bfd/
[binutils.git] / bfd / elfxx-mips.c
blob33a454d949495c0037297c9dff50c6bd36a12fe1
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
31 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
48 #include "hashtab.h"
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
141 /* This structure is used to hold .got information when linking. */
143 struct mips_got_info
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
180 /* Map an input bfd to a got in a multi-got link. */
182 struct mips_elf_bfd2got_hash
184 bfd *bfd;
185 struct mips_got_info *g;
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
191 struct mips_elf_got_per_bfd_arg
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
218 /* Another structure used to pass arguments for got entries traversal. */
220 struct mips_elf_set_global_got_offset_arg
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
231 struct mips_elf_count_tls_arg
233 struct bfd_link_info *info;
234 unsigned int needed;
237 struct _mips_elf_section_data
239 struct bfd_elf_section_data elf;
240 union
242 bfd_byte *tdata;
243 } u;
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
281 immediately before a PIC function "func". The second is to add:
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
287 to a separate trampoline section.
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
304 /* Macros for populating a mips_elf_la25_stub. */
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
319 struct mips_elf_hash_sort_data
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
339 struct mips_elf_link_hash_entry
341 struct elf_link_hash_entry root;
343 /* External symbol information. */
344 EXTR esym;
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
439 /* This is the value of the __rld_map or __rld_obj_head symbol. */
440 bfd_vma rld_value;
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MICROMIPS_TLS_GD \
533 || r_type == R_MICROMIPS_TLS_LDM \
534 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
535 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
536 || r_type == R_MICROMIPS_TLS_GOTTPREL \
537 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
538 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
540 /* Structure used to pass information to mips_elf_output_extsym. */
542 struct extsym_info
544 bfd *abfd;
545 struct bfd_link_info *info;
546 struct ecoff_debug_info *debug;
547 const struct ecoff_debug_swap *swap;
548 bfd_boolean failed;
551 /* The names of the runtime procedure table symbols used on IRIX5. */
553 static const char * const mips_elf_dynsym_rtproc_names[] =
555 "_procedure_table",
556 "_procedure_string_table",
557 "_procedure_table_size",
558 NULL
561 /* These structures are used to generate the .compact_rel section on
562 IRIX5. */
564 typedef struct
566 unsigned long id1; /* Always one? */
567 unsigned long num; /* Number of compact relocation entries. */
568 unsigned long id2; /* Always two? */
569 unsigned long offset; /* The file offset of the first relocation. */
570 unsigned long reserved0; /* Zero? */
571 unsigned long reserved1; /* Zero? */
572 } Elf32_compact_rel;
574 typedef struct
576 bfd_byte id1[4];
577 bfd_byte num[4];
578 bfd_byte id2[4];
579 bfd_byte offset[4];
580 bfd_byte reserved0[4];
581 bfd_byte reserved1[4];
582 } Elf32_External_compact_rel;
584 typedef struct
586 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
587 unsigned int rtype : 4; /* Relocation types. See below. */
588 unsigned int dist2to : 8;
589 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
590 unsigned long konst; /* KONST field. See below. */
591 unsigned long vaddr; /* VADDR to be relocated. */
592 } Elf32_crinfo;
594 typedef struct
596 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
597 unsigned int rtype : 4; /* Relocation types. See below. */
598 unsigned int dist2to : 8;
599 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
600 unsigned long konst; /* KONST field. See below. */
601 } Elf32_crinfo2;
603 typedef struct
605 bfd_byte info[4];
606 bfd_byte konst[4];
607 bfd_byte vaddr[4];
608 } Elf32_External_crinfo;
610 typedef struct
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 } Elf32_External_crinfo2;
616 /* These are the constants used to swap the bitfields in a crinfo. */
618 #define CRINFO_CTYPE (0x1)
619 #define CRINFO_CTYPE_SH (31)
620 #define CRINFO_RTYPE (0xf)
621 #define CRINFO_RTYPE_SH (27)
622 #define CRINFO_DIST2TO (0xff)
623 #define CRINFO_DIST2TO_SH (19)
624 #define CRINFO_RELVADDR (0x7ffff)
625 #define CRINFO_RELVADDR_SH (0)
627 /* A compact relocation info has long (3 words) or short (2 words)
628 formats. A short format doesn't have VADDR field and relvaddr
629 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
630 #define CRF_MIPS_LONG 1
631 #define CRF_MIPS_SHORT 0
633 /* There are 4 types of compact relocation at least. The value KONST
634 has different meaning for each type:
636 (type) (konst)
637 CT_MIPS_REL32 Address in data
638 CT_MIPS_WORD Address in word (XXX)
639 CT_MIPS_GPHI_LO GP - vaddr
640 CT_MIPS_JMPAD Address to jump
643 #define CRT_MIPS_REL32 0xa
644 #define CRT_MIPS_WORD 0xb
645 #define CRT_MIPS_GPHI_LO 0xc
646 #define CRT_MIPS_JMPAD 0xd
648 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
649 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
650 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
651 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
653 /* The structure of the runtime procedure descriptor created by the
654 loader for use by the static exception system. */
656 typedef struct runtime_pdr {
657 bfd_vma adr; /* Memory address of start of procedure. */
658 long regmask; /* Save register mask. */
659 long regoffset; /* Save register offset. */
660 long fregmask; /* Save floating point register mask. */
661 long fregoffset; /* Save floating point register offset. */
662 long frameoffset; /* Frame size. */
663 short framereg; /* Frame pointer register. */
664 short pcreg; /* Offset or reg of return pc. */
665 long irpss; /* Index into the runtime string table. */
666 long reserved;
667 struct exception_info *exception_info;/* Pointer to exception array. */
668 } RPDR, *pRPDR;
669 #define cbRPDR sizeof (RPDR)
670 #define rpdNil ((pRPDR) 0)
672 static struct mips_got_entry *mips_elf_create_local_got_entry
673 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674 struct mips_elf_link_hash_entry *, int);
675 static bfd_boolean mips_elf_sort_hash_table_f
676 (struct mips_elf_link_hash_entry *, void *);
677 static bfd_vma mips_elf_high
678 (bfd_vma);
679 static bfd_boolean mips_elf_create_dynamic_relocation
680 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682 bfd_vma *, asection *);
683 static hashval_t mips_elf_got_entry_hash
684 (const void *);
685 static bfd_vma mips_elf_adjust_gp
686 (bfd *, struct mips_got_info *, bfd *);
687 static struct mips_got_info *mips_elf_got_for_ibfd
688 (struct mips_got_info *, bfd *);
690 /* This will be used when we sort the dynamic relocation records. */
691 static bfd *reldyn_sorting_bfd;
693 /* True if ABFD is for CPUs with load interlocking that include
694 non-MIPS1 CPUs and R3900. */
695 #define LOAD_INTERLOCKS_P(abfd) \
696 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
699 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700 This should be safe for all architectures. We enable this predicate
701 for RM9000 for now. */
702 #define JAL_TO_BAL_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
705 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706 This should be safe for all architectures. We enable this predicate for
707 all CPUs. */
708 #define JALR_TO_BAL_P(abfd) 1
710 /* True if ABFD is for CPUs that are faster if JR is converted to B.
711 This should be safe for all architectures. We enable this predicate for
712 all CPUs. */
713 #define JR_TO_B_P(abfd) 1
715 /* True if ABFD is a PIC object. */
716 #define PIC_OBJECT_P(abfd) \
717 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
719 /* Nonzero if ABFD is using the N32 ABI. */
720 #define ABI_N32_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
723 /* Nonzero if ABFD is using the N64 ABI. */
724 #define ABI_64_P(abfd) \
725 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
727 /* Nonzero if ABFD is using NewABI conventions. */
728 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
730 /* The IRIX compatibility level we are striving for. */
731 #define IRIX_COMPAT(abfd) \
732 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
734 /* Whether we are trying to be compatible with IRIX at all. */
735 #define SGI_COMPAT(abfd) \
736 (IRIX_COMPAT (abfd) != ict_none)
738 /* The name of the options section. */
739 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
742 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
744 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
747 /* Whether the section is readonly. */
748 #define MIPS_ELF_READONLY_SECTION(sec) \
749 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
750 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
752 /* The name of the stub section. */
753 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
755 /* The size of an external REL relocation. */
756 #define MIPS_ELF_REL_SIZE(abfd) \
757 (get_elf_backend_data (abfd)->s->sizeof_rel)
759 /* The size of an external RELA relocation. */
760 #define MIPS_ELF_RELA_SIZE(abfd) \
761 (get_elf_backend_data (abfd)->s->sizeof_rela)
763 /* The size of an external dynamic table entry. */
764 #define MIPS_ELF_DYN_SIZE(abfd) \
765 (get_elf_backend_data (abfd)->s->sizeof_dyn)
767 /* The size of a GOT entry. */
768 #define MIPS_ELF_GOT_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->arch_size / 8)
771 /* The size of a symbol-table entry. */
772 #define MIPS_ELF_SYM_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->sizeof_sym)
775 /* The default alignment for sections, as a power of two. */
776 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
777 (get_elf_backend_data (abfd)->s->log_file_align)
779 /* Get word-sized data. */
780 #define MIPS_ELF_GET_WORD(abfd, ptr) \
781 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
783 /* Put out word-sized data. */
784 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
785 (ABI_64_P (abfd) \
786 ? bfd_put_64 (abfd, val, ptr) \
787 : bfd_put_32 (abfd, val, ptr))
789 /* The opcode for word-sized loads (LW or LD). */
790 #define MIPS_ELF_LOAD_WORD(abfd) \
791 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
793 /* Add a dynamic symbol table-entry. */
794 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
795 _bfd_elf_add_dynamic_entry (info, tag, val)
797 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
798 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
800 /* The name of the dynamic relocation section. */
801 #define MIPS_ELF_REL_DYN_NAME(INFO) \
802 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
804 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
805 from smaller values. Start with zero, widen, *then* decrement. */
806 #define MINUS_ONE (((bfd_vma)0) - 1)
807 #define MINUS_TWO (((bfd_vma)0) - 2)
809 /* The value to write into got[1] for SVR4 targets, to identify it is
810 a GNU object. The dynamic linker can then use got[1] to store the
811 module pointer. */
812 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
813 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
815 /* The offset of $gp from the beginning of the .got section. */
816 #define ELF_MIPS_GP_OFFSET(INFO) \
817 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
819 /* The maximum size of the GOT for it to be addressable using 16-bit
820 offsets from $gp. */
821 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
823 /* Instructions which appear in a stub. */
824 #define STUB_LW(abfd) \
825 ((ABI_64_P (abfd) \
826 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
827 : 0x8f998010)) /* lw t9,0x8010(gp) */
828 #define STUB_MOVE(abfd) \
829 ((ABI_64_P (abfd) \
830 ? 0x03e0782d /* daddu t7,ra */ \
831 : 0x03e07821)) /* addu t7,ra */
832 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
833 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
834 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
835 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
836 #define STUB_LI16S(abfd, VAL) \
837 ((ABI_64_P (abfd) \
838 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
839 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
841 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
842 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
844 /* The name of the dynamic interpreter. This is put in the .interp
845 section. */
847 #define ELF_DYNAMIC_INTERPRETER(abfd) \
848 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
849 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
850 : "/usr/lib/libc.so.1")
852 #ifdef BFD64
853 #define MNAME(bfd,pre,pos) \
854 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
855 #define ELF_R_SYM(bfd, i) \
856 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
857 #define ELF_R_TYPE(bfd, i) \
858 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
859 #define ELF_R_INFO(bfd, s, t) \
860 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
861 #else
862 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
863 #define ELF_R_SYM(bfd, i) \
864 (ELF32_R_SYM (i))
865 #define ELF_R_TYPE(bfd, i) \
866 (ELF32_R_TYPE (i))
867 #define ELF_R_INFO(bfd, s, t) \
868 (ELF32_R_INFO (s, t))
869 #endif
871 /* The mips16 compiler uses a couple of special sections to handle
872 floating point arguments.
874 Section names that look like .mips16.fn.FNNAME contain stubs that
875 copy floating point arguments from the fp regs to the gp regs and
876 then jump to FNNAME. If any 32 bit function calls FNNAME, the
877 call should be redirected to the stub instead. If no 32 bit
878 function calls FNNAME, the stub should be discarded. We need to
879 consider any reference to the function, not just a call, because
880 if the address of the function is taken we will need the stub,
881 since the address might be passed to a 32 bit function.
883 Section names that look like .mips16.call.FNNAME contain stubs
884 that copy floating point arguments from the gp regs to the fp
885 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
886 then any 16 bit function that calls FNNAME should be redirected
887 to the stub instead. If FNNAME is not a 32 bit function, the
888 stub should be discarded.
890 .mips16.call.fp.FNNAME sections are similar, but contain stubs
891 which call FNNAME and then copy the return value from the fp regs
892 to the gp regs. These stubs store the return value in $18 while
893 calling FNNAME; any function which might call one of these stubs
894 must arrange to save $18 around the call. (This case is not
895 needed for 32 bit functions that call 16 bit functions, because
896 16 bit functions always return floating point values in both
897 $f0/$f1 and $2/$3.)
899 Note that in all cases FNNAME might be defined statically.
900 Therefore, FNNAME is not used literally. Instead, the relocation
901 information will indicate which symbol the section is for.
903 We record any stubs that we find in the symbol table. */
905 #define FN_STUB ".mips16.fn."
906 #define CALL_STUB ".mips16.call."
907 #define CALL_FP_STUB ".mips16.call.fp."
909 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
910 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
911 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
913 /* The format of the first PLT entry in an O32 executable. */
914 static const bfd_vma mips_o32_exec_plt0_entry[] =
916 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
917 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
918 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
919 0x031cc023, /* subu $24, $24, $28 */
920 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
926 /* The format of the first PLT entry in an N32 executable. Different
927 because gp ($28) is not available; we use t2 ($14) instead. */
928 static const bfd_vma mips_n32_exec_plt0_entry[] =
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
935 0x0018c082, /* srl $24, $24, 2 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
940 /* The format of the first PLT entry in an N64 executable. Different
941 from N32 because of the increased size of GOT entries. */
942 static const bfd_vma mips_n64_exec_plt0_entry[] =
944 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
945 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
946 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
947 0x030ec023, /* subu $24, $24, $14 */
948 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
949 0x0018c0c2, /* srl $24, $24, 3 */
950 0x0320f809, /* jalr $25 */
951 0x2718fffe /* subu $24, $24, 2 */
954 /* The format of subsequent PLT entries. */
955 static const bfd_vma mips_exec_plt_entry[] =
957 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
958 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
959 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
960 0x03200008 /* jr $25 */
963 /* The format of the first PLT entry in a VxWorks executable. */
964 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
966 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
967 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
968 0x8f390008, /* lw t9, 8(t9) */
969 0x00000000, /* nop */
970 0x03200008, /* jr t9 */
971 0x00000000 /* nop */
974 /* The format of subsequent PLT entries. */
975 static const bfd_vma mips_vxworks_exec_plt_entry[] =
977 0x10000000, /* b .PLT_resolver */
978 0x24180000, /* li t8, <pltindex> */
979 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
980 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
981 0x8f390000, /* lw t9, 0(t9) */
982 0x00000000, /* nop */
983 0x03200008, /* jr t9 */
984 0x00000000 /* nop */
987 /* The format of the first PLT entry in a VxWorks shared object. */
988 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
990 0x8f990008, /* lw t9, 8(gp) */
991 0x00000000, /* nop */
992 0x03200008, /* jr t9 */
993 0x00000000, /* nop */
994 0x00000000, /* nop */
995 0x00000000 /* nop */
998 /* The format of subsequent PLT entries. */
999 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1001 0x10000000, /* b .PLT_resolver */
1002 0x24180000 /* li t8, <pltindex> */
1005 /* Look up an entry in a MIPS ELF linker hash table. */
1007 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1008 ((struct mips_elf_link_hash_entry *) \
1009 elf_link_hash_lookup (&(table)->root, (string), (create), \
1010 (copy), (follow)))
1012 /* Traverse a MIPS ELF linker hash table. */
1014 #define mips_elf_link_hash_traverse(table, func, info) \
1015 (elf_link_hash_traverse \
1016 (&(table)->root, \
1017 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1018 (info)))
1020 /* Find the base offsets for thread-local storage in this object,
1021 for GD/LD and IE/LE respectively. */
1023 #define TP_OFFSET 0x7000
1024 #define DTP_OFFSET 0x8000
1026 static bfd_vma
1027 dtprel_base (struct bfd_link_info *info)
1029 /* If tls_sec is NULL, we should have signalled an error already. */
1030 if (elf_hash_table (info)->tls_sec == NULL)
1031 return 0;
1032 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1035 static bfd_vma
1036 tprel_base (struct bfd_link_info *info)
1038 /* If tls_sec is NULL, we should have signalled an error already. */
1039 if (elf_hash_table (info)->tls_sec == NULL)
1040 return 0;
1041 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1044 /* Create an entry in a MIPS ELF linker hash table. */
1046 static struct bfd_hash_entry *
1047 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1048 struct bfd_hash_table *table, const char *string)
1050 struct mips_elf_link_hash_entry *ret =
1051 (struct mips_elf_link_hash_entry *) entry;
1053 /* Allocate the structure if it has not already been allocated by a
1054 subclass. */
1055 if (ret == NULL)
1056 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1057 if (ret == NULL)
1058 return (struct bfd_hash_entry *) ret;
1060 /* Call the allocation method of the superclass. */
1061 ret = ((struct mips_elf_link_hash_entry *)
1062 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1063 table, string));
1064 if (ret != NULL)
1066 /* Set local fields. */
1067 memset (&ret->esym, 0, sizeof (EXTR));
1068 /* We use -2 as a marker to indicate that the information has
1069 not been set. -1 means there is no associated ifd. */
1070 ret->esym.ifd = -2;
1071 ret->la25_stub = 0;
1072 ret->possibly_dynamic_relocs = 0;
1073 ret->fn_stub = NULL;
1074 ret->call_stub = NULL;
1075 ret->call_fp_stub = NULL;
1076 ret->tls_type = GOT_NORMAL;
1077 ret->global_got_area = GGA_NONE;
1078 ret->got_only_for_calls = TRUE;
1079 ret->readonly_reloc = FALSE;
1080 ret->has_static_relocs = FALSE;
1081 ret->no_fn_stub = FALSE;
1082 ret->need_fn_stub = FALSE;
1083 ret->has_nonpic_branches = FALSE;
1084 ret->needs_lazy_stub = FALSE;
1087 return (struct bfd_hash_entry *) ret;
1090 bfd_boolean
1091 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1093 if (!sec->used_by_bfd)
1095 struct _mips_elf_section_data *sdata;
1096 bfd_size_type amt = sizeof (*sdata);
1098 sdata = bfd_zalloc (abfd, amt);
1099 if (sdata == NULL)
1100 return FALSE;
1101 sec->used_by_bfd = sdata;
1104 return _bfd_elf_new_section_hook (abfd, sec);
1107 /* Read ECOFF debugging information from a .mdebug section into a
1108 ecoff_debug_info structure. */
1110 bfd_boolean
1111 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1112 struct ecoff_debug_info *debug)
1114 HDRR *symhdr;
1115 const struct ecoff_debug_swap *swap;
1116 char *ext_hdr;
1118 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1119 memset (debug, 0, sizeof (*debug));
1121 ext_hdr = bfd_malloc (swap->external_hdr_size);
1122 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1123 goto error_return;
1125 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1126 swap->external_hdr_size))
1127 goto error_return;
1129 symhdr = &debug->symbolic_header;
1130 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1132 /* The symbolic header contains absolute file offsets and sizes to
1133 read. */
1134 #define READ(ptr, offset, count, size, type) \
1135 if (symhdr->count == 0) \
1136 debug->ptr = NULL; \
1137 else \
1139 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1140 debug->ptr = bfd_malloc (amt); \
1141 if (debug->ptr == NULL) \
1142 goto error_return; \
1143 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1144 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1145 goto error_return; \
1148 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1149 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1150 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1151 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1152 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1153 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1154 union aux_ext *);
1155 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1156 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1157 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1158 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1159 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1160 #undef READ
1162 debug->fdr = NULL;
1164 return TRUE;
1166 error_return:
1167 if (ext_hdr != NULL)
1168 free (ext_hdr);
1169 if (debug->line != NULL)
1170 free (debug->line);
1171 if (debug->external_dnr != NULL)
1172 free (debug->external_dnr);
1173 if (debug->external_pdr != NULL)
1174 free (debug->external_pdr);
1175 if (debug->external_sym != NULL)
1176 free (debug->external_sym);
1177 if (debug->external_opt != NULL)
1178 free (debug->external_opt);
1179 if (debug->external_aux != NULL)
1180 free (debug->external_aux);
1181 if (debug->ss != NULL)
1182 free (debug->ss);
1183 if (debug->ssext != NULL)
1184 free (debug->ssext);
1185 if (debug->external_fdr != NULL)
1186 free (debug->external_fdr);
1187 if (debug->external_rfd != NULL)
1188 free (debug->external_rfd);
1189 if (debug->external_ext != NULL)
1190 free (debug->external_ext);
1191 return FALSE;
1194 /* Swap RPDR (runtime procedure table entry) for output. */
1196 static void
1197 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1199 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1200 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1201 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1202 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1203 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1204 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1206 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1207 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1209 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1212 /* Create a runtime procedure table from the .mdebug section. */
1214 static bfd_boolean
1215 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1216 struct bfd_link_info *info, asection *s,
1217 struct ecoff_debug_info *debug)
1219 const struct ecoff_debug_swap *swap;
1220 HDRR *hdr = &debug->symbolic_header;
1221 RPDR *rpdr, *rp;
1222 struct rpdr_ext *erp;
1223 void *rtproc;
1224 struct pdr_ext *epdr;
1225 struct sym_ext *esym;
1226 char *ss, **sv;
1227 char *str;
1228 bfd_size_type size;
1229 bfd_size_type count;
1230 unsigned long sindex;
1231 unsigned long i;
1232 PDR pdr;
1233 SYMR sym;
1234 const char *no_name_func = _("static procedure (no name)");
1236 epdr = NULL;
1237 rpdr = NULL;
1238 esym = NULL;
1239 ss = NULL;
1240 sv = NULL;
1242 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1244 sindex = strlen (no_name_func) + 1;
1245 count = hdr->ipdMax;
1246 if (count > 0)
1248 size = swap->external_pdr_size;
1250 epdr = bfd_malloc (size * count);
1251 if (epdr == NULL)
1252 goto error_return;
1254 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1255 goto error_return;
1257 size = sizeof (RPDR);
1258 rp = rpdr = bfd_malloc (size * count);
1259 if (rpdr == NULL)
1260 goto error_return;
1262 size = sizeof (char *);
1263 sv = bfd_malloc (size * count);
1264 if (sv == NULL)
1265 goto error_return;
1267 count = hdr->isymMax;
1268 size = swap->external_sym_size;
1269 esym = bfd_malloc (size * count);
1270 if (esym == NULL)
1271 goto error_return;
1273 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1274 goto error_return;
1276 count = hdr->issMax;
1277 ss = bfd_malloc (count);
1278 if (ss == NULL)
1279 goto error_return;
1280 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1281 goto error_return;
1283 count = hdr->ipdMax;
1284 for (i = 0; i < (unsigned long) count; i++, rp++)
1286 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1287 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1288 rp->adr = sym.value;
1289 rp->regmask = pdr.regmask;
1290 rp->regoffset = pdr.regoffset;
1291 rp->fregmask = pdr.fregmask;
1292 rp->fregoffset = pdr.fregoffset;
1293 rp->frameoffset = pdr.frameoffset;
1294 rp->framereg = pdr.framereg;
1295 rp->pcreg = pdr.pcreg;
1296 rp->irpss = sindex;
1297 sv[i] = ss + sym.iss;
1298 sindex += strlen (sv[i]) + 1;
1302 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1303 size = BFD_ALIGN (size, 16);
1304 rtproc = bfd_alloc (abfd, size);
1305 if (rtproc == NULL)
1307 mips_elf_hash_table (info)->procedure_count = 0;
1308 goto error_return;
1311 mips_elf_hash_table (info)->procedure_count = count + 2;
1313 erp = rtproc;
1314 memset (erp, 0, sizeof (struct rpdr_ext));
1315 erp++;
1316 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1317 strcpy (str, no_name_func);
1318 str += strlen (no_name_func) + 1;
1319 for (i = 0; i < count; i++)
1321 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1322 strcpy (str, sv[i]);
1323 str += strlen (sv[i]) + 1;
1325 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1327 /* Set the size and contents of .rtproc section. */
1328 s->size = size;
1329 s->contents = rtproc;
1331 /* Skip this section later on (I don't think this currently
1332 matters, but someday it might). */
1333 s->map_head.link_order = NULL;
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1346 return TRUE;
1348 error_return:
1349 if (epdr != NULL)
1350 free (epdr);
1351 if (rpdr != NULL)
1352 free (rpdr);
1353 if (esym != NULL)
1354 free (esym);
1355 if (ss != NULL)
1356 free (ss);
1357 if (sv != NULL)
1358 free (sv);
1359 return FALSE;
1362 /* We're going to create a stub for H. Create a symbol for the stub's
1363 value and size, to help make the disassembly easier to read. */
1365 static bfd_boolean
1366 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1367 struct mips_elf_link_hash_entry *h,
1368 const char *prefix, asection *s, bfd_vma value,
1369 bfd_vma size)
1371 struct bfd_link_hash_entry *bh;
1372 struct elf_link_hash_entry *elfh;
1373 const char *name;
1375 if (ELF_ST_IS_MICROMIPS (h->root.other))
1376 value |= 1;
1378 /* Create a new symbol. */
1379 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1380 bh = NULL;
1381 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1382 BSF_LOCAL, s, value, NULL,
1383 TRUE, FALSE, &bh))
1384 return FALSE;
1386 /* Make it a local function. */
1387 elfh = (struct elf_link_hash_entry *) bh;
1388 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1389 elfh->size = size;
1390 elfh->forced_local = 1;
1391 return TRUE;
1394 /* We're about to redefine H. Create a symbol to represent H's
1395 current value and size, to help make the disassembly easier
1396 to read. */
1398 static bfd_boolean
1399 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1400 struct mips_elf_link_hash_entry *h,
1401 const char *prefix)
1403 struct bfd_link_hash_entry *bh;
1404 struct elf_link_hash_entry *elfh;
1405 const char *name;
1406 asection *s;
1407 bfd_vma value;
1409 /* Read the symbol's value. */
1410 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1411 || h->root.root.type == bfd_link_hash_defweak);
1412 s = h->root.root.u.def.section;
1413 value = h->root.root.u.def.value;
1415 /* Create a new symbol. */
1416 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1417 bh = NULL;
1418 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1419 BSF_LOCAL, s, value, NULL,
1420 TRUE, FALSE, &bh))
1421 return FALSE;
1423 /* Make it local and copy the other attributes from H. */
1424 elfh = (struct elf_link_hash_entry *) bh;
1425 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1426 elfh->other = h->root.other;
1427 elfh->size = h->root.size;
1428 elfh->forced_local = 1;
1429 return TRUE;
1432 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1433 function rather than to a hard-float stub. */
1435 static bfd_boolean
1436 section_allows_mips16_refs_p (asection *section)
1438 const char *name;
1440 name = bfd_get_section_name (section->owner, section);
1441 return (FN_STUB_P (name)
1442 || CALL_STUB_P (name)
1443 || CALL_FP_STUB_P (name)
1444 || strcmp (name, ".pdr") == 0);
1447 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1448 stub section of some kind. Return the R_SYMNDX of the target
1449 function, or 0 if we can't decide which function that is. */
1451 static unsigned long
1452 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1453 const Elf_Internal_Rela *relocs,
1454 const Elf_Internal_Rela *relend)
1456 const Elf_Internal_Rela *rel;
1458 /* Trust the first R_MIPS_NONE relocation, if any. */
1459 for (rel = relocs; rel < relend; rel++)
1460 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1461 return ELF_R_SYM (sec->owner, rel->r_info);
1463 /* Otherwise trust the first relocation, whatever its kind. This is
1464 the traditional behavior. */
1465 if (relocs < relend)
1466 return ELF_R_SYM (sec->owner, relocs->r_info);
1468 return 0;
1471 /* Check the mips16 stubs for a particular symbol, and see if we can
1472 discard them. */
1474 static void
1475 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1476 struct mips_elf_link_hash_entry *h)
1478 /* Dynamic symbols must use the standard call interface, in case other
1479 objects try to call them. */
1480 if (h->fn_stub != NULL
1481 && h->root.dynindx != -1)
1483 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1484 h->need_fn_stub = TRUE;
1487 if (h->fn_stub != NULL
1488 && ! h->need_fn_stub)
1490 /* We don't need the fn_stub; the only references to this symbol
1491 are 16 bit calls. Clobber the size to 0 to prevent it from
1492 being included in the link. */
1493 h->fn_stub->size = 0;
1494 h->fn_stub->flags &= ~SEC_RELOC;
1495 h->fn_stub->reloc_count = 0;
1496 h->fn_stub->flags |= SEC_EXCLUDE;
1499 if (h->call_stub != NULL
1500 && ELF_ST_IS_MIPS16 (h->root.other))
1502 /* We don't need the call_stub; this is a 16 bit function, so
1503 calls from other 16 bit functions are OK. Clobber the size
1504 to 0 to prevent it from being included in the link. */
1505 h->call_stub->size = 0;
1506 h->call_stub->flags &= ~SEC_RELOC;
1507 h->call_stub->reloc_count = 0;
1508 h->call_stub->flags |= SEC_EXCLUDE;
1511 if (h->call_fp_stub != NULL
1512 && ELF_ST_IS_MIPS16 (h->root.other))
1514 /* We don't need the call_stub; this is a 16 bit function, so
1515 calls from other 16 bit functions are OK. Clobber the size
1516 to 0 to prevent it from being included in the link. */
1517 h->call_fp_stub->size = 0;
1518 h->call_fp_stub->flags &= ~SEC_RELOC;
1519 h->call_fp_stub->reloc_count = 0;
1520 h->call_fp_stub->flags |= SEC_EXCLUDE;
1524 /* Hashtable callbacks for mips_elf_la25_stubs. */
1526 static hashval_t
1527 mips_elf_la25_stub_hash (const void *entry_)
1529 const struct mips_elf_la25_stub *entry;
1531 entry = (struct mips_elf_la25_stub *) entry_;
1532 return entry->h->root.root.u.def.section->id
1533 + entry->h->root.root.u.def.value;
1536 static int
1537 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1539 const struct mips_elf_la25_stub *entry1, *entry2;
1541 entry1 = (struct mips_elf_la25_stub *) entry1_;
1542 entry2 = (struct mips_elf_la25_stub *) entry2_;
1543 return ((entry1->h->root.root.u.def.section
1544 == entry2->h->root.root.u.def.section)
1545 && (entry1->h->root.root.u.def.value
1546 == entry2->h->root.root.u.def.value));
1549 /* Called by the linker to set up the la25 stub-creation code. FN is
1550 the linker's implementation of add_stub_function. Return true on
1551 success. */
1553 bfd_boolean
1554 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1555 asection *(*fn) (const char *, asection *,
1556 asection *))
1558 struct mips_elf_link_hash_table *htab;
1560 htab = mips_elf_hash_table (info);
1561 if (htab == NULL)
1562 return FALSE;
1564 htab->add_stub_section = fn;
1565 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1566 mips_elf_la25_stub_eq, NULL);
1567 if (htab->la25_stubs == NULL)
1568 return FALSE;
1570 return TRUE;
1573 /* Return true if H is a locally-defined PIC function, in the sense
1574 that it might need $25 to be valid on entry. Note that MIPS16
1575 functions never need $25 to be valid on entry; they set up $gp
1576 using PC-relative instructions instead. */
1578 static bfd_boolean
1579 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1581 return ((h->root.root.type == bfd_link_hash_defined
1582 || h->root.root.type == bfd_link_hash_defweak)
1583 && h->root.def_regular
1584 && !bfd_is_abs_section (h->root.root.u.def.section)
1585 && !ELF_ST_IS_MIPS16 (h->root.other)
1586 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1587 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1590 /* STUB describes an la25 stub that we have decided to implement
1591 by inserting an LUI/ADDIU pair before the target function.
1592 Create the section and redirect the function symbol to it. */
1594 static bfd_boolean
1595 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1596 struct bfd_link_info *info)
1598 struct mips_elf_link_hash_table *htab;
1599 char *name;
1600 asection *s, *input_section;
1601 unsigned int align;
1603 htab = mips_elf_hash_table (info);
1604 if (htab == NULL)
1605 return FALSE;
1607 /* Create a unique name for the new section. */
1608 name = bfd_malloc (11 + sizeof (".text.stub."));
1609 if (name == NULL)
1610 return FALSE;
1611 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1613 /* Create the section. */
1614 input_section = stub->h->root.root.u.def.section;
1615 s = htab->add_stub_section (name, input_section,
1616 input_section->output_section);
1617 if (s == NULL)
1618 return FALSE;
1620 /* Make sure that any padding goes before the stub. */
1621 align = input_section->alignment_power;
1622 if (!bfd_set_section_alignment (s->owner, s, align))
1623 return FALSE;
1624 if (align > 3)
1625 s->size = (1 << align) - 8;
1627 /* Create a symbol for the stub. */
1628 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1629 stub->stub_section = s;
1630 stub->offset = s->size;
1632 /* Allocate room for it. */
1633 s->size += 8;
1634 return TRUE;
1637 /* STUB describes an la25 stub that we have decided to implement
1638 with a separate trampoline. Allocate room for it and redirect
1639 the function symbol to it. */
1641 static bfd_boolean
1642 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1643 struct bfd_link_info *info)
1645 struct mips_elf_link_hash_table *htab;
1646 asection *s;
1648 htab = mips_elf_hash_table (info);
1649 if (htab == NULL)
1650 return FALSE;
1652 /* Create a trampoline section, if we haven't already. */
1653 s = htab->strampoline;
1654 if (s == NULL)
1656 asection *input_section = stub->h->root.root.u.def.section;
1657 s = htab->add_stub_section (".text", NULL,
1658 input_section->output_section);
1659 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1660 return FALSE;
1661 htab->strampoline = s;
1664 /* Create a symbol for the stub. */
1665 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1666 stub->stub_section = s;
1667 stub->offset = s->size;
1669 /* Allocate room for it. */
1670 s->size += 16;
1671 return TRUE;
1674 /* H describes a symbol that needs an la25 stub. Make sure that an
1675 appropriate stub exists and point H at it. */
1677 static bfd_boolean
1678 mips_elf_add_la25_stub (struct bfd_link_info *info,
1679 struct mips_elf_link_hash_entry *h)
1681 struct mips_elf_link_hash_table *htab;
1682 struct mips_elf_la25_stub search, *stub;
1683 bfd_boolean use_trampoline_p;
1684 asection *s;
1685 bfd_vma value;
1686 void **slot;
1688 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1689 of the section and if we would need no more than 2 nops. */
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1694 /* Describe the stub we want. */
1695 search.stub_section = NULL;
1696 search.offset = 0;
1697 search.h = h;
1699 /* See if we've already created an equivalent stub. */
1700 htab = mips_elf_hash_table (info);
1701 if (htab == NULL)
1702 return FALSE;
1704 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1705 if (slot == NULL)
1706 return FALSE;
1708 stub = (struct mips_elf_la25_stub *) *slot;
1709 if (stub != NULL)
1711 /* We can reuse the existing stub. */
1712 h->la25_stub = stub;
1713 return TRUE;
1716 /* Create a permanent copy of ENTRY and add it to the hash table. */
1717 stub = bfd_malloc (sizeof (search));
1718 if (stub == NULL)
1719 return FALSE;
1720 *stub = search;
1721 *slot = stub;
1723 h->la25_stub = stub;
1724 return (use_trampoline_p
1725 ? mips_elf_add_la25_trampoline (stub, info)
1726 : mips_elf_add_la25_intro (stub, info));
1729 /* A mips_elf_link_hash_traverse callback that is called before sizing
1730 sections. DATA points to a mips_htab_traverse_info structure. */
1732 static bfd_boolean
1733 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1735 struct mips_htab_traverse_info *hti;
1737 hti = (struct mips_htab_traverse_info *) data;
1738 if (!hti->info->relocatable)
1739 mips_elf_check_mips16_stubs (hti->info, h);
1741 if (mips_elf_local_pic_function_p (h))
1743 /* PR 12845: If H is in a section that has been garbage
1744 collected it will have its output section set to *ABS*. */
1745 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1746 return TRUE;
1748 /* H is a function that might need $25 to be valid on entry.
