1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 char *shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= (char *) i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 (*_bfd_error_handler
)
295 (_("%s: invalid string offset %u >= %lu for section `%s'"),
296 bfd_archive_filename (abfd
), strindex
, (unsigned long) hdr
->sh_size
,
297 ((shindex
== elf_elfheader(abfd
)->e_shstrndx
298 && strindex
== hdr
->sh_name
)
300 : elf_string_from_elf_strtab (abfd
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_local_sym_name (bfd
*abfd
, Elf_Internal_Sym
*isym
)
410 unsigned int iname
= isym
->st_name
;
411 unsigned int shindex
= elf_tdata (abfd
)->symtab_hdr
.sh_link
;
412 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 return bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
425 typedef union elf_internal_group
{
426 Elf_Internal_Shdr
*shdr
;
428 } Elf_Internal_Group
;
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
434 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
436 Elf_Internal_Shdr
*hdr
;
437 unsigned char esym
[sizeof (Elf64_External_Sym
)];
438 Elf_External_Sym_Shndx eshndx
;
439 Elf_Internal_Sym isym
;
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
445 /* Go read the symbol. */
446 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
447 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
448 &isym
, esym
, &eshndx
) == NULL
)
451 return bfd_elf_local_sym_name (abfd
, &isym
);
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
457 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
459 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
465 unsigned int i
, shnum
;
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum
= elf_numsections (abfd
);
471 for (i
= 0; i
< shnum
; i
++)
473 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
474 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
479 num_group
= (unsigned) -1;
480 elf_tdata (abfd
)->num_group
= num_group
;
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
487 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
488 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
492 for (i
= 0; i
< shnum
; i
++)
494 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
495 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
498 Elf_Internal_Group
*dest
;
500 /* Add to list of sections. */
501 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest
) >= 4);
506 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
507 shdr
->contents
= bfd_alloc (abfd
, amt
);
508 if (shdr
->contents
== NULL
509 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
510 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
518 src
= shdr
->contents
+ shdr
->sh_size
;
519 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
526 idx
= H_GET_32 (abfd
, src
);
527 if (src
== shdr
->contents
)
530 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
531 shdr
->bfd_section
->flags
532 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
537 ((*_bfd_error_handler
)
538 (_("%s: invalid SHT_GROUP entry"),
539 bfd_archive_filename (abfd
)));
542 dest
->shdr
= elf_elfsections (abfd
)[idx
];
549 if (num_group
!= (unsigned) -1)
553 for (i
= 0; i
< num_group
; i
++)
555 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
556 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
557 unsigned int n_elt
= shdr
->sh_size
/ 4;
559 /* Look through this group's sections to see if current
560 section is a member. */
562 if ((++idx
)->shdr
== hdr
)
566 /* We are a member of this group. Go looking through
567 other members to see if any others are linked via
569 idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 n_elt
= shdr
->sh_size
/ 4;
572 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
573 && elf_next_in_group (s
) != NULL
)
577 /* Snarf the group name from other member, and
578 insert current section in circular list. */
579 elf_group_name (newsect
) = elf_group_name (s
);
580 elf_next_in_group (newsect
) = elf_next_in_group (s
);
581 elf_next_in_group (s
) = newsect
;
587 gname
= group_signature (abfd
, shdr
);
590 elf_group_name (newsect
) = gname
;
592 /* Start a circular list with one element. */
593 elf_next_in_group (newsect
) = newsect
;
596 /* If the group section has been created, point to the
598 if (shdr
->bfd_section
!= NULL
)
599 elf_next_in_group (shdr
->bfd_section
) = newsect
;
607 if (elf_group_name (newsect
) == NULL
)
609 (*_bfd_error_handler
) (_("%s: no group info for section %s"),
610 bfd_archive_filename (abfd
), newsect
->name
);
616 bfd_elf_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*group
)
618 asection
*first
= elf_next_in_group (group
);
623 s
->output_section
= bfd_abs_section_ptr
;
624 s
= elf_next_in_group (s
);
625 /* These lists are circular. */
632 /* Make a BFD section from an ELF section. We store a pointer to the
633 BFD section in the bfd_section field of the header. */
636 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
637 Elf_Internal_Shdr
*hdr
,
642 const struct elf_backend_data
*bed
;
644 if (hdr
->bfd_section
!= NULL
)
646 BFD_ASSERT (strcmp (name
,
647 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
651 newsect
= bfd_make_section_anyway (abfd
, name
);
655 hdr
->bfd_section
= newsect
;
656 elf_section_data (newsect
)->this_hdr
= *hdr
;
658 /* Always use the real type/flags. */
659 elf_section_type (newsect
) = hdr
->sh_type
;
660 elf_section_flags (newsect
) = hdr
->sh_flags
;
662 newsect
->filepos
= hdr
->sh_offset
;
664 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
665 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
666 || ! bfd_set_section_alignment (abfd
, newsect
,
667 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
670 flags
= SEC_NO_FLAGS
;
671 if (hdr
->sh_type
!= SHT_NOBITS
)
672 flags
|= SEC_HAS_CONTENTS
;
673 if (hdr
->sh_type
== SHT_GROUP
)
674 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
675 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
678 if (hdr
->sh_type
!= SHT_NOBITS
)
681 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
682 flags
|= SEC_READONLY
;
683 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
685 else if ((flags
& SEC_LOAD
) != 0)
687 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
690 newsect
->entsize
= hdr
->sh_entsize
;
691 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
692 flags
|= SEC_STRINGS
;
694 if (hdr
->sh_flags
& SHF_GROUP
)
695 if (!setup_group (abfd
, hdr
, newsect
))
697 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
698 flags
|= SEC_THREAD_LOCAL
;
700 /* The debugging sections appear to be recognized only by name, not
703 static const char *debug_sec_names
[] =
712 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
713 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
717 flags
|= SEC_DEBUGGING
;
720 /* As a GNU extension, if the name begins with .gnu.linkonce, we
721 only link a single copy of the section. This is used to support
722 g++. g++ will emit each template expansion in its own section.
723 The symbols will be defined as weak, so that multiple definitions
724 are permitted. The GNU linker extension is to actually discard
725 all but one of the sections. */
726 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
727 && elf_next_in_group (newsect
) == NULL
)
728 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
730 bed
= get_elf_backend_data (abfd
);
731 if (bed
->elf_backend_section_flags
)
732 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
735 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
738 if ((flags
& SEC_ALLOC
) != 0)
740 Elf_Internal_Phdr
*phdr
;
743 /* Look through the phdrs to see if we need to adjust the lma.
744 If all the p_paddr fields are zero, we ignore them, since
745 some ELF linkers produce such output. */
746 phdr
= elf_tdata (abfd
)->phdr
;
747 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
749 if (phdr
->p_paddr
!= 0)
752 if (i
< elf_elfheader (abfd
)->e_phnum
)
754 phdr
= elf_tdata (abfd
)->phdr
;
755 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
757 /* This section is part of this segment if its file
758 offset plus size lies within the segment's memory
759 span and, if the section is loaded, the extent of the
760 loaded data lies within the extent of the segment.
762 Note - we used to check the p_paddr field as well, and
763 refuse to set the LMA if it was 0. This is wrong
764 though, as a perfectly valid initialised segment can
765 have a p_paddr of zero. Some architectures, eg ARM,
766 place special significance on the address 0 and
767 executables need to be able to have a segment which
768 covers this address. */
769 if (phdr
->p_type
== PT_LOAD
770 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
771 && (hdr
->sh_offset
+ hdr
->sh_size
772 <= phdr
->p_offset
+ phdr
->p_memsz
)
773 && ((flags
& SEC_LOAD
) == 0
774 || (hdr
->sh_offset
+ hdr
->sh_size
775 <= phdr
->p_offset
+ phdr
->p_filesz
)))
777 if ((flags
& SEC_LOAD
) == 0)
778 newsect
->lma
= (phdr
->p_paddr
779 + hdr
->sh_addr
- phdr
->p_vaddr
);
781 /* We used to use the same adjustment for SEC_LOAD
782 sections, but that doesn't work if the segment
783 is packed with code from multiple VMAs.
784 Instead we calculate the section LMA based on
785 the segment LMA. It is assumed that the
786 segment will contain sections with contiguous
787 LMAs, even if the VMAs are not. */
788 newsect
->lma
= (phdr
->p_paddr
789 + hdr
->sh_offset
- phdr
->p_offset
);
791 /* With contiguous segments, we can't tell from file
792 offsets whether a section with zero size should
793 be placed at the end of one segment or the
794 beginning of the next. Decide based on vaddr. */
795 if (hdr
->sh_addr
>= phdr
->p_vaddr
796 && (hdr
->sh_addr
+ hdr
->sh_size
797 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
812 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
815 Helper functions for GDB to locate the string tables.
816 Since BFD hides string tables from callers, GDB needs to use an
817 internal hook to find them. Sun's .stabstr, in particular,
818 isn't even pointed to by the .stab section, so ordinary
819 mechanisms wouldn't work to find it, even if we had some.
822 struct elf_internal_shdr
*
823 bfd_elf_find_section (bfd
*abfd
, char *name
)
825 Elf_Internal_Shdr
**i_shdrp
;
830 i_shdrp
= elf_elfsections (abfd
);
833 shstrtab
= bfd_elf_get_str_section (abfd
,
834 elf_elfheader (abfd
)->e_shstrndx
);
835 if (shstrtab
!= NULL
)
837 max
= elf_numsections (abfd
);
838 for (i
= 1; i
< max
; i
++)
839 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
846 const char *const bfd_elf_section_type_names
[] = {
847 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
848 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
849 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
852 /* ELF relocs are against symbols. If we are producing relocatable
853 output, and the reloc is against an external symbol, and nothing
854 has given us any additional addend, the resulting reloc will also
855 be against the same symbol. In such a case, we don't want to
856 change anything about the way the reloc is handled, since it will
857 all be done at final link time. Rather than put special case code
858 into bfd_perform_relocation, all the reloc types use this howto
859 function. It just short circuits the reloc if producing
860 relocatable output against an external symbol. */
862 bfd_reloc_status_type
863 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
864 arelent
*reloc_entry
,
866 void *data ATTRIBUTE_UNUSED
,
867 asection
*input_section
,
869 char **error_message ATTRIBUTE_UNUSED
)
871 if (output_bfd
!= NULL
872 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
873 && (! reloc_entry
->howto
->partial_inplace
874 || reloc_entry
->addend
== 0))
876 reloc_entry
->address
+= input_section
->output_offset
;
880 return bfd_reloc_continue
;
883 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
886 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
889 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
890 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
893 /* Finish SHF_MERGE section merging. */
896 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
898 if (!is_elf_hash_table (info
->hash
))
900 if (elf_hash_table (info
)->merge_info
)
901 _bfd_merge_sections (abfd
, elf_hash_table (info
)->merge_info
,
902 merge_sections_remove_hook
);
907 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
909 sec
->output_section
= bfd_abs_section_ptr
;
910 sec
->output_offset
= sec
->vma
;
911 if (!is_elf_hash_table (info
->hash
))
914 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
917 /* Copy the program header and other data from one object module to
921 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
923 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
924 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
927 BFD_ASSERT (!elf_flags_init (obfd
)
928 || (elf_elfheader (obfd
)->e_flags
929 == elf_elfheader (ibfd
)->e_flags
));
931 elf_gp (obfd
) = elf_gp (ibfd
);
932 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
933 elf_flags_init (obfd
) = TRUE
;
937 /* Print out the program headers. */
940 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
943 Elf_Internal_Phdr
*p
;
945 bfd_byte
*dynbuf
= NULL
;
947 p
= elf_tdata (abfd
)->phdr
;
952 fprintf (f
, _("\nProgram Header:\n"));
953 c
= elf_elfheader (abfd
)->e_phnum
;
954 for (i
= 0; i
< c
; i
++, p
++)
961 case PT_NULL
: pt
= "NULL"; break;
962 case PT_LOAD
: pt
= "LOAD"; break;
963 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
964 case PT_INTERP
: pt
= "INTERP"; break;
965 case PT_NOTE
: pt
= "NOTE"; break;
966 case PT_SHLIB
: pt
= "SHLIB"; break;
967 case PT_PHDR
: pt
= "PHDR"; break;
968 case PT_TLS
: pt
= "TLS"; break;
969 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
970 case PT_GNU_STACK
: pt
= "STACK"; break;
971 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
973 fprintf (f
, "%8s off 0x", pt
);
974 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
975 fprintf (f
, " vaddr 0x");
976 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
977 fprintf (f
, " paddr 0x");
978 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
979 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
980 fprintf (f
, " filesz 0x");
981 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
982 fprintf (f
, " memsz 0x");
983 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
984 fprintf (f
, " flags %c%c%c",
985 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
986 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
987 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
988 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
989 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
994 s
= bfd_get_section_by_name (abfd
, ".dynamic");
998 unsigned long shlink
;
999 bfd_byte
*extdyn
, *extdynend
;
1001 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1003 fprintf (f
, _("\nDynamic Section:\n"));
1005 dynbuf
= bfd_malloc (s
->_raw_size
);
1008 if (! bfd_get_section_contents (abfd
, s
, dynbuf
, 0, s
->_raw_size
))
1011 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1014 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1016 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1017 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1020 extdynend
= extdyn
+ s
->_raw_size
;
1021 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1023 Elf_Internal_Dyn dyn
;
1026 bfd_boolean stringp
;
1028 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1030 if (dyn
.d_tag
== DT_NULL
)
1037 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1041 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1042 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1043 case DT_PLTGOT
: name
= "PLTGOT"; break;
1044 case DT_HASH
: name
= "HASH"; break;
1045 case DT_STRTAB
: name
= "STRTAB"; break;
1046 case DT_SYMTAB
: name
= "SYMTAB"; break;
1047 case DT_RELA
: name
= "RELA"; break;
1048 case DT_RELASZ
: name
= "RELASZ"; break;
1049 case DT_RELAENT
: name
= "RELAENT"; break;
1050 case DT_STRSZ
: name
= "STRSZ"; break;
1051 case DT_SYMENT
: name
= "SYMENT"; break;
1052 case DT_INIT
: name
= "INIT"; break;
1053 case DT_FINI
: name
= "FINI"; break;
1054 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1055 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1056 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1057 case DT_REL
: name
= "REL"; break;
1058 case DT_RELSZ
: name
= "RELSZ"; break;
1059 case DT_RELENT
: name
= "RELENT"; break;
1060 case DT_PLTREL
: name
= "PLTREL"; break;
1061 case DT_DEBUG
: name
= "DEBUG"; break;
1062 case DT_TEXTREL
: name
= "TEXTREL"; break;
1063 case DT_JMPREL
: name
= "JMPREL"; break;
1064 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1065 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1066 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1067 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1068 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1069 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1070 case DT_FLAGS
: name
= "FLAGS"; break;
1071 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1072 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1073 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1074 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1075 case DT_MOVEENT
: name
= "MOVEENT"; break;
1076 case DT_MOVESZ
: name
= "MOVESZ"; break;
1077 case DT_FEATURE
: name
= "FEATURE"; break;
1078 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1079 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1080 case DT_SYMINENT
: name
= "SYMINENT"; break;
1081 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1082 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1083 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1084 case DT_PLTPAD
: name
= "PLTPAD"; break;
1085 case DT_MOVETAB
: name
= "MOVETAB"; break;
1086 case DT_SYMINFO
: name
= "SYMINFO"; break;
1087 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1088 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1089 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1090 case DT_VERSYM
: name
= "VERSYM"; break;
1091 case DT_VERDEF
: name
= "VERDEF"; break;
1092 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1093 case DT_VERNEED
: name
= "VERNEED"; break;
1094 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1095 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1096 case DT_USED
: name
= "USED"; break;
1097 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1100 fprintf (f
, " %-11s ", name
);
1102 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1106 unsigned int tagv
= dyn
.d_un
.d_val
;
1108 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1111 fprintf (f
, "%s", string
);
1120 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1121 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1123 if (! _bfd_elf_slurp_version_tables (abfd
))
1127 if (elf_dynverdef (abfd
) != 0)
1129 Elf_Internal_Verdef
*t
;
1131 fprintf (f
, _("\nVersion definitions:\n"));
1132 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1134 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1135 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1136 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1138 Elf_Internal_Verdaux
*a
;
1141 for (a
= t
->vd_auxptr
->vda_nextptr
;
1144 fprintf (f
, "%s ", a
->vda_nodename
);
1150 if (elf_dynverref (abfd
) != 0)
1152 Elf_Internal_Verneed
*t
;
1154 fprintf (f
, _("\nVersion References:\n"));
1155 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1157 Elf_Internal_Vernaux
*a
;
1159 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1160 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1161 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1162 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1174 /* Display ELF-specific fields of a symbol. */
1177 bfd_elf_print_symbol (bfd
*abfd
,
1180 bfd_print_symbol_type how
)
1185 case bfd_print_symbol_name
:
1186 fprintf (file
, "%s", symbol
->name
);
1188 case bfd_print_symbol_more
:
1189 fprintf (file
, "elf ");
1190 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1191 fprintf (file
, " %lx", (long) symbol
->flags
);
1193 case bfd_print_symbol_all
:
1195 const char *section_name
;
1196 const char *name
= NULL
;
1197 const struct elf_backend_data
*bed
;
1198 unsigned char st_other
;
1201 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1203 bed
= get_elf_backend_data (abfd
);
1204 if (bed
->elf_backend_print_symbol_all
)
1205 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1209 name
= symbol
->name
;
1210 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1213 fprintf (file
, " %s\t", section_name
);
1214 /* Print the "other" value for a symbol. For common symbols,
1215 we've already printed the size; now print the alignment.
1216 For other symbols, we have no specified alignment, and
1217 we've printed the address; now print the size. */
1218 if (bfd_is_com_section (symbol
->section
))
1219 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1221 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1222 bfd_fprintf_vma (abfd
, file
, val
);
1224 /* If we have version information, print it. */
1225 if (elf_tdata (abfd
)->dynversym_section
!= 0
1226 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1227 || elf_tdata (abfd
)->dynverref_section
!= 0))
1229 unsigned int vernum
;
1230 const char *version_string
;
1232 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1235 version_string
= "";
1236 else if (vernum
== 1)
1237 version_string
= "Base";
1238 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1240 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1243 Elf_Internal_Verneed
*t
;
1245 version_string
= "";
1246 for (t
= elf_tdata (abfd
)->verref
;
1250 Elf_Internal_Vernaux
*a
;
1252 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1254 if (a
->vna_other
== vernum
)
1256 version_string
= a
->vna_nodename
;
1263 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1264 fprintf (file
, " %-11s", version_string
);
1269 fprintf (file
, " (%s)", version_string
);
1270 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1275 /* If the st_other field is not zero, print it. */
1276 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1281 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1282 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1283 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1285 /* Some other non-defined flags are also present, so print
1287 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1290 fprintf (file
, " %s", name
);
1296 /* Create an entry in an ELF linker hash table. */
1298 struct bfd_hash_entry
*
1299 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1300 struct bfd_hash_table
*table
,
1303 /* Allocate the structure if it has not already been allocated by a
1307 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1312 /* Call the allocation method of the superclass. */
1313 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1316 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1317 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1319 /* Set local fields. */
1322 ret
->dynstr_index
= 0;
1323 ret
->elf_hash_value
= 0;
1324 ret
->weakdef
= NULL
;
1325 ret
->verinfo
.verdef
= NULL
;
1326 ret
->vtable_entries_size
= 0;
1327 ret
->vtable_entries_used
= NULL
;
1328 ret
->vtable_parent
= NULL
;
1329 ret
->got
= htab
->init_refcount
;
1330 ret
->plt
= htab
->init_refcount
;
1332 ret
->type
= STT_NOTYPE
;
1334 /* Assume that we have been called by a non-ELF symbol reader.
