allocate space. */
1415 /* If we don't need this section, strip it from the output
1416 file. We must create the ".plt*" and ".got.plt*"
1417 sections in create_dynamic_sections and/or check_relocs
1418 based on a conservative estimate of the PLT relocation
1419 count, because the sections must be created before the
1420 linker maps input sections to output sections. The
1421 linker does that before size_dynamic_sections, where we
1422 compute the exact size of the PLT, so there may be more
1423 of these sections than are actually needed. */
1424 s
->flags
|= SEC_EXCLUDE
;
1426 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1428 /* Allocate memory for the section contents. */
1429 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1430 if (s
->contents
== NULL
)
1435 if (elf_hash_table (info
)->dynamic_sections_created
)
1437 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1438 known until finish_dynamic_sections, but we need to get the relocs
1439 in place before they are sorted. */
1440 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1442 Elf_Internal_Rela irela
;
1446 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1449 loc
= (srelgot
->contents
1450 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1451 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1452 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1453 loc
+ sizeof (Elf32_External_Rela
));
1454 srelgot
->reloc_count
+= 2;
1457 /* Add some entries to the .dynamic section. We fill in the
1458 values later, in elf_xtensa_finish_dynamic_sections, but we
1459 must add the entries now so that we get the correct size for
1460 the .dynamic section. The DT_DEBUG entry is filled in by the
1461 dynamic linker and used by the debugger. */
1462 #define add_dynamic_entry(TAG, VAL) \
1463 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1465 if (info
->executable
)
1467 if (!add_dynamic_entry (DT_DEBUG
, 0))
1473 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1474 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1475 || !add_dynamic_entry (DT_JMPREL
, 0))
1481 if (!add_dynamic_entry (DT_RELA
, 0)
1482 || !add_dynamic_entry (DT_RELASZ
, 0)
1483 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1487 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1488 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1489 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1492 #undef add_dynamic_entry
1498 /* Perform the specified relocation. The instruction at (contents + address)
1499 is modified to set one operand to represent the value in "relocation". The
1500 operand position is determined by the relocation type recorded in the
1503 #define CALL_SEGMENT_BITS (30)
1504 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1506 static bfd_reloc_status_type
1507 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1509 asection
*input_section
,
1513 bfd_boolean is_weak_undef
,
1514 char **error_message
)
1517 xtensa_opcode opcode
;
1518 xtensa_isa isa
= xtensa_default_isa
;
1519 static xtensa_insnbuf ibuff
= NULL
;
1520 static xtensa_insnbuf sbuff
= NULL
;
1521 bfd_vma self_address
;
1522 bfd_size_type input_size
;
1528 ibuff
= xtensa_insnbuf_alloc (isa
);
1529 sbuff
= xtensa_insnbuf_alloc (isa
);
1532 input_size
= bfd_get_section_limit (abfd
, input_section
);
1534 /* Calculate the PC address for this instruction. */
1535 self_address
= (input_section
->output_section
->vma
1536 + input_section
->output_offset
1539 switch (howto
->type
)
1542 case R_XTENSA_DIFF8
:
1543 case R_XTENSA_DIFF16
:
1544 case R_XTENSA_DIFF32
:
1545 return bfd_reloc_ok
;
1547 case R_XTENSA_ASM_EXPAND
:
1550 /* Check for windowed CALL across a 1GB boundary. */
1551 xtensa_opcode opcode
=
1552 get_expanded_call_opcode (contents
+ address
,
1553 input_size
- address
, 0);
1554 if (is_windowed_call_opcode (opcode
))
1556 if ((self_address
>> CALL_SEGMENT_BITS
)
1557 != (relocation
>> CALL_SEGMENT_BITS
))
1559 *error_message
= "windowed longcall crosses 1GB boundary; "
1561 return bfd_reloc_dangerous
;
1565 return bfd_reloc_ok
;
1567 case R_XTENSA_ASM_SIMPLIFY
:
1569 /* Convert the L32R/CALLX to CALL. */
1570 bfd_reloc_status_type retval
=
1571 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1573 if (retval
!= bfd_reloc_ok
)
1574 return bfd_reloc_dangerous
;
1576 /* The CALL needs to be relocated. Continue below for that part. */
1579 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1587 x
= bfd_get_32 (abfd
, contents
+ address
);
1589 bfd_put_32 (abfd
, x
, contents
+ address
);
1591 return bfd_reloc_ok
;
1593 case R_XTENSA_32_PCREL
:
1594 bfd_put_32 (abfd
, relocation
- self_address
, contents
+ address
);
1595 return bfd_reloc_ok
;
1598 /* Only instruction slot-specific relocations handled below.... */
1599 slot
= get_relocation_slot (howto
->type
);
1600 if (slot
== XTENSA_UNDEFINED
)
1602 *error_message
= "unexpected relocation";
1603 return bfd_reloc_dangerous
;
1606 /* Read the instruction into a buffer and decode the opcode. */
1607 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
1608 input_size
- address
);
1609 fmt
= xtensa_format_decode (isa
, ibuff
);
1610 if (fmt
== XTENSA_UNDEFINED
)
1612 *error_message
= "cannot decode instruction format";
1613 return bfd_reloc_dangerous
;
1616 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1618 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
1619 if (opcode
== XTENSA_UNDEFINED
)
1621 *error_message
= "cannot decode instruction opcode";
1622 return bfd_reloc_dangerous
;
1625 /* Check for opcode-specific "alternate" relocations. */
1626 if (is_alt_relocation (howto
->type
))
1628 if (opcode
== get_l32r_opcode ())
1630 /* Handle the special-case of non-PC-relative L32R instructions. */
1631 bfd
*output_bfd
= input_section
->output_section
->owner
;
1632 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
1635 *error_message
= "relocation references missing .lit4 section";
1636 return bfd_reloc_dangerous
;
1638 self_address
= ((lit4_sec
->vma
& ~0xfff)
1639 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1640 newval
= relocation
;
1643 else if (opcode
== get_const16_opcode ())
1645 /* ALT used for high 16 bits. */
1646 newval
= relocation
>> 16;
1651 /* No other "alternate" relocations currently defined. */
1652 *error_message
= "unexpected relocation";
1653 return bfd_reloc_dangerous
;
1656 else /* Not an "alternate" relocation.... */
1658 if (opcode
== get_const16_opcode ())
1660 newval
= relocation
& 0xffff;
1665 /* ...normal PC-relative relocation.... */
1667 /* Determine which operand is being relocated. */
1668 opnd
= get_relocation_opnd (opcode
, howto
->type
);
1669 if (opnd
== XTENSA_UNDEFINED
)
1671 *error_message
= "unexpected relocation";
1672 return bfd_reloc_dangerous
;
1675 if (!howto
->pc_relative
)
1677 *error_message
= "expected PC-relative relocation";
1678 return bfd_reloc_dangerous
;
1681 newval
= relocation
;
1685 /* Apply the relocation. */
1686 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
1687 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
1688 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
1691 const char *opname
= xtensa_opcode_name (isa
, opcode
);
1694 msg
= "cannot encode";
1695 if (is_direct_call_opcode (opcode
))
1697 if ((relocation
& 0x3) != 0)
1698 msg
= "misaligned call target";
1700 msg
= "call target out of range";
1702 else if (opcode
== get_l32r_opcode ())
1704 if ((relocation
& 0x3) != 0)
1705 msg
= "misaligned literal target";
1706 else if (is_alt_relocation (howto
->type
))
1707 msg
= "literal target out of range (too many literals)";
1708 else if (self_address
> relocation
)
1709 msg
= "literal target out of range (try using text-section-literals)";
1711 msg
= "literal placed after use";
1714 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
1715 return bfd_reloc_dangerous
;
1718 /* Check for calls across 1GB boundaries. */
1719 if (is_direct_call_opcode (opcode
)
1720 && is_windowed_call_opcode (opcode
))
1722 if ((self_address
>> CALL_SEGMENT_BITS
)
1723 != (relocation
>> CALL_SEGMENT_BITS
))
1726 "windowed call crosses 1GB boundary; return may fail";
1727 return bfd_reloc_dangerous
;
1731 /* Write the modified instruction back out of the buffer. */
1732 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1733 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
1734 input_size
- address
);
1735 return bfd_reloc_ok
;
1740 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
1742 /* To reduce the size of the memory leak,
1743 we only use a single message buffer. */
1744 static bfd_size_type alloc_size
= 0;
1745 static char *message
= NULL
;
1746 bfd_size_type orig_len
, len
= 0;
1747 bfd_boolean is_append
;
1749 VA_OPEN (ap
, arglen
);
1750 VA_FIXEDARG (ap
, const char *, origmsg
);
1752 is_append
= (origmsg
== message
);
1754 orig_len
= strlen (origmsg
);
1755 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
1756 if (len
> alloc_size
)
1758 message
= (char *) bfd_realloc (message
, len
);
1762 memcpy (message
, origmsg
, orig_len
);
1763 vsprintf (message
+ orig_len
, fmt
, ap
);
1769 /* This function is registered as the "special_function" in the
1770 Xtensa howto for handling simplify operations.
1771 bfd_perform_relocation / bfd_install_relocation use it to
1772 perform (install) the specified relocation. Since this replaces the code
1773 in bfd_perform_relocation, it is basically an Xtensa-specific,
1774 stripped-down version of bfd_perform_relocation. */
1776 static bfd_reloc_status_type
1777 bfd_elf_xtensa_reloc (bfd
*abfd
,
1778 arelent
*reloc_entry
,
1781 asection
*input_section
,
1783 char **error_message
)
1786 bfd_reloc_status_type flag
;
1787 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
1788 bfd_vma output_base
= 0;
1789 reloc_howto_type
*howto
= reloc_entry
->howto
;
1790 asection
*reloc_target_output_section
;
1791 bfd_boolean is_weak_undef
;
1793 if (!xtensa_default_isa
)
1794 xtensa_default_isa
= xtensa_isa_init (0, 0);
1796 /* ELF relocs are against symbols. If we are producing relocatable
1797 output, and the reloc is against an external symbol, the resulting
1798 reloc will also be against the same symbol. In such a case, we
1799 don't want to change anything about the way the reloc is handled,
1800 since it will all be done at final link time. This test is similar
1801 to what bfd_elf_generic_reloc does except that it lets relocs with
1802 howto->partial_inplace go through even if the addend is non-zero.
1803 (The real problem is that partial_inplace is set for XTENSA_32
1804 relocs to begin with, but that's a long story and there's little we
1805 can do about it now....) */
1807 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
1809 reloc_entry
->address
+= input_section
->output_offset
;
1810 return bfd_reloc_ok
;
1813 /* Is the address of the relocation really within the section? */
1814 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1815 return bfd_reloc_outofrange
;
1817 /* Work out which section the relocation is targeted at and the
1818 initial relocation command value. */
1820 /* Get symbol value. (Common symbols are special.) */
1821 if (bfd_is_com_section (symbol
->section
))
1824 relocation
= symbol
->value
;
1826 reloc_target_output_section
= symbol
->section
->output_section
;
1828 /* Convert input-section-relative symbol value to absolute. */
1829 if ((output_bfd
&& !howto
->partial_inplace
)
1830 || reloc_target_output_section
== NULL
)
1833 output_base
= reloc_target_output_section
->vma
;
1835 relocation
+= output_base
+ symbol
->section
->output_offset
;
1837 /* Add in supplied addend. */
1838 relocation
+= reloc_entry
->addend
;
1840 /* Here the variable relocation holds the final address of the
1841 symbol we are relocating against, plus any addend. */
1844 if (!howto
->partial_inplace
)
1846 /* This is a partial relocation, and we want to apply the relocation
1847 to the reloc entry rather than the raw data. Everything except
1848 relocations against section symbols has already been handled
1851 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
1852 reloc_entry
->addend
= relocation
;
1853 reloc_entry
->address
+= input_section
->output_offset
;
1854 return bfd_reloc_ok
;
1858 reloc_entry
->address
+= input_section
->output_offset
;
1859 reloc_entry
->addend
= 0;
1863 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
1864 && (symbol
->flags
& BSF_WEAK
) != 0);
1865 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
1866 (bfd_byte
*) data
, (bfd_vma
) octets
,
1867 is_weak_undef
, error_message
);
1869 if (flag
== bfd_reloc_dangerous
)
1871 /* Add the symbol name to the error message. */
1872 if (! *error_message
)
1873 *error_message
= "";
1874 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
1875 strlen (symbol
->name
) + 17,
1877 (unsigned long) reloc_entry
->addend
);
1884 /* Set up an entry in the procedure linkage table. */
1887 elf_xtensa_create_plt_entry (struct bfd_link_info
*info
,
1889 unsigned reloc_index
)
1891 asection
*splt
, *sgotplt
;
1892 bfd_vma plt_base
, got_base
;
1893 bfd_vma code_offset
, lit_offset
;
1896 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
1897 splt
= elf_xtensa_get_plt_section (info
, chunk
);
1898 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
1899 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
1901 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
1902 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
1904 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
1905 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
1907 /* Fill in the literal entry. This is the offset of the dynamic
1908 relocation entry. */
1909 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
1910 sgotplt
->contents
+ lit_offset
);
1912 /* Fill in the entry in the procedure linkage table. */
1913 memcpy (splt
->contents
+ code_offset
,
1914 (bfd_big_endian (output_bfd
)
1915 ? elf_xtensa_be_plt_entry
1916 : elf_xtensa_le_plt_entry
),
1918 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
1919 plt_base
+ code_offset
+ 3),
1920 splt
->contents
+ code_offset
+ 4);
1921 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
1922 plt_base
+ code_offset
+ 6),
1923 splt
->contents
+ code_offset
+ 7);
1924 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
1925 plt_base
+ code_offset
+ 9),
1926 splt
->contents
+ code_offset
+ 10);
1928 return plt_base
+ code_offset
;
1932 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1933 both relocatable and final links. */
1936 elf_xtensa_relocate_section (bfd
*output_bfd
,
1937 struct bfd_link_info
*info
,
1939 asection
*input_section
,
1941 Elf_Internal_Rela
*relocs
,
1942 Elf_Internal_Sym
*local_syms
,
1943 asection
**local_sections
)
1945 struct elf_xtensa_link_hash_table
*htab
;
1946 Elf_Internal_Shdr
*symtab_hdr
;
1947 Elf_Internal_Rela
*rel
;
1948 Elf_Internal_Rela
*relend
;
1949 struct elf_link_hash_entry
**sym_hashes
;
1950 property_table_entry
*lit_table
= 0;
1952 char *error_message
= NULL
;
1953 bfd_size_type input_size
;
1955 if (!xtensa_default_isa
)
1956 xtensa_default_isa
= xtensa_isa_init (0, 0);
1958 htab
= elf_xtensa_hash_table (info
);
1959 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1960 sym_hashes
= elf_sym_hashes (input_bfd
);
1962 if (elf_hash_table (info
)->dynamic_sections_created
)
1964 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
1965 &lit_table
, XTENSA_LIT_SEC_NAME
,
1971 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
1974 relend
= relocs
+ input_section
->reloc_count
;
1975 for (; rel
< relend
; rel
++)
1978 reloc_howto_type
*howto
;
1979 unsigned long r_symndx
;
1980 struct elf_link_hash_entry
*h
;
1981 Elf_Internal_Sym
*sym
;
1984 bfd_reloc_status_type r
;
1985 bfd_boolean is_weak_undef
;
1986 bfd_boolean unresolved_reloc
;
1989 r_type
= ELF32_R_TYPE (rel
->r_info
);
1990 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
1991 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
1994 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
1996 bfd_set_error (bfd_error_bad_value
);
1999 howto
= &elf_howto_table
[r_type
];
2001 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2006 is_weak_undef
= FALSE
;
2007 unresolved_reloc
= FALSE
;
2010 if (howto
->partial_inplace
&& !info
->relocatable
)
2012 /* Because R_XTENSA_32 was made partial_inplace to fix some
2013 problems with DWARF info in partial links, there may be
2014 an addend stored in the contents. Take it out of there
2015 and move it back into the addend field of the reloc. */
2016 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2017 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2020 if (r_symndx
< symtab_hdr
->sh_info
)
2022 sym
= local_syms
+ r_symndx
;
2023 sec
= local_sections
[r_symndx
];
2024 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2028 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2029 r_symndx
, symtab_hdr
, sym_hashes
,
2031 unresolved_reloc
, warned
);
2034 && !unresolved_reloc
2035 && h
->root
.type
== bfd_link_hash_undefweak
)
2036 is_weak_undef
= TRUE
;
2039 if (sec
!= NULL
&& elf_discarded_section (sec
))
2041 /* For relocs against symbols from removed linkonce sections,
2042 or sections discarded by a linker script, we just want the
2043 section contents zeroed. Avoid any special processing. */
2044 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2050 if (info
->relocatable
)
2052 /* This is a relocatable link.
2053 1) If the reloc is against a section symbol, adjust
2054 according to the output section.
2055 2) If there is a new target for this relocation,
2056 the new target will be in the same output section.
2057 We adjust the relocation by the output section
2060 if (relaxing_section
)
2062 /* Check if this references a section in another input file. */
2063 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2068 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2070 char *error_message
= NULL
;
2071 /* Convert ASM_SIMPLIFY into the simpler relocation
2072 so that they never escape a relaxing link. */
2073 r
= contract_asm_expansion (contents
, input_size
, rel
,
2075 if (r
!= bfd_reloc_ok
)
2077 if (!((*info
->callbacks
->reloc_dangerous
)
2078 (info
, error_message
, input_bfd
, input_section
,
2082 r_type
= ELF32_R_TYPE (rel
->r_info
);
2085 /* This is a relocatable link, so we don't have to change
2086 anything unless the reloc is against a section symbol,
2087 in which case we have to adjust according to where the
2088 section symbol winds up in the output section. */
2089 if (r_symndx
< symtab_hdr
->sh_info
)
2091 sym
= local_syms
+ r_symndx
;
2092 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2094 sec
= local_sections
[r_symndx
];
2095 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2099 /* If there is an addend with a partial_inplace howto,
2100 then move the addend to the contents. This is a hack
2101 to work around problems with DWARF in relocatable links
2102 with some previous version of BFD. Now we can't easily get
2103 rid of the hack without breaking backward compatibility.... */
2106 howto
= &elf_howto_table
[r_type
];
2107 if (howto
->partial_inplace
)
2109 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2110 rel
->r_addend
, contents
,
2111 rel
->r_offset
, FALSE
,
2113 if (r
!= bfd_reloc_ok
)
2115 if (!((*info
->callbacks
->reloc_dangerous
)
2116 (info
, error_message
, input_bfd
, input_section
,
2124 /* Done with work for relocatable link; continue with next reloc. */
2128 /* This is a final link. */
2130 if (relaxing_section
)
2132 /* Check if this references a section in another input file. */
2133 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2137 /* Sanity check the address. */
2138 if (rel
->r_offset
>= input_size
2139 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2141 (*_bfd_error_handler
)
2142 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2143 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2144 bfd_set_error (bfd_error_bad_value
);
2148 /* Generate dynamic relocations. */
2149 if (elf_hash_table (info
)->dynamic_sections_created
)
2151 bfd_boolean dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
2153 if (dynamic_symbol
&& (is_operand_relocation (r_type
)
2154 || r_type
== R_XTENSA_32_PCREL
))
2156 const char *name
= h
->root
.root
.string
;
2158 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2159 strlen (name
) + 2, name
);
2160 if (!((*info
->callbacks
->reloc_dangerous
)
2161 (info
, error_message
, input_bfd
, input_section
,
2165 else if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
2166 && (input_section
->flags
& SEC_ALLOC
) != 0
2167 && (dynamic_symbol
|| info
->shared
))
2169 Elf_Internal_Rela outrel
;
2173 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2174 srel
= htab
->srelplt
;
2176 srel
= htab
->srelgot
;
2178 BFD_ASSERT (srel
!= NULL
);
2181 _bfd_elf_section_offset (output_bfd
, info
,
2182 input_section
, rel
->r_offset
);
2184 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2185 memset (&outrel
, 0, sizeof outrel
);
2188 outrel
.r_offset
+= (input_section
->output_section
->vma
2189 + input_section
->output_offset
);
2191 /* Complain if the relocation is in a read-only section
2192 and not in a literal pool. */
2193 if ((input_section
->flags
& SEC_READONLY
) != 0
2194 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2198 _("dynamic relocation in read-only section");
2199 if (!((*info
->callbacks
->reloc_dangerous
)
2200 (info
, error_message
, input_bfd
, input_section
,
2207 outrel
.r_addend
= rel
->r_addend
;
2210 if (r_type
== R_XTENSA_32
)
2213 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2216 else /* r_type == R_XTENSA_PLT */
2219 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2221 /* Create the PLT entry and set the initial
2222 contents of the literal entry to the address of
2225 elf_xtensa_create_plt_entry (info
, output_bfd
,
2228 unresolved_reloc
= FALSE
;
2232 /* Generate a RELATIVE relocation. */
2233 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2234 outrel
.r_addend
= 0;
2238 loc
= (srel
->contents
2239 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2240 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2241 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2246 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2247 because such sections are not SEC_ALLOC and thus ld.so will
2248 not process them. */
2249 if (unresolved_reloc
2250 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2253 (*_bfd_error_handler
)
2254 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2257 (long) rel
->r_offset
,
2259 h
->root
.root
.string
);
2263 /* There's no point in calling bfd_perform_relocation here.
2264 Just go directly to our "special function". */
2265 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2266 relocation
+ rel
->r_addend
,
2267 contents
, rel
->r_offset
, is_weak_undef
,
2270 if (r
!= bfd_reloc_ok
&& !warned
)
2274 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
2275 BFD_ASSERT (error_message
!= NULL
);
2278 name
= h
->root
.root
.string
;
2281 name
= bfd_elf_string_from_elf_section
2282 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
2283 if (name
&& *name
== '\0')
2284 name
= bfd_section_name (input_bfd
, sec
);
2288 if (rel
->r_addend
== 0)
2289 error_message
= vsprint_msg (error_message
, ": %s",
2290 strlen (name
) + 2, name
);
2292 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
2294 name
, (int)rel
->r_addend
);
2297 if (!((*info
->callbacks
->reloc_dangerous
)
2298 (info
, error_message
, input_bfd
, input_section
,
2307 input_section
->reloc_done
= TRUE
;
2313 /* Finish up dynamic symbol handling. There's not much to do here since
2314 the PLT and GOT entries are all set up by relocate_section. */
2317 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2318 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2319 struct elf_link_hash_entry
*h
,
2320 Elf_Internal_Sym
*sym
)
2322 if (h
->needs_plt
&& !h
->def_regular
)
2324 /* Mark the symbol as undefined, rather than as defined in
2325 the .plt section. Leave the value alone. */
2326 sym
->st_shndx
= SHN_UNDEF
;
2327 /* If the symbol is weak, we do need to clear the value.
2328 Otherwise, the PLT entry would provide a definition for
2329 the symbol even if the symbol wasn't defined anywhere,
2330 and so the symbol would never be NULL. */
2331 if (!h
->ref_regular_nonweak
)
2335 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2336 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2337 || h
== elf_hash_table (info
)->hgot
)
2338 sym
->st_shndx
= SHN_ABS
;
2344 /* Combine adjacent literal table entries in the output. Adjacent
2345 entries within each input section may have been removed during
2346 relaxation, but we repeat the process here, even though it's too late
2347 to shrink the output section, because it's important to minimize the
2348 number of literal table entries to reduce the start-up work for the
2349 runtime linker. Returns the number of remaining table entries or -1
2353 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
2358 property_table_entry
*table
;
2359 bfd_size_type section_size
, sgotloc_size
;
2363 section_size
= sxtlit
->size
;
2364 BFD_ASSERT (section_size
% 8 == 0);
2365 num
= section_size
/ 8;
2367 sgotloc_size
= sgotloc
->size
;
2368 if (sgotloc_size
!= section_size
)
2370 (*_bfd_error_handler
)
2371 (_("internal inconsistency in size of .got.loc section"));
2375 table
= bfd_malloc (num
* sizeof (property_table_entry
));
2379 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2380 propagates to the output section, where it doesn't really apply and
2381 where it breaks the following call to bfd_malloc_and_get_section. */
2382 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
2384 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
2392 /* There should never be any relocations left at this point, so this
2393 is quite a bit easier than what is done during relaxation. */
2395 /* Copy the raw contents into a property table array and sort it. */
2397 for (n
= 0; n
< num
; n
++)
2399 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
2400 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
2403 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
2405 for (n
= 0; n
< num
; n
++)
2407 bfd_boolean remove
= FALSE
;
2409 if (table
[n
].size
== 0)
2412 (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
2414 table
[n
-1].size
+= table
[n
].size
;
2420 for (m
= n
; m
< num
- 1; m
++)
2422 table
[m
].address
= table
[m
+1].address
;
2423 table
[m
].size
= table
[m
+1].size
;
2431 /* Copy the data back to the raw contents. */
2433 for (n
= 0; n
< num
; n
++)
2435 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
2436 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
2440 /* Clear the removed bytes. */
2441 if ((bfd_size_type
) (num
* 8) < section_size
)
2442 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
2444 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
2448 /* Copy the contents to ".got.loc". */
2449 memcpy (sgotloc
->contents
, contents
, section_size
);
2457 /* Finish up the dynamic sections. */
2460 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
2461 struct bfd_link_info
*info
)
2463 struct elf_xtensa_link_hash_table
*htab
;
2465 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
2466 Elf32_External_Dyn
*dyncon
, *dynconend
;
2467 int num_xtlit_entries
;
2469 if (! elf_hash_table (info
)->dynamic_sections_created
)
2472 htab
= elf_xtensa_hash_table (info
);
2473 dynobj
= elf_hash_table (info
)->dynobj
;
2474 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2475 BFD_ASSERT (sdyn
!= NULL
);
2477 /* Set the first entry in the global offset table to the address of
2478 the dynamic section. */
2482 BFD_ASSERT (sgot
->size
== 4);
2484 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
2486 bfd_put_32 (output_bfd
,
2487 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2491 srelplt
= htab
->srelplt
;
2492 if (srelplt
&& srelplt
->size
!= 0)
2494 asection
*sgotplt
, *srelgot
, *spltlittbl
;
2495 int chunk
, plt_chunks
, plt_entries
;
2496 Elf_Internal_Rela irela
;
2498 unsigned rtld_reloc
;
2500 srelgot
= htab
->srelgot
;
2501 spltlittbl
= htab
->spltlittbl
;
2502 BFD_ASSERT (srelgot
!= NULL
&& spltlittbl
!= NULL
);
2504 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2505 of them follow immediately after.... */
2506 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
2508 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2509 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2510 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
2513 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
2515 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
2517 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
2519 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
2521 int chunk_entries
= 0;
2523 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
2524 BFD_ASSERT (sgotplt
!= NULL
);
2526 /* Emit special RTLD relocations for the first two entries in
2527 each chunk of the .got.plt section. */
2529 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2530 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2531 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2532 irela
.r_offset
= (sgotplt
->output_section
->vma
2533 + sgotplt
->output_offset
);
2534 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
2535 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2537 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2539 /* Next literal immediately follows the first. */
2540 loc
+= sizeof (Elf32_External_Rela
);
2541 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2542 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2543 irela
.r_offset
= (sgotplt
->output_section
->vma
2544 + sgotplt
->output_offset
+ 4);
2545 /* Tell rtld to set value to object's link map. */
2547 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2549 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2551 /* Fill in the literal table. */
2552 if (chunk
< plt_chunks
- 1)
2553 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
2555 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
2557 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
2558 bfd_put_32 (output_bfd
,
2559 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
2560 spltlittbl
->contents
+ (chunk
* 8) + 0);
2561 bfd_put_32 (output_bfd
,
2562 8 + (chunk_entries
* 4),
2563 spltlittbl
->contents
+ (chunk
* 8) + 4);
2566 /* All the dynamic relocations have been emitted at this point.