1749 If we're creating a non-PIC relocatable object, mark H as
1750 being PIC. If we're creating a non-relocatable object with
1751 non-PIC branches and jumps to H, make sure that H has an la25
1752 stub. */
1753 if (hti->info->relocatable)
1755 if (!PIC_OBJECT_P (hti->output_bfd))
1756 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1758 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1760 hti->error = TRUE;
1761 return FALSE;
1764 return TRUE;
1767 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1768 Most mips16 instructions are 16 bits, but these instructions
1769 are 32 bits.
1771 The format of these instructions is:
1773 +--------------+--------------------------------+
1774 | JALX | X| Imm 20:16 | Imm 25:21 |
1775 +--------------+--------------------------------+
1776 | Immediate 15:0 |
1777 +-----------------------------------------------+
1779 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1780 Note that the immediate value in the first word is swapped.
1782 When producing a relocatable object file, R_MIPS16_26 is
1783 handled mostly like R_MIPS_26. In particular, the addend is
1784 stored as a straight 26-bit value in a 32-bit instruction.
1785 (gas makes life simpler for itself by never adjusting a
1786 R_MIPS16_26 reloc to be against a section, so the addend is
1787 always zero). However, the 32 bit instruction is stored as 2
1788 16-bit values, rather than a single 32-bit value. In a
1789 big-endian file, the result is the same; in a little-endian
1790 file, the two 16-bit halves of the 32 bit value are swapped.
1791 This is so that a disassembler can recognize the jal
1792 instruction.
1794 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1795 instruction stored as two 16-bit values. The addend A is the
1796 contents of the targ26 field. The calculation is the same as
1797 R_MIPS_26. When storing the calculated value, reorder the
1798 immediate value as shown above, and don't forget to store the
1799 value as two 16-bit values.
1801 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1802 defined as
1804 big-endian:
1805 +--------+----------------------+
1806 | | |
1807 | | targ26-16 |
1808 |31 26|25 0|
1809 +--------+----------------------+
1811 little-endian:
1812 +----------+------+-------------+
1813 | | | |
1814 | sub1 | | sub2 |
1815 |0 9|10 15|16 31|
1816 +----------+--------------------+
1817 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1818 ((sub1 << 16) | sub2)).
1820 When producing a relocatable object file, the calculation is
1821 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1822 When producing a fully linked file, the calculation is
1823 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1824 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1826 The table below lists the other MIPS16 instruction relocations.
1827 Each one is calculated in the same way as the non-MIPS16 relocation
1828 given on the right, but using the extended MIPS16 layout of 16-bit
1829 immediate fields:
1831 R_MIPS16_GPREL R_MIPS_GPREL16
1832 R_MIPS16_GOT16 R_MIPS_GOT16
1833 R_MIPS16_CALL16 R_MIPS_CALL16
1834 R_MIPS16_HI16 R_MIPS_HI16
1835 R_MIPS16_LO16 R_MIPS_LO16
1837 A typical instruction will have a format like this:
1839 +--------------+--------------------------------+
1840 | EXTEND | Imm 10:5 | Imm 15:11 |
1841 +--------------+--------------------------------+
1842 | Major | rx | ry | Imm 4:0 |
1843 +--------------+--------------------------------+
1845 EXTEND is the five bit value 11110. Major is the instruction
1846 opcode.
1848 All we need to do here is shuffle the bits appropriately.
1849 As above, the two 16-bit halves must be swapped on a
1850 little-endian system. */
1852 static inline bfd_boolean
1853 mips16_reloc_p (int r_type)
1855 switch (r_type)
1857 case R_MIPS16_26:
1858 case R_MIPS16_GPREL:
1859 case R_MIPS16_GOT16:
1860 case R_MIPS16_CALL16:
1861 case R_MIPS16_HI16:
1862 case R_MIPS16_LO16:
1863 return TRUE;
1865 default:
1866 return FALSE;
1870 /* Check if a microMIPS reloc. */
1872 static inline bfd_boolean
1873 micromips_reloc_p (unsigned int r_type)
1875 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1878 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1879 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1880 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1882 static inline bfd_boolean
1883 micromips_reloc_shuffle_p (unsigned int r_type)
1885 return (micromips_reloc_p (r_type)
1886 && r_type != R_MICROMIPS_PC7_S1
1887 && r_type != R_MICROMIPS_PC10_S1);
1890 static inline bfd_boolean
1891 got16_reloc_p (int r_type)
1893 return (r_type == R_MIPS_GOT16
1894 || r_type == R_MIPS16_GOT16
1895 || r_type == R_MICROMIPS_GOT16);
1898 static inline bfd_boolean
1899 call16_reloc_p (int r_type)
1901 return (r_type == R_MIPS_CALL16
1902 || r_type == R_MIPS16_CALL16
1903 || r_type == R_MICROMIPS_CALL16);
1906 static inline bfd_boolean
1907 got_disp_reloc_p (unsigned int r_type)
1909 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1912 static inline bfd_boolean
1913 got_page_reloc_p (unsigned int r_type)
1915 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1918 static inline bfd_boolean
1919 got_ofst_reloc_p (unsigned int r_type)
1921 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1924 static inline bfd_boolean
1925 got_hi16_reloc_p (unsigned int r_type)
1927 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1930 static inline bfd_boolean
1931 got_lo16_reloc_p (unsigned int r_type)
1933 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1936 static inline bfd_boolean
1937 call_hi16_reloc_p (unsigned int r_type)
1939 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1942 static inline bfd_boolean
1943 call_lo16_reloc_p (unsigned int r_type)
1945 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1948 static inline bfd_boolean
1949 hi16_reloc_p (int r_type)
1951 return (r_type == R_MIPS_HI16
1952 || r_type == R_MIPS16_HI16
1953 || r_type == R_MICROMIPS_HI16);
1956 static inline bfd_boolean
1957 lo16_reloc_p (int r_type)
1959 return (r_type == R_MIPS_LO16
1960 || r_type == R_MIPS16_LO16
1961 || r_type == R_MICROMIPS_LO16);
1964 static inline bfd_boolean
1965 mips16_call_reloc_p (int r_type)
1967 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1970 static inline bfd_boolean
1971 jal_reloc_p (int r_type)
1973 return (r_type == R_MIPS_26
1974 || r_type == R_MIPS16_26
1975 || r_type == R_MICROMIPS_26_S1);
1978 static inline bfd_boolean
1979 micromips_branch_reloc_p (int r_type)
1981 return (r_type == R_MICROMIPS_26_S1
1982 || r_type == R_MICROMIPS_PC16_S1
1983 || r_type == R_MICROMIPS_PC10_S1
1984 || r_type == R_MICROMIPS_PC7_S1);
1987 static inline bfd_boolean
1988 tls_gd_reloc_p (unsigned int r_type)
1990 return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1993 static inline bfd_boolean
1994 tls_ldm_reloc_p (unsigned int r_type)
1996 return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
1999 static inline bfd_boolean
2000 tls_gottprel_reloc_p (unsigned int r_type)
2002 return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2005 void
2006 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2007 bfd_boolean jal_shuffle, bfd_byte *data)
2009 bfd_vma first, second, val;
2011 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2012 return;
2014 /* Pick up the first and second halfwords of the instruction. */
2015 first = bfd_get_16 (abfd, data);
2016 second = bfd_get_16 (abfd, data + 2);
2017 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2018 val = first << 16 | second;
2019 else if (r_type != R_MIPS16_26)
2020 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2021 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2022 else
2023 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2024 | ((first & 0x1f) << 21) | second);
2025 bfd_put_32 (abfd, val, data);
2028 void
2029 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2030 bfd_boolean jal_shuffle, bfd_byte *data)
2032 bfd_vma first, second, val;
2034 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2035 return;
2037 val = bfd_get_32 (abfd, data);
2038 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2040 second = val & 0xffff;
2041 first = val >> 16;
2043 else if (r_type != R_MIPS16_26)
2045 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2046 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2048 else
2050 second = val & 0xffff;
2051 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2052 | ((val >> 21) & 0x1f);
2054 bfd_put_16 (abfd, second, data + 2);
2055 bfd_put_16 (abfd, first, data);
2058 bfd_reloc_status_type
2059 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2060 arelent *reloc_entry, asection *input_section,
2061 bfd_boolean relocatable, void *data, bfd_vma gp)
2063 bfd_vma relocation;
2064 bfd_signed_vma val;
2065 bfd_reloc_status_type status;
2067 if (bfd_is_com_section (symbol->section))
2068 relocation = 0;
2069 else
2070 relocation = symbol->value;
2072 relocation += symbol->section->output_section->vma;
2073 relocation += symbol->section->output_offset;
2075 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2076 return bfd_reloc_outofrange;
2078 /* Set val to the offset into the section or symbol. */
2079 val = reloc_entry->addend;
2081 _bfd_mips_elf_sign_extend (val, 16);
2083 /* Adjust val for the final section location and GP value. If we
2084 are producing relocatable output, we don't want to do this for
2085 an external symbol. */
2086 if (! relocatable
2087 || (symbol->flags & BSF_SECTION_SYM) != 0)
2088 val += relocation - gp;
2090 if (reloc_entry->howto->partial_inplace)
2092 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2093 (bfd_byte *) data
2094 + reloc_entry->address);
2095 if (status != bfd_reloc_ok)
2096 return status;
2098 else
2099 reloc_entry->addend = val;
2101 if (relocatable)
2102 reloc_entry->address += input_section->output_offset;
2104 return bfd_reloc_ok;
2107 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2108 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2109 that contains the relocation field and DATA points to the start of
2110 INPUT_SECTION. */
2112 struct mips_hi16
2114 struct mips_hi16 *next;
2115 bfd_byte *data;
2116 asection *input_section;
2117 arelent rel;
2120 /* FIXME: This should not be a static variable. */
2122 static struct mips_hi16 *mips_hi16_list;
2124 /* A howto special_function for REL *HI16 relocations. We can only
2125 calculate the correct value once we've seen the partnering
2126 *LO16 relocation, so just save the information for later.
2128 The ABI requires that the *LO16 immediately follow the *HI16.
2129 However, as a GNU extension, we permit an arbitrary number of
2130 *HI16s to be associated with a single *LO16. This significantly
2131 simplies the relocation handling in gcc. */
2133 bfd_reloc_status_type
2134 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2135 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2136 asection *input_section, bfd *output_bfd,
2137 char **error_message ATTRIBUTE_UNUSED)
2139 struct mips_hi16 *n;
2141 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2142 return bfd_reloc_outofrange;
2144 n = bfd_malloc (sizeof *n);
2145 if (n == NULL)
2146 return bfd_reloc_outofrange;
2148 n->next = mips_hi16_list;
2149 n->data = data;
2150 n->input_section = input_section;
2151 n->rel = *reloc_entry;
2152 mips_hi16_list = n;
2154 if (output_bfd != NULL)
2155 reloc_entry->address += input_section->output_offset;
2157 return bfd_reloc_ok;
2160 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2161 like any other 16-bit relocation when applied to global symbols, but is
2162 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2164 bfd_reloc_status_type
2165 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2166 void *data, asection *input_section,
2167 bfd *output_bfd, char **error_message)
2169 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2170 || bfd_is_und_section (bfd_get_section (symbol))
2171 || bfd_is_com_section (bfd_get_section (symbol)))
2172 /* The relocation is against a global symbol. */
2173 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2174 input_section, output_bfd,
2175 error_message);
2177 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2178 input_section, output_bfd, error_message);
2181 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2182 is a straightforward 16 bit inplace relocation, but we must deal with
2183 any partnering high-part relocations as well. */
2185 bfd_reloc_status_type
2186 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2187 void *data, asection *input_section,
2188 bfd *output_bfd, char **error_message)
2190 bfd_vma vallo;
2191 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2193 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2194 return bfd_reloc_outofrange;
2196 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2197 location);
2198 vallo = bfd_get_32 (abfd, location);
2199 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2200 location);
2202 while (mips_hi16_list != NULL)
2204 bfd_reloc_status_type ret;
2205 struct mips_hi16 *hi;
2207 hi = mips_hi16_list;
2209 /* R_MIPS*_GOT16 relocations are something of a special case. We
2210 want to install the addend in the same way as for a R_MIPS*_HI16
2211 relocation (with a rightshift of 16). However, since GOT16
2212 relocations can also be used with global symbols, their howto
2213 has a rightshift of 0. */
2214 if (hi->rel.howto->type == R_MIPS_GOT16)
2215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2216 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2217 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2218 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2219 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2221 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2222 carry or borrow will induce a change of +1 or -1 in the high part. */
2223 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2225 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2226 hi->input_section, output_bfd,
2227 error_message);
2228 if (ret != bfd_reloc_ok)
2229 return ret;
2231 mips_hi16_list = hi->next;
2232 free (hi);
2235 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2236 input_section, output_bfd,
2237 error_message);
2240 /* A generic howto special_function. This calculates and installs the
2241 relocation itself, thus avoiding the oft-discussed problems in
2242 bfd_perform_relocation and bfd_install_relocation. */
2244 bfd_reloc_status_type
2245 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2246 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2247 asection *input_section, bfd *output_bfd,
2248 char **error_message ATTRIBUTE_UNUSED)
2250 bfd_signed_vma val;
2251 bfd_reloc_status_type status;
2252 bfd_boolean relocatable;
2254 relocatable = (output_bfd != NULL);
2256 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2257 return bfd_reloc_outofrange;
2259 /* Build up the field adjustment in VAL. */
2260 val = 0;
2261 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2263 /* Either we're calculating the final field value or we have a
2264 relocation against a section symbol. Add in the section's
2265 offset or address. */
2266 val += symbol->section->output_section->vma;
2267 val += symbol->section->output_offset;
2270 if (!relocatable)
2272 /* We're calculating the final field value. Add in the symbol's value
2273 and, if pc-relative, subtract the address of the field itself. */
2274 val += symbol->value;
2275 if (reloc_entry->howto->pc_relative)
2277 val -= input_section->output_section->vma;
2278 val -= input_section->output_offset;
2279 val -= reloc_entry->address;
2283 /* VAL is now the final adjustment. If we're keeping this relocation
2284 in the output file, and if the relocation uses a separate addend,
2285 we just need to add VAL to that addend. Otherwise we need to add
2286 VAL to the relocation field itself. */
2287 if (relocatable && !reloc_entry->howto->partial_inplace)
2288 reloc_entry->addend += val;
2289 else
2291 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2293 /* Add in the separate addend, if any. */
2294 val += reloc_entry->addend;
2296 /* Add VAL to the relocation field. */
2297 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2298 location);
2299 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2300 location);
2301 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2302 location);
2304 if (status != bfd_reloc_ok)
2305 return status;
2308 if (relocatable)
2309 reloc_entry->address += input_section->output_offset;
2311 return bfd_reloc_ok;
2314 /* Swap an entry in a .gptab section. Note that these routines rely
2315 on the equivalence of the two elements of the union. */
2317 static void
2318 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2319 Elf32_gptab *in)
2321 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2322 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2325 static void
2326 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2327 Elf32_External_gptab *ex)
2329 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2330 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2333 static void
2334 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2335 Elf32_External_compact_rel *ex)
2337 H_PUT_32 (abfd, in->id1, ex->id1);
2338 H_PUT_32 (abfd, in->num, ex->num);
2339 H_PUT_32 (abfd, in->id2, ex->id2);
2340 H_PUT_32 (abfd, in->offset, ex->offset);
2341 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2342 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2345 static void
2346 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2347 Elf32_External_crinfo *ex)
2349 unsigned long l;
2351 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2352 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2353 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2354 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2355 H_PUT_32 (abfd, l, ex->info);
2356 H_PUT_32 (abfd, in->konst, ex->konst);
2357 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2360 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2361 routines swap this structure in and out. They are used outside of
2362 BFD, so they are globally visible. */
2364 void
2365 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2366 Elf32_RegInfo *in)
2368 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2369 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2370 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2371 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2372 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2373 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2376 void
2377 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2378 Elf32_External_RegInfo *ex)
2380 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2381 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2382 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2383 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2384 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2385 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2388 /* In the 64 bit ABI, the .MIPS.options section holds register
2389 information in an Elf64_Reginfo structure. These routines swap
2390 them in and out. They are globally visible because they are used
2391 outside of BFD. These routines are here so that gas can call them
2392 without worrying about whether the 64 bit ABI has been included. */
2394 void
2395 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2396 Elf64_Internal_RegInfo *in)
2398 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2399 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2400 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2401 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2402 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2403 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2404 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2407 void
2408 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2409 Elf64_External_RegInfo *ex)
2411 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2412 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2413 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2414 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2415 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2416 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2417 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2420 /* Swap in an options header. */
2422 void
2423 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2424 Elf_Internal_Options *in)
2426 in->kind = H_GET_8 (abfd, ex->kind);
2427 in->size = H_GET_8 (abfd, ex->size);
2428 in->section = H_GET_16 (abfd, ex->section);
2429 in->info = H_GET_32 (abfd, ex->info);
2432 /* Swap out an options header. */
2434 void
2435 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2436 Elf_External_Options *ex)
2438 H_PUT_8 (abfd, in->kind, ex->kind);
2439 H_PUT_8 (abfd, in->size, ex->size);
2440 H_PUT_16 (abfd, in->section, ex->section);
2441 H_PUT_32 (abfd, in->info, ex->info);
2444 /* This function is called via qsort() to sort the dynamic relocation
2445 entries by increasing r_symndx value. */
2447 static int
2448 sort_dynamic_relocs (const void *arg1, const void *arg2)
2450 Elf_Internal_Rela int_reloc1;
2451 Elf_Internal_Rela int_reloc2;
2452 int diff;
2454 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2455 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2457 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2458 if (diff != 0)
2459 return diff;
2461 if (int_reloc1.r_offset < int_reloc2.r_offset)
2462 return -1;
2463 if (int_reloc1.r_offset > int_reloc2.r_offset)
2464 return 1;
2465 return 0;
2468 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2470 static int
2471 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2472 const void *arg2 ATTRIBUTE_UNUSED)
2474 #ifdef BFD64
2475 Elf_Internal_Rela int_reloc1[3];
2476 Elf_Internal_Rela int_reloc2[3];
2478 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2479 (reldyn_sorting_bfd, arg1, int_reloc1);
2480 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2481 (reldyn_sorting_bfd, arg2, int_reloc2);
2483 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2484 return -1;
2485 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2486 return 1;
2488 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2489 return -1;
2490 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2491 return 1;
2492 return 0;
2493 #else
2494 abort ();
2495 #endif
2499 /* This routine is used to write out ECOFF debugging external symbol
2500 information. It is called via mips_elf_link_hash_traverse. The
2501 ECOFF external symbol information must match the ELF external
2502 symbol information. Unfortunately, at this point we don't know
2503 whether a symbol is required by reloc information, so the two
2504 tables may wind up being different. We must sort out the external
2505 symbol information before we can set the final size of the .mdebug
2506 section, and we must set the size of the .mdebug section before we
2507 can relocate any sections, and we can't know which symbols are
2508 required by relocation until we relocate the sections.
2509 Fortunately, it is relatively unlikely that any symbol will be
2510 stripped but required by a reloc. In particular, it can not happen
2511 when generating a final executable. */
2513 static bfd_boolean
2514 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2516 struct extsym_info *einfo = data;
2517 bfd_boolean strip;
2518 asection *sec, *output_section;
2520 if (h->root.indx == -2)
2521 strip = FALSE;
2522 else if ((h->root.def_dynamic
2523 || h->root.ref_dynamic
2524 || h->root.type == bfd_link_hash_new)
2525 && !h->root.def_regular
2526 && !h->root.ref_regular)
2527 strip = TRUE;
2528 else if (einfo->info->strip == strip_all
2529 || (einfo->info->strip == strip_some
2530 && bfd_hash_lookup (einfo->info->keep_hash,
2531 h->root.root.root.string,
2532 FALSE, FALSE) == NULL))
2533 strip = TRUE;
2534 else
2535 strip = FALSE;
2537 if (strip)
2538 return TRUE;
2540 if (h->esym.ifd == -2)
2542 h->esym.jmptbl = 0;
2543 h->esym.cobol_main = 0;
2544 h->esym.weakext = 0;
2545 h->esym.reserved = 0;
2546 h->esym.ifd = ifdNil;
2547 h->esym.asym.value = 0;
2548 h->esym.asym.st = stGlobal;
2550 if (h->root.root.type == bfd_link_hash_undefined
2551 || h->root.root.type == bfd_link_hash_undefweak)
2553 const char *name;
2555 /* Use undefined class. Also, set class and type for some
2556 special symbols. */
2557 name = h->root.root.root.string;
2558 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2559 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2561 h->esym.asym.sc = scData;
2562 h->esym.asym.st = stLabel;
2563 h->esym.asym.value = 0;
2565 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2567 h->esym.asym.sc = scAbs;
2568 h->esym.asym.st = stLabel;
2569 h->esym.asym.value =
2570 mips_elf_hash_table (einfo->info)->procedure_count;
2572 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2574 h->esym.asym.sc = scAbs;
2575 h->esym.asym.st = stLabel;
2576 h->esym.asym.value = elf_gp (einfo->abfd);
2578 else
2579 h->esym.asym.sc = scUndefined;
2581 else if (h->root.root.type != bfd_link_hash_defined
2582 && h->root.root.type != bfd_link_hash_defweak)
2583 h->esym.asym.sc = scAbs;
2584 else
2586 const char *name;
2588 sec = h->root.root.u.def.section;
2589 output_section = sec->output_section;
2591 /* When making a shared library and symbol h is the one from
2592 the another shared library, OUTPUT_SECTION may be null. */
2593 if (output_section == NULL)
2594 h->esym.asym.sc = scUndefined;
2595 else
2597 name = bfd_section_name (output_section->owner, output_section);
2599 if (strcmp (name, ".text") == 0)
2600 h->esym.asym.sc = scText;
2601 else if (strcmp (name, ".data") == 0)
2602 h->esym.asym.sc = scData;
2603 else if (strcmp (name, ".sdata") == 0)
2604 h->esym.asym.sc = scSData;
2605 else if (strcmp (name, ".rodata") == 0
2606 || strcmp (name, ".rdata") == 0)
2607 h->esym.asym.sc = scRData;
2608 else if (strcmp (name, ".bss") == 0)
2609 h->esym.asym.sc = scBss;
2610 else if (strcmp (name, ".sbss") == 0)
2611 h->esym.asym.sc = scSBss;
2612 else if (strcmp (name, ".init") == 0)
2613 h->esym.asym.sc = scInit;
2614 else if (strcmp (name, ".fini") == 0)
2615 h->esym.asym.sc = scFini;
2616 else
2617 h->esym.asym.sc = scAbs;
2621 h->esym.asym.reserved = 0;
2622 h->esym.asym.index = indexNil;
2625 if (h->root.root.type == bfd_link_hash_common)
2626 h->esym.asym.value = h->root.root.u.c.size;
2627 else if (h->root.root.type == bfd_link_hash_defined
2628 || h->root.root.type == bfd_link_hash_defweak)
2630 if (h->esym.asym.sc == scCommon)
2631 h->esym.asym.sc = scBss;
2632 else if (h->esym.asym.sc == scSCommon)
2633 h->esym.asym.sc = scSBss;
2635 sec = h->root.root.u.def.section;
2636 output_section = sec->output_section;
2637 if (output_section != NULL)
2638 h->esym.asym.value = (h->root.root.u.def.value
2639 + sec->output_offset
2640 + output_section->vma);
2641 else
2642 h->esym.asym.value = 0;
2644 else
2646 struct mips_elf_link_hash_entry *hd = h;
2648 while (hd->root.root.type == bfd_link_hash_indirect)
2649 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2651 if (hd->needs_lazy_stub)
2653 /* Set type and value for a symbol with a function stub. */
2654 h->esym.asym.st = stProc;
2655 sec = hd->root.root.u.def.section;
2656 if (sec == NULL)
2657 h->esym.asym.value = 0;
2658 else
2660 output_section = sec->output_section;
2661 if (output_section != NULL)
2662 h->esym.asym.value = (hd->root.plt.offset
2663 + sec->output_offset
2664 + output_section->vma);
2665 else
2666 h->esym.asym.value = 0;
2671 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2672 h->root.root.root.string,
2673 &h->esym))
2675 einfo->failed = TRUE;
2676 return FALSE;
2679 return TRUE;
2682 /* A comparison routine used to sort .gptab entries. */
2684 static int
2685 gptab_compare (const void *p1, const void *p2)
2687 const Elf32_gptab *a1 = p1;
2688 const Elf32_gptab *a2 = p2;
2690 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2693 /* Functions to manage the got entry hash table. */
2695 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2696 hash number. */
2698 static INLINE hashval_t
2699 mips_elf_hash_bfd_vma (bfd_vma addr)
2701 #ifdef BFD64
2702 return addr + (addr >> 32);
2703 #else
2704 return addr;
2705 #endif
2708 /* got_entries only match if they're identical, except for gotidx, so
2709 use all fields to compute the hash, and compare the appropriate
2710 union members. */
2712 static hashval_t
2713 mips_elf_got_entry_hash (const void *entry_)
2715 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2717 return entry->symndx
2718 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2719 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2720 : entry->abfd->id
2721 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2722 : entry->d.h->root.root.root.hash));
2725 static int
2726 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2728 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2729 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2731 /* An LDM entry can only match another LDM entry. */
2732 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2733 return 0;
2735 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2736 && (! e1->abfd ? e1->d.address == e2->d.address
2737 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2738 : e1->d.h == e2->d.h);
2741 /* multi_got_entries are still a match in the case of global objects,
2742 even if the input bfd in which they're referenced differs, so the
2743 hash computation and compare functions are adjusted
2744 accordingly. */
2746 static hashval_t
2747 mips_elf_multi_got_entry_hash (const void *entry_)
2749 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2751 return entry->symndx
2752 + (! entry->abfd
2753 ? mips_elf_hash_bfd_vma (entry->d.address)
2754 : entry->symndx >= 0
2755 ? ((entry->tls_type & GOT_TLS_LDM)
2756 ? (GOT_TLS_LDM << 17)
2757 : (entry->abfd->id
2758 + mips_elf_hash_bfd_vma (entry->d.addend)))
2759 : entry->d.h->root.root.root.hash);
2762 static int
2763 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2765 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2766 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2768 /* Any two LDM entries match. */
2769 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2770 return 1;
2772 /* Nothing else matches an LDM entry. */
2773 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2774 return 0;
2776 return e1->symndx == e2->symndx
2777 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2778 : e1->abfd == NULL || e2->abfd == NULL
2779 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2780 : e1->d.h == e2->d.h);
2783 static hashval_t
2784 mips_got_page_entry_hash (const void *entry_)
2786 const struct mips_got_page_entry *entry;
2788 entry = (const struct mips_got_page_entry *) entry_;
2789 return entry->abfd->id + entry->symndx;
2792 static int
2793 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2795 const struct mips_got_page_entry *entry1, *entry2;
2797 entry1 = (const struct mips_got_page_entry *) entry1_;
2798 entry2 = (const struct mips_got_page_entry *) entry2_;
2799 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2802 /* Return the dynamic relocation section. If it doesn't exist, try to
2803 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2804 if creation fails. */
2806 static asection *
2807 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2809 const char *dname;
2810 asection *sreloc;
2811 bfd *dynobj;
2813 dname = MIPS_ELF_REL_DYN_NAME (info);
2814 dynobj = elf_hash_table (info)->dynobj;
2815 sreloc = bfd_get_section_by_name (dynobj, dname);
2816 if (sreloc == NULL && create_p)
2818 sreloc = bfd_make_section_with_flags (dynobj, dname,
2819 (SEC_ALLOC
2820 | SEC_LOAD
2821 | SEC_HAS_CONTENTS
2822 | SEC_IN_MEMORY
2823 | SEC_LINKER_CREATED
2824 | SEC_READONLY));
2825 if (sreloc == NULL
2826 || ! bfd_set_section_alignment (dynobj, sreloc,
2827 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2828 return NULL;
2830 return sreloc;
2833 /* Count the number of relocations needed for a TLS GOT entry, with
2834 access types from TLS_TYPE, and symbol H (or a local symbol if H
2835 is NULL). */
2837 static int
2838 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2839 struct elf_link_hash_entry *h)
2841 int indx = 0;
2842 int ret = 0;
2843 bfd_boolean need_relocs = FALSE;
2844 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2846 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2847 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2848 indx = h->dynindx;
2850 if ((info->shared || indx != 0)
2851 && (h == NULL
2852 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2853 || h->root.type != bfd_link_hash_undefweak))
2854 need_relocs = TRUE;
2856 if (!need_relocs)
2857 return FALSE;
2859 if (tls_type & GOT_TLS_GD)
2861 ret++;
2862 if (indx != 0)
2863 ret++;
2866 if (tls_type & GOT_TLS_IE)
2867 ret++;
2869 if ((tls_type & GOT_TLS_LDM) && info->shared)
2870 ret++;
2872 return ret;
2875 /* Count the number of TLS relocations required for the GOT entry in
2876 ARG1, if it describes a local symbol. */
2878 static int
2879 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2881 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2882 struct mips_elf_count_tls_arg *arg = arg2;
2884 if (entry->abfd != NULL && entry->symndx != -1)
2885 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2887 return 1;
2890 /* Count the number of TLS GOT entries required for the global (or
2891 forced-local) symbol in ARG1. */
2893 static int
2894 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2896 struct mips_elf_link_hash_entry *hm
2897 = (struct mips_elf_link_hash_entry *) arg1;
2898 struct mips_elf_count_tls_arg *arg = arg2;
2900 if (hm->tls_type & GOT_TLS_GD)
2901 arg->needed += 2;
2902 if (hm->tls_type & GOT_TLS_IE)
2903 arg->needed += 1;
2905 return 1;
2908 /* Count the number of TLS relocations required for the global (or
2909 forced-local) symbol in ARG1. */
2911 static int
2912 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2914 struct mips_elf_link_hash_entry *hm
2915 = (struct mips_elf_link_hash_entry *) arg1;
2916 struct mips_elf_count_tls_arg *arg = arg2;
2918 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2920 return 1;
2923 /* Output a simple dynamic relocation into SRELOC. */
2925 static void
2926 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2927 asection *sreloc,
2928 unsigned long reloc_index,
2929 unsigned long indx,
2930 int r_type,
2931 bfd_vma offset)
2933 Elf_Internal_Rela rel[3];
2935 memset (rel, 0, sizeof (rel));
2937 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2940 if (ABI_64_P (output_bfd))
2942 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2943 (output_bfd, &rel[0],
2944 (sreloc->contents
2945 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2947 else
2948 bfd_elf32_swap_reloc_out
2949 (output_bfd, &rel[0],
2950 (sreloc->contents
2951 + reloc_index * sizeof (Elf32_External_Rel)));
2954 /* Initialize a set of TLS GOT entries for one symbol. */
2956 static void
2957 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2958 unsigned char *tls_type_p,
2959 struct bfd_link_info *info,
2960 struct mips_elf_link_hash_entry *h,
2961 bfd_vma value)
2963 struct mips_elf_link_hash_table *htab;
2964 int indx;
2965 asection *sreloc, *sgot;
2966 bfd_vma offset, offset2;
2967 bfd_boolean need_relocs = FALSE;
2969 htab = mips_elf_hash_table (info);
2970 if (htab == NULL)
2971 return;
2973 sgot = htab->sgot;
2975 indx = 0;
2976 if (h != NULL)
2978 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2980 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2981 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2982 indx = h->root.dynindx;
2985 if (*tls_type_p & GOT_TLS_DONE)
2986 return;
2988 if ((info->shared || indx != 0)
2989 && (h == NULL
2990 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2991 || h->root.type != bfd_link_hash_undefweak))
2992 need_relocs = TRUE;
2994 /* MINUS_ONE means the symbol is not defined in this object. It may not
2995 be defined at all; assume that the value doesn't matter in that
2996 case. Otherwise complain if we would use the value. */
2997 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2998 || h->root.root.type == bfd_link_hash_undefweak);
3000 /* Emit necessary relocations. */
3001 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3003 /* General Dynamic. */
3004 if (*tls_type_p & GOT_TLS_GD)
3006 offset = got_offset;
3007 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3009 if (need_relocs)
3011 mips_elf_output_dynamic_relocation
3012 (abfd, sreloc, sreloc->reloc_count++, indx,
3013 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3014 sgot->output_offset + sgot->output_section->vma + offset);