1335 This flag is then reset by the code which reads an ELF input
1336 file. This ensures that a symbol created by a non-ELF symbol
1337 reader will have the flag set correctly. */
1338 ret
->elf_link_hash_flags
= ELF_LINK_NON_ELF
;
1344 /* Copy data from an indirect symbol to its direct symbol, hiding the
1345 old indirect symbol. Also used for copying flags to a weakdef. */
1348 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1349 struct elf_link_hash_entry
*dir
,
1350 struct elf_link_hash_entry
*ind
)
1353 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1355 /* Copy down any references that we may have already seen to the
1356 symbol which just became indirect. */
1358 dir
->elf_link_hash_flags
1359 |= ind
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF
1363 | ELF_LINK_HASH_NEEDS_PLT
1364 | ELF_LINK_POINTER_EQUALITY_NEEDED
);
1366 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1369 /* Copy over the global and procedure linkage table refcount entries.
1370 These may have been already set up by a check_relocs routine. */
1371 tmp
= dir
->got
.refcount
;
1372 if (tmp
< lowest_valid
)
1374 dir
->got
.refcount
= ind
->got
.refcount
;
1375 ind
->got
.refcount
= tmp
;
1378 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1380 tmp
= dir
->plt
.refcount
;
1381 if (tmp
< lowest_valid
)
1383 dir
->plt
.refcount
= ind
->plt
.refcount
;
1384 ind
->plt
.refcount
= tmp
;
1387 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1389 if (dir
->dynindx
== -1)
1391 dir
->dynindx
= ind
->dynindx
;
1392 dir
->dynstr_index
= ind
->dynstr_index
;
1394 ind
->dynstr_index
= 0;
1397 BFD_ASSERT (ind
->dynindx
== -1);
1401 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1402 struct elf_link_hash_entry
*h
,
1403 bfd_boolean force_local
)
1405 h
->plt
= elf_hash_table (info
)->init_offset
;
1406 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1409 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
1410 if (h
->dynindx
!= -1)
1413 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1419 /* Initialize an ELF linker hash table. */
1422 _bfd_elf_link_hash_table_init
1423 (struct elf_link_hash_table
*table
,
1425 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1426 struct bfd_hash_table
*,
1431 table
->dynamic_sections_created
= FALSE
;
1432 table
->dynobj
= NULL
;
1433 /* Make sure can_refcount is extended to the width and signedness of
1434 init_refcount before we subtract one from it. */
1435 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1436 table
->init_refcount
.refcount
-= 1;
1437 table
->init_offset
.offset
= -(bfd_vma
) 1;
1438 /* The first dynamic symbol is a dummy. */
1439 table
->dynsymcount
= 1;
1440 table
->dynstr
= NULL
;
1441 table
->bucketcount
= 0;
1442 table
->needed
= NULL
;
1444 table
->stab_info
= NULL
;
1445 table
->merge_info
= NULL
;
1446 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1447 table
->dynlocal
= NULL
;
1448 table
->runpath
= NULL
;
1449 table
->tls_sec
= NULL
;
1450 table
->tls_size
= 0;
1451 table
->loaded
= NULL
;
1453 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1454 table
->root
.type
= bfd_link_elf_hash_table
;
1459 /* Create an ELF linker hash table. */
1461 struct bfd_link_hash_table
*
1462 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1464 struct elf_link_hash_table
*ret
;
1465 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1467 ret
= bfd_malloc (amt
);
1471 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1480 /* This is a hook for the ELF emulation code in the generic linker to
1481 tell the backend linker what file name to use for the DT_NEEDED
1482 entry for a dynamic object. */
1485 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1487 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1488 && bfd_get_format (abfd
) == bfd_object
)
1489 elf_dt_name (abfd
) = name
;
1493 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1495 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1496 && bfd_get_format (abfd
) == bfd_object
)
1497 elf_dyn_lib_class (abfd
) = lib_class
;
1500 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1501 the linker ELF emulation code. */
1503 struct bfd_link_needed_list
*
1504 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1505 struct bfd_link_info
*info
)
1507 if (! is_elf_hash_table (info
->hash
))
1509 return elf_hash_table (info
)->needed
;
1512 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1513 hook for the linker ELF emulation code. */
1515 struct bfd_link_needed_list
*
1516 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1517 struct bfd_link_info
*info
)
1519 if (! is_elf_hash_table (info
->hash
))
1521 return elf_hash_table (info
)->runpath
;
1524 /* Get the name actually used for a dynamic object for a link. This
1525 is the SONAME entry if there is one. Otherwise, it is the string
1526 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1529 bfd_elf_get_dt_soname (bfd
*abfd
)
1531 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1532 && bfd_get_format (abfd
) == bfd_object
)
1533 return elf_dt_name (abfd
);
1537 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1538 the ELF linker emulation code. */
1541 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1542 struct bfd_link_needed_list
**pneeded
)
1545 bfd_byte
*dynbuf
= NULL
;
1547 unsigned long shlink
;
1548 bfd_byte
*extdyn
, *extdynend
;
1550 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1554 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1555 || bfd_get_format (abfd
) != bfd_object
)
1558 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1559 if (s
== NULL
|| s
->_raw_size
== 0)
1562 dynbuf
= bfd_malloc (s
->_raw_size
);
1566 if (! bfd_get_section_contents (abfd
, s
, dynbuf
, 0, s
->_raw_size
))
1569 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1573 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1575 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1576 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1579 extdynend
= extdyn
+ s
->_raw_size
;
1580 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1582 Elf_Internal_Dyn dyn
;
1584 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1586 if (dyn
.d_tag
== DT_NULL
)
1589 if (dyn
.d_tag
== DT_NEEDED
)
1592 struct bfd_link_needed_list
*l
;
1593 unsigned int tagv
= dyn
.d_un
.d_val
;
1596 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1601 l
= bfd_alloc (abfd
, amt
);
1622 /* Allocate an ELF string table--force the first byte to be zero. */
1624 struct bfd_strtab_hash
*
1625 _bfd_elf_stringtab_init (void)
1627 struct bfd_strtab_hash
*ret
;
1629 ret
= _bfd_stringtab_init ();
1634 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1635 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1636 if (loc
== (bfd_size_type
) -1)
1638 _bfd_stringtab_free (ret
);
1645 /* ELF .o/exec file reading */
1647 /* Create a new bfd section from an ELF section header. */
1650 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1652 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1653 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1654 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1657 name
= elf_string_from_elf_strtab (abfd
, hdr
->sh_name
);
1659 switch (hdr
->sh_type
)
1662 /* Inactive section. Throw it away. */
1665 case SHT_PROGBITS
: /* Normal section with contents. */
1666 case SHT_NOBITS
: /* .bss section. */
1667 case SHT_HASH
: /* .hash section. */
1668 case SHT_NOTE
: /* .note section. */
1669 case SHT_INIT_ARRAY
: /* .init_array section. */
1670 case SHT_FINI_ARRAY
: /* .fini_array section. */
1671 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1672 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1674 case SHT_DYNAMIC
: /* Dynamic linking information. */
1675 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1677 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1679 Elf_Internal_Shdr
*dynsymhdr
;
1681 /* The shared libraries distributed with hpux11 have a bogus
1682 sh_link field for the ".dynamic" section. Find the
1683 string table for the ".dynsym" section instead. */
1684 if (elf_dynsymtab (abfd
) != 0)
1686 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1687 hdr
->sh_link
= dynsymhdr
->sh_link
;
1691 unsigned int i
, num_sec
;
1693 num_sec
= elf_numsections (abfd
);
1694 for (i
= 1; i
< num_sec
; i
++)
1696 dynsymhdr
= elf_elfsections (abfd
)[i
];
1697 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1699 hdr
->sh_link
= dynsymhdr
->sh_link
;
1707 case SHT_SYMTAB
: /* A symbol table */
1708 if (elf_onesymtab (abfd
) == shindex
)
1711 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1712 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1713 elf_onesymtab (abfd
) = shindex
;
1714 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1715 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1716 abfd
->flags
|= HAS_SYMS
;
1718 /* Sometimes a shared object will map in the symbol table. If
1719 SHF_ALLOC is set, and this is a shared object, then we also
1720 treat this section as a BFD section. We can not base the
1721 decision purely on SHF_ALLOC, because that flag is sometimes
1722 set in a relocatable object file, which would confuse the
1724 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1725 && (abfd
->flags
& DYNAMIC
) != 0
1726 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1731 case SHT_DYNSYM
: /* A dynamic symbol table */
1732 if (elf_dynsymtab (abfd
) == shindex
)
1735 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1736 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1737 elf_dynsymtab (abfd
) = shindex
;
1738 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1739 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1740 abfd
->flags
|= HAS_SYMS
;
1742 /* Besides being a symbol table, we also treat this as a regular
1743 section, so that objcopy can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1746 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1747 if (elf_symtab_shndx (abfd
) == shindex
)
1750 /* Get the associated symbol table. */
1751 if (! bfd_section_from_shdr (abfd
, hdr
->sh_link
)
1752 || hdr
->sh_link
!= elf_onesymtab (abfd
))
1755 elf_symtab_shndx (abfd
) = shindex
;
1756 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1757 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1760 case SHT_STRTAB
: /* A string table */
1761 if (hdr
->bfd_section
!= NULL
)
1763 if (ehdr
->e_shstrndx
== shindex
)
1765 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1766 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1770 unsigned int i
, num_sec
;
1772 num_sec
= elf_numsections (abfd
);
1773 for (i
= 1; i
< num_sec
; i
++)
1775 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1776 if (hdr2
->sh_link
== shindex
)
1778 if (! bfd_section_from_shdr (abfd
, i
))
1780 if (elf_onesymtab (abfd
) == i
)
1782 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1783 elf_elfsections (abfd
)[shindex
] =
1784 &elf_tdata (abfd
)->strtab_hdr
;
1787 if (elf_dynsymtab (abfd
) == i
)
1789 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1790 elf_elfsections (abfd
)[shindex
] = hdr
=
1791 &elf_tdata (abfd
)->dynstrtab_hdr
;
1792 /* We also treat this as a regular section, so
1793 that objcopy can handle it. */
1796 #if 0 /* Not handling other string tables specially right now. */
1797 hdr2
= elf_elfsections (abfd
)[i
]; /* in case it moved */
1798 /* We have a strtab for some random other section. */
1799 newsect
= (asection
*) hdr2
->bfd_section
;
1802 hdr
->bfd_section
= newsect
;
1803 hdr2
= &elf_section_data (newsect
)->str_hdr
;
1805 elf_elfsections (abfd
)[shindex
] = hdr2
;
1811 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1815 /* *These* do a lot of work -- but build no sections! */
1817 asection
*target_sect
;
1818 Elf_Internal_Shdr
*hdr2
;
1819 unsigned int num_sec
= elf_numsections (abfd
);
1821 /* Check for a bogus link to avoid crashing. */
1822 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1823 || hdr
->sh_link
>= num_sec
)
1825 ((*_bfd_error_handler
)
1826 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1827 bfd_archive_filename (abfd
), hdr
->sh_link
, name
, shindex
));
1828 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1831 /* For some incomprehensible reason Oracle distributes
1832 libraries for Solaris in which some of the objects have
1833 bogus sh_link fields. It would be nice if we could just
1834 reject them, but, unfortunately, some people need to use
1835 them. We scan through the section headers; if we find only
1836 one suitable symbol table, we clobber the sh_link to point
1837 to it. I hope this doesn't break anything. */
1838 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1839 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1845 for (scan
= 1; scan
< num_sec
; scan
++)
1847 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1848 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1859 hdr
->sh_link
= found
;
1862 /* Get the symbol table. */
1863 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1864 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1867 /* If this reloc section does not use the main symbol table we
1868 don't treat it as a reloc section. BFD can't adequately
1869 represent such a section, so at least for now, we don't
1870 try. We just present it as a normal section. We also
1871 can't use it as a reloc section if it points to the null
1873 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1874 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1876 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1878 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1879 if (target_sect
== NULL
)
1882 if ((target_sect
->flags
& SEC_RELOC
) == 0
1883 || target_sect
->reloc_count
== 0)
1884 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1888 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1889 amt
= sizeof (*hdr2
);
1890 hdr2
= bfd_alloc (abfd
, amt
);
1891 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1894 elf_elfsections (abfd
)[shindex
] = hdr2
;
1895 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1896 target_sect
->flags
|= SEC_RELOC
;
1897 target_sect
->relocation
= NULL
;
1898 target_sect
->rel_filepos
= hdr
->sh_offset
;
1899 /* In the section to which the relocations apply, mark whether
1900 its relocations are of the REL or RELA variety. */
1901 if (hdr
->sh_size
!= 0)
1902 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1903 abfd
->flags
|= HAS_RELOC
;
1908 case SHT_GNU_verdef
:
1909 elf_dynverdef (abfd
) = shindex
;
1910 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1911 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1914 case SHT_GNU_versym
:
1915 elf_dynversym (abfd
) = shindex
;
1916 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1917 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1920 case SHT_GNU_verneed
:
1921 elf_dynverref (abfd
) = shindex
;
1922 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1923 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1930 /* We need a BFD section for objcopy and relocatable linking,
1931 and it's handy to have the signature available as the section
1933 name
= group_signature (abfd
, hdr
);
1936 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1938 if (hdr
->contents
!= NULL
)
1940 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1941 unsigned int n_elt
= hdr
->sh_size
/ 4;
1944 if (idx
->flags
& GRP_COMDAT
)
1945 hdr
->bfd_section
->flags
1946 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1948 while (--n_elt
!= 0)
1949 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
1950 && elf_next_in_group (s
) != NULL
)
1952 elf_next_in_group (hdr
->bfd_section
) = s
;
1959 /* Check for any processor-specific section types. */
1961 if (bed
->elf_backend_section_from_shdr
)
1962 (*bed
->elf_backend_section_from_shdr
) (abfd
, hdr
, name
);
1970 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1971 Return SEC for sections that have no elf section, and NULL on error. */
1974 bfd_section_from_r_symndx (bfd
*abfd
,
1975 struct sym_sec_cache
*cache
,
1977 unsigned long r_symndx
)
1979 Elf_Internal_Shdr
*symtab_hdr
;
1980 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1981 Elf_External_Sym_Shndx eshndx
;
1982 Elf_Internal_Sym isym
;
1983 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1985 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
1986 return cache
->sec
[ent
];
1988 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1989 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1990 &isym
, esym
, &eshndx
) == NULL
)
1993 if (cache
->abfd
!= abfd
)
1995 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1998 cache
->indx
[ent
] = r_symndx
;
1999 cache
->sec
[ent
] = sec
;
2000 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2001 || isym
.st_shndx
> SHN_HIRESERVE
)
2004 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2006 cache
->sec
[ent
] = s
;
2008 return cache
->sec
[ent
];
2011 /* Given an ELF section number, retrieve the corresponding BFD
2015 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2017 if (index
>= elf_numsections (abfd
))
2019 return elf_elfsections (abfd
)[index
]->bfd_section
;
2022 static struct bfd_elf_special_section
const special_sections
[] =
2024 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2025 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2026 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2027 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2028 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2029 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2030 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2031 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2032 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2033 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2034 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2035 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2036 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2037 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2038 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2039 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2040 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2041 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2042 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2043 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2044 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2045 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2046 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2047 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2048 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2049 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2050 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2051 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2052 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2053 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2054 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2055 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2056 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2057 { ".note", 5, -1, SHT_NOTE
, 0 },
2058 { ".rela", 5, -1, SHT_RELA
, 0 },
2059 { ".rel", 4, -1, SHT_REL
, 0 },
2060 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2061 { NULL
, 0, 0, 0, 0 }
2064 static const struct bfd_elf_special_section
*
2065 get_special_section (const char *name
,
2066 const struct bfd_elf_special_section
*special_sections
,
2070 int len
= strlen (name
);
2072 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2075 int prefix_len
= special_sections
[i
].prefix_length
;
2077 if (len
< prefix_len
)
2079 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2082 suffix_len
= special_sections
[i
].suffix_length
;
2083 if (suffix_len
<= 0)
2085 if (name
[prefix_len
] != 0)
2087 if (suffix_len
== 0)
2089 if (name
[prefix_len
] != '.'
2090 && (suffix_len
== -2
2091 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2097 if (len
< prefix_len
+ suffix_len
)
2099 if (memcmp (name
+ len
- suffix_len
,
2100 special_sections
[i
].prefix
+ prefix_len
,
2104 return &special_sections
[i
];
2110 const struct bfd_elf_special_section
*
2111 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2113 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2114 const struct bfd_elf_special_section
*ssect
= NULL
;
2116 /* See if this is one of the special sections. */
2119 unsigned int rela
= bed
->default_use_rela_p
;
2121 if (bed
->special_sections
)
2122 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2125 ssect
= get_special_section (name
, special_sections
, rela
);
2132 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2134 struct bfd_elf_section_data
*sdata
;
2135 const struct bfd_elf_special_section
*ssect
;
2137 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2140 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2143 sec
->used_by_bfd
= sdata
;
2146 elf_section_type (sec
) = SHT_NULL
;
2147 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2150 elf_section_type (sec
) = ssect
->type
;
2151 elf_section_flags (sec
) = ssect
->attr
;
2154 /* Indicate whether or not this section should use RELA relocations. */
2155 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2160 /* Create a new bfd section from an ELF program header.
2162 Since program segments have no names, we generate a synthetic name
2163 of the form segment<NUM>, where NUM is generally the index in the
2164 program header table. For segments that are split (see below) we
2165 generate the names segment<NUM>a and segment<NUM>b.
2167 Note that some program segments may have a file size that is different than
2168 (less than) the memory size. All this means is that at execution the
2169 system must allocate the amount of memory specified by the memory size,
2170 but only initialize it with the first "file size" bytes read from the
2171 file. This would occur for example, with program segments consisting
2172 of combined data+bss.
2174 To handle the above situation, this routine generates TWO bfd sections
2175 for the single program segment. The first has the length specified by
2176 the file size of the segment, and the second has the length specified
2177 by the difference between the two sizes. In effect, the segment is split
2178 into it's initialized and uninitialized parts.