2567 Make sure the relocation sections are the correct size. */
2568 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
2569 * srelgot
->reloc_count
)
2570 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
2571 * srelplt
->reloc_count
))
2574 /* The .xt.lit.plt section has just been modified. This must
2575 happen before the code below which combines adjacent literal
2576 table entries, and the .xt.lit.plt contents have to be forced to
2578 if (! bfd_set_section_contents (output_bfd
,
2579 spltlittbl
->output_section
,
2580 spltlittbl
->contents
,
2581 spltlittbl
->output_offset
,
2584 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2585 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
2588 /* Combine adjacent literal table entries. */
2589 BFD_ASSERT (! info
->relocatable
);
2590 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
2591 sgotloc
= htab
->sgotloc
;
2592 BFD_ASSERT (sxtlit
&& sgotloc
);
2594 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
2595 if (num_xtlit_entries
< 0)
2598 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
2599 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2600 for (; dyncon
< dynconend
; dyncon
++)
2602 Elf_Internal_Dyn dyn
;
2604 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2611 case DT_XTENSA_GOT_LOC_SZ
:
2612 dyn
.d_un
.d_val
= num_xtlit_entries
;
2615 case DT_XTENSA_GOT_LOC_OFF
:
2616 dyn
.d_un
.d_ptr
= htab
->sgotloc
->output_section
->vma
;
2620 dyn
.d_un
.d_ptr
= htab
->sgot
->output_section
->vma
;
2624 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
2628 dyn
.d_un
.d_val
= htab
->srelplt
->output_section
->size
;
2632 /* Adjust RELASZ to not include JMPREL. This matches what
2633 glibc expects and what is done for several other ELF
2634 targets (e.g., i386, alpha), but the "correct" behavior
2635 seems to be unresolved. Since the linker script arranges
2636 for .rela.plt to follow all other relocation sections, we
2637 don't have to worry about changing the DT_RELA entry. */
2639 dyn
.d_un
.d_val
-= htab
->srelplt
->output_section
->size
;
2643 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2650 /* Functions for dealing with the e_flags field. */
2652 /* Merge backend specific data from an object file to the output
2653 object file when linking. */
2656 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
2658 unsigned out_mach
, in_mach
;
2659 flagword out_flag
, in_flag
;
2661 /* Check if we have the same endianess. */
2662 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
2665 /* Don't even pretend to support mixed-format linking. */
2666 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2667 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2670 out_flag
= elf_elfheader (obfd
)->e_flags
;
2671 in_flag
= elf_elfheader (ibfd
)->e_flags
;
2673 out_mach
= out_flag
& EF_XTENSA_MACH
;
2674 in_mach
= in_flag
& EF_XTENSA_MACH
;
2675 if (out_mach
!= in_mach
)
2677 (*_bfd_error_handler
)
2678 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2679 ibfd
, out_mach
, in_mach
);
2680 bfd_set_error (bfd_error_wrong_format
);
2684 if (! elf_flags_init (obfd
))
2686 elf_flags_init (obfd
) = TRUE
;
2687 elf_elfheader (obfd
)->e_flags
= in_flag
;
2689 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2690 && bfd_get_arch_info (obfd
)->the_default
)
2691 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
2692 bfd_get_mach (ibfd
));
2697 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
2698 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
2700 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
2701 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
2708 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
2710 BFD_ASSERT (!elf_flags_init (abfd
)
2711 || elf_elfheader (abfd
)->e_flags
== flags
);
2713 elf_elfheader (abfd
)->e_flags
|= flags
;
2714 elf_flags_init (abfd
) = TRUE
;
2721 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
2723 FILE *f
= (FILE *) farg
;
2724 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
2726 fprintf (f
, "\nXtensa header:\n");
2727 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
2728 fprintf (f
, "\nMachine = Base\n");
2730 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
2732 fprintf (f
, "Insn tables = %s\n",
2733 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
2735 fprintf (f
, "Literal tables = %s\n",
2736 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
2738 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
2742 /* Set the right machine number for an Xtensa ELF file. */
2745 elf_xtensa_object_p (bfd
*abfd
)
2748 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
2753 mach
= bfd_mach_xtensa
;
2759 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
2764 /* The final processing done just before writing out an Xtensa ELF object
2765 file. This gets the Xtensa architecture right based on the machine
2769 elf_xtensa_final_write_processing (bfd
*abfd
,
2770 bfd_boolean linker ATTRIBUTE_UNUSED
)
2775 switch (mach
= bfd_get_mach (abfd
))
2777 case bfd_mach_xtensa
:
2778 val
= E_XTENSA_MACH
;
2784 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
2785 elf_elfheader (abfd
)->e_flags
|= val
;
2789 static enum elf_reloc_type_class
2790 elf_xtensa_reloc_type_class (const Elf_Internal_Rela
*rela
)
2792 switch ((int) ELF32_R_TYPE (rela
->r_info
))
2794 case R_XTENSA_RELATIVE
:
2795 return reloc_class_relative
;
2796 case R_XTENSA_JMP_SLOT
:
2797 return reloc_class_plt
;
2799 return reloc_class_normal
;
2805 elf_xtensa_discard_info_for_section (bfd
*abfd
,
2806 struct elf_reloc_cookie
*cookie
,
2807 struct bfd_link_info
*info
,
2811 bfd_vma offset
, actual_offset
;
2812 bfd_size_type removed_bytes
= 0;
2813 bfd_size_type entry_size
;
2815 if (sec
->output_section
2816 && bfd_is_abs_section (sec
->output_section
))
2819 if (xtensa_is_proptable_section (sec
))
2824 if (sec
->size
== 0 || sec
->size
% entry_size
!= 0)
2827 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
2831 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
2834 release_contents (sec
, contents
);
2838 /* Sort the relocations. They should already be in order when
2839 relaxation is enabled, but it might not be. */
2840 qsort (cookie
->rels
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
2841 internal_reloc_compare
);
2843 cookie
->rel
= cookie
->rels
;
2844 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
2846 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
2848 actual_offset
= offset
- removed_bytes
;
2850 /* The ...symbol_deleted_p function will skip over relocs but it
2851 won't adjust their offsets, so do that here. */
2852 while (cookie
->rel
< cookie
->relend
2853 && cookie
->rel
->r_offset
< offset
)
2855 cookie
->rel
->r_offset
-= removed_bytes
;
2859 while (cookie
->rel
< cookie
->relend
2860 && cookie
->rel
->r_offset
== offset
)
2862 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
2864 /* Remove the table entry. (If the reloc type is NONE, then
2865 the entry has already been merged with another and deleted
2866 during relaxation.) */
2867 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
2869 /* Shift the contents up. */
2870 if (offset
+ entry_size
< sec
->size
)
2871 memmove (&contents
[actual_offset
],
2872 &contents
[actual_offset
+ entry_size
],
2873 sec
->size
- offset
- entry_size
);
2874 removed_bytes
+= entry_size
;
2877 /* Remove this relocation. */
2878 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
2881 /* Adjust the relocation offset for previous removals. This
2882 should not be done before calling ...symbol_deleted_p
2883 because it might mess up the offset comparisons there.
2884 Make sure the offset doesn't underflow in the case where
2885 the first entry is removed. */
2886 if (cookie
->rel
->r_offset
>= removed_bytes
)
2887 cookie
->rel
->r_offset
-= removed_bytes
;
2889 cookie
->rel
->r_offset
= 0;
2895 if (removed_bytes
!= 0)
2897 /* Adjust any remaining relocs (shouldn't be any). */
2898 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
2900 if (cookie
->rel
->r_offset
>= removed_bytes
)
2901 cookie
->rel
->r_offset
-= removed_bytes
;
2903 cookie
->rel
->r_offset
= 0;
2906 /* Clear the removed bytes. */
2907 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
2909 pin_contents (sec
, contents
);
2910 pin_internal_relocs (sec
, cookie
->rels
);
2913 if (sec
->rawsize
== 0)
2914 sec
->rawsize
= sec
->size
;
2915 sec
->size
-= removed_bytes
;
2917 if (xtensa_is_littable_section (sec
))
2919 asection
*sgotloc
= elf_xtensa_hash_table (info
)->sgotloc
;
2921 sgotloc
->size
-= removed_bytes
;
2926 release_contents (sec
, contents
);
2927 release_internal_relocs (sec
, cookie
->rels
);
2930 return (removed_bytes
!= 0);
2935 elf_xtensa_discard_info (bfd
*abfd
,
2936 struct elf_reloc_cookie
*cookie
,
2937 struct bfd_link_info
*info
)
2940 bfd_boolean changed
= FALSE
;
2942 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2944 if (xtensa_is_property_section (sec
))
2946 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
2956 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
2958 return xtensa_is_property_section (sec
);
2963 elf_xtensa_action_discarded (asection
*sec
)
2965 if (strcmp (".xt_except_table", sec
->name
) == 0)
2968 if (strcmp (".xt_except_desc", sec
->name
) == 0)
2971 return _bfd_elf_default_action_discarded (sec
);
2975 /* Support for core dump NOTE sections. */
2978 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
2983 /* The size for Xtensa is variable, so don't try to recognize the format
2984 based on the size. Just assume this is GNU/Linux. */
2987 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
2990 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
2994 size
= note
->descsz
- offset
- 4;
2996 /* Make a ".reg/999" section. */
2997 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
2998 size
, note
->descpos
+ offset
);
3003 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3005 switch (note
->descsz
)
3010 case 128: /* GNU/Linux elf_prpsinfo */
3011 elf_tdata (abfd
)->core_program
3012 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3013 elf_tdata (abfd
)->core_command
3014 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3017 /* Note that for some reason, a spurious space is tacked
3018 onto the end of the args in some (at least one anyway)
3019 implementations, so strip it off if it exists. */
3022 char *command
= elf_tdata (abfd
)->core_command
;
3023 int n
= strlen (command
);
3025 if (0 < n
&& command
[n
- 1] == ' ')
3026 command
[n
- 1] = '\0';
3033 /* Generic Xtensa configurability stuff. */
3035 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3036 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3037 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3038 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3039 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3040 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3041 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3042 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3045 init_call_opcodes (void)
3047 if (callx0_op
== XTENSA_UNDEFINED
)
3049 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3050 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3051 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3052 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3053 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3054 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3055 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3056 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3062 is_indirect_call_opcode (xtensa_opcode opcode
)
3064 init_call_opcodes ();
3065 return (opcode
== callx0_op
3066 || opcode
== callx4_op
3067 || opcode
== callx8_op
3068 || opcode
== callx12_op
);
3073 is_direct_call_opcode (xtensa_opcode opcode
)
3075 init_call_opcodes ();
3076 return (opcode
== call0_op
3077 || opcode
== call4_op
3078 || opcode
== call8_op
3079 || opcode
== call12_op
);
3084 is_windowed_call_opcode (xtensa_opcode opcode
)
3086 init_call_opcodes ();
3087 return (opcode
== call4_op
3088 || opcode
== call8_op
3089 || opcode
== call12_op
3090 || opcode
== callx4_op
3091 || opcode
== callx8_op
3092 || opcode
== callx12_op
);
3096 static xtensa_opcode
3097 get_const16_opcode (void)
3099 static bfd_boolean done_lookup
= FALSE
;
3100 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3103 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3106 return const16_opcode
;
3110 static xtensa_opcode
3111 get_l32r_opcode (void)
3113 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3114 static bfd_boolean done_lookup
= FALSE
;
3118 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3126 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3130 offset
= addr
- ((pc
+3) & -4);
3131 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3132 offset
= (signed int) offset
>> 2;
3133 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3139 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3141 xtensa_isa isa
= xtensa_default_isa
;
3142 int last_immed
, last_opnd
, opi
;
3144 if (opcode
== XTENSA_UNDEFINED
)
3145 return XTENSA_UNDEFINED
;
3147 /* Find the last visible PC-relative immediate operand for the opcode.
3148 If there are no PC-relative immediates, then choose the last visible
3149 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3150 last_immed
= XTENSA_UNDEFINED
;
3151 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3152 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3154 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3156 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3161 if (last_immed
== XTENSA_UNDEFINED
3162 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3166 return XTENSA_UNDEFINED
;
3168 /* If the operand number was specified in an old-style relocation,
3169 check for consistency with the operand computed above. */
3170 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3172 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3173 if (reloc_opnd
!= last_immed
)
3174 return XTENSA_UNDEFINED
;
3182 get_relocation_slot (int r_type
)
3192 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3193 return r_type
- R_XTENSA_SLOT0_OP
;
3194 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3195 return r_type
- R_XTENSA_SLOT0_ALT
;
3199 return XTENSA_UNDEFINED
;
3203 /* Get the opcode for a relocation. */
3205 static xtensa_opcode
3206 get_relocation_opcode (bfd
*abfd
,
3209 Elf_Internal_Rela
*irel
)
3211 static xtensa_insnbuf ibuff
= NULL
;
3212 static xtensa_insnbuf sbuff
= NULL
;
3213 xtensa_isa isa
= xtensa_default_isa
;
3217 if (contents
== NULL
)
3218 return XTENSA_UNDEFINED
;
3220 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
3221 return XTENSA_UNDEFINED
;
3225 ibuff
= xtensa_insnbuf_alloc (isa
);
3226 sbuff
= xtensa_insnbuf_alloc (isa
);
3229 /* Decode the instruction. */
3230 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
3231 sec
->size
- irel
->r_offset
);
3232 fmt
= xtensa_format_decode (isa
, ibuff
);
3233 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
3234 if (slot
== XTENSA_UNDEFINED
)
3235 return XTENSA_UNDEFINED
;
3236 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
3237 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
3242 is_l32r_relocation (bfd
*abfd
,
3245 Elf_Internal_Rela
*irel
)
3247 xtensa_opcode opcode
;
3248 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
3250 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
3251 return (opcode
== get_l32r_opcode ());
3255 static bfd_size_type
3256 get_asm_simplify_size (bfd_byte
*contents
,
3257 bfd_size_type content_len
,
3258 bfd_size_type offset
)
3260 bfd_size_type insnlen
, size
= 0;
3262 /* Decode the size of the next two instructions. */
3263 insnlen
= insn_decode_len (contents
, content_len
, offset
);
3269 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
3279 is_alt_relocation (int r_type
)
3281 return (r_type
>= R_XTENSA_SLOT0_ALT
3282 && r_type
<= R_XTENSA_SLOT14_ALT
);
3287 is_operand_relocation (int r_type
)
3297 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3299 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3308 #define MIN_INSN_LENGTH 2
3310 /* Return 0 if it fails to decode. */
3313 insn_decode_len (bfd_byte
*contents
,
3314 bfd_size_type content_len
,
3315 bfd_size_type offset
)
3318 xtensa_isa isa
= xtensa_default_isa
;
3320 static xtensa_insnbuf ibuff
= NULL
;
3322 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3326 ibuff
= xtensa_insnbuf_alloc (isa
);
3327 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
3328 content_len
- offset
);
3329 fmt
= xtensa_format_decode (isa
, ibuff
);
3330 if (fmt
== XTENSA_UNDEFINED
)
3332 insn_len
= xtensa_format_length (isa
, fmt
);
3333 if (insn_len
== XTENSA_UNDEFINED
)
3339 /* Decode the opcode for a single slot instruction.
3340 Return 0 if it fails to decode or the instruction is multi-slot. */
3343 insn_decode_opcode (bfd_byte
*contents
,
3344 bfd_size_type content_len
,
3345 bfd_size_type offset
,
3348 xtensa_isa isa
= xtensa_default_isa
;
3350 static xtensa_insnbuf insnbuf
= NULL
;
3351 static xtensa_insnbuf slotbuf
= NULL
;
3353 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3354 return XTENSA_UNDEFINED
;
3356 if (insnbuf
== NULL
)
3358 insnbuf
= xtensa_insnbuf_alloc (isa
);
3359 slotbuf
= xtensa_insnbuf_alloc (isa
);
3362 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3363 content_len
- offset
);
3364 fmt
= xtensa_format_decode (isa
, insnbuf
);
3365 if (fmt
== XTENSA_UNDEFINED
)
3366 return XTENSA_UNDEFINED
;
3368 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
3369 return XTENSA_UNDEFINED
;
3371 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
3372 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
3376 /* The offset is the offset in the contents.
3377 The address is the address of that offset. */
3380 check_branch_target_aligned (bfd_byte
*contents
,
3381 bfd_size_type content_length
,
3385 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
3388 return check_branch_target_aligned_address (address
, insn_len
);
3393 check_loop_aligned (bfd_byte
*contents
,
3394 bfd_size_type content_length
,
3398 bfd_size_type loop_len
, insn_len
;
3399 xtensa_opcode opcode
;
3401 opcode
= insn_decode_opcode (contents
, content_length
, offset
, 0);
3402 if (opcode
== XTENSA_UNDEFINED
3403 || xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) != 1)
3409 loop_len
= insn_decode_len (contents
, content_length
, offset
);
3410 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
3411 if (loop_len
== 0 || insn_len
== 0)
3417 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
3422 check_branch_target_aligned_address (bfd_vma addr
, int len
)
3425 return (addr
% 8 == 0);
3426 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
3430 /* Instruction widening and narrowing. */
3432 /* When FLIX is available we need to access certain instructions only
3433 when they are 16-bit or 24-bit instructions. This table caches
3434 information about such instructions by walking through all the
3435 opcodes and finding the smallest single-slot format into which each
3438 static xtensa_format
*op_single_fmt_table
= NULL
;
3442 init_op_single_format_table (void)
3444 xtensa_isa isa
= xtensa_default_isa
;
3445 xtensa_insnbuf ibuf
;
3446 xtensa_opcode opcode
;
3450 if (op_single_fmt_table
)
3453 ibuf
= xtensa_insnbuf_alloc (isa
);
3454 num_opcodes
= xtensa_isa_num_opcodes (isa
);
3456 op_single_fmt_table
= (xtensa_format
*)
3457 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
3458 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
3460 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
3461 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
3463 if (xtensa_format_num_slots (isa
, fmt
) == 1
3464 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
3466 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
3467 int fmt_length
= xtensa_format_length (isa
, fmt
);
3468 if (old_fmt
== XTENSA_UNDEFINED
3469 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
3470 op_single_fmt_table
[opcode
] = fmt
;
3474 xtensa_insnbuf_free (isa
, ibuf
);
3478 static xtensa_format
3479 get_single_format (xtensa_opcode opcode
)
3481 init_op_single_format_table ();
3482 return op_single_fmt_table
[opcode
];
3486 /* For the set of narrowable instructions we do NOT include the
3487 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3488 involved during linker relaxation that may require these to
3489 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3490 requires special case code to ensure it only works when op1 == op2. */
3498 struct string_pair narrowable
[] =
3501 { "addi", "addi.n" },
3502 { "addmi", "addi.n" },
3503 { "l32i", "l32i.n" },
3504 { "movi", "movi.n" },
3506 { "retw", "retw.n" },
3507 { "s32i", "s32i.n" },
3508 { "or", "mov.n" } /* special case only when op1 == op2 */
3511 struct string_pair widenable
[] =
3514 { "addi", "addi.n" },
3515 { "addmi", "addi.n" },
3516 { "beqz", "beqz.n" },
3517 { "bnez", "bnez.n" },
3518 { "l32i", "l32i.n" },
3519 { "movi", "movi.n" },
3521 { "retw", "retw.n" },
3522 { "s32i", "s32i.n" },
3523 { "or", "mov.n" } /* special case only when op1 == op2 */
3527 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3528 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3529 return the instruction buffer holding the narrow instruction. Otherwise,
3530 return 0. The set of valid narrowing are specified by a string table
3531 but require some special case operand checks in some cases. */
3533 static xtensa_insnbuf
3534 can_narrow_instruction (xtensa_insnbuf slotbuf
,
3536 xtensa_opcode opcode
)
3538 xtensa_isa isa
= xtensa_default_isa
;
3539 xtensa_format o_fmt
;
3542 static xtensa_insnbuf o_insnbuf
= NULL
;
3543 static xtensa_insnbuf o_slotbuf
= NULL
;
3545 if (o_insnbuf
== NULL
)
3547 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3548 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3551 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); opi
++)
3553 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
3555 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
3557 uint32 value
, newval
;
3558 int i
, operand_count
, o_operand_count
;
3559 xtensa_opcode o_opcode
;
3561 /* Address does not matter in this case. We might need to
3562 fix it to handle branches/jumps. */
3563 bfd_vma self_address
= 0;
3565 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
3566 if (o_opcode
== XTENSA_UNDEFINED
)
3568 o_fmt
= get_single_format (o_opcode
);
3569 if (o_fmt
== XTENSA_UNDEFINED
)
3572 if (xtensa_format_length (isa
, fmt
) != 3
3573 || xtensa_format_length (isa
, o_fmt
) != 2)
3576 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3577 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3578 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3580 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3585 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3590 uint32 rawval0
, rawval1
, rawval2
;
3592 if (o_operand_count
+ 1 != operand_count
3593 || xtensa_operand_get_field (isa
, opcode
, 0,
3594 fmt
, 0, slotbuf
, &rawval0
) != 0
3595 || xtensa_operand_get_field (isa
, opcode
, 1,
3596 fmt
, 0, slotbuf
, &rawval1
) != 0
3597 || xtensa_operand_get_field (isa
, opcode
, 2,
3598 fmt
, 0, slotbuf
, &rawval2
) != 0
3599 || rawval1
!= rawval2
3600 || rawval0
== rawval1
/* it is a nop */)
3604 for (i
= 0; i
< o_operand_count
; ++i
)
3606 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
3608 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
3611 /* PC-relative branches need adjustment, but
3612 the PC-rel operand will always have a relocation. */
3614 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3616 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3617 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3622 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
3632 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3633 the action in-place directly into the contents and return TRUE. Otherwise,
3634 the return value is FALSE and the contents are not modified. */
3637 narrow_instruction (bfd_byte
*contents
,
3638 bfd_size_type content_length
,
3639 bfd_size_type offset
)
3641 xtensa_opcode opcode
;
3642 bfd_size_type insn_len
;
3643 xtensa_isa isa
= xtensa_default_isa
;
3645 xtensa_insnbuf o_insnbuf
;
3647 static xtensa_insnbuf insnbuf
= NULL
;
3648 static xtensa_insnbuf slotbuf
= NULL
;
3650 if (insnbuf
== NULL
)
3652 insnbuf
= xtensa_insnbuf_alloc (isa
);
3653 slotbuf
= xtensa_insnbuf_alloc (isa
);
3656 BFD_ASSERT (offset
< content_length
);
3658 if (content_length
< 2)
3661 /* We will hand-code a few of these for a little while.