3016 if (indx)
3017 mips_elf_output_dynamic_relocation
3018 (abfd, sreloc, sreloc->reloc_count++, indx,
3019 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3020 sgot->output_offset + sgot->output_section->vma + offset2);
3021 else
3022 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3023 sgot->contents + offset2);
3025 else
3027 MIPS_ELF_PUT_WORD (abfd, 1,
3028 sgot->contents + offset);
3029 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3030 sgot->contents + offset2);
3033 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3036 /* Initial Exec model. */
3037 if (*tls_type_p & GOT_TLS_IE)
3039 offset = got_offset;
3041 if (need_relocs)
3043 if (indx == 0)
3044 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3045 sgot->contents + offset);
3046 else
3047 MIPS_ELF_PUT_WORD (abfd, 0,
3048 sgot->contents + offset);
3050 mips_elf_output_dynamic_relocation
3051 (abfd, sreloc, sreloc->reloc_count++, indx,
3052 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3053 sgot->output_offset + sgot->output_section->vma + offset);
3055 else
3056 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3057 sgot->contents + offset);
3060 if (*tls_type_p & GOT_TLS_LDM)
3062 /* The initial offset is zero, and the LD offsets will include the
3063 bias by DTP_OFFSET. */
3064 MIPS_ELF_PUT_WORD (abfd, 0,
3065 sgot->contents + got_offset
3066 + MIPS_ELF_GOT_SIZE (abfd));
3068 if (!info->shared)
3069 MIPS_ELF_PUT_WORD (abfd, 1,
3070 sgot->contents + got_offset);
3071 else
3072 mips_elf_output_dynamic_relocation
3073 (abfd, sreloc, sreloc->reloc_count++, indx,
3074 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3075 sgot->output_offset + sgot->output_section->vma + got_offset);
3078 *tls_type_p |= GOT_TLS_DONE;
3081 /* Return the GOT index to use for a relocation of type R_TYPE against
3082 a symbol accessed using TLS_TYPE models. The GOT entries for this
3083 symbol in this GOT start at GOT_INDEX. This function initializes the
3084 GOT entries and corresponding relocations. */
3086 static bfd_vma
3087 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3088 int r_type, struct bfd_link_info *info,
3089 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3091 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3092 || tls_gd_reloc_p (r_type)
3093 || tls_ldm_reloc_p (r_type));
3095 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3097 if (tls_gottprel_reloc_p (r_type))
3099 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3100 if (*tls_type & GOT_TLS_GD)
3101 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3102 else
3103 return got_index;
3106 if (tls_gd_reloc_p (r_type))
3108 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3109 return got_index;
3112 if (tls_ldm_reloc_p (r_type))
3114 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3115 return got_index;
3118 return got_index;
3121 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3122 for global symbol H. .got.plt comes before the GOT, so the offset
3123 will be negative. */
3125 static bfd_vma
3126 mips_elf_gotplt_index (struct bfd_link_info *info,
3127 struct elf_link_hash_entry *h)
3129 bfd_vma plt_index, got_address, got_value;
3130 struct mips_elf_link_hash_table *htab;
3132 htab = mips_elf_hash_table (info);
3133 BFD_ASSERT (htab != NULL);
3135 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3137 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3138 section starts with reserved entries. */
3139 BFD_ASSERT (htab->is_vxworks);
3141 /* Calculate the index of the symbol's PLT entry. */
3142 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3144 /* Calculate the address of the associated .got.plt entry. */
3145 got_address = (htab->sgotplt->output_section->vma
3146 + htab->sgotplt->output_offset
3147 + plt_index * 4);
3149 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3150 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3151 + htab->root.hgot->root.u.def.section->output_offset
3152 + htab->root.hgot->root.u.def.value);
3154 return got_address - got_value;
3157 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3158 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3159 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3160 offset can be found. */
3162 static bfd_vma
3163 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3164 bfd_vma value, unsigned long r_symndx,
3165 struct mips_elf_link_hash_entry *h, int r_type)
3167 struct mips_elf_link_hash_table *htab;
3168 struct mips_got_entry *entry;
3170 htab = mips_elf_hash_table (info);
3171 BFD_ASSERT (htab != NULL);
3173 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3174 r_symndx, h, r_type);
3175 if (!entry)
3176 return MINUS_ONE;
3178 if (TLS_RELOC_P (r_type))
3180 if (entry->symndx == -1 && htab->got_info->next == NULL)
3181 /* A type (3) entry in the single-GOT case. We use the symbol's
3182 hash table entry to track the index. */
3183 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3184 r_type, info, h, value);
3185 else
3186 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3187 r_type, info, h, value);
3189 else
3190 return entry->gotidx;
3193 /* Returns the GOT index for the global symbol indicated by H. */
3195 static bfd_vma
3196 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3197 int r_type, struct bfd_link_info *info)
3199 struct mips_elf_link_hash_table *htab;
3200 bfd_vma got_index;
3201 struct mips_got_info *g, *gg;
3202 long global_got_dynindx = 0;
3204 htab = mips_elf_hash_table (info);
3205 BFD_ASSERT (htab != NULL);
3207 gg = g = htab->got_info;
3208 if (g->bfd2got && ibfd)
3210 struct mips_got_entry e, *p;
3212 BFD_ASSERT (h->dynindx >= 0);
3214 g = mips_elf_got_for_ibfd (g, ibfd);
3215 if (g->next != gg || TLS_RELOC_P (r_type))
3217 e.abfd = ibfd;
3218 e.symndx = -1;
3219 e.d.h = (struct mips_elf_link_hash_entry *)h;
3220 e.tls_type = 0;
3222 p = htab_find (g->got_entries, &e);
3224 BFD_ASSERT (p->gotidx > 0);
3226 if (TLS_RELOC_P (r_type))
3228 bfd_vma value = MINUS_ONE;
3229 if ((h->root.type == bfd_link_hash_defined
3230 || h->root.type == bfd_link_hash_defweak)
3231 && h->root.u.def.section->output_section)
3232 value = (h->root.u.def.value
3233 + h->root.u.def.section->output_offset
3234 + h->root.u.def.section->output_section->vma);
3236 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3237 info, e.d.h, value);
3239 else
3240 return p->gotidx;
3244 if (gg->global_gotsym != NULL)
3245 global_got_dynindx = gg->global_gotsym->dynindx;
3247 if (TLS_RELOC_P (r_type))
3249 struct mips_elf_link_hash_entry *hm
3250 = (struct mips_elf_link_hash_entry *) h;
3251 bfd_vma value = MINUS_ONE;
3253 if ((h->root.type == bfd_link_hash_defined
3254 || h->root.type == bfd_link_hash_defweak)
3255 && h->root.u.def.section->output_section)
3256 value = (h->root.u.def.value
3257 + h->root.u.def.section->output_offset
3258 + h->root.u.def.section->output_section->vma);
3260 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3261 r_type, info, hm, value);
3263 else
3265 /* Once we determine the global GOT entry with the lowest dynamic
3266 symbol table index, we must put all dynamic symbols with greater
3267 indices into the GOT. That makes it easy to calculate the GOT
3268 offset. */
3269 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3270 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3271 * MIPS_ELF_GOT_SIZE (abfd));
3273 BFD_ASSERT (got_index < htab->sgot->size);
3275 return got_index;
3278 /* Find a GOT page entry that points to within 32KB of VALUE. These
3279 entries are supposed to be placed at small offsets in the GOT, i.e.,
3280 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3281 entry could be created. If OFFSETP is nonnull, use it to return the
3282 offset of the GOT entry from VALUE. */
3284 static bfd_vma
3285 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3286 bfd_vma value, bfd_vma *offsetp)
3288 bfd_vma page, got_index;
3289 struct mips_got_entry *entry;
3291 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3292 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3293 NULL, R_MIPS_GOT_PAGE);
3295 if (!entry)
3296 return MINUS_ONE;
3298 got_index = entry->gotidx;
3300 if (offsetp)
3301 *offsetp = value - entry->d.address;
3303 return got_index;
3306 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3307 EXTERNAL is true if the relocation was originally against a global
3308 symbol that binds locally. */
3310 static bfd_vma
3311 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3312 bfd_vma value, bfd_boolean external)
3314 struct mips_got_entry *entry;
3316 /* GOT16 relocations against local symbols are followed by a LO16
3317 relocation; those against global symbols are not. Thus if the
3318 symbol was originally local, the GOT16 relocation should load the
3319 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3320 if (! external)
3321 value = mips_elf_high (value) << 16;
3323 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3324 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3325 same in all cases. */
3326 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3327 NULL, R_MIPS_GOT16);
3328 if (entry)
3329 return entry->gotidx;
3330 else
3331 return MINUS_ONE;
3334 /* Returns the offset for the entry at the INDEXth position
3335 in the GOT. */
3337 static bfd_vma
3338 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3339 bfd *input_bfd, bfd_vma got_index)
3341 struct mips_elf_link_hash_table *htab;
3342 asection *sgot;
3343 bfd_vma gp;
3345 htab = mips_elf_hash_table (info);
3346 BFD_ASSERT (htab != NULL);
3348 sgot = htab->sgot;
3349 gp = _bfd_get_gp_value (output_bfd)
3350 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3352 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3355 /* Create and return a local GOT entry for VALUE, which was calculated
3356 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3357 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3358 instead. */
3360 static struct mips_got_entry *
3361 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3362 bfd *ibfd, bfd_vma value,
3363 unsigned long r_symndx,
3364 struct mips_elf_link_hash_entry *h,
3365 int r_type)
3367 struct mips_got_entry entry, **loc;
3368 struct mips_got_info *g;
3369 struct mips_elf_link_hash_table *htab;
3371 htab = mips_elf_hash_table (info);
3372 BFD_ASSERT (htab != NULL);
3374 entry.abfd = NULL;
3375 entry.symndx = -1;
3376 entry.d.address = value;
3377 entry.tls_type = 0;
3379 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3380 if (g == NULL)
3382 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3383 BFD_ASSERT (g != NULL);
3386 /* This function shouldn't be called for symbols that live in the global
3387 area of the GOT. */
3388 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3389 if (TLS_RELOC_P (r_type))
3391 struct mips_got_entry *p;
3393 entry.abfd = ibfd;
3394 if (tls_ldm_reloc_p (r_type))
3396 entry.tls_type = GOT_TLS_LDM;
3397 entry.symndx = 0;
3398 entry.d.addend = 0;
3400 else if (h == NULL)
3402 entry.symndx = r_symndx;
3403 entry.d.addend = 0;
3405 else
3406 entry.d.h = h;
3408 p = (struct mips_got_entry *)
3409 htab_find (g->got_entries, &entry);
3411 BFD_ASSERT (p);
3412 return p;
3415 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3416 INSERT);
3417 if (*loc)
3418 return *loc;
3420 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3421 entry.tls_type = 0;
3423 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3425 if (! *loc)
3426 return NULL;
3428 memcpy (*loc, &entry, sizeof entry);
3430 if (g->assigned_gotno > g->local_gotno)
3432 (*loc)->gotidx = -1;
3433 /* We didn't allocate enough space in the GOT. */
3434 (*_bfd_error_handler)
3435 (_("not enough GOT space for local GOT entries"));
3436 bfd_set_error (bfd_error_bad_value);
3437 return NULL;
3440 MIPS_ELF_PUT_WORD (abfd, value,
3441 (htab->sgot->contents + entry.gotidx));
3443 /* These GOT entries need a dynamic relocation on VxWorks. */
3444 if (htab->is_vxworks)
3446 Elf_Internal_Rela outrel;
3447 asection *s;
3448 bfd_byte *rloc;
3449 bfd_vma got_address;
3451 s = mips_elf_rel_dyn_section (info, FALSE);
3452 got_address = (htab->sgot->output_section->vma
3453 + htab->sgot->output_offset
3454 + entry.gotidx);
3456 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3457 outrel.r_offset = got_address;
3458 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3459 outrel.r_addend = value;
3460 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3463 return *loc;
3466 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3467 The number might be exact or a worst-case estimate, depending on how
3468 much information is available to elf_backend_omit_section_dynsym at
3469 the current linking stage. */
3471 static bfd_size_type
3472 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3474 bfd_size_type count;
3476 count = 0;
3477 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3479 asection *p;
3480 const struct elf_backend_data *bed;
3482 bed = get_elf_backend_data (output_bfd);
3483 for (p = output_bfd->sections; p ; p = p->next)
3484 if ((p->flags & SEC_EXCLUDE) == 0
3485 && (p->flags & SEC_ALLOC) != 0
3486 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3487 ++count;
3489 return count;
3492 /* Sort the dynamic symbol table so that symbols that need GOT entries
3493 appear towards the end. */
3495 static bfd_boolean
3496 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3498 struct mips_elf_link_hash_table *htab;
3499 struct mips_elf_hash_sort_data hsd;
3500 struct mips_got_info *g;
3502 if (elf_hash_table (info)->dynsymcount == 0)
3503 return TRUE;
3505 htab = mips_elf_hash_table (info);
3506 BFD_ASSERT (htab != NULL);
3508 g = htab->got_info;
3509 if (g == NULL)
3510 return TRUE;
3512 hsd.low = NULL;
3513 hsd.max_unref_got_dynindx
3514 = hsd.min_got_dynindx
3515 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3516 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3517 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3518 elf_hash_table (info)),
3519 mips_elf_sort_hash_table_f,
3520 &hsd);
3522 /* There should have been enough room in the symbol table to
3523 accommodate both the GOT and non-GOT symbols. */
3524 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3525 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3526 == elf_hash_table (info)->dynsymcount);
3527 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3528 == g->global_gotno);
3530 /* Now we know which dynamic symbol has the lowest dynamic symbol
3531 table index in the GOT. */
3532 g->global_gotsym = hsd.low;
3534 return TRUE;
3537 /* If H needs a GOT entry, assign it the highest available dynamic
3538 index. Otherwise, assign it the lowest available dynamic
3539 index. */
3541 static bfd_boolean
3542 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3544 struct mips_elf_hash_sort_data *hsd = data;
3546 /* Symbols without dynamic symbol table entries aren't interesting
3547 at all. */
3548 if (h->root.dynindx == -1)
3549 return TRUE;
3551 switch (h->global_got_area)
3553 case GGA_NONE:
3554 h->root.dynindx = hsd->max_non_got_dynindx++;
3555 break;
3557 case GGA_NORMAL:
3558 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3560 h->root.dynindx = --hsd->min_got_dynindx;
3561 hsd->low = (struct elf_link_hash_entry *) h;
3562 break;
3564 case GGA_RELOC_ONLY:
3565 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3567 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3568 hsd->low = (struct elf_link_hash_entry *) h;
3569 h->root.dynindx = hsd->max_unref_got_dynindx++;
3570 break;
3573 return TRUE;
3576 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3577 symbol table index lower than any we've seen to date, record it for
3578 posterity. FOR_CALL is true if the caller is only interested in
3579 using the GOT entry for calls. */
3581 static bfd_boolean
3582 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3583 bfd *abfd, struct bfd_link_info *info,
3584 bfd_boolean for_call,
3585 unsigned char tls_flag)
3587 struct mips_elf_link_hash_table *htab;
3588 struct mips_elf_link_hash_entry *hmips;
3589 struct mips_got_entry entry, **loc;
3590 struct mips_got_info *g;
3592 htab = mips_elf_hash_table (info);
3593 BFD_ASSERT (htab != NULL);
3595 hmips = (struct mips_elf_link_hash_entry *) h;
3596 if (!for_call)
3597 hmips->got_only_for_calls = FALSE;
3599 /* A global symbol in the GOT must also be in the dynamic symbol
3600 table. */
3601 if (h->dynindx == -1)
3603 switch (ELF_ST_VISIBILITY (h->other))
3605 case STV_INTERNAL:
3606 case STV_HIDDEN:
3607 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3608 break;
3610 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3611 return FALSE;
3614 /* Make sure we have a GOT to put this entry into. */
3615 g = htab->got_info;
3616 BFD_ASSERT (g != NULL);
3618 entry.abfd = abfd;
3619 entry.symndx = -1;
3620 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3621 entry.tls_type = 0;
3623 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3624 INSERT);
3626 /* If we've already marked this entry as needing GOT space, we don't
3627 need to do it again. */
3628 if (*loc)
3630 (*loc)->tls_type |= tls_flag;
3631 return TRUE;
3634 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3636 if (! *loc)
3637 return FALSE;
3639 entry.gotidx = -1;
3640 entry.tls_type = tls_flag;
3642 memcpy (*loc, &entry, sizeof entry);
3644 if (tls_flag == 0)
3645 hmips->global_got_area = GGA_NORMAL;
3647 return TRUE;
3650 /* Reserve space in G for a GOT entry containing the value of symbol
3651 SYMNDX in input bfd ABDF, plus ADDEND. */
3653 static bfd_boolean
3654 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3655 struct bfd_link_info *info,
3656 unsigned char tls_flag)
3658 struct mips_elf_link_hash_table *htab;
3659 struct mips_got_info *g;
3660 struct mips_got_entry entry, **loc;
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3665 g = htab->got_info;
3666 BFD_ASSERT (g != NULL);
3668 entry.abfd = abfd;
3669 entry.symndx = symndx;
3670 entry.d.addend = addend;
3671 entry.tls_type = tls_flag;
3672 loc = (struct mips_got_entry **)
3673 htab_find_slot (g->got_entries, &entry, INSERT);
3675 if (*loc)
3677 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3679 g->tls_gotno += 2;
3680 (*loc)->tls_type |= tls_flag;
3682 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3684 g->tls_gotno += 1;
3685 (*loc)->tls_type |= tls_flag;
3687 return TRUE;
3690 if (tls_flag != 0)
3692 entry.gotidx = -1;
3693 entry.tls_type = tls_flag;
3694 if (tls_flag == GOT_TLS_IE)
3695 g->tls_gotno += 1;
3696 else if (tls_flag == GOT_TLS_GD)
3697 g->tls_gotno += 2;
3698 else if (g->tls_ldm_offset == MINUS_ONE)
3700 g->tls_ldm_offset = MINUS_TWO;
3701 g->tls_gotno += 2;
3704 else
3706 entry.gotidx = g->local_gotno++;
3707 entry.tls_type = 0;
3710 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3712 if (! *loc)
3713 return FALSE;
3715 memcpy (*loc, &entry, sizeof entry);
3717 return TRUE;
3720 /* Return the maximum number of GOT page entries required for RANGE. */
3722 static bfd_vma
3723 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3725 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3728 /* Record that ABFD has a page relocation against symbol SYMNDX and
3729 that ADDEND is the addend for that relocation.
3731 This function creates an upper bound on the number of GOT slots
3732 required; no attempt is made to combine references to non-overridable
3733 global symbols across multiple input files. */
3735 static bfd_boolean
3736 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3737 long symndx, bfd_signed_vma addend)
3739 struct mips_elf_link_hash_table *htab;
3740 struct mips_got_info *g;
3741 struct mips_got_page_entry lookup, *entry;
3742 struct mips_got_page_range **range_ptr, *range;
3743 bfd_vma old_pages, new_pages;
3744 void **loc;
3746 htab = mips_elf_hash_table (info);
3747 BFD_ASSERT (htab != NULL);
3749 g = htab->got_info;
3750 BFD_ASSERT (g != NULL);
3752 /* Find the mips_got_page_entry hash table entry for this symbol. */
3753 lookup.abfd = abfd;
3754 lookup.symndx = symndx;
3755 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3756 if (loc == NULL)
3757 return FALSE;
3759 /* Create a mips_got_page_entry if this is the first time we've
3760 seen the symbol. */
3761 entry = (struct mips_got_page_entry *) *loc;
3762 if (!entry)
3764 entry = bfd_alloc (abfd, sizeof (*entry));
3765 if (!entry)
3766 return FALSE;
3768 entry->abfd = abfd;
3769 entry->symndx = symndx;
3770 entry->ranges = NULL;
3771 entry->num_pages = 0;
3772 *loc = entry;
3775 /* Skip over ranges whose maximum extent cannot share a page entry
3776 with ADDEND. */
3777 range_ptr = &entry->ranges;
3778 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3779 range_ptr = &(*range_ptr)->next;
3781 /* If we scanned to the end of the list, or found a range whose
3782 minimum extent cannot share a page entry with ADDEND, create
3783 a new singleton range. */
3784 range = *range_ptr;
3785 if (!range || addend < range->min_addend - 0xffff)
3787 range = bfd_alloc (abfd, sizeof (*range));
3788 if (!range)
3789 return FALSE;
3791 range->next = *range_ptr;
3792 range->min_addend = addend;
3793 range->max_addend = addend;
3795 *range_ptr = range;
3796 entry->num_pages++;
3797 g->page_gotno++;
3798 return TRUE;
3801 /* Remember how many pages the old range contributed. */
3802 old_pages = mips_elf_pages_for_range (range);
3804 /* Update the ranges. */
3805 if (addend < range->min_addend)
3806 range->min_addend = addend;
3807 else if (addend > range->max_addend)
3809 if (range->next && addend >= range->next->min_addend - 0xffff)
3811 old_pages += mips_elf_pages_for_range (range->next);
3812 range->max_addend = range->next->max_addend;
3813 range->next = range->next->next;
3815 else
3816 range->max_addend = addend;
3819 /* Record any change in the total estimate. */
3820 new_pages = mips_elf_pages_for_range (range);
3821 if (old_pages != new_pages)
3823 entry->num_pages += new_pages - old_pages;
3824 g->page_gotno += new_pages - old_pages;
3827 return TRUE;
3830 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3832 static void
3833 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3834 unsigned int n)
3836 asection *s;
3837 struct mips_elf_link_hash_table *htab;
3839 htab = mips_elf_hash_table (info);
3840 BFD_ASSERT (htab != NULL);
3842 s = mips_elf_rel_dyn_section (info, FALSE);
3843 BFD_ASSERT (s != NULL);
3845 if (htab->is_vxworks)
3846 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3847 else
3849 if (s->size == 0)
3851 /* Make room for a null element. */
3852 s->size += MIPS_ELF_REL_SIZE (abfd);
3853 ++s->reloc_count;
3855 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3859 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3860 if the GOT entry is for an indirect or warning symbol. */
3862 static int
3863 mips_elf_check_recreate_got (void **entryp, void *data)
3865 struct mips_got_entry *entry;
3866 bfd_boolean *must_recreate;
3868 entry = (struct mips_got_entry *) *entryp;
3869 must_recreate = (bfd_boolean *) data;
3870 if (entry->abfd != NULL && entry->symndx == -1)
3872 struct mips_elf_link_hash_entry *h;
3874 h = entry->d.h;
3875 if (h->root.root.type == bfd_link_hash_indirect
3876 || h->root.root.type == bfd_link_hash_warning)
3878 *must_recreate = TRUE;
3879 return 0;
3882 return 1;
3885 /* A htab_traverse callback for GOT entries. Add all entries to
3886 hash table *DATA, converting entries for indirect and warning
3887 symbols into entries for the target symbol. Set *DATA to null
3888 on error. */
3890 static int
3891 mips_elf_recreate_got (void **entryp, void *data)
3893 htab_t *new_got;
3894 struct mips_got_entry *entry;
3895 void **slot;
3897 new_got = (htab_t *) data;
3898 entry = (struct mips_got_entry *) *entryp;
3899 if (entry->abfd != NULL && entry->symndx == -1)
3901 struct mips_elf_link_hash_entry *h;
3903 h = entry->d.h;
3904 while (h->root.root.type == bfd_link_hash_indirect
3905 || h->root.root.type == bfd_link_hash_warning)
3907 BFD_ASSERT (h->global_got_area == GGA_NONE);
3908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3910 entry->d.h = h;
3912 slot = htab_find_slot (*new_got, entry, INSERT);
3913 if (slot == NULL)
3915 *new_got = NULL;
3916 return 0;
3918 if (*slot == NULL)
3919 *slot = entry;
3920 else
3921 free (entry);
3922 return 1;
3925 /* If any entries in G->got_entries are for indirect or warning symbols,
3926 replace them with entries for the target symbol. */
3928 static bfd_boolean
3929 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3931 bfd_boolean must_recreate;
3932 htab_t new_got;
3934 must_recreate = FALSE;
3935 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3936 if (must_recreate)
3938 new_got = htab_create (htab_size (g->got_entries),
3939 mips_elf_got_entry_hash,
3940 mips_elf_got_entry_eq, NULL);
3941 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3942 if (new_got == NULL)
3943 return FALSE;
3945 /* Each entry in g->got_entries has either been copied to new_got
3946 or freed. Now delete the hash table itself. */
3947 htab_delete (g->got_entries);
3948 g->got_entries = new_got;
3950 return TRUE;
3953 /* A mips_elf_link_hash_traverse callback for which DATA points
3954 to the link_info structure. Count the number of type (3) entries
3955 in the master GOT. */
3957 static int
3958 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3960 struct bfd_link_info *info;
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_got_info *g;
3964 info = (struct bfd_link_info *) data;
3965 htab = mips_elf_hash_table (info);
3966 g = htab->got_info;
3967 if (h->global_got_area != GGA_NONE)
3969 /* Make a final decision about whether the symbol belongs in the
3970 local or global GOT. Symbols that bind locally can (and in the
3971 case of forced-local symbols, must) live in the local GOT.
3972 Those that are aren't in the dynamic symbol table must also
3973 live in the local GOT.
3975 Note that the former condition does not always imply the
3976 latter: symbols do not bind locally if they are completely
3977 undefined. We'll report undefined symbols later if appropriate. */
3978 if (h->root.dynindx == -1
3979 || (h->got_only_for_calls
3980 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3981 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3983 /* The symbol belongs in the local GOT. We no longer need this
3984 entry if it was only used for relocations; those relocations
3985 will be against the null or section symbol instead of H. */
3986 if (h->global_got_area != GGA_RELOC_ONLY)
3987 g->local_gotno++;
3988 h->global_got_area = GGA_NONE;
3990 else if (htab->is_vxworks
3991 && h->got_only_for_calls
3992 && h->root.plt.offset != MINUS_ONE)
3993 /* On VxWorks, calls can refer directly to the .got.plt entry;
3994 they don't need entries in the regular GOT. .got.plt entries
3995 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3996 h->global_got_area = GGA_NONE;
3997 else
3999 g->global_gotno++;
4000 if (h->global_got_area == GGA_RELOC_ONLY)
4001 g->reloc_only_gotno++;
4004 return 1;
4007 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4009 static hashval_t
4010 mips_elf_bfd2got_entry_hash (const void *entry_)
4012 const struct mips_elf_bfd2got_hash *entry
4013 = (struct mips_elf_bfd2got_hash *)entry_;
4015 return entry->bfd->id;
4018 /* Check whether two hash entries have the same bfd. */
4020 static int
4021 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4023 const struct mips_elf_bfd2got_hash *e1
4024 = (const struct mips_elf_bfd2got_hash *)entry1;
4025 const struct mips_elf_bfd2got_hash *e2
4026 = (const struct mips_elf_bfd2got_hash *)entry2;
4028 return e1->bfd == e2->bfd;
4031 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4032 be the master GOT data. */
4034 static struct mips_got_info *
4035 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4037 struct mips_elf_bfd2got_hash e, *p;
4039 if (! g->bfd2got)
4040 return g;
4042 e.bfd = ibfd;
4043 p = htab_find (g->bfd2got, &e);
4044 return p ? p->g : NULL;
4047 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4048 Return NULL if an error occured. */
4050 static struct mips_got_info *
4051 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4052 bfd *input_bfd)
4054 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4055 struct mips_got_info *g;
4056 void **bfdgotp;
4058 bfdgot_entry.bfd = input_bfd;
4059 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4060 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4062 if (bfdgot == NULL)
4064 bfdgot = ((struct mips_elf_bfd2got_hash *)
4065 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4066 if (bfdgot == NULL)
4067 return NULL;
4069 *bfdgotp = bfdgot;
4071 g = ((struct mips_got_info *)
4072 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4073 if (g == NULL)
4074 return NULL;
4076 bfdgot->bfd = input_bfd;
4077 bfdgot->g = g;
4079 g->global_gotsym = NULL;
4080 g->global_gotno = 0;
4081 g->reloc_only_gotno = 0;
4082 g->local_gotno = 0;
4083 g->page_gotno = 0;
4084 g->assigned_gotno = -1;
4085 g->tls_gotno = 0;
4086 g->tls_assigned_gotno = 0;
4087 g->tls_ldm_offset = MINUS_ONE;
4088 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4089 mips_elf_multi_got_entry_eq, NULL);
4090 if (g->got_entries == NULL)
4091 return NULL;
4093 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4094 mips_got_page_entry_eq, NULL);
4095 if (g->got_page_entries == NULL)
4096 return NULL;
4098 g->bfd2got = NULL;
4099 g->next = NULL;
4102 return bfdgot->g;
4105 /* A htab_traverse callback for the entries in the master got.
4106 Create one separate got for each bfd that has entries in the global
4107 got, such that we can tell how many local and global entries each
4108 bfd requires. */
4110 static int
4111 mips_elf_make_got_per_bfd (void **entryp, void *p)
4113 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4114 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4115 struct mips_got_info *g;
4117 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4118 if (g == NULL)
4120 arg->obfd = NULL;
4121 return 0;
4124 /* Insert the GOT entry in the bfd's got entry hash table. */
4125 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4126 if (*entryp != NULL)
4127 return 1;
4129 *entryp = entry;
4131 if (entry->tls_type)
4133 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4134 g->tls_gotno += 2;
4135 if (entry->tls_type & GOT_TLS_IE)
4136 g->tls_gotno += 1;
4138 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4139 ++g->local_gotno;
4140 else
4141 ++g->global_gotno;
4143 return 1;
4146 /* A htab_traverse callback for the page entries in the master got.
4147 Associate each page entry with the bfd's got. */
4149 static int
4150 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4152 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4153 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4154 struct mips_got_info *g;
4156 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4157 if (g == NULL)
4159 arg->obfd = NULL;
4160 return 0;
4163 /* Insert the GOT entry in the bfd's got entry hash table. */
4164 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4165 if (*entryp != NULL)
4166 return 1;
4168 *entryp = entry;
4169 g->page_gotno += entry->num_pages;
4170 return 1;
4173 /* Consider merging the got described by BFD2GOT with TO, using the
4174 information given by ARG. Return -1 if this would lead to overflow,
4175 1 if they were merged successfully, and 0 if a merge failed due to
4176 lack of memory. (These values are chosen so that nonnegative return
4177 values can be returned by a htab_traverse callback.) */
4179 static int
4180 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4181 struct mips_got_info *to,
4182 struct mips_elf_got_per_bfd_arg *arg)
4184 struct mips_got_info *from = bfd2got->g;
4185 unsigned int estimate;
4187 /* Work out how many page entries we would need for the combined GOT. */
4188 estimate = arg->max_pages;
4189 if (estimate >= from->page_gotno + to->page_gotno)
4190 estimate = from->page_gotno + to->page_gotno;
4192 /* And conservatively estimate how many local and TLS entries
4193 would be needed. */
4194 estimate += from->local_gotno + to->local_gotno;
4195 estimate += from->tls_gotno + to->tls_gotno;
4197 /* If we're merging with the primary got, we will always have
4198 the full set of global entries. Otherwise estimate those
4199 conservatively as well. */
4200 if (to == arg->primary)
4201 estimate += arg->global_count;
4202 else
4203 estimate += from->global_gotno + to->global_gotno;
4205 /* Bail out if the combined GOT might be too big. */
4206 if (estimate > arg->max_count)
4207 return -1;
4209 /* Commit to the merge. Record that TO is now the bfd for this got. */
4210 bfd2got->g = to;
4212 /* Transfer the bfd's got information from FROM to TO. */
4213 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4214 if (arg->obfd == NULL)
4215 return 0;
4217 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4218 if (arg->obfd == NULL)
4219 return 0;
4221 /* We don't have to worry about releasing memory of the actual
4222 got entries, since they're all in the master got_entries hash
4223 table anyway. */
4224 htab_delete (from->got_entries);
4225 htab_delete (from->got_page_entries);
4226 return 1;
4229 /* Attempt to merge gots of different input bfds. Try to use as much
4230 as possible of the primary got, since it doesn't require explicit
4231 dynamic relocations, but don't use bfds that would reference global
4232 symbols out of the addressable range. Failing the primary got,
4233 attempt to merge with the current got, or finish the current got
4234 and then make make the new got current. */
4236 static int
4237 mips_elf_merge_gots (void **bfd2got_, void *p)
4239 struct mips_elf_bfd2got_hash *bfd2got
4240 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4241 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4242 struct mips_got_info *g;
4243 unsigned int estimate;
4244 int result;
4246 g = bfd2got->g;
4248 /* Work out the number of page, local and TLS entries. */
4249 estimate = arg->max_pages;
4250 if (estimate > g->page_gotno)
4251 estimate = g->page_gotno;
4252 estimate += g->local_gotno + g->tls_gotno;
4254 /* We place TLS GOT entries after both locals and globals. The globals
4255 for the primary GOT may overflow the normal GOT size limit, so be
4256 sure not to merge a GOT which requires TLS with the primary GOT in that
4257 case. This doesn't affect non-primary GOTs. */
4258 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4260 if (estimate <= arg->max_count)
4262 /* If we don't have a primary GOT, use it as
4263 a starting point for the primary GOT. */
4264 if (!arg->primary)
4266 arg->primary = bfd2got->g;
4267 return 1;
4270 /* Try merging with the primary GOT. */
4271 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4272 if (result >= 0)
4273 return result;
4276 /* If we can merge with the last-created got, do it. */
4277 if (arg->current)
4279 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4280 if (result >= 0)
4281 return result;
4284 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4285 fits; if it turns out that it doesn't, we'll get relocation
4286 overflows anyway. */
4287 g->next = arg->current;
4288 arg->current = g;
4290 return 1;
4293 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4294 is null iff there is just a single GOT. */
4296 static int
4297 mips_elf_initialize_tls_index (void **entryp, void *p)
4299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4300 struct mips_got_info *g = p;
4301 bfd_vma next_index;
4302 unsigned char tls_type;
4304 /* We're only interested in TLS symbols. */
4305 if (entry->tls_type == 0)
4306 return 1;
4308 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4310 if (entry->symndx == -1 && g->next == NULL)
4312 /* A type (3) got entry in the single-GOT case. We use the symbol's
4313 hash table entry to track its index. */
4314 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4315 return 1;
4316 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4317 entry->d.h->tls_got_offset = next_index;
4318 tls_type = entry->d.h->tls_type;
4320 else
4322 if (entry->tls_type & GOT_TLS_LDM)
4324 /* There are separate mips_got_entry objects for each input bfd
4325 that requires an LDM entry. Make sure that all LDM entries in
4326 a GOT resolve to the same index. */
4327 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4329 entry->gotidx = g->tls_ldm_offset;
4330 return 1;
4332 g->tls_ldm_offset = next_index;
4334 entry->gotidx = next_index;
4335 tls_type = entry->tls_type;
4338 /* Account for the entries we've just allocated. */
4339 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4340 g->tls_assigned_gotno += 2;
4341 if (tls_type & GOT_TLS_IE)
4342 g->tls_assigned_gotno += 1;
4344 return 1;
4347 /* If passed a NULL mips_got_info in the argument, set the marker used
4348 to tell whether a global symbol needs a got entry (in the primary
4349 got) to the given VALUE.