2183 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2184 Elf_Internal_Phdr
*hdr
,
2186 const char *typename
)
2194 split
= ((hdr
->p_memsz
> 0)
2195 && (hdr
->p_filesz
> 0)
2196 && (hdr
->p_memsz
> hdr
->p_filesz
));
2197 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2198 len
= strlen (namebuf
) + 1;
2199 name
= bfd_alloc (abfd
, len
);
2202 memcpy (name
, namebuf
, len
);
2203 newsect
= bfd_make_section (abfd
, name
);
2204 if (newsect
== NULL
)
2206 newsect
->vma
= hdr
->p_vaddr
;
2207 newsect
->lma
= hdr
->p_paddr
;
2208 newsect
->_raw_size
= hdr
->p_filesz
;
2209 newsect
->filepos
= hdr
->p_offset
;
2210 newsect
->flags
|= SEC_HAS_CONTENTS
;
2211 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2212 if (hdr
->p_type
== PT_LOAD
)
2214 newsect
->flags
|= SEC_ALLOC
;
2215 newsect
->flags
|= SEC_LOAD
;
2216 if (hdr
->p_flags
& PF_X
)
2218 /* FIXME: all we known is that it has execute PERMISSION,
2220 newsect
->flags
|= SEC_CODE
;
2223 if (!(hdr
->p_flags
& PF_W
))
2225 newsect
->flags
|= SEC_READONLY
;
2230 sprintf (namebuf
, "%s%db", typename
, index
);
2231 len
= strlen (namebuf
) + 1;
2232 name
= bfd_alloc (abfd
, len
);
2235 memcpy (name
, namebuf
, len
);
2236 newsect
= bfd_make_section (abfd
, name
);
2237 if (newsect
== NULL
)
2239 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2240 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2241 newsect
->_raw_size
= hdr
->p_memsz
- hdr
->p_filesz
;
2242 if (hdr
->p_type
== PT_LOAD
)
2244 newsect
->flags
|= SEC_ALLOC
;
2245 if (hdr
->p_flags
& PF_X
)
2246 newsect
->flags
|= SEC_CODE
;
2248 if (!(hdr
->p_flags
& PF_W
))
2249 newsect
->flags
|= SEC_READONLY
;
2256 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2258 const struct elf_backend_data
*bed
;
2260 switch (hdr
->p_type
)
2263 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2266 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2269 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2272 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2275 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2277 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2282 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2285 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2287 case PT_GNU_EH_FRAME
:
2288 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2292 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2295 /* Check for any processor-specific program segment types.
2296 If no handler for them, default to making "segment" sections. */
2297 bed
= get_elf_backend_data (abfd
);
2298 if (bed
->elf_backend_section_from_phdr
)
2299 return (*bed
->elf_backend_section_from_phdr
) (abfd
, hdr
, index
);
2301 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "segment");
2305 /* Initialize REL_HDR, the section-header for new section, containing
2306 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2307 relocations; otherwise, we use REL relocations. */
2310 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2311 Elf_Internal_Shdr
*rel_hdr
,
2313 bfd_boolean use_rela_p
)
2316 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2317 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2319 name
= bfd_alloc (abfd
, amt
);
2322 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2324 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2326 if (rel_hdr
->sh_name
== (unsigned int) -1)
2328 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2329 rel_hdr
->sh_entsize
= (use_rela_p
2330 ? bed
->s
->sizeof_rela
2331 : bed
->s
->sizeof_rel
);
2332 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2333 rel_hdr
->sh_flags
= 0;
2334 rel_hdr
->sh_addr
= 0;
2335 rel_hdr
->sh_size
= 0;
2336 rel_hdr
->sh_offset
= 0;
2341 /* Set up an ELF internal section header for a section. */
2344 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2346 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2347 bfd_boolean
*failedptr
= failedptrarg
;
2348 Elf_Internal_Shdr
*this_hdr
;
2352 /* We already failed; just get out of the bfd_map_over_sections
2357 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2359 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2360 asect
->name
, FALSE
);
2361 if (this_hdr
->sh_name
== (unsigned int) -1)
2367 this_hdr
->sh_flags
= 0;
2369 if ((asect
->flags
& SEC_ALLOC
) != 0
2370 || asect
->user_set_vma
)
2371 this_hdr
->sh_addr
= asect
->vma
;
2373 this_hdr
->sh_addr
= 0;
2375 this_hdr
->sh_offset
= 0;
2376 this_hdr
->sh_size
= asect
->_raw_size
;
2377 this_hdr
->sh_link
= 0;
2378 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2379 /* The sh_entsize and sh_info fields may have been set already by
2380 copy_private_section_data. */
2382 this_hdr
->bfd_section
= asect
;
2383 this_hdr
->contents
= NULL
;
2385 /* If the section type is unspecified, we set it based on
2387 if (this_hdr
->sh_type
== SHT_NULL
)
2389 if ((asect
->flags
& SEC_ALLOC
) != 0
2390 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2391 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2392 this_hdr
->sh_type
= SHT_NOBITS
;
2394 this_hdr
->sh_type
= SHT_PROGBITS
;
2397 switch (this_hdr
->sh_type
)
2403 case SHT_INIT_ARRAY
:
2404 case SHT_FINI_ARRAY
:
2405 case SHT_PREINIT_ARRAY
:
2412 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2416 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2420 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2424 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2425 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2429 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2430 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2433 case SHT_GNU_versym
:
2434 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2437 case SHT_GNU_verdef
:
2438 this_hdr
->sh_entsize
= 0;
2439 /* objcopy or strip will copy over sh_info, but may not set
2440 cverdefs. The linker will set cverdefs, but sh_info will be
2442 if (this_hdr
->sh_info
== 0)
2443 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2445 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2446 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2449 case SHT_GNU_verneed
:
2450 this_hdr
->sh_entsize
= 0;
2451 /* objcopy or strip will copy over sh_info, but may not set
2452 cverrefs. The linker will set cverrefs, but sh_info will be
2454 if (this_hdr
->sh_info
== 0)
2455 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2457 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2458 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2462 this_hdr
->sh_entsize
= 4;
2466 if ((asect
->flags
& SEC_ALLOC
) != 0)
2467 this_hdr
->sh_flags
|= SHF_ALLOC
;
2468 if ((asect
->flags
& SEC_READONLY
) == 0)
2469 this_hdr
->sh_flags
|= SHF_WRITE
;
2470 if ((asect
->flags
& SEC_CODE
) != 0)
2471 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2472 if ((asect
->flags
& SEC_MERGE
) != 0)
2474 this_hdr
->sh_flags
|= SHF_MERGE
;
2475 this_hdr
->sh_entsize
= asect
->entsize
;
2476 if ((asect
->flags
& SEC_STRINGS
) != 0)
2477 this_hdr
->sh_flags
|= SHF_STRINGS
;
2479 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2480 this_hdr
->sh_flags
|= SHF_GROUP
;
2481 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2483 this_hdr
->sh_flags
|= SHF_TLS
;
2484 if (asect
->_raw_size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2486 struct bfd_link_order
*o
;
2488 this_hdr
->sh_size
= 0;
2489 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2490 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2491 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2492 if (this_hdr
->sh_size
)
2493 this_hdr
->sh_type
= SHT_NOBITS
;
2497 /* Check for processor-specific section types. */
2498 if (bed
->elf_backend_fake_sections
2499 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2502 /* If the section has relocs, set up a section header for the
2503 SHT_REL[A] section. If two relocation sections are required for
2504 this section, it is up to the processor-specific back-end to
2505 create the other. */
2506 if ((asect
->flags
& SEC_RELOC
) != 0
2507 && !_bfd_elf_init_reloc_shdr (abfd
,
2508 &elf_section_data (asect
)->rel_hdr
,
2514 /* Fill in the contents of a SHT_GROUP section. */
2517 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2519 bfd_boolean
*failedptr
= failedptrarg
;
2520 unsigned long symindx
;
2521 asection
*elt
, *first
;
2523 struct bfd_link_order
*l
;
2526 if (elf_section_data (sec
)->this_hdr
.sh_type
!= SHT_GROUP
2531 if (elf_group_id (sec
) != NULL
)
2532 symindx
= elf_group_id (sec
)->udata
.i
;
2536 /* If called from the assembler, swap_out_syms will have set up
2537 elf_section_syms; If called for "ld -r", use target_index. */
2538 if (elf_section_syms (abfd
) != NULL
)
2539 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2541 symindx
= sec
->target_index
;
2543 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2545 /* The contents won't be allocated for "ld -r" or objcopy. */
2547 if (sec
->contents
== NULL
)
2550 sec
->contents
= bfd_alloc (abfd
, sec
->_raw_size
);
2552 /* Arrange for the section to be written out. */
2553 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2554 if (sec
->contents
== NULL
)
2561 loc
= sec
->contents
+ sec
->_raw_size
;
2563 /* Get the pointer to the first section in the group that gas
2564 squirreled away here. objcopy arranges for this to be set to the
2565 start of the input section group. */
2566 first
= elt
= elf_next_in_group (sec
);
2568 /* First element is a flag word. Rest of section is elf section
2569 indices for all the sections of the group. Write them backwards
2570 just to keep the group in the same order as given in .section
2571 directives, not that it matters. */
2580 s
= s
->output_section
;
2583 idx
= elf_section_data (s
)->this_idx
;
2584 H_PUT_32 (abfd
, idx
, loc
);
2585 elt
= elf_next_in_group (elt
);
2590 /* If this is a relocatable link, then the above did nothing because
2591 SEC is the output section. Look through the input sections
2593 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2594 if (l
->type
== bfd_indirect_link_order
2595 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2600 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2601 elt
= elf_next_in_group (elt
);
2602 /* During a relocatable link, the lists are circular. */
2604 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2606 /* With ld -r, merging SHT_GROUP sections results in wasted space
2607 due to allowing for the flag word on each input. We may well
2608 duplicate entries too. */
2609 while ((loc
-= 4) > sec
->contents
)
2610 H_PUT_32 (abfd
, 0, loc
);
2612 if (loc
!= sec
->contents
)
2615 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2618 /* Assign all ELF section numbers. The dummy first section is handled here
2619 too. The link/info pointers for the standard section types are filled
2620 in here too, while we're at it. */
2623 assign_section_numbers (bfd
*abfd
)
2625 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2627 unsigned int section_number
, secn
;
2628 Elf_Internal_Shdr
**i_shdrp
;
2633 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2635 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2637 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2639 if (section_number
== SHN_LORESERVE
)
2640 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2641 d
->this_idx
= section_number
++;
2642 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2643 if ((sec
->flags
& SEC_RELOC
) == 0)
2647 if (section_number
== SHN_LORESERVE
)
2648 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2649 d
->rel_idx
= section_number
++;
2650 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2655 if (section_number
== SHN_LORESERVE
)
2656 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2657 d
->rel_idx2
= section_number
++;
2658 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2664 if (section_number
== SHN_LORESERVE
)
2665 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2666 t
->shstrtab_section
= section_number
++;
2667 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2668 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2670 if (bfd_get_symcount (abfd
) > 0)
2672 if (section_number
== SHN_LORESERVE
)
2673 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2674 t
->symtab_section
= section_number
++;
2675 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2676 if (section_number
> SHN_LORESERVE
- 2)
2678 if (section_number
== SHN_LORESERVE
)
2679 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2680 t
->symtab_shndx_section
= section_number
++;
2681 t
->symtab_shndx_hdr
.sh_name
2682 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2683 ".symtab_shndx", FALSE
);
2684 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2687 if (section_number
== SHN_LORESERVE
)
2688 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2689 t
->strtab_section
= section_number
++;
2690 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2693 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2694 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2696 elf_numsections (abfd
) = section_number
;
2697 elf_elfheader (abfd
)->e_shnum
= section_number
;
2698 if (section_number
> SHN_LORESERVE
)
2699 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2701 /* Set up the list of section header pointers, in agreement with the
2703 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2704 i_shdrp
= bfd_zalloc (abfd
, amt
);
2705 if (i_shdrp
== NULL
)
2708 amt
= sizeof (Elf_Internal_Shdr
);
2709 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2710 if (i_shdrp
[0] == NULL
)
2712 bfd_release (abfd
, i_shdrp
);
2716 elf_elfsections (abfd
) = i_shdrp
;
2718 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2719 if (bfd_get_symcount (abfd
) > 0)
2721 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2722 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2724 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2725 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2727 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2728 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2730 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2732 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2736 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2737 if (d
->rel_idx
!= 0)
2738 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2739 if (d
->rel_idx2
!= 0)
2740 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2742 /* Fill in the sh_link and sh_info fields while we're at it. */
2744 /* sh_link of a reloc section is the section index of the symbol
2745 table. sh_info is the section index of the section to which
2746 the relocation entries apply. */
2747 if (d
->rel_idx
!= 0)
2749 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2750 d
->rel_hdr
.sh_info
= d
->this_idx
;
2752 if (d
->rel_idx2
!= 0)
2754 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2755 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2758 switch (d
->this_hdr
.sh_type
)
2762 /* A reloc section which we are treating as a normal BFD
2763 section. sh_link is the section index of the symbol
2764 table. sh_info is the section index of the section to
2765 which the relocation entries apply. We assume that an
2766 allocated reloc section uses the dynamic symbol table.
2767 FIXME: How can we be sure? */
2768 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2770 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2772 /* We look up the section the relocs apply to by name. */
2774 if (d
->this_hdr
.sh_type
== SHT_REL
)
2778 s
= bfd_get_section_by_name (abfd
, name
);
2780 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2784 /* We assume that a section named .stab*str is a stabs
2785 string section. We look for a section with the same name
2786 but without the trailing ``str'', and set its sh_link
2787 field to point to this section. */
2788 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
2789 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2794 len
= strlen (sec
->name
);
2795 alc
= bfd_malloc (len
- 2);
2798 memcpy (alc
, sec
->name
, len
- 3);
2799 alc
[len
- 3] = '\0';
2800 s
= bfd_get_section_by_name (abfd
, alc
);
2804 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
2806 /* This is a .stab section. */
2807 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
2808 elf_section_data (s
)->this_hdr
.sh_entsize
2809 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
2816 case SHT_GNU_verneed
:
2817 case SHT_GNU_verdef
:
2818 /* sh_link is the section header index of the string table
2819 used for the dynamic entries, or the symbol table, or the
2821 s
= bfd_get_section_by_name (abfd
, ".dynstr");
2823 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2827 case SHT_GNU_versym
:
2828 /* sh_link is the section header index of the symbol table
2829 this hash table or version table is for. */
2830 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2832 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2836 d
->this_hdr
.sh_link
= t
->symtab_section
;
2840 for (secn
= 1; secn
< section_number
; ++secn
)
2841 if (i_shdrp
[secn
] == NULL
)
2842 i_shdrp
[secn
] = i_shdrp
[0];
2844 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
2845 i_shdrp
[secn
]->sh_name
);
2849 /* Map symbol from it's internal number to the external number, moving
2850 all local symbols to be at the head of the list. */
2853 sym_is_global (bfd
*abfd
, asymbol
*sym
)
2855 /* If the backend has a special mapping, use it. */
2856 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2857 if (bed
->elf_backend_sym_is_global
)
2858 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
2860 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2861 || bfd_is_und_section (bfd_get_section (sym
))
2862 || bfd_is_com_section (bfd_get_section (sym
)));
2866 elf_map_symbols (bfd
*abfd
)
2868 unsigned int symcount
= bfd_get_symcount (abfd
);
2869 asymbol
**syms
= bfd_get_outsymbols (abfd
);
2870 asymbol
**sect_syms
;
2871 unsigned int num_locals
= 0;
2872 unsigned int num_globals
= 0;
2873 unsigned int num_locals2
= 0;
2874 unsigned int num_globals2
= 0;
2882 fprintf (stderr
, "elf_map_symbols\n");
2886 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
2888 if (max_index
< asect
->index
)
2889 max_index
= asect
->index
;
2893 amt
= max_index
* sizeof (asymbol
*);
2894 sect_syms
= bfd_zalloc (abfd
, amt
);
2895 if (sect_syms
== NULL
)
2897 elf_section_syms (abfd
) = sect_syms
;
2898 elf_num_section_syms (abfd
) = max_index
;
2900 /* Init sect_syms entries for any section symbols we have already
2901 decided to output. */
2902 for (idx
= 0; idx
< symcount
; idx
++)
2904 asymbol
*sym
= syms
[idx
];
2906 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
2913 if (sec
->owner
!= NULL
)
2915 if (sec
->owner
!= abfd
)
2917 if (sec
->output_offset
!= 0)
2920 sec
= sec
->output_section
;
2922 /* Empty sections in the input files may have had a
2923 section symbol created for them. (See the comment
2924 near the end of _bfd_generic_link_output_symbols in
2925 linker.c). If the linker script discards such
2926 sections then we will reach this point. Since we know
2927 that we cannot avoid this case, we detect it and skip
2928 the abort and the assignment to the sect_syms array.