3662 These have all been specified in the assembler aleady. */
3663 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3664 content_length
- offset
);
3665 fmt
= xtensa_format_decode (isa
, insnbuf
);
3666 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3669 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3672 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3673 if (opcode
== XTENSA_UNDEFINED
)
3675 insn_len
= xtensa_format_length (isa
, fmt
);
3676 if (insn_len
> content_length
)
3679 o_insnbuf
= can_narrow_instruction (slotbuf
, fmt
, opcode
);
3682 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3683 content_length
- offset
);
3691 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3692 "density" instruction to a standard 3-byte instruction. If it is valid,
3693 return the instruction buffer holding the wide instruction. Otherwise,
3694 return 0. The set of valid widenings are specified by a string table
3695 but require some special case operand checks in some cases. */
3697 static xtensa_insnbuf
3698 can_widen_instruction (xtensa_insnbuf slotbuf
,
3700 xtensa_opcode opcode
)
3702 xtensa_isa isa
= xtensa_default_isa
;
3703 xtensa_format o_fmt
;
3706 static xtensa_insnbuf o_insnbuf
= NULL
;
3707 static xtensa_insnbuf o_slotbuf
= NULL
;
3709 if (o_insnbuf
== NULL
)
3711 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3712 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3715 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); opi
++)
3717 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
3718 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
3719 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
3721 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
3723 uint32 value
, newval
;
3724 int i
, operand_count
, o_operand_count
, check_operand_count
;
3725 xtensa_opcode o_opcode
;
3727 /* Address does not matter in this case. We might need to fix it
3728 to handle branches/jumps. */
3729 bfd_vma self_address
= 0;
3731 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
3732 if (o_opcode
== XTENSA_UNDEFINED
)
3734 o_fmt
= get_single_format (o_opcode
);
3735 if (o_fmt
== XTENSA_UNDEFINED
)
3738 if (xtensa_format_length (isa
, fmt
) != 2
3739 || xtensa_format_length (isa
, o_fmt
) != 3)
3742 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3743 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3744 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3745 check_operand_count
= o_operand_count
;
3747 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3752 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3757 uint32 rawval0
, rawval1
;
3759 if (o_operand_count
!= operand_count
+ 1
3760 || xtensa_operand_get_field (isa
, opcode
, 0,
3761 fmt
, 0, slotbuf
, &rawval0
) != 0
3762 || xtensa_operand_get_field (isa
, opcode
, 1,
3763 fmt
, 0, slotbuf
, &rawval1
) != 0
3764 || rawval0
== rawval1
/* it is a nop */)
3768 check_operand_count
--;
3770 for (i
= 0; i
< check_operand_count
; i
++)
3773 if (is_or
&& i
== o_operand_count
- 1)
3775 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
3777 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
3780 /* PC-relative branches need adjustment, but
3781 the PC-rel operand will always have a relocation. */
3783 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3785 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3786 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3791 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
3801 /* Attempt to widen an instruction. If the widening is valid, perform
3802 the action in-place directly into the contents and return TRUE. Otherwise,
3803 the return value is FALSE and the contents are not modified. */
3806 widen_instruction (bfd_byte
*contents
,
3807 bfd_size_type content_length
,
3808 bfd_size_type offset
)
3810 xtensa_opcode opcode
;
3811 bfd_size_type insn_len
;
3812 xtensa_isa isa
= xtensa_default_isa
;
3814 xtensa_insnbuf o_insnbuf
;
3816 static xtensa_insnbuf insnbuf
= NULL
;
3817 static xtensa_insnbuf slotbuf
= NULL
;
3819 if (insnbuf
== NULL
)
3821 insnbuf
= xtensa_insnbuf_alloc (isa
);
3822 slotbuf
= xtensa_insnbuf_alloc (isa
);
3825 BFD_ASSERT (offset
< content_length
);
3827 if (content_length
< 2)
3830 /* We will hand-code a few of these for a little while.
3831 These have all been specified in the assembler aleady. */
3832 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3833 content_length
- offset
);
3834 fmt
= xtensa_format_decode (isa
, insnbuf
);
3835 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3838 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3841 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3842 if (opcode
== XTENSA_UNDEFINED
)
3844 insn_len
= xtensa_format_length (isa
, fmt
);
3845 if (insn_len
> content_length
)
3848 o_insnbuf
= can_widen_instruction (slotbuf
, fmt
, opcode
);
3851 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3852 content_length
- offset
);
3859 /* Code for transforming CALLs at link-time. */
3861 static bfd_reloc_status_type
3862 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
3864 bfd_vma content_length
,
3865 char **error_message
)
3867 static xtensa_insnbuf insnbuf
= NULL
;
3868 static xtensa_insnbuf slotbuf
= NULL
;
3869 xtensa_format core_format
= XTENSA_UNDEFINED
;
3870 xtensa_opcode opcode
;
3871 xtensa_opcode direct_call_opcode
;
3872 xtensa_isa isa
= xtensa_default_isa
;
3873 bfd_byte
*chbuf
= contents
+ address
;
3876 if (insnbuf
== NULL
)
3878 insnbuf
= xtensa_insnbuf_alloc (isa
);
3879 slotbuf
= xtensa_insnbuf_alloc (isa
);
3882 if (content_length
< address
)
3884 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3885 return bfd_reloc_other
;
3888 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
3889 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
3890 if (direct_call_opcode
== XTENSA_UNDEFINED
)
3892 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3893 return bfd_reloc_other
;
3896 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3897 core_format
= xtensa_format_lookup (isa
, "x24");
3898 opcode
= xtensa_opcode_lookup (isa
, "or");
3899 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
3900 for (opn
= 0; opn
< 3; opn
++)
3903 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
3904 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
3907 xtensa_format_encode (isa
, core_format
, insnbuf
);
3908 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3909 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
3911 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3912 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
3913 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
3915 xtensa_format_encode (isa
, core_format
, insnbuf
);
3916 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3917 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
3918 content_length
- address
- 3);
3920 return bfd_reloc_ok
;
3924 static bfd_reloc_status_type
3925 contract_asm_expansion (bfd_byte
*contents
,
3926 bfd_vma content_length
,
3927 Elf_Internal_Rela
*irel
,
3928 char **error_message
)
3930 bfd_reloc_status_type retval
=
3931 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
3934 if (retval
!= bfd_reloc_ok
)
3935 return bfd_reloc_dangerous
;
3937 /* Update the irel->r_offset field so that the right immediate and
3938 the right instruction are modified during the relocation. */
3939 irel
->r_offset
+= 3;
3940 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
3941 return bfd_reloc_ok
;
3945 static xtensa_opcode
3946 swap_callx_for_call_opcode (xtensa_opcode opcode
)
3948 init_call_opcodes ();
3950 if (opcode
== callx0_op
) return call0_op
;
3951 if (opcode
== callx4_op
) return call4_op
;
3952 if (opcode
== callx8_op
) return call8_op
;
3953 if (opcode
== callx12_op
) return call12_op
;
3955 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3956 return XTENSA_UNDEFINED
;
3960 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3961 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3962 If not, return XTENSA_UNDEFINED. */
3964 #define L32R_TARGET_REG_OPERAND 0
3965 #define CONST16_TARGET_REG_OPERAND 0
3966 #define CALLN_SOURCE_OPERAND 0
3968 static xtensa_opcode
3969 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
3971 static xtensa_insnbuf insnbuf
= NULL
;
3972 static xtensa_insnbuf slotbuf
= NULL
;
3974 xtensa_opcode opcode
;
3975 xtensa_isa isa
= xtensa_default_isa
;
3976 uint32 regno
, const16_regno
, call_regno
;
3979 if (insnbuf
== NULL
)
3981 insnbuf
= xtensa_insnbuf_alloc (isa
);
3982 slotbuf
= xtensa_insnbuf_alloc (isa
);
3985 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
3986 fmt
= xtensa_format_decode (isa
, insnbuf
);
3987 if (fmt
== XTENSA_UNDEFINED
3988 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
3989 return XTENSA_UNDEFINED
;
3991 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3992 if (opcode
== XTENSA_UNDEFINED
)
3993 return XTENSA_UNDEFINED
;
3995 if (opcode
== get_l32r_opcode ())
3998 *p_uses_l32r
= TRUE
;
3999 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4000 fmt
, 0, slotbuf
, ®no
)
4001 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4003 return XTENSA_UNDEFINED
;
4005 else if (opcode
== get_const16_opcode ())
4008 *p_uses_l32r
= FALSE
;
4009 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4010 fmt
, 0, slotbuf
, ®no
)
4011 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4013 return XTENSA_UNDEFINED
;
4015 /* Check that the next instruction is also CONST16. */
4016 offset
+= xtensa_format_length (isa
, fmt
);
4017 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4018 fmt
= xtensa_format_decode (isa
, insnbuf
);
4019 if (fmt
== XTENSA_UNDEFINED
4020 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4021 return XTENSA_UNDEFINED
;
4022 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4023 if (opcode
!= get_const16_opcode ())
4024 return XTENSA_UNDEFINED
;
4026 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4027 fmt
, 0, slotbuf
, &const16_regno
)
4028 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4030 || const16_regno
!= regno
)
4031 return XTENSA_UNDEFINED
;
4034 return XTENSA_UNDEFINED
;
4036 /* Next instruction should be an CALLXn with operand 0 == regno. */
4037 offset
+= xtensa_format_length (isa
, fmt
);
4038 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4039 fmt
= xtensa_format_decode (isa
, insnbuf
);
4040 if (fmt
== XTENSA_UNDEFINED
4041 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4042 return XTENSA_UNDEFINED
;
4043 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4044 if (opcode
== XTENSA_UNDEFINED
4045 || !is_indirect_call_opcode (opcode
))
4046 return XTENSA_UNDEFINED
;
4048 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4049 fmt
, 0, slotbuf
, &call_regno
)
4050 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4052 return XTENSA_UNDEFINED
;
4054 if (call_regno
!= regno
)
4055 return XTENSA_UNDEFINED
;
4061 /* Data structures used during relaxation. */
4063 /* r_reloc: relocation values. */
4065 /* Through the relaxation process, we need to keep track of the values
4066 that will result from evaluating relocations. The standard ELF
4067 relocation structure is not sufficient for this purpose because we're
4068 operating on multiple input files at once, so we need to know which
4069 input file a relocation refers to. The r_reloc structure thus
4070 records both the input file (bfd) and ELF relocation.
4072 For efficiency, an r_reloc also contains a "target_offset" field to
4073 cache the target-section-relative offset value that is represented by
4076 The r_reloc also contains a virtual offset that allows multiple
4077 inserted literals to be placed at the same "address" with
4078 different offsets. */
4080 typedef struct r_reloc_struct r_reloc
;
4082 struct r_reloc_struct
4085 Elf_Internal_Rela rela
;
4086 bfd_vma target_offset
;
4087 bfd_vma virtual_offset
;
4091 /* The r_reloc structure is included by value in literal_value, but not
4092 every literal_value has an associated relocation -- some are simple
4093 constants. In such cases, we set all the fields in the r_reloc
4094 struct to zero. The r_reloc_is_const function should be used to
4095 detect this case. */
4098 r_reloc_is_const (const r_reloc
*r_rel
)
4100 return (r_rel
->abfd
== NULL
);
4105 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4107 bfd_vma target_offset
;
4108 unsigned long r_symndx
;
4110 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4111 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4112 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4113 return (target_offset
+ r_rel
->rela
.r_addend
);
4117 static struct elf_link_hash_entry
*
4118 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4120 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4121 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4126 r_reloc_get_section (const r_reloc
*r_rel
)
4128 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4129 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4134 r_reloc_is_defined (const r_reloc
*r_rel
)
4140 sec
= r_reloc_get_section (r_rel
);
4141 if (sec
== bfd_abs_section_ptr
4142 || sec
== bfd_com_section_ptr
4143 || sec
== bfd_und_section_ptr
)
4150 r_reloc_init (r_reloc
*r_rel
,
4152 Elf_Internal_Rela
*irel
,
4154 bfd_size_type content_length
)
4157 reloc_howto_type
*howto
;
4161 r_rel
->rela
= *irel
;
4163 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4164 r_rel
->virtual_offset
= 0;
4165 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4166 howto
= &elf_howto_table
[r_type
];
4167 if (howto
->partial_inplace
)
4169 bfd_vma inplace_val
;
4170 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4172 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4173 r_rel
->target_offset
+= inplace_val
;
4177 memset (r_rel
, 0, sizeof (r_reloc
));
4184 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4186 if (r_reloc_is_defined (r_rel
))
4188 asection
*sec
= r_reloc_get_section (r_rel
);
4189 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4191 else if (r_reloc_get_hash_entry (r_rel
))
4192 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4194 fprintf (fp
, " ?? + ");
4196 fprintf_vma (fp
, r_rel
->target_offset
);
4197 if (r_rel
->virtual_offset
)
4199 fprintf (fp
, " + ");
4200 fprintf_vma (fp
, r_rel
->virtual_offset
);
4209 /* source_reloc: relocations that reference literals. */
4211 /* To determine whether literals can be coalesced, we need to first
4212 record all the relocations that reference the literals. The
4213 source_reloc structure below is used for this purpose. The
4214 source_reloc entries are kept in a per-literal-section array, sorted
4215 by offset within the literal section (i.e., target offset).
4217 The source_sec and r_rel.rela.r_offset fields identify the source of
4218 the relocation. The r_rel field records the relocation value, i.e.,
4219 the offset of the literal being referenced. The opnd field is needed
4220 to determine the range of the immediate field to which the relocation
4221 applies, so we can determine whether another literal with the same
4222 value is within range. The is_null field is true when the relocation
4223 is being removed (e.g., when an L32R is being removed due to a CALLX
4224 that is converted to a direct CALL). */
4226 typedef struct source_reloc_struct source_reloc
;
4228 struct source_reloc_struct
4230 asection
*source_sec
;
4232 xtensa_opcode opcode
;
4234 bfd_boolean is_null
;
4235 bfd_boolean is_abs_literal
;
4240 init_source_reloc (source_reloc
*reloc
,
4241 asection
*source_sec
,
4242 const r_reloc
*r_rel
,
4243 xtensa_opcode opcode
,
4245 bfd_boolean is_abs_literal
)
4247 reloc
->source_sec
= source_sec
;
4248 reloc
->r_rel
= *r_rel
;
4249 reloc
->opcode
= opcode
;
4251 reloc
->is_null
= FALSE
;
4252 reloc
->is_abs_literal
= is_abs_literal
;
4256 /* Find the source_reloc for a particular source offset and relocation
4257 type. Note that the array is sorted by _target_ offset, so this is
4258 just a linear search. */
4260 static source_reloc
*
4261 find_source_reloc (source_reloc
*src_relocs
,
4264 Elf_Internal_Rela
*irel
)
4268 for (i
= 0; i
< src_count
; i
++)
4270 if (src_relocs
[i
].source_sec
== sec
4271 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
4272 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
4273 == ELF32_R_TYPE (irel
->r_info
)))
4274 return &src_relocs
[i
];
4282 source_reloc_compare (const void *ap
, const void *bp
)
4284 const source_reloc
*a
= (const source_reloc
*) ap
;
4285 const source_reloc
*b
= (const source_reloc
*) bp
;
4287 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
4288 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
4290 /* We don't need to sort on these criteria for correctness,
4291 but enforcing a more strict ordering prevents unstable qsort
4292 from behaving differently with different implementations.
4293 Without the code below we get correct but different results
4294 on Solaris 2.7 and 2.8. We would like to always produce the
4295 same results no matter the host. */
4297 if ((!a
->is_null
) - (!b
->is_null
))
4298 return ((!a
->is_null
) - (!b
->is_null
));
4299 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
4303 /* Literal values and value hash tables. */
4305 /* Literals with the same value can be coalesced. The literal_value
4306 structure records the value of a literal: the "r_rel" field holds the
4307 information from the relocation on the literal (if there is one) and
4308 the "value" field holds the contents of the literal word itself.
4310 The value_map structure records a literal value along with the
4311 location of a literal holding that value. The value_map hash table
4312 is indexed by the literal value, so that we can quickly check if a
4313 particular literal value has been seen before and is thus a candidate
4316 typedef struct literal_value_struct literal_value
;
4317 typedef struct value_map_struct value_map
;
4318 typedef struct value_map_hash_table_struct value_map_hash_table
;
4320 struct literal_value_struct
4323 unsigned long value
;
4324 bfd_boolean is_abs_literal
;
4327 struct value_map_struct
4329 literal_value val
; /* The literal value. */
4330 r_reloc loc
; /* Location of the literal. */
4334 struct value_map_hash_table_struct
4336 unsigned bucket_count
;
4337 value_map
**buckets
;
4339 bfd_boolean has_last_loc
;
4345 init_literal_value (literal_value
*lit
,
4346 const r_reloc
*r_rel
,
4347 unsigned long value
,
4348 bfd_boolean is_abs_literal
)
4350 lit
->r_rel
= *r_rel
;
4352 lit
->is_abs_literal
= is_abs_literal
;
4357 literal_value_equal (const literal_value
*src1
,
4358 const literal_value
*src2
,
4359 bfd_boolean final_static_link
)
4361 struct elf_link_hash_entry
*h1
, *h2
;
4363 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
4366 if (r_reloc_is_const (&src1
->r_rel
))
4367 return (src1
->value
== src2
->value
);
4369 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
4370 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
4373 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
4376 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
4379 if (src1
->value
!= src2
->value
)
4382 /* Now check for the same section (if defined) or the same elf_hash
4383 (if undefined or weak). */
4384 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
4385 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
4386 if (r_reloc_is_defined (&src1
->r_rel
)
4387 && (final_static_link
4388 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
4389 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
4391 if (r_reloc_get_section (&src1
->r_rel
)
4392 != r_reloc_get_section (&src2
->r_rel
))
4397 /* Require that the hash entries (i.e., symbols) be identical. */
4398 if (h1
!= h2
|| h1
== 0)
4402 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
4409 /* Must be power of 2. */
4410 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4412 static value_map_hash_table
*
4413 value_map_hash_table_init (void)
4415 value_map_hash_table
*values
;
4417 values
= (value_map_hash_table
*)
4418 bfd_zmalloc (sizeof (value_map_hash_table
));
4419 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
4421 values
->buckets
= (value_map
**)
4422 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
4423 if (values
->buckets
== NULL
)
4428 values
->has_last_loc
= FALSE
;
4435 value_map_hash_table_delete (value_map_hash_table
*table
)
4437 free (table
->buckets
);
4443 hash_bfd_vma (bfd_vma val
)
4445 return (val
>> 2) + (val
>> 10);
4450 literal_value_hash (const literal_value
*src
)
4454 hash_val
= hash_bfd_vma (src
->value
);
4455 if (!r_reloc_is_const (&src
->r_rel
))
4459 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
4460 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
4461 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
4463 /* Now check for the same section and the same elf_hash. */
4464 if (r_reloc_is_defined (&src
->r_rel
))
4465 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
4467 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
4468 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
4474 /* Check if the specified literal_value has been seen before. */
4477 value_map_get_cached_value (value_map_hash_table
*map
,
4478 const literal_value
*val
,
4479 bfd_boolean final_static_link
)
4485 idx
= literal_value_hash (val
);
4486 idx
= idx
& (map
->bucket_count
- 1);
4487 bucket
= map
->buckets
[idx
];
4488 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
4490 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
4497 /* Record a new literal value. It is illegal to call this if VALUE
4498 already has an entry here. */
4501 add_value_map (value_map_hash_table
*map
,
4502 const literal_value
*val
,
4504 bfd_boolean final_static_link
)
4506 value_map
**bucket_p
;
4509 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
4512 bfd_set_error (bfd_error_no_memory
);
4516 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
4520 idx
= literal_value_hash (val
);
4521 idx
= idx
& (map
->bucket_count
- 1);
4522 bucket_p
= &map
->buckets
[idx
];
4524 val_e
->next
= *bucket_p
;
4527 /* FIXME: Consider resizing the hash table if we get too many entries. */
4533 /* Lists of text actions (ta_) for narrowing, widening, longcall
4534 conversion, space fill, code & literal removal, etc. */
4536 /* The following text actions are generated:
4538 "ta_remove_insn" remove an instruction or instructions
4539 "ta_remove_longcall" convert longcall to call
4540 "ta_convert_longcall" convert longcall to nop/call
4541 "ta_narrow_insn" narrow a wide instruction
4542 "ta_widen" widen a narrow instruction
4543 "ta_fill" add fill or remove fill
4544 removed < 0 is a fill; branches to the fill address will be
4545 changed to address + fill size (e.g., address - removed)
4546 removed >= 0 branches to the fill address will stay unchanged
4547 "ta_remove_literal" remove a literal; this action is
4548 indicated when a literal is removed
4550 "ta_add_literal" insert a new literal; this action is
4551 indicated when a literal has been moved.
4552 It may use a virtual_offset because
4553 multiple literals can be placed at the
4556 For each of these text actions, we also record the number of bytes
4557 removed by performing the text action. In the case of a "ta_widen"
4558 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4560 typedef struct text_action_struct text_action
;
4561 typedef struct text_action_list_struct text_action_list
;
4562 typedef enum text_action_enum_t text_action_t
;
4564 enum text_action_enum_t
4567 ta_remove_insn
, /* removed = -size */
4568 ta_remove_longcall
, /* removed = -size */
4569 ta_convert_longcall
, /* removed = 0 */
4570 ta_narrow_insn
, /* removed = -1 */
4571 ta_widen_insn
, /* removed = +1 */
4572 ta_fill
, /* removed = +size */
4578 /* Structure for a text action record. */
4579 struct text_action_struct
4581 text_action_t action
;
4582 asection
*sec
; /* Optional */
4584 bfd_vma virtual_offset
; /* Zero except for adding literals. */
4586 literal_value value
; /* Only valid when adding literals. */
4592 /* List of all of the actions taken on a text section. */
4593 struct text_action_list_struct
4599 static text_action
*
4600 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
4604 /* It is not necessary to fill at the end of a section. */
4605 if (sec
->size
== offset
)
4608 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4610 text_action
*t
= *m_p
;
4611 /* When the action is another fill at the same address,
4612 just increase the size. */
4613 if (t
->offset
== offset
&& t
->action
== ta_fill
)
4621 compute_removed_action_diff (const text_action
*ta
,
4625 int removable_space
)
4628 int current_removed
= 0;
4631 current_removed
= ta
->removed_bytes
;
4633 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
4634 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
4636 /* It is not necessary to fill at the end of a section. Clean this up. */
4637 if (sec
->size
== offset
)
4638 new_removed
= removable_space
- 0;
4642 int added
= -removed
- current_removed
;
4643 /* Ignore multiples of the section alignment. */
4644 added
= ((1 << sec
->alignment_power
) - 1) & added
;
4645 new_removed
= (-added
);
4647 /* Modify for removable. */
4648 space
= removable_space
- new_removed
;
4649 new_removed
= (removable_space
4650 - (((1 << sec
->alignment_power
) - 1) & space
));
4652 return (new_removed
- current_removed
);
4657 adjust_fill_action (text_action
*ta
, int fill_diff
)
4659 ta
->removed_bytes
+= fill_diff
;
4663 /* Add a modification action to the text. For the case of adding or
4664 removing space, modify any current fill and assume that
4665 "unreachable_space" bytes can be freely contracted. Note that a
4666 negative removed value is a fill. */
4669 text_action_add (text_action_list
*l
,
4670 text_action_t action
,
4678 /* It is not necessary to fill at the end of a section. */
4679 if (action
== ta_fill
&& sec
->size
== offset
)
4682 /* It is not necessary to fill 0 bytes. */
4683 if (action
== ta_fill
&& removed
== 0)
4686 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4688 text_action
*t
= *m_p
;
4689 /* When the action is another fill at the same address,
4690 just increase the size. */
4691 if (t
->offset
== offset
&& t
->action
== ta_fill
&& action
== ta_fill
)
4693 t
->removed_bytes
+= removed
;
4698 /* Create a new record and fill it up. */
4699 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4700 ta
->action
= action
;
4702 ta
->offset
= offset
;
4703 ta
->removed_bytes
= removed
;
4710 text_action_add_literal (text_action_list
*l
,
4711 text_action_t action
,
4713 const literal_value
*value
,
4718 asection
*sec
= r_reloc_get_section (loc
);
4719 bfd_vma offset
= loc
->target_offset
;
4720 bfd_vma virtual_offset
= loc
->virtual_offset
;
4722 BFD_ASSERT (action
== ta_add_literal
);
4724 for (m_p
= &l
->head
; *m_p
!= NULL
; m_p
= &(*m_p
)->next
)
4726 if ((*m_p
)->offset
> offset
4727 && ((*m_p
)->offset
!= offset
4728 || (*m_p
)->virtual_offset
> virtual_offset
))
4732 /* Create a new record and fill it up. */
4733 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4734 ta
->action
= action
;
4736 ta
->offset
= offset
;
4737 ta
->virtual_offset
= virtual_offset
;
4739 ta
->removed_bytes
= removed
;
4745 /* Find the total offset adjustment for the relaxations specified by
4746 text_actions, beginning from a particular starting action. This is
4747 typically used from offset_with_removed_text to search an entire list of
4748 actions, but it may also be called directly when adjusting adjacent offsets
4749 so that each search may begin where the previous one left off. */
4752 removed_by_actions (text_action
**p_start_action
,
4754 bfd_boolean before_fill
)
4759 r
= *p_start_action
;
4762 if (r
->offset
> offset
)
4765 if (r
->offset
== offset
4766 && (before_fill
|| r
->action
!= ta_fill
|| r
->removed_bytes
>= 0))
4769 removed
+= r
->removed_bytes
;
4774 *p_start_action
= r
;
4780 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
4782 text_action
*r
= action_list
->head
;
4783 return offset
- removed_by_actions (&r
, offset
, FALSE
);
4788 action_list_count (text_action_list
*action_list
)
4790 text_action
*r
= action_list
->head
;
4792 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
4800 /* The find_insn_action routine will only find non-fill actions. */
4802 static text_action
*
4803 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
4806 for (t
= action_list
->head
; t
; t
= t
->next
)
4808 if (t
->offset
== offset
)
4815 case ta_remove_insn
:
4816 case ta_remove_longcall
:
4817 case ta_convert_longcall
:
4818 case ta_narrow_insn
:
4821 case ta_remove_literal
:
4822 case ta_add_literal
:
4835 print_action_list (FILE *fp
, text_action_list
*action_list
)
4839 fprintf (fp
, "Text Action\n");
4840 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
4842 const char *t
= "unknown";
4845 case ta_remove_insn
:
4846 t
= "remove_insn"; break;
4847 case ta_remove_longcall
:
4848 t
= "remove_longcall"; break;
4849 case ta_convert_longcall
:
4850 t
= "convert_longcall"; break;
4851 case ta_narrow_insn
:
4852 t
= "narrow_insn"; break;
4854 t
= "widen_insn"; break;
4859 case ta_remove_literal
:
4860 t
= "remove_literal"; break;
4861 case ta_add_literal
:
4862 t
= "add_literal"; break;
4865 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
4866 r
->sec
->owner
->filename
,
4867 r
->sec
->name
, r
->offset
, t
, r
->removed_bytes
);
4874 /* Lists of literals being coalesced or removed. */
4876 /* In the usual case, the literal identified by "from" is being
4877 coalesced with another literal identified by "to". If the literal is
4878 unused and is being removed altogether, "to.abfd" will be NULL.