4351 If passed a pointer G to a mips_got_info in the argument (it must
4352 not be the primary GOT), compute the offset from the beginning of
4353 the (primary) GOT section to the entry in G corresponding to the
4354 global symbol. G's assigned_gotno must contain the index of the
4355 first available global GOT entry in G. VALUE must contain the size
4356 of a GOT entry in bytes. For each global GOT entry that requires a
4357 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4358 marked as not eligible for lazy resolution through a function
4359 stub. */
4360 static int
4361 mips_elf_set_global_got_offset (void **entryp, void *p)
4363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4364 struct mips_elf_set_global_got_offset_arg *arg
4365 = (struct mips_elf_set_global_got_offset_arg *)p;
4366 struct mips_got_info *g = arg->g;
4368 if (g && entry->tls_type != GOT_NORMAL)
4369 arg->needed_relocs +=
4370 mips_tls_got_relocs (arg->info, entry->tls_type,
4371 entry->symndx == -1 ? &entry->d.h->root : NULL);
4373 if (entry->abfd != NULL
4374 && entry->symndx == -1
4375 && entry->d.h->global_got_area != GGA_NONE)
4377 if (g)
4379 BFD_ASSERT (g->global_gotsym == NULL);
4381 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4382 if (arg->info->shared
4383 || (elf_hash_table (arg->info)->dynamic_sections_created
4384 && entry->d.h->root.def_dynamic
4385 && !entry->d.h->root.def_regular))
4386 ++arg->needed_relocs;
4388 else
4389 entry->d.h->global_got_area = arg->value;
4392 return 1;
4395 /* A htab_traverse callback for GOT entries for which DATA is the
4396 bfd_link_info. Forbid any global symbols from having traditional
4397 lazy-binding stubs. */
4399 static int
4400 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4402 struct bfd_link_info *info;
4403 struct mips_elf_link_hash_table *htab;
4404 struct mips_got_entry *entry;
4406 entry = (struct mips_got_entry *) *entryp;
4407 info = (struct bfd_link_info *) data;
4408 htab = mips_elf_hash_table (info);
4409 BFD_ASSERT (htab != NULL);
4411 if (entry->abfd != NULL
4412 && entry->symndx == -1
4413 && entry->d.h->needs_lazy_stub)
4415 entry->d.h->needs_lazy_stub = FALSE;
4416 htab->lazy_stub_count--;
4419 return 1;
4422 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4423 the primary GOT. */
4424 static bfd_vma
4425 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4427 if (g->bfd2got == NULL)
4428 return 0;
4430 g = mips_elf_got_for_ibfd (g, ibfd);
4431 if (! g)
4432 return 0;
4434 BFD_ASSERT (g->next);
4436 g = g->next;
4438 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4439 * MIPS_ELF_GOT_SIZE (abfd);
4442 /* Turn a single GOT that is too big for 16-bit addressing into
4443 a sequence of GOTs, each one 16-bit addressable. */
4445 static bfd_boolean
4446 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4447 asection *got, bfd_size_type pages)
4449 struct mips_elf_link_hash_table *htab;
4450 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4451 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4452 struct mips_got_info *g, *gg;
4453 unsigned int assign, needed_relocs;
4454 bfd *dynobj;
4456 dynobj = elf_hash_table (info)->dynobj;
4457 htab = mips_elf_hash_table (info);
4458 BFD_ASSERT (htab != NULL);
4460 g = htab->got_info;
4461 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4462 mips_elf_bfd2got_entry_eq, NULL);
4463 if (g->bfd2got == NULL)
4464 return FALSE;
4466 got_per_bfd_arg.bfd2got = g->bfd2got;
4467 got_per_bfd_arg.obfd = abfd;
4468 got_per_bfd_arg.info = info;
4470 /* Count how many GOT entries each input bfd requires, creating a
4471 map from bfd to got info while at that. */
4472 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4473 if (got_per_bfd_arg.obfd == NULL)
4474 return FALSE;
4476 /* Also count how many page entries each input bfd requires. */
4477 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4478 &got_per_bfd_arg);
4479 if (got_per_bfd_arg.obfd == NULL)
4480 return FALSE;
4482 got_per_bfd_arg.current = NULL;
4483 got_per_bfd_arg.primary = NULL;
4484 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4485 / MIPS_ELF_GOT_SIZE (abfd))
4486 - htab->reserved_gotno);
4487 got_per_bfd_arg.max_pages = pages;
4488 /* The number of globals that will be included in the primary GOT.
4489 See the calls to mips_elf_set_global_got_offset below for more
4490 information. */
4491 got_per_bfd_arg.global_count = g->global_gotno;
4493 /* Try to merge the GOTs of input bfds together, as long as they
4494 don't seem to exceed the maximum GOT size, choosing one of them
4495 to be the primary GOT. */
4496 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4497 if (got_per_bfd_arg.obfd == NULL)
4498 return FALSE;
4500 /* If we do not find any suitable primary GOT, create an empty one. */
4501 if (got_per_bfd_arg.primary == NULL)
4503 g->next = (struct mips_got_info *)
4504 bfd_alloc (abfd, sizeof (struct mips_got_info));
4505 if (g->next == NULL)
4506 return FALSE;
4508 g->next->global_gotsym = NULL;
4509 g->next->global_gotno = 0;
4510 g->next->reloc_only_gotno = 0;
4511 g->next->local_gotno = 0;
4512 g->next->page_gotno = 0;
4513 g->next->tls_gotno = 0;
4514 g->next->assigned_gotno = 0;
4515 g->next->tls_assigned_gotno = 0;
4516 g->next->tls_ldm_offset = MINUS_ONE;
4517 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4518 mips_elf_multi_got_entry_eq,
4519 NULL);
4520 if (g->next->got_entries == NULL)
4521 return FALSE;
4522 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4523 mips_got_page_entry_eq,
4524 NULL);
4525 if (g->next->got_page_entries == NULL)
4526 return FALSE;
4527 g->next->bfd2got = NULL;
4529 else
4530 g->next = got_per_bfd_arg.primary;
4531 g->next->next = got_per_bfd_arg.current;
4533 /* GG is now the master GOT, and G is the primary GOT. */
4534 gg = g;
4535 g = g->next;
4537 /* Map the output bfd to the primary got. That's what we're going
4538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4539 didn't mark in check_relocs, and we want a quick way to find it.
4540 We can't just use gg->next because we're going to reverse the
4541 list. */
4543 struct mips_elf_bfd2got_hash *bfdgot;
4544 void **bfdgotp;
4546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4549 if (bfdgot == NULL)
4550 return FALSE;
4552 bfdgot->bfd = abfd;
4553 bfdgot->g = g;
4554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4556 BFD_ASSERT (*bfdgotp == NULL);
4557 *bfdgotp = bfdgot;
4560 /* Every symbol that is referenced in a dynamic relocation must be
4561 present in the primary GOT, so arrange for them to appear after
4562 those that are actually referenced. */
4563 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4564 g->global_gotno = gg->global_gotno;
4566 set_got_offset_arg.g = NULL;
4567 set_got_offset_arg.value = GGA_RELOC_ONLY;
4568 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4569 &set_got_offset_arg);
4570 set_got_offset_arg.value = GGA_NORMAL;
4571 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4572 &set_got_offset_arg);
4574 /* Now go through the GOTs assigning them offset ranges.
4575 [assigned_gotno, local_gotno[ will be set to the range of local
4576 entries in each GOT. We can then compute the end of a GOT by
4577 adding local_gotno to global_gotno. We reverse the list and make
4578 it circular since then we'll be able to quickly compute the
4579 beginning of a GOT, by computing the end of its predecessor. To
4580 avoid special cases for the primary GOT, while still preserving
4581 assertions that are valid for both single- and multi-got links,
4582 we arrange for the main got struct to have the right number of
4583 global entries, but set its local_gotno such that the initial
4584 offset of the primary GOT is zero. Remember that the primary GOT
4585 will become the last item in the circular linked list, so it
4586 points back to the master GOT. */
4587 gg->local_gotno = -g->global_gotno;
4588 gg->global_gotno = g->global_gotno;
4589 gg->tls_gotno = 0;
4590 assign = 0;
4591 gg->next = gg;
4595 struct mips_got_info *gn;
4597 assign += htab->reserved_gotno;
4598 g->assigned_gotno = assign;
4599 g->local_gotno += assign;
4600 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4601 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4603 /* Take g out of the direct list, and push it onto the reversed
4604 list that gg points to. g->next is guaranteed to be nonnull after
4605 this operation, as required by mips_elf_initialize_tls_index. */
4606 gn = g->next;
4607 g->next = gg->next;
4608 gg->next = g;
4610 /* Set up any TLS entries. We always place the TLS entries after
4611 all non-TLS entries. */
4612 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4613 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4615 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4616 g = gn;
4618 /* Forbid global symbols in every non-primary GOT from having
4619 lazy-binding stubs. */
4620 if (g)
4621 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4623 while (g);
4625 got->size = (gg->next->local_gotno
4626 + gg->next->global_gotno
4627 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4629 needed_relocs = 0;
4630 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4631 set_got_offset_arg.info = info;
4632 for (g = gg->next; g && g->next != gg; g = g->next)
4634 unsigned int save_assign;
4636 /* Assign offsets to global GOT entries. */
4637 save_assign = g->assigned_gotno;
4638 g->assigned_gotno = g->local_gotno;
4639 set_got_offset_arg.g = g;
4640 set_got_offset_arg.needed_relocs = 0;
4641 htab_traverse (g->got_entries,
4642 mips_elf_set_global_got_offset,
4643 &set_got_offset_arg);
4644 needed_relocs += set_got_offset_arg.needed_relocs;
4645 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4647 g->assigned_gotno = save_assign;
4648 if (info->shared)
4650 needed_relocs += g->local_gotno - g->assigned_gotno;
4651 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4652 + g->next->global_gotno
4653 + g->next->tls_gotno
4654 + htab->reserved_gotno);
4658 if (needed_relocs)
4659 mips_elf_allocate_dynamic_relocations (dynobj, info,
4660 needed_relocs);
4662 return TRUE;
4666 /* Returns the first relocation of type r_type found, beginning with
4667 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4669 static const Elf_Internal_Rela *
4670 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4671 const Elf_Internal_Rela *relocation,
4672 const Elf_Internal_Rela *relend)
4674 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4676 while (relocation < relend)
4678 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4679 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4680 return relocation;
4682 ++relocation;
4685 /* We didn't find it. */
4686 return NULL;
4689 /* Return whether an input relocation is against a local symbol. */
4691 static bfd_boolean
4692 mips_elf_local_relocation_p (bfd *input_bfd,
4693 const Elf_Internal_Rela *relocation,
4694 asection **local_sections)
4696 unsigned long r_symndx;
4697 Elf_Internal_Shdr *symtab_hdr;
4698 size_t extsymoff;
4700 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4702 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4704 if (r_symndx < extsymoff)
4705 return TRUE;
4706 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4707 return TRUE;
4709 return FALSE;
4712 /* Sign-extend VALUE, which has the indicated number of BITS. */
4714 bfd_vma
4715 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4717 if (value & ((bfd_vma) 1 << (bits - 1)))
4718 /* VALUE is negative. */
4719 value |= ((bfd_vma) - 1) << bits;
4721 return value;
4724 /* Return non-zero if the indicated VALUE has overflowed the maximum
4725 range expressible by a signed number with the indicated number of
4726 BITS. */
4728 static bfd_boolean
4729 mips_elf_overflow_p (bfd_vma value, int bits)
4731 bfd_signed_vma svalue = (bfd_signed_vma) value;
4733 if (svalue > (1 << (bits - 1)) - 1)
4734 /* The value is too big. */
4735 return TRUE;
4736 else if (svalue < -(1 << (bits - 1)))
4737 /* The value is too small. */
4738 return TRUE;
4740 /* All is well. */
4741 return FALSE;
4744 /* Calculate the %high function. */
4746 static bfd_vma
4747 mips_elf_high (bfd_vma value)
4749 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4752 /* Calculate the %higher function. */
4754 static bfd_vma
4755 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4757 #ifdef BFD64
4758 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4759 #else
4760 abort ();
4761 return MINUS_ONE;
4762 #endif
4765 /* Calculate the %highest function. */
4767 static bfd_vma
4768 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4770 #ifdef BFD64
4771 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4772 #else
4773 abort ();
4774 return MINUS_ONE;
4775 #endif
4778 /* Create the .compact_rel section. */
4780 static bfd_boolean
4781 mips_elf_create_compact_rel_section
4782 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4784 flagword flags;
4785 register asection *s;
4787 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4789 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4790 | SEC_READONLY);
4792 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4793 if (s == NULL
4794 || ! bfd_set_section_alignment (abfd, s,
4795 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4796 return FALSE;
4798 s->size = sizeof (Elf32_External_compact_rel);
4801 return TRUE;
4804 /* Create the .got section to hold the global offset table. */
4806 static bfd_boolean
4807 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4809 flagword flags;
4810 register asection *s;
4811 struct elf_link_hash_entry *h;
4812 struct bfd_link_hash_entry *bh;
4813 struct mips_got_info *g;
4814 bfd_size_type amt;
4815 struct mips_elf_link_hash_table *htab;
4817 htab = mips_elf_hash_table (info);
4818 BFD_ASSERT (htab != NULL);
4820 /* This function may be called more than once. */
4821 if (htab->sgot)
4822 return TRUE;
4824 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4825 | SEC_LINKER_CREATED);
4827 /* We have to use an alignment of 2**4 here because this is hardcoded
4828 in the function stub generation and in the linker script. */
4829 s = bfd_make_section_with_flags (abfd, ".got", flags);
4830 if (s == NULL
4831 || ! bfd_set_section_alignment (abfd, s, 4))
4832 return FALSE;
4833 htab->sgot = s;
4835 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4836 linker script because we don't want to define the symbol if we
4837 are not creating a global offset table. */
4838 bh = NULL;
4839 if (! (_bfd_generic_link_add_one_symbol
4840 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4841 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4842 return FALSE;
4844 h = (struct elf_link_hash_entry *) bh;
4845 h->non_elf = 0;
4846 h->def_regular = 1;
4847 h->type = STT_OBJECT;
4848 elf_hash_table (info)->hgot = h;
4850 if (info->shared
4851 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4852 return FALSE;
4854 amt = sizeof (struct mips_got_info);
4855 g = bfd_alloc (abfd, amt);
4856 if (g == NULL)
4857 return FALSE;
4858 g->global_gotsym = NULL;
4859 g->global_gotno = 0;
4860 g->reloc_only_gotno = 0;
4861 g->tls_gotno = 0;
4862 g->local_gotno = 0;
4863 g->page_gotno = 0;
4864 g->assigned_gotno = 0;
4865 g->bfd2got = NULL;
4866 g->next = NULL;
4867 g->tls_ldm_offset = MINUS_ONE;
4868 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4869 mips_elf_got_entry_eq, NULL);
4870 if (g->got_entries == NULL)
4871 return FALSE;
4872 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4873 mips_got_page_entry_eq, NULL);
4874 if (g->got_page_entries == NULL)
4875 return FALSE;
4876 htab->got_info = g;
4877 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4878 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4880 /* We also need a .got.plt section when generating PLTs. */
4881 s = bfd_make_section_with_flags (abfd, ".got.plt",
4882 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4883 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4884 if (s == NULL)
4885 return FALSE;
4886 htab->sgotplt = s;
4888 return TRUE;
4891 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4892 __GOTT_INDEX__ symbols. These symbols are only special for
4893 shared objects; they are not used in executables. */
4895 static bfd_boolean
4896 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4898 return (mips_elf_hash_table (info)->is_vxworks
4899 && info->shared
4900 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4901 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4904 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4905 require an la25 stub. See also mips_elf_local_pic_function_p,
4906 which determines whether the destination function ever requires a
4907 stub. */
4909 static bfd_boolean
4910 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4912 /* We specifically ignore branches and jumps from EF_PIC objects,
4913 where the onus is on the compiler or programmer to perform any
4914 necessary initialization of $25. Sometimes such initialization
4915 is unnecessary; for example, -mno-shared functions do not use
4916 the incoming value of $25, and may therefore be called directly. */
4917 if (PIC_OBJECT_P (input_bfd))
4918 return FALSE;
4920 switch (r_type)
4922 case R_MIPS_26:
4923 case R_MIPS_PC16:
4924 case R_MIPS16_26:
4925 case R_MICROMIPS_26_S1:
4926 case R_MICROMIPS_PC7_S1:
4927 case R_MICROMIPS_PC10_S1:
4928 case R_MICROMIPS_PC16_S1:
4929 case R_MICROMIPS_PC23_S2:
4930 return TRUE;
4932 default:
4933 return FALSE;
4937 /* Calculate the value produced by the RELOCATION (which comes from
4938 the INPUT_BFD). The ADDEND is the addend to use for this
4939 RELOCATION; RELOCATION->R_ADDEND is ignored.
4941 The result of the relocation calculation is stored in VALUEP.
4942 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4943 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4945 This function returns bfd_reloc_continue if the caller need take no
4946 further action regarding this relocation, bfd_reloc_notsupported if
4947 something goes dramatically wrong, bfd_reloc_overflow if an
4948 overflow occurs, and bfd_reloc_ok to indicate success. */
4950 static bfd_reloc_status_type
4951 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4952 asection *input_section,
4953 struct bfd_link_info *info,
4954 const Elf_Internal_Rela *relocation,
4955 bfd_vma addend, reloc_howto_type *howto,
4956 Elf_Internal_Sym *local_syms,
4957 asection **local_sections, bfd_vma *valuep,
4958 const char **namep,
4959 bfd_boolean *cross_mode_jump_p,
4960 bfd_boolean save_addend)
4962 /* The eventual value we will return. */
4963 bfd_vma value;
4964 /* The address of the symbol against which the relocation is
4965 occurring. */
4966 bfd_vma symbol = 0;
4967 /* The final GP value to be used for the relocatable, executable, or
4968 shared object file being produced. */
4969 bfd_vma gp;
4970 /* The place (section offset or address) of the storage unit being
4971 relocated. */
4972 bfd_vma p;
4973 /* The value of GP used to create the relocatable object. */
4974 bfd_vma gp0;
4975 /* The offset into the global offset table at which the address of
4976 the relocation entry symbol, adjusted by the addend, resides
4977 during execution. */
4978 bfd_vma g = MINUS_ONE;
4979 /* The section in which the symbol referenced by the relocation is
4980 located. */
4981 asection *sec = NULL;
4982 struct mips_elf_link_hash_entry *h = NULL;
4983 /* TRUE if the symbol referred to by this relocation is a local
4984 symbol. */
4985 bfd_boolean local_p, was_local_p;
4986 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4987 bfd_boolean gp_disp_p = FALSE;
4988 /* TRUE if the symbol referred to by this relocation is
4989 "__gnu_local_gp". */
4990 bfd_boolean gnu_local_gp_p = FALSE;
4991 Elf_Internal_Shdr *symtab_hdr;
4992 size_t extsymoff;
4993 unsigned long r_symndx;
4994 int r_type;
4995 /* TRUE if overflow occurred during the calculation of the
4996 relocation value. */
4997 bfd_boolean overflowed_p;
4998 /* TRUE if this relocation refers to a MIPS16 function. */
4999 bfd_boolean target_is_16_bit_code_p = FALSE;
5000 bfd_boolean target_is_micromips_code_p = FALSE;
5001 struct mips_elf_link_hash_table *htab;
5002 bfd *dynobj;
5004 dynobj = elf_hash_table (info)->dynobj;
5005 htab = mips_elf_hash_table (info);
5006 BFD_ASSERT (htab != NULL);
5008 /* Parse the relocation. */
5009 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5010 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5011 p = (input_section->output_section->vma
5012 + input_section->output_offset
5013 + relocation->r_offset);
5015 /* Assume that there will be no overflow. */
5016 overflowed_p = FALSE;
5018 /* Figure out whether or not the symbol is local, and get the offset
5019 used in the array of hash table entries. */
5020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5021 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5022 local_sections);
5023 was_local_p = local_p;
5024 if (! elf_bad_symtab (input_bfd))
5025 extsymoff = symtab_hdr->sh_info;
5026 else
5028 /* The symbol table does not follow the rule that local symbols
5029 must come before globals. */
5030 extsymoff = 0;
5033 /* Figure out the value of the symbol. */
5034 if (local_p)
5036 Elf_Internal_Sym *sym;
5038 sym = local_syms + r_symndx;
5039 sec = local_sections[r_symndx];
5041 symbol = sec->output_section->vma + sec->output_offset;
5042 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5043 || (sec->flags & SEC_MERGE))
5044 symbol += sym->st_value;
5045 if ((sec->flags & SEC_MERGE)
5046 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5048 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5049 addend -= symbol;
5050 addend += sec->output_section->vma + sec->output_offset;
5053 /* MIPS16/microMIPS text labels should be treated as odd. */
5054 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5055 ++symbol;
5057 /* Record the name of this symbol, for our caller. */
5058 *namep = bfd_elf_string_from_elf_section (input_bfd,
5059 symtab_hdr->sh_link,
5060 sym->st_name);
5061 if (*namep == '\0')
5062 *namep = bfd_section_name (input_bfd, sec);
5064 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5065 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5067 else
5069 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5071 /* For global symbols we look up the symbol in the hash-table. */
5072 h = ((struct mips_elf_link_hash_entry *)
5073 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5074 /* Find the real hash-table entry for this symbol. */
5075 while (h->root.root.type == bfd_link_hash_indirect
5076 || h->root.root.type == bfd_link_hash_warning)
5077 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5079 /* Record the name of this symbol, for our caller. */
5080 *namep = h->root.root.root.string;
5082 /* See if this is the special _gp_disp symbol. Note that such a
5083 symbol must always be a global symbol. */
5084 if (strcmp (*namep, "_gp_disp") == 0
5085 && ! NEWABI_P (input_bfd))
5087 /* Relocations against _gp_disp are permitted only with
5088 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5089 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5090 return bfd_reloc_notsupported;
5092 gp_disp_p = TRUE;
5094 /* See if this is the special _gp symbol. Note that such a
5095 symbol must always be a global symbol. */
5096 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5097 gnu_local_gp_p = TRUE;
5100 /* If this symbol is defined, calculate its address. Note that
5101 _gp_disp is a magic symbol, always implicitly defined by the
5102 linker, so it's inappropriate to check to see whether or not
5103 its defined. */
5104 else if ((h->root.root.type == bfd_link_hash_defined
5105 || h->root.root.type == bfd_link_hash_defweak)
5106 && h->root.root.u.def.section)
5108 sec = h->root.root.u.def.section;
5109 if (sec->output_section)
5110 symbol = (h->root.root.u.def.value
5111 + sec->output_section->vma
5112 + sec->output_offset);
5113 else
5114 symbol = h->root.root.u.def.value;
5116 else if (h->root.root.type == bfd_link_hash_undefweak)
5117 /* We allow relocations against undefined weak symbols, giving
5118 it the value zero, so that you can undefined weak functions
5119 and check to see if they exist by looking at their
5120 addresses. */
5121 symbol = 0;
5122 else if (info->unresolved_syms_in_objects == RM_IGNORE
5123 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5124 symbol = 0;
5125 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5126 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5128 /* If this is a dynamic link, we should have created a
5129 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5130 in in _bfd_mips_elf_create_dynamic_sections.
5131 Otherwise, we should define the symbol with a value of 0.
5132 FIXME: It should probably get into the symbol table
5133 somehow as well. */
5134 BFD_ASSERT (! info->shared);
5135 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5136 symbol = 0;
5138 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5140 /* This is an optional symbol - an Irix specific extension to the
5141 ELF spec. Ignore it for now.
5142 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5143 than simply ignoring them, but we do not handle this for now.
5144 For information see the "64-bit ELF Object File Specification"
5145 which is available from here:
5146 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5147 symbol = 0;
5149 else if ((*info->callbacks->undefined_symbol)
5150 (info, h->root.root.root.string, input_bfd,
5151 input_section, relocation->r_offset,
5152 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5153 || ELF_ST_VISIBILITY (h->root.other)))
5155 return bfd_reloc_undefined;
5157 else
5159 return bfd_reloc_notsupported;
5162 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5163 /* If the output section is the PLT section,
5164 then the target is not microMIPS. */
5165 target_is_micromips_code_p = (htab->splt != sec
5166 && ELF_ST_IS_MICROMIPS (h->root.other));
5169 /* If this is a reference to a 16-bit function with a stub, we need
5170 to redirect the relocation to the stub unless:
5172 (a) the relocation is for a MIPS16 JAL;
5174 (b) the relocation is for a MIPS16 PIC call, and there are no
5175 non-MIPS16 uses of the GOT slot; or
5177 (c) the section allows direct references to MIPS16 functions. */
5178 if (r_type != R_MIPS16_26
5179 && !info->relocatable
5180 && ((h != NULL
5181 && h->fn_stub != NULL
5182 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5183 || (local_p
5184 && elf_tdata (input_bfd)->local_stubs != NULL
5185 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5186 && !section_allows_mips16_refs_p (input_section))
5188 /* This is a 32- or 64-bit call to a 16-bit function. We should
5189 have already noticed that we were going to need the
5190 stub. */
5191 if (local_p)
5192 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5193 else
5195 BFD_ASSERT (h->need_fn_stub);
5196 sec = h->fn_stub;
5199 symbol = sec->output_section->vma + sec->output_offset;
5200 /* The target is 16-bit, but the stub isn't. */
5201 target_is_16_bit_code_p = FALSE;
5203 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5204 need to redirect the call to the stub. Note that we specifically
5205 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5206 use an indirect stub instead. */
5207 else if (r_type == R_MIPS16_26 && !info->relocatable
5208 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5209 || (local_p
5210 && elf_tdata (input_bfd)->local_call_stubs != NULL
5211 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5212 && !target_is_16_bit_code_p)
5214 if (local_p)
5215 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5216 else
5218 /* If both call_stub and call_fp_stub are defined, we can figure
5219 out which one to use by checking which one appears in the input
5220 file. */
5221 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5223 asection *o;
5225 sec = NULL;
5226 for (o = input_bfd->sections; o != NULL; o = o->next)
5228 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5230 sec = h->call_fp_stub;
5231 break;
5234 if (sec == NULL)
5235 sec = h->call_stub;
5237 else if (h->call_stub != NULL)
5238 sec = h->call_stub;
5239 else
5240 sec = h->call_fp_stub;
5243 BFD_ASSERT (sec->size > 0);
5244 symbol = sec->output_section->vma + sec->output_offset;
5246 /* If this is a direct call to a PIC function, redirect to the
5247 non-PIC stub. */
5248 else if (h != NULL && h->la25_stub
5249 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5250 symbol = (h->la25_stub->stub_section->output_section->vma
5251 + h->la25_stub->stub_section->output_offset
5252 + h->la25_stub->offset);
5254 /* Make sure MIPS16 and microMIPS are not used together. */
5255 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5256 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5258 (*_bfd_error_handler)
5259 (_("MIPS16 and microMIPS functions cannot call each other"));
5260 return bfd_reloc_notsupported;
5263 /* Calls from 16-bit code to 32-bit code and vice versa require the
5264 mode change. However, we can ignore calls to undefined weak symbols,
5265 which should never be executed at runtime. This exception is important
5266 because the assembly writer may have "known" that any definition of the
5267 symbol would be 16-bit code, and that direct jumps were therefore
5268 acceptable. */
5269 *cross_mode_jump_p = (!info->relocatable
5270 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5271 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5272 || (r_type == R_MICROMIPS_26_S1
5273 && !target_is_micromips_code_p)
5274 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5275 && (target_is_16_bit_code_p
5276 || target_is_micromips_code_p))));
5278 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5280 gp0 = _bfd_get_gp_value (input_bfd);
5281 gp = _bfd_get_gp_value (abfd);
5282 if (htab->got_info)
5283 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5285 if (gnu_local_gp_p)
5286 symbol = gp;
5288 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5289 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5290 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5291 if (got_page_reloc_p (r_type) && !local_p)
5293 r_type = (micromips_reloc_p (r_type)
5294 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5295 addend = 0;
5298 /* If we haven't already determined the GOT offset, and we're going
5299 to need it, get it now. */
5300 switch (r_type)
5302 case R_MIPS16_CALL16:
5303 case R_MIPS16_GOT16:
5304 case R_MIPS_CALL16:
5305 case R_MIPS_GOT16:
5306 case R_MIPS_GOT_DISP:
5307 case R_MIPS_GOT_HI16:
5308 case R_MIPS_CALL_HI16:
5309 case R_MIPS_GOT_LO16:
5310 case R_MIPS_CALL_LO16:
5311 case R_MICROMIPS_CALL16:
5312 case R_MICROMIPS_GOT16:
5313 case R_MICROMIPS_GOT_DISP:
5314 case R_MICROMIPS_GOT_HI16:
5315 case R_MICROMIPS_CALL_HI16:
5316 case R_MICROMIPS_GOT_LO16:
5317 case R_MICROMIPS_CALL_LO16:
5318 case R_MIPS_TLS_GD:
5319 case R_MIPS_TLS_GOTTPREL:
5320 case R_MIPS_TLS_LDM:
5321 case R_MICROMIPS_TLS_GD:
5322 case R_MICROMIPS_TLS_GOTTPREL:
5323 case R_MICROMIPS_TLS_LDM:
5324 /* Find the index into the GOT where this value is located. */
5325 if (tls_ldm_reloc_p (r_type))
5327 g = mips_elf_local_got_index (abfd, input_bfd, info,
5328 0, 0, NULL, r_type);
5329 if (g == MINUS_ONE)
5330 return bfd_reloc_outofrange;
5332 else if (!local_p)
5334 /* On VxWorks, CALL relocations should refer to the .got.plt
5335 entry, which is initialized to point at the PLT stub. */
5336 if (htab->is_vxworks
5337 && (call_hi16_reloc_p (r_type)
5338 || call_lo16_reloc_p (r_type)
5339 || call16_reloc_p (r_type)))
5341 BFD_ASSERT (addend == 0);
5342 BFD_ASSERT (h->root.needs_plt);
5343 g = mips_elf_gotplt_index (info, &h->root);
5345 else
5347 BFD_ASSERT (addend == 0);
5348 g = mips_elf_global_got_index (dynobj, input_bfd,
5349 &h->root, r_type, info);
5350 if (h->tls_type == GOT_NORMAL
5351 && !elf_hash_table (info)->dynamic_sections_created)
5352 /* This is a static link. We must initialize the GOT entry. */
5353 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5356 else if (!htab->is_vxworks
5357 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5358 /* The calculation below does not involve "g". */
5359 break;
5360 else
5362 g = mips_elf_local_got_index (abfd, input_bfd, info,
5363 symbol + addend, r_symndx, h, r_type);
5364 if (g == MINUS_ONE)
5365 return bfd_reloc_outofrange;
5368 /* Convert GOT indices to actual offsets. */
5369 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5370 break;
5373 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5374 symbols are resolved by the loader. Add them to .rela.dyn. */
5375 if (h != NULL && is_gott_symbol (info, &h->root))
5377 Elf_Internal_Rela outrel;
5378 bfd_byte *loc;
5379 asection *s;
5381 s = mips_elf_rel_dyn_section (info, FALSE);
5382 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5384 outrel.r_offset = (input_section->output_section->vma
5385 + input_section->output_offset
5386 + relocation->r_offset);
5387 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5388 outrel.r_addend = addend;
5389 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5391 /* If we've written this relocation for a readonly section,
5392 we need to set DF_TEXTREL again, so that we do not delete the
5393 DT_TEXTREL tag. */
5394 if (MIPS_ELF_READONLY_SECTION (input_section))
5395 info->flags |= DF_TEXTREL;
5397 *valuep = 0;
5398 return bfd_reloc_ok;
5401 /* Figure out what kind of relocation is being performed. */
5402 switch (r_type)
5404 case R_MIPS_NONE:
5405 return bfd_reloc_continue;
5407 case R_MIPS_16:
5408 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5409 overflowed_p = mips_elf_overflow_p (value, 16);
5410 break;
5412 case R_MIPS_32:
5413 case R_MIPS_REL32:
5414 case R_MIPS_64:
5415 if ((info->shared
5416 || (htab->root.dynamic_sections_created
5417 && h != NULL
5418 && h->root.def_dynamic
5419 && !h->root.def_regular
5420 && !h->has_static_relocs))
5421 && r_symndx != STN_UNDEF
5422 && (h == NULL
5423 || h->root.root.type != bfd_link_hash_undefweak
5424 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5425 && (input_section->flags & SEC_ALLOC) != 0)
5427 /* If we're creating a shared library, then we can't know
5428 where the symbol will end up. So, we create a relocation
5429 record in the output, and leave the job up to the dynamic
5430 linker. We must do the same for executable references to
5431 shared library symbols, unless we've decided to use copy
5432 relocs or PLTs instead. */
5433 value = addend;
5434 if (!mips_elf_create_dynamic_relocation (abfd,
5435 info,
5436 relocation,
5438 sec,
5439 symbol,
5440 &value,
5441 input_section))
5442 return bfd_reloc_undefined;
5444 else
5446 if (r_type != R_MIPS_REL32)
5447 value = symbol + addend;
5448 else
5449 value = addend;
5451 value &= howto->dst_mask;
5452 break;
5454 case R_MIPS_PC32:
5455 value = symbol + addend - p;
5456 value &= howto->dst_mask;
5457 break;
5459 case R_MIPS16_26:
5460 /* The calculation for R_MIPS16_26 is just the same as for an
5461 R_MIPS_26. It's only the storage of the relocated field into
5462 the output file that's different. That's handled in
5463 mips_elf_perform_relocation. So, we just fall through to the
5464 R_MIPS_26 case here. */
5465 case R_MIPS_26:
5466 case R_MICROMIPS_26_S1:
5468 unsigned int shift;
5470 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5471 the correct ISA mode selector and bit 1 must be 0. */
5472 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5473 return bfd_reloc_outofrange;
5475 /* Shift is 2, unusually, for microMIPS JALX. */
5476 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5478 if (was_local_p)
5479 value = addend | ((p + 4) & (0xfc000000 << shift));
5480 else
5481 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5482 value = (value + symbol) >> shift;
5483 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5484 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5485 value &= howto->dst_mask;
5487 break;
5489 case R_MIPS_TLS_DTPREL_HI16:
5490 case R_MICROMIPS_TLS_DTPREL_HI16:
5491 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5492 & howto->dst_mask);
5493 break;
5495 case R_MIPS_TLS_DTPREL_LO16:
5496 case R_MIPS_TLS_DTPREL32:
5497 case R_MIPS_TLS_DTPREL64:
5498 case R_MICROMIPS_TLS_DTPREL_LO16:
5499 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5500 break;
5502 case R_MIPS_TLS_TPREL_HI16:
5503 case R_MICROMIPS_TLS_TPREL_HI16:
5504 value = (mips_elf_high (addend + symbol - tprel_base (info))
5505 & howto->dst_mask);
5506 break;
5508 case R_MIPS_TLS_TPREL_LO16:
5509 case R_MICROMIPS_TLS_TPREL_LO16:
5510 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5511 break;
5513 case R_MIPS_HI16:
5514 case R_MIPS16_HI16:
5515 case R_MICROMIPS_HI16:
5516 if (!gp_disp_p)
5518 value = mips_elf_high (addend + symbol);
5519 value &= howto->dst_mask;
5521 else
5523 /* For MIPS16 ABI code we generate this sequence
5524 0: li $v0,%hi(_gp_disp)
5525 4: addiupc $v1,%lo(_gp_disp)
5526 8: sll $v0,16
5527 12: addu $v0,$v1
5528 14: move $gp,$v0
5529 So the offsets of hi and lo relocs are the same, but the
5530 $pc is four higher than $t9 would be, so reduce
5531 both reloc addends by 4. */
5532 if (r_type == R_MIPS16_HI16)
5533 value = mips_elf_high (addend + gp - p - 4);
5534 /* The microMIPS .cpload sequence uses the same assembly
5535 instructions as the traditional psABI version, but the
5536 incoming $t9 has the low bit set. */
5537 else if (r_type == R_MICROMIPS_HI16)
5538 value = mips_elf_high (addend + gp - p - 1);
5539 else
5540 value = mips_elf_high (addend + gp - p);
5541 overflowed_p = mips_elf_overflow_p (value, 16);
5543 break;
5545 case R_MIPS_LO16:
5546 case R_MIPS16_LO16:
5547 case R_MICROMIPS_LO16:
5548 case R_MICROMIPS_HI0_LO16:
5549 if (!gp_disp_p)
5550 value = (symbol + addend) & howto->dst_mask;
5551 else
5553 /* See the comment for R_MIPS16_HI16 above for the reason
5554 for this conditional. */
5555 if (r_type == R_MIPS16_LO16)
5556 value = addend + gp - p;
5557 else if (r_type == R_MICROMIPS_LO16
5558 || r_type == R_MICROMIPS_HI0_LO16)
5559 value = addend + gp - p + 3;
5560 else
5561 value = addend + gp - p + 4;
5562 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5563 for overflow. But, on, say, IRIX5, relocations against
5564 _gp_disp are normally generated from the .cpload
5565 pseudo-op. It generates code that normally looks like
5566 this:
5568 lui $gp,%hi(_gp_disp)
5569 addiu $gp,$gp,%lo(_gp_disp)