2929 To reproduce this particular case try running the
2930 linker testsuite test ld-scripts/weak.exp for an ELF
2931 port that uses the generic linker. */
2932 if (sec
->owner
== NULL
)
2935 BFD_ASSERT (sec
->owner
== abfd
);
2937 sect_syms
[sec
->index
] = syms
[idx
];
2942 /* Classify all of the symbols. */
2943 for (idx
= 0; idx
< symcount
; idx
++)
2945 if (!sym_is_global (abfd
, syms
[idx
]))
2951 /* We will be adding a section symbol for each BFD section. Most normal
2952 sections will already have a section symbol in outsymbols, but
2953 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2954 at least in that case. */
2955 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
2957 if (sect_syms
[asect
->index
] == NULL
)
2959 if (!sym_is_global (abfd
, asect
->symbol
))
2966 /* Now sort the symbols so the local symbols are first. */
2967 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
2968 new_syms
= bfd_alloc (abfd
, amt
);
2970 if (new_syms
== NULL
)
2973 for (idx
= 0; idx
< symcount
; idx
++)
2975 asymbol
*sym
= syms
[idx
];
2978 if (!sym_is_global (abfd
, sym
))
2981 i
= num_locals
+ num_globals2
++;
2983 sym
->udata
.i
= i
+ 1;
2985 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
2987 if (sect_syms
[asect
->index
] == NULL
)
2989 asymbol
*sym
= asect
->symbol
;
2992 sect_syms
[asect
->index
] = sym
;
2993 if (!sym_is_global (abfd
, sym
))
2996 i
= num_locals
+ num_globals2
++;
2998 sym
->udata
.i
= i
+ 1;
3002 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3004 elf_num_locals (abfd
) = num_locals
;
3005 elf_num_globals (abfd
) = num_globals
;
3009 /* Align to the maximum file alignment that could be required for any
3010 ELF data structure. */
3012 static inline file_ptr
3013 align_file_position (file_ptr off
, int align
)
3015 return (off
+ align
- 1) & ~(align
- 1);
3018 /* Assign a file position to a section, optionally aligning to the
3019 required section alignment. */
3022 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3030 al
= i_shdrp
->sh_addralign
;
3032 offset
= BFD_ALIGN (offset
, al
);
3034 i_shdrp
->sh_offset
= offset
;
3035 if (i_shdrp
->bfd_section
!= NULL
)
3036 i_shdrp
->bfd_section
->filepos
= offset
;
3037 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3038 offset
+= i_shdrp
->sh_size
;
3042 /* Compute the file positions we are going to put the sections at, and
3043 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3044 is not NULL, this is being called by the ELF backend linker. */
3047 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3048 struct bfd_link_info
*link_info
)
3050 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3052 struct bfd_strtab_hash
*strtab
;
3053 Elf_Internal_Shdr
*shstrtab_hdr
;
3055 if (abfd
->output_has_begun
)
3058 /* Do any elf backend specific processing first. */
3059 if (bed
->elf_backend_begin_write_processing
)
3060 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3062 if (! prep_headers (abfd
))
3065 /* Post process the headers if necessary. */
3066 if (bed
->elf_backend_post_process_headers
)
3067 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3070 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3074 if (!assign_section_numbers (abfd
))
3077 /* The backend linker builds symbol table information itself. */
3078 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3080 /* Non-zero if doing a relocatable link. */
3081 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3083 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3087 if (link_info
== NULL
)
3089 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3094 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3095 /* sh_name was set in prep_headers. */
3096 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3097 shstrtab_hdr
->sh_flags
= 0;
3098 shstrtab_hdr
->sh_addr
= 0;
3099 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3100 shstrtab_hdr
->sh_entsize
= 0;
3101 shstrtab_hdr
->sh_link
= 0;
3102 shstrtab_hdr
->sh_info
= 0;
3103 /* sh_offset is set in assign_file_positions_except_relocs. */
3104 shstrtab_hdr
->sh_addralign
= 1;
3106 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3109 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3112 Elf_Internal_Shdr
*hdr
;
3114 off
= elf_tdata (abfd
)->next_file_pos
;
3116 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3117 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3119 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3120 if (hdr
->sh_size
!= 0)
3121 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3123 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3124 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3126 elf_tdata (abfd
)->next_file_pos
= off
;
3128 /* Now that we know where the .strtab section goes, write it
3130 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3131 || ! _bfd_stringtab_emit (abfd
, strtab
))
3133 _bfd_stringtab_free (strtab
);
3136 abfd
->output_has_begun
= TRUE
;
3141 /* Create a mapping from a set of sections to a program segment. */
3143 static struct elf_segment_map
*
3144 make_mapping (bfd
*abfd
,
3145 asection
**sections
,
3150 struct elf_segment_map
*m
;
3155 amt
= sizeof (struct elf_segment_map
);
3156 amt
+= (to
- from
- 1) * sizeof (asection
*);
3157 m
= bfd_zalloc (abfd
, amt
);
3161 m
->p_type
= PT_LOAD
;
3162 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3163 m
->sections
[i
- from
] = *hdrpp
;
3164 m
->count
= to
- from
;
3166 if (from
== 0 && phdr
)
3168 /* Include the headers in the first PT_LOAD segment. */
3169 m
->includes_filehdr
= 1;
3170 m
->includes_phdrs
= 1;
3176 /* Set up a mapping from BFD sections to program segments. */
3179 map_sections_to_segments (bfd
*abfd
)
3181 asection
**sections
= NULL
;
3185 struct elf_segment_map
*mfirst
;
3186 struct elf_segment_map
**pm
;
3187 struct elf_segment_map
*m
;
3190 unsigned int phdr_index
;
3191 bfd_vma maxpagesize
;
3193 bfd_boolean phdr_in_segment
= TRUE
;
3194 bfd_boolean writable
;
3196 asection
*first_tls
= NULL
;
3197 asection
*dynsec
, *eh_frame_hdr
;
3200 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3203 if (bfd_count_sections (abfd
) == 0)
3206 /* Select the allocated sections, and sort them. */
3208 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3209 sections
= bfd_malloc (amt
);
3210 if (sections
== NULL
)
3214 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3216 if ((s
->flags
& SEC_ALLOC
) != 0)
3222 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3225 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3227 /* Build the mapping. */
3232 /* If we have a .interp section, then create a PT_PHDR segment for
3233 the program headers and a PT_INTERP segment for the .interp
3235 s
= bfd_get_section_by_name (abfd
, ".interp");
3236 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3238 amt
= sizeof (struct elf_segment_map
);
3239 m
= bfd_zalloc (abfd
, amt
);
3243 m
->p_type
= PT_PHDR
;
3244 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3245 m
->p_flags
= PF_R
| PF_X
;
3246 m
->p_flags_valid
= 1;
3247 m
->includes_phdrs
= 1;
3252 amt
= sizeof (struct elf_segment_map
);
3253 m
= bfd_zalloc (abfd
, amt
);
3257 m
->p_type
= PT_INTERP
;
3265 /* Look through the sections. We put sections in the same program
3266 segment when the start of the second section can be placed within
3267 a few bytes of the end of the first section. */
3271 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3273 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3275 && (dynsec
->flags
& SEC_LOAD
) == 0)
3278 /* Deal with -Ttext or something similar such that the first section
3279 is not adjacent to the program headers. This is an
3280 approximation, since at this point we don't know exactly how many
3281 program headers we will need. */
3284 bfd_size_type phdr_size
;
3286 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3288 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3289 if ((abfd
->flags
& D_PAGED
) == 0
3290 || sections
[0]->lma
< phdr_size
3291 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3292 phdr_in_segment
= FALSE
;
3295 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3298 bfd_boolean new_segment
;
3302 /* See if this section and the last one will fit in the same
3305 if (last_hdr
== NULL
)
3307 /* If we don't have a segment yet, then we don't need a new
3308 one (we build the last one after this loop). */
3309 new_segment
= FALSE
;
3311 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3313 /* If this section has a different relation between the
3314 virtual address and the load address, then we need a new
3318 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3319 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3321 /* If putting this section in this segment would force us to
3322 skip a page in the segment, then we need a new segment. */
3325 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3326 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3328 /* We don't want to put a loadable section after a
3329 nonloadable section in the same segment.
3330 Consider .tbss sections as loadable for this purpose. */
3333 else if ((abfd
->flags
& D_PAGED
) == 0)
3335 /* If the file is not demand paged, which means that we
3336 don't require the sections to be correctly aligned in the
3337 file, then there is no other reason for a new segment. */
3338 new_segment
= FALSE
;
3341 && (hdr
->flags
& SEC_READONLY
) == 0
3342 && (((last_hdr
->lma
+ last_size
- 1)
3343 & ~(maxpagesize
- 1))
3344 != (hdr
->lma
& ~(maxpagesize
- 1))))
3346 /* We don't want to put a writable section in a read only
3347 segment, unless they are on the same page in memory
3348 anyhow. We already know that the last section does not
3349 bring us past the current section on the page, so the
3350 only case in which the new section is not on the same
3351 page as the previous section is when the previous section
3352 ends precisely on a page boundary. */
3357 /* Otherwise, we can use the same segment. */
3358 new_segment
= FALSE
;
3363 if ((hdr
->flags
& SEC_READONLY
) == 0)
3366 /* .tbss sections effectively have zero size. */
3367 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3368 last_size
= hdr
->_raw_size
;
3374 /* We need a new program segment. We must create a new program
3375 header holding all the sections from phdr_index until hdr. */
3377 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3384 if ((hdr
->flags
& SEC_READONLY
) == 0)
3390 /* .tbss sections effectively have zero size. */
3391 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3392 last_size
= hdr
->_raw_size
;
3396 phdr_in_segment
= FALSE
;
3399 /* Create a final PT_LOAD program segment. */
3400 if (last_hdr
!= NULL
)
3402 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3410 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3413 amt
= sizeof (struct elf_segment_map
);
3414 m
= bfd_zalloc (abfd
, amt
);
3418 m
->p_type
= PT_DYNAMIC
;
3420 m
->sections
[0] = dynsec
;
3426 /* For each loadable .note section, add a PT_NOTE segment. We don't
3427 use bfd_get_section_by_name, because if we link together
3428 nonloadable .note sections and loadable .note sections, we will
3429 generate two .note sections in the output file. FIXME: Using
3430 names for section types is bogus anyhow. */
3431 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3433 if ((s
->flags
& SEC_LOAD
) != 0
3434 && strncmp (s
->name
, ".note", 5) == 0)
3436 amt
= sizeof (struct elf_segment_map
);
3437 m
= bfd_zalloc (abfd
, amt
);
3441 m
->p_type
= PT_NOTE
;
3448 if (s
->flags
& SEC_THREAD_LOCAL
)
3456 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3461 amt
= sizeof (struct elf_segment_map
);
3462 amt
+= (tls_count
- 1) * sizeof (asection
*);
3463 m
= bfd_zalloc (abfd
, amt
);
3468 m
->count
= tls_count
;
3469 /* Mandated PF_R. */
3471 m
->p_flags_valid
= 1;
3472 for (i
= 0; i
< tls_count
; ++i
)
3474 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3475 m
->sections
[i
] = first_tls
;
3476 first_tls
= first_tls
->next
;
3483 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3485 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3486 if (eh_frame_hdr
!= NULL
3487 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3489 amt
= sizeof (struct elf_segment_map
);
3490 m
= bfd_zalloc (abfd
, amt
);
3494 m
->p_type
= PT_GNU_EH_FRAME
;
3496 m
->sections
[0] = eh_frame_hdr
->output_section
;
3502 if (elf_tdata (abfd
)->stack_flags
)
3504 amt
= sizeof (struct elf_segment_map
);
3505 m
= bfd_zalloc (abfd
, amt
);
3509 m
->p_type
= PT_GNU_STACK
;
3510 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3511 m
->p_flags_valid
= 1;
3520 elf_tdata (abfd
)->segment_map
= mfirst
;
3524 if (sections
!= NULL
)
3529 /* Sort sections by address. */
3532 elf_sort_sections (const void *arg1
, const void *arg2
)
3534 const asection
*sec1
= *(const asection
**) arg1
;
3535 const asection
*sec2
= *(const asection
**) arg2
;
3536 bfd_size_type size1
, size2
;
3538 /* Sort by LMA first, since this is the address used to
3539 place the section into a segment. */
3540 if (sec1
->lma
< sec2
->lma
)
3542 else if (sec1
->lma
> sec2
->lma
)
3545 /* Then sort by VMA. Normally the LMA and the VMA will be
3546 the same, and this will do nothing. */
3547 if (sec1
->vma
< sec2
->vma
)
3549 else if (sec1
->vma
> sec2
->vma
)
3552 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3554 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3560 /* If the indicies are the same, do not return 0
3561 here, but continue to try the next comparison. */
3562 if (sec1
->target_index
- sec2
->target_index
!= 0)
3563 return sec1
->target_index
- sec2
->target_index
;
3568 else if (TOEND (sec2
))
3573 /* Sort by size, to put zero sized sections
3574 before others at the same address. */
3576 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->_raw_size
: 0;
3577 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->_raw_size
: 0;
3584 return sec1
->target_index
- sec2
->target_index
;
3587 /* Ian Lance Taylor writes:
3589 We shouldn't be using % with a negative signed number. That's just
3590 not good. We have to make sure either that the number is not
3591 negative, or that the number has an unsigned type. When the types
3592 are all the same size they wind up as unsigned. When file_ptr is a
3593 larger signed type, the arithmetic winds up as signed long long,
3596 What we're trying to say here is something like ``increase OFF by
3597 the least amount that will cause it to be equal to the VMA modulo
3599 /* In other words, something like:
3601 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3602 off_offset = off % bed->maxpagesize;
3603 if (vma_offset < off_offset)
3604 adjustment = vma_offset + bed->maxpagesize - off_offset;
3606 adjustment = vma_offset - off_offset;
3608 which can can be collapsed into the expression below. */
3611 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
3613 return ((vma
- off
) % maxpagesize
);
3616 /* Assign file positions to the sections based on the mapping from
3617 sections to segments. This function also sets up some fields in
3618 the file header, and writes out the program headers. */
3621 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
3623 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3625 struct elf_segment_map
*m
;
3627 Elf_Internal_Phdr
*phdrs
;
3629 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3630 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3631 Elf_Internal_Phdr
*p
;
3634 if (elf_tdata (abfd
)->segment_map
== NULL
)
3636 if (! map_sections_to_segments (abfd
))
3641 /* The placement algorithm assumes that non allocated sections are
3642 not in PT_LOAD segments. We ensure this here by removing such
3643 sections from the segment map. */
3644 for (m
= elf_tdata (abfd
)->segment_map
;
3648 unsigned int new_count
;
3651 if (m
->p_type
!= PT_LOAD
)
3655 for (i
= 0; i
< m
->count
; i
++)
3657 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3660 m
->sections
[new_count
] = m
->sections
[i
];
3666 if (new_count
!= m
->count
)
3667 m
->count
= new_count
;
3671 if (bed
->elf_backend_modify_segment_map
)
3673 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
3678 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3681 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3682 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3683 elf_elfheader (abfd
)->e_phnum
= count
;
3688 /* If we already counted the number of program segments, make sure
3689 that we allocated enough space. This happens when SIZEOF_HEADERS
3690 is used in a linker script. */
3691 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3692 if (alloc
!= 0 && count
> alloc
)
3694 ((*_bfd_error_handler
)
3695 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3696 bfd_get_filename (abfd
), alloc
, count
));
3697 bfd_set_error (bfd_error_bad_value
);
3704 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3705 phdrs
= bfd_alloc (abfd
, amt
);
3709 off
= bed
->s
->sizeof_ehdr
;
3710 off
+= alloc
* bed
->s
->sizeof_phdr
;
3717 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3724 /* If elf_segment_map is not from map_sections_to_segments, the
3725 sections may not be correctly ordered. NOTE: sorting should
3726 not be done to the PT_NOTE section of a corefile, which may
3727 contain several pseudo-sections artificially created by bfd.
3728 Sorting these pseudo-sections breaks things badly. */
3730 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
3731 && m
->p_type
== PT_NOTE
))
3732 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
3735 p
->p_type
= m
->p_type
;
3736 p
->p_flags
= m
->p_flags
;
3738 if (p
->p_type
== PT_LOAD
3740 && (m
->sections
[0]->flags
& SEC_ALLOC
) != 0)
3742 if ((abfd
->flags
& D_PAGED
) != 0)
3743 off
+= vma_page_aligned_bias (m
->sections
[0]->vma
, off
,
3747 bfd_size_type align
;
3750 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3752 bfd_size_type secalign
;
3754 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
3755 if (secalign
> align
)
3759 off
+= vma_page_aligned_bias (m
->sections
[0]->vma
, off
,
3767 p
->p_vaddr
= m
->sections
[0]->vma
;
3769 if (m
->p_paddr_valid
)
3770 p
->p_paddr
= m
->p_paddr
;
3771 else if (m
->count
== 0)
3774 p
->p_paddr
= m
->sections
[0]->lma
;
3776 if (p
->p_type
== PT_LOAD
3777 && (abfd
->flags
& D_PAGED
) != 0)
3778 p
->p_align
= bed
->maxpagesize
;
3779 else if (m
->count
== 0)
3780 p
->p_align
= 1 << bed
->s
->log_file_align
;
3788 if (m
->includes_filehdr
)
3790 if (! m
->p_flags_valid
)
3793 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
3794 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
3797 BFD_ASSERT (p
->p_type
== PT_LOAD
);
3799 if (p
->p_vaddr
< (bfd_vma
) off
)
3801 (*_bfd_error_handler
)
3802 (_("%s: Not enough room for program headers, try linking with -N"),
3803 bfd_get_filename (abfd
));
3804 bfd_set_error (bfd_error_bad_value
);
3809 if (! m
->p_paddr_valid
)
3812 if (p
->p_type
== PT_LOAD
)
3814 filehdr_vaddr
= p
->p_vaddr
;
3815 filehdr_paddr
= p
->p_paddr
;
3819 if (m
->includes_phdrs
)
3821 if (! m
->p_flags_valid
)
3824 if (m
->includes_filehdr
)
3826 if (p
->p_type
== PT_LOAD
)
3828 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
3829 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
3834 p
->p_offset
= bed
->s
->sizeof_ehdr
;
3838 BFD_ASSERT (p
->p_type
== PT_LOAD
);
3839 p
->p_vaddr
-= off
- p
->p_offset
;
3840 if (! m
->p_paddr_valid
)
3841 p
->p_paddr
-= off
- p
->p_offset
;
3844 if (p
->p_type
== PT_LOAD
)
3846 phdrs_vaddr
= p
->p_vaddr
;
3847 phdrs_paddr
= p
->p_paddr
;
3850 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
3853 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
3854 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
3857 if (p
->p_type
== PT_LOAD
3858 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
3860 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
3866 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
3867 p
->p_filesz
+= adjust
;
3868 p
->p_memsz
+= adjust
;
3874 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3878 bfd_size_type align
;
3882 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
3884 /* The section may have artificial alignment forced by a
3885 link script. Notice this case by the gap between the
3886 cumulative phdr lma and the section's lma. */
3887 if (p
->p_paddr
+ p
->p_memsz
< sec
->lma
)
3889 bfd_vma adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
3891 p
->p_memsz
+= adjust
;
3892 if (p
->p_type
== PT_LOAD
3893 || (p
->p_type
== PT_NOTE
3894 && bfd_get_format (abfd
) == bfd_core
))
3899 if ((flags
& SEC_LOAD
) != 0
3900 || (flags
& SEC_THREAD_LOCAL
) != 0)
3901 p
->p_filesz
+= adjust
;
3904 if (p
->p_type
== PT_LOAD
)
3906 bfd_signed_vma adjust
;
3908 if ((flags
& SEC_LOAD
) != 0)
3910 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
3914 else if ((flags
& SEC_ALLOC
) != 0)
3916 /* The section VMA must equal the file position
3917 modulo the page size. FIXME: I'm not sure if
3918 this adjustment is really necessary. We used to
3919 not have the SEC_LOAD case just above, and then
3920 this was necessary, but now I'm not sure. */
3921 if ((abfd
->flags
& D_PAGED
) != 0)
3922 adjust
= vma_page_aligned_bias (sec
->vma
, voff
,
3925 adjust
= vma_page_aligned_bias (sec
->vma
, voff
,
3935 (* _bfd_error_handler
) (_("\
3936 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3937 bfd_section_name (abfd
, sec
),
3942 p
->p_memsz
+= adjust
;
3945 if ((flags
& SEC_LOAD
) != 0)
3946 p
->p_filesz
+= adjust
;
3951 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3952 used in a linker script we may have a section with
3953 SEC_LOAD clear but which is supposed to have
3955 if ((flags
& SEC_LOAD
) != 0
3956 || (flags
& SEC_HAS_CONTENTS
) != 0)
3957 off
+= sec
->_raw_size
;
3959 if ((flags
& SEC_ALLOC
) != 0
3960 && ((flags
& SEC_LOAD
) != 0
3961 || (flags
& SEC_THREAD_LOCAL
) == 0))
3962 voff
+= sec
->_raw_size
;
3965 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
3967 /* The actual "note" segment has i == 0.