4879 The removed_literal entries are kept on a per-section list, sorted
4880 by the "from" offset field. */
4882 typedef struct removed_literal_struct removed_literal
;
4883 typedef struct removed_literal_list_struct removed_literal_list
;
4885 struct removed_literal_struct
4889 removed_literal
*next
;
4892 struct removed_literal_list_struct
4894 removed_literal
*head
;
4895 removed_literal
*tail
;
4899 /* Record that the literal at "from" is being removed. If "to" is not
4900 NULL, the "from" literal is being coalesced with the "to" literal. */
4903 add_removed_literal (removed_literal_list
*removed_list
,
4904 const r_reloc
*from
,
4907 removed_literal
*r
, *new_r
, *next_r
;
4909 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
4911 new_r
->from
= *from
;
4915 new_r
->to
.abfd
= NULL
;
4918 r
= removed_list
->head
;
4921 removed_list
->head
= new_r
;
4922 removed_list
->tail
= new_r
;
4924 /* Special check for common case of append. */
4925 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
4927 removed_list
->tail
->next
= new_r
;
4928 removed_list
->tail
= new_r
;
4932 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
4938 new_r
->next
= next_r
;
4940 removed_list
->tail
= new_r
;
4945 /* Check if the list of removed literals contains an entry for the
4946 given address. Return the entry if found. */
4948 static removed_literal
*
4949 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
4951 removed_literal
*r
= removed_list
->head
;
4952 while (r
&& r
->from
.target_offset
< addr
)
4954 if (r
&& r
->from
.target_offset
== addr
)
4963 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
4966 r
= removed_list
->head
;
4968 fprintf (fp
, "Removed Literals\n");
4969 for (; r
!= NULL
; r
= r
->next
)
4971 print_r_reloc (fp
, &r
->from
);
4972 fprintf (fp
, " => ");
4973 if (r
->to
.abfd
== NULL
)
4974 fprintf (fp
, "REMOVED");
4976 print_r_reloc (fp
, &r
->to
);
4984 /* Per-section data for relaxation. */
4986 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
4988 struct xtensa_relax_info_struct
4990 bfd_boolean is_relaxable_literal_section
;
4991 bfd_boolean is_relaxable_asm_section
;
4992 int visited
; /* Number of times visited. */
4994 source_reloc
*src_relocs
; /* Array[src_count]. */
4996 int src_next
; /* Next src_relocs entry to assign. */
4998 removed_literal_list removed_list
;
4999 text_action_list action_list
;
5001 reloc_bfd_fix
*fix_list
;
5002 reloc_bfd_fix
*fix_array
;
5003 unsigned fix_array_count
;
5005 /* Support for expanding the reloc array that is stored
5006 in the section structure. If the relocations have been
5007 reallocated, the newly allocated relocations will be referenced
5008 here along with the actual size allocated. The relocation
5009 count will always be found in the section structure. */
5010 Elf_Internal_Rela
*allocated_relocs
;
5011 unsigned relocs_count
;
5012 unsigned allocated_relocs_count
;
5015 struct elf_xtensa_section_data
5017 struct bfd_elf_section_data elf
;
5018 xtensa_relax_info relax_info
;
5023 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
5025 if (!sec
->used_by_bfd
)
5027 struct elf_xtensa_section_data
*sdata
;
5028 bfd_size_type amt
= sizeof (*sdata
);
5030 sdata
= bfd_zalloc (abfd
, amt
);
5033 sec
->used_by_bfd
= sdata
;
5036 return _bfd_elf_new_section_hook (abfd
, sec
);
5040 static xtensa_relax_info
*
5041 get_xtensa_relax_info (asection
*sec
)
5043 struct elf_xtensa_section_data
*section_data
;
5045 /* No info available if no section or if it is an output section. */
5046 if (!sec
|| sec
== sec
->output_section
)
5049 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5050 return §ion_data
->relax_info
;
5055 init_xtensa_relax_info (asection
*sec
)
5057 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5059 relax_info
->is_relaxable_literal_section
= FALSE
;
5060 relax_info
->is_relaxable_asm_section
= FALSE
;
5061 relax_info
->visited
= 0;
5063 relax_info
->src_relocs
= NULL
;
5064 relax_info
->src_count
= 0;
5065 relax_info
->src_next
= 0;
5067 relax_info
->removed_list
.head
= NULL
;
5068 relax_info
->removed_list
.tail
= NULL
;
5070 relax_info
->action_list
.head
= NULL
;
5072 relax_info
->fix_list
= NULL
;
5073 relax_info
->fix_array
= NULL
;
5074 relax_info
->fix_array_count
= 0;
5076 relax_info
->allocated_relocs
= NULL
;
5077 relax_info
->relocs_count
= 0;
5078 relax_info
->allocated_relocs_count
= 0;
5082 /* Coalescing literals may require a relocation to refer to a section in
5083 a different input file, but the standard relocation information
5084 cannot express that. Instead, the reloc_bfd_fix structures are used
5085 to "fix" the relocations that refer to sections in other input files.
5086 These structures are kept on per-section lists. The "src_type" field
5087 records the relocation type in case there are multiple relocations on
5088 the same location. FIXME: This is ugly; an alternative might be to
5089 add new symbols with the "owner" field to some other input file. */
5091 struct reloc_bfd_fix_struct
5095 unsigned src_type
; /* Relocation type. */
5097 asection
*target_sec
;
5098 bfd_vma target_offset
;
5099 bfd_boolean translated
;
5101 reloc_bfd_fix
*next
;
5105 static reloc_bfd_fix
*
5106 reloc_bfd_fix_init (asection
*src_sec
,
5109 asection
*target_sec
,
5110 bfd_vma target_offset
,
5111 bfd_boolean translated
)
5115 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
5116 fix
->src_sec
= src_sec
;
5117 fix
->src_offset
= src_offset
;
5118 fix
->src_type
= src_type
;
5119 fix
->target_sec
= target_sec
;
5120 fix
->target_offset
= target_offset
;
5121 fix
->translated
= translated
;
5128 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
5130 xtensa_relax_info
*relax_info
;
5132 relax_info
= get_xtensa_relax_info (src_sec
);
5133 fix
->next
= relax_info
->fix_list
;
5134 relax_info
->fix_list
= fix
;
5139 fix_compare (const void *ap
, const void *bp
)
5141 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
5142 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
5144 if (a
->src_offset
!= b
->src_offset
)
5145 return (a
->src_offset
- b
->src_offset
);
5146 return (a
->src_type
- b
->src_type
);
5151 cache_fix_array (asection
*sec
)
5153 unsigned i
, count
= 0;
5155 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5157 if (relax_info
== NULL
)
5159 if (relax_info
->fix_list
== NULL
)
5162 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
5165 relax_info
->fix_array
=
5166 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
5167 relax_info
->fix_array_count
= count
;
5169 r
= relax_info
->fix_list
;
5170 for (i
= 0; i
< count
; i
++, r
= r
->next
)
5172 relax_info
->fix_array
[count
- 1 - i
] = *r
;
5173 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
5176 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
5177 sizeof (reloc_bfd_fix
), fix_compare
);
5181 static reloc_bfd_fix
*
5182 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
5184 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5188 if (relax_info
== NULL
)
5190 if (relax_info
->fix_list
== NULL
)
5193 if (relax_info
->fix_array
== NULL
)
5194 cache_fix_array (sec
);
5196 key
.src_offset
= offset
;
5197 key
.src_type
= type
;
5198 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
5199 sizeof (reloc_bfd_fix
), fix_compare
);
5204 /* Section caching. */
5206 typedef struct section_cache_struct section_cache_t
;
5208 struct section_cache_struct
5212 bfd_byte
*contents
; /* Cache of the section contents. */
5213 bfd_size_type content_length
;
5215 property_table_entry
*ptbl
; /* Cache of the section property table. */
5218 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5219 unsigned reloc_count
;
5224 init_section_cache (section_cache_t
*sec_cache
)
5226 memset (sec_cache
, 0, sizeof (*sec_cache
));
5231 clear_section_cache (section_cache_t
*sec_cache
)
5235 release_contents (sec_cache
->sec
, sec_cache
->contents
);
5236 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
5237 if (sec_cache
->ptbl
)
5238 free (sec_cache
->ptbl
);
5239 memset (sec_cache
, 0, sizeof (sec_cache
));
5245 section_cache_section (section_cache_t
*sec_cache
,
5247 struct bfd_link_info
*link_info
)
5250 property_table_entry
*prop_table
= NULL
;
5252 bfd_byte
*contents
= NULL
;
5253 Elf_Internal_Rela
*internal_relocs
= NULL
;
5254 bfd_size_type sec_size
;
5258 if (sec
== sec_cache
->sec
)
5262 sec_size
= bfd_get_section_limit (abfd
, sec
);
5264 /* Get the contents. */
5265 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5266 if (contents
== NULL
&& sec_size
!= 0)
5269 /* Get the relocations. */
5270 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5271 link_info
->keep_memory
);
5273 /* Get the entry table. */
5274 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
5275 XTENSA_PROP_SEC_NAME
, FALSE
);
5279 /* Fill in the new section cache. */
5280 clear_section_cache (sec_cache
);
5281 memset (sec_cache
, 0, sizeof (sec_cache
));
5283 sec_cache
->sec
= sec
;
5284 sec_cache
->contents
= contents
;
5285 sec_cache
->content_length
= sec_size
;
5286 sec_cache
->relocs
= internal_relocs
;
5287 sec_cache
->reloc_count
= sec
->reloc_count
;
5288 sec_cache
->pte_count
= ptblsize
;
5289 sec_cache
->ptbl
= prop_table
;
5294 release_contents (sec
, contents
);
5295 release_internal_relocs (sec
, internal_relocs
);
5302 /* Extended basic blocks. */
5304 /* An ebb_struct represents an Extended Basic Block. Within this
5305 range, we guarantee that all instructions are decodable, the
5306 property table entries are contiguous, and no property table
5307 specifies a segment that cannot have instructions moved. This
5308 structure contains caches of the contents, property table and
5309 relocations for the specified section for easy use. The range is
5310 specified by ranges of indices for the byte offset, property table
5311 offsets and relocation offsets. These must be consistent. */
5313 typedef struct ebb_struct ebb_t
;
5319 bfd_byte
*contents
; /* Cache of the section contents. */
5320 bfd_size_type content_length
;
5322 property_table_entry
*ptbl
; /* Cache of the section property table. */
5325 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5326 unsigned reloc_count
;
5328 bfd_vma start_offset
; /* Offset in section. */
5329 unsigned start_ptbl_idx
; /* Offset in the property table. */
5330 unsigned start_reloc_idx
; /* Offset in the relocations. */
5333 unsigned end_ptbl_idx
;
5334 unsigned end_reloc_idx
;
5336 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
5338 /* The unreachable property table at the end of this set of blocks;
5339 NULL if the end is not an unreachable block. */
5340 property_table_entry
*ends_unreachable
;
5344 enum ebb_target_enum
5347 EBB_DESIRE_TGT_ALIGN
,
5348 EBB_REQUIRE_TGT_ALIGN
,
5349 EBB_REQUIRE_LOOP_ALIGN
,
5354 /* proposed_action_struct is similar to the text_action_struct except
5355 that is represents a potential transformation, not one that will
5356 occur. We build a list of these for an extended basic block
5357 and use them to compute the actual actions desired. We must be
5358 careful that the entire set of actual actions we perform do not
5359 break any relocations that would fit if the actions were not
5362 typedef struct proposed_action_struct proposed_action
;
5364 struct proposed_action_struct
5366 enum ebb_target_enum align_type
; /* for the target alignment */
5367 bfd_vma alignment_pow
;
5368 text_action_t action
;
5371 bfd_boolean do_action
; /* If false, then we will not perform the action. */
5375 /* The ebb_constraint_struct keeps a set of proposed actions for an
5376 extended basic block. */
5378 typedef struct ebb_constraint_struct ebb_constraint
;
5380 struct ebb_constraint_struct
5383 bfd_boolean start_movable
;
5385 /* Bytes of extra space at the beginning if movable. */
5386 int start_extra_space
;
5388 enum ebb_target_enum start_align
;
5390 bfd_boolean end_movable
;
5392 /* Bytes of extra space at the end if movable. */
5393 int end_extra_space
;
5395 unsigned action_count
;
5396 unsigned action_allocated
;
5398 /* Array of proposed actions. */
5399 proposed_action
*actions
;
5401 /* Action alignments -- one for each proposed action. */
5402 enum ebb_target_enum
*action_aligns
;
5407 init_ebb_constraint (ebb_constraint
*c
)
5409 memset (c
, 0, sizeof (ebb_constraint
));
5414 free_ebb_constraint (ebb_constraint
*c
)
5422 init_ebb (ebb_t
*ebb
,
5425 bfd_size_type content_length
,
5426 property_table_entry
*prop_table
,
5428 Elf_Internal_Rela
*internal_relocs
,
5429 unsigned reloc_count
)
5431 memset (ebb
, 0, sizeof (ebb_t
));
5433 ebb
->contents
= contents
;
5434 ebb
->content_length
= content_length
;
5435 ebb
->ptbl
= prop_table
;
5436 ebb
->pte_count
= ptblsize
;
5437 ebb
->relocs
= internal_relocs
;
5438 ebb
->reloc_count
= reloc_count
;
5439 ebb
->start_offset
= 0;
5440 ebb
->end_offset
= ebb
->content_length
- 1;
5441 ebb
->start_ptbl_idx
= 0;
5442 ebb
->end_ptbl_idx
= ptblsize
;
5443 ebb
->start_reloc_idx
= 0;
5444 ebb
->end_reloc_idx
= reloc_count
;
5448 /* Extend the ebb to all decodable contiguous sections. The algorithm
5449 for building a basic block around an instruction is to push it
5450 forward until we hit the end of a section, an unreachable block or
5451 a block that cannot be transformed. Then we push it backwards
5452 searching for similar conditions. */
5454 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
5455 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
5456 static bfd_size_type insn_block_decodable_len
5457 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
5460 extend_ebb_bounds (ebb_t
*ebb
)
5462 if (!extend_ebb_bounds_forward (ebb
))
5464 if (!extend_ebb_bounds_backward (ebb
))
5471 extend_ebb_bounds_forward (ebb_t
*ebb
)
5473 property_table_entry
*the_entry
, *new_entry
;
5475 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
5477 /* Stop when (1) we cannot decode an instruction, (2) we are at
5478 the end of the property tables, (3) we hit a non-contiguous property
5479 table entry, (4) we hit a NO_TRANSFORM region. */
5484 bfd_size_type insn_block_len
;
5486 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
5488 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5490 entry_end
- ebb
->end_offset
);
5491 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
5493 (*_bfd_error_handler
)
5494 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5495 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5498 ebb
->end_offset
+= insn_block_len
;
5500 if (ebb
->end_offset
== ebb
->sec
->size
)
5501 ebb
->ends_section
= TRUE
;
5503 /* Update the reloc counter. */
5504 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
5505 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
5508 ebb
->end_reloc_idx
++;
5511 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5514 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5515 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
5516 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
5517 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5520 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
5523 the_entry
= new_entry
;
5524 ebb
->end_ptbl_idx
++;
5527 /* Quick check for an unreachable or end of file just at the end. */
5528 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5530 if (ebb
->end_offset
== ebb
->content_length
)
5531 ebb
->ends_section
= TRUE
;
5535 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5536 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
5537 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
5538 ebb
->ends_unreachable
= new_entry
;
5541 /* Any other ending requires exact alignment. */
5547 extend_ebb_bounds_backward (ebb_t
*ebb
)
5549 property_table_entry
*the_entry
, *new_entry
;
5551 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
5553 /* Stop when (1) we cannot decode the instructions in the current entry.
5554 (2) we are at the beginning of the property tables, (3) we hit a
5555 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5559 bfd_vma block_begin
;
5560 bfd_size_type insn_block_len
;
5562 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
5564 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5566 ebb
->start_offset
- block_begin
);
5567 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
5569 (*_bfd_error_handler
)
5570 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5571 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5574 ebb
->start_offset
-= insn_block_len
;
5576 /* Update the reloc counter. */
5577 while (ebb
->start_reloc_idx
> 0
5578 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
5579 >= ebb
->start_offset
))
5581 ebb
->start_reloc_idx
--;
5584 if (ebb
->start_ptbl_idx
== 0)
5587 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
5588 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
5589 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
5590 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5592 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
5595 the_entry
= new_entry
;
5596 ebb
->start_ptbl_idx
--;
5602 static bfd_size_type
5603 insn_block_decodable_len (bfd_byte
*contents
,
5604 bfd_size_type content_len
,
5605 bfd_vma block_offset
,
5606 bfd_size_type block_len
)
5608 bfd_vma offset
= block_offset
;
5610 while (offset
< block_offset
+ block_len
)
5612 bfd_size_type insn_len
= 0;
5614 insn_len
= insn_decode_len (contents
, content_len
, offset
);
5616 return (offset
- block_offset
);
5619 return (offset
- block_offset
);
5624 ebb_propose_action (ebb_constraint
*c
,
5625 enum ebb_target_enum align_type
,
5626 bfd_vma alignment_pow
,
5627 text_action_t action
,
5630 bfd_boolean do_action
)
5632 proposed_action
*act
;
5634 if (c
->action_allocated
<= c
->action_count
)
5636 unsigned new_allocated
, i
;
5637 proposed_action
*new_actions
;
5639 new_allocated
= (c
->action_count
+ 2) * 2;
5640 new_actions
= (proposed_action
*)
5641 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
5643 for (i
= 0; i
< c
->action_count
; i
++)
5644 new_actions
[i
] = c
->actions
[i
];
5647 c
->actions
= new_actions
;
5648 c
->action_allocated
= new_allocated
;
5651 act
= &c
->actions
[c
->action_count
];
5652 act
->align_type
= align_type
;
5653 act
->alignment_pow
= alignment_pow
;
5654 act
->action
= action
;
5655 act
->offset
= offset
;
5656 act
->removed_bytes
= removed_bytes
;
5657 act
->do_action
= do_action
;
5663 /* Access to internal relocations, section contents and symbols. */
5665 /* During relaxation, we need to modify relocations, section contents,
5666 and symbol definitions, and we need to keep the original values from
5667 being reloaded from the input files, i.e., we need to "pin" the
5668 modified values in memory. We also want to continue to observe the
5669 setting of the "keep-memory" flag. The following functions wrap the
5670 standard BFD functions to take care of this for us. */
5672 static Elf_Internal_Rela
*
5673 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5675 Elf_Internal_Rela
*internal_relocs
;
5677 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5680 internal_relocs
= elf_section_data (sec
)->relocs
;
5681 if (internal_relocs
== NULL
)
5682 internal_relocs
= (_bfd_elf_link_read_relocs
5683 (abfd
, sec
, NULL
, NULL
, keep_memory
));
5684 return internal_relocs
;
5689 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5691 elf_section_data (sec
)->relocs
= internal_relocs
;
5696 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5699 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5700 free (internal_relocs
);
5705 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5708 bfd_size_type sec_size
;
5710 sec_size
= bfd_get_section_limit (abfd
, sec
);
5711 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5713 if (contents
== NULL
&& sec_size
!= 0)
5715 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5722 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5729 pin_contents (asection
*sec
, bfd_byte
*contents
)
5731 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5736 release_contents (asection
*sec
, bfd_byte
*contents
)
5738 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5743 static Elf_Internal_Sym
*
5744 retrieve_local_syms (bfd
*input_bfd
)
5746 Elf_Internal_Shdr
*symtab_hdr
;
5747 Elf_Internal_Sym
*isymbuf
;
5750 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5751 locsymcount
= symtab_hdr
->sh_info
;
5753 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5754 if (isymbuf
== NULL
&& locsymcount
!= 0)
5755 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
5758 /* Save the symbols for this input file so they won't be read again. */
5759 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
5760 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
5766 /* Code for link-time relaxation. */
5768 /* Initialization for relaxation: */
5769 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
5770 static bfd_boolean find_relaxable_sections
5771 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
5772 static bfd_boolean collect_source_relocs
5773 (bfd
*, asection
*, struct bfd_link_info
*);
5774 static bfd_boolean is_resolvable_asm_expansion
5775 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
5777 static Elf_Internal_Rela
*find_associated_l32r_irel
5778 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
5779 static bfd_boolean compute_text_actions
5780 (bfd
*, asection
*, struct bfd_link_info
*);
5781 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
5782 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
5783 static bfd_boolean check_section_ebb_pcrels_fit
5784 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, const ebb_constraint
*,
5785 const xtensa_opcode
*);
5786 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
5787 static void text_action_add_proposed
5788 (text_action_list
*, const ebb_constraint
*, asection
*);
5789 static int compute_fill_extra_space (property_table_entry
*);
5792 static bfd_boolean compute_removed_literals
5793 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
5794 static Elf_Internal_Rela
*get_irel_at_offset
5795 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
5796 static bfd_boolean is_removable_literal
5797 (const source_reloc
*, int, const source_reloc
*, int, asection
*,
5798 property_table_entry
*, int);
5799 static bfd_boolean remove_dead_literal
5800 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
5801 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
5802 static bfd_boolean identify_literal_placement
5803 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
5804 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
5805 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
5807 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
5808 static bfd_boolean coalesce_shared_literal
5809 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
5810 static bfd_boolean move_shared_literal
5811 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
5812 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
5815 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
5816 static bfd_boolean
translate_section_fixes (asection
*);
5817 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
5818 static asection
*translate_reloc (const r_reloc
*, r_reloc
*, asection
*);
5819 static void shrink_dynamic_reloc_sections
5820 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
5821 static bfd_boolean move_literal
5822 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
5823 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
5824 static bfd_boolean relax_property_section
5825 (bfd
*, asection
*, struct bfd_link_info
*);
5828 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
5832 elf_xtensa_relax_section (bfd
*abfd
,
5834 struct bfd_link_info
*link_info
,
5837 static value_map_hash_table
*values
= NULL
;
5838 static bfd_boolean relocations_analyzed
= FALSE
;
5839 xtensa_relax_info
*relax_info
;
5841 if (!relocations_analyzed
)
5843 /* Do some overall initialization for relaxation. */
5844 values
= value_map_hash_table_init ();
5847 relaxing_section
= TRUE
;
5848 if (!analyze_relocations (link_info
))
5850 relocations_analyzed
= TRUE
;
5854 /* Don't mess with linker-created sections. */
5855 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5858 relax_info
= get_xtensa_relax_info (sec
);
5859 BFD_ASSERT (relax_info
!= NULL
);
5861 switch (relax_info
->visited
)
5864 /* Note: It would be nice to fold this pass into
5865 analyze_relocations, but it is important for this step that the
5866 sections be examined in link order. */
5867 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
5874 value_map_hash_table_delete (values
);
5876 if (!relax_section (abfd
, sec
, link_info
))
5882 if (!relax_section_symbols (abfd
, sec
))
5887 relax_info
->visited
++;
5892 /* Initialization for relaxation. */
5894 /* This function is called once at the start of relaxation. It scans
5895 all the input sections and marks the ones that are relaxable (i.e.,
5896 literal sections with L32R relocations against them), and then
5897 collects source_reloc information for all the relocations against
5898 those relaxable sections. During this process, it also detects
5899 longcalls, i.e., calls relaxed by the assembler into indirect
5900 calls, that can be optimized back into direct calls. Within each
5901 extended basic block (ebb) containing an optimized longcall, it
5902 computes a set of "text actions" that can be performed to remove
5903 the L32R associated with the longcall while optionally preserving
5904 branch target alignments. */
5907 analyze_relocations (struct bfd_link_info
*link_info
)
5911 bfd_boolean is_relaxable
= FALSE
;
5913 /* Initialize the per-section relaxation info. */
5914 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5915 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5917 init_xtensa_relax_info (sec
);
5920 /* Mark relaxable sections (and count relocations against each one). */
5921 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5922 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5924 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
5928 /* Bail out if there are no relaxable sections. */
5932 /* Allocate space for source_relocs. */
5933 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5934 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5936 xtensa_relax_info
*relax_info
;
5938 relax_info
= get_xtensa_relax_info (sec
);
5939 if (relax_info
->is_relaxable_literal_section
5940 || relax_info
->is_relaxable_asm_section
)
5942 relax_info
->src_relocs
= (source_reloc
*)
5943 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
5946 relax_info
->src_count
= 0;
5949 /* Collect info on relocations against each relaxable section. */
5950 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5951 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5953 if (!collect_source_relocs (abfd
, sec
, link_info
))
5957 /* Compute the text actions. */
5958 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5959 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5961 if (!compute_text_actions (abfd
, sec
, link_info
))
5969 /* Find all the sections that might be relaxed. The motivation for
5970 this pass is that collect_source_relocs() needs to record _all_ the
5971 relocations that target each relaxable section. That is expensive
5972 and unnecessary unless the target section is actually going to be
5973 relaxed. This pass identifies all such sections by checking if
5974 they have L32Rs pointing to them. In the process, the total number
5975 of relocations targeting each section is also counted so that we
5976 know how much space to allocate for source_relocs against each
5977 relaxable literal section. */
5980 find_relaxable_sections (bfd
*abfd
,
5982 struct bfd_link_info
*link_info
,
5983 bfd_boolean
*is_relaxable_p
)
5985 Elf_Internal_Rela
*internal_relocs
;
5987 bfd_boolean ok
= TRUE
;
5989 xtensa_relax_info
*source_relax_info
;
5990 bfd_boolean is_l32r_reloc
;
5992 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5993 link_info
->keep_memory
);
5994 if (internal_relocs
== NULL
)
5997 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5998 if (contents
== NULL
&& sec
->size
!= 0)
6004 source_relax_info
= get_xtensa_relax_info (sec
);
6005 for (i
= 0; i
< sec
->reloc_count
; i
++)
6007 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6009 asection
*target_sec
;
6010 xtensa_relax_info
*target_relax_info
;
6012 /* If this section has not already been marked as "relaxable", and
6013 if it contains any ASM_EXPAND relocations (marking expanded
6014 longcalls) that can be optimized into direct calls, then mark
6015 the section as "relaxable". */
6016 if (source_relax_info
6017 && !source_relax_info
->is_relaxable_asm_section
6018 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
6020 bfd_boolean is_reachable
= FALSE
;
6021 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
6022 link_info
, &is_reachable
)
6025 source_relax_info
->is_relaxable_asm_section
= TRUE
;
6026 *is_relaxable_p
= TRUE
;
6030 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6031 bfd_get_section_limit (abfd
, sec
));
6033 target_sec
= r_reloc_get_section (&r_rel
);
6034 target_relax_info
= get_xtensa_relax_info (target_sec
);
6035 if (!target_relax_info
)
6038 /* Count PC-relative operand relocations against the target section.