5570 addu $gp,$gp,$t9
5572 Here $t9 holds the address of the function being called,
5573 as required by the MIPS ELF ABI. The R_MIPS_LO16
5574 relocation can easily overflow in this situation, but the
5575 R_MIPS_HI16 relocation will handle the overflow.
5576 Therefore, we consider this a bug in the MIPS ABI, and do
5577 not check for overflow here. */
5579 break;
5581 case R_MIPS_LITERAL:
5582 case R_MICROMIPS_LITERAL:
5583 /* Because we don't merge literal sections, we can handle this
5584 just like R_MIPS_GPREL16. In the long run, we should merge
5585 shared literals, and then we will need to additional work
5586 here. */
5588 /* Fall through. */
5590 case R_MIPS16_GPREL:
5591 /* The R_MIPS16_GPREL performs the same calculation as
5592 R_MIPS_GPREL16, but stores the relocated bits in a different
5593 order. We don't need to do anything special here; the
5594 differences are handled in mips_elf_perform_relocation. */
5595 case R_MIPS_GPREL16:
5596 case R_MICROMIPS_GPREL7_S2:
5597 case R_MICROMIPS_GPREL16:
5598 /* Only sign-extend the addend if it was extracted from the
5599 instruction. If the addend was separate, leave it alone,
5600 otherwise we may lose significant bits. */
5601 if (howto->partial_inplace)
5602 addend = _bfd_mips_elf_sign_extend (addend, 16);
5603 value = symbol + addend - gp;
5604 /* If the symbol was local, any earlier relocatable links will
5605 have adjusted its addend with the gp offset, so compensate
5606 for that now. Don't do it for symbols forced local in this
5607 link, though, since they won't have had the gp offset applied
5608 to them before. */
5609 if (was_local_p)
5610 value += gp0;
5611 overflowed_p = mips_elf_overflow_p (value, 16);
5612 break;
5614 case R_MIPS16_GOT16:
5615 case R_MIPS16_CALL16:
5616 case R_MIPS_GOT16:
5617 case R_MIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_CALL16:
5620 /* VxWorks does not have separate local and global semantics for
5621 R_MIPS*_GOT16; every relocation evaluates to "G". */
5622 if (!htab->is_vxworks && local_p)
5624 value = mips_elf_got16_entry (abfd, input_bfd, info,
5625 symbol + addend, !was_local_p);
5626 if (value == MINUS_ONE)
5627 return bfd_reloc_outofrange;
5628 value
5629 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5630 overflowed_p = mips_elf_overflow_p (value, 16);
5631 break;
5634 /* Fall through. */
5636 case R_MIPS_TLS_GD:
5637 case R_MIPS_TLS_GOTTPREL:
5638 case R_MIPS_TLS_LDM:
5639 case R_MIPS_GOT_DISP:
5640 case R_MICROMIPS_TLS_GD:
5641 case R_MICROMIPS_TLS_GOTTPREL:
5642 case R_MICROMIPS_TLS_LDM:
5643 case R_MICROMIPS_GOT_DISP:
5644 value = g;
5645 overflowed_p = mips_elf_overflow_p (value, 16);
5646 break;
5648 case R_MIPS_GPREL32:
5649 value = (addend + symbol + gp0 - gp);
5650 if (!save_addend)
5651 value &= howto->dst_mask;
5652 break;
5654 case R_MIPS_PC16:
5655 case R_MIPS_GNU_REL16_S2:
5656 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5657 overflowed_p = mips_elf_overflow_p (value, 18);
5658 value >>= howto->rightshift;
5659 value &= howto->dst_mask;
5660 break;
5662 case R_MICROMIPS_PC7_S1:
5663 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5664 overflowed_p = mips_elf_overflow_p (value, 8);
5665 value >>= howto->rightshift;
5666 value &= howto->dst_mask;
5667 break;
5669 case R_MICROMIPS_PC10_S1:
5670 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5671 overflowed_p = mips_elf_overflow_p (value, 11);
5672 value >>= howto->rightshift;
5673 value &= howto->dst_mask;
5674 break;
5676 case R_MICROMIPS_PC16_S1:
5677 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5678 overflowed_p = mips_elf_overflow_p (value, 17);
5679 value >>= howto->rightshift;
5680 value &= howto->dst_mask;
5681 break;
5683 case R_MICROMIPS_PC23_S2:
5684 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5685 overflowed_p = mips_elf_overflow_p (value, 25);
5686 value >>= howto->rightshift;
5687 value &= howto->dst_mask;
5688 break;
5690 case R_MIPS_GOT_HI16:
5691 case R_MIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_HI16:
5693 case R_MICROMIPS_CALL_HI16:
5694 /* We're allowed to handle these two relocations identically.
5695 The dynamic linker is allowed to handle the CALL relocations
5696 differently by creating a lazy evaluation stub. */
5697 value = g;
5698 value = mips_elf_high (value);
5699 value &= howto->dst_mask;
5700 break;
5702 case R_MIPS_GOT_LO16:
5703 case R_MIPS_CALL_LO16:
5704 case R_MICROMIPS_GOT_LO16:
5705 case R_MICROMIPS_CALL_LO16:
5706 value = g & howto->dst_mask;
5707 break;
5709 case R_MIPS_GOT_PAGE:
5710 case R_MICROMIPS_GOT_PAGE:
5711 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5712 if (value == MINUS_ONE)
5713 return bfd_reloc_outofrange;
5714 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5718 case R_MIPS_GOT_OFST:
5719 case R_MICROMIPS_GOT_OFST:
5720 if (local_p)
5721 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5722 else
5723 value = addend;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5727 case R_MIPS_SUB:
5728 case R_MICROMIPS_SUB:
5729 value = symbol - addend;
5730 value &= howto->dst_mask;
5731 break;
5733 case R_MIPS_HIGHER:
5734 case R_MICROMIPS_HIGHER:
5735 value = mips_elf_higher (addend + symbol);
5736 value &= howto->dst_mask;
5737 break;
5739 case R_MIPS_HIGHEST:
5740 case R_MICROMIPS_HIGHEST:
5741 value = mips_elf_highest (addend + symbol);
5742 value &= howto->dst_mask;
5743 break;
5745 case R_MIPS_SCN_DISP:
5746 case R_MICROMIPS_SCN_DISP:
5747 value = symbol + addend - sec->output_offset;
5748 value &= howto->dst_mask;
5749 break;
5751 case R_MIPS_JALR:
5752 case R_MICROMIPS_JALR:
5753 /* This relocation is only a hint. In some cases, we optimize
5754 it into a bal instruction. But we don't try to optimize
5755 when the symbol does not resolve locally. */
5756 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5757 return bfd_reloc_continue;
5758 value = symbol + addend;
5759 break;
5761 case R_MIPS_PJUMP:
5762 case R_MIPS_GNU_VTINHERIT:
5763 case R_MIPS_GNU_VTENTRY:
5764 /* We don't do anything with these at present. */
5765 return bfd_reloc_continue;
5767 default:
5768 /* An unrecognized relocation type. */
5769 return bfd_reloc_notsupported;
5772 /* Store the VALUE for our caller. */
5773 *valuep = value;
5774 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5777 /* Obtain the field relocated by RELOCATION. */
5779 static bfd_vma
5780 mips_elf_obtain_contents (reloc_howto_type *howto,
5781 const Elf_Internal_Rela *relocation,
5782 bfd *input_bfd, bfd_byte *contents)
5784 bfd_vma x;
5785 bfd_byte *location = contents + relocation->r_offset;
5787 /* Obtain the bytes. */
5788 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5790 return x;
5793 /* It has been determined that the result of the RELOCATION is the
5794 VALUE. Use HOWTO to place VALUE into the output file at the
5795 appropriate position. The SECTION is the section to which the
5796 relocation applies.
5797 CROSS_MODE_JUMP_P is true if the relocation field
5798 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5800 Returns FALSE if anything goes wrong. */
5802 static bfd_boolean
5803 mips_elf_perform_relocation (struct bfd_link_info *info,
5804 reloc_howto_type *howto,
5805 const Elf_Internal_Rela *relocation,
5806 bfd_vma value, bfd *input_bfd,
5807 asection *input_section, bfd_byte *contents,
5808 bfd_boolean cross_mode_jump_p)
5810 bfd_vma x;
5811 bfd_byte *location;
5812 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5814 /* Figure out where the relocation is occurring. */
5815 location = contents + relocation->r_offset;
5817 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5819 /* Obtain the current value. */
5820 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5822 /* Clear the field we are setting. */
5823 x &= ~howto->dst_mask;
5825 /* Set the field. */
5826 x |= (value & howto->dst_mask);
5828 /* If required, turn JAL into JALX. */
5829 if (cross_mode_jump_p && jal_reloc_p (r_type))
5831 bfd_boolean ok;
5832 bfd_vma opcode = x >> 26;
5833 bfd_vma jalx_opcode;
5835 /* Check to see if the opcode is already JAL or JALX. */
5836 if (r_type == R_MIPS16_26)
5838 ok = ((opcode == 0x6) || (opcode == 0x7));
5839 jalx_opcode = 0x7;
5841 else if (r_type == R_MICROMIPS_26_S1)
5843 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5844 jalx_opcode = 0x3c;
5846 else
5848 ok = ((opcode == 0x3) || (opcode == 0x1d));
5849 jalx_opcode = 0x1d;
5852 /* If the opcode is not JAL or JALX, there's a problem. */
5853 if (!ok)
5855 (*_bfd_error_handler)
5856 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5857 input_bfd,
5858 input_section,
5859 (unsigned long) relocation->r_offset);
5860 bfd_set_error (bfd_error_bad_value);
5861 return FALSE;
5864 /* Make this the JALX opcode. */
5865 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5868 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5869 range. */
5870 if (!info->relocatable
5871 && !cross_mode_jump_p
5872 && ((JAL_TO_BAL_P (input_bfd)
5873 && r_type == R_MIPS_26
5874 && (x >> 26) == 0x3) /* jal addr */
5875 || (JALR_TO_BAL_P (input_bfd)
5876 && r_type == R_MIPS_JALR
5877 && x == 0x0320f809) /* jalr t9 */
5878 || (JR_TO_B_P (input_bfd)
5879 && r_type == R_MIPS_JALR
5880 && x == 0x03200008))) /* jr t9 */
5882 bfd_vma addr;
5883 bfd_vma dest;
5884 bfd_signed_vma off;
5886 addr = (input_section->output_section->vma
5887 + input_section->output_offset
5888 + relocation->r_offset
5889 + 4);
5890 if (r_type == R_MIPS_26)
5891 dest = (value << 2) | ((addr >> 28) << 28);
5892 else
5893 dest = value;
5894 off = dest - addr;
5895 if (off <= 0x1ffff && off >= -0x20000)
5897 if (x == 0x03200008) /* jr t9 */
5898 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5899 else
5900 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5904 /* Put the value into the output. */
5905 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5907 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5908 location);
5910 return TRUE;
5913 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5914 is the original relocation, which is now being transformed into a
5915 dynamic relocation. The ADDENDP is adjusted if necessary; the
5916 caller should store the result in place of the original addend. */
5918 static bfd_boolean
5919 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5920 struct bfd_link_info *info,
5921 const Elf_Internal_Rela *rel,
5922 struct mips_elf_link_hash_entry *h,
5923 asection *sec, bfd_vma symbol,
5924 bfd_vma *addendp, asection *input_section)
5926 Elf_Internal_Rela outrel[3];
5927 asection *sreloc;
5928 bfd *dynobj;
5929 int r_type;
5930 long indx;
5931 bfd_boolean defined_p;
5932 struct mips_elf_link_hash_table *htab;
5934 htab = mips_elf_hash_table (info);
5935 BFD_ASSERT (htab != NULL);
5937 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5938 dynobj = elf_hash_table (info)->dynobj;
5939 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5940 BFD_ASSERT (sreloc != NULL);
5941 BFD_ASSERT (sreloc->contents != NULL);
5942 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5943 < sreloc->size);
5945 outrel[0].r_offset =
5946 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5947 if (ABI_64_P (output_bfd))
5949 outrel[1].r_offset =
5950 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5951 outrel[2].r_offset =
5952 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5955 if (outrel[0].r_offset == MINUS_ONE)
5956 /* The relocation field has been deleted. */
5957 return TRUE;
5959 if (outrel[0].r_offset == MINUS_TWO)
5961 /* The relocation field has been converted into a relative value of
5962 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5963 the field to be fully relocated, so add in the symbol's value. */
5964 *addendp += symbol;
5965 return TRUE;
5968 /* We must now calculate the dynamic symbol table index to use
5969 in the relocation. */
5970 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5972 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5973 indx = h->root.dynindx;
5974 if (SGI_COMPAT (output_bfd))
5975 defined_p = h->root.def_regular;
5976 else
5977 /* ??? glibc's ld.so just adds the final GOT entry to the
5978 relocation field. It therefore treats relocs against
5979 defined symbols in the same way as relocs against
5980 undefined symbols. */
5981 defined_p = FALSE;
5983 else
5985 if (sec != NULL && bfd_is_abs_section (sec))
5986 indx = 0;
5987 else if (sec == NULL || sec->owner == NULL)
5989 bfd_set_error (bfd_error_bad_value);
5990 return FALSE;
5992 else
5994 indx = elf_section_data (sec->output_section)->dynindx;
5995 if (indx == 0)
5997 asection *osec = htab->root.text_index_section;
5998 indx = elf_section_data (osec)->dynindx;
6000 if (indx == 0)
6001 abort ();
6004 /* Instead of generating a relocation using the section
6005 symbol, we may as well make it a fully relative
6006 relocation. We want to avoid generating relocations to
6007 local symbols because we used to generate them
6008 incorrectly, without adding the original symbol value,
6009 which is mandated by the ABI for section symbols. In
6010 order to give dynamic loaders and applications time to
6011 phase out the incorrect use, we refrain from emitting
6012 section-relative relocations. It's not like they're
6013 useful, after all. This should be a bit more efficient
6014 as well. */
6015 /* ??? Although this behavior is compatible with glibc's ld.so,
6016 the ABI says that relocations against STN_UNDEF should have
6017 a symbol value of 0. Irix rld honors this, so relocations
6018 against STN_UNDEF have no effect. */
6019 if (!SGI_COMPAT (output_bfd))
6020 indx = 0;
6021 defined_p = TRUE;
6024 /* If the relocation was previously an absolute relocation and
6025 this symbol will not be referred to by the relocation, we must
6026 adjust it by the value we give it in the dynamic symbol table.
6027 Otherwise leave the job up to the dynamic linker. */
6028 if (defined_p && r_type != R_MIPS_REL32)
6029 *addendp += symbol;
6031 if (htab->is_vxworks)
6032 /* VxWorks uses non-relative relocations for this. */
6033 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6034 else
6035 /* The relocation is always an REL32 relocation because we don't
6036 know where the shared library will wind up at load-time. */
6037 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6038 R_MIPS_REL32);
6040 /* For strict adherence to the ABI specification, we should
6041 generate a R_MIPS_64 relocation record by itself before the
6042 _REL32/_64 record as well, such that the addend is read in as
6043 a 64-bit value (REL32 is a 32-bit relocation, after all).
6044 However, since none of the existing ELF64 MIPS dynamic
6045 loaders seems to care, we don't waste space with these
6046 artificial relocations. If this turns out to not be true,
6047 mips_elf_allocate_dynamic_relocation() should be tweaked so
6048 as to make room for a pair of dynamic relocations per
6049 invocation if ABI_64_P, and here we should generate an
6050 additional relocation record with R_MIPS_64 by itself for a
6051 NULL symbol before this relocation record. */
6052 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6053 ABI_64_P (output_bfd)
6054 ? R_MIPS_64
6055 : R_MIPS_NONE);
6056 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6058 /* Adjust the output offset of the relocation to reference the
6059 correct location in the output file. */
6060 outrel[0].r_offset += (input_section->output_section->vma
6061 + input_section->output_offset);
6062 outrel[1].r_offset += (input_section->output_section->vma
6063 + input_section->output_offset);
6064 outrel[2].r_offset += (input_section->output_section->vma
6065 + input_section->output_offset);
6067 /* Put the relocation back out. We have to use the special
6068 relocation outputter in the 64-bit case since the 64-bit
6069 relocation format is non-standard. */
6070 if (ABI_64_P (output_bfd))
6072 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6073 (output_bfd, &outrel[0],
6074 (sreloc->contents
6075 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6077 else if (htab->is_vxworks)
6079 /* VxWorks uses RELA rather than REL dynamic relocations. */
6080 outrel[0].r_addend = *addendp;
6081 bfd_elf32_swap_reloca_out
6082 (output_bfd, &outrel[0],
6083 (sreloc->contents
6084 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6086 else
6087 bfd_elf32_swap_reloc_out
6088 (output_bfd, &outrel[0],
6089 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6091 /* We've now added another relocation. */
6092 ++sreloc->reloc_count;
6094 /* Make sure the output section is writable. The dynamic linker
6095 will be writing to it. */
6096 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6097 |= SHF_WRITE;
6099 /* On IRIX5, make an entry of compact relocation info. */
6100 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6102 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6103 bfd_byte *cr;
6105 if (scpt)
6107 Elf32_crinfo cptrel;
6109 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6110 cptrel.vaddr = (rel->r_offset
6111 + input_section->output_section->vma
6112 + input_section->output_offset);
6113 if (r_type == R_MIPS_REL32)
6114 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6115 else
6116 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6117 mips_elf_set_cr_dist2to (cptrel, 0);
6118 cptrel.konst = *addendp;
6120 cr = (scpt->contents
6121 + sizeof (Elf32_External_compact_rel));
6122 mips_elf_set_cr_relvaddr (cptrel, 0);
6123 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6124 ((Elf32_External_crinfo *) cr
6125 + scpt->reloc_count));
6126 ++scpt->reloc_count;
6130 /* If we've written this relocation for a readonly section,
6131 we need to set DF_TEXTREL again, so that we do not delete the
6132 DT_TEXTREL tag. */
6133 if (MIPS_ELF_READONLY_SECTION (input_section))
6134 info->flags |= DF_TEXTREL;
6136 return TRUE;
6139 /* Return the MACH for a MIPS e_flags value. */
6141 unsigned long
6142 _bfd_elf_mips_mach (flagword flags)
6144 switch (flags & EF_MIPS_MACH)
6146 case E_MIPS_MACH_3900:
6147 return bfd_mach_mips3900;
6149 case E_MIPS_MACH_4010:
6150 return bfd_mach_mips4010;
6152 case E_MIPS_MACH_4100:
6153 return bfd_mach_mips4100;
6155 case E_MIPS_MACH_4111:
6156 return bfd_mach_mips4111;
6158 case E_MIPS_MACH_4120:
6159 return bfd_mach_mips4120;
6161 case E_MIPS_MACH_4650:
6162 return bfd_mach_mips4650;
6164 case E_MIPS_MACH_5400:
6165 return bfd_mach_mips5400;
6167 case E_MIPS_MACH_5500:
6168 return bfd_mach_mips5500;
6170 case E_MIPS_MACH_9000:
6171 return bfd_mach_mips9000;
6173 case E_MIPS_MACH_SB1:
6174 return bfd_mach_mips_sb1;
6176 case E_MIPS_MACH_LS2E:
6177 return bfd_mach_mips_loongson_2e;
6179 case E_MIPS_MACH_LS2F:
6180 return bfd_mach_mips_loongson_2f;
6182 case E_MIPS_MACH_LS3A:
6183 return bfd_mach_mips_loongson_3a;
6185 case E_MIPS_MACH_OCTEON:
6186 return bfd_mach_mips_octeon;
6188 case E_MIPS_MACH_XLR:
6189 return bfd_mach_mips_xlr;
6191 default:
6192 switch (flags & EF_MIPS_ARCH)
6194 default:
6195 case E_MIPS_ARCH_1:
6196 return bfd_mach_mips3000;
6198 case E_MIPS_ARCH_2:
6199 return bfd_mach_mips6000;
6201 case E_MIPS_ARCH_3:
6202 return bfd_mach_mips4000;
6204 case E_MIPS_ARCH_4:
6205 return bfd_mach_mips8000;
6207 case E_MIPS_ARCH_5:
6208 return bfd_mach_mips5;
6210 case E_MIPS_ARCH_32:
6211 return bfd_mach_mipsisa32;
6213 case E_MIPS_ARCH_64:
6214 return bfd_mach_mipsisa64;
6216 case E_MIPS_ARCH_32R2:
6217 return bfd_mach_mipsisa32r2;
6219 case E_MIPS_ARCH_64R2:
6220 return bfd_mach_mipsisa64r2;
6224 return 0;
6227 /* Return printable name for ABI. */
6229 static INLINE char *
6230 elf_mips_abi_name (bfd *abfd)
6232 flagword flags;
6234 flags = elf_elfheader (abfd)->e_flags;
6235 switch (flags & EF_MIPS_ABI)
6237 case 0:
6238 if (ABI_N32_P (abfd))
6239 return "N32";
6240 else if (ABI_64_P (abfd))
6241 return "64";
6242 else
6243 return "none";
6244 case E_MIPS_ABI_O32:
6245 return "O32";
6246 case E_MIPS_ABI_O64:
6247 return "O64";
6248 case E_MIPS_ABI_EABI32:
6249 return "EABI32";
6250 case E_MIPS_ABI_EABI64:
6251 return "EABI64";
6252 default:
6253 return "unknown abi";
6257 /* MIPS ELF uses two common sections. One is the usual one, and the
6258 other is for small objects. All the small objects are kept
6259 together, and then referenced via the gp pointer, which yields
6260 faster assembler code. This is what we use for the small common
6261 section. This approach is copied from ecoff.c. */
6262 static asection mips_elf_scom_section;
6263 static asymbol mips_elf_scom_symbol;
6264 static asymbol *mips_elf_scom_symbol_ptr;
6266 /* MIPS ELF also uses an acommon section, which represents an
6267 allocated common symbol which may be overridden by a
6268 definition in a shared library. */
6269 static asection mips_elf_acom_section;
6270 static asymbol mips_elf_acom_symbol;
6271 static asymbol *mips_elf_acom_symbol_ptr;
6273 /* This is used for both the 32-bit and the 64-bit ABI. */
6275 void
6276 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6278 elf_symbol_type *elfsym;
6280 /* Handle the special MIPS section numbers that a symbol may use. */
6281 elfsym = (elf_symbol_type *) asym;
6282 switch (elfsym->internal_elf_sym.st_shndx)
6284 case SHN_MIPS_ACOMMON:
6285 /* This section is used in a dynamically linked executable file.
6286 It is an allocated common section. The dynamic linker can
6287 either resolve these symbols to something in a shared
6288 library, or it can just leave them here. For our purposes,
6289 we can consider these symbols to be in a new section. */
6290 if (mips_elf_acom_section.name == NULL)
6292 /* Initialize the acommon section. */
6293 mips_elf_acom_section.name = ".acommon";
6294 mips_elf_acom_section.flags = SEC_ALLOC;
6295 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6296 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6297 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6298 mips_elf_acom_symbol.name = ".acommon";
6299 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6300 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6301 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6303 asym->section = &mips_elf_acom_section;
6304 break;
6306 case SHN_COMMON:
6307 /* Common symbols less than the GP size are automatically
6308 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6309 if (asym->value > elf_gp_size (abfd)
6310 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6311 || IRIX_COMPAT (abfd) == ict_irix6)
6312 break;
6313 /* Fall through. */
6314 case SHN_MIPS_SCOMMON:
6315 if (mips_elf_scom_section.name == NULL)
6317 /* Initialize the small common section. */
6318 mips_elf_scom_section.name = ".scommon";
6319 mips_elf_scom_section.flags = SEC_IS_COMMON;
6320 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6321 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6322 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6323 mips_elf_scom_symbol.name = ".scommon";
6324 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6325 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6326 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6328 asym->section = &mips_elf_scom_section;
6329 asym->value = elfsym->internal_elf_sym.st_size;
6330 break;
6332 case SHN_MIPS_SUNDEFINED:
6333 asym->section = bfd_und_section_ptr;
6334 break;
6336 case SHN_MIPS_TEXT:
6338 asection *section = bfd_get_section_by_name (abfd, ".text");
6340 BFD_ASSERT (SGI_COMPAT (abfd));
6341 if (section != NULL)
6343 asym->section = section;
6344 /* MIPS_TEXT is a bit special, the address is not an offset
6345 to the base of the .text section. So substract the section
6346 base address to make it an offset. */
6347 asym->value -= section->vma;
6350 break;
6352 case SHN_MIPS_DATA:
6354 asection *section = bfd_get_section_by_name (abfd, ".data");
6356 BFD_ASSERT (SGI_COMPAT (abfd));
6357 if (section != NULL)
6359 asym->section = section;
6360 /* MIPS_DATA is a bit special, the address is not an offset
6361 to the base of the .data section. So substract the section
6362 base address to make it an offset. */
6363 asym->value -= section->vma;
6366 break;
6369 /* If this is an odd-valued function symbol, assume it's a MIPS16
6370 or microMIPS one. */
6371 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6372 && (asym->value & 1) != 0)
6374 asym->value--;
6375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6376 elfsym->internal_elf_sym.st_other
6377 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6378 else
6379 elfsym->internal_elf_sym.st_other
6380 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6384 /* Implement elf_backend_eh_frame_address_size. This differs from
6385 the default in the way it handles EABI64.
6387 EABI64 was originally specified as an LP64 ABI, and that is what
6388 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6389 historically accepted the combination of -mabi=eabi and -mlong32,
6390 and this ILP32 variation has become semi-official over time.
6391 Both forms use elf32 and have pointer-sized FDE addresses.
6393 If an EABI object was generated by GCC 4.0 or above, it will have
6394 an empty .gcc_compiled_longXX section, where XX is the size of longs
6395 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6396 have no special marking to distinguish them from LP64 objects.
6398 We don't want users of the official LP64 ABI to be punished for the
6399 existence of the ILP32 variant, but at the same time, we don't want
6400 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6401 We therefore take the following approach:
6403 - If ABFD contains a .gcc_compiled_longXX section, use it to
6404 determine the pointer size.
6406 - Otherwise check the type of the first relocation. Assume that
6407 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6409 - Otherwise punt.
6411 The second check is enough to detect LP64 objects generated by pre-4.0
6412 compilers because, in the kind of output generated by those compilers,
6413 the first relocation will be associated with either a CIE personality
6414 routine or an FDE start address. Furthermore, the compilers never
6415 used a special (non-pointer) encoding for this ABI.
6417 Checking the relocation type should also be safe because there is no
6418 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6419 did so. */
6421 unsigned int
6422 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6424 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6425 return 8;
6426 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6428 bfd_boolean long32_p, long64_p;
6430 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6431 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6432 if (long32_p && long64_p)
6433 return 0;
6434 if (long32_p)
6435 return 4;
6436 if (long64_p)
6437 return 8;
6439 if (sec->reloc_count > 0
6440 && elf_section_data (sec)->relocs != NULL
6441 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6442 == R_MIPS_64))
6443 return 8;
6445 return 0;
6447 return 4;
6450 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6451 relocations against two unnamed section symbols to resolve to the
6452 same address. For example, if we have code like:
6454 lw $4,%got_disp(.data)($gp)
6455 lw $25,%got_disp(.text)($gp)
6456 jalr $25
6458 then the linker will resolve both relocations to .data and the program
6459 will jump there rather than to .text.
6461 We can work around this problem by giving names to local section symbols.
6462 This is also what the MIPSpro tools do. */
6464 bfd_boolean
6465 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6467 return SGI_COMPAT (abfd);
6470 /* Work over a section just before writing it out. This routine is
6471 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6472 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6473 a better way. */
6475 bfd_boolean
6476 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6478 if (hdr->sh_type == SHT_MIPS_REGINFO
6479 && hdr->sh_size > 0)
6481 bfd_byte buf[4];
6483 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6484 BFD_ASSERT (hdr->contents == NULL);
6486 if (bfd_seek (abfd,
6487 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6488 SEEK_SET) != 0)
6489 return FALSE;
6490 H_PUT_32 (abfd, elf_gp (abfd), buf);
6491 if (bfd_bwrite (buf, 4, abfd) != 4)
6492 return FALSE;
6495 if (hdr->sh_type == SHT_MIPS_OPTIONS
6496 && hdr->bfd_section != NULL
6497 && mips_elf_section_data (hdr->bfd_section) != NULL
6498 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6500 bfd_byte *contents, *l, *lend;
6502 /* We stored the section contents in the tdata field in the
6503 set_section_contents routine. We save the section contents
6504 so that we don't have to read them again.
6505 At this point we know that elf_gp is set, so we can look
6506 through the section contents to see if there is an
6507 ODK_REGINFO structure. */
6509 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6510 l = contents;
6511 lend = contents + hdr->sh_size;
6512 while (l + sizeof (Elf_External_Options) <= lend)
6514 Elf_Internal_Options intopt;
6516 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6517 &intopt);
6518 if (intopt.size < sizeof (Elf_External_Options))
6520 (*_bfd_error_handler)
6521 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6522 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6523 break;
6525 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6527 bfd_byte buf[8];
6529 if (bfd_seek (abfd,
6530 (hdr->sh_offset
6531 + (l - contents)
6532 + sizeof (Elf_External_Options)
6533 + (sizeof (Elf64_External_RegInfo) - 8)),
6534 SEEK_SET) != 0)
6535 return FALSE;
6536 H_PUT_64 (abfd, elf_gp (abfd), buf);
6537 if (bfd_bwrite (buf, 8, abfd) != 8)
6538 return FALSE;
6540 else if (intopt.kind == ODK_REGINFO)
6542 bfd_byte buf[4];
6544 if (bfd_seek (abfd,
6545 (hdr->sh_offset
6546 + (l - contents)
6547 + sizeof (Elf_External_Options)
6548 + (sizeof (Elf32_External_RegInfo) - 4)),
6549 SEEK_SET) != 0)
6550 return FALSE;
6551 H_PUT_32 (abfd, elf_gp (abfd), buf);
6552 if (bfd_bwrite (buf, 4, abfd) != 4)
6553 return FALSE;
6555 l += intopt.size;
6559 if (hdr->bfd_section != NULL)
6561 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6563 /* .sbss is not handled specially here because the GNU/Linux
6564 prelinker can convert .sbss from NOBITS to PROGBITS and
6565 changing it back to NOBITS breaks the binary. The entry in
6566 _bfd_mips_elf_special_sections will ensure the correct flags
6567 are set on .sbss if BFD creates it without reading it from an
6568 input file, and without special handling here the flags set
6569 on it in an input file will be followed. */
6570 if (strcmp (name, ".sdata") == 0
6571 || strcmp (name, ".lit8") == 0
6572 || strcmp (name, ".lit4") == 0)
6574 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6575 hdr->sh_type = SHT_PROGBITS;
6577 else if (strcmp (name, ".srdata") == 0)
6579 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6580 hdr->sh_type = SHT_PROGBITS;
6582 else if (strcmp (name, ".compact_rel") == 0)
6584 hdr->sh_flags = 0;
6585 hdr->sh_type = SHT_PROGBITS;
6587 else if (strcmp (name, ".rtproc") == 0)
6589 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6591 unsigned int adjust;
6593 adjust = hdr->sh_size % hdr->sh_addralign;
6594 if (adjust != 0)
6595 hdr->sh_size += hdr->sh_addralign - adjust;
6600 return TRUE;
6603 /* Handle a MIPS specific section when reading an object file. This
6604 is called when elfcode.h finds a section with an unknown type.
6605 This routine supports both the 32-bit and 64-bit ELF ABI.
6607 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6608 how to. */
6610 bfd_boolean
6611 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6612 Elf_Internal_Shdr *hdr,
6613 const char *name,
6614 int shindex)
6616 flagword flags = 0;
6618 /* There ought to be a place to keep ELF backend specific flags, but
6619 at the moment there isn't one. We just keep track of the
6620 sections by their name, instead. Fortunately, the ABI gives
6621 suggested names for all the MIPS specific sections, so we will
6622 probably get away with this. */
6623 switch (hdr->sh_type)
6625 case SHT_MIPS_LIBLIST:
6626 if (strcmp (name, ".liblist") != 0)
6627 return FALSE;
6628 break;
6629 case SHT_MIPS_MSYM:
6630 if (strcmp (name, ".msym") != 0)
6631 return FALSE;
6632 break;
6633 case SHT_MIPS_CONFLICT:
6634 if (strcmp (name, ".conflict") != 0)
6635 return FALSE;
6636 break;
6637 case SHT_MIPS_GPTAB:
6638 if (! CONST_STRNEQ (name, ".gptab."))