3968 This is the one that actually contains everything. */
3972 p
->p_filesz
= sec
->_raw_size
;
3973 off
+= sec
->_raw_size
;
3978 /* Fake sections -- don't need to be written. */
3981 flags
= sec
->flags
= 0;
3988 if ((sec
->flags
& SEC_LOAD
) != 0
3989 || (sec
->flags
& SEC_THREAD_LOCAL
) == 0
3990 || p
->p_type
== PT_TLS
)
3991 p
->p_memsz
+= sec
->_raw_size
;
3993 if ((flags
& SEC_LOAD
) != 0)
3994 p
->p_filesz
+= sec
->_raw_size
;
3996 if (p
->p_type
== PT_TLS
3997 && sec
->_raw_size
== 0
3998 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4000 struct bfd_link_order
*o
;
4001 bfd_vma tbss_size
= 0;
4003 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
4004 if (tbss_size
< o
->offset
+ o
->size
)
4005 tbss_size
= o
->offset
+ o
->size
;
4007 p
->p_memsz
+= tbss_size
;
4010 if (align
> p
->p_align
4011 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4015 if (! m
->p_flags_valid
)
4018 if ((flags
& SEC_CODE
) != 0)
4020 if ((flags
& SEC_READONLY
) == 0)
4026 /* Now that we have set the section file positions, we can set up
4027 the file positions for the non PT_LOAD segments. */
4028 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4032 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4034 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4035 p
->p_offset
= m
->sections
[0]->filepos
;
4039 if (m
->includes_filehdr
)
4041 p
->p_vaddr
= filehdr_vaddr
;
4042 if (! m
->p_paddr_valid
)
4043 p
->p_paddr
= filehdr_paddr
;
4045 else if (m
->includes_phdrs
)
4047 p
->p_vaddr
= phdrs_vaddr
;
4048 if (! m
->p_paddr_valid
)
4049 p
->p_paddr
= phdrs_paddr
;
4054 /* Clear out any program headers we allocated but did not use. */
4055 for (; count
< alloc
; count
++, p
++)
4057 memset (p
, 0, sizeof *p
);
4058 p
->p_type
= PT_NULL
;
4061 elf_tdata (abfd
)->phdr
= phdrs
;
4063 elf_tdata (abfd
)->next_file_pos
= off
;
4065 /* Write out the program headers. */
4066 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4067 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4073 /* Get the size of the program header.
4075 If this is called by the linker before any of the section VMA's are set, it
4076 can't calculate the correct value for a strange memory layout. This only
4077 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4078 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4079 data segment (exclusive of .interp and .dynamic).
4081 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4082 will be two segments. */
4084 static bfd_size_type
4085 get_program_header_size (bfd
*abfd
)
4089 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4091 /* We can't return a different result each time we're called. */
4092 if (elf_tdata (abfd
)->program_header_size
!= 0)
4093 return elf_tdata (abfd
)->program_header_size
;
4095 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4097 struct elf_segment_map
*m
;
4100 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4102 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4103 return elf_tdata (abfd
)->program_header_size
;
4106 /* Assume we will need exactly two PT_LOAD segments: one for text
4107 and one for data. */
4110 s
= bfd_get_section_by_name (abfd
, ".interp");
4111 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4113 /* If we have a loadable interpreter section, we need a
4114 PT_INTERP segment. In this case, assume we also need a
4115 PT_PHDR segment, although that may not be true for all
4120 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4122 /* We need a PT_DYNAMIC segment. */
4126 if (elf_tdata (abfd
)->eh_frame_hdr
)
4128 /* We need a PT_GNU_EH_FRAME segment. */
4132 if (elf_tdata (abfd
)->stack_flags
)
4134 /* We need a PT_GNU_STACK segment. */
4138 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4140 if ((s
->flags
& SEC_LOAD
) != 0
4141 && strncmp (s
->name
, ".note", 5) == 0)
4143 /* We need a PT_NOTE segment. */
4148 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4150 if (s
->flags
& SEC_THREAD_LOCAL
)
4152 /* We need a PT_TLS segment. */
4158 /* Let the backend count up any program headers it might need. */
4159 if (bed
->elf_backend_additional_program_headers
)
4163 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4169 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4170 return elf_tdata (abfd
)->program_header_size
;
4173 /* Work out the file positions of all the sections. This is called by
4174 _bfd_elf_compute_section_file_positions. All the section sizes and
4175 VMAs must be known before this is called.
4177 We do not consider reloc sections at this point, unless they form
4178 part of the loadable image. Reloc sections are assigned file
4179 positions in assign_file_positions_for_relocs, which is called by
4180 write_object_contents and final_link.
4182 We also don't set the positions of the .symtab and .strtab here. */
4185 assign_file_positions_except_relocs (bfd
*abfd
,
4186 struct bfd_link_info
*link_info
)
4188 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4189 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4190 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4191 unsigned int num_sec
= elf_numsections (abfd
);
4193 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4195 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4196 && bfd_get_format (abfd
) != bfd_core
)
4198 Elf_Internal_Shdr
**hdrpp
;
4201 /* Start after the ELF header. */
4202 off
= i_ehdrp
->e_ehsize
;
4204 /* We are not creating an executable, which means that we are
4205 not creating a program header, and that the actual order of
4206 the sections in the file is unimportant. */
4207 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4209 Elf_Internal_Shdr
*hdr
;
4212 if (hdr
->sh_type
== SHT_REL
4213 || hdr
->sh_type
== SHT_RELA
4214 || i
== tdata
->symtab_section
4215 || i
== tdata
->symtab_shndx_section
4216 || i
== tdata
->strtab_section
)
4218 hdr
->sh_offset
= -1;
4221 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4223 if (i
== SHN_LORESERVE
- 1)
4225 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4226 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4233 Elf_Internal_Shdr
**hdrpp
;
4235 /* Assign file positions for the loaded sections based on the
4236 assignment of sections to segments. */
4237 if (! assign_file_positions_for_segments (abfd
, link_info
))
4240 /* Assign file positions for the other sections. */
4242 off
= elf_tdata (abfd
)->next_file_pos
;
4243 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4245 Elf_Internal_Shdr
*hdr
;
4248 if (hdr
->bfd_section
!= NULL
4249 && hdr
->bfd_section
->filepos
!= 0)
4250 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4251 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4253 ((*_bfd_error_handler
)
4254 (_("%s: warning: allocated section `%s' not in segment"),
4255 bfd_get_filename (abfd
),
4256 (hdr
->bfd_section
== NULL
4258 : hdr
->bfd_section
->name
)));
4259 if ((abfd
->flags
& D_PAGED
) != 0)
4260 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4263 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4265 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4268 else if (hdr
->sh_type
== SHT_REL
4269 || hdr
->sh_type
== SHT_RELA
4270 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4271 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4272 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4273 hdr
->sh_offset
= -1;
4275 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4277 if (i
== SHN_LORESERVE
- 1)
4279 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4280 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4285 /* Place the section headers. */
4286 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4287 i_ehdrp
->e_shoff
= off
;
4288 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4290 elf_tdata (abfd
)->next_file_pos
= off
;
4296 prep_headers (bfd
*abfd
)
4298 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4299 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4300 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4301 struct elf_strtab_hash
*shstrtab
;
4302 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4304 i_ehdrp
= elf_elfheader (abfd
);
4305 i_shdrp
= elf_elfsections (abfd
);
4307 shstrtab
= _bfd_elf_strtab_init ();
4308 if (shstrtab
== NULL
)
4311 elf_shstrtab (abfd
) = shstrtab
;
4313 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4314 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4315 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4316 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4318 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4319 i_ehdrp
->e_ident
[EI_DATA
] =
4320 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4321 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4323 if ((abfd
->flags
& DYNAMIC
) != 0)
4324 i_ehdrp
->e_type
= ET_DYN
;
4325 else if ((abfd
->flags
& EXEC_P
) != 0)
4326 i_ehdrp
->e_type
= ET_EXEC
;
4327 else if (bfd_get_format (abfd
) == bfd_core
)
4328 i_ehdrp
->e_type
= ET_CORE
;
4330 i_ehdrp
->e_type
= ET_REL
;
4332 switch (bfd_get_arch (abfd
))
4334 case bfd_arch_unknown
:
4335 i_ehdrp
->e_machine
= EM_NONE
;
4338 /* There used to be a long list of cases here, each one setting
4339 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4340 in the corresponding bfd definition. To avoid duplication,
4341 the switch was removed. Machines that need special handling
4342 can generally do it in elf_backend_final_write_processing(),
4343 unless they need the information earlier than the final write.
4344 Such need can generally be supplied by replacing the tests for
4345 e_machine with the conditions used to determine it. */
4347 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4350 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4351 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4353 /* No program header, for now. */
4354 i_ehdrp
->e_phoff
= 0;
4355 i_ehdrp
->e_phentsize
= 0;
4356 i_ehdrp
->e_phnum
= 0;
4358 /* Each bfd section is section header entry. */
4359 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4360 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4362 /* If we're building an executable, we'll need a program header table. */
4363 if (abfd
->flags
& EXEC_P
)
4365 /* It all happens later. */
4367 i_ehdrp
->e_phentsize
= sizeof (Elf_External_Phdr
);
4369 /* elf_build_phdrs() returns a (NULL-terminated) array of
4370 Elf_Internal_Phdrs. */
4371 i_phdrp
= elf_build_phdrs (abfd
, i_ehdrp
, i_shdrp
, &i_ehdrp
->e_phnum
);
4372 i_ehdrp
->e_phoff
= outbase
;
4373 outbase
+= i_ehdrp
->e_phentsize
* i_ehdrp
->e_phnum
;
4378 i_ehdrp
->e_phentsize
= 0;
4380 i_ehdrp
->e_phoff
= 0;
4383 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4384 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4385 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4386 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4387 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4388 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4389 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4390 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4391 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4397 /* Assign file positions for all the reloc sections which are not part
4398 of the loadable file image. */
4401 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4404 unsigned int i
, num_sec
;
4405 Elf_Internal_Shdr
**shdrpp
;
4407 off
= elf_tdata (abfd
)->next_file_pos
;
4409 num_sec
= elf_numsections (abfd
);
4410 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4412 Elf_Internal_Shdr
*shdrp
;
4415 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4416 && shdrp
->sh_offset
== -1)
4417 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4420 elf_tdata (abfd
)->next_file_pos
= off
;
4424 _bfd_elf_write_object_contents (bfd
*abfd
)
4426 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4427 Elf_Internal_Ehdr
*i_ehdrp
;
4428 Elf_Internal_Shdr
**i_shdrp
;
4430 unsigned int count
, num_sec
;
4432 if (! abfd
->output_has_begun
4433 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4436 i_shdrp
= elf_elfsections (abfd
);
4437 i_ehdrp
= elf_elfheader (abfd
);
4440 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4444 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4446 /* After writing the headers, we need to write the sections too... */
4447 num_sec
= elf_numsections (abfd
);
4448 for (count
= 1; count
< num_sec
; count
++)
4450 if (bed
->elf_backend_section_processing
)
4451 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4452 if (i_shdrp
[count
]->contents
)
4454 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4456 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4457 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4460 if (count
== SHN_LORESERVE
- 1)
4461 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4464 /* Write out the section header names. */
4465 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4466 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4469 if (bed
->elf_backend_final_write_processing
)
4470 (*bed
->elf_backend_final_write_processing
) (abfd
,
4471 elf_tdata (abfd
)->linker
);
4473 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4477 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4479 /* Hopefully this can be done just like an object file. */
4480 return _bfd_elf_write_object_contents (abfd
);
4483 /* Given a section, search the header to find them. */
4486 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4488 const struct elf_backend_data
*bed
;
4491 if (elf_section_data (asect
) != NULL
4492 && elf_section_data (asect
)->this_idx
!= 0)
4493 return elf_section_data (asect
)->this_idx
;
4495 if (bfd_is_abs_section (asect
))
4497 else if (bfd_is_com_section (asect
))
4499 else if (bfd_is_und_section (asect
))
4503 Elf_Internal_Shdr
**i_shdrp
= elf_elfsections (abfd
);
4504 int maxindex
= elf_numsections (abfd
);
4506 for (index
= 1; index
< maxindex
; index
++)
4508 Elf_Internal_Shdr
*hdr
= i_shdrp
[index
];
4510 if (hdr
!= NULL
&& hdr
->bfd_section
== asect
)
4516 bed
= get_elf_backend_data (abfd
);
4517 if (bed
->elf_backend_section_from_bfd_section
)
4521 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4526 bfd_set_error (bfd_error_nonrepresentable_section
);
4531 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4535 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4537 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4539 flagword flags
= asym_ptr
->flags
;
4541 /* When gas creates relocations against local labels, it creates its
4542 own symbol for the section, but does put the symbol into the
4543 symbol chain, so udata is 0. When the linker is generating
4544 relocatable output, this section symbol may be for one of the
4545 input sections rather than the output section. */
4546 if (asym_ptr
->udata
.i
== 0
4547 && (flags
& BSF_SECTION_SYM
)
4548 && asym_ptr
->section
)
4552 if (asym_ptr
->section
->output_section
!= NULL
)
4553 indx
= asym_ptr
->section
->output_section
->index
;
4555 indx
= asym_ptr
->section
->index
;
4556 if (indx
< elf_num_section_syms (abfd
)
4557 && elf_section_syms (abfd
)[indx
] != NULL
)
4558 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4561 idx
= asym_ptr
->udata
.i
;
4565 /* This case can occur when using --strip-symbol on a symbol
4566 which is used in a relocation entry. */
4567 (*_bfd_error_handler
)
4568 (_("%s: symbol `%s' required but not present"),
4569 bfd_archive_filename (abfd
), bfd_asymbol_name (asym_ptr
));
4570 bfd_set_error (bfd_error_no_symbols
);
4577 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4578 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4579 elf_symbol_flags (flags
));
4587 /* Copy private BFD data. This copies any program header information. */
4590 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4592 Elf_Internal_Ehdr
*iehdr
;
4593 struct elf_segment_map
*map
;
4594 struct elf_segment_map
*map_first
;
4595 struct elf_segment_map
**pointer_to_map
;
4596 Elf_Internal_Phdr
*segment
;
4599 unsigned int num_segments
;
4600 bfd_boolean phdr_included
= FALSE
;
4601 bfd_vma maxpagesize
;
4602 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4603 unsigned int phdr_adjust_num
= 0;
4604 const struct elf_backend_data
*bed
;
4606 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4607 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4610 if (elf_tdata (ibfd
)->phdr
== NULL
)
4613 bed
= get_elf_backend_data (ibfd
);
4614 iehdr
= elf_elfheader (ibfd
);
4617 pointer_to_map
= &map_first
;
4619 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4620 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4622 /* Returns the end address of the segment + 1. */
4623 #define SEGMENT_END(segment, start) \
4624 (start + (segment->p_memsz > segment->p_filesz \
4625 ? segment->p_memsz : segment->p_filesz))
4627 #define SECTION_SIZE(section, segment) \
4628 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4629 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4630 ? section->_raw_size : 0)
4632 /* Returns TRUE if the given section is contained within
4633 the given segment. VMA addresses are compared. */
4634 #define IS_CONTAINED_BY_VMA(section, segment) \
4635 (section->vma >= segment->p_vaddr \
4636 && (section->vma + SECTION_SIZE (section, segment) \
4637 <= (SEGMENT_END (segment, segment->p_vaddr))))
4639 /* Returns TRUE if the given section is contained within
4640 the given segment. LMA addresses are compared. */
4641 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4642 (section->lma >= base \
4643 && (section->lma + SECTION_SIZE (section, segment) \
4644 <= SEGMENT_END (segment, base)))
4646 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4647 #define IS_COREFILE_NOTE(p, s) \
4648 (p->p_type == PT_NOTE \
4649 && bfd_get_format (ibfd) == bfd_core \
4650 && s->vma == 0 && s->lma == 0 \
4651 && (bfd_vma) s->filepos >= p->p_offset \
4652 && ((bfd_vma) s->filepos + s->_raw_size \
4653 <= p->p_offset + p->p_filesz))
4655 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4656 linker, which generates a PT_INTERP section with p_vaddr and
4657 p_memsz set to 0. */
4658 #define IS_SOLARIS_PT_INTERP(p, s) \
4660 && p->p_paddr == 0 \
4661 && p->p_memsz == 0 \
4662 && p->p_filesz > 0 \
4663 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4664 && s->_raw_size > 0 \
4665 && (bfd_vma) s->filepos >= p->p_offset \
4666 && ((bfd_vma) s->filepos + s->_raw_size \
4667 <= p->p_offset + p->p_filesz))
4669 /* Decide if the given section should be included in the given segment.
4670 A section will be included if:
4671 1. It is within the address space of the segment -- we use the LMA
4672 if that is set for the segment and the VMA otherwise,
4673 2. It is an allocated segment,
4674 3. There is an output section associated with it,
4675 4. The section has not already been allocated to a previous segment.
4676 5. PT_GNU_STACK segments do not include any sections.
4677 6. PT_TLS segment includes only SHF_TLS sections.
4678 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4679 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4680 ((((segment->p_paddr \
4681 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4682 : IS_CONTAINED_BY_VMA (section, segment)) \
4683 && (section->flags & SEC_ALLOC) != 0) \
4684 || IS_COREFILE_NOTE (segment, section)) \
4685 && section->output_section != NULL \
4686 && segment->p_type != PT_GNU_STACK \
4687 && (segment->p_type != PT_TLS \
4688 || (section->flags & SEC_THREAD_LOCAL)) \
4689 && (segment->p_type == PT_LOAD \
4690 || segment->p_type == PT_TLS \
4691 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4692 && ! section->segment_mark)
4694 /* Returns TRUE iff seg1 starts after the end of seg2. */
4695 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4696 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4698 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4699 their VMA address ranges and their LMA address ranges overlap.