6039 Note: The conditions tested here must match the conditions under
6040 which init_source_reloc is called in collect_source_relocs(). */
6041 is_l32r_reloc
= FALSE
;
6042 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6044 xtensa_opcode opcode
=
6045 get_relocation_opcode (abfd
, sec
, contents
, irel
);
6046 if (opcode
!= XTENSA_UNDEFINED
)
6048 is_l32r_reloc
= (opcode
== get_l32r_opcode ());
6049 if (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
6051 target_relax_info
->src_count
++;
6055 if (is_l32r_reloc
&& r_reloc_is_defined (&r_rel
))
6057 /* Mark the target section as relaxable. */
6058 target_relax_info
->is_relaxable_literal_section
= TRUE
;
6059 *is_relaxable_p
= TRUE
;
6064 release_contents (sec
, contents
);
6065 release_internal_relocs (sec
, internal_relocs
);
6070 /* Record _all_ the relocations that point to relaxable sections, and
6071 get rid of ASM_EXPAND relocs by either converting them to
6072 ASM_SIMPLIFY or by removing them. */
6075 collect_source_relocs (bfd
*abfd
,
6077 struct bfd_link_info
*link_info
)
6079 Elf_Internal_Rela
*internal_relocs
;
6081 bfd_boolean ok
= TRUE
;
6083 bfd_size_type sec_size
;
6085 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6086 link_info
->keep_memory
);
6087 if (internal_relocs
== NULL
)
6090 sec_size
= bfd_get_section_limit (abfd
, sec
);
6091 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6092 if (contents
== NULL
&& sec_size
!= 0)
6098 /* Record relocations against relaxable literal sections. */
6099 for (i
= 0; i
< sec
->reloc_count
; i
++)
6101 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6103 asection
*target_sec
;
6104 xtensa_relax_info
*target_relax_info
;
6106 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6108 target_sec
= r_reloc_get_section (&r_rel
);
6109 target_relax_info
= get_xtensa_relax_info (target_sec
);
6111 if (target_relax_info
6112 && (target_relax_info
->is_relaxable_literal_section
6113 || target_relax_info
->is_relaxable_asm_section
))
6115 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
6117 bfd_boolean is_abs_literal
= FALSE
;
6119 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6121 /* None of the current alternate relocs are PC-relative,
6122 and only PC-relative relocs matter here. However, we
6123 still need to record the opcode for literal
6125 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6126 if (opcode
== get_l32r_opcode ())
6128 is_abs_literal
= TRUE
;
6132 opcode
= XTENSA_UNDEFINED
;
6134 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6136 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6137 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6140 if (opcode
!= XTENSA_UNDEFINED
)
6142 int src_next
= target_relax_info
->src_next
++;
6143 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
6145 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
6151 /* Now get rid of ASM_EXPAND relocations. At this point, the
6152 src_relocs array for the target literal section may still be
6153 incomplete, but it must at least contain the entries for the L32R
6154 relocations associated with ASM_EXPANDs because they were just
6155 added in the preceding loop over the relocations. */
6157 for (i
= 0; i
< sec
->reloc_count
; i
++)
6159 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6160 bfd_boolean is_reachable
;
6162 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
6168 Elf_Internal_Rela
*l32r_irel
;
6170 asection
*target_sec
;
6171 xtensa_relax_info
*target_relax_info
;
6173 /* Mark the source_reloc for the L32R so that it will be
6174 removed in compute_removed_literals(), along with the
6175 associated literal. */
6176 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
6177 irel
, internal_relocs
);
6178 if (l32r_irel
== NULL
)
6181 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
6183 target_sec
= r_reloc_get_section (&r_rel
);
6184 target_relax_info
= get_xtensa_relax_info (target_sec
);
6186 if (target_relax_info
6187 && (target_relax_info
->is_relaxable_literal_section
6188 || target_relax_info
->is_relaxable_asm_section
))
6190 source_reloc
*s_reloc
;
6192 /* Search the source_relocs for the entry corresponding to
6193 the l32r_irel. Note: The src_relocs array is not yet
6194 sorted, but it wouldn't matter anyway because we're
6195 searching by source offset instead of target offset. */
6196 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
6197 target_relax_info
->src_next
,
6199 BFD_ASSERT (s_reloc
);
6200 s_reloc
->is_null
= TRUE
;
6203 /* Convert this reloc to ASM_SIMPLIFY. */
6204 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
6205 R_XTENSA_ASM_SIMPLIFY
);
6206 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6208 pin_internal_relocs (sec
, internal_relocs
);
6212 /* It is resolvable but doesn't reach. We resolve now
6213 by eliminating the relocation -- the call will remain
6214 expanded into L32R/CALLX. */
6215 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6216 pin_internal_relocs (sec
, internal_relocs
);
6221 release_contents (sec
, contents
);
6222 release_internal_relocs (sec
, internal_relocs
);
6227 /* Return TRUE if the asm expansion can be resolved. Generally it can
6228 be resolved on a final link or when a partial link locates it in the
6229 same section as the target. Set "is_reachable" flag if the target of
6230 the call is within the range of a direct call, given the current VMA
6231 for this section and the target section. */
6234 is_resolvable_asm_expansion (bfd
*abfd
,
6237 Elf_Internal_Rela
*irel
,
6238 struct bfd_link_info
*link_info
,
6239 bfd_boolean
*is_reachable_p
)
6241 asection
*target_sec
;
6242 bfd_vma target_offset
;
6244 xtensa_opcode opcode
, direct_call_opcode
;
6245 bfd_vma self_address
;
6246 bfd_vma dest_address
;
6247 bfd_boolean uses_l32r
;
6248 bfd_size_type sec_size
;
6250 *is_reachable_p
= FALSE
;
6252 if (contents
== NULL
)
6255 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
6258 sec_size
= bfd_get_section_limit (abfd
, sec
);
6259 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
6260 sec_size
- irel
->r_offset
, &uses_l32r
);
6261 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6265 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
6266 if (direct_call_opcode
== XTENSA_UNDEFINED
)
6269 /* Check and see that the target resolves. */
6270 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6271 if (!r_reloc_is_defined (&r_rel
))
6274 target_sec
= r_reloc_get_section (&r_rel
);
6275 target_offset
= r_rel
.target_offset
;
6277 /* If the target is in a shared library, then it doesn't reach. This
6278 isn't supposed to come up because the compiler should never generate
6279 non-PIC calls on systems that use shared libraries, but the linker
6280 shouldn't crash regardless. */
6281 if (!target_sec
->output_section
)
6284 /* For relocatable sections, we can only simplify when the output
6285 section of the target is the same as the output section of the
6287 if (link_info
->relocatable
6288 && (target_sec
->output_section
!= sec
->output_section
6289 || is_reloc_sym_weak (abfd
, irel
)))
6292 self_address
= (sec
->output_section
->vma
6293 + sec
->output_offset
+ irel
->r_offset
+ 3);
6294 dest_address
= (target_sec
->output_section
->vma
6295 + target_sec
->output_offset
+ target_offset
);
6297 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
6298 self_address
, dest_address
);
6300 if ((self_address
>> CALL_SEGMENT_BITS
) !=
6301 (dest_address
>> CALL_SEGMENT_BITS
))
6308 static Elf_Internal_Rela
*
6309 find_associated_l32r_irel (bfd
*abfd
,
6312 Elf_Internal_Rela
*other_irel
,
6313 Elf_Internal_Rela
*internal_relocs
)
6317 for (i
= 0; i
< sec
->reloc_count
; i
++)
6319 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6321 if (irel
== other_irel
)
6323 if (irel
->r_offset
!= other_irel
->r_offset
)
6325 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
6333 static xtensa_opcode
*
6334 build_reloc_opcodes (bfd
*abfd
,
6337 Elf_Internal_Rela
*internal_relocs
)
6340 xtensa_opcode
*reloc_opcodes
=
6341 (xtensa_opcode
*) bfd_malloc (sizeof (xtensa_opcode
) * sec
->reloc_count
);
6342 for (i
= 0; i
< sec
->reloc_count
; i
++)
6344 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6345 reloc_opcodes
[i
] = get_relocation_opcode (abfd
, sec
, contents
, irel
);
6347 return reloc_opcodes
;
6351 /* The compute_text_actions function will build a list of potential
6352 transformation actions for code in the extended basic block of each
6353 longcall that is optimized to a direct call. From this list we
6354 generate a set of actions to actually perform that optimizes for
6355 space and, if not using size_opt, maintains branch target
6358 These actions to be performed are placed on a per-section list.
6359 The actual changes are performed by relax_section() in the second
6363 compute_text_actions (bfd
*abfd
,
6365 struct bfd_link_info
*link_info
)
6367 xtensa_opcode
*reloc_opcodes
= NULL
;
6368 xtensa_relax_info
*relax_info
;
6370 Elf_Internal_Rela
*internal_relocs
;
6371 bfd_boolean ok
= TRUE
;
6373 property_table_entry
*prop_table
= 0;
6375 bfd_size_type sec_size
;
6377 relax_info
= get_xtensa_relax_info (sec
);
6378 BFD_ASSERT (relax_info
);
6379 BFD_ASSERT (relax_info
->src_next
== relax_info
->src_count
);
6381 /* Do nothing if the section contains no optimized longcalls. */
6382 if (!relax_info
->is_relaxable_asm_section
)
6385 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6386 link_info
->keep_memory
);
6388 if (internal_relocs
)
6389 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
6390 internal_reloc_compare
);
6392 sec_size
= bfd_get_section_limit (abfd
, sec
);
6393 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6394 if (contents
== NULL
&& sec_size
!= 0)
6400 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6401 XTENSA_PROP_SEC_NAME
, FALSE
);
6408 for (i
= 0; i
< sec
->reloc_count
; i
++)
6410 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6412 property_table_entry
*the_entry
;
6415 ebb_constraint ebb_table
;
6416 bfd_size_type simplify_size
;
6418 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
6420 r_offset
= irel
->r_offset
;
6422 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
6423 if (simplify_size
== 0)
6425 (*_bfd_error_handler
)
6426 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6427 sec
->owner
, sec
, r_offset
);
6431 /* If the instruction table is not around, then don't do this
6433 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
6434 sec
->vma
+ irel
->r_offset
);
6435 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
6437 text_action_add (&relax_info
->action_list
,
6438 ta_convert_longcall
, sec
, r_offset
,
6443 /* If the next longcall happens to be at the same address as an
6444 unreachable section of size 0, then skip forward. */
6445 ptbl_idx
= the_entry
- prop_table
;
6446 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
6447 && the_entry
->size
== 0
6448 && ptbl_idx
+ 1 < ptblsize
6449 && (prop_table
[ptbl_idx
+ 1].address
6450 == prop_table
[ptbl_idx
].address
))
6456 if (the_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
)
6457 /* NO_REORDER is OK */
6460 init_ebb_constraint (&ebb_table
);
6461 ebb
= &ebb_table
.ebb
;
6462 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
6463 internal_relocs
, sec
->reloc_count
);
6464 ebb
->start_offset
= r_offset
+ simplify_size
;
6465 ebb
->end_offset
= r_offset
+ simplify_size
;
6466 ebb
->start_ptbl_idx
= ptbl_idx
;
6467 ebb
->end_ptbl_idx
= ptbl_idx
;
6468 ebb
->start_reloc_idx
= i
;
6469 ebb
->end_reloc_idx
= i
;
6471 /* Precompute the opcode for each relocation. */
6472 if (reloc_opcodes
== NULL
)
6473 reloc_opcodes
= build_reloc_opcodes (abfd
, sec
, contents
,
6476 if (!extend_ebb_bounds (ebb
)
6477 || !compute_ebb_proposed_actions (&ebb_table
)
6478 || !compute_ebb_actions (&ebb_table
)
6479 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
6480 internal_relocs
, &ebb_table
,
6482 || !check_section_ebb_reduces (&ebb_table
))
6484 /* If anything goes wrong or we get unlucky and something does
6485 not fit, with our plan because of expansion between
6486 critical branches, just convert to a NOP. */
6488 text_action_add (&relax_info
->action_list
,
6489 ta_convert_longcall
, sec
, r_offset
, 0);
6490 i
= ebb_table
.ebb
.end_reloc_idx
;
6491 free_ebb_constraint (&ebb_table
);
6495 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
6497 /* Update the index so we do not go looking at the relocations
6498 we have already processed. */
6499 i
= ebb_table
.ebb
.end_reloc_idx
;
6500 free_ebb_constraint (&ebb_table
);
6504 if (relax_info
->action_list
.head
)
6505 print_action_list (stderr
, &relax_info
->action_list
);
6509 release_contents (sec
, contents
);
6510 release_internal_relocs (sec
, internal_relocs
);
6514 free (reloc_opcodes
);
6520 /* Do not widen an instruction if it is preceeded by a
6521 loop opcode. It might cause misalignment. */
6524 prev_instr_is_a_loop (bfd_byte
*contents
,
6525 bfd_size_type content_length
,
6526 bfd_size_type offset
)
6528 xtensa_opcode prev_opcode
;
6532 prev_opcode
= insn_decode_opcode (contents
, content_length
, offset
-3, 0);
6533 return (xtensa_opcode_is_loop (xtensa_default_isa
, prev_opcode
) == 1);
6537 /* Find all of the possible actions for an extended basic block. */
6540 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
6542 const ebb_t
*ebb
= &ebb_table
->ebb
;
6543 unsigned rel_idx
= ebb
->start_reloc_idx
;
6544 property_table_entry
*entry
, *start_entry
, *end_entry
;
6546 xtensa_isa isa
= xtensa_default_isa
;
6548 static xtensa_insnbuf insnbuf
= NULL
;
6549 static xtensa_insnbuf slotbuf
= NULL
;
6551 if (insnbuf
== NULL
)
6553 insnbuf
= xtensa_insnbuf_alloc (isa
);
6554 slotbuf
= xtensa_insnbuf_alloc (isa
);
6557 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6558 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6560 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
6562 bfd_vma start_offset
, end_offset
;
6563 bfd_size_type insn_len
;
6565 start_offset
= entry
->address
- ebb
->sec
->vma
;
6566 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
6568 if (entry
== start_entry
)
6569 start_offset
= ebb
->start_offset
;
6570 if (entry
== end_entry
)
6571 end_offset
= ebb
->end_offset
;
6572 offset
= start_offset
;
6574 if (offset
== entry
->address
- ebb
->sec
->vma
6575 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
6577 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
6578 BFD_ASSERT (offset
!= end_offset
);
6579 if (offset
== end_offset
)
6582 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6587 if (check_branch_target_aligned_address (offset
, insn_len
))
6588 align_type
= EBB_REQUIRE_TGT_ALIGN
;
6590 ebb_propose_action (ebb_table
, align_type
, 0,
6591 ta_none
, offset
, 0, TRUE
);
6594 while (offset
!= end_offset
)
6596 Elf_Internal_Rela
*irel
;
6597 xtensa_opcode opcode
;
6599 while (rel_idx
< ebb
->end_reloc_idx
6600 && (ebb
->relocs
[rel_idx
].r_offset
< offset
6601 || (ebb
->relocs
[rel_idx
].r_offset
== offset
6602 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
6603 != R_XTENSA_ASM_SIMPLIFY
))))
6606 /* Check for longcall. */
6607 irel
= &ebb
->relocs
[rel_idx
];
6608 if (irel
->r_offset
== offset
6609 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
6611 bfd_size_type simplify_size
;
6613 simplify_size
= get_asm_simplify_size (ebb
->contents
,
6614 ebb
->content_length
,
6616 if (simplify_size
== 0)
6619 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6620 ta_convert_longcall
, offset
, 0, TRUE
);
6622 offset
+= simplify_size
;
6626 if (offset
+ MIN_INSN_LENGTH
> ebb
->content_length
)
6628 xtensa_insnbuf_from_chars (isa
, insnbuf
, &ebb
->contents
[offset
],
6629 ebb
->content_length
- offset
);
6630 fmt
= xtensa_format_decode (isa
, insnbuf
);
6631 if (fmt
== XTENSA_UNDEFINED
)
6633 insn_len
= xtensa_format_length (isa
, fmt
);
6634 if (insn_len
== (bfd_size_type
) XTENSA_UNDEFINED
)
6637 if (xtensa_format_num_slots (isa
, fmt
) != 1)
6643 xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
);
6644 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
6645 if (opcode
== XTENSA_UNDEFINED
)
6648 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
6649 && (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
6650 && can_narrow_instruction (slotbuf
, fmt
, opcode
) != 0)
6652 /* Add an instruction narrow action. */
6653 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6654 ta_narrow_insn
, offset
, 0, FALSE
);
6656 else if ((entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
6657 && can_widen_instruction (slotbuf
, fmt
, opcode
) != 0
6658 && ! prev_instr_is_a_loop (ebb
->contents
,
6659 ebb
->content_length
, offset
))
6661 /* Add an instruction widen action. */
6662 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6663 ta_widen_insn
, offset
, 0, FALSE
);
6665 else if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) == 1)
6667 /* Check for branch targets. */
6668 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
6669 ta_none
, offset
, 0, TRUE
);
6676 if (ebb
->ends_unreachable
)
6678 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6679 ta_fill
, ebb
->end_offset
, 0, TRUE
);
6685 (*_bfd_error_handler
)
6686 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6687 ebb
->sec
->owner
, ebb
->sec
, offset
);
6692 /* After all of the information has collected about the
6693 transformations possible in an EBB, compute the appropriate actions
6694 here in compute_ebb_actions. We still must check later to make
6695 sure that the actions do not break any relocations. The algorithm
6696 used here is pretty greedy. Basically, it removes as many no-ops
6697 as possible so that the end of the EBB has the same alignment
6698 characteristics as the original. First, it uses narrowing, then
6699 fill space at the end of the EBB, and finally widenings. If that
6700 does not work, it tries again with one fewer no-op removed. The
6701 optimization will only be performed if all of the branch targets
6702 that were aligned before transformation are also aligned after the
6705 When the size_opt flag is set, ignore the branch target alignments,
6706 narrow all wide instructions, and remove all no-ops unless the end
6707 of the EBB prevents it. */
6710 compute_ebb_actions (ebb_constraint
*ebb_table
)
6714 int removed_bytes
= 0;
6715 ebb_t
*ebb
= &ebb_table
->ebb
;
6716 unsigned seg_idx_start
= 0;
6717 unsigned seg_idx_end
= 0;
6719 /* We perform this like the assembler relaxation algorithm: Start by
6720 assuming all instructions are narrow and all no-ops removed; then
6723 /* For each segment of this that has a solid constraint, check to
6724 see if there are any combinations that will keep the constraint.