6639 return FALSE;
6640 break;
6641 case SHT_MIPS_UCODE:
6642 if (strcmp (name, ".ucode") != 0)
6643 return FALSE;
6644 break;
6645 case SHT_MIPS_DEBUG:
6646 if (strcmp (name, ".mdebug") != 0)
6647 return FALSE;
6648 flags = SEC_DEBUGGING;
6649 break;
6650 case SHT_MIPS_REGINFO:
6651 if (strcmp (name, ".reginfo") != 0
6652 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6653 return FALSE;
6654 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6655 break;
6656 case SHT_MIPS_IFACE:
6657 if (strcmp (name, ".MIPS.interfaces") != 0)
6658 return FALSE;
6659 break;
6660 case SHT_MIPS_CONTENT:
6661 if (! CONST_STRNEQ (name, ".MIPS.content"))
6662 return FALSE;
6663 break;
6664 case SHT_MIPS_OPTIONS:
6665 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6666 return FALSE;
6667 break;
6668 case SHT_MIPS_DWARF:
6669 if (! CONST_STRNEQ (name, ".debug_")
6670 && ! CONST_STRNEQ (name, ".zdebug_"))
6671 return FALSE;
6672 break;
6673 case SHT_MIPS_SYMBOL_LIB:
6674 if (strcmp (name, ".MIPS.symlib") != 0)
6675 return FALSE;
6676 break;
6677 case SHT_MIPS_EVENTS:
6678 if (! CONST_STRNEQ (name, ".MIPS.events")
6679 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6680 return FALSE;
6681 break;
6682 default:
6683 break;
6686 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6687 return FALSE;
6689 if (flags)
6691 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6692 (bfd_get_section_flags (abfd,
6693 hdr->bfd_section)
6694 | flags)))
6695 return FALSE;
6698 /* FIXME: We should record sh_info for a .gptab section. */
6700 /* For a .reginfo section, set the gp value in the tdata information
6701 from the contents of this section. We need the gp value while
6702 processing relocs, so we just get it now. The .reginfo section
6703 is not used in the 64-bit MIPS ELF ABI. */
6704 if (hdr->sh_type == SHT_MIPS_REGINFO)
6706 Elf32_External_RegInfo ext;
6707 Elf32_RegInfo s;
6709 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6710 &ext, 0, sizeof ext))
6711 return FALSE;
6712 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6713 elf_gp (abfd) = s.ri_gp_value;
6716 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6717 set the gp value based on what we find. We may see both
6718 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6719 they should agree. */
6720 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6722 bfd_byte *contents, *l, *lend;
6724 contents = bfd_malloc (hdr->sh_size);
6725 if (contents == NULL)
6726 return FALSE;
6727 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6728 0, hdr->sh_size))
6730 free (contents);
6731 return FALSE;
6733 l = contents;
6734 lend = contents + hdr->sh_size;
6735 while (l + sizeof (Elf_External_Options) <= lend)
6737 Elf_Internal_Options intopt;
6739 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6740 &intopt);
6741 if (intopt.size < sizeof (Elf_External_Options))
6743 (*_bfd_error_handler)
6744 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6745 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6746 break;
6748 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6750 Elf64_Internal_RegInfo intreg;
6752 bfd_mips_elf64_swap_reginfo_in
6753 (abfd,
6754 ((Elf64_External_RegInfo *)
6755 (l + sizeof (Elf_External_Options))),
6756 &intreg);
6757 elf_gp (abfd) = intreg.ri_gp_value;
6759 else if (intopt.kind == ODK_REGINFO)
6761 Elf32_RegInfo intreg;
6763 bfd_mips_elf32_swap_reginfo_in
6764 (abfd,
6765 ((Elf32_External_RegInfo *)
6766 (l + sizeof (Elf_External_Options))),
6767 &intreg);
6768 elf_gp (abfd) = intreg.ri_gp_value;
6770 l += intopt.size;
6772 free (contents);
6775 return TRUE;
6778 /* Set the correct type for a MIPS ELF section. We do this by the
6779 section name, which is a hack, but ought to work. This routine is
6780 used by both the 32-bit and the 64-bit ABI. */
6782 bfd_boolean
6783 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6785 const char *name = bfd_get_section_name (abfd, sec);
6787 if (strcmp (name, ".liblist") == 0)
6789 hdr->sh_type = SHT_MIPS_LIBLIST;
6790 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6791 /* The sh_link field is set in final_write_processing. */
6793 else if (strcmp (name, ".conflict") == 0)
6794 hdr->sh_type = SHT_MIPS_CONFLICT;
6795 else if (CONST_STRNEQ (name, ".gptab."))
6797 hdr->sh_type = SHT_MIPS_GPTAB;
6798 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6799 /* The sh_info field is set in final_write_processing. */
6801 else if (strcmp (name, ".ucode") == 0)
6802 hdr->sh_type = SHT_MIPS_UCODE;
6803 else if (strcmp (name, ".mdebug") == 0)
6805 hdr->sh_type = SHT_MIPS_DEBUG;
6806 /* In a shared object on IRIX 5.3, the .mdebug section has an
6807 entsize of 0. FIXME: Does this matter? */
6808 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6809 hdr->sh_entsize = 0;
6810 else
6811 hdr->sh_entsize = 1;
6813 else if (strcmp (name, ".reginfo") == 0)
6815 hdr->sh_type = SHT_MIPS_REGINFO;
6816 /* In a shared object on IRIX 5.3, the .reginfo section has an
6817 entsize of 0x18. FIXME: Does this matter? */
6818 if (SGI_COMPAT (abfd))
6820 if ((abfd->flags & DYNAMIC) != 0)
6821 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6822 else
6823 hdr->sh_entsize = 1;
6825 else
6826 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6828 else if (SGI_COMPAT (abfd)
6829 && (strcmp (name, ".hash") == 0
6830 || strcmp (name, ".dynamic") == 0
6831 || strcmp (name, ".dynstr") == 0))
6833 if (SGI_COMPAT (abfd))
6834 hdr->sh_entsize = 0;
6835 #if 0
6836 /* This isn't how the IRIX6 linker behaves. */
6837 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6838 #endif
6840 else if (strcmp (name, ".got") == 0
6841 || strcmp (name, ".srdata") == 0
6842 || strcmp (name, ".sdata") == 0
6843 || strcmp (name, ".sbss") == 0
6844 || strcmp (name, ".lit4") == 0
6845 || strcmp (name, ".lit8") == 0)
6846 hdr->sh_flags |= SHF_MIPS_GPREL;
6847 else if (strcmp (name, ".MIPS.interfaces") == 0)
6849 hdr->sh_type = SHT_MIPS_IFACE;
6850 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6852 else if (CONST_STRNEQ (name, ".MIPS.content"))
6854 hdr->sh_type = SHT_MIPS_CONTENT;
6855 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6856 /* The sh_info field is set in final_write_processing. */
6858 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6860 hdr->sh_type = SHT_MIPS_OPTIONS;
6861 hdr->sh_entsize = 1;
6862 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6864 else if (CONST_STRNEQ (name, ".debug_")
6865 || CONST_STRNEQ (name, ".zdebug_"))
6867 hdr->sh_type = SHT_MIPS_DWARF;
6869 /* Irix facilities such as libexc expect a single .debug_frame
6870 per executable, the system ones have NOSTRIP set and the linker
6871 doesn't merge sections with different flags so ... */
6872 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6873 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6875 else if (strcmp (name, ".MIPS.symlib") == 0)
6877 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6878 /* The sh_link and sh_info fields are set in
6879 final_write_processing. */
6881 else if (CONST_STRNEQ (name, ".MIPS.events")
6882 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6884 hdr->sh_type = SHT_MIPS_EVENTS;
6885 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6886 /* The sh_link field is set in final_write_processing. */
6888 else if (strcmp (name, ".msym") == 0)
6890 hdr->sh_type = SHT_MIPS_MSYM;
6891 hdr->sh_flags |= SHF_ALLOC;
6892 hdr->sh_entsize = 8;
6895 /* The generic elf_fake_sections will set up REL_HDR using the default
6896 kind of relocations. We used to set up a second header for the
6897 non-default kind of relocations here, but only NewABI would use
6898 these, and the IRIX ld doesn't like resulting empty RELA sections.
6899 Thus we create those header only on demand now. */
6901 return TRUE;
6904 /* Given a BFD section, try to locate the corresponding ELF section
6905 index. This is used by both the 32-bit and the 64-bit ABI.
6906 Actually, it's not clear to me that the 64-bit ABI supports these,
6907 but for non-PIC objects we will certainly want support for at least
6908 the .scommon section. */
6910 bfd_boolean
6911 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6912 asection *sec, int *retval)
6914 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6916 *retval = SHN_MIPS_SCOMMON;
6917 return TRUE;
6919 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6921 *retval = SHN_MIPS_ACOMMON;
6922 return TRUE;
6924 return FALSE;
6927 /* Hook called by the linker routine which adds symbols from an object
6928 file. We must handle the special MIPS section numbers here. */
6930 bfd_boolean
6931 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6932 Elf_Internal_Sym *sym, const char **namep,
6933 flagword *flagsp ATTRIBUTE_UNUSED,
6934 asection **secp, bfd_vma *valp)
6936 if (SGI_COMPAT (abfd)
6937 && (abfd->flags & DYNAMIC) != 0
6938 && strcmp (*namep, "_rld_new_interface") == 0)
6940 /* Skip IRIX5 rld entry name. */
6941 *namep = NULL;
6942 return TRUE;
6945 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6946 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6947 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6948 a magic symbol resolved by the linker, we ignore this bogus definition
6949 of _gp_disp. New ABI objects do not suffer from this problem so this
6950 is not done for them. */
6951 if (!NEWABI_P(abfd)
6952 && (sym->st_shndx == SHN_ABS)
6953 && (strcmp (*namep, "_gp_disp") == 0))
6955 *namep = NULL;
6956 return TRUE;
6959 switch (sym->st_shndx)
6961 case SHN_COMMON:
6962 /* Common symbols less than the GP size are automatically
6963 treated as SHN_MIPS_SCOMMON symbols. */
6964 if (sym->st_size > elf_gp_size (abfd)
6965 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6966 || IRIX_COMPAT (abfd) == ict_irix6)
6967 break;
6968 /* Fall through. */
6969 case SHN_MIPS_SCOMMON:
6970 *secp = bfd_make_section_old_way (abfd, ".scommon");
6971 (*secp)->flags |= SEC_IS_COMMON;
6972 *valp = sym->st_size;
6973 break;
6975 case SHN_MIPS_TEXT:
6976 /* This section is used in a shared object. */
6977 if (elf_tdata (abfd)->elf_text_section == NULL)
6979 asymbol *elf_text_symbol;
6980 asection *elf_text_section;
6981 bfd_size_type amt = sizeof (asection);
6983 elf_text_section = bfd_zalloc (abfd, amt);
6984 if (elf_text_section == NULL)
6985 return FALSE;
6987 amt = sizeof (asymbol);
6988 elf_text_symbol = bfd_zalloc (abfd, amt);
6989 if (elf_text_symbol == NULL)
6990 return FALSE;
6992 /* Initialize the section. */
6994 elf_tdata (abfd)->elf_text_section = elf_text_section;
6995 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6997 elf_text_section->symbol = elf_text_symbol;
6998 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7000 elf_text_section->name = ".text";
7001 elf_text_section->flags = SEC_NO_FLAGS;
7002 elf_text_section->output_section = NULL;
7003 elf_text_section->owner = abfd;
7004 elf_text_symbol->name = ".text";
7005 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7006 elf_text_symbol->section = elf_text_section;
7008 /* This code used to do *secp = bfd_und_section_ptr if
7009 info->shared. I don't know why, and that doesn't make sense,
7010 so I took it out. */
7011 *secp = elf_tdata (abfd)->elf_text_section;
7012 break;
7014 case SHN_MIPS_ACOMMON:
7015 /* Fall through. XXX Can we treat this as allocated data? */
7016 case SHN_MIPS_DATA:
7017 /* This section is used in a shared object. */
7018 if (elf_tdata (abfd)->elf_data_section == NULL)
7020 asymbol *elf_data_symbol;
7021 asection *elf_data_section;
7022 bfd_size_type amt = sizeof (asection);
7024 elf_data_section = bfd_zalloc (abfd, amt);
7025 if (elf_data_section == NULL)
7026 return FALSE;
7028 amt = sizeof (asymbol);
7029 elf_data_symbol = bfd_zalloc (abfd, amt);
7030 if (elf_data_symbol == NULL)
7031 return FALSE;
7033 /* Initialize the section. */
7035 elf_tdata (abfd)->elf_data_section = elf_data_section;
7036 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7038 elf_data_section->symbol = elf_data_symbol;
7039 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7041 elf_data_section->name = ".data";
7042 elf_data_section->flags = SEC_NO_FLAGS;
7043 elf_data_section->output_section = NULL;
7044 elf_data_section->owner = abfd;
7045 elf_data_symbol->name = ".data";
7046 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7047 elf_data_symbol->section = elf_data_section;
7049 /* This code used to do *secp = bfd_und_section_ptr if
7050 info->shared. I don't know why, and that doesn't make sense,
7051 so I took it out. */
7052 *secp = elf_tdata (abfd)->elf_data_section;
7053 break;
7055 case SHN_MIPS_SUNDEFINED:
7056 *secp = bfd_und_section_ptr;
7057 break;
7060 if (SGI_COMPAT (abfd)
7061 && ! info->shared
7062 && info->output_bfd->xvec == abfd->xvec
7063 && strcmp (*namep, "__rld_obj_head") == 0)
7065 struct elf_link_hash_entry *h;
7066 struct bfd_link_hash_entry *bh;
7068 /* Mark __rld_obj_head as dynamic. */
7069 bh = NULL;
7070 if (! (_bfd_generic_link_add_one_symbol
7071 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7072 get_elf_backend_data (abfd)->collect, &bh)))
7073 return FALSE;
7075 h = (struct elf_link_hash_entry *) bh;
7076 h->non_elf = 0;
7077 h->def_regular = 1;
7078 h->type = STT_OBJECT;
7080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7081 return FALSE;
7083 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7086 /* If this is a mips16 text symbol, add 1 to the value to make it
7087 odd. This will cause something like .word SYM to come up with
7088 the right value when it is loaded into the PC. */
7089 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7090 ++*valp;
7092 return TRUE;
7095 /* This hook function is called before the linker writes out a global
7096 symbol. We mark symbols as small common if appropriate. This is
7097 also where we undo the increment of the value for a mips16 symbol. */
7100 _bfd_mips_elf_link_output_symbol_hook
7101 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7102 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7103 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7105 /* If we see a common symbol, which implies a relocatable link, then
7106 if a symbol was small common in an input file, mark it as small
7107 common in the output file. */
7108 if (sym->st_shndx == SHN_COMMON
7109 && strcmp (input_sec->name, ".scommon") == 0)
7110 sym->st_shndx = SHN_MIPS_SCOMMON;
7112 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7113 sym->st_value &= ~1;
7115 return 1;
7118 /* Functions for the dynamic linker. */
7120 /* Create dynamic sections when linking against a dynamic object. */
7122 bfd_boolean
7123 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7125 struct elf_link_hash_entry *h;
7126 struct bfd_link_hash_entry *bh;
7127 flagword flags;
7128 register asection *s;
7129 const char * const *namep;
7130 struct mips_elf_link_hash_table *htab;
7132 htab = mips_elf_hash_table (info);
7133 BFD_ASSERT (htab != NULL);
7135 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7136 | SEC_LINKER_CREATED | SEC_READONLY);
7138 /* The psABI requires a read-only .dynamic section, but the VxWorks
7139 EABI doesn't. */
7140 if (!htab->is_vxworks)
7142 s = bfd_get_section_by_name (abfd, ".dynamic");
7143 if (s != NULL)
7145 if (! bfd_set_section_flags (abfd, s, flags))
7146 return FALSE;
7150 /* We need to create .got section. */
7151 if (!mips_elf_create_got_section (abfd, info))
7152 return FALSE;
7154 if (! mips_elf_rel_dyn_section (info, TRUE))
7155 return FALSE;
7157 /* Create .stub section. */
7158 s = bfd_make_section_with_flags (abfd,
7159 MIPS_ELF_STUB_SECTION_NAME (abfd),
7160 flags | SEC_CODE);
7161 if (s == NULL
7162 || ! bfd_set_section_alignment (abfd, s,
7163 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7164 return FALSE;
7165 htab->sstubs = s;
7167 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7168 && !info->shared
7169 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7171 s = bfd_make_section_with_flags (abfd, ".rld_map",
7172 flags &~ (flagword) SEC_READONLY);
7173 if (s == NULL
7174 || ! bfd_set_section_alignment (abfd, s,
7175 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7176 return FALSE;
7179 /* On IRIX5, we adjust add some additional symbols and change the
7180 alignments of several sections. There is no ABI documentation
7181 indicating that this is necessary on IRIX6, nor any evidence that
7182 the linker takes such action. */
7183 if (IRIX_COMPAT (abfd) == ict_irix5)
7185 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7187 bh = NULL;
7188 if (! (_bfd_generic_link_add_one_symbol
7189 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7190 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7191 return FALSE;
7193 h = (struct elf_link_hash_entry *) bh;
7194 h->non_elf = 0;
7195 h->def_regular = 1;
7196 h->type = STT_SECTION;
7198 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7199 return FALSE;
7202 /* We need to create a .compact_rel section. */
7203 if (SGI_COMPAT (abfd))
7205 if (!mips_elf_create_compact_rel_section (abfd, info))
7206 return FALSE;
7209 /* Change alignments of some sections. */
7210 s = bfd_get_section_by_name (abfd, ".hash");
7211 if (s != NULL)
7212 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7213 s = bfd_get_section_by_name (abfd, ".dynsym");
7214 if (s != NULL)
7215 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7216 s = bfd_get_section_by_name (abfd, ".dynstr");
7217 if (s != NULL)
7218 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7219 s = bfd_get_section_by_name (abfd, ".reginfo");
7220 if (s != NULL)
7221 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7222 s = bfd_get_section_by_name (abfd, ".dynamic");
7223 if (s != NULL)
7224 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7227 if (!info->shared)
7229 const char *name;
7231 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7232 bh = NULL;
7233 if (!(_bfd_generic_link_add_one_symbol
7234 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7235 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7236 return FALSE;
7238 h = (struct elf_link_hash_entry *) bh;
7239 h->non_elf = 0;
7240 h->def_regular = 1;
7241 h->type = STT_SECTION;
7243 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7244 return FALSE;
7246 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7248 /* __rld_map is a four byte word located in the .data section
7249 and is filled in by the rtld to contain a pointer to
7250 the _r_debug structure. Its symbol value will be set in
7251 _bfd_mips_elf_finish_dynamic_symbol. */
7252 s = bfd_get_section_by_name (abfd, ".rld_map");
7253 BFD_ASSERT (s != NULL);
7255 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7256 bh = NULL;
7257 if (!(_bfd_generic_link_add_one_symbol
7258 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7259 get_elf_backend_data (abfd)->collect, &bh)))
7260 return FALSE;
7262 h = (struct elf_link_hash_entry *) bh;
7263 h->non_elf = 0;
7264 h->def_regular = 1;
7265 h->type = STT_OBJECT;
7267 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7268 return FALSE;
7272 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7273 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7274 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7275 return FALSE;
7277 /* Cache the sections created above. */
7278 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7279 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7280 if (htab->is_vxworks)
7282 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7283 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7285 else
7286 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7287 if (!htab->sdynbss
7288 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7289 || !htab->srelplt
7290 || !htab->splt)
7291 abort ();
7293 if (htab->is_vxworks)
7295 /* Do the usual VxWorks handling. */
7296 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7297 return FALSE;
7299 /* Work out the PLT sizes. */
7300 if (info->shared)
7302 htab->plt_header_size
7303 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7304 htab->plt_entry_size
7305 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7307 else
7309 htab->plt_header_size
7310 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7311 htab->plt_entry_size
7312 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7315 else if (!info->shared)
7317 /* All variants of the plt0 entry are the same size. */
7318 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7319 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7322 return TRUE;
7325 /* Return true if relocation REL against section SEC is a REL rather than
7326 RELA relocation. RELOCS is the first relocation in the section and
7327 ABFD is the bfd that contains SEC. */
7329 static bfd_boolean
7330 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7331 const Elf_Internal_Rela *relocs,
7332 const Elf_Internal_Rela *rel)
7334 Elf_Internal_Shdr *rel_hdr;
7335 const struct elf_backend_data *bed;
7337 /* To determine which flavor of relocation this is, we depend on the
7338 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7339 rel_hdr = elf_section_data (sec)->rel.hdr;
7340 if (rel_hdr == NULL)
7341 return FALSE;
7342 bed = get_elf_backend_data (abfd);
7343 return ((size_t) (rel - relocs)
7344 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7347 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7348 HOWTO is the relocation's howto and CONTENTS points to the contents
7349 of the section that REL is against. */
7351 static bfd_vma
7352 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7353 reloc_howto_type *howto, bfd_byte *contents)
7355 bfd_byte *location;
7356 unsigned int r_type;
7357 bfd_vma addend;
7359 r_type = ELF_R_TYPE (abfd, rel->r_info);
7360 location = contents + rel->r_offset;
7362 /* Get the addend, which is stored in the input file. */
7363 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7364 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7365 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7367 return addend & howto->src_mask;
7370 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7371 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7372 and update *ADDEND with the final addend. Return true on success
7373 or false if the LO16 could not be found. RELEND is the exclusive
7374 upper bound on the relocations for REL's section. */
7376 static bfd_boolean
7377 mips_elf_add_lo16_rel_addend (bfd *abfd,
7378 const Elf_Internal_Rela *rel,
7379 const Elf_Internal_Rela *relend,
7380 bfd_byte *contents, bfd_vma *addend)
7382 unsigned int r_type, lo16_type;
7383 const Elf_Internal_Rela *lo16_relocation;
7384 reloc_howto_type *lo16_howto;
7385 bfd_vma l;
7387 r_type = ELF_R_TYPE (abfd, rel->r_info);
7388 if (mips16_reloc_p (r_type))
7389 lo16_type = R_MIPS16_LO16;
7390 else if (micromips_reloc_p (r_type))
7391 lo16_type = R_MICROMIPS_LO16;
7392 else
7393 lo16_type = R_MIPS_LO16;
7395 /* The combined value is the sum of the HI16 addend, left-shifted by
7396 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7397 code does a `lui' of the HI16 value, and then an `addiu' of the
7398 LO16 value.)
7400 Scan ahead to find a matching LO16 relocation.
7402 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7403 be immediately following. However, for the IRIX6 ABI, the next
7404 relocation may be a composed relocation consisting of several
7405 relocations for the same address. In that case, the R_MIPS_LO16
7406 relocation may occur as one of these. We permit a similar
7407 extension in general, as that is useful for GCC.
7409 In some cases GCC dead code elimination removes the LO16 but keeps
7410 the corresponding HI16. This is strictly speaking a violation of
7411 the ABI but not immediately harmful. */
7412 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7413 if (lo16_relocation == NULL)
7414 return FALSE;
7416 /* Obtain the addend kept there. */
7417 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7418 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7420 l <<= lo16_howto->rightshift;
7421 l = _bfd_mips_elf_sign_extend (l, 16);
7423 *addend <<= 16;
7424 *addend += l;
7425 return TRUE;
7428 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7429 store the contents in *CONTENTS on success. Assume that *CONTENTS
7430 already holds the contents if it is nonull on entry. */
7432 static bfd_boolean
7433 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7435 if (*contents)
7436 return TRUE;
7438 /* Get cached copy if it exists. */
7439 if (elf_section_data (sec)->this_hdr.contents != NULL)
7441 *contents = elf_section_data (sec)->this_hdr.contents;
7442 return TRUE;
7445 return bfd_malloc_and_get_section (abfd, sec, contents);
7448 /* Look through the relocs for a section during the first phase, and
7449 allocate space in the global offset table. */
7451 bfd_boolean
7452 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7453 asection *sec, const Elf_Internal_Rela *relocs)
7455 const char *name;
7456 bfd *dynobj;
7457 Elf_Internal_Shdr *symtab_hdr;
7458 struct elf_link_hash_entry **sym_hashes;
7459 size_t extsymoff;
7460 const Elf_Internal_Rela *rel;
7461 const Elf_Internal_Rela *rel_end;
7462 asection *sreloc;
7463 const struct elf_backend_data *bed;
7464 struct mips_elf_link_hash_table *htab;
7465 bfd_byte *contents;
7466 bfd_vma addend;
7467 reloc_howto_type *howto;
7469 if (info->relocatable)
7470 return TRUE;
7472 htab = mips_elf_hash_table (info);
7473 BFD_ASSERT (htab != NULL);
7475 dynobj = elf_hash_table (info)->dynobj;
7476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7477 sym_hashes = elf_sym_hashes (abfd);
7478 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7480 bed = get_elf_backend_data (abfd);
7481 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7483 /* Check for the mips16 stub sections. */
7485 name = bfd_get_section_name (abfd, sec);
7486 if (FN_STUB_P (name))
7488 unsigned long r_symndx;
7490 /* Look at the relocation information to figure out which symbol
7491 this is for. */
7493 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7494 if (r_symndx == 0)
7496 (*_bfd_error_handler)
7497 (_("%B: Warning: cannot determine the target function for"
7498 " stub section `%s'"),
7499 abfd, name);
7500 bfd_set_error (bfd_error_bad_value);
7501 return FALSE;
7504 if (r_symndx < extsymoff
7505 || sym_hashes[r_symndx - extsymoff] == NULL)
7507 asection *o;
7509 /* This stub is for a local symbol. This stub will only be
7510 needed if there is some relocation in this BFD, other
7511 than a 16 bit function call, which refers to this symbol. */
7512 for (o = abfd->sections; o != NULL; o = o->next)
7514 Elf_Internal_Rela *sec_relocs;
7515 const Elf_Internal_Rela *r, *rend;
7517 /* We can ignore stub sections when looking for relocs. */
7518 if ((o->flags & SEC_RELOC) == 0
7519 || o->reloc_count == 0
7520 || section_allows_mips16_refs_p (o))
7521 continue;
7523 sec_relocs
7524 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7525 info->keep_memory);
7526 if (sec_relocs == NULL)
7527 return FALSE;
7529 rend = sec_relocs + o->reloc_count;
7530 for (r = sec_relocs; r < rend; r++)
7531 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7532 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7533 break;
7535 if (elf_section_data (o)->relocs != sec_relocs)
7536 free (sec_relocs);
7538 if (r < rend)
7539 break;
7542 if (o == NULL)
7544 /* There is no non-call reloc for this stub, so we do
7545 not need it. Since this function is called before
7546 the linker maps input sections to output sections, we
7547 can easily discard it by setting the SEC_EXCLUDE
7548 flag. */
7549 sec->flags |= SEC_EXCLUDE;
7550 return TRUE;
7553 /* Record this stub in an array of local symbol stubs for
7554 this BFD. */
7555 if (elf_tdata (abfd)->local_stubs == NULL)
7557 unsigned long symcount;
7558 asection **n;
7559 bfd_size_type amt;
7561 if (elf_bad_symtab (abfd))
7562 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7563 else
7564 symcount = symtab_hdr->sh_info;
7565 amt = symcount * sizeof (asection *);
7566 n = bfd_zalloc (abfd, amt);
7567 if (n == NULL)
7568 return FALSE;
7569 elf_tdata (abfd)->local_stubs = n;
7572 sec->flags |= SEC_KEEP;
7573 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7575 /* We don't need to set mips16_stubs_seen in this case.
7576 That flag is used to see whether we need to look through
7577 the global symbol table for stubs. We don't need to set
7578 it here, because we just have a local stub. */
7580 else
7582 struct mips_elf_link_hash_entry *h;
7584 h = ((struct mips_elf_link_hash_entry *)
7585 sym_hashes[r_symndx - extsymoff]);
7587 while (h->root.root.type == bfd_link_hash_indirect
7588 || h->root.root.type == bfd_link_hash_warning)
7589 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7591 /* H is the symbol this stub is for. */
7593 /* If we already have an appropriate stub for this function, we
7594 don't need another one, so we can discard this one. Since
7595 this function is called before the linker maps input sections
7596 to output sections, we can easily discard it by setting the
7597 SEC_EXCLUDE flag. */
7598 if (h->fn_stub != NULL)
7600 sec->flags |= SEC_EXCLUDE;
7601 return TRUE;
7604 sec->flags |= SEC_KEEP;
7605 h->fn_stub = sec;
7606 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7609 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7611 unsigned long r_symndx;
7612 struct mips_elf_link_hash_entry *h;
7613 asection **loc;
7615 /* Look at the relocation information to figure out which symbol
7616 this is for. */
7618 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7619 if (r_symndx == 0)
7621 (*_bfd_error_handler)
7622 (_("%B: Warning: cannot determine the target function for"
7623 " stub section `%s'"),
7624 abfd, name);
7625 bfd_set_error (bfd_error_bad_value);
7626 return FALSE;
7629 if (r_symndx < extsymoff
7630 || sym_hashes[r_symndx - extsymoff] == NULL)
7632 asection *o;
7634 /* This stub is for a local symbol. This stub will only be
7635 needed if there is some relocation (R_MIPS16_26) in this BFD
7636 that refers to this symbol. */
7637 for (o = abfd->sections; o != NULL; o = o->next)
7639 Elf_Internal_Rela *sec_relocs;
7640 const Elf_Internal_Rela *r, *rend;
7642 /* We can ignore stub sections when looking for relocs. */
7643 if ((o->flags & SEC_RELOC) == 0
7644 || o->reloc_count == 0
7645 || section_allows_mips16_refs_p (o))
7646 continue;
7648 sec_relocs
7649 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7650 info->keep_memory);
7651 if (sec_relocs == NULL)
7652 return FALSE;
7654 rend = sec_relocs + o->reloc_count;
7655 for (r = sec_relocs; r < rend; r++)
7656 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7657 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7658 break;
7660 if (elf_section_data (o)->relocs != sec_relocs)
7661 free (sec_relocs);
7663 if (r < rend)
7664 break;
7667 if (o == NULL)
7669 /* There is no non-call reloc for this stub, so we do
7670 not need it. Since this function is called before
7671 the linker maps input sections to output sections, we
7672 can easily discard it by setting the SEC_EXCLUDE
7673 flag. */
7674 sec->flags |= SEC_EXCLUDE;
7675 return TRUE;
7678 /* Record this stub in an array of local symbol call_stubs for
7679 this BFD. */
7680 if (elf_tdata (abfd)->local_call_stubs == NULL)
7682 unsigned long symcount;
7683 asection **n;
7684 bfd_size_type amt;
7686 if (elf_bad_symtab (abfd))
7687 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7688 else
7689 symcount = symtab_hdr->sh_info;
7690 amt = symcount * sizeof (asection *);
7691 n = bfd_zalloc (abfd, amt);
7692 if (n == NULL)
7693 return FALSE;
7694 elf_tdata (abfd)->local_call_stubs = n;
7697 sec->flags |= SEC_KEEP;
7698 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7700 /* We don't need to set mips16_stubs_seen in this case.
7701 That flag is used to see whether we need to look through
7702 the global symbol table for stubs. We don't need to set
7703 it here, because we just have a local stub. */
7705 else
7707 h = ((struct mips_elf_link_hash_entry *)
7708 sym_hashes[r_symndx - extsymoff]);
7710 /* H is the symbol this stub is for. */
7712 if (CALL_FP_STUB_P (name))
7713 loc = &h->call_fp_stub;
7714 else
7715 loc = &h->call_stub;
7717 /* If we already have an appropriate stub for this function, we
7718 don't need another one, so we can discard this one. Since
7719 this function is called before the linker maps input sections
7720 to output sections, we can easily discard it by setting the
7721 SEC_EXCLUDE flag. */
7722 if (*loc != NULL)
7724 sec->flags |= SEC_EXCLUDE;
7725 return TRUE;
7728 sec->flags |= SEC_KEEP;
7729 *loc = sec;
7730 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7734 sreloc = NULL;
7735 contents = NULL;
7736 for (rel = relocs; rel < rel_end; ++rel)
7738 unsigned long r_symndx;
7739 unsigned int r_type;
7740 struct elf_link_hash_entry *h;
7741 bfd_boolean can_make_dynamic_p;
7743 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7744 r_type = ELF_R_TYPE (abfd, rel->r_info);
7746 if (r_symndx < extsymoff)
7747 h = NULL;
7748 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7750 (*_bfd_error_handler)
7751 (_("%B: Malformed reloc detected for section %s"),
7752 abfd, name);
7753 bfd_set_error (bfd_error_bad_value);
7754 return FALSE;
7756 else
7758 h = sym_hashes[r_symndx - extsymoff];
7759 while (h != NULL
7760 && (h->root.type == bfd_link_hash_indirect
7761 || h->root.type == bfd_link_hash_warning))
7762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7765 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7766 relocation into a dynamic one. */
7767 can_make_dynamic_p = FALSE;
7768 switch (r_type)
7770 case R_MIPS16_GOT16:
7771 case R_MIPS16_CALL16:
7772 case R_MIPS_GOT16:
7773 case R_MIPS_CALL16:
7774 case R_MIPS_CALL_HI16:
7775 case R_MIPS_CALL_LO16:
7776 case R_MIPS_GOT_HI16:
7777 case R_MIPS_GOT_LO16:
7778 case R_MIPS_GOT_PAGE:
7779 case R_MIPS_GOT_OFST:
7780 case R_MIPS_GOT_DISP:
7781 case R_MIPS_TLS_GOTTPREL:
7782 case R_MIPS_TLS_GD:
7783 case R_MIPS_TLS_LDM:
7784 case R_MICROMIPS_GOT16:
7785 case R_MICROMIPS_CALL16:
7786 case R_MICROMIPS_CALL_HI16:
7787 case R_MICROMIPS_CALL_LO16:
7788 case R_MICROMIPS_GOT_HI16:
7789 case R_MICROMIPS_GOT_LO16:
7790 case R_MICROMIPS_GOT_PAGE:
7791 case R_MICROMIPS_GOT_OFST:
7792 case R_MICROMIPS_GOT_DISP:
7793 case R_MICROMIPS_TLS_GOTTPREL:
7794 case R_MICROMIPS_TLS_GD:
7795 case R_MICROMIPS_TLS_LDM:
7796 if (dynobj == NULL)
7797 elf_hash_table (info)->dynobj = dynobj = abfd;
7798 if (!mips_elf_create_got_section (dynobj, info))
7799 return FALSE;
7800 if (htab->is_vxworks && !info->shared)
7802 (*_bfd_error_handler)
7803 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7804 abfd, (unsigned long) rel->r_offset);
7805 bfd_set_error (bfd_error_bad_value);
7806 return FALSE;
7808 break;
7810 /* This is just a hint; it can safely be ignored. Don't set
7811 has_static_relocs for the corresponding symbol. */
7812 case R_MIPS_JALR:
7813 case R_MICROMIPS_JALR:
7814 break;
7816 case R_MIPS_32:
7817 case R_MIPS_REL32:
7818 case R_MIPS_64:
7819 /* In VxWorks executables, references to external symbols
7820 must be handled using copy relocs or PLT entries; it is not
7821 possible to convert this relocation into a dynamic one.
7823 For executables that use PLTs and copy-relocs, we have a
7824 choice between converting the relocation into a dynamic
7825 one or using copy relocations or PLT entries. It is
7826 usually better to do the former, unless the relocation is
7827 against a read-only section. */
7828 if ((info->shared
7829 || (h != NULL
7830 && !htab->is_vxworks
7831 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7832 && !(!info->nocopyreloc
7833 && !PIC_OBJECT_P (abfd)
7834 && MIPS_ELF_READONLY_SECTION (sec))))
7835 && (sec->flags & SEC_ALLOC) != 0)
7837 can_make_dynamic_p = TRUE;
7838 if (dynobj == NULL)
7839 elf_hash_table (info)->dynobj = dynobj = abfd;
7840 break;
7842 /* For sections that are not SEC_ALLOC a copy reloc would be
7843 output if possible (implying questionable semantics for
7844 read-only data objects) or otherwise the final link would
7845 fail as ld.so will not process them and could not therefore
7846 handle any outstanding dynamic relocations.