4700 It is possible to have overlapping VMA ranges without overlapping LMA
4701 ranges. RedBoot images for example can have both .data and .bss mapped
4702 to the same VMA range, but with the .data section mapped to a different
4704 #define SEGMENT_OVERLAPS(seg1, seg2) \
4705 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4706 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4707 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4708 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4710 /* Initialise the segment mark field. */
4711 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
4712 section
->segment_mark
= FALSE
;
4714 /* Scan through the segments specified in the program header
4715 of the input BFD. For this first scan we look for overlaps
4716 in the loadable segments. These can be created by weird
4717 parameters to objcopy. Also, fix some solaris weirdness. */
4718 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4723 Elf_Internal_Phdr
*segment2
;
4725 if (segment
->p_type
== PT_INTERP
)
4726 for (section
= ibfd
->sections
; section
; section
= section
->next
)
4727 if (IS_SOLARIS_PT_INTERP (segment
, section
))
4729 /* Mininal change so that the normal section to segment
4730 assignment code will work. */
4731 segment
->p_vaddr
= section
->vma
;
4735 if (segment
->p_type
!= PT_LOAD
)
4738 /* Determine if this segment overlaps any previous segments. */
4739 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
4741 bfd_signed_vma extra_length
;
4743 if (segment2
->p_type
!= PT_LOAD
4744 || ! SEGMENT_OVERLAPS (segment
, segment2
))
4747 /* Merge the two segments together. */
4748 if (segment2
->p_vaddr
< segment
->p_vaddr
)
4750 /* Extend SEGMENT2 to include SEGMENT and then delete
4753 SEGMENT_END (segment
, segment
->p_vaddr
)
4754 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
4756 if (extra_length
> 0)
4758 segment2
->p_memsz
+= extra_length
;
4759 segment2
->p_filesz
+= extra_length
;
4762 segment
->p_type
= PT_NULL
;
4764 /* Since we have deleted P we must restart the outer loop. */
4766 segment
= elf_tdata (ibfd
)->phdr
;
4771 /* Extend SEGMENT to include SEGMENT2 and then delete
4774 SEGMENT_END (segment2
, segment2
->p_vaddr
)
4775 - SEGMENT_END (segment
, segment
->p_vaddr
);
4777 if (extra_length
> 0)
4779 segment
->p_memsz
+= extra_length
;
4780 segment
->p_filesz
+= extra_length
;
4783 segment2
->p_type
= PT_NULL
;
4788 /* The second scan attempts to assign sections to segments. */
4789 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4793 unsigned int section_count
;
4794 asection
** sections
;
4795 asection
* output_section
;
4797 bfd_vma matching_lma
;
4798 bfd_vma suggested_lma
;
4802 if (segment
->p_type
== PT_NULL
)
4805 /* Compute how many sections might be placed into this segment. */
4806 for (section
= ibfd
->sections
, section_count
= 0;
4808 section
= section
->next
)
4809 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
4812 /* Allocate a segment map big enough to contain
4813 all of the sections we have selected. */
4814 amt
= sizeof (struct elf_segment_map
);
4815 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
4816 map
= bfd_alloc (obfd
, amt
);
4820 /* Initialise the fields of the segment map. Default to
4821 using the physical address of the segment in the input BFD. */
4823 map
->p_type
= segment
->p_type
;
4824 map
->p_flags
= segment
->p_flags
;
4825 map
->p_flags_valid
= 1;
4826 map
->p_paddr
= segment
->p_paddr
;
4827 map
->p_paddr_valid
= 1;
4829 /* Determine if this segment contains the ELF file header
4830 and if it contains the program headers themselves. */
4831 map
->includes_filehdr
= (segment
->p_offset
== 0
4832 && segment
->p_filesz
>= iehdr
->e_ehsize
);
4834 map
->includes_phdrs
= 0;
4836 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
4838 map
->includes_phdrs
=
4839 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
4840 && (segment
->p_offset
+ segment
->p_filesz
4841 >= ((bfd_vma
) iehdr
->e_phoff
4842 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
4844 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
4845 phdr_included
= TRUE
;
4848 if (section_count
== 0)
4850 /* Special segments, such as the PT_PHDR segment, may contain
4851 no sections, but ordinary, loadable segments should contain
4852 something. They are allowed by the ELF spec however, so only
4853 a warning is produced. */
4854 if (segment
->p_type
== PT_LOAD
)
4855 (*_bfd_error_handler
)
4856 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4857 bfd_archive_filename (ibfd
));
4860 *pointer_to_map
= map
;
4861 pointer_to_map
= &map
->next
;
4866 /* Now scan the sections in the input BFD again and attempt
4867 to add their corresponding output sections to the segment map.
4868 The problem here is how to handle an output section which has
4869 been moved (ie had its LMA changed). There are four possibilities:
4871 1. None of the sections have been moved.
4872 In this case we can continue to use the segment LMA from the
4875 2. All of the sections have been moved by the same amount.
4876 In this case we can change the segment's LMA to match the LMA
4877 of the first section.
4879 3. Some of the sections have been moved, others have not.
4880 In this case those sections which have not been moved can be
4881 placed in the current segment which will have to have its size,
4882 and possibly its LMA changed, and a new segment or segments will
4883 have to be created to contain the other sections.
4885 4. The sections have been moved, but not by the same amount.
4886 In this case we can change the segment's LMA to match the LMA
4887 of the first section and we will have to create a new segment
4888 or segments to contain the other sections.
4890 In order to save time, we allocate an array to hold the section
4891 pointers that we are interested in. As these sections get assigned
4892 to a segment, they are removed from this array. */
4894 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4895 to work around this long long bug. */
4896 amt
= section_count
* sizeof (asection
*);
4897 sections
= bfd_malloc (amt
);
4898 if (sections
== NULL
)
4901 /* Step One: Scan for segment vs section LMA conflicts.
4902 Also add the sections to the section array allocated above.
4903 Also add the sections to the current segment. In the common
4904 case, where the sections have not been moved, this means that
4905 we have completely filled the segment, and there is nothing
4911 for (j
= 0, section
= ibfd
->sections
;
4913 section
= section
->next
)
4915 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
4917 output_section
= section
->output_section
;
4919 sections
[j
++] = section
;
4921 /* The Solaris native linker always sets p_paddr to 0.
4922 We try to catch that case here, and set it to the
4923 correct value. Note - some backends require that
4924 p_paddr be left as zero. */
4925 if (segment
->p_paddr
== 0
4926 && segment
->p_vaddr
!= 0
4927 && (! bed
->want_p_paddr_set_to_zero
)
4929 && output_section
->lma
!= 0
4930 && (output_section
->vma
== (segment
->p_vaddr
4931 + (map
->includes_filehdr
4934 + (map
->includes_phdrs
4936 * iehdr
->e_phentsize
)
4938 map
->p_paddr
= segment
->p_vaddr
;
4940 /* Match up the physical address of the segment with the
4941 LMA address of the output section. */
4942 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
4943 || IS_COREFILE_NOTE (segment
, section
)
4944 || (bed
->want_p_paddr_set_to_zero
&&
4945 IS_CONTAINED_BY_VMA (output_section
, segment
))
4948 if (matching_lma
== 0)
4949 matching_lma
= output_section
->lma
;
4951 /* We assume that if the section fits within the segment
4952 then it does not overlap any other section within that
4954 map
->sections
[isec
++] = output_section
;
4956 else if (suggested_lma
== 0)
4957 suggested_lma
= output_section
->lma
;
4961 BFD_ASSERT (j
== section_count
);
4963 /* Step Two: Adjust the physical address of the current segment,
4965 if (isec
== section_count
)
4967 /* All of the sections fitted within the segment as currently
4968 specified. This is the default case. Add the segment to
4969 the list of built segments and carry on to process the next
4970 program header in the input BFD. */
4971 map
->count
= section_count
;
4972 *pointer_to_map
= map
;
4973 pointer_to_map
= &map
->next
;
4980 if (matching_lma
!= 0)
4982 /* At least one section fits inside the current segment.
4983 Keep it, but modify its physical address to match the
4984 LMA of the first section that fitted. */
4985 map
->p_paddr
= matching_lma
;
4989 /* None of the sections fitted inside the current segment.
4990 Change the current segment's physical address to match
4991 the LMA of the first section. */
4992 map
->p_paddr
= suggested_lma
;
4995 /* Offset the segment physical address from the lma
4996 to allow for space taken up by elf headers. */
4997 if (map
->includes_filehdr
)
4998 map
->p_paddr
-= iehdr
->e_ehsize
;
5000 if (map
->includes_phdrs
)
5002 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5004 /* iehdr->e_phnum is just an estimate of the number
5005 of program headers that we will need. Make a note
5006 here of the number we used and the segment we chose
5007 to hold these headers, so that we can adjust the
5008 offset when we know the correct value. */
5009 phdr_adjust_num
= iehdr
->e_phnum
;
5010 phdr_adjust_seg
= map
;
5014 /* Step Three: Loop over the sections again, this time assigning
5015 those that fit to the current segment and removing them from the
5016 sections array; but making sure not to leave large gaps. Once all
5017 possible sections have been assigned to the current segment it is
5018 added to the list of built segments and if sections still remain
5019 to be assigned, a new segment is constructed before repeating
5027 /* Fill the current segment with sections that fit. */
5028 for (j
= 0; j
< section_count
; j
++)
5030 section
= sections
[j
];
5032 if (section
== NULL
)
5035 output_section
= section
->output_section
;
5037 BFD_ASSERT (output_section
!= NULL
);
5039 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5040 || IS_COREFILE_NOTE (segment
, section
))
5042 if (map
->count
== 0)
5044 /* If the first section in a segment does not start at
5045 the beginning of the segment, then something is
5047 if (output_section
->lma
!=
5049 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5050 + (map
->includes_phdrs
5051 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5057 asection
* prev_sec
;
5059 prev_sec
= map
->sections
[map
->count
- 1];
5061 /* If the gap between the end of the previous section
5062 and the start of this section is more than
5063 maxpagesize then we need to start a new segment. */
5064 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->_raw_size
,
5066 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5067 || ((prev_sec
->lma
+ prev_sec
->_raw_size
)
5068 > output_section
->lma
))
5070 if (suggested_lma
== 0)
5071 suggested_lma
= output_section
->lma
;
5077 map
->sections
[map
->count
++] = output_section
;
5080 section
->segment_mark
= TRUE
;
5082 else if (suggested_lma
== 0)
5083 suggested_lma
= output_section
->lma
;
5086 BFD_ASSERT (map
->count
> 0);
5088 /* Add the current segment to the list of built segments. */
5089 *pointer_to_map
= map
;
5090 pointer_to_map
= &map
->next
;
5092 if (isec
< section_count
)
5094 /* We still have not allocated all of the sections to
5095 segments. Create a new segment here, initialise it
5096 and carry on looping. */
5097 amt
= sizeof (struct elf_segment_map
);
5098 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5099 map
= bfd_alloc (obfd
, amt
);
5106 /* Initialise the fields of the segment map. Set the physical
5107 physical address to the LMA of the first section that has
5108 not yet been assigned. */
5110 map
->p_type
= segment
->p_type
;
5111 map
->p_flags
= segment
->p_flags
;
5112 map
->p_flags_valid
= 1;
5113 map
->p_paddr
= suggested_lma
;
5114 map
->p_paddr_valid
= 1;
5115 map
->includes_filehdr
= 0;
5116 map
->includes_phdrs
= 0;
5119 while (isec
< section_count
);
5124 /* The Solaris linker creates program headers in which all the
5125 p_paddr fields are zero. When we try to objcopy or strip such a
5126 file, we get confused. Check for this case, and if we find it
5127 reset the p_paddr_valid fields. */
5128 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5129 if (map
->p_paddr
!= 0)
5132 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5133 map
->p_paddr_valid
= 0;
5135 elf_tdata (obfd
)->segment_map
= map_first
;
5137 /* If we had to estimate the number of program headers that were
5138 going to be needed, then check our estimate now and adjust
5139 the offset if necessary. */
5140 if (phdr_adjust_seg
!= NULL
)
5144 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5147 if (count
> phdr_adjust_num
)
5148 phdr_adjust_seg
->p_paddr
5149 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5153 /* Final Step: Sort the segments into ascending order of physical
5155 if (map_first
!= NULL
)
5157 struct elf_segment_map
*prev
;
5160 for (map
= map_first
->next
; map
!= NULL
; prev
= map
, map
= map
->next
)
5162 /* Yes I know - its a bubble sort.... */
5163 if (map
->next
!= NULL
&& (map
->next
->p_paddr
< map
->p_paddr
))
5165 /* Swap map and map->next. */
5166 prev
->next
= map
->next
;
5167 map
->next
= map
->next
->next
;
5168 prev
->next
->next
= map
;
5179 #undef IS_CONTAINED_BY_VMA
5180 #undef IS_CONTAINED_BY_LMA
5181 #undef IS_COREFILE_NOTE
5182 #undef IS_SOLARIS_PT_INTERP
5183 #undef INCLUDE_SECTION_IN_SEGMENT
5184 #undef SEGMENT_AFTER_SEGMENT
5185 #undef SEGMENT_OVERLAPS
5189 /* Copy private section information. This copies over the entsize
5190 field, and sometimes the info field. */
5193 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5198 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5200 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5201 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5204 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5208 /* Only set up the segments if there are no more SEC_ALLOC
5209 sections. FIXME: This won't do the right thing if objcopy is
5210 used to remove the last SEC_ALLOC section, since objcopy
5211 won't call this routine in that case. */
5212 for (s
= isec
->next
; s
!= NULL
; s
= s
->next
)
5213 if ((s
->flags
& SEC_ALLOC
) != 0)
5217 if (! copy_private_bfd_data (ibfd
, obfd
))
5222 ihdr
= &elf_section_data (isec
)->this_hdr
;
5223 ohdr
= &elf_section_data (osec
)->this_hdr
;
5225 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5227 if (ihdr
->sh_type
== SHT_SYMTAB
5228 || ihdr
->sh_type
== SHT_DYNSYM
5229 || ihdr
->sh_type
== SHT_GNU_verneed
5230 || ihdr
->sh_type
== SHT_GNU_verdef
)
5231 ohdr
->sh_info
= ihdr
->sh_info
;
5233 /* Set things up for objcopy. The output SHT_GROUP section will
5234 have its elf_next_in_group pointing back to the input group
5236 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5237 elf_group_name (osec
) = elf_group_name (isec
);
5239 osec
->use_rela_p
= isec
->use_rela_p
;
5244 /* Copy private symbol information. If this symbol is in a section
5245 which we did not map into a BFD section, try to map the section
5246 index correctly. We use special macro definitions for the mapped
5247 section indices; these definitions are interpreted by the
5248 swap_out_syms function. */
5250 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5251 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5252 #define MAP_STRTAB (SHN_HIOS + 3)
5253 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5254 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5257 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5262 elf_symbol_type
*isym
, *osym
;
5264 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5265 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5268 isym
= elf_symbol_from (ibfd
, isymarg
);
5269 osym
= elf_symbol_from (obfd
, osymarg
);
5273 && bfd_is_abs_section (isym
->symbol
.section
))
5277 shndx
= isym
->internal_elf_sym
.st_shndx
;
5278 if (shndx
== elf_onesymtab (ibfd
))
5279 shndx
= MAP_ONESYMTAB
;
5280 else if (shndx
== elf_dynsymtab (ibfd
))
5281 shndx
= MAP_DYNSYMTAB
;
5282 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5284 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5285 shndx
= MAP_SHSTRTAB
;
5286 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5287 shndx
= MAP_SYM_SHNDX
;
5288 osym
->internal_elf_sym
.st_shndx
= shndx
;
5294 /* Swap out the symbols. */
5297 swap_out_syms (bfd
*abfd
,
5298 struct bfd_strtab_hash
**sttp
,
5301 const struct elf_backend_data
*bed
;
5304 struct bfd_strtab_hash
*stt
;
5305 Elf_Internal_Shdr
*symtab_hdr
;
5306 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5307 Elf_Internal_Shdr
*symstrtab_hdr
;
5308 char *outbound_syms
;
5309 char *outbound_shndx
;
5312 bfd_boolean name_local_sections
;
5314 if (!elf_map_symbols (abfd
))
5317 /* Dump out the symtabs. */
5318 stt
= _bfd_elf_stringtab_init ();
5322 bed
= get_elf_backend_data (abfd
);
5323 symcount
= bfd_get_symcount (abfd
);
5324 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5325 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5326 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5327 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5328 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5329 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5331 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5332 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5334 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5335 outbound_syms
= bfd_alloc (abfd
, amt
);
5336 if (outbound_syms
== NULL
)
5338 _bfd_stringtab_free (stt
);
5341 symtab_hdr
->contents
= outbound_syms
;
5343 outbound_shndx
= NULL
;
5344 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5345 if (symtab_shndx_hdr
->sh_name
!= 0)
5347 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5348 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5349 if (outbound_shndx
== NULL
)
5351 _bfd_stringtab_free (stt
);
5355 symtab_shndx_hdr
->contents
= outbound_shndx
;
5356 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5357 symtab_shndx_hdr
->sh_size
= amt
;
5358 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5359 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5362 /* Now generate the data (for "contents"). */
5364 /* Fill in zeroth symbol and swap it out. */
5365 Elf_Internal_Sym sym
;
5371 sym
.st_shndx
= SHN_UNDEF
;
5372 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5373 outbound_syms
+= bed
->s
->sizeof_sym
;
5374 if (outbound_shndx
!= NULL
)
5375 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5379 = (bed
->elf_backend_name_local_section_symbols
5380 && bed
->elf_backend_name_local_section_symbols (abfd
));
5382 syms
= bfd_get_outsymbols (abfd
);
5383 for (idx
= 0; idx
< symcount
; idx
++)
5385 Elf_Internal_Sym sym
;
5386 bfd_vma value
= syms
[idx
]->value
;
5387 elf_symbol_type
*type_ptr
;
5388 flagword flags
= syms
[idx
]->flags
;
5391 if (!name_local_sections
5392 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5394 /* Local section symbols have no name. */
5399 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5402 if (sym
.st_name
== (unsigned long) -1)
5404 _bfd_stringtab_free (stt
);
5409 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5411 if ((flags
& BSF_SECTION_SYM
) == 0
5412 && bfd_is_com_section (syms
[idx
]->section
))
5414 /* ELF common symbols put the alignment into the `value' field,
5415 and the size into the `size' field. This is backwards from
5416 how BFD handles it, so reverse it here. */
5417 sym
.st_size
= value
;
5418 if (type_ptr
== NULL
5419 || type_ptr
->internal_elf_sym
.st_value
== 0)
5420 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5422 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5423 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5424 (abfd
, syms
[idx
]->section
);
5428 asection
*sec
= syms
[idx
]->section
;
5431 if (sec
->output_section
)
5433 value
+= sec
->output_offset
;
5434 sec
= sec
->output_section
;
5437 /* Don't add in the section vma for relocatable output. */
5438 if (! relocatable_p
)
5440 sym
.st_value
= value
;
5441 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5443 if (bfd_is_abs_section (sec
)
5445 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5447 /* This symbol is in a real ELF section which we did
5448 not create as a BFD section. Undo the mapping done
5449 by copy_private_symbol_data. */
5450 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5454 shndx
= elf_onesymtab (abfd
);
5457 shndx
= elf_dynsymtab (abfd
);
5460 shndx
= elf_tdata (abfd
)->strtab_section
;
5463 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5466 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5474 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5480 /* Writing this would be a hell of a lot easier if
5481 we had some decent documentation on bfd, and
5482 knew what to expect of the library, and what to
5483 demand of applications. For example, it
5484 appears that `objcopy' might not set the
5485 section of a symbol to be a section that is
5486 actually in the output file. */
5487 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5490 _bfd_error_handler (_("\
5491 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5492 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5494 bfd_set_error (bfd_error_invalid_operation
);
5495 _bfd_stringtab_free (stt
);
5499 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5500 BFD_ASSERT (shndx
!= -1);
5504 sym
.st_shndx
= shndx
;
5507 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5509 else if ((flags
& BSF_FUNCTION
) != 0)
5511 else if ((flags
& BSF_OBJECT
) != 0)
5516 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5519 /* Processor-specific types. */
5520 if (type_ptr
!= NULL
5521 && bed
->elf_backend_get_symbol_type
)
5522 type
= ((*bed
->elf_backend_get_symbol_type
)
5523 (&type_ptr
->internal_elf_sym
, type
));
5525 if (flags
& BSF_SECTION_SYM
)
5527 if (flags
& BSF_GLOBAL
)
5528 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5530 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5532 else if (bfd_is_com_section (syms
[idx
]->section
))
5533 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5534 else if (bfd_is_und_section (syms
[idx
]->section
))
5535 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5539 else if (flags
& BSF_FILE
)
5540 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5543 int bind
= STB_LOCAL
;
5545 if (flags
& BSF_LOCAL
)
5547 else if (flags
& BSF_WEAK
)
5549 else if (flags
& BSF_GLOBAL
)
5552 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5555 if (type_ptr
!= NULL
)
5556 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5560 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5561 outbound_syms
+= bed
->s
->sizeof_sym
;
5562 if (outbound_shndx
!= NULL
)
5563 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5567 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5568 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5570 symstrtab_hdr
->sh_flags
= 0;
5571 symstrtab_hdr
->sh_addr
= 0;
5572 symstrtab_hdr
->sh_entsize
= 0;
5573 symstrtab_hdr
->sh_link
= 0;
5574 symstrtab_hdr
->sh_info
= 0;
5575 symstrtab_hdr
->sh_addralign
= 1;
5580 /* Return the number of bytes required to hold the symtab vector.