6726 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
6728 bfd_boolean requires_text_end_align
= FALSE
;
6729 unsigned longcall_count
= 0;
6730 unsigned longcall_convert_count
= 0;
6731 unsigned narrowable_count
= 0;
6732 unsigned narrowable_convert_count
= 0;
6733 unsigned widenable_count
= 0;
6734 unsigned widenable_convert_count
= 0;
6736 proposed_action
*action
= NULL
;
6737 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
6739 seg_idx_start
= seg_idx_end
;
6741 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
6743 action
= &ebb_table
->actions
[i
];
6744 if (action
->action
== ta_convert_longcall
)
6746 if (action
->action
== ta_narrow_insn
)
6748 if (action
->action
== ta_widen_insn
)
6750 if (action
->action
== ta_fill
)
6752 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6754 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
6755 && !elf32xtensa_size_opt
)
6760 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
6761 requires_text_end_align
= TRUE
;
6763 if (elf32xtensa_size_opt
&& !requires_text_end_align
6764 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
6765 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
6767 longcall_convert_count
= longcall_count
;
6768 narrowable_convert_count
= narrowable_count
;
6769 widenable_convert_count
= 0;
6773 /* There is a constraint. Convert the max number of longcalls. */
6774 narrowable_convert_count
= 0;
6775 longcall_convert_count
= 0;
6776 widenable_convert_count
= 0;
6778 for (j
= 0; j
< longcall_count
; j
++)
6780 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
6781 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
6782 unsigned desire_widen
= removed
;
6783 if (desire_narrow
<= narrowable_count
)
6785 narrowable_convert_count
= desire_narrow
;
6786 narrowable_convert_count
+=
6787 (align
* ((narrowable_count
- narrowable_convert_count
)
6789 longcall_convert_count
= (longcall_count
- j
);
6790 widenable_convert_count
= 0;
6793 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
6795 narrowable_convert_count
= 0;
6796 longcall_convert_count
= longcall_count
- j
;
6797 widenable_convert_count
= desire_widen
;
6803 /* Now the number of conversions are saved. Do them. */
6804 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
6806 action
= &ebb_table
->actions
[i
];
6807 switch (action
->action
)
6809 case ta_convert_longcall
:
6810 if (longcall_convert_count
!= 0)
6812 action
->action
= ta_remove_longcall
;
6813 action
->do_action
= TRUE
;
6814 action
->removed_bytes
+= 3;
6815 longcall_convert_count
--;
6818 case ta_narrow_insn
:
6819 if (narrowable_convert_count
!= 0)
6821 action
->do_action
= TRUE
;
6822 action
->removed_bytes
+= 1;
6823 narrowable_convert_count
--;
6827 if (widenable_convert_count
!= 0)
6829 action
->do_action
= TRUE
;
6830 action
->removed_bytes
-= 1;
6831 widenable_convert_count
--;
6840 /* Now we move on to some local opts. Try to remove each of the
6841 remaining longcalls. */
6843 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
6846 for (i
= 0; i
< ebb_table
->action_count
; i
++)
6848 int old_removed_bytes
= removed_bytes
;
6849 proposed_action
*action
= &ebb_table
->actions
[i
];
6851 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
6853 bfd_boolean bad_alignment
= FALSE
;
6855 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
6857 proposed_action
*new_action
= &ebb_table
->actions
[j
];
6858 bfd_vma offset
= new_action
->offset
;
6859 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
6861 if (!check_branch_target_aligned
6862 (ebb_table
->ebb
.contents
,
6863 ebb_table
->ebb
.content_length
,
6864 offset
, offset
- removed_bytes
))
6866 bad_alignment
= TRUE
;
6870 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6872 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
6873 ebb_table
->ebb
.content_length
,
6875 offset
- removed_bytes
))
6877 bad_alignment
= TRUE
;
6881 if (new_action
->action
== ta_narrow_insn
6882 && !new_action
->do_action
6883 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6885 /* Narrow an instruction and we are done. */
6886 new_action
->do_action
= TRUE
;
6887 new_action
->removed_bytes
+= 1;
6888 bad_alignment
= FALSE
;
6891 if (new_action
->action
== ta_widen_insn
6892 && new_action
->do_action
6893 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6895 /* Narrow an instruction and we are done. */
6896 new_action
->do_action
= FALSE
;
6897 new_action
->removed_bytes
+= 1;
6898 bad_alignment
= FALSE
;
6901 if (new_action
->do_action
)
6902 removed_bytes
+= new_action
->removed_bytes
;
6906 action
->removed_bytes
+= 3;
6907 action
->action
= ta_remove_longcall
;
6908 action
->do_action
= TRUE
;
6911 removed_bytes
= old_removed_bytes
;
6912 if (action
->do_action
)
6913 removed_bytes
+= action
->removed_bytes
;
6918 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
6920 proposed_action
*action
= &ebb_table
->actions
[i
];
6921 if (action
->do_action
)
6922 removed_bytes
+= action
->removed_bytes
;
6925 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
6926 && ebb
->ends_unreachable
)
6928 proposed_action
*action
;
6932 BFD_ASSERT (ebb_table
->action_count
!= 0);
6933 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
6934 BFD_ASSERT (action
->action
== ta_fill
);
6935 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
6937 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
6938 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
6939 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
6941 action
->removed_bytes
= extra_space
- br
;
6947 /* The xlate_map is a sorted array of address mappings designed to
6948 answer the offset_with_removed_text() query with a binary search instead
6949 of a linear search through the section's action_list. */
6951 typedef struct xlate_map_entry xlate_map_entry_t
;
6952 typedef struct xlate_map xlate_map_t
;
6954 struct xlate_map_entry
6956 unsigned orig_address
;
6957 unsigned new_address
;
6963 unsigned entry_count
;
6964 xlate_map_entry_t
*entry
;
6969 xlate_compare (const void *a_v
, const void *b_v
)
6971 const xlate_map_entry_t
*a
= (const xlate_map_entry_t
*) a_v
;
6972 const xlate_map_entry_t
*b
= (const xlate_map_entry_t
*) b_v
;
6973 if (a
->orig_address
< b
->orig_address
)
6975 if (a
->orig_address
> (b
->orig_address
+ b
->size
- 1))
6982 xlate_offset_with_removed_text (const xlate_map_t
*map
,
6983 text_action_list
*action_list
,
6986 xlate_map_entry_t tmp
;
6988 xlate_map_entry_t
*e
;
6991 return offset_with_removed_text (action_list
, offset
);
6993 if (map
->entry_count
== 0)
6996 tmp
.orig_address
= offset
;
6997 tmp
.new_address
= offset
;
7000 r
= bsearch (&offset
, map
->entry
, map
->entry_count
,
7001 sizeof (xlate_map_entry_t
), &xlate_compare
);
7002 e
= (xlate_map_entry_t
*) r
;
7004 BFD_ASSERT (e
!= NULL
);
7007 return e
->new_address
- e
->orig_address
+ offset
;
7011 /* Build a binary searchable offset translation map from a section's
7014 static xlate_map_t
*
7015 build_xlate_map (asection
*sec
, xtensa_relax_info
*relax_info
)
7017 xlate_map_t
*map
= (xlate_map_t
*) bfd_malloc (sizeof (xlate_map_t
));
7018 text_action_list
*action_list
= &relax_info
->action_list
;
7019 unsigned num_actions
= 0;
7022 xlate_map_entry_t
*current_entry
;
7027 num_actions
= action_list_count (action_list
);
7028 map
->entry
= (xlate_map_entry_t
*)
7029 bfd_malloc (sizeof (xlate_map_entry_t
) * (num_actions
+ 1));
7030 if (map
->entry
== NULL
)
7035 map
->entry_count
= 0;
7038 current_entry
= &map
->entry
[0];
7040 current_entry
->orig_address
= 0;
7041 current_entry
->new_address
= 0;
7042 current_entry
->size
= 0;
7044 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
7046 unsigned orig_size
= 0;
7050 case ta_remove_insn
:
7051 case ta_convert_longcall
:
7052 case ta_remove_literal
:
7053 case ta_add_literal
:
7055 case ta_remove_longcall
:
7058 case ta_narrow_insn
:
7067 current_entry
->size
=
7068 r
->offset
+ orig_size
- current_entry
->orig_address
;
7069 if (current_entry
->size
!= 0)
7074 current_entry
->orig_address
= r
->offset
+ orig_size
;
7075 removed
+= r
->removed_bytes
;
7076 current_entry
->new_address
= r
->offset
+ orig_size
- removed
;
7077 current_entry
->size
= 0;
7080 current_entry
->size
= (bfd_get_section_limit (sec
->owner
, sec
)
7081 - current_entry
->orig_address
);
7082 if (current_entry
->size
!= 0)
7089 /* Free an offset translation map. */
7092 free_xlate_map (xlate_map_t
*map
)
7094 if (map
&& map
->entry
)
7101 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7102 relocations in a section will fit if a proposed set of actions
7106 check_section_ebb_pcrels_fit (bfd
*abfd
,
7109 Elf_Internal_Rela
*internal_relocs
,
7110 const ebb_constraint
*constraint
,
7111 const xtensa_opcode
*reloc_opcodes
)
7114 Elf_Internal_Rela
*irel
;
7115 xlate_map_t
*xmap
= NULL
;
7116 bfd_boolean ok
= TRUE
;
7117 xtensa_relax_info
*relax_info
;
7119 relax_info
= get_xtensa_relax_info (sec
);
7121 if (relax_info
&& sec
->reloc_count
> 100)
7123 xmap
= build_xlate_map (sec
, relax_info
);
7124 /* NULL indicates out of memory, but the slow version
7125 can still be used. */
7128 for (i
= 0; i
< sec
->reloc_count
; i
++)
7131 bfd_vma orig_self_offset
, orig_target_offset
;
7132 bfd_vma self_offset
, target_offset
;
7134 reloc_howto_type
*howto
;
7135 int self_removed_bytes
, target_removed_bytes
;
7137 irel
= &internal_relocs
[i
];
7138 r_type
= ELF32_R_TYPE (irel
->r_info
);
7140 howto
= &elf_howto_table
[r_type
];
7141 /* We maintain the required invariant: PC-relative relocations
7142 that fit before linking must fit after linking. Thus we only
7143 need to deal with relocations to the same section that are
7145 if (r_type
== R_XTENSA_ASM_SIMPLIFY
7146 || r_type
== R_XTENSA_32_PCREL
7147 || !howto
->pc_relative
)
7150 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7151 bfd_get_section_limit (abfd
, sec
));
7153 if (r_reloc_get_section (&r_rel
) != sec
)
7156 orig_self_offset
= irel
->r_offset
;
7157 orig_target_offset
= r_rel
.target_offset
;
7159 self_offset
= orig_self_offset
;
7160 target_offset
= orig_target_offset
;
7165 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
7168 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
7169 orig_target_offset
);
7172 self_removed_bytes
= 0;
7173 target_removed_bytes
= 0;
7175 for (j
= 0; j
< constraint
->action_count
; ++j
)
7177 proposed_action
*action
= &constraint
->actions
[j
];
7178 bfd_vma offset
= action
->offset
;
7179 int removed_bytes
= action
->removed_bytes
;
7180 if (offset
< orig_self_offset
7181 || (offset
== orig_self_offset
&& action
->action
== ta_fill
7182 && action
->removed_bytes
< 0))
7183 self_removed_bytes
+= removed_bytes
;
7184 if (offset
< orig_target_offset
7185 || (offset
== orig_target_offset
&& action
->action
== ta_fill
7186 && action
->removed_bytes
< 0))
7187 target_removed_bytes
+= removed_bytes
;
7189 self_offset
-= self_removed_bytes
;
7190 target_offset
-= target_removed_bytes
;
7192 /* Try to encode it. Get the operand and check. */
7193 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7195 /* None of the current alternate relocs are PC-relative,
7196 and only PC-relative relocs matter here. */
7200 xtensa_opcode opcode
;
7204 opcode
= reloc_opcodes
[i
];
7206 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7207 if (opcode
== XTENSA_UNDEFINED
)
7213 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7214 if (opnum
== XTENSA_UNDEFINED
)
7220 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
7229 free_xlate_map (xmap
);
7236 check_section_ebb_reduces (const ebb_constraint
*constraint
)
7241 for (i
= 0; i
< constraint
->action_count
; i
++)
7243 const proposed_action
*action
= &constraint
->actions
[i
];
7244 if (action
->do_action
)
7245 removed
+= action
->removed_bytes
;
7255 text_action_add_proposed (text_action_list
*l
,
7256 const ebb_constraint
*ebb_table
,
7261 for (i
= 0; i
< ebb_table
->action_count
; i
++)
7263 proposed_action
*action
= &ebb_table
->actions
[i
];
7265 if (!action
->do_action
)
7267 switch (action
->action
)
7269 case ta_remove_insn
:
7270 case ta_remove_longcall
:
7271 case ta_convert_longcall
:
7272 case ta_narrow_insn
:
7275 case ta_remove_literal
:
7276 text_action_add (l
, action
->action
, sec
, action
->offset
,
7277 action
->removed_bytes
);
7290 compute_fill_extra_space (property_table_entry
*entry
)
7292 int fill_extra_space
;
7297 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
7300 fill_extra_space
= entry
->size
;
7301 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
7303 /* Fill bytes for alignment:
7304 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7305 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
7306 int nsm
= (1 << pow
) - 1;
7307 bfd_vma addr
= entry
->address
+ entry
->size
;
7308 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
7309 fill_extra_space
+= align_fill
;
7311 return fill_extra_space
;
7315 /* First relaxation pass. */
7317 /* If the section contains relaxable literals, check each literal to
7318 see if it has the same value as another literal that has already
7319 been seen, either in the current section or a previous one. If so,
7320 add an entry to the per-section list of removed literals. The
7321 actual changes are deferred until the next pass. */
7324 compute_removed_literals (bfd
*abfd
,
7326 struct bfd_link_info
*link_info
,
7327 value_map_hash_table
*values
)
7329 xtensa_relax_info
*relax_info
;
7331 Elf_Internal_Rela
*internal_relocs
;
7332 source_reloc
*src_relocs
, *rel
;
7333 bfd_boolean ok
= TRUE
;
7334 property_table_entry
*prop_table
= NULL
;
7337 bfd_boolean last_loc_is_prev
= FALSE
;
7338 bfd_vma last_target_offset
= 0;
7339 section_cache_t target_sec_cache
;
7340 bfd_size_type sec_size
;
7342 init_section_cache (&target_sec_cache
);
7344 /* Do nothing if it is not a relaxable literal section. */
7345 relax_info
= get_xtensa_relax_info (sec
);
7346 BFD_ASSERT (relax_info
);
7347 if (!relax_info
->is_relaxable_literal_section
)
7350 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7351 link_info
->keep_memory
);
7353 sec_size
= bfd_get_section_limit (abfd
, sec
);
7354 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7355 if (contents
== NULL
&& sec_size
!= 0)
7361 /* Sort the source_relocs by target offset. */
7362 src_relocs
= relax_info
->src_relocs
;
7363 qsort (src_relocs
, relax_info
->src_count
,
7364 sizeof (source_reloc
), source_reloc_compare
);
7365 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7366 internal_reloc_compare
);
7368 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7369 XTENSA_PROP_SEC_NAME
, FALSE
);
7377 for (i
= 0; i
< relax_info
->src_count
; i
++)
7379 Elf_Internal_Rela
*irel
= NULL
;
7381 rel
= &src_relocs
[i
];
7382 if (get_l32r_opcode () != rel
->opcode
)
7384 irel
= get_irel_at_offset (sec
, internal_relocs
,
7385 rel
->r_rel
.target_offset
);
7387 /* If the relocation on this is not a simple R_XTENSA_32 or
7388 R_XTENSA_PLT then do not consider it. This may happen when
7389 the difference of two symbols is used in a literal. */
7390 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
7391 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
7394 /* If the target_offset for this relocation is the same as the
7395 previous relocation, then we've already considered whether the
7396 literal can be coalesced. Skip to the next one.... */
7397 if (i
!= 0 && prev_i
!= -1
7398 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
7402 if (last_loc_is_prev
&&
7403 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
7404 last_loc_is_prev
= FALSE
;
7406 /* Check if the relocation was from an L32R that is being removed
7407 because a CALLX was converted to a direct CALL, and check if
7408 there are no other relocations to the literal. */
7409 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
,
7410 sec
, prop_table
, ptblsize
))
7412 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
7413 irel
, rel
, prop_table
, ptblsize
))
7418 last_target_offset
= rel
->r_rel
.target_offset
;
7422 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
7424 &last_loc_is_prev
, irel
,
7425 relax_info
->src_count
- i
, rel
,
7426 prop_table
, ptblsize
,
7427 &target_sec_cache
, rel
->is_abs_literal
))
7432 last_target_offset
= rel
->r_rel
.target_offset
;
7436 print_removed_literals (stderr
, &relax_info
->removed_list
);
7437 print_action_list (stderr
, &relax_info
->action_list
);
7441 if (prop_table
) free (prop_table
);
7442 clear_section_cache (&target_sec_cache
);
7444 release_contents (sec
, contents
);
7445 release_internal_relocs (sec
, internal_relocs
);
7450 static Elf_Internal_Rela
*
7451 get_irel_at_offset (asection
*sec
,
7452 Elf_Internal_Rela
*internal_relocs
,
7456 Elf_Internal_Rela
*irel
;
7458 Elf_Internal_Rela key
;
7460 if (!internal_relocs
)
7463 key
.r_offset
= offset
;
7464 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
7465 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
7469 /* bsearch does not guarantee which will be returned if there are
7470 multiple matches. We need the first that is not an alignment. */
7471 i
= irel
- internal_relocs
;
7474 if (internal_relocs
[i
-1].r_offset
!= offset
)
7478 for ( ; i
< sec
->reloc_count
; i
++)
7480 irel
= &internal_relocs
[i
];
7481 r_type
= ELF32_R_TYPE (irel
->r_info
);
7482 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
7491 is_removable_literal (const source_reloc
*rel
,
7493 const source_reloc
*src_relocs
,
7496 property_table_entry
*prop_table
,
7499 const source_reloc
*curr_rel
;
7500 property_table_entry
*entry
;
7505 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7506 sec
->vma
+ rel
->r_rel
.target_offset
);
7507 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
7510 for (++i
; i
< src_count
; ++i
)
7512 curr_rel
= &src_relocs
[i
];
7513 /* If all others have the same target offset.... */
7514 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
7517 if (!curr_rel
->is_null
7518 && !xtensa_is_property_section (curr_rel
->source_sec
)
7519 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
7527 remove_dead_literal (bfd
*abfd
,
7529 struct bfd_link_info
*link_info
,
7530 Elf_Internal_Rela
*internal_relocs
,
7531 Elf_Internal_Rela
*irel
,
7533 property_table_entry
*prop_table
,
7536 property_table_entry
*entry
;
7537 xtensa_relax_info
*relax_info
;
7539 relax_info
= get_xtensa_relax_info (sec
);
7543 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7544 sec
->vma
+ rel
->r_rel
.target_offset
);
7546 /* Mark the unused literal so that it will be removed. */
7547 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
7549 text_action_add (&relax_info
->action_list
,
7550 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7552 /* If the section is 4-byte aligned, do not add fill. */
7553 if (sec
->alignment_power
> 2)
7555 int fill_extra_space
;
7556 bfd_vma entry_sec_offset
;
7558 property_table_entry
*the_add_entry
;
7562 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7564 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7566 /* If the literal range is at the end of the section,
7568 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7570 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
7572 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7573 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7574 -4, fill_extra_space
);
7576 adjust_fill_action (fa
, removed_diff
);
7578 text_action_add (&relax_info
->action_list
,
7579 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7582 /* Zero out the relocation on this literal location. */
7585 if (elf_hash_table (link_info
)->dynamic_sections_created
)
7586 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
7588 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7589 pin_internal_relocs (sec
, internal_relocs
);
7592 /* Do not modify "last_loc_is_prev". */
7598 identify_literal_placement (bfd
*abfd
,
7601 struct bfd_link_info
*link_info
,
7602 value_map_hash_table
*values
,
7603 bfd_boolean
*last_loc_is_prev_p
,
7604 Elf_Internal_Rela
*irel
,
7605 int remaining_src_rels
,
7607 property_table_entry
*prop_table
,
7609 section_cache_t
*target_sec_cache
,
7610 bfd_boolean is_abs_literal
)
7614 xtensa_relax_info
*relax_info
;
7615 bfd_boolean literal_placed
= FALSE
;
7617 unsigned long value
;
7618 bfd_boolean final_static_link
;
7619 bfd_size_type sec_size
;
7621 relax_info
= get_xtensa_relax_info (sec
);
7625 sec_size
= bfd_get_section_limit (abfd
, sec
);
7628 (!link_info
->relocatable
7629 && !elf_hash_table (link_info
)->dynamic_sections_created
);
7631 /* The placement algorithm first checks to see if the literal is
7632 already in the value map. If so and the value map is reachable
7633 from all uses, then the literal is moved to that location. If
7634 not, then we identify the last location where a fresh literal was
7635 placed. If the literal can be safely moved there, then we do so.
7636 If not, then we assume that the literal is not to move and leave
7637 the literal where it is, marking it as the last literal
7640 /* Find the literal value. */
7642 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7645 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
7646 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
7648 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
7650 /* Check if we've seen another literal with the same value that
7651 is in the same output section. */
7652 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
7655 && (r_reloc_get_section (&val_map
->loc
)->output_section
7656 == sec
->output_section
)
7657 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
7658 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
7660 /* No change to last_loc_is_prev. */
7661 literal_placed
= TRUE
;
7664 /* For relocatable links, do not try to move literals. To do it
7665 correctly might increase the number of relocations in an input
7666 section making the default relocatable linking fail. */
7667 if (!link_info
->relocatable
&& !literal_placed
7668 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
7670 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
7671 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
7673 /* Increment the virtual offset. */
7674 r_reloc try_loc
= values
->last_loc
;
7675 try_loc
.virtual_offset
+= 4;
7677 /* There is a last loc that was in the same output section. */
7678 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
7679 && move_shared_literal (sec
, link_info
, rel
,
7680 prop_table
, ptblsize
,
7681 &try_loc
, &val
, target_sec_cache
))
7683 values
->last_loc
.virtual_offset
+= 4;
7684 literal_placed
= TRUE
;
7686 val_map
= add_value_map (values
, &val
, &try_loc
,
7689 val_map
->loc
= try_loc
;
7694 if (!literal_placed
)
7696 /* Nothing worked, leave the literal alone but update the last loc. */
7697 values
->has_last_loc
= TRUE
;
7698 values
->last_loc
= rel
->r_rel
;
7700 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
7702 val_map
->loc
= rel
->r_rel
;
7703 *last_loc_is_prev_p
= TRUE
;
7710 /* Check if the original relocations (presumably on L32R instructions)
7711 identified by reloc[0..N] can be changed to reference the literal
7712 identified by r_rel. If r_rel is out of range for any of the
7713 original relocations, then we don't want to coalesce the original
7714 literal with the one at r_rel. We only check reloc[0..N], where the
7715 offsets are all the same as for reloc[0] (i.e., they're all
7716 referencing the same literal) and where N is also bounded by the
7717 number of remaining entries in the "reloc" array. The "reloc" array
7718 is sorted by target offset so we know all the entries for the same
7719 literal will be contiguous. */
7722 relocations_reach (source_reloc
*reloc
,
7723 int remaining_relocs
,
7724 const r_reloc
*r_rel
)
7726 bfd_vma from_offset
, source_address
, dest_address
;
7730 if (!r_reloc_is_defined (r_rel
))
7733 sec
= r_reloc_get_section (r_rel
);
7734 from_offset
= reloc
[0].r_rel
.target_offset
;
7736 for (i
= 0; i
< remaining_relocs
; i
++)
7738 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
7741 /* Ignore relocations that have been removed. */
7742 if (reloc
[i
].is_null
)
7745 /* The original and new output section for these must be the same
7746 in order to coalesce. */
7747 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
7748 != sec
->output_section
)
7751 /* Absolute literals in the same output section can always be
7753 if (reloc
[i
].is_abs_literal
)
7756 /* A literal with no PC-relative relocations can be moved anywhere. */
7757 if (reloc
[i
].opnd
!= -1)
7759 /* Otherwise, check to see that it fits. */
7760 source_address
= (reloc
[i
].source_sec
->output_section
->vma
7761 + reloc
[i
].source_sec
->output_offset
7762 + reloc
[i
].r_rel
.rela
.r_offset
);
7763 dest_address
= (sec
->output_section
->vma
7764 + sec
->output_offset
7765 + r_rel
->target_offset
);
7767 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
7768 source_address
, dest_address
))
7777 /* Move a literal to another literal location because it is
7778 the same as the other literal value. */
7781 coalesce_shared_literal (asection
*sec
,
7783 property_table_entry
*prop_table
,
7787 property_table_entry
*entry
;
7789 property_table_entry
*the_add_entry
;
7791 xtensa_relax_info
*relax_info
;
7793 relax_info
= get_xtensa_relax_info (sec
);
7797 entry
= elf_xtensa_find_property_entry
7798 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7799 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
7802 /* Mark that the literal will be coalesced. */
7803 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
7805 text_action_add (&relax_info
->action_list
,
7806 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7808 /* If the section is 4-byte aligned, do not add fill. */
7809 if (sec
->alignment_power
> 2)
7811 int fill_extra_space
;
7812 bfd_vma entry_sec_offset
;
7815 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7817 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7819 /* If the literal range is at the end of the section,
7821 fill_extra_space
= 0;
7822 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7824 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7825 fill_extra_space
= the_add_entry
->size
;
7827 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7828 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7829 -4, fill_extra_space
);
7831 adjust_fill_action (fa
, removed_diff
);
7833 text_action_add (&relax_info
->action_list
,
7834 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7841 /* Move a literal to another location. This may actually increase the
7842 total amount of space used because of alignments so we need to do
7843 this carefully. Also, it may make a branch go out of range. */
7846 move_shared_literal (asection
*sec
,
7847 struct bfd_link_info
*link_info
,
7849 property_table_entry
*prop_table
,
7851 const r_reloc
*target_loc
,
7852 const literal_value
*lit_value
,
7853 section_cache_t
*target_sec_cache
)
7855 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
7856 text_action
*fa
, *target_fa
;
7858 xtensa_relax_info
*relax_info
, *target_relax_info
;
7859 asection
*target_sec
;
7861 ebb_constraint ebb_table
;
7862 bfd_boolean relocs_fit
;
7864 /* If this routine always returns FALSE, the literals that cannot be
7865 coalesced will not be moved. */
7866 if (elf32xtensa_no_literal_movement
)
7869 relax_info
= get_xtensa_relax_info (sec
);
7873 target_sec
= r_reloc_get_section (target_loc
);
7874 target_relax_info
= get_xtensa_relax_info (target_sec
);
7876 /* Literals to undefined sections may not be moved because they
7877 must report an error. */
7878 if (bfd_is_und_section (target_sec
))
7881 src_entry
= elf_xtensa_find_property_entry
7882 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7884 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
7887 target_entry
= elf_xtensa_find_property_entry
7888 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7889 target_sec
->vma
+ target_loc
->target_offset
);
7894 /* Make sure that we have not broken any branches. */
7897 init_ebb_constraint (&ebb_table
);
7898 ebb
= &ebb_table
.ebb
;
7899 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
7900 target_sec_cache
->content_length
,
7901 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7902 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
7904 /* Propose to add 4 bytes + worst-case alignment size increase to
7906 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
7907 ta_fill
, target_loc
->target_offset
,
7908 -4 - (1 << target_sec
->alignment_power
), TRUE
);
7910 /* Check all of the PC-relative relocations to make sure they still fit. */
7911 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
7912 target_sec_cache
->contents
,
7913 target_sec_cache
->relocs
,
7919 text_action_add_literal (&target_relax_info
->action_list
,
7920 ta_add_literal
, target_loc
, lit_value
, -4);
7922 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7924 /* May need to add or remove some fill to maintain alignment. */
7925 int fill_extra_space
;
7926 bfd_vma entry_sec_offset
;
7929 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
7931 /* If the literal range is at the end of the section,
7933 fill_extra_space
= 0;
7935 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
7936 target_sec_cache
->pte_count
,
7938 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7939 fill_extra_space
= the_add_entry
->size
;
7941 target_fa
= find_fill_action (&target_relax_info
->action_list
,
7942 target_sec
, entry_sec_offset
);
7943 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
7944 entry_sec_offset
, 4,
7947 adjust_fill_action (target_fa
, removed_diff
);
7949 text_action_add (&target_relax_info
->action_list
,
7950 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
7953 /* Mark that the literal will be moved to the new location. */
7954 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
7956 /* Remove the literal. */
7957 text_action_add (&relax_info
->action_list
,
7958 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7960 /* If the section is 4-byte aligned, do not add fill. */
7961 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7963 int fill_extra_space
;
7964 bfd_vma entry_sec_offset
;
7967 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
7969 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
7971 /* If the literal range is at the end of the section,
7973 fill_extra_space
= 0;
7974 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7976 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7977 fill_extra_space
= the_add_entry
->size
;
7979 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7980 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7981 -4, fill_extra_space
);
7983 adjust_fill_action (fa
, removed_diff
);
7985 text_action_add (&relax_info
->action_list
,
7986 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7993 /* Second relaxation pass. */
7995 /* Modify all of the relocations to point to the right spot, and if this
7996 is a relaxable section, delete the unwanted literals and fix the
8000 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
8002 Elf_Internal_Rela
*internal_relocs
;
8003 xtensa_relax_info
*relax_info
;
8005 bfd_boolean ok
= TRUE
;
8007 bfd_boolean rv
= FALSE
;
8008 bfd_boolean virtual_action
;
8009 bfd_size_type sec_size
;
8011 sec_size
= bfd_get_section_limit (abfd
, sec
);
8012 relax_info
= get_xtensa_relax_info (sec
);
8013 BFD_ASSERT (relax_info
);
8015 /* First translate any of the fixes that have been added already. */
8016 translate_section_fixes (sec
);
8018 /* Handle property sections (e.g., literal tables) specially. */
8019 if (xtensa_is_property_section (sec
))
8021 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
8022 return relax_property_section (abfd
, sec
, link_info
);
8025 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8026 link_info
->keep_memory
);
8027 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8028 if (contents
== NULL
&& sec_size
!= 0)
8034 if (internal_relocs
)
8036 for (i
= 0; i
< sec
->reloc_count
; i
++)
8038 Elf_Internal_Rela
*irel
;
8039 xtensa_relax_info
*target_relax_info
;
8040 bfd_vma source_offset
, old_source_offset
;
8043 asection
*target_sec
;
8045 /* Locally change the source address.