7848 For such sections that are also SEC_DEBUGGING, we can avoid
7849 these problems by simply ignoring any relocs as these
7850 sections have a predefined use and we know it is safe to do
7853 This is needed in cases such as a global symbol definition
7854 in a shared library causing a common symbol from an object
7855 file to be converted to an undefined reference. If that
7856 happens, then all the relocations against this symbol from
7857 SEC_DEBUGGING sections in the object file will resolve to
7858 nil. */
7859 if ((sec->flags & SEC_DEBUGGING) != 0)
7860 break;
7861 /* Fall through. */
7863 default:
7864 /* Most static relocations require pointer equality, except
7865 for branches. */
7866 if (h)
7867 h->pointer_equality_needed = TRUE;
7868 /* Fall through. */
7870 case R_MIPS_26:
7871 case R_MIPS_PC16:
7872 case R_MIPS16_26:
7873 case R_MICROMIPS_26_S1:
7874 case R_MICROMIPS_PC7_S1:
7875 case R_MICROMIPS_PC10_S1:
7876 case R_MICROMIPS_PC16_S1:
7877 case R_MICROMIPS_PC23_S2:
7878 if (h)
7879 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7880 break;
7883 if (h)
7885 /* Relocations against the special VxWorks __GOTT_BASE__ and
7886 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7887 room for them in .rela.dyn. */
7888 if (is_gott_symbol (info, h))
7890 if (sreloc == NULL)
7892 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7893 if (sreloc == NULL)
7894 return FALSE;
7896 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7897 if (MIPS_ELF_READONLY_SECTION (sec))
7898 /* We tell the dynamic linker that there are
7899 relocations against the text segment. */
7900 info->flags |= DF_TEXTREL;
7903 else if (call_lo16_reloc_p (r_type)
7904 || got_lo16_reloc_p (r_type)
7905 || got_disp_reloc_p (r_type)
7906 || (got16_reloc_p (r_type) && htab->is_vxworks))
7908 /* We may need a local GOT entry for this relocation. We
7909 don't count R_MIPS_GOT_PAGE because we can estimate the
7910 maximum number of pages needed by looking at the size of
7911 the segment. Similar comments apply to R_MIPS*_GOT16 and
7912 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7913 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7914 R_MIPS_CALL_HI16 because these are always followed by an
7915 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7916 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7917 rel->r_addend, info, 0))
7918 return FALSE;
7921 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7922 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7924 switch (r_type)
7926 case R_MIPS_CALL16:
7927 case R_MIPS16_CALL16:
7928 case R_MICROMIPS_CALL16:
7929 if (h == NULL)
7931 (*_bfd_error_handler)
7932 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7933 abfd, (unsigned long) rel->r_offset);
7934 bfd_set_error (bfd_error_bad_value);
7935 return FALSE;
7937 /* Fall through. */
7939 case R_MIPS_CALL_HI16:
7940 case R_MIPS_CALL_LO16:
7941 case R_MICROMIPS_CALL_HI16:
7942 case R_MICROMIPS_CALL_LO16:
7943 if (h != NULL)
7945 /* Make sure there is room in the regular GOT to hold the
7946 function's address. We may eliminate it in favour of
7947 a .got.plt entry later; see mips_elf_count_got_symbols. */
7948 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7949 return FALSE;
7951 /* We need a stub, not a plt entry for the undefined
7952 function. But we record it as if it needs plt. See
7953 _bfd_elf_adjust_dynamic_symbol. */
7954 h->needs_plt = 1;
7955 h->type = STT_FUNC;
7957 break;
7959 case R_MIPS_GOT_PAGE:
7960 case R_MICROMIPS_GOT_PAGE:
7961 /* If this is a global, overridable symbol, GOT_PAGE will
7962 decay to GOT_DISP, so we'll need a GOT entry for it. */
7963 if (h)
7965 struct mips_elf_link_hash_entry *hmips =
7966 (struct mips_elf_link_hash_entry *) h;
7968 /* This symbol is definitely not overridable. */
7969 if (hmips->root.def_regular
7970 && ! (info->shared && ! info->symbolic
7971 && ! hmips->root.forced_local))
7972 h = NULL;
7974 /* Fall through. */
7976 case R_MIPS16_GOT16:
7977 case R_MIPS_GOT16:
7978 case R_MIPS_GOT_HI16:
7979 case R_MIPS_GOT_LO16:
7980 case R_MICROMIPS_GOT16:
7981 case R_MICROMIPS_GOT_HI16:
7982 case R_MICROMIPS_GOT_LO16:
7983 if (!h || got_page_reloc_p (r_type))
7985 /* This relocation needs (or may need, if h != NULL) a
7986 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7987 know for sure until we know whether the symbol is
7988 preemptible. */
7989 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7991 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7992 return FALSE;
7993 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7994 addend = mips_elf_read_rel_addend (abfd, rel,
7995 howto, contents);
7996 if (got16_reloc_p (r_type))
7997 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7998 contents, &addend);
7999 else
8000 addend <<= howto->rightshift;
8002 else
8003 addend = rel->r_addend;
8004 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8005 addend))
8006 return FALSE;
8008 /* Fall through. */
8010 case R_MIPS_GOT_DISP:
8011 case R_MICROMIPS_GOT_DISP:
8012 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8013 FALSE, 0))
8014 return FALSE;
8015 break;
8017 case R_MIPS_TLS_GOTTPREL:
8018 case R_MICROMIPS_TLS_GOTTPREL:
8019 if (info->shared)
8020 info->flags |= DF_STATIC_TLS;
8021 /* Fall through */
8023 case R_MIPS_TLS_LDM:
8024 case R_MICROMIPS_TLS_LDM:
8025 if (tls_ldm_reloc_p (r_type))
8027 r_symndx = STN_UNDEF;
8028 h = NULL;
8030 /* Fall through */
8032 case R_MIPS_TLS_GD:
8033 case R_MICROMIPS_TLS_GD:
8034 /* This symbol requires a global offset table entry, or two
8035 for TLS GD relocations. */
8037 unsigned char flag;
8039 flag = (tls_gd_reloc_p (r_type)
8040 ? GOT_TLS_GD
8041 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8042 if (h != NULL)
8044 struct mips_elf_link_hash_entry *hmips =
8045 (struct mips_elf_link_hash_entry *) h;
8046 hmips->tls_type |= flag;
8048 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8049 FALSE, flag))
8050 return FALSE;
8052 else
8054 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8056 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8057 rel->r_addend,
8058 info, flag))
8059 return FALSE;
8062 break;
8064 case R_MIPS_32:
8065 case R_MIPS_REL32:
8066 case R_MIPS_64:
8067 /* In VxWorks executables, references to external symbols
8068 are handled using copy relocs or PLT stubs, so there's
8069 no need to add a .rela.dyn entry for this relocation. */
8070 if (can_make_dynamic_p)
8072 if (sreloc == NULL)
8074 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8075 if (sreloc == NULL)
8076 return FALSE;
8078 if (info->shared && h == NULL)
8080 /* When creating a shared object, we must copy these
8081 reloc types into the output file as R_MIPS_REL32
8082 relocs. Make room for this reloc in .rel(a).dyn. */
8083 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8084 if (MIPS_ELF_READONLY_SECTION (sec))
8085 /* We tell the dynamic linker that there are
8086 relocations against the text segment. */
8087 info->flags |= DF_TEXTREL;
8089 else
8091 struct mips_elf_link_hash_entry *hmips;
8093 /* For a shared object, we must copy this relocation
8094 unless the symbol turns out to be undefined and
8095 weak with non-default visibility, in which case
8096 it will be left as zero.
8098 We could elide R_MIPS_REL32 for locally binding symbols
8099 in shared libraries, but do not yet do so.
8101 For an executable, we only need to copy this
8102 reloc if the symbol is defined in a dynamic
8103 object. */
8104 hmips = (struct mips_elf_link_hash_entry *) h;
8105 ++hmips->possibly_dynamic_relocs;
8106 if (MIPS_ELF_READONLY_SECTION (sec))
8107 /* We need it to tell the dynamic linker if there
8108 are relocations against the text segment. */
8109 hmips->readonly_reloc = TRUE;
8113 if (SGI_COMPAT (abfd))
8114 mips_elf_hash_table (info)->compact_rel_size +=
8115 sizeof (Elf32_External_crinfo);
8116 break;
8118 case R_MIPS_26:
8119 case R_MIPS_GPREL16:
8120 case R_MIPS_LITERAL:
8121 case R_MIPS_GPREL32:
8122 case R_MICROMIPS_26_S1:
8123 case R_MICROMIPS_GPREL16:
8124 case R_MICROMIPS_LITERAL:
8125 case R_MICROMIPS_GPREL7_S2:
8126 if (SGI_COMPAT (abfd))
8127 mips_elf_hash_table (info)->compact_rel_size +=
8128 sizeof (Elf32_External_crinfo);
8129 break;
8131 /* This relocation describes the C++ object vtable hierarchy.
8132 Reconstruct it for later use during GC. */
8133 case R_MIPS_GNU_VTINHERIT:
8134 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8135 return FALSE;
8136 break;
8138 /* This relocation describes which C++ vtable entries are actually
8139 used. Record for later use during GC. */
8140 case R_MIPS_GNU_VTENTRY:
8141 BFD_ASSERT (h != NULL);
8142 if (h != NULL
8143 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8144 return FALSE;
8145 break;
8147 default:
8148 break;
8151 /* We must not create a stub for a symbol that has relocations
8152 related to taking the function's address. This doesn't apply to
8153 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8154 a normal .got entry. */
8155 if (!htab->is_vxworks && h != NULL)
8156 switch (r_type)
8158 default:
8159 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8160 break;
8161 case R_MIPS16_CALL16:
8162 case R_MIPS_CALL16:
8163 case R_MIPS_CALL_HI16:
8164 case R_MIPS_CALL_LO16:
8165 case R_MIPS_JALR:
8166 case R_MICROMIPS_CALL16:
8167 case R_MICROMIPS_CALL_HI16:
8168 case R_MICROMIPS_CALL_LO16:
8169 case R_MICROMIPS_JALR:
8170 break;
8173 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8174 if there is one. We only need to handle global symbols here;
8175 we decide whether to keep or delete stubs for local symbols
8176 when processing the stub's relocations. */
8177 if (h != NULL
8178 && !mips16_call_reloc_p (r_type)
8179 && !section_allows_mips16_refs_p (sec))
8181 struct mips_elf_link_hash_entry *mh;
8183 mh = (struct mips_elf_link_hash_entry *) h;
8184 mh->need_fn_stub = TRUE;
8187 /* Refuse some position-dependent relocations when creating a
8188 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8189 not PIC, but we can create dynamic relocations and the result
8190 will be fine. Also do not refuse R_MIPS_LO16, which can be
8191 combined with R_MIPS_GOT16. */
8192 if (info->shared)
8194 switch (r_type)
8196 case R_MIPS16_HI16:
8197 case R_MIPS_HI16:
8198 case R_MIPS_HIGHER:
8199 case R_MIPS_HIGHEST:
8200 case R_MICROMIPS_HI16:
8201 case R_MICROMIPS_HIGHER:
8202 case R_MICROMIPS_HIGHEST:
8203 /* Don't refuse a high part relocation if it's against
8204 no symbol (e.g. part of a compound relocation). */
8205 if (r_symndx == STN_UNDEF)
8206 break;
8208 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8209 and has a special meaning. */
8210 if (!NEWABI_P (abfd) && h != NULL
8211 && strcmp (h->root.root.string, "_gp_disp") == 0)
8212 break;
8214 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8215 if (is_gott_symbol (info, h))
8216 break;
8218 /* FALLTHROUGH */
8220 case R_MIPS16_26:
8221 case R_MIPS_26:
8222 case R_MICROMIPS_26_S1:
8223 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8224 (*_bfd_error_handler)
8225 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8226 abfd, howto->name,
8227 (h) ? h->root.root.string : "a local symbol");
8228 bfd_set_error (bfd_error_bad_value);
8229 return FALSE;
8230 default:
8231 break;
8236 return TRUE;
8239 bfd_boolean
8240 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8241 struct bfd_link_info *link_info,
8242 bfd_boolean *again)
8244 Elf_Internal_Rela *internal_relocs;
8245 Elf_Internal_Rela *irel, *irelend;
8246 Elf_Internal_Shdr *symtab_hdr;
8247 bfd_byte *contents = NULL;
8248 size_t extsymoff;
8249 bfd_boolean changed_contents = FALSE;
8250 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8251 Elf_Internal_Sym *isymbuf = NULL;
8253 /* We are not currently changing any sizes, so only one pass. */
8254 *again = FALSE;
8256 if (link_info->relocatable)
8257 return TRUE;
8259 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8260 link_info->keep_memory);
8261 if (internal_relocs == NULL)
8262 return TRUE;
8264 irelend = internal_relocs + sec->reloc_count
8265 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8266 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8267 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8269 for (irel = internal_relocs; irel < irelend; irel++)
8271 bfd_vma symval;
8272 bfd_signed_vma sym_offset;
8273 unsigned int r_type;
8274 unsigned long r_symndx;
8275 asection *sym_sec;
8276 unsigned long instruction;
8278 /* Turn jalr into bgezal, and jr into beq, if they're marked
8279 with a JALR relocation, that indicate where they jump to.
8280 This saves some pipeline bubbles. */
8281 r_type = ELF_R_TYPE (abfd, irel->r_info);
8282 if (r_type != R_MIPS_JALR)
8283 continue;
8285 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8286 /* Compute the address of the jump target. */
8287 if (r_symndx >= extsymoff)
8289 struct mips_elf_link_hash_entry *h
8290 = ((struct mips_elf_link_hash_entry *)
8291 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8293 while (h->root.root.type == bfd_link_hash_indirect
8294 || h->root.root.type == bfd_link_hash_warning)
8295 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8297 /* If a symbol is undefined, or if it may be overridden,
8298 skip it. */
8299 if (! ((h->root.root.type == bfd_link_hash_defined
8300 || h->root.root.type == bfd_link_hash_defweak)
8301 && h->root.root.u.def.section)
8302 || (link_info->shared && ! link_info->symbolic
8303 && !h->root.forced_local))
8304 continue;
8306 sym_sec = h->root.root.u.def.section;
8307 if (sym_sec->output_section)
8308 symval = (h->root.root.u.def.value
8309 + sym_sec->output_section->vma
8310 + sym_sec->output_offset);
8311 else
8312 symval = h->root.root.u.def.value;
8314 else
8316 Elf_Internal_Sym *isym;
8318 /* Read this BFD's symbols if we haven't done so already. */
8319 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8321 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8322 if (isymbuf == NULL)
8323 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8324 symtab_hdr->sh_info, 0,
8325 NULL, NULL, NULL);
8326 if (isymbuf == NULL)
8327 goto relax_return;
8330 isym = isymbuf + r_symndx;
8331 if (isym->st_shndx == SHN_UNDEF)
8332 continue;
8333 else if (isym->st_shndx == SHN_ABS)
8334 sym_sec = bfd_abs_section_ptr;
8335 else if (isym->st_shndx == SHN_COMMON)
8336 sym_sec = bfd_com_section_ptr;
8337 else
8338 sym_sec
8339 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8340 symval = isym->st_value
8341 + sym_sec->output_section->vma
8342 + sym_sec->output_offset;
8345 /* Compute branch offset, from delay slot of the jump to the
8346 branch target. */
8347 sym_offset = (symval + irel->r_addend)
8348 - (sec_start + irel->r_offset + 4);
8350 /* Branch offset must be properly aligned. */
8351 if ((sym_offset & 3) != 0)
8352 continue;
8354 sym_offset >>= 2;
8356 /* Check that it's in range. */
8357 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8358 continue;
8360 /* Get the section contents if we haven't done so already. */
8361 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8362 goto relax_return;
8364 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8366 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8367 if ((instruction & 0xfc1fffff) == 0x0000f809)
8368 instruction = 0x04110000;
8369 /* If it was jr <reg>, turn it into b <target>. */
8370 else if ((instruction & 0xfc1fffff) == 0x00000008)
8371 instruction = 0x10000000;
8372 else
8373 continue;
8375 instruction |= (sym_offset & 0xffff);
8376 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8377 changed_contents = TRUE;
8380 if (contents != NULL
8381 && elf_section_data (sec)->this_hdr.contents != contents)
8383 if (!changed_contents && !link_info->keep_memory)
8384 free (contents);
8385 else
8387 /* Cache the section contents for elf_link_input_bfd. */
8388 elf_section_data (sec)->this_hdr.contents = contents;
8391 return TRUE;
8393 relax_return:
8394 if (contents != NULL
8395 && elf_section_data (sec)->this_hdr.contents != contents)
8396 free (contents);
8397 return FALSE;
8400 /* Allocate space for global sym dynamic relocs. */
8402 static bfd_boolean
8403 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8405 struct bfd_link_info *info = inf;
8406 bfd *dynobj;
8407 struct mips_elf_link_hash_entry *hmips;
8408 struct mips_elf_link_hash_table *htab;
8410 htab = mips_elf_hash_table (info);
8411 BFD_ASSERT (htab != NULL);
8413 dynobj = elf_hash_table (info)->dynobj;
8414 hmips = (struct mips_elf_link_hash_entry *) h;
8416 /* VxWorks executables are handled elsewhere; we only need to
8417 allocate relocations in shared objects. */
8418 if (htab->is_vxworks && !info->shared)
8419 return TRUE;
8421 /* Ignore indirect symbols. All relocations against such symbols
8422 will be redirected to the target symbol. */
8423 if (h->root.type == bfd_link_hash_indirect)
8424 return TRUE;
8426 /* If this symbol is defined in a dynamic object, or we are creating
8427 a shared library, we will need to copy any R_MIPS_32 or
8428 R_MIPS_REL32 relocs against it into the output file. */
8429 if (! info->relocatable
8430 && hmips->possibly_dynamic_relocs != 0
8431 && (h->root.type == bfd_link_hash_defweak
8432 || !h->def_regular
8433 || info->shared))
8435 bfd_boolean do_copy = TRUE;
8437 if (h->root.type == bfd_link_hash_undefweak)
8439 /* Do not copy relocations for undefined weak symbols with
8440 non-default visibility. */
8441 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8442 do_copy = FALSE;
8444 /* Make sure undefined weak symbols are output as a dynamic
8445 symbol in PIEs. */
8446 else if (h->dynindx == -1 && !h->forced_local)
8448 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8449 return FALSE;
8453 if (do_copy)
8455 /* Even though we don't directly need a GOT entry for this symbol,
8456 the SVR4 psABI requires it to have a dynamic symbol table
8457 index greater that DT_MIPS_GOTSYM if there are dynamic
8458 relocations against it.
8460 VxWorks does not enforce the same mapping between the GOT
8461 and the symbol table, so the same requirement does not
8462 apply there. */
8463 if (!htab->is_vxworks)
8465 if (hmips->global_got_area > GGA_RELOC_ONLY)
8466 hmips->global_got_area = GGA_RELOC_ONLY;
8467 hmips->got_only_for_calls = FALSE;
8470 mips_elf_allocate_dynamic_relocations
8471 (dynobj, info, hmips->possibly_dynamic_relocs);
8472 if (hmips->readonly_reloc)
8473 /* We tell the dynamic linker that there are relocations
8474 against the text segment. */
8475 info->flags |= DF_TEXTREL;
8479 return TRUE;
8482 /* Adjust a symbol defined by a dynamic object and referenced by a
8483 regular object. The current definition is in some section of the
8484 dynamic object, but we're not including those sections. We have to
8485 change the definition to something the rest of the link can
8486 understand. */
8488 bfd_boolean
8489 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8490 struct elf_link_hash_entry *h)
8492 bfd *dynobj;
8493 struct mips_elf_link_hash_entry *hmips;
8494 struct mips_elf_link_hash_table *htab;
8496 htab = mips_elf_hash_table (info);
8497 BFD_ASSERT (htab != NULL);
8499 dynobj = elf_hash_table (info)->dynobj;
8500 hmips = (struct mips_elf_link_hash_entry *) h;
8502 /* Make sure we know what is going on here. */
8503 BFD_ASSERT (dynobj != NULL
8504 && (h->needs_plt
8505 || h->u.weakdef != NULL
8506 || (h->def_dynamic
8507 && h->ref_regular
8508 && !h->def_regular)));
8510 hmips = (struct mips_elf_link_hash_entry *) h;
8512 /* If there are call relocations against an externally-defined symbol,
8513 see whether we can create a MIPS lazy-binding stub for it. We can
8514 only do this if all references to the function are through call
8515 relocations, and in that case, the traditional lazy-binding stubs
8516 are much more efficient than PLT entries.
8518 Traditional stubs are only available on SVR4 psABI-based systems;
8519 VxWorks always uses PLTs instead. */
8520 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8522 if (! elf_hash_table (info)->dynamic_sections_created)
8523 return TRUE;
8525 /* If this symbol is not defined in a regular file, then set
8526 the symbol to the stub location. This is required to make
8527 function pointers compare as equal between the normal
8528 executable and the shared library. */
8529 if (!h->def_regular)
8531 hmips->needs_lazy_stub = TRUE;
8532 htab->lazy_stub_count++;
8533 return TRUE;
8536 /* As above, VxWorks requires PLT entries for externally-defined
8537 functions that are only accessed through call relocations.
8539 Both VxWorks and non-VxWorks targets also need PLT entries if there
8540 are static-only relocations against an externally-defined function.
8541 This can technically occur for shared libraries if there are
8542 branches to the symbol, although it is unlikely that this will be
8543 used in practice due to the short ranges involved. It can occur
8544 for any relative or absolute relocation in executables; in that
8545 case, the PLT entry becomes the function's canonical address. */
8546 else if (((h->needs_plt && !hmips->no_fn_stub)
8547 || (h->type == STT_FUNC && hmips->has_static_relocs))
8548 && htab->use_plts_and_copy_relocs
8549 && !SYMBOL_CALLS_LOCAL (info, h)
8550 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8551 && h->root.type == bfd_link_hash_undefweak))
8553 /* If this is the first symbol to need a PLT entry, allocate room
8554 for the header. */
8555 if (htab->splt->size == 0)
8557 BFD_ASSERT (htab->sgotplt->size == 0);
8559 /* If we're using the PLT additions to the psABI, each PLT
8560 entry is 16 bytes and the PLT0 entry is 32 bytes.
8561 Encourage better cache usage by aligning. We do this
8562 lazily to avoid pessimizing traditional objects. */
8563 if (!htab->is_vxworks
8564 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8565 return FALSE;
8567 /* Make sure that .got.plt is word-aligned. We do this lazily
8568 for the same reason as above. */
8569 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8570 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8571 return FALSE;
8573 htab->splt->size += htab->plt_header_size;
8575 /* On non-VxWorks targets, the first two entries in .got.plt
8576 are reserved. */
8577 if (!htab->is_vxworks)
8578 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8580 /* On VxWorks, also allocate room for the header's
8581 .rela.plt.unloaded entries. */
8582 if (htab->is_vxworks && !info->shared)
8583 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8586 /* Assign the next .plt entry to this symbol. */
8587 h->plt.offset = htab->splt->size;
8588 htab->splt->size += htab->plt_entry_size;
8590 /* If the output file has no definition of the symbol, set the
8591 symbol's value to the address of the stub. */
8592 if (!info->shared && !h->def_regular)
8594 h->root.u.def.section = htab->splt;
8595 h->root.u.def.value = h->plt.offset;
8596 /* For VxWorks, point at the PLT load stub rather than the
8597 lazy resolution stub; this stub will become the canonical
8598 function address. */
8599 if (htab->is_vxworks)
8600 h->root.u.def.value += 8;
8603 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8604 relocation. */
8605 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8606 htab->srelplt->size += (htab->is_vxworks
8607 ? MIPS_ELF_RELA_SIZE (dynobj)
8608 : MIPS_ELF_REL_SIZE (dynobj));
8610 /* Make room for the .rela.plt.unloaded relocations. */
8611 if (htab->is_vxworks && !info->shared)
8612 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8614 /* All relocations against this symbol that could have been made
8615 dynamic will now refer to the PLT entry instead. */
8616 hmips->possibly_dynamic_relocs = 0;
8618 return TRUE;
8621 /* If this is a weak symbol, and there is a real definition, the
8622 processor independent code will have arranged for us to see the
8623 real definition first, and we can just use the same value. */
8624 if (h->u.weakdef != NULL)
8626 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8627 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8628 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8629 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8630 return TRUE;
8633 /* Otherwise, there is nothing further to do for symbols defined
8634 in regular objects. */
8635 if (h->def_regular)
8636 return TRUE;
8638 /* There's also nothing more to do if we'll convert all relocations
8639 against this symbol into dynamic relocations. */
8640 if (!hmips->has_static_relocs)
8641 return TRUE;
8643 /* We're now relying on copy relocations. Complain if we have
8644 some that we can't convert. */
8645 if (!htab->use_plts_and_copy_relocs || info->shared)
8647 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8648 "dynamic symbol %s"),
8649 h->root.root.string);
8650 bfd_set_error (bfd_error_bad_value);
8651 return FALSE;
8654 /* We must allocate the symbol in our .dynbss section, which will
8655 become part of the .bss section of the executable. There will be
8656 an entry for this symbol in the .dynsym section. The dynamic
8657 object will contain position independent code, so all references
8658 from the dynamic object to this symbol will go through the global
8659 offset table. The dynamic linker will use the .dynsym entry to
8660 determine the address it must put in the global offset table, so
8661 both the dynamic object and the regular object will refer to the
8662 same memory location for the variable. */
8664 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8666 if (htab->is_vxworks)
8667 htab->srelbss->size += sizeof (Elf32_External_Rela);
8668 else
8669 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8670 h->needs_copy = 1;
8673 /* All relocations against this symbol that could have been made
8674 dynamic will now refer to the local copy instead. */
8675 hmips->possibly_dynamic_relocs = 0;
8677 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8680 /* This function is called after all the input files have been read,
8681 and the input sections have been assigned to output sections. We
8682 check for any mips16 stub sections that we can discard. */
8684 bfd_boolean
8685 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8686 struct bfd_link_info *info)
8688 asection *ri;
8689 struct mips_elf_link_hash_table *htab;
8690 struct mips_htab_traverse_info hti;
8692 htab = mips_elf_hash_table (info);
8693 BFD_ASSERT (htab != NULL);
8695 /* The .reginfo section has a fixed size. */
8696 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8697 if (ri != NULL)
8698 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8700 hti.info = info;
8701 hti.output_bfd = output_bfd;
8702 hti.error = FALSE;
8703 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8704 mips_elf_check_symbols, &hti);
8705 if (hti.error)
8706 return FALSE;
8708 return TRUE;
8711 /* If the link uses a GOT, lay it out and work out its size. */
8713 static bfd_boolean
8714 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8716 bfd *dynobj;
8717 asection *s;
8718 struct mips_got_info *g;
8719 bfd_size_type loadable_size = 0;
8720 bfd_size_type page_gotno;
8721 bfd *sub;
8722 struct mips_elf_count_tls_arg count_tls_arg;
8723 struct mips_elf_link_hash_table *htab;
8725 htab = mips_elf_hash_table (info);
8726 BFD_ASSERT (htab != NULL);
8728 s = htab->sgot;
8729 if (s == NULL)
8730 return TRUE;
8732 dynobj = elf_hash_table (info)->dynobj;
8733 g = htab->got_info;
8735 /* Allocate room for the reserved entries. VxWorks always reserves
8736 3 entries; other objects only reserve 2 entries. */
8737 BFD_ASSERT (g->assigned_gotno == 0);
8738 if (htab->is_vxworks)
8739 htab->reserved_gotno = 3;
8740 else
8741 htab->reserved_gotno = 2;
8742 g->local_gotno += htab->reserved_gotno;
8743 g->assigned_gotno = htab->reserved_gotno;
8745 /* Replace entries for indirect and warning symbols with entries for
8746 the target symbol. */
8747 if (!mips_elf_resolve_final_got_entries (g))
8748 return FALSE;
8750 /* Count the number of GOT symbols. */
8751 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8753 /* Calculate the total loadable size of the output. That
8754 will give us the maximum number of GOT_PAGE entries
8755 required. */
8756 for (sub = info->input_bfds; sub; sub = sub->link_next)
8758 asection *subsection;
8760 for (subsection = sub->sections;
8761 subsection;
8762 subsection = subsection->next)
8764 if ((subsection->flags & SEC_ALLOC) == 0)
8765 continue;
8766 loadable_size += ((subsection->size + 0xf)
8767 &~ (bfd_size_type) 0xf);
8771 if (htab->is_vxworks)
8772 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8773 relocations against local symbols evaluate to "G", and the EABI does
8774 not include R_MIPS_GOT_PAGE. */
8775 page_gotno = 0;
8776 else
8777 /* Assume there are two loadable segments consisting of contiguous
8778 sections. Is 5 enough? */
8779 page_gotno = (loadable_size >> 16) + 5;
8781 /* Choose the smaller of the two estimates; both are intended to be
8782 conservative. */
8783 if (page_gotno > g->page_gotno)
8784 page_gotno = g->page_gotno;
8786 g->local_gotno += page_gotno;
8787 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8788 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8790 /* We need to calculate tls_gotno for global symbols at this point
8791 instead of building it up earlier, to avoid doublecounting
8792 entries for one global symbol from multiple input files. */
8793 count_tls_arg.info = info;
8794 count_tls_arg.needed = 0;
8795 elf_link_hash_traverse (elf_hash_table (info),
8796 mips_elf_count_global_tls_entries,
8797 &count_tls_arg);
8798 g->tls_gotno += count_tls_arg.needed;
8799 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8801 /* VxWorks does not support multiple GOTs. It initializes $gp to
8802 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8803 dynamic loader. */
8804 if (htab->is_vxworks)
8806 /* VxWorks executables do not need a GOT. */
8807 if (info->shared)
8809 /* Each VxWorks GOT entry needs an explicit relocation. */
8810 unsigned int count;
8812 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8813 if (count)
8814 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8817 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8819 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8820 return FALSE;
8822 else
8824 struct mips_elf_count_tls_arg arg;
8826 /* Set up TLS entries. */
8827 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8828 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8830 /* Allocate room for the TLS relocations. */
8831 arg.info = info;
8832 arg.needed = 0;
8833 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8834 elf_link_hash_traverse (elf_hash_table (info),
8835 mips_elf_count_global_tls_relocs,
8836 &arg);
8837 if (arg.needed)
8838 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8841 return TRUE;
8844 /* Estimate the size of the .MIPS.stubs section. */
8846 static void
8847 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8849 struct mips_elf_link_hash_table *htab;
8850 bfd_size_type dynsymcount;
8852 htab = mips_elf_hash_table (info);
8853 BFD_ASSERT (htab != NULL);
8855 if (htab->lazy_stub_count == 0)
8856 return;
8858 /* IRIX rld assumes that a function stub isn't at the end of the .text
8859 section, so add a dummy entry to the end. */
8860 htab->lazy_stub_count++;
8862 /* Get a worst-case estimate of the number of dynamic symbols needed.
8863 At this point, dynsymcount does not account for section symbols
8864 and count_section_dynsyms may overestimate the number that will
8865 be needed. */
8866 dynsymcount = (elf_hash_table (info)->dynsymcount
8867 + count_section_dynsyms (output_bfd, info));
8869 /* Determine the size of one stub entry. */
8870 htab->function_stub_size = (dynsymcount > 0x10000
8871 ? MIPS_FUNCTION_STUB_BIG_SIZE
8872 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8874 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8877 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8878 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8879 allocate an entry in the stubs section. */
8881 static bfd_boolean
8882 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8884 struct mips_elf_link_hash_table *htab;
8886 htab = (struct mips_elf_link_hash_table *) data;
8887 if (h->needs_lazy_stub)
8889 h->root.root.u.def.section = htab->sstubs;
8890 h->root.root.u.def.value = htab->sstubs->size;
8891 h->root.plt.offset = htab->sstubs->size;
8892 htab->sstubs->size += htab->function_stub_size;
8894 return TRUE;
8897 /* Allocate offsets in the stubs section to each symbol that needs one.
8898 Set the final size of the .MIPS.stub section. */
8900 static void
8901 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8903 struct mips_elf_link_hash_table *htab;
8905 htab = mips_elf_hash_table (info);
8906 BFD_ASSERT (htab != NULL);
8908 if (htab->lazy_stub_count == 0)
8909 return;
8911 htab->sstubs->size = 0;
8912 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8913 htab->sstubs->size += htab->function_stub_size;
8914 BFD_ASSERT (htab->sstubs->size
8915 == htab->lazy_stub_count * htab->function_stub_size);
8918 /* Set the sizes of the dynamic sections. */
8920 bfd_boolean
8921 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8922 struct bfd_link_info *info)
8924 bfd *dynobj;
8925 asection *s, *sreldyn;
8926 bfd_boolean reltext;
8927 struct mips_elf_link_hash_table *htab;
8929 htab = mips_elf_hash_table (info);
8930 BFD_ASSERT (htab != NULL);
8931 dynobj = elf_hash_table (info)->dynobj;
8932 BFD_ASSERT (dynobj != NULL);
8934 if (elf_hash_table (info)->dynamic_sections_created)
8936 /* Set the contents of the .interp section to the interpreter. */
8937 if (info->executable)
8939 s = bfd_get_section_by_name (dynobj, ".interp");
8940 BFD_ASSERT (s != NULL);
8941 s->size
8942 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8943 s->contents
8944 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8947 /* Create a symbol for the PLT, if we know that we are using it. */
8948 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8950 struct elf_link_hash_entry *h;
8952 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8954 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8955 "_PROCEDURE_LINKAGE_TABLE_");
8956 htab->root.hplt = h;
8957 if (h == NULL)
8958 return FALSE;
8959 h->type = STT_FUNC;
8963 /* Allocate space for global sym dynamic relocs. */
8964 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8966 mips_elf_estimate_stub_size (output_bfd, info);
8968 if (!mips_elf_lay_out_got (output_bfd, info))
8969 return FALSE;
8971 mips_elf_lay_out_lazy_stubs (info);
8973 /* The check_relocs and adjust_dynamic_symbol entry points have
8974 determined the sizes of the various dynamic sections. Allocate
8975 memory for them. */
8976 reltext = FALSE;
8977 for (s = dynobj->sections; s != NULL; s = s->next)
8979 const char *name;
8981 /* It's OK to base decisions on the section name, because none
8982 of the dynobj section names depend upon the input files. */
8983 name = bfd_get_section_name (dynobj, s);
8985 if ((s->flags & SEC_LINKER_CREATED) == 0)
8986 continue;
8988 if (CONST_STRNEQ (name, ".rel"))
8990 if (s->size != 0)
8992 const char *outname;
8993 asection *target;
8995 /* If this relocation section applies to a read only
8996 section, then we probably need a DT_TEXTREL entry.