5582 Note that we base it on the count plus 1, since we will null terminate
5583 the vector allocated based on this size. However, the ELF symbol table
5584 always has a dummy entry as symbol #0, so it ends up even. */
5587 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5591 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5593 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5594 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5596 symtab_size
-= sizeof (asymbol
*);
5602 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5606 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5608 if (elf_dynsymtab (abfd
) == 0)
5610 bfd_set_error (bfd_error_invalid_operation
);
5614 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5615 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5617 symtab_size
-= sizeof (asymbol
*);
5623 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5626 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5629 /* Canonicalize the relocs. */
5632 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5639 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5641 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5644 tblptr
= section
->relocation
;
5645 for (i
= 0; i
< section
->reloc_count
; i
++)
5646 *relptr
++ = tblptr
++;
5650 return section
->reloc_count
;
5654 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5656 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5657 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5660 bfd_get_symcount (abfd
) = symcount
;
5665 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5666 asymbol
**allocation
)
5668 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5669 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
5672 bfd_get_dynamic_symcount (abfd
) = symcount
;
5676 /* Return the size required for the dynamic reloc entries. Any
5677 section that was actually installed in the BFD, and has type
5678 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5679 considered to be a dynamic reloc section. */
5682 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
5687 if (elf_dynsymtab (abfd
) == 0)
5689 bfd_set_error (bfd_error_invalid_operation
);
5693 ret
= sizeof (arelent
*);
5694 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5695 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5696 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5697 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5698 ret
+= ((s
->_raw_size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
5699 * sizeof (arelent
*));
5704 /* Canonicalize the dynamic relocation entries. Note that we return
5705 the dynamic relocations as a single block, although they are
5706 actually associated with particular sections; the interface, which
5707 was designed for SunOS style shared libraries, expects that there
5708 is only one set of dynamic relocs. Any section that was actually
5709 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5710 the dynamic symbol table, is considered to be a dynamic reloc
5714 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
5718 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
5722 if (elf_dynsymtab (abfd
) == 0)
5724 bfd_set_error (bfd_error_invalid_operation
);
5728 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
5730 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5732 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5733 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5734 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5739 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
5741 count
= s
->_raw_size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
5743 for (i
= 0; i
< count
; i
++)
5754 /* Read in the version information. */
5757 _bfd_elf_slurp_version_tables (bfd
*abfd
)
5759 bfd_byte
*contents
= NULL
;
5762 if (elf_dynverdef (abfd
) != 0)
5764 Elf_Internal_Shdr
*hdr
;
5765 Elf_External_Verdef
*everdef
;
5766 Elf_Internal_Verdef
*iverdef
;
5767 Elf_Internal_Verdef
*iverdefarr
;
5768 Elf_Internal_Verdef iverdefmem
;
5770 unsigned int maxidx
;
5772 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
5774 contents
= bfd_malloc (hdr
->sh_size
);
5775 if (contents
== NULL
)
5777 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
5778 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
5781 /* We know the number of entries in the section but not the maximum
5782 index. Therefore we have to run through all entries and find
5784 everdef
= (Elf_External_Verdef
*) contents
;
5786 for (i
= 0; i
< hdr
->sh_info
; ++i
)
5788 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
5790 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
5791 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
5793 everdef
= ((Elf_External_Verdef
*)
5794 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
5797 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
5798 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
5799 if (elf_tdata (abfd
)->verdef
== NULL
)
5802 elf_tdata (abfd
)->cverdefs
= maxidx
;
5804 everdef
= (Elf_External_Verdef
*) contents
;
5805 iverdefarr
= elf_tdata (abfd
)->verdef
;
5806 for (i
= 0; i
< hdr
->sh_info
; i
++)
5808 Elf_External_Verdaux
*everdaux
;
5809 Elf_Internal_Verdaux
*iverdaux
;
5812 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
5814 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
5815 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
5817 iverdef
->vd_bfd
= abfd
;
5819 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
5820 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
5821 if (iverdef
->vd_auxptr
== NULL
)
5824 everdaux
= ((Elf_External_Verdaux
*)
5825 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
5826 iverdaux
= iverdef
->vd_auxptr
;
5827 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
5829 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
5831 iverdaux
->vda_nodename
=
5832 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
5833 iverdaux
->vda_name
);
5834 if (iverdaux
->vda_nodename
== NULL
)
5837 if (j
+ 1 < iverdef
->vd_cnt
)
5838 iverdaux
->vda_nextptr
= iverdaux
+ 1;
5840 iverdaux
->vda_nextptr
= NULL
;
5842 everdaux
= ((Elf_External_Verdaux
*)
5843 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
5846 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
5848 if (i
+ 1 < hdr
->sh_info
)
5849 iverdef
->vd_nextdef
= iverdef
+ 1;
5851 iverdef
->vd_nextdef
= NULL
;
5853 everdef
= ((Elf_External_Verdef
*)
5854 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
5861 if (elf_dynverref (abfd
) != 0)
5863 Elf_Internal_Shdr
*hdr
;
5864 Elf_External_Verneed
*everneed
;
5865 Elf_Internal_Verneed
*iverneed
;
5868 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
5870 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
5871 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
5872 if (elf_tdata (abfd
)->verref
== NULL
)
5875 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
5877 contents
= bfd_malloc (hdr
->sh_size
);
5878 if (contents
== NULL
)
5880 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
5881 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
5884 everneed
= (Elf_External_Verneed
*) contents
;
5885 iverneed
= elf_tdata (abfd
)->verref
;
5886 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
5888 Elf_External_Vernaux
*evernaux
;
5889 Elf_Internal_Vernaux
*ivernaux
;
5892 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
5894 iverneed
->vn_bfd
= abfd
;
5896 iverneed
->vn_filename
=
5897 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
5899 if (iverneed
->vn_filename
== NULL
)
5902 amt
= iverneed
->vn_cnt
;
5903 amt
*= sizeof (Elf_Internal_Vernaux
);
5904 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
5906 evernaux
= ((Elf_External_Vernaux
*)
5907 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
5908 ivernaux
= iverneed
->vn_auxptr
;
5909 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
5911 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
5913 ivernaux
->vna_nodename
=
5914 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
5915 ivernaux
->vna_name
);
5916 if (ivernaux
->vna_nodename
== NULL
)
5919 if (j
+ 1 < iverneed
->vn_cnt
)
5920 ivernaux
->vna_nextptr
= ivernaux
+ 1;
5922 ivernaux
->vna_nextptr
= NULL
;
5924 evernaux
= ((Elf_External_Vernaux
*)
5925 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
5928 if (i
+ 1 < hdr
->sh_info
)
5929 iverneed
->vn_nextref
= iverneed
+ 1;
5931 iverneed
->vn_nextref
= NULL
;
5933 everneed
= ((Elf_External_Verneed
*)
5934 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
5944 if (contents
!= NULL
)
5950 _bfd_elf_make_empty_symbol (bfd
*abfd
)
5952 elf_symbol_type
*newsym
;
5953 bfd_size_type amt
= sizeof (elf_symbol_type
);
5955 newsym
= bfd_zalloc (abfd
, amt
);
5960 newsym
->symbol
.the_bfd
= abfd
;
5961 return &newsym
->symbol
;
5966 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
5970 bfd_symbol_info (symbol
, ret
);
5973 /* Return whether a symbol name implies a local symbol. Most targets
5974 use this function for the is_local_label_name entry point, but some
5978 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
5981 /* Normal local symbols start with ``.L''. */
5982 if (name
[0] == '.' && name
[1] == 'L')
5985 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5986 DWARF debugging symbols starting with ``..''. */
5987 if (name
[0] == '.' && name
[1] == '.')
5990 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5991 emitting DWARF debugging output. I suspect this is actually a
5992 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5993 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5994 underscore to be emitted on some ELF targets). For ease of use,
5995 we treat such symbols as local. */
5996 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6003 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6004 asymbol
*symbol ATTRIBUTE_UNUSED
)
6011 _bfd_elf_set_arch_mach (bfd
*abfd
,
6012 enum bfd_architecture arch
,
6013 unsigned long machine
)
6015 /* If this isn't the right architecture for this backend, and this
6016 isn't the generic backend, fail. */
6017 if (arch
!= get_elf_backend_data (abfd
)->arch
6018 && arch
!= bfd_arch_unknown
6019 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6022 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6025 /* Find the function to a particular section and offset,
6026 for error reporting. */
6029 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6033 const char **filename_ptr
,
6034 const char **functionname_ptr
)
6036 const char *filename
;
6045 for (p
= symbols
; *p
!= NULL
; p
++)
6049 q
= (elf_symbol_type
*) *p
;
6051 if (bfd_get_section (&q
->symbol
) != section
)
6054 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6059 filename
= bfd_asymbol_name (&q
->symbol
);
6063 if (q
->symbol
.section
== section
6064 && q
->symbol
.value
>= low_func
6065 && q
->symbol
.value
<= offset
)
6067 func
= (asymbol
*) q
;
6068 low_func
= q
->symbol
.value
;
6078 *filename_ptr
= filename
;
6079 if (functionname_ptr
)
6080 *functionname_ptr
= bfd_asymbol_name (func
);
6085 /* Find the nearest line to a particular section and offset,
6086 for error reporting. */
6089 _bfd_elf_find_nearest_line (bfd
*abfd
,
6093 const char **filename_ptr
,
6094 const char **functionname_ptr
,
6095 unsigned int *line_ptr
)
6099 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6100 filename_ptr
, functionname_ptr
,
6103 if (!*functionname_ptr
)
6104 elf_find_function (abfd
, section
, symbols
, offset
,
6105 *filename_ptr
? NULL
: filename_ptr
,
6111 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6112 filename_ptr
, functionname_ptr
,
6114 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6116 if (!*functionname_ptr
)
6117 elf_find_function (abfd
, section
, symbols
, offset
,
6118 *filename_ptr
? NULL
: filename_ptr
,
6124 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6125 &found
, filename_ptr
,
6126 functionname_ptr
, line_ptr
,
6127 &elf_tdata (abfd
)->line_info
))
6129 if (found
&& (*functionname_ptr
|| *line_ptr
))
6132 if (symbols
== NULL
)
6135 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6136 filename_ptr
, functionname_ptr
))
6144 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6148 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6150 ret
+= get_program_header_size (abfd
);
6155 _bfd_elf_set_section_contents (bfd
*abfd
,
6157 const void *location
,
6159 bfd_size_type count
)
6161 Elf_Internal_Shdr
*hdr
;
6164 if (! abfd
->output_has_begun
6165 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6168 hdr
= &elf_section_data (section
)->this_hdr
;
6169 pos
= hdr
->sh_offset
+ offset
;
6170 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6171 || bfd_bwrite (location
, count
, abfd
) != count
)
6178 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6179 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6180 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6185 /* Try to convert a non-ELF reloc into an ELF one. */
6188 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6190 /* Check whether we really have an ELF howto. */
6192 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6194 bfd_reloc_code_real_type code
;
6195 reloc_howto_type
*howto
;
6197 /* Alien reloc: Try to determine its type to replace it with an
6198 equivalent ELF reloc. */
6200 if (areloc
->howto
->pc_relative
)
6202 switch (areloc
->howto
->bitsize
)
6205 code
= BFD_RELOC_8_PCREL
;
6208 code
= BFD_RELOC_12_PCREL
;
6211 code
= BFD_RELOC_16_PCREL
;
6214 code
= BFD_RELOC_24_PCREL
;
6217 code
= BFD_RELOC_32_PCREL
;
6220 code
= BFD_RELOC_64_PCREL
;
6226 howto
= bfd_reloc_type_lookup (abfd
, code
);
6228 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6230 if (howto
->pcrel_offset
)
6231 areloc
->addend
+= areloc
->address
;
6233 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6238 switch (areloc
->howto
->bitsize
)
6244 code
= BFD_RELOC_14
;
6247 code
= BFD_RELOC_16
;
6250 code
= BFD_RELOC_26
;
6253 code
= BFD_RELOC_32
;
6256 code
= BFD_RELOC_64
;
6262 howto
= bfd_reloc_type_lookup (abfd
, code
);
6266 areloc
->howto
= howto
;
6274 (*_bfd_error_handler
)
6275 (_("%s: unsupported relocation type %s"),
6276 bfd_archive_filename (abfd
), areloc
->howto
->name
);
6277 bfd_set_error (bfd_error_bad_value
);
6282 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6284 if (bfd_get_format (abfd
) == bfd_object
)
6286 if (elf_shstrtab (abfd
) != NULL
)
6287 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6290 return _bfd_generic_close_and_cleanup (abfd
);
6293 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6294 in the relocation's offset. Thus we cannot allow any sort of sanity
6295 range-checking to interfere. There is nothing else to do in processing
6298 bfd_reloc_status_type
6299 _bfd_elf_rel_vtable_reloc_fn
6300 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6301 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6302 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6303 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6305 return bfd_reloc_ok
;
6308 /* Elf core file support. Much of this only works on native
6309 toolchains, since we rely on knowing the
6310 machine-dependent procfs structure in order to pick
6311 out details about the corefile. */
6313 #ifdef HAVE_SYS_PROCFS_H
6314 # include <sys/procfs.h>
6317 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6320 elfcore_make_pid (bfd
*abfd
)
6322 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6323 + (elf_tdata (abfd
)->core_pid
));
6326 /* If there isn't a section called NAME, make one, using
6327 data from SECT. Note, this function will generate a
6328 reference to NAME, so you shouldn't deallocate or
6332 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6336 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6339 sect2
= bfd_make_section (abfd
, name
);
6343 sect2
->_raw_size
= sect
->_raw_size
;
6344 sect2
->filepos
= sect
->filepos
;
6345 sect2
->flags
= sect
->flags
;
6346 sect2
->alignment_power
= sect
->alignment_power
;
6350 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6351 actually creates up to two pseudosections:
6352 - For the single-threaded case, a section named NAME, unless
6353 such a section already exists.
6354 - For the multi-threaded case, a section named "NAME/PID", where
6355 PID is elfcore_make_pid (abfd).
6356 Both pseudosections have identical contents. */
6358 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6364 char *threaded_name
;
6368 /* Build the section name. */
6370 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6371 len
= strlen (buf
) + 1;
6372 threaded_name
= bfd_alloc (abfd
, len
);
6373 if (threaded_name
== NULL
)
6375 memcpy (threaded_name
, buf
, len
);
6377 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6380 sect
->_raw_size
= size
;
6381 sect
->filepos
= filepos
;
6382 sect
->flags
= SEC_HAS_CONTENTS
;
6383 sect
->alignment_power
= 2;
6385 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6388 /* prstatus_t exists on:
6390 linux 2.[01] + glibc
6394 #if defined (HAVE_PRSTATUS_T)
6397 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6402 if (note
->descsz
== sizeof (prstatus_t
))
6406 raw_size
= sizeof (prstat
.pr_reg
);
6407 offset
= offsetof (prstatus_t
, pr_reg
);
6408 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6410 /* Do not overwrite the core signal if it
6411 has already been set by another thread. */
6412 if (elf_tdata (abfd
)->core_signal
== 0)
6413 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6414 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6416 /* pr_who exists on:
6419 pr_who doesn't exist on:
6422 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6423 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6426 #if defined (HAVE_PRSTATUS32_T)
6427 else if (note
->descsz
== sizeof (prstatus32_t
))
6429 /* 64-bit host, 32-bit corefile */
6430 prstatus32_t prstat
;
6432 raw_size
= sizeof (prstat
.pr_reg
);
6433 offset
= offsetof (prstatus32_t
, pr_reg
);
6434 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6436 /* Do not overwrite the core signal if it
6437 has already been set by another thread. */
6438 if (elf_tdata (abfd
)->core_signal
== 0)
6439 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6440 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6442 /* pr_who exists on:
6445 pr_who doesn't exist on:
6448 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6449 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6452 #endif /* HAVE_PRSTATUS32_T */
6455 /* Fail - we don't know how to handle any other
6456 note size (ie. data object type). */
6460 /* Make a ".reg/999" section and a ".reg" section. */
6461 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6462 raw_size
, note
->descpos
+ offset
);
6464 #endif /* defined (HAVE_PRSTATUS_T) */
6466 /* Create a pseudosection containing the exact contents of NOTE. */
6468 elfcore_make_note_pseudosection (bfd
*abfd
,
6470 Elf_Internal_Note
*note
)
6472 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6473 note
->descsz
, note
->descpos
);
6476 /* There isn't a consistent prfpregset_t across platforms,
6477 but it doesn't matter, because we don't have to pick this
6478 data structure apart. */
6481 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6483 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6486 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6487 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6491 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6493 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6496 #if defined (HAVE_PRPSINFO_T)
6497 typedef prpsinfo_t elfcore_psinfo_t
;
6498 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6499 typedef prpsinfo32_t elfcore_psinfo32_t
;
6503 #if defined (HAVE_PSINFO_T)
6504 typedef psinfo_t elfcore_psinfo_t
;
6505 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6506 typedef psinfo32_t elfcore_psinfo32_t
;
6510 /* return a malloc'ed copy of a string at START which is at
6511 most MAX bytes long, possibly without a terminating '\0'.