8046 Translate the target to the new target address.
8047 If it points to this section and has been removed,
8051 irel
= &internal_relocs
[i
];
8052 source_offset
= irel
->r_offset
;
8053 old_source_offset
= source_offset
;
8055 r_type
= ELF32_R_TYPE (irel
->r_info
);
8056 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
8057 bfd_get_section_limit (abfd
, sec
));
8059 /* If this section could have changed then we may need to
8060 change the relocation's offset. */
8062 if (relax_info
->is_relaxable_literal_section
8063 || relax_info
->is_relaxable_asm_section
)
8065 pin_internal_relocs (sec
, internal_relocs
);
8067 if (r_type
!= R_XTENSA_NONE
8068 && find_removed_literal (&relax_info
->removed_list
,
8071 /* Remove this relocation. */
8072 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8073 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8074 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8075 irel
->r_offset
= offset_with_removed_text
8076 (&relax_info
->action_list
, irel
->r_offset
);
8080 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
8082 text_action
*action
=
8083 find_insn_action (&relax_info
->action_list
,
8085 if (action
&& (action
->action
== ta_convert_longcall
8086 || action
->action
== ta_remove_longcall
))
8088 bfd_reloc_status_type retval
;
8089 char *error_message
= NULL
;
8091 retval
= contract_asm_expansion (contents
, sec_size
,
8092 irel
, &error_message
);
8093 if (retval
!= bfd_reloc_ok
)
8095 (*link_info
->callbacks
->reloc_dangerous
)
8096 (link_info
, error_message
, abfd
, sec
,
8100 /* Update the action so that the code that moves
8101 the contents will do the right thing. */
8102 if (action
->action
== ta_remove_longcall
)
8103 action
->action
= ta_remove_insn
;
8105 action
->action
= ta_none
;
8106 /* Refresh the info in the r_rel. */
8107 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
8108 r_type
= ELF32_R_TYPE (irel
->r_info
);
8112 source_offset
= offset_with_removed_text
8113 (&relax_info
->action_list
, irel
->r_offset
);
8114 irel
->r_offset
= source_offset
;
8117 /* If the target section could have changed then
8118 we may need to change the relocation's target offset. */
8120 target_sec
= r_reloc_get_section (&r_rel
);
8122 /* For a reference to a discarded section from a DWARF section,
8123 i.e., where action_discarded is PRETEND, the symbol will
8124 eventually be modified to refer to the kept section (at least if
8125 the kept and discarded sections are the same size). Anticipate
8126 that here and adjust things accordingly. */
8127 if (! elf_xtensa_ignore_discarded_relocs (sec
)
8128 && elf_xtensa_action_discarded (sec
) == PRETEND
8129 && sec
->sec_info_type
!= ELF_INFO_TYPE_STABS
8130 && target_sec
!= NULL
8131 && elf_discarded_section (target_sec
))
8133 /* It would be natural to call _bfd_elf_check_kept_section
8134 here, but it's not exported from elflink.c. It's also a
8135 fairly expensive check. Adjusting the relocations to the
8136 discarded section is fairly harmless; it will only adjust
8137 some addends and difference values. If it turns out that
8138 _bfd_elf_check_kept_section fails later, it won't matter,
8139 so just compare the section names to find the right group
8141 asection
*kept
= target_sec
->kept_section
;
8144 if ((kept
->flags
& SEC_GROUP
) != 0)
8146 asection
*first
= elf_next_in_group (kept
);
8147 asection
*s
= first
;
8152 if (strcmp (s
->name
, target_sec
->name
) == 0)
8157 s
= elf_next_in_group (s
);
8164 && ((target_sec
->rawsize
!= 0
8165 ? target_sec
->rawsize
: target_sec
->size
)
8166 == (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8170 target_relax_info
= get_xtensa_relax_info (target_sec
);
8171 if (target_relax_info
8172 && (target_relax_info
->is_relaxable_literal_section
8173 || target_relax_info
->is_relaxable_asm_section
))
8176 target_sec
= translate_reloc (&r_rel
, &new_reloc
, target_sec
);
8178 if (r_type
== R_XTENSA_DIFF8
8179 || r_type
== R_XTENSA_DIFF16
8180 || r_type
== R_XTENSA_DIFF32
)
8182 bfd_vma diff_value
= 0, new_end_offset
, diff_mask
= 0;
8184 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
8186 (*link_info
->callbacks
->reloc_dangerous
)
8187 (link_info
, _("invalid relocation address"),
8188 abfd
, sec
, old_source_offset
);
8194 case R_XTENSA_DIFF8
:
8196 bfd_get_8 (abfd
, &contents
[old_source_offset
]);
8198 case R_XTENSA_DIFF16
:
8200 bfd_get_16 (abfd
, &contents
[old_source_offset
]);
8202 case R_XTENSA_DIFF32
:
8204 bfd_get_32 (abfd
, &contents
[old_source_offset
]);
8208 new_end_offset
= offset_with_removed_text
8209 (&target_relax_info
->action_list
,
8210 r_rel
.target_offset
+ diff_value
);
8211 diff_value
= new_end_offset
- new_reloc
.target_offset
;
8215 case R_XTENSA_DIFF8
:
8217 bfd_put_8 (abfd
, diff_value
,
8218 &contents
[old_source_offset
]);
8220 case R_XTENSA_DIFF16
:
8222 bfd_put_16 (abfd
, diff_value
,
8223 &contents
[old_source_offset
]);
8225 case R_XTENSA_DIFF32
:
8226 diff_mask
= 0xffffffff;
8227 bfd_put_32 (abfd
, diff_value
,
8228 &contents
[old_source_offset
]);
8232 /* Check for overflow. */
8233 if ((diff_value
& ~diff_mask
) != 0)
8235 (*link_info
->callbacks
->reloc_dangerous
)
8236 (link_info
, _("overflow after relaxation"),
8237 abfd
, sec
, old_source_offset
);
8241 pin_contents (sec
, contents
);
8244 /* If the relocation still references a section in the same
8245 input file, modify the relocation directly instead of
8246 adding a "fix" record. */
8247 if (target_sec
->owner
== abfd
)
8249 unsigned r_symndx
= ELF32_R_SYM (new_reloc
.rela
.r_info
);
8250 irel
->r_info
= ELF32_R_INFO (r_symndx
, r_type
);
8251 irel
->r_addend
= new_reloc
.rela
.r_addend
;
8252 pin_internal_relocs (sec
, internal_relocs
);
8256 bfd_vma addend_displacement
;
8259 addend_displacement
=
8260 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
8261 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
,
8263 addend_displacement
, TRUE
);
8270 if ((relax_info
->is_relaxable_literal_section
8271 || relax_info
->is_relaxable_asm_section
)
8272 && relax_info
->action_list
.head
)
8274 /* Walk through the planned actions and build up a table
8275 of move, copy and fill records. Use the move, copy and
8276 fill records to perform the actions once. */
8279 bfd_size_type final_size
, copy_size
, orig_insn_size
;
8280 bfd_byte
*scratch
= NULL
;
8281 bfd_byte
*dup_contents
= NULL
;
8282 bfd_size_type orig_size
= sec
->size
;
8283 bfd_vma orig_dot
= 0;
8284 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
8285 orig dot in physical memory. */
8286 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
8287 bfd_vma dup_dot
= 0;
8289 text_action
*action
= relax_info
->action_list
.head
;
8291 final_size
= sec
->size
;
8292 for (action
= relax_info
->action_list
.head
; action
;
8293 action
= action
->next
)
8295 final_size
-= action
->removed_bytes
;
8298 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
8299 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
8301 /* The dot is the current fill location. */
8303 print_action_list (stderr
, &relax_info
->action_list
);
8306 for (action
= relax_info
->action_list
.head
; action
;
8307 action
= action
->next
)
8309 virtual_action
= FALSE
;
8310 if (action
->offset
> orig_dot
)
8312 orig_dot
+= orig_dot_copied
;
8313 orig_dot_copied
= 0;
8315 /* Out of the virtual world. */
8318 if (action
->offset
> orig_dot
)
8320 copy_size
= action
->offset
- orig_dot
;
8321 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
8322 orig_dot
+= copy_size
;
8323 dup_dot
+= copy_size
;
8324 BFD_ASSERT (action
->offset
== orig_dot
);
8326 else if (action
->offset
< orig_dot
)
8328 if (action
->action
== ta_fill
8329 && action
->offset
- action
->removed_bytes
== orig_dot
)
8331 /* This is OK because the fill only effects the dup_dot. */
8333 else if (action
->action
== ta_add_literal
)
8335 /* TBD. Might need to handle this. */
8338 if (action
->offset
== orig_dot
)
8340 if (action
->virtual_offset
> orig_dot_vo
)
8342 if (orig_dot_vo
== 0)
8344 /* Need to copy virtual_offset bytes. Probably four. */
8345 copy_size
= action
->virtual_offset
- orig_dot_vo
;
8346 memmove (&dup_contents
[dup_dot
],
8347 &contents
[orig_dot
], copy_size
);
8348 orig_dot_copied
= copy_size
;
8349 dup_dot
+= copy_size
;
8351 virtual_action
= TRUE
;
8354 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
8356 switch (action
->action
)
8358 case ta_remove_literal
:
8359 case ta_remove_insn
:
8360 BFD_ASSERT (action
->removed_bytes
>= 0);
8361 orig_dot
+= action
->removed_bytes
;
8364 case ta_narrow_insn
:
8367 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8368 BFD_ASSERT (action
->removed_bytes
== 1);
8369 rv
= narrow_instruction (scratch
, final_size
, 0);
8371 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8372 orig_dot
+= orig_insn_size
;
8373 dup_dot
+= copy_size
;
8377 if (action
->removed_bytes
>= 0)
8378 orig_dot
+= action
->removed_bytes
;
8381 /* Already zeroed in dup_contents. Just bump the
8383 dup_dot
+= (-action
->removed_bytes
);
8388 BFD_ASSERT (action
->removed_bytes
== 0);
8391 case ta_convert_longcall
:
8392 case ta_remove_longcall
:
8393 /* These will be removed or converted before we get here. */
8400 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8401 BFD_ASSERT (action
->removed_bytes
== -1);
8402 rv
= widen_instruction (scratch
, final_size
, 0);
8404 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8405 orig_dot
+= orig_insn_size
;
8406 dup_dot
+= copy_size
;
8409 case ta_add_literal
:
8412 BFD_ASSERT (action
->removed_bytes
== -4);
8413 /* TBD -- place the literal value here and insert
8415 memset (&dup_contents
[dup_dot
], 0, 4);
8416 pin_internal_relocs (sec
, internal_relocs
);
8417 pin_contents (sec
, contents
);
8419 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
8420 relax_info
, &internal_relocs
, &action
->value
))
8424 orig_dot_vo
+= copy_size
;
8426 orig_dot
+= orig_insn_size
;
8427 dup_dot
+= copy_size
;
8431 /* Not implemented yet. */
8436 removed
+= action
->removed_bytes
;
8437 BFD_ASSERT (dup_dot
<= final_size
);
8438 BFD_ASSERT (orig_dot
<= orig_size
);
8441 orig_dot
+= orig_dot_copied
;
8442 orig_dot_copied
= 0;
8444 if (orig_dot
!= orig_size
)
8446 copy_size
= orig_size
- orig_dot
;
8447 BFD_ASSERT (orig_size
> orig_dot
);
8448 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
8449 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
8450 orig_dot
+= copy_size
;
8451 dup_dot
+= copy_size
;
8453 BFD_ASSERT (orig_size
== orig_dot
);
8454 BFD_ASSERT (final_size
== dup_dot
);
8456 /* Move the dup_contents back. */
8457 if (final_size
> orig_size
)
8459 /* Contents need to be reallocated. Swap the dup_contents into
8461 sec
->contents
= dup_contents
;
8463 contents
= dup_contents
;
8464 pin_contents (sec
, contents
);
8468 BFD_ASSERT (final_size
<= orig_size
);
8469 memset (contents
, 0, orig_size
);
8470 memcpy (contents
, dup_contents
, final_size
);
8471 free (dup_contents
);
8474 pin_contents (sec
, contents
);
8476 if (sec
->rawsize
== 0)
8477 sec
->rawsize
= sec
->size
;
8478 sec
->size
= final_size
;
8482 release_internal_relocs (sec
, internal_relocs
);
8483 release_contents (sec
, contents
);
8489 translate_section_fixes (asection
*sec
)
8491 xtensa_relax_info
*relax_info
;
8494 relax_info
= get_xtensa_relax_info (sec
);
8498 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
8499 if (!translate_reloc_bfd_fix (r
))
8506 /* Translate a fix given the mapping in the relax info for the target
8507 section. If it has already been translated, no work is required. */
8510 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
8512 reloc_bfd_fix new_fix
;
8514 xtensa_relax_info
*relax_info
;
8515 removed_literal
*removed
;
8516 bfd_vma new_offset
, target_offset
;
8518 if (fix
->translated
)
8521 sec
= fix
->target_sec
;
8522 target_offset
= fix
->target_offset
;
8524 relax_info
= get_xtensa_relax_info (sec
);
8527 fix
->translated
= TRUE
;
8533 /* The fix does not need to be translated if the section cannot change. */
8534 if (!relax_info
->is_relaxable_literal_section
8535 && !relax_info
->is_relaxable_asm_section
)
8537 fix
->translated
= TRUE
;
8541 /* If the literal has been moved and this relocation was on an
8542 opcode, then the relocation should move to the new literal
8543 location. Otherwise, the relocation should move within the
8547 if (is_operand_relocation (fix
->src_type
))
8549 /* Check if the original relocation is against a literal being
8551 removed
= find_removed_literal (&relax_info
->removed_list
,
8559 /* The fact that there is still a relocation to this literal indicates
8560 that the literal is being coalesced, not simply removed. */
8561 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8563 /* This was moved to some other address (possibly another section). */
8564 new_sec
= r_reloc_get_section (&removed
->to
);
8568 relax_info
= get_xtensa_relax_info (sec
);
8570 (!relax_info
->is_relaxable_literal_section
8571 && !relax_info
->is_relaxable_asm_section
))
8573 target_offset
= removed
->to
.target_offset
;
8574 new_fix
.target_sec
= new_sec
;
8575 new_fix
.target_offset
= target_offset
;
8576 new_fix
.translated
= TRUE
;
8581 target_offset
= removed
->to
.target_offset
;
8582 new_fix
.target_sec
= new_sec
;
8585 /* The target address may have been moved within its section. */
8586 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8589 new_fix
.target_offset
= new_offset
;
8590 new_fix
.target_offset
= new_offset
;
8591 new_fix
.translated
= TRUE
;
8597 /* Fix up a relocation to take account of removed literals. */
8600 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
, asection
*sec
)
8602 xtensa_relax_info
*relax_info
;
8603 removed_literal
*removed
;
8604 bfd_vma target_offset
, base_offset
;
8607 *new_rel
= *orig_rel
;
8609 if (!r_reloc_is_defined (orig_rel
))
8612 relax_info
= get_xtensa_relax_info (sec
);
8613 BFD_ASSERT (relax_info
&& (relax_info
->is_relaxable_literal_section
8614 || relax_info
->is_relaxable_asm_section
));
8616 target_offset
= orig_rel
->target_offset
;
8619 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
8621 /* Check if the original relocation is against a literal being
8623 removed
= find_removed_literal (&relax_info
->removed_list
,
8626 if (removed
&& removed
->to
.abfd
)
8630 /* The fact that there is still a relocation to this literal indicates
8631 that the literal is being coalesced, not simply removed. */
8632 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8634 /* This was moved to some other address
8635 (possibly in another section). */
8636 *new_rel
= removed
->to
;
8637 new_sec
= r_reloc_get_section (new_rel
);
8641 relax_info
= get_xtensa_relax_info (sec
);
8643 || (!relax_info
->is_relaxable_literal_section
8644 && !relax_info
->is_relaxable_asm_section
))
8647 target_offset
= new_rel
->target_offset
;
8650 /* Find the base offset of the reloc symbol, excluding any addend from the
8651 reloc or from the section contents (for a partial_inplace reloc). Then
8652 find the adjusted values of the offsets due to relaxation. The base
8653 offset is needed to determine the change to the reloc's addend; the reloc
8654 addend should not be adjusted due to relaxations located before the base
8657 base_offset
= r_reloc_get_target_offset (new_rel
) - new_rel
->rela
.r_addend
;
8658 act
= relax_info
->action_list
.head
;
8659 if (base_offset
<= target_offset
)
8661 int base_removed
= removed_by_actions (&act
, base_offset
, FALSE
);
8662 int addend_removed
= removed_by_actions (&act
, target_offset
, FALSE
);
8663 new_rel
->target_offset
= target_offset
- base_removed
- addend_removed
;
8664 new_rel
->rela
.r_addend
-= addend_removed
;
8668 /* Handle a negative addend. The base offset comes first. */
8669 int tgt_removed
= removed_by_actions (&act
, target_offset
, FALSE
);
8670 int addend_removed
= removed_by_actions (&act
, base_offset
, FALSE
);
8671 new_rel
->target_offset
= target_offset
- tgt_removed
;
8672 new_rel
->rela
.r_addend
+= addend_removed
;
8679 /* For dynamic links, there may be a dynamic relocation for each
8680 literal. The number of dynamic relocations must be computed in
8681 size_dynamic_sections, which occurs before relaxation. When a
8682 literal is removed, this function checks if there is a corresponding
8683 dynamic relocation and shrinks the size of the appropriate dynamic
8684 relocation section accordingly. At this point, the contents of the
8685 dynamic relocation sections have not yet been filled in, so there's
8686 nothing else that needs to be done. */
8689 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
8691 asection
*input_section
,
8692 Elf_Internal_Rela
*rel
)
8694 struct elf_xtensa_link_hash_table
*htab
;
8695 Elf_Internal_Shdr
*symtab_hdr
;
8696 struct elf_link_hash_entry
**sym_hashes
;
8697 unsigned long r_symndx
;
8699 struct elf_link_hash_entry
*h
;
8700 bfd_boolean dynamic_symbol
;
8702 htab
= elf_xtensa_hash_table (info
);
8703 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8704 sym_hashes
= elf_sym_hashes (abfd
);
8706 r_type
= ELF32_R_TYPE (rel
->r_info
);
8707 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8709 if (r_symndx
< symtab_hdr
->sh_info
)
8712 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
8714 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
8716 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
8717 && (input_section
->flags
& SEC_ALLOC
) != 0
8718 && (dynamic_symbol
|| info
->shared
))
8721 bfd_boolean is_plt
= FALSE
;
8723 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
8725 srel
= htab
->srelplt
;
8729 srel
= htab
->srelgot
;
8731 /* Reduce size of the .rela.* section by one reloc. */
8732 BFD_ASSERT (srel
!= NULL
);
8733 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
8734 srel
->size
-= sizeof (Elf32_External_Rela
);
8738 asection
*splt
, *sgotplt
, *srelgot
;
8739 int reloc_index
, chunk
;
8741 /* Find the PLT reloc index of the entry being removed. This
8742 is computed from the size of ".rela.plt". It is needed to
8743 figure out which PLT chunk to resize. Usually "last index
8744 = size - 1" since the index starts at zero, but in this
8745 context, the size has just been decremented so there's no
8746 need to subtract one. */
8747 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
8749 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
8750 splt
= elf_xtensa_get_plt_section (info
, chunk
);
8751 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
8752 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
8754 /* Check if an entire PLT chunk has just been eliminated. */
8755 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
8757 /* The two magic GOT entries for that chunk can go away. */
8758 srelgot
= htab
->srelgot
;
8759 BFD_ASSERT (srelgot
!= NULL
);
8760 srelgot
->reloc_count
-= 2;
8761 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
8764 /* There should be only one entry left (and it will be
8766 BFD_ASSERT (sgotplt
->size
== 4);
8767 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
8770 BFD_ASSERT (sgotplt
->size
>= 4);
8771 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
8774 splt
->size
-= PLT_ENTRY_SIZE
;
8780 /* Take an r_rel and move it to another section. This usually
8781 requires extending the interal_relocation array and pinning it. If
8782 the original r_rel is from the same BFD, we can complete this here.
8783 Otherwise, we add a fix record to let the final link fix the
8784 appropriate address. Contents and internal relocations for the
8785 section must be pinned after calling this routine. */
8788 move_literal (bfd
*abfd
,
8789 struct bfd_link_info
*link_info
,
8793 xtensa_relax_info
*relax_info
,
8794 Elf_Internal_Rela
**internal_relocs_p
,
8795 const literal_value
*lit
)
8797 Elf_Internal_Rela
*new_relocs
= NULL
;
8798 size_t new_relocs_count
= 0;
8799 Elf_Internal_Rela this_rela
;
8800 const r_reloc
*r_rel
;
8802 r_rel
= &lit
->r_rel
;
8803 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
8805 if (r_reloc_is_const (r_rel
))
8806 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8811 asection
*target_sec
;
8815 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
8816 target_sec
= r_reloc_get_section (r_rel
);
8818 /* This is the difficult case. We have to create a fix up. */
8819 this_rela
.r_offset
= offset
;
8820 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
8821 this_rela
.r_addend
=
8822 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
8823 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8825 /* Currently, we cannot move relocations during a relocatable link. */
8826 BFD_ASSERT (!link_info
->relocatable
);
8827 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
,
8828 r_reloc_get_section (r_rel
),
8829 r_rel
->target_offset
+ r_rel
->virtual_offset
,
8831 /* We also need to mark that relocations are needed here. */
8832 sec
->flags
|= SEC_RELOC
;
8834 translate_reloc_bfd_fix (fix
);
8835 /* This fix has not yet been translated. */
8838 /* Add the relocation. If we have already allocated our own
8839 space for the relocations and we have room for more, then use
8840 it. Otherwise, allocate new space and move the literals. */
8841 insert_at
= sec
->reloc_count
;
8842 for (i
= 0; i
< sec
->reloc_count
; ++i
)
8844 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
8851 if (*internal_relocs_p
!= relax_info
->allocated_relocs
8852 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
8854 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
8855 || sec
->reloc_count
== relax_info
->relocs_count
);
8857 if (relax_info
->allocated_relocs_count
== 0)
8858 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
8860 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
8862 new_relocs
= (Elf_Internal_Rela
*)
8863 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
8867 /* We could handle this more quickly by finding the split point. */
8869 memcpy (new_relocs
, *internal_relocs_p
,
8870 insert_at
* sizeof (Elf_Internal_Rela
));
8872 new_relocs
[insert_at
] = this_rela
;
8874 if (insert_at
!= sec
->reloc_count
)
8875 memcpy (new_relocs
+ insert_at
+ 1,
8876 (*internal_relocs_p
) + insert_at
,
8877 (sec
->reloc_count
- insert_at
)
8878 * sizeof (Elf_Internal_Rela
));
8880 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
8882 /* The first time we re-allocate, we can only free the
8883 old relocs if they were allocated with bfd_malloc.
8884 This is not true when keep_memory is in effect. */
8885 if (!link_info
->keep_memory
)
8886 free (*internal_relocs_p
);
8889 free (*internal_relocs_p
);
8890 relax_info
->allocated_relocs
= new_relocs
;
8891 relax_info
->allocated_relocs_count
= new_relocs_count
;
8892 elf_section_data (sec
)->relocs
= new_relocs
;
8894 relax_info
->relocs_count
= sec
->reloc_count
;
8895 *internal_relocs_p
= new_relocs
;
8899 if (insert_at
!= sec
->reloc_count
)
8902 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
8903 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
8905 (*internal_relocs_p
)[insert_at
] = this_rela
;
8907 if (relax_info
->allocated_relocs
)
8908 relax_info
->relocs_count
= sec
->reloc_count
;
8915 /* This is similar to relax_section except that when a target is moved,
8916 we shift addresses up. We also need to modify the size. This
8917 algorithm does NOT allow for relocations into the middle of the
8918 property sections. */
8921 relax_property_section (bfd
*abfd
,
8923 struct bfd_link_info
*link_info
)
8925 Elf_Internal_Rela
*internal_relocs
;
8928 bfd_boolean ok
= TRUE
;
8929 bfd_boolean is_full_prop_section
;
8930 size_t last_zfill_target_offset
= 0;
8931 asection
*last_zfill_target_sec
= NULL
;
8932 bfd_size_type sec_size
;
8933 bfd_size_type entry_size
;
8935 sec_size
= bfd_get_section_limit (abfd
, sec
);
8936 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8937 link_info
->keep_memory
);
8938 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8939 if (contents
== NULL
&& sec_size
!= 0)
8945 is_full_prop_section
= xtensa_is_proptable_section (sec
);
8946 if (is_full_prop_section
)
8951 if (internal_relocs
)
8953 for (i
= 0; i
< sec
->reloc_count
; i
++)
8955 Elf_Internal_Rela
*irel
;
8956 xtensa_relax_info
*target_relax_info
;
8958 asection
*target_sec
;
8960 bfd_byte
*size_p
, *flags_p
;
8962 /* Locally change the source address.