6512 the copy will always have a terminating '\0'. */
6515 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6518 char *end
= memchr (start
, '\0', max
);
6526 dups
= bfd_alloc (abfd
, len
+ 1);
6530 memcpy (dups
, start
, len
);
6536 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6538 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6540 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6542 elfcore_psinfo_t psinfo
;
6544 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6546 elf_tdata (abfd
)->core_program
6547 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6548 sizeof (psinfo
.pr_fname
));
6550 elf_tdata (abfd
)->core_command
6551 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6552 sizeof (psinfo
.pr_psargs
));
6554 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6555 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6557 /* 64-bit host, 32-bit corefile */
6558 elfcore_psinfo32_t psinfo
;
6560 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6562 elf_tdata (abfd
)->core_program
6563 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6564 sizeof (psinfo
.pr_fname
));
6566 elf_tdata (abfd
)->core_command
6567 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6568 sizeof (psinfo
.pr_psargs
));
6574 /* Fail - we don't know how to handle any other
6575 note size (ie. data object type). */
6579 /* Note that for some reason, a spurious space is tacked
6580 onto the end of the args in some (at least one anyway)
6581 implementations, so strip it off if it exists. */
6584 char *command
= elf_tdata (abfd
)->core_command
;
6585 int n
= strlen (command
);
6587 if (0 < n
&& command
[n
- 1] == ' ')
6588 command
[n
- 1] = '\0';
6593 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6595 #if defined (HAVE_PSTATUS_T)
6597 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6599 if (note
->descsz
== sizeof (pstatus_t
)
6600 #if defined (HAVE_PXSTATUS_T)
6601 || note
->descsz
== sizeof (pxstatus_t
)
6607 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6609 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6611 #if defined (HAVE_PSTATUS32_T)
6612 else if (note
->descsz
== sizeof (pstatus32_t
))
6614 /* 64-bit host, 32-bit corefile */
6617 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6619 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6622 /* Could grab some more details from the "representative"
6623 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6624 NT_LWPSTATUS note, presumably. */
6628 #endif /* defined (HAVE_PSTATUS_T) */
6630 #if defined (HAVE_LWPSTATUS_T)
6632 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6634 lwpstatus_t lwpstat
;
6640 if (note
->descsz
!= sizeof (lwpstat
)
6641 #if defined (HAVE_LWPXSTATUS_T)
6642 && note
->descsz
!= sizeof (lwpxstatus_t
)
6647 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
6649 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
6650 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
6652 /* Make a ".reg/999" section. */
6654 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
6655 len
= strlen (buf
) + 1;
6656 name
= bfd_alloc (abfd
, len
);
6659 memcpy (name
, buf
, len
);
6661 sect
= bfd_make_section_anyway (abfd
, name
);
6665 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6666 sect
->_raw_size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
6667 sect
->filepos
= note
->descpos
6668 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
6671 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6672 sect
->_raw_size
= sizeof (lwpstat
.pr_reg
);
6673 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
6676 sect
->flags
= SEC_HAS_CONTENTS
;
6677 sect
->alignment_power
= 2;
6679 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6682 /* Make a ".reg2/999" section */
6684 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
6685 len
= strlen (buf
) + 1;
6686 name
= bfd_alloc (abfd
, len
);
6689 memcpy (name
, buf
, len
);
6691 sect
= bfd_make_section_anyway (abfd
, name
);
6695 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6696 sect
->_raw_size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
6697 sect
->filepos
= note
->descpos
6698 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
6701 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6702 sect
->_raw_size
= sizeof (lwpstat
.pr_fpreg
);
6703 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
6706 sect
->flags
= SEC_HAS_CONTENTS
;
6707 sect
->alignment_power
= 2;
6709 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
6711 #endif /* defined (HAVE_LWPSTATUS_T) */
6713 #if defined (HAVE_WIN32_PSTATUS_T)
6715 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6721 win32_pstatus_t pstatus
;
6723 if (note
->descsz
< sizeof (pstatus
))
6726 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
6728 switch (pstatus
.data_type
)
6730 case NOTE_INFO_PROCESS
:
6731 /* FIXME: need to add ->core_command. */
6732 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
6733 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
6736 case NOTE_INFO_THREAD
:
6737 /* Make a ".reg/999" section. */
6738 sprintf (buf
, ".reg/%d", pstatus
.data
.thread_info
.tid
);
6740 len
= strlen (buf
) + 1;
6741 name
= bfd_alloc (abfd
, len
);
6745 memcpy (name
, buf
, len
);
6747 sect
= bfd_make_section_anyway (abfd
, name
);
6751 sect
->_raw_size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
6752 sect
->filepos
= (note
->descpos
6753 + offsetof (struct win32_pstatus
,
6754 data
.thread_info
.thread_context
));
6755 sect
->flags
= SEC_HAS_CONTENTS
;
6756 sect
->alignment_power
= 2;
6758 if (pstatus
.data
.thread_info
.is_active_thread
)
6759 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6763 case NOTE_INFO_MODULE
:
6764 /* Make a ".module/xxxxxxxx" section. */
6765 sprintf (buf
, ".module/%08x", pstatus
.data
.module_info
.base_address
);
6767 len
= strlen (buf
) + 1;
6768 name
= bfd_alloc (abfd
, len
);
6772 memcpy (name
, buf
, len
);
6774 sect
= bfd_make_section_anyway (abfd
, name
);
6779 sect
->_raw_size
= note
->descsz
;
6780 sect
->filepos
= note
->descpos
;
6781 sect
->flags
= SEC_HAS_CONTENTS
;
6782 sect
->alignment_power
= 2;
6791 #endif /* HAVE_WIN32_PSTATUS_T */
6794 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
6796 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6804 if (bed
->elf_backend_grok_prstatus
)
6805 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
6807 #if defined (HAVE_PRSTATUS_T)
6808 return elfcore_grok_prstatus (abfd
, note
);
6813 #if defined (HAVE_PSTATUS_T)
6815 return elfcore_grok_pstatus (abfd
, note
);
6818 #if defined (HAVE_LWPSTATUS_T)
6820 return elfcore_grok_lwpstatus (abfd
, note
);
6823 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
6824 return elfcore_grok_prfpreg (abfd
, note
);
6826 #if defined (HAVE_WIN32_PSTATUS_T)
6827 case NT_WIN32PSTATUS
:
6828 return elfcore_grok_win32pstatus (abfd
, note
);
6831 case NT_PRXFPREG
: /* Linux SSE extension */
6832 if (note
->namesz
== 6
6833 && strcmp (note
->namedata
, "LINUX") == 0)
6834 return elfcore_grok_prxfpreg (abfd
, note
);
6840 if (bed
->elf_backend_grok_psinfo
)
6841 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
6843 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6844 return elfcore_grok_psinfo (abfd
, note
);
6851 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
6855 sect
->_raw_size
= note
->descsz
;
6856 sect
->filepos
= note
->descpos
;
6857 sect
->flags
= SEC_HAS_CONTENTS
;
6858 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
6866 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
6870 cp
= strchr (note
->namedata
, '@');
6873 *lwpidp
= atoi(cp
+ 1);
6880 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6883 /* Signal number at offset 0x08. */
6884 elf_tdata (abfd
)->core_signal
6885 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
6887 /* Process ID at offset 0x50. */
6888 elf_tdata (abfd
)->core_pid
6889 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
6891 /* Command name at 0x7c (max 32 bytes, including nul). */
6892 elf_tdata (abfd
)->core_command
6893 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
6895 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
6900 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
6904 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
6905 elf_tdata (abfd
)->core_lwpid
= lwp
;
6907 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
6909 /* NetBSD-specific core "procinfo". Note that we expect to
6910 find this note before any of the others, which is fine,
6911 since the kernel writes this note out first when it
6912 creates a core file. */
6914 return elfcore_grok_netbsd_procinfo (abfd
, note
);
6917 /* As of Jan 2002 there are no other machine-independent notes
6918 defined for NetBSD core files. If the note type is less
6919 than the start of the machine-dependent note types, we don't
6922 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
6926 switch (bfd_get_arch (abfd
))
6928 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6929 PT_GETFPREGS == mach+2. */
6931 case bfd_arch_alpha
:
6932 case bfd_arch_sparc
:
6935 case NT_NETBSDCORE_FIRSTMACH
+0:
6936 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
6938 case NT_NETBSDCORE_FIRSTMACH
+2:
6939 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6945 /* On all other arch's, PT_GETREGS == mach+1 and
6946 PT_GETFPREGS == mach+3. */
6951 case NT_NETBSDCORE_FIRSTMACH
+1:
6952 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
6954 case NT_NETBSDCORE_FIRSTMACH
+3:
6955 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6965 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
6967 void *ddata
= note
->descdata
;
6974 /* nto_procfs_status 'pid' field is at offset 0. */
6975 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
6977 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6978 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
6980 /* nto_procfs_status 'flags' field is at offset 8. */
6981 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
6983 /* nto_procfs_status 'what' field is at offset 14. */
6984 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
6986 elf_tdata (abfd
)->core_signal
= sig
;
6987 elf_tdata (abfd
)->core_lwpid
= *tid
;
6990 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6991 do not come from signals so we make sure we set the current
6992 thread just in case. */
6993 if (flags
& 0x00000080)
6994 elf_tdata (abfd
)->core_lwpid
= *tid
;
6996 /* Make a ".qnx_core_status/%d" section. */
6997 sprintf (buf
, ".qnx_core_status/%d", *tid
);
6999 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7004 sect
= bfd_make_section_anyway (abfd
, name
);
7008 sect
->_raw_size
= note
->descsz
;
7009 sect
->filepos
= note
->descpos
;
7010 sect
->flags
= SEC_HAS_CONTENTS
;
7011 sect
->alignment_power
= 2;
7013 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7017 elfcore_grok_nto_gregs (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t tid
)
7023 /* Make a ".reg/%d" section. */
7024 sprintf (buf
, ".reg/%d", tid
);
7026 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7031 sect
= bfd_make_section_anyway (abfd
, name
);
7035 sect
->_raw_size
= note
->descsz
;
7036 sect
->filepos
= note
->descpos
;
7037 sect
->flags
= SEC_HAS_CONTENTS
;
7038 sect
->alignment_power
= 2;
7040 /* This is the current thread. */
7041 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7042 return elfcore_maybe_make_sect (abfd
, ".reg", sect
);
7047 #define BFD_QNT_CORE_INFO 7
7048 #define BFD_QNT_CORE_STATUS 8
7049 #define BFD_QNT_CORE_GREG 9
7050 #define BFD_QNT_CORE_FPREG 10
7053 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7055 /* Every GREG section has a STATUS section before it. Store the
7056 tid from the previous call to pass down to the next gregs
7058 static pid_t tid
= 1;
7062 case BFD_QNT_CORE_INFO
: return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7063 case BFD_QNT_CORE_STATUS
: return elfcore_grok_nto_status (abfd
, note
, &tid
);
7064 case BFD_QNT_CORE_GREG
: return elfcore_grok_nto_gregs (abfd
, note
, tid
);
7065 case BFD_QNT_CORE_FPREG
: return elfcore_grok_prfpreg (abfd
, note
);
7066 default: return TRUE
;
7070 /* Function: elfcore_write_note
7077 size of data for note
7080 End of buffer containing note. */
7083 elfcore_write_note (bfd
*abfd
,
7091 Elf_External_Note
*xnp
;
7101 const struct elf_backend_data
*bed
;
7103 namesz
= strlen (name
) + 1;
7104 bed
= get_elf_backend_data (abfd
);
7105 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7108 newspace
= 12 + namesz
+ pad
+ size
;
7110 p
= realloc (buf
, *bufsiz
+ newspace
);
7112 *bufsiz
+= newspace
;
7113 xnp
= (Elf_External_Note
*) dest
;
7114 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7115 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7116 H_PUT_32 (abfd
, type
, xnp
->type
);
7120 memcpy (dest
, name
, namesz
);
7128 memcpy (dest
, input
, size
);
7132 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7134 elfcore_write_prpsinfo (bfd
*abfd
,
7141 char *note_name
= "CORE";
7143 #if defined (HAVE_PSINFO_T)
7145 note_type
= NT_PSINFO
;
7148 note_type
= NT_PRPSINFO
;
7151 memset (&data
, 0, sizeof (data
));
7152 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7153 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7154 return elfcore_write_note (abfd
, buf
, bufsiz
,
7155 note_name
, note_type
, &data
, sizeof (data
));
7157 #endif /* PSINFO_T or PRPSINFO_T */
7159 #if defined (HAVE_PRSTATUS_T)
7161 elfcore_write_prstatus (bfd
*abfd
,
7169 char *note_name
= "CORE";
7171 memset (&prstat
, 0, sizeof (prstat
));
7172 prstat
.pr_pid
= pid
;
7173 prstat
.pr_cursig
= cursig
;
7174 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7175 return elfcore_write_note (abfd
, buf
, bufsiz
,
7176 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7178 #endif /* HAVE_PRSTATUS_T */
7180 #if defined (HAVE_LWPSTATUS_T)
7182 elfcore_write_lwpstatus (bfd
*abfd
,
7189 lwpstatus_t lwpstat
;
7190 char *note_name
= "CORE";
7192 memset (&lwpstat
, 0, sizeof (lwpstat
));
7193 lwpstat
.pr_lwpid
= pid
>> 16;
7194 lwpstat
.pr_cursig
= cursig
;
7195 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7196 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7197 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7199 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7200 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7202 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7203 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7206 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7207 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7209 #endif /* HAVE_LWPSTATUS_T */
7211 #if defined (HAVE_PSTATUS_T)
7213 elfcore_write_pstatus (bfd
*abfd
,
7221 char *note_name
= "CORE";
7223 memset (&pstat
, 0, sizeof (pstat
));
7224 pstat
.pr_pid
= pid
& 0xffff;
7225 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7226 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7229 #endif /* HAVE_PSTATUS_T */
7232 elfcore_write_prfpreg (bfd
*abfd
,
7238 char *note_name
= "CORE";
7239 return elfcore_write_note (abfd
, buf
, bufsiz
,
7240 note_name
, NT_FPREGSET
, fpregs
, size
);
7244 elfcore_write_prxfpreg (bfd
*abfd
,
7247 const void *xfpregs
,
7250 char *note_name
= "LINUX";
7251 return elfcore_write_note (abfd
, buf
, bufsiz
,
7252 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7256 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7264 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7267 buf
= bfd_malloc (size
);
7271 if (bfd_bread (buf
, size
, abfd
) != size
)
7279 while (p
< buf
+ size
)
7281 /* FIXME: bad alignment assumption. */
7282 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7283 Elf_Internal_Note in
;
7285 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7287 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7288 in
.namedata
= xnp
->name
;
7290 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7291 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7292 in
.descpos
= offset
+ (in
.descdata
- buf
);
7294 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7296 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7299 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7301 if (! elfcore_grok_nto_note (abfd
, &in
))
7306 if (! elfcore_grok_note (abfd
, &in
))
7310 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7317 /* Providing external access to the ELF program header table. */
7319 /* Return an upper bound on the number of bytes required to store a
7320 copy of ABFD's program header table entries. Return -1 if an error
7321 occurs; bfd_get_error will return an appropriate code. */
7324 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7326 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7328 bfd_set_error (bfd_error_wrong_format
);
7332 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7335 /* Copy ABFD's program header table entries to *PHDRS. The entries
7336 will be stored as an array of Elf_Internal_Phdr structures, as
7337 defined in include/elf/internal.h. To find out how large the
7338 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7340 Return the number of program header table entries read, or -1 if an
7341 error occurs; bfd_get_error will return an appropriate code. */
7344 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7348 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7350 bfd_set_error (bfd_error_wrong_format
);
7354 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7355 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7356 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7362 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7365 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7367 i_ehdrp
= elf_elfheader (abfd
);
7368 if (i_ehdrp
== NULL
)
7369 sprintf_vma (buf
, value
);
7372 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7374 #if BFD_HOST_64BIT_LONG
7375 sprintf (buf
, "%016lx", value
);
7377 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7378 _bfd_int64_low (value
));
7382 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7385 sprintf_vma (buf
, value
);
7390 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7393 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7395 i_ehdrp
= elf_elfheader (abfd
);
7396 if (i_ehdrp
== NULL
)
7397 fprintf_vma ((FILE *) stream
, value
);
7400 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7402 #if BFD_HOST_64BIT_LONG
7403 fprintf ((FILE *) stream
, "%016lx", value
);
7405 fprintf ((FILE *) stream
, "%08lx%08lx",
7406 _bfd_int64_high (value
), _bfd_int64_low (value
));
7410 fprintf ((FILE *) stream
, "%08lx",
7411 (unsigned long) (value
& 0xffffffff));
7414 fprintf_vma ((FILE *) stream
, value
);
7418 enum elf_reloc_type_class
7419 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7421 return reloc_class_normal
;
7424 /* For RELA architectures, return the relocation value for a
7425 relocation against a local symbol. */
7428 _bfd_elf_rela_local_sym (bfd
*abfd
,
7429 Elf_Internal_Sym
*sym
,
7431 Elf_Internal_Rela
*rel
)
7433 asection
*sec
= *psec
;
7436 relocation
= (sec
->output_section
->vma
7437 + sec
->output_offset
7439 if ((sec
->flags
& SEC_MERGE
)
7440 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7441 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7444 _bfd_merged_section_offset (abfd
, psec
,
7445 elf_section_data (sec
)->sec_info
,
7446 sym
->st_value
+ rel
->r_addend
,
7449 rel
->r_addend
-= relocation
;
7450 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
7456 _bfd_elf_rel_local_sym (bfd
*abfd
,
7457 Elf_Internal_Sym
*sym
,
7461 asection
*sec
= *psec
;
7463 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7464 return sym
->st_value
+ addend
;
7466 return _bfd_merged_section_offset (abfd
, psec
,
7467 elf_section_data (sec
)->sec_info
,
7468 sym
->st_value
+ addend
, 0);
7472 _bfd_elf_section_offset (bfd
*abfd
,
7473 struct bfd_link_info
*info
,
7477 struct bfd_elf_section_data
*sec_data
;
7479 sec_data
= elf_section_data (sec
);
7480 switch (sec
->sec_info_type
)
7482 case ELF_INFO_TYPE_STABS
:
7483 return _bfd_stab_section_offset (abfd
,
7484 &elf_hash_table (info
)->merge_info
,
7485 sec
, &sec_data
->sec_info
, offset
);
7486 case ELF_INFO_TYPE_EH_FRAME
:
7487 return _bfd_elf_eh_frame_section_offset (abfd
, sec
, offset
);
7493 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7494 reconstruct an ELF file by reading the segments out of remote memory
7495 based on the ELF file header at EHDR_VMA and the ELF program headers it
7496 points to. If not null, *LOADBASEP is filled in with the difference
7497 between the VMAs from which the segments were read, and the VMAs the
7498 file headers (and hence BFD's idea of each section's VMA) put them at.
7500 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7501 remote memory at target address VMA into the local buffer at MYADDR; it
7502 should return zero on success or an `errno' code on failure. TEMPL must
7503 be a BFD for an ELF target with the word size and byte order found in
7504 the remote memory. */
7507 bfd_elf_bfd_from_remote_memory
7511 int (*target_read_memory
) (bfd_vma
, char *, int))
7513 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7514 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
7518 _bfd_elf_get_synthetic_symtab (bfd
*abfd
, asymbol
**dynsyms
, asymbol
**ret
)
7520 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7523 const char *relplt_name
;
7524 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7528 Elf_Internal_Shdr
*hdr
;
7533 if (!bed
->plt_sym_val
)
7536 relplt_name
= bed
->relplt_name
;
7537 if (relplt_name
== NULL
)
7538 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
7539 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
7543 hdr
= &elf_section_data (relplt
)->this_hdr
;
7544 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
7545 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
7548 plt
= bfd_get_section_by_name (abfd
, ".plt");
7552 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7553 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
7556 count
= relplt
->_raw_size
/ hdr
->sh_entsize
;
7557 size
= count
* sizeof (asymbol
);
7558 p
= relplt
->relocation
;
7559 for (i
= 0; i
< count
; i
++, s
++, p
++)
7560 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
7562 s
= *ret
= bfd_malloc (size
);
7566 names
= (char *) (s
+ count
);
7567 p
= relplt
->relocation
;
7569 for (i
= 0; i
< count
; i
++, s
++, p
++)
7574 addr
= bed
->plt_sym_val (i
, plt
, p
);
7575 if (addr
== (bfd_vma
) -1)
7578 *s
= **p
->sym_ptr_ptr
;
7580 s
->value
= addr
- plt
->vma
;
7582 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
7583 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
7585 memcpy (names
, "@plt", sizeof ("@plt"));
7586 names
+= sizeof ("@plt");