8963 Translate the target to the new target address.
8964 If it points to this section and has been removed, MOVE IT.
8965 Also, don't forget to modify the associated SIZE at
8968 irel
= &internal_relocs
[i
];
8969 r_type
= ELF32_R_TYPE (irel
->r_info
);
8970 if (r_type
== R_XTENSA_NONE
)
8973 /* Find the literal value. */
8974 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
8975 size_p
= &contents
[irel
->r_offset
+ 4];
8977 if (is_full_prop_section
)
8978 flags_p
= &contents
[irel
->r_offset
+ 8];
8979 BFD_ASSERT (irel
->r_offset
+ entry_size
<= sec_size
);
8981 target_sec
= r_reloc_get_section (&val
.r_rel
);
8982 target_relax_info
= get_xtensa_relax_info (target_sec
);
8984 if (target_relax_info
8985 && (target_relax_info
->is_relaxable_literal_section
8986 || target_relax_info
->is_relaxable_asm_section
))
8988 /* Translate the relocation's destination. */
8989 bfd_vma old_offset
= val
.r_rel
.target_offset
;
8991 long old_size
, new_size
;
8992 text_action
*act
= target_relax_info
->action_list
.head
;
8993 new_offset
= old_offset
-
8994 removed_by_actions (&act
, old_offset
, FALSE
);
8996 /* Assert that we are not out of bounds. */
8997 old_size
= bfd_get_32 (abfd
, size_p
);
8998 new_size
= old_size
;
9002 /* Only the first zero-sized unreachable entry is
9003 allowed to expand. In this case the new offset
9004 should be the offset before the fill and the new
9005 size is the expansion size. For other zero-sized
9006 entries the resulting size should be zero with an
9007 offset before or after the fill address depending
9008 on whether the expanding unreachable entry
9010 if (last_zfill_target_sec
== 0
9011 || last_zfill_target_sec
!= target_sec
9012 || last_zfill_target_offset
!= old_offset
)
9014 bfd_vma new_end_offset
= new_offset
;
9016 /* Recompute the new_offset, but this time don't
9017 include any fill inserted by relaxation. */
9018 act
= target_relax_info
->action_list
.head
;
9019 new_offset
= old_offset
-
9020 removed_by_actions (&act
, old_offset
, TRUE
);
9022 /* If it is not unreachable and we have not yet
9023 seen an unreachable at this address, place it
9024 before the fill address. */
9025 if (flags_p
&& (bfd_get_32 (abfd
, flags_p
)
9026 & XTENSA_PROP_UNREACHABLE
) != 0)
9028 new_size
= new_end_offset
- new_offset
;
9030 last_zfill_target_sec
= target_sec
;
9031 last_zfill_target_offset
= old_offset
;
9037 removed_by_actions (&act
, old_offset
+ old_size
, TRUE
);
9039 if (new_size
!= old_size
)
9041 bfd_put_32 (abfd
, new_size
, size_p
);
9042 pin_contents (sec
, contents
);
9045 if (new_offset
!= old_offset
)
9047 bfd_vma diff
= new_offset
- old_offset
;
9048 irel
->r_addend
+= diff
;
9049 pin_internal_relocs (sec
, internal_relocs
);
9055 /* Combine adjacent property table entries. This is also done in
9056 finish_dynamic_sections() but at that point it's too late to
9057 reclaim the space in the output section, so we do this twice. */
9059 if (internal_relocs
&& (!link_info
->relocatable
9060 || xtensa_is_littable_section (sec
)))
9062 Elf_Internal_Rela
*last_irel
= NULL
;
9063 Elf_Internal_Rela
*irel
, *next_rel
, *rel_end
;
9064 int removed_bytes
= 0;
9066 flagword predef_flags
;
9068 predef_flags
= xtensa_get_property_predef_flags (sec
);
9070 /* Walk over memory and relocations at the same time.
9071 This REQUIRES that the internal_relocs be sorted by offset. */
9072 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
9073 internal_reloc_compare
);
9075 pin_internal_relocs (sec
, internal_relocs
);
9076 pin_contents (sec
, contents
);
9078 next_rel
= internal_relocs
;
9079 rel_end
= internal_relocs
+ sec
->reloc_count
;
9081 BFD_ASSERT (sec
->size
% entry_size
== 0);
9083 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
9085 Elf_Internal_Rela
*offset_rel
, *extra_rel
;
9086 bfd_vma bytes_to_remove
, size
, actual_offset
;
9087 bfd_boolean remove_this_rel
;
9090 /* Find the first relocation for the entry at the current offset.
9091 Adjust the offsets of any extra relocations for the previous
9096 for (irel
= next_rel
; irel
< rel_end
; irel
++)
9098 if ((irel
->r_offset
== offset
9099 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
9100 || irel
->r_offset
> offset
)
9105 irel
->r_offset
-= removed_bytes
;
9109 /* Find the next relocation (if there are any left). */
9113 for (irel
= offset_rel
+ 1; irel
< rel_end
; irel
++)
9115 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
9123 /* Check if there are relocations on the current entry. There
9124 should usually be a relocation on the offset field. If there
9125 are relocations on the size or flags, then we can't optimize
9126 this entry. Also, find the next relocation to examine on the
9130 if (offset_rel
->r_offset
>= offset
+ entry_size
)
9132 next_rel
= offset_rel
;
9133 /* There are no relocations on the current entry, but we
9134 might still be able to remove it if the size is zero. */
9137 else if (offset_rel
->r_offset
> offset
9139 && extra_rel
->r_offset
< offset
+ entry_size
))
9141 /* There is a relocation on the size or flags, so we can't
9142 do anything with this entry. Continue with the next. */
9143 next_rel
= offset_rel
;
9148 BFD_ASSERT (offset_rel
->r_offset
== offset
);
9149 offset_rel
->r_offset
-= removed_bytes
;
9150 next_rel
= offset_rel
+ 1;
9156 remove_this_rel
= FALSE
;
9157 bytes_to_remove
= 0;
9158 actual_offset
= offset
- removed_bytes
;
9159 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
9161 if (is_full_prop_section
)
9162 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
9164 flags
= predef_flags
;
9167 && (flags
& XTENSA_PROP_ALIGN
) == 0
9168 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
9170 /* Always remove entries with zero size and no alignment. */
9171 bytes_to_remove
= entry_size
;
9173 remove_this_rel
= TRUE
;
9176 && ELF32_R_TYPE (offset_rel
->r_info
) == R_XTENSA_32
)
9182 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
9183 bfd_vma old_address
=
9184 (last_irel
->r_addend
9185 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
9186 bfd_vma new_address
=
9187 (offset_rel
->r_addend
9188 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
9189 if (is_full_prop_section
)
9190 old_flags
= bfd_get_32
9191 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
9193 old_flags
= predef_flags
;
9195 if ((ELF32_R_SYM (offset_rel
->r_info
)
9196 == ELF32_R_SYM (last_irel
->r_info
))
9197 && old_address
+ old_size
== new_address
9198 && old_flags
== flags
9199 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
9200 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
9202 /* Fix the old size. */
9203 bfd_put_32 (abfd
, old_size
+ size
,
9204 &contents
[last_irel
->r_offset
+ 4]);
9205 bytes_to_remove
= entry_size
;
9206 remove_this_rel
= TRUE
;
9209 last_irel
= offset_rel
;
9212 last_irel
= offset_rel
;
9215 if (remove_this_rel
)
9217 offset_rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
9218 /* In case this is the last entry, move the relocation offset
9219 to the previous entry, if there is one. */
9220 if (offset_rel
->r_offset
>= bytes_to_remove
)
9221 offset_rel
->r_offset
-= bytes_to_remove
;
9223 offset_rel
->r_offset
= 0;
9226 if (bytes_to_remove
!= 0)
9228 removed_bytes
+= bytes_to_remove
;
9229 if (offset
+ bytes_to_remove
< sec
->size
)
9230 memmove (&contents
[actual_offset
],
9231 &contents
[actual_offset
+ bytes_to_remove
],
9232 sec
->size
- offset
- bytes_to_remove
);
9238 /* Fix up any extra relocations on the last entry. */
9239 for (irel
= next_rel
; irel
< rel_end
; irel
++)
9240 irel
->r_offset
-= removed_bytes
;
9242 /* Clear the removed bytes. */
9243 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
9245 if (sec
->rawsize
== 0)
9246 sec
->rawsize
= sec
->size
;
9247 sec
->size
-= removed_bytes
;
9249 if (xtensa_is_littable_section (sec
))
9251 asection
*sgotloc
= elf_xtensa_hash_table (link_info
)->sgotloc
;
9253 sgotloc
->size
-= removed_bytes
;
9259 release_internal_relocs (sec
, internal_relocs
);
9260 release_contents (sec
, contents
);
9265 /* Third relaxation pass. */
9267 /* Change symbol values to account for removed literals. */
9270 relax_section_symbols (bfd
*abfd
, asection
*sec
)
9272 xtensa_relax_info
*relax_info
;
9273 unsigned int sec_shndx
;
9274 Elf_Internal_Shdr
*symtab_hdr
;
9275 Elf_Internal_Sym
*isymbuf
;
9276 unsigned i
, num_syms
, num_locals
;
9278 relax_info
= get_xtensa_relax_info (sec
);
9279 BFD_ASSERT (relax_info
);
9281 if (!relax_info
->is_relaxable_literal_section
9282 && !relax_info
->is_relaxable_asm_section
)
9285 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
9287 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9288 isymbuf
= retrieve_local_syms (abfd
);
9290 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
9291 num_locals
= symtab_hdr
->sh_info
;
9293 /* Adjust the local symbols defined in this section. */
9294 for (i
= 0; i
< num_locals
; i
++)
9296 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
9298 if (isym
->st_shndx
== sec_shndx
)
9300 text_action
*act
= relax_info
->action_list
.head
;
9301 bfd_vma orig_addr
= isym
->st_value
;
9303 isym
->st_value
-= removed_by_actions (&act
, orig_addr
, FALSE
);
9305 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
9307 removed_by_actions (&act
, orig_addr
+ isym
->st_size
, FALSE
);
9311 /* Now adjust the global symbols defined in this section. */
9312 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
9314 struct elf_link_hash_entry
*sym_hash
;
9316 sym_hash
= elf_sym_hashes (abfd
)[i
];
9318 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
9319 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
9321 if ((sym_hash
->root
.type
== bfd_link_hash_defined
9322 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
9323 && sym_hash
->root
.u
.def
.section
== sec
)
9325 text_action
*act
= relax_info
->action_list
.head
;
9326 bfd_vma orig_addr
= sym_hash
->root
.u
.def
.value
;
9328 sym_hash
->root
.u
.def
.value
-=
9329 removed_by_actions (&act
, orig_addr
, FALSE
);
9331 if (sym_hash
->type
== STT_FUNC
)
9333 removed_by_actions (&act
, orig_addr
+ sym_hash
->size
, FALSE
);
9341 /* "Fix" handling functions, called while performing relocations. */
9344 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
9346 asection
*input_section
,
9350 asection
*sec
, *old_sec
;
9352 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9355 if (r_type
== R_XTENSA_NONE
)
9358 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9362 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
9363 bfd_get_section_limit (input_bfd
, input_section
));
9364 old_sec
= r_reloc_get_section (&r_rel
);
9365 old_offset
= r_rel
.target_offset
;
9367 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
9369 if (r_type
!= R_XTENSA_ASM_EXPAND
)
9371 (*_bfd_error_handler
)
9372 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9373 input_bfd
, input_section
, rel
->r_offset
,
9374 elf_howto_table
[r_type
].name
);
9377 /* Leave it be. Resolution will happen in a later stage. */
9381 sec
= fix
->target_sec
;
9382 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
9383 - (old_sec
->output_offset
+ old_offset
));
9390 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
9392 asection
*input_section
,
9394 bfd_vma
*relocationp
)
9397 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9401 if (r_type
== R_XTENSA_NONE
)
9404 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9408 sec
= fix
->target_sec
;
9410 fixup_diff
= rel
->r_addend
;
9411 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
9413 bfd_vma inplace_val
;
9414 BFD_ASSERT (fix
->src_offset
9415 < bfd_get_section_limit (input_bfd
, input_section
));
9416 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
9417 fixup_diff
+= inplace_val
;
9420 *relocationp
= (sec
->output_section
->vma
9421 + sec
->output_offset
9422 + fix
->target_offset
- fixup_diff
);
9426 /* Miscellaneous utility functions.... */
9429 elf_xtensa_get_plt_section (struct bfd_link_info
*info
, int chunk
)
9431 struct elf_xtensa_link_hash_table
*htab
;
9437 htab
= elf_xtensa_hash_table (info
);
9441 dynobj
= elf_hash_table (info
)->dynobj
;
9442 sprintf (plt_name
, ".plt.%u", chunk
);
9443 return bfd_get_section_by_name (dynobj
, plt_name
);
9448 elf_xtensa_get_gotplt_section (struct bfd_link_info
*info
, int chunk
)
9450 struct elf_xtensa_link_hash_table
*htab
;
9456 htab
= elf_xtensa_hash_table (info
);
9457 return htab
->sgotplt
;
9460 dynobj
= elf_hash_table (info
)->dynobj
;
9461 sprintf (got_name
, ".got.plt.%u", chunk
);
9462 return bfd_get_section_by_name (dynobj
, got_name
);
9466 /* Get the input section for a given symbol index.
9468 . a section symbol, return the section;
9469 . a common symbol, return the common section;
9470 . an undefined symbol, return the undefined section;
9471 . an indirect symbol, follow the links;
9472 . an absolute value, return the absolute section. */
9475 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
9477 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9478 asection
*target_sec
= NULL
;
9479 if (r_symndx
< symtab_hdr
->sh_info
)
9481 Elf_Internal_Sym
*isymbuf
;
9482 unsigned int section_index
;
9484 isymbuf
= retrieve_local_syms (abfd
);
9485 section_index
= isymbuf
[r_symndx
].st_shndx
;
9487 if (section_index
== SHN_UNDEF
)
9488 target_sec
= bfd_und_section_ptr
;
9489 else if (section_index
> 0 && section_index
< SHN_LORESERVE
)
9490 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
9491 else if (section_index
== SHN_ABS
)
9492 target_sec
= bfd_abs_section_ptr
;
9493 else if (section_index
== SHN_COMMON
)
9494 target_sec
= bfd_com_section_ptr
;
9501 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9502 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
9504 while (h
->root
.type
== bfd_link_hash_indirect
9505 || h
->root
.type
== bfd_link_hash_warning
)
9506 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9508 switch (h
->root
.type
)
9510 case bfd_link_hash_defined
:
9511 case bfd_link_hash_defweak
:
9512 target_sec
= h
->root
.u
.def
.section
;
9514 case bfd_link_hash_common
:
9515 target_sec
= bfd_com_section_ptr
;
9517 case bfd_link_hash_undefined
:
9518 case bfd_link_hash_undefweak
:
9519 target_sec
= bfd_und_section_ptr
;
9521 default: /* New indirect warning. */
9522 target_sec
= bfd_und_section_ptr
;
9530 static struct elf_link_hash_entry
*
9531 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
9534 struct elf_link_hash_entry
*h
;
9535 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9537 if (r_symndx
< symtab_hdr
->sh_info
)
9540 indx
= r_symndx
- symtab_hdr
->sh_info
;
9541 h
= elf_sym_hashes (abfd
)[indx
];
9542 while (h
->root
.type
== bfd_link_hash_indirect
9543 || h
->root
.type
== bfd_link_hash_warning
)
9544 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9549 /* Get the section-relative offset for a symbol number. */
9552 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
9554 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9557 if (r_symndx
< symtab_hdr
->sh_info
)
9559 Elf_Internal_Sym
*isymbuf
;
9560 isymbuf
= retrieve_local_syms (abfd
);
9561 offset
= isymbuf
[r_symndx
].st_value
;
9565 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9566 struct elf_link_hash_entry
*h
=
9567 elf_sym_hashes (abfd
)[indx
];
9569 while (h
->root
.type
== bfd_link_hash_indirect
9570 || h
->root
.type
== bfd_link_hash_warning
)
9571 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9572 if (h
->root
.type
== bfd_link_hash_defined
9573 || h
->root
.type
== bfd_link_hash_defweak
)
9574 offset
= h
->root
.u
.def
.value
;
9581 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
9583 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
9584 struct elf_link_hash_entry
*h
;
9586 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
9587 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
9594 pcrel_reloc_fits (xtensa_opcode opc
,
9596 bfd_vma self_address
,
9597 bfd_vma dest_address
)
9599 xtensa_isa isa
= xtensa_default_isa
;
9600 uint32 valp
= dest_address
;
9601 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
9602 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
9609 xtensa_is_property_section (asection
*sec
)
9611 if (xtensa_is_insntable_section (sec
)
9612 || xtensa_is_littable_section (sec
)
9613 || xtensa_is_proptable_section (sec
))
9621 xtensa_is_insntable_section (asection
*sec
)
9623 if (CONST_STRNEQ (sec
->name
, XTENSA_INSN_SEC_NAME
)
9624 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.x."))
9632 xtensa_is_littable_section (asection
*sec
)
9634 if (CONST_STRNEQ (sec
->name
, XTENSA_LIT_SEC_NAME
)
9635 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.p."))
9643 xtensa_is_proptable_section (asection
*sec
)
9645 if (CONST_STRNEQ (sec
->name
, XTENSA_PROP_SEC_NAME
)
9646 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.prop."))
9654 internal_reloc_compare (const void *ap
, const void *bp
)
9656 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9657 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9659 if (a
->r_offset
!= b
->r_offset
)
9660 return (a
->r_offset
- b
->r_offset
);
9662 /* We don't need to sort on these criteria for correctness,
9663 but enforcing a more strict ordering prevents unstable qsort
9664 from behaving differently with different implementations.
9665 Without the code below we get correct but different results
9666 on Solaris 2.7 and 2.8. We would like to always produce the
9667 same results no matter the host. */
9669 if (a
->r_info
!= b
->r_info
)
9670 return (a
->r_info
- b
->r_info
);
9672 return (a
->r_addend
- b
->r_addend
);
9677 internal_reloc_matches (const void *ap
, const void *bp
)
9679 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9680 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9682 /* Check if one entry overlaps with the other; this shouldn't happen
9683 except when searching for a match. */
9684 return (a
->r_offset
- b
->r_offset
);
9688 /* Predicate function used to look up a section in a particular group. */
9691 match_section_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
, void *inf
)
9693 const char *gname
= inf
;
9694 const char *group_name
= elf_group_name (sec
);
9696 return (group_name
== gname
9697 || (group_name
!= NULL
9699 && strcmp (group_name
, gname
) == 0));
9703 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
9706 xtensa_get_property_section (asection
*sec
, const char *base_name
)
9708 const char *suffix
, *group_name
;
9709 char *prop_sec_name
;
9712 group_name
= elf_group_name (sec
);
9715 suffix
= strrchr (sec
->name
, '.');
9716 if (suffix
== sec
->name
)
9718 prop_sec_name
= (char *) bfd_malloc (strlen (base_name
) + 1
9719 + (suffix
? strlen (suffix
) : 0));
9720 strcpy (prop_sec_name
, base_name
);
9722 strcat (prop_sec_name
, suffix
);
9724 else if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
9726 char *linkonce_kind
= 0;
9728 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
9729 linkonce_kind
= "x.";
9730 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
9731 linkonce_kind
= "p.";
9732 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
9733 linkonce_kind
= "prop.";
9737 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
9738 + strlen (linkonce_kind
) + 1);
9739 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
9740 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
9742 suffix
= sec
->name
+ linkonce_len
;
9743 /* For backward compatibility, replace "t." instead of inserting
9744 the new linkonce_kind (but not for "prop" sections). */
9745 if (CONST_STRNEQ (suffix
, "t.") && linkonce_kind
[1] == '.')
9747 strcat (prop_sec_name
+ linkonce_len
, suffix
);
9750 prop_sec_name
= strdup (base_name
);
9752 /* Check if the section already exists. */
9753 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
9754 match_section_group
,
9755 (void *) group_name
);
9756 /* If not, create it. */
9759 flagword flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
);
9760 flags
|= (bfd_get_section_flags (sec
->owner
, sec
)
9761 & (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
));
9763 prop_sec
= bfd_make_section_anyway_with_flags
9764 (sec
->owner
, strdup (prop_sec_name
), flags
);
9768 elf_group_name (prop_sec
) = group_name
;
9771 free (prop_sec_name
);
9777 xtensa_get_property_predef_flags (asection
*sec
)
9779 if (xtensa_is_insntable_section (sec
))
9780 return (XTENSA_PROP_INSN
9781 | XTENSA_PROP_NO_TRANSFORM
9782 | XTENSA_PROP_INSN_NO_REORDER
);
9784 if (xtensa_is_littable_section (sec
))
9785 return (XTENSA_PROP_LITERAL
9786 | XTENSA_PROP_NO_TRANSFORM
9787 | XTENSA_PROP_INSN_NO_REORDER
);
9793 /* Other functions called directly by the linker. */
9796 xtensa_callback_required_dependence (bfd
*abfd
,
9798 struct bfd_link_info
*link_info
,
9799 deps_callback_t callback
,
9802 Elf_Internal_Rela
*internal_relocs
;
9805 bfd_boolean ok
= TRUE
;
9806 bfd_size_type sec_size
;
9808 sec_size
= bfd_get_section_limit (abfd
, sec
);
9810 /* ".plt*" sections have no explicit relocations but they contain L32R
9811 instructions that reference the corresponding ".got.plt*" sections. */
9812 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
9813 && CONST_STRNEQ (sec
->name
, ".plt"))
9817 /* Find the corresponding ".got.plt*" section. */
9818 if (sec
->name
[4] == '\0')
9819 sgotplt
= bfd_get_section_by_name (sec
->owner
, ".got.plt");
9825 BFD_ASSERT (sec
->name
[4] == '.');
9826 chunk
= strtol (&sec
->name
[5], NULL
, 10);
9828 sprintf (got_name
, ".got.plt.%u", chunk
);
9829 sgotplt
= bfd_get_section_by_name (sec
->owner
, got_name
);
9831 BFD_ASSERT (sgotplt
);
9833 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9834 section referencing a literal at the very beginning of
9835 ".got.plt". This is very close to the real dependence, anyway. */
9836 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
9839 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9840 when building uclibc, which runs "ld -b binary /dev/null". */
9841 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
9844 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9845 link_info
->keep_memory
);
9846 if (internal_relocs
== NULL
9847 || sec
->reloc_count
== 0)
9850 /* Cache the contents for the duration of this scan. */
9851 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9852 if (contents
== NULL
&& sec_size
!= 0)
9858 if (!xtensa_default_isa
)
9859 xtensa_default_isa
= xtensa_isa_init (0, 0);
9861 for (i
= 0; i
< sec
->reloc_count
; i
++)
9863 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
9864 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
9867 asection
*target_sec
;
9868 bfd_vma target_offset
;
9870 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
9873 /* L32Rs must be local to the input file. */
9874 if (r_reloc_is_defined (&l32r_rel
))
9876 target_sec
= r_reloc_get_section (&l32r_rel
);
9877 target_offset
= l32r_rel
.target_offset
;
9879 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
9885 release_internal_relocs (sec
, internal_relocs
);
9886 release_contents (sec
, contents
);
9890 /* The default literal sections should always be marked as "code" (i.e.,
9891 SHF_EXECINSTR). This is particularly important for the Linux kernel
9892 module loader so that the literals are not placed after the text. */
9893 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
9895 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9896 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9897 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9898 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE
, 0 },
9899 { NULL
, 0, 0, 0, 0 }
9903 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9904 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9905 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9906 #define TARGET_BIG_NAME "elf32-xtensa-be"
9907 #define ELF_ARCH bfd_arch_xtensa
9909 #define ELF_MACHINE_CODE EM_XTENSA
9910 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9913 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9914 #else /* !XCHAL_HAVE_MMU */
9915 #define ELF_MAXPAGESIZE 1
9916 #endif /* !XCHAL_HAVE_MMU */
9917 #endif /* ELF_ARCH */
9919 #define elf_backend_can_gc_sections 1
9920 #define elf_backend_can_refcount 1
9921 #define elf_backend_plt_readonly 1
9922 #define elf_backend_got_header_size 4
9923 #define elf_backend_want_dynbss 0
9924 #define elf_backend_want_got_plt 1
9926 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9928 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9929 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9930 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9931 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9932 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9933 #define bfd_elf32_bfd_reloc_name_lookup \
9934 elf_xtensa_reloc_name_lookup
9935 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9936 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9938 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9939 #define elf_backend_check_relocs elf_xtensa_check_relocs
9940 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9941 #define elf_backend_discard_info elf_xtensa_discard_info
9942 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9943 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9944 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9945 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9946 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9947 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9948 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9949 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9950 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9951 #define elf_backend_object_p elf_xtensa_object_p
9952 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9953 #define elf_backend_relocate_section elf_xtensa_relocate_section
9954 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9955 #define elf_backend_omit_section_dynsym \
9956 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9957 #define elf_backend_special_sections elf_xtensa_special_sections
9958 #define elf_backend_action_discarded elf_xtensa_action_discarded
9960 #include "elf32-target.h"