8997 If the relocation section is .rel(a).dyn, we always
8998 assert a DT_TEXTREL entry rather than testing whether
8999 there exists a relocation to a read only section or
9000 not. */
9001 outname = bfd_get_section_name (output_bfd,
9002 s->output_section);
9003 target = bfd_get_section_by_name (output_bfd, outname + 4);
9004 if ((target != NULL
9005 && (target->flags & SEC_READONLY) != 0
9006 && (target->flags & SEC_ALLOC) != 0)
9007 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9008 reltext = TRUE;
9010 /* We use the reloc_count field as a counter if we need
9011 to copy relocs into the output file. */
9012 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9013 s->reloc_count = 0;
9015 /* If combreloc is enabled, elf_link_sort_relocs() will
9016 sort relocations, but in a different way than we do,
9017 and before we're done creating relocations. Also, it
9018 will move them around between input sections'
9019 relocation's contents, so our sorting would be
9020 broken, so don't let it run. */
9021 info->combreloc = 0;
9024 else if (! info->shared
9025 && ! mips_elf_hash_table (info)->use_rld_obj_head
9026 && CONST_STRNEQ (name, ".rld_map"))
9028 /* We add a room for __rld_map. It will be filled in by the
9029 rtld to contain a pointer to the _r_debug structure. */
9030 s->size += 4;
9032 else if (SGI_COMPAT (output_bfd)
9033 && CONST_STRNEQ (name, ".compact_rel"))
9034 s->size += mips_elf_hash_table (info)->compact_rel_size;
9035 else if (s == htab->splt)
9037 /* If the last PLT entry has a branch delay slot, allocate
9038 room for an extra nop to fill the delay slot. This is
9039 for CPUs without load interlocking. */
9040 if (! LOAD_INTERLOCKS_P (output_bfd)
9041 && ! htab->is_vxworks && s->size > 0)
9042 s->size += 4;
9044 else if (! CONST_STRNEQ (name, ".init")
9045 && s != htab->sgot
9046 && s != htab->sgotplt
9047 && s != htab->sstubs
9048 && s != htab->sdynbss)
9050 /* It's not one of our sections, so don't allocate space. */
9051 continue;
9054 if (s->size == 0)
9056 s->flags |= SEC_EXCLUDE;
9057 continue;
9060 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9061 continue;
9063 /* Allocate memory for the section contents. */
9064 s->contents = bfd_zalloc (dynobj, s->size);
9065 if (s->contents == NULL)
9067 bfd_set_error (bfd_error_no_memory);
9068 return FALSE;
9072 if (elf_hash_table (info)->dynamic_sections_created)
9074 /* Add some entries to the .dynamic section. We fill in the
9075 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9076 must add the entries now so that we get the correct size for
9077 the .dynamic section. */
9079 /* SGI object has the equivalence of DT_DEBUG in the
9080 DT_MIPS_RLD_MAP entry. This must come first because glibc
9081 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9082 looks at the first one it sees. */
9083 if (!info->shared
9084 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9085 return FALSE;
9087 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9088 used by the debugger. */
9089 if (info->executable
9090 && !SGI_COMPAT (output_bfd)
9091 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9092 return FALSE;
9094 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9095 info->flags |= DF_TEXTREL;
9097 if ((info->flags & DF_TEXTREL) != 0)
9099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9100 return FALSE;
9102 /* Clear the DF_TEXTREL flag. It will be set again if we
9103 write out an actual text relocation; we may not, because
9104 at this point we do not know whether e.g. any .eh_frame
9105 absolute relocations have been converted to PC-relative. */
9106 info->flags &= ~DF_TEXTREL;
9109 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9110 return FALSE;
9112 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9113 if (htab->is_vxworks)
9115 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9116 use any of the DT_MIPS_* tags. */
9117 if (sreldyn && sreldyn->size > 0)
9119 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9120 return FALSE;
9122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9123 return FALSE;
9125 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9126 return FALSE;
9129 else
9131 if (sreldyn && sreldyn->size > 0)
9133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9134 return FALSE;
9136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9137 return FALSE;
9139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9140 return FALSE;
9143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9144 return FALSE;
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9147 return FALSE;
9149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9150 return FALSE;
9152 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9153 return FALSE;
9155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9156 return FALSE;
9158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9159 return FALSE;
9161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9162 return FALSE;
9164 if (IRIX_COMPAT (dynobj) == ict_irix5
9165 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9166 return FALSE;
9168 if (IRIX_COMPAT (dynobj) == ict_irix6
9169 && (bfd_get_section_by_name
9170 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9171 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9172 return FALSE;
9174 if (htab->splt->size > 0)
9176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9177 return FALSE;
9179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9180 return FALSE;
9182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9183 return FALSE;
9185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9186 return FALSE;
9188 if (htab->is_vxworks
9189 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9190 return FALSE;
9193 return TRUE;
9196 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9197 Adjust its R_ADDEND field so that it is correct for the output file.
9198 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9199 and sections respectively; both use symbol indexes. */
9201 static void
9202 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9203 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9204 asection **local_sections, Elf_Internal_Rela *rel)
9206 unsigned int r_type, r_symndx;
9207 Elf_Internal_Sym *sym;
9208 asection *sec;
9210 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9212 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9213 if (gprel16_reloc_p (r_type)
9214 || r_type == R_MIPS_GPREL32
9215 || literal_reloc_p (r_type))
9217 rel->r_addend += _bfd_get_gp_value (input_bfd);
9218 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9221 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9222 sym = local_syms + r_symndx;
9224 /* Adjust REL's addend to account for section merging. */
9225 if (!info->relocatable)
9227 sec = local_sections[r_symndx];
9228 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9231 /* This would normally be done by the rela_normal code in elflink.c. */
9232 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9233 rel->r_addend += local_sections[r_symndx]->output_offset;
9237 /* Relocate a MIPS ELF section. */
9239 bfd_boolean
9240 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9241 bfd *input_bfd, asection *input_section,
9242 bfd_byte *contents, Elf_Internal_Rela *relocs,
9243 Elf_Internal_Sym *local_syms,
9244 asection **local_sections)
9246 Elf_Internal_Rela *rel;
9247 const Elf_Internal_Rela *relend;
9248 bfd_vma addend = 0;
9249 bfd_boolean use_saved_addend_p = FALSE;
9250 const struct elf_backend_data *bed;
9252 bed = get_elf_backend_data (output_bfd);
9253 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9254 for (rel = relocs; rel < relend; ++rel)
9256 const char *name;
9257 bfd_vma value = 0;
9258 reloc_howto_type *howto;
9259 bfd_boolean cross_mode_jump_p;
9260 /* TRUE if the relocation is a RELA relocation, rather than a
9261 REL relocation. */
9262 bfd_boolean rela_relocation_p = TRUE;
9263 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9264 const char *msg;
9265 unsigned long r_symndx;
9266 asection *sec;
9267 Elf_Internal_Shdr *symtab_hdr;
9268 struct elf_link_hash_entry *h;
9269 bfd_boolean rel_reloc;
9271 rel_reloc = (NEWABI_P (input_bfd)
9272 && mips_elf_rel_relocation_p (input_bfd, input_section,
9273 relocs, rel));
9274 /* Find the relocation howto for this relocation. */
9275 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9277 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9278 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9279 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9281 sec = local_sections[r_symndx];
9282 h = NULL;
9284 else
9286 unsigned long extsymoff;
9288 extsymoff = 0;
9289 if (!elf_bad_symtab (input_bfd))
9290 extsymoff = symtab_hdr->sh_info;
9291 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9292 while (h->root.type == bfd_link_hash_indirect
9293 || h->root.type == bfd_link_hash_warning)
9294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9296 sec = NULL;
9297 if (h->root.type == bfd_link_hash_defined
9298 || h->root.type == bfd_link_hash_defweak)
9299 sec = h->root.u.def.section;
9302 if (sec != NULL && elf_discarded_section (sec))
9303 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9304 rel, relend, howto, contents);
9306 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9308 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9309 64-bit code, but make sure all their addresses are in the
9310 lowermost or uppermost 32-bit section of the 64-bit address
9311 space. Thus, when they use an R_MIPS_64 they mean what is
9312 usually meant by R_MIPS_32, with the exception that the
9313 stored value is sign-extended to 64 bits. */
9314 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9316 /* On big-endian systems, we need to lie about the position
9317 of the reloc. */
9318 if (bfd_big_endian (input_bfd))
9319 rel->r_offset += 4;
9322 if (!use_saved_addend_p)
9324 /* If these relocations were originally of the REL variety,
9325 we must pull the addend out of the field that will be
9326 relocated. Otherwise, we simply use the contents of the
9327 RELA relocation. */
9328 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9329 relocs, rel))
9331 rela_relocation_p = FALSE;
9332 addend = mips_elf_read_rel_addend (input_bfd, rel,
9333 howto, contents);
9334 if (hi16_reloc_p (r_type)
9335 || (got16_reloc_p (r_type)
9336 && mips_elf_local_relocation_p (input_bfd, rel,
9337 local_sections)))
9339 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9340 contents, &addend))
9342 if (h)
9343 name = h->root.root.string;
9344 else
9345 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9346 local_syms + r_symndx,
9347 sec);
9348 (*_bfd_error_handler)
9349 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9350 input_bfd, input_section, name, howto->name,
9351 rel->r_offset);
9354 else
9355 addend <<= howto->rightshift;
9357 else
9358 addend = rel->r_addend;
9359 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9360 local_syms, local_sections, rel);
9363 if (info->relocatable)
9365 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9366 && bfd_big_endian (input_bfd))
9367 rel->r_offset -= 4;
9369 if (!rela_relocation_p && rel->r_addend)
9371 addend += rel->r_addend;
9372 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9373 addend = mips_elf_high (addend);
9374 else if (r_type == R_MIPS_HIGHER)
9375 addend = mips_elf_higher (addend);
9376 else if (r_type == R_MIPS_HIGHEST)
9377 addend = mips_elf_highest (addend);
9378 else
9379 addend >>= howto->rightshift;
9381 /* We use the source mask, rather than the destination
9382 mask because the place to which we are writing will be
9383 source of the addend in the final link. */
9384 addend &= howto->src_mask;
9386 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9387 /* See the comment above about using R_MIPS_64 in the 32-bit
9388 ABI. Here, we need to update the addend. It would be
9389 possible to get away with just using the R_MIPS_32 reloc
9390 but for endianness. */
9392 bfd_vma sign_bits;
9393 bfd_vma low_bits;
9394 bfd_vma high_bits;
9396 if (addend & ((bfd_vma) 1 << 31))
9397 #ifdef BFD64
9398 sign_bits = ((bfd_vma) 1 << 32) - 1;
9399 #else
9400 sign_bits = -1;
9401 #endif
9402 else
9403 sign_bits = 0;
9405 /* If we don't know that we have a 64-bit type,
9406 do two separate stores. */
9407 if (bfd_big_endian (input_bfd))
9409 /* Store the sign-bits (which are most significant)
9410 first. */
9411 low_bits = sign_bits;
9412 high_bits = addend;
9414 else
9416 low_bits = addend;
9417 high_bits = sign_bits;
9419 bfd_put_32 (input_bfd, low_bits,
9420 contents + rel->r_offset);
9421 bfd_put_32 (input_bfd, high_bits,
9422 contents + rel->r_offset + 4);
9423 continue;
9426 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9427 input_bfd, input_section,
9428 contents, FALSE))
9429 return FALSE;
9432 /* Go on to the next relocation. */
9433 continue;
9436 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9437 relocations for the same offset. In that case we are
9438 supposed to treat the output of each relocation as the addend
9439 for the next. */
9440 if (rel + 1 < relend
9441 && rel->r_offset == rel[1].r_offset
9442 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9443 use_saved_addend_p = TRUE;
9444 else
9445 use_saved_addend_p = FALSE;
9447 /* Figure out what value we are supposed to relocate. */
9448 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9449 input_section, info, rel,
9450 addend, howto, local_syms,
9451 local_sections, &value,
9452 &name, &cross_mode_jump_p,
9453 use_saved_addend_p))
9455 case bfd_reloc_continue:
9456 /* There's nothing to do. */
9457 continue;
9459 case bfd_reloc_undefined:
9460 /* mips_elf_calculate_relocation already called the
9461 undefined_symbol callback. There's no real point in
9462 trying to perform the relocation at this point, so we
9463 just skip ahead to the next relocation. */
9464 continue;
9466 case bfd_reloc_notsupported:
9467 msg = _("internal error: unsupported relocation error");
9468 info->callbacks->warning
9469 (info, msg, name, input_bfd, input_section, rel->r_offset);
9470 return FALSE;
9472 case bfd_reloc_overflow:
9473 if (use_saved_addend_p)
9474 /* Ignore overflow until we reach the last relocation for
9475 a given location. */
9477 else
9479 struct mips_elf_link_hash_table *htab;
9481 htab = mips_elf_hash_table (info);
9482 BFD_ASSERT (htab != NULL);
9483 BFD_ASSERT (name != NULL);
9484 if (!htab->small_data_overflow_reported
9485 && (gprel16_reloc_p (howto->type)
9486 || literal_reloc_p (howto->type)))
9488 msg = _("small-data section exceeds 64KB;"
9489 " lower small-data size limit (see option -G)");
9491 htab->small_data_overflow_reported = TRUE;
9492 (*info->callbacks->einfo) ("%P: %s\n", msg);
9494 if (! ((*info->callbacks->reloc_overflow)
9495 (info, NULL, name, howto->name, (bfd_vma) 0,
9496 input_bfd, input_section, rel->r_offset)))
9497 return FALSE;
9499 break;
9501 case bfd_reloc_ok:
9502 break;
9504 case bfd_reloc_outofrange:
9505 if (jal_reloc_p (howto->type))
9507 msg = _("JALX to a non-word-aligned address");
9508 info->callbacks->warning
9509 (info, msg, name, input_bfd, input_section, rel->r_offset);
9510 return FALSE;
9512 /* Fall through. */
9514 default:
9515 abort ();
9516 break;
9519 /* If we've got another relocation for the address, keep going
9520 until we reach the last one. */
9521 if (use_saved_addend_p)
9523 addend = value;
9524 continue;
9527 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9528 /* See the comment above about using R_MIPS_64 in the 32-bit
9529 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9530 that calculated the right value. Now, however, we
9531 sign-extend the 32-bit result to 64-bits, and store it as a
9532 64-bit value. We are especially generous here in that we
9533 go to extreme lengths to support this usage on systems with
9534 only a 32-bit VMA. */
9536 bfd_vma sign_bits;
9537 bfd_vma low_bits;
9538 bfd_vma high_bits;
9540 if (value & ((bfd_vma) 1 << 31))
9541 #ifdef BFD64
9542 sign_bits = ((bfd_vma) 1 << 32) - 1;
9543 #else
9544 sign_bits = -1;
9545 #endif
9546 else
9547 sign_bits = 0;
9549 /* If we don't know that we have a 64-bit type,
9550 do two separate stores. */
9551 if (bfd_big_endian (input_bfd))
9553 /* Undo what we did above. */
9554 rel->r_offset -= 4;
9555 /* Store the sign-bits (which are most significant)
9556 first. */
9557 low_bits = sign_bits;
9558 high_bits = value;
9560 else
9562 low_bits = value;
9563 high_bits = sign_bits;
9565 bfd_put_32 (input_bfd, low_bits,
9566 contents + rel->r_offset);
9567 bfd_put_32 (input_bfd, high_bits,
9568 contents + rel->r_offset + 4);
9569 continue;
9572 /* Actually perform the relocation. */
9573 if (! mips_elf_perform_relocation (info, howto, rel, value,
9574 input_bfd, input_section,
9575 contents, cross_mode_jump_p))
9576 return FALSE;
9579 return TRUE;
9582 /* A function that iterates over each entry in la25_stubs and fills
9583 in the code for each one. DATA points to a mips_htab_traverse_info. */
9585 static int
9586 mips_elf_create_la25_stub (void **slot, void *data)
9588 struct mips_htab_traverse_info *hti;
9589 struct mips_elf_link_hash_table *htab;
9590 struct mips_elf_la25_stub *stub;
9591 asection *s;
9592 bfd_byte *loc;
9593 bfd_vma offset, target, target_high, target_low;
9595 stub = (struct mips_elf_la25_stub *) *slot;
9596 hti = (struct mips_htab_traverse_info *) data;
9597 htab = mips_elf_hash_table (hti->info);
9598 BFD_ASSERT (htab != NULL);
9600 /* Create the section contents, if we haven't already. */
9601 s = stub->stub_section;
9602 loc = s->contents;
9603 if (loc == NULL)
9605 loc = bfd_malloc (s->size);
9606 if (loc == NULL)
9608 hti->error = TRUE;
9609 return FALSE;
9611 s->contents = loc;
9614 /* Work out where in the section this stub should go. */
9615 offset = stub->offset;
9617 /* Work out the target address. */
9618 target = (stub->h->root.root.u.def.section->output_section->vma
9619 + stub->h->root.root.u.def.section->output_offset
9620 + stub->h->root.root.u.def.value);
9621 target_high = ((target + 0x8000) >> 16) & 0xffff;
9622 target_low = (target & 0xffff);
9624 if (stub->stub_section != htab->strampoline)
9626 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9627 of the section and write the two instructions at the end. */
9628 memset (loc, 0, offset);
9629 loc += offset;
9630 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9632 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9633 loc);
9634 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9635 loc + 2);
9636 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9637 loc + 4);
9638 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9639 loc + 6);
9641 else
9643 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9644 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9647 else
9649 /* This is trampoline. */
9650 loc += offset;
9651 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9653 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9654 loc);
9655 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9656 loc + 2);
9657 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9658 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9659 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9660 loc + 8);
9661 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9662 loc + 10);
9663 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9665 else
9667 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9668 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9669 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9670 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9673 return TRUE;
9676 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9677 adjust it appropriately now. */
9679 static void
9680 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9681 const char *name, Elf_Internal_Sym *sym)
9683 /* The linker script takes care of providing names and values for
9684 these, but we must place them into the right sections. */
9685 static const char* const text_section_symbols[] = {
9686 "_ftext",
9687 "_etext",
9688 "__dso_displacement",
9689 "__elf_header",
9690 "__program_header_table",
9691 NULL
9694 static const char* const data_section_symbols[] = {
9695 "_fdata",
9696 "_edata",
9697 "_end",
9698 "_fbss",
9699 NULL
9702 const char* const *p;
9703 int i;
9705 for (i = 0; i < 2; ++i)
9706 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9708 ++p)
9709 if (strcmp (*p, name) == 0)
9711 /* All of these symbols are given type STT_SECTION by the
9712 IRIX6 linker. */
9713 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9714 sym->st_other = STO_PROTECTED;
9716 /* The IRIX linker puts these symbols in special sections. */
9717 if (i == 0)
9718 sym->st_shndx = SHN_MIPS_TEXT;
9719 else
9720 sym->st_shndx = SHN_MIPS_DATA;
9722 break;
9726 /* Finish up dynamic symbol handling. We set the contents of various
9727 dynamic sections here. */
9729 bfd_boolean
9730 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9731 struct bfd_link_info *info,
9732 struct elf_link_hash_entry *h,
9733 Elf_Internal_Sym *sym)
9735 bfd *dynobj;
9736 asection *sgot;
9737 struct mips_got_info *g, *gg;
9738 const char *name;
9739 int idx;
9740 struct mips_elf_link_hash_table *htab;
9741 struct mips_elf_link_hash_entry *hmips;
9743 htab = mips_elf_hash_table (info);
9744 BFD_ASSERT (htab != NULL);
9745 dynobj = elf_hash_table (info)->dynobj;
9746 hmips = (struct mips_elf_link_hash_entry *) h;
9748 BFD_ASSERT (!htab->is_vxworks);
9750 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9752 /* We've decided to create a PLT entry for this symbol. */
9753 bfd_byte *loc;
9754 bfd_vma header_address, plt_index, got_address;
9755 bfd_vma got_address_high, got_address_low, load;
9756 const bfd_vma *plt_entry;
9758 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9759 BFD_ASSERT (h->dynindx != -1);
9760 BFD_ASSERT (htab->splt != NULL);
9761 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9762 BFD_ASSERT (!h->def_regular);
9764 /* Calculate the address of the PLT header. */
9765 header_address = (htab->splt->output_section->vma
9766 + htab->splt->output_offset);
9768 /* Calculate the index of the entry. */
9769 plt_index = ((h->plt.offset - htab->plt_header_size)
9770 / htab->plt_entry_size);
9772 /* Calculate the address of the .got.plt entry. */
9773 got_address = (htab->sgotplt->output_section->vma
9774 + htab->sgotplt->output_offset
9775 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9776 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9777 got_address_low = got_address & 0xffff;
9779 /* Initially point the .got.plt entry at the PLT header. */
9780 loc = (htab->sgotplt->contents
9781 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9782 if (ABI_64_P (output_bfd))
9783 bfd_put_64 (output_bfd, header_address, loc);
9784 else
9785 bfd_put_32 (output_bfd, header_address, loc);
9787 /* Find out where the .plt entry should go. */
9788 loc = htab->splt->contents + h->plt.offset;
9790 /* Pick the load opcode. */
9791 load = MIPS_ELF_LOAD_WORD (output_bfd);
9793 /* Fill in the PLT entry itself. */
9794 plt_entry = mips_exec_plt_entry;
9795 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9796 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9798 if (! LOAD_INTERLOCKS_P (output_bfd))
9800 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9801 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9803 else
9805 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9806 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9809 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9810 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9811 plt_index, h->dynindx,
9812 R_MIPS_JUMP_SLOT, got_address);
9814 /* We distinguish between PLT entries and lazy-binding stubs by
9815 giving the former an st_other value of STO_MIPS_PLT. Set the
9816 flag and leave the value if there are any relocations in the
9817 binary where pointer equality matters. */
9818 sym->st_shndx = SHN_UNDEF;
9819 if (h->pointer_equality_needed)
9820 sym->st_other = STO_MIPS_PLT;
9821 else
9822 sym->st_value = 0;
9824 else if (h->plt.offset != MINUS_ONE)
9826 /* We've decided to create a lazy-binding stub. */
9827 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9829 /* This symbol has a stub. Set it up. */
9831 BFD_ASSERT (h->dynindx != -1);
9833 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9834 || (h->dynindx <= 0xffff));
9836 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9837 sign extension at runtime in the stub, resulting in a negative
9838 index value. */
9839 if (h->dynindx & ~0x7fffffff)
9840 return FALSE;
9842 /* Fill the stub. */
9843 idx = 0;
9844 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9845 idx += 4;
9846 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9847 idx += 4;
9848 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9850 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9851 stub + idx);
9852 idx += 4;
9854 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9855 idx += 4;
9857 /* If a large stub is not required and sign extension is not a
9858 problem, then use legacy code in the stub. */
9859 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9860 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9861 else if (h->dynindx & ~0x7fff)
9862 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9863 else
9864 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9865 stub + idx);
9867 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9868 memcpy (htab->sstubs->contents + h->plt.offset,
9869 stub, htab->function_stub_size);
9871 /* Mark the symbol as undefined. plt.offset != -1 occurs
9872 only for the referenced symbol. */
9873 sym->st_shndx = SHN_UNDEF;
9875 /* The run-time linker uses the st_value field of the symbol
9876 to reset the global offset table entry for this external
9877 to its stub address when unlinking a shared object. */
9878 sym->st_value = (htab->sstubs->output_section->vma
9879 + htab->sstubs->output_offset
9880 + h->plt.offset);
9883 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9884 refer to the stub, since only the stub uses the standard calling
9885 conventions. */
9886 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9888 BFD_ASSERT (hmips->need_fn_stub);
9889 sym->st_value = (hmips->fn_stub->output_section->vma
9890 + hmips->fn_stub->output_offset);
9891 sym->st_size = hmips->fn_stub->size;
9892 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9895 BFD_ASSERT (h->dynindx != -1
9896 || h->forced_local);
9898 sgot = htab->sgot;
9899 g = htab->got_info;
9900 BFD_ASSERT (g != NULL);
9902 /* Run through the global symbol table, creating GOT entries for all
9903 the symbols that need them. */
9904 if (hmips->global_got_area != GGA_NONE)
9906 bfd_vma offset;
9907 bfd_vma value;
9909 value = sym->st_value;
9910 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9911 R_MIPS_GOT16, info);
9912 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9915 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9917 struct mips_got_entry e, *p;
9918 bfd_vma entry;
9919 bfd_vma offset;
9921 gg = g;
9923 e.abfd = output_bfd;
9924 e.symndx = -1;
9925 e.d.h = hmips;
9926 e.tls_type = 0;
9928 for (g = g->next; g->next != gg; g = g->next)
9930 if (g->got_entries
9931 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9932 &e)))
9934 offset = p->gotidx;
9935 if (info->shared
9936 || (elf_hash_table (info)->dynamic_sections_created
9937 && p->d.h != NULL
9938 && p->d.h->root.def_dynamic
9939 && !p->d.h->root.def_regular))
9941 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9942 the various compatibility problems, it's easier to mock
9943 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9944 mips_elf_create_dynamic_relocation to calculate the
9945 appropriate addend. */
9946 Elf_Internal_Rela rel[3];
9948 memset (rel, 0, sizeof (rel));
9949 if (ABI_64_P (output_bfd))
9950 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9951 else
9952 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9953 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9955 entry = 0;
9956 if (! (mips_elf_create_dynamic_relocation
9957 (output_bfd, info, rel,
9958 e.d.h, NULL, sym->st_value, &entry, sgot)))
9959 return FALSE;
9961 else
9962 entry = sym->st_value;
9963 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9968 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9969 name = h->root.root.string;
9970 if (strcmp (name, "_DYNAMIC") == 0
9971 || h == elf_hash_table (info)->hgot)
9972 sym->st_shndx = SHN_ABS;
9973 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9974 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9976 sym->st_shndx = SHN_ABS;
9977 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9978 sym->st_value = 1;
9980 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9982 sym->st_shndx = SHN_ABS;
9983 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9984 sym->st_value = elf_gp (output_bfd);
9986 else if (SGI_COMPAT (output_bfd))
9988 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9989 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9991 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9992 sym->st_other = STO_PROTECTED;
9993 sym->st_value = 0;
9994 sym->st_shndx = SHN_MIPS_DATA;
9996 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9998 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9999 sym->st_other = STO_PROTECTED;
10000 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10001 sym->st_shndx = SHN_ABS;
10003 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10005 if (h->type == STT_FUNC)
10006 sym->st_shndx = SHN_MIPS_TEXT;
10007 else if (h->type == STT_OBJECT)
10008 sym->st_shndx = SHN_MIPS_DATA;
10012 /* Emit a copy reloc, if needed. */
10013 if (h->needs_copy)
10015 asection *s;
10016 bfd_vma symval;
10018 BFD_ASSERT (h->dynindx != -1);
10019 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10021 s = mips_elf_rel_dyn_section (info, FALSE);
10022 symval = (h->root.u.def.section->output_section->vma
10023 + h->root.u.def.section->output_offset
10024 + h->root.u.def.value);
10025 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10026 h->dynindx, R_MIPS_COPY, symval);
10029 /* Handle the IRIX6-specific symbols. */
10030 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10031 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10033 if (! info->shared)
10035 if (! mips_elf_hash_table (info)->use_rld_obj_head
10036 && (strcmp (name, "__rld_map") == 0
10037 || strcmp (name, "__RLD_MAP") == 0))
10039 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
10040 BFD_ASSERT (s != NULL);
10041 sym->st_value = s->output_section->vma + s->output_offset;
10042 bfd_put_32 (output_bfd, 0, s->contents);
10043 if (mips_elf_hash_table (info)->rld_value == 0)
10044 mips_elf_hash_table (info)->rld_value = sym->st_value;
10046 else if (mips_elf_hash_table (info)->use_rld_obj_head
10047 && strcmp (name, "__rld_obj_head") == 0)
10049 /* IRIX6 does not use a .rld_map section. */
10050 if (IRIX_COMPAT (output_bfd) == ict_irix5
10051 || IRIX_COMPAT (output_bfd) == ict_none)
10052 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
10053 != NULL);
10054 mips_elf_hash_table (info)->rld_value = sym->st_value;
10058 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10059 treat MIPS16 symbols like any other. */
10060 if (ELF_ST_IS_MIPS16 (sym->st_other))
10062 BFD_ASSERT (sym->st_value & 1);
10063 sym->st_other -= STO_MIPS16;
10066 return TRUE;
10069 /* Likewise, for VxWorks. */
10071 bfd_boolean
10072 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10073 struct bfd_link_info *info,
10074 struct elf_link_hash_entry *h,
10075 Elf_Internal_Sym *sym)
10077 bfd *dynobj;
10078 asection *sgot;
10079 struct mips_got_info *g;
10080 struct mips_elf_link_hash_table *htab;
10081 struct mips_elf_link_hash_entry *hmips;
10083 htab = mips_elf_hash_table (info);
10084 BFD_ASSERT (htab != NULL);
10085 dynobj = elf_hash_table (info)->dynobj;
10086 hmips = (struct mips_elf_link_hash_entry *) h;
10088 if (h->plt.offset != (bfd_vma) -1)
10090 bfd_byte *loc;
10091 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10092 Elf_Internal_Rela rel;
10093 static const bfd_vma *plt_entry;
10095 BFD_ASSERT (h->dynindx != -1);
10096 BFD_ASSERT (htab->splt != NULL);
10097 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10099 /* Calculate the address of the .plt entry. */
10100 plt_address = (htab->splt->output_section->vma
10101 + htab->splt->output_offset
10102 + h->plt.offset);
10104 /* Calculate the index of the entry. */
10105 plt_index = ((h->plt.offset - htab->plt_header_size)
10106 / htab->plt_entry_size);
10108 /* Calculate the address of the .got.plt entry. */
10109 got_address = (htab->sgotplt->output_section->vma
10110 + htab->sgotplt->output_offset
10111 + plt_index * 4);
10113 /* Calculate the offset of the .got.plt entry from
10114 _GLOBAL_OFFSET_TABLE_. */
10115 got_offset = mips_elf_gotplt_index (info, h);
10117 /* Calculate the offset for the branch at the start of the PLT
10118 entry. The branch jumps to the beginning of .plt. */
10119 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10121 /* Fill in the initial value of the .got.plt entry. */
10122 bfd_put_32 (output_bfd, plt_address,
10123 htab->sgotplt->contents + plt_index * 4);
10125 /* Find out where the .plt entry should go. */
10126 loc = htab->splt->contents + h->plt.offset;
10128 if (info->shared)
10130 plt_entry = mips_vxworks_shared_plt_entry;
10131 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10132 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10134 else
10136 bfd_vma got_address_high, got_address_low;
10138 plt_entry = mips_vxworks_exec_plt_entry;
10139 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10140 got_address_low = got_address & 0xffff;
10142 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10143 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10144 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10145 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10146 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10147 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10148 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10149 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10151 loc = (htab->srelplt2->contents
10152 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10154 /* Emit a relocation for the .got.plt entry. */
10155 rel.r_offset = got_address;
10156 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10157 rel.r_addend = h->plt.offset;
10158 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10160 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10161 loc += sizeof (Elf32_External_Rela);
10162 rel.r_offset = plt_address + 8;
10163 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10164 rel.r_addend = got_offset;
10165 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10167 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10168 loc += sizeof (Elf32_External_Rela);
10169 rel.r_offset += 4;
10170 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10171 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10174 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10175 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10176 rel.r_offset = got_address;
10177 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10178 rel.r_addend = 0;
10179 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10181 if (!h->def_regular)
10182 sym->st_shndx = SHN_UNDEF;
10185 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10187 sgot = htab->sgot;
10188 g = htab->got_info;
10189 BFD_ASSERT (g != NULL);
10191 /* See if this symbol has an entry in the GOT. */
10192 if (hmips->global_got_area != GGA_NONE)
10194 bfd_vma offset;
10195 Elf_Internal_Rela outrel;
10196 bfd_byte *loc;
10197 asection *s;
10199 /* Install the symbol value in the GOT. */
10200 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10201 R_MIPS_GOT16, info);
10202 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10204 /* Add a dynamic relocation for it. */
10205 s = mips_elf_rel_dyn_section (info, FALSE);
10206 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10207 outrel.r_offset = (sgot->output_section->vma
10208 + sgot->output_offset
10209 + offset);
10210 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10211 outrel.r_addend = 0;
10212 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10215 /* Emit a copy reloc, if needed. */
10216 if (h->needs_copy)
10218 Elf_Internal_Rela rel;
10220 BFD_ASSERT (h->dynindx != -1);
10222 rel.r_offset = (h->root.u.def.section->output_section->vma
10223 + h->root.u.def.section->output_offset
10224 + h->root.u.def.value);
10225 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10226 rel.r_addend = 0;
10227 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10228 htab->srelbss->contents
10229 + (htab->srelbss->reloc_count
10230 * sizeof (Elf32_External_Rela)));
10231 ++htab->srelbss->reloc_count;
10234 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10235 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10236 sym->st_value &= ~1;
10238 return TRUE;
10241 /* Write out a plt0 entry to the beginning of .plt. */
10243 static void
10244 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10246 bfd_byte *loc;
10247 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10248 static const bfd_vma *plt_entry;
10249 struct mips_elf_link_hash_table *htab;
10251 htab = mips_elf_hash_table (info);
10252 BFD_ASSERT (htab != NULL);
10254 if (ABI_64_P (output_bfd))
10255 plt_entry = mips_n64_exec_plt0_entry;
10256 else if (ABI_N32_P (output_bfd))
10257 plt_entry = mips_n32_exec_plt0_entry;
10258 else
10259 plt_entry = mips_o32_exec_plt0_entry;
10261 /* Calculate the value of .got.plt. */
10262 gotplt_value = (htab->sgotplt->output_section->vma
10263 + htab->sgotplt->output_offset);
10264 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10265 gotplt_value_low = gotplt_value & 0xffff;
10267 /* The PLT sequence is not safe for N64 if .got.plt's address can
10268 not be loaded in two instructions. */
10269 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10270 || ~(gotplt_value | 0x7fffffff) == 0);
10272 /* Install the PLT header. */
10273 loc = htab->splt->contents;
10274 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10275 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10276 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10277 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10278 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10279 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10280 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10281 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10284 /* Install the PLT header for a VxWorks executable and finalize the
10285 contents of .rela.plt.unloaded. */
10287 static void
10288 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10290 Elf_Internal_Rela rela;
10291 bfd_byte *loc;
10292 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10293 static const bfd_vma *plt_entry;
10294 struct mips_elf_link_hash_table *htab;
10296 htab = mips_elf_hash_table (info);
10297 BFD_ASSERT (htab != NULL);
10299 plt_entry = mips_vxworks_exec_plt0_entry;
10301 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10302 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10303 + htab->root.hgot->root.u.def.section->output_offset
10304 + htab->root.hgot->root.u.def.value);
10306 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10307 got_value_low = got_value & 0xffff;
10309 /* Calculate the address of the PLT header. */
10310 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10312 /* Install the PLT header. */
10313 loc = htab->splt->contents;
10314 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10315 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10316 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10317 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10318 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10319 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10321 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10322 loc = htab->srelplt2->contents;
10323 rela.r_offset = plt_address;
10324 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10325 rela.r_addend = 0;
10326 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10327 loc += sizeof (Elf32_External_Rela);
10329 /* Output the relocation for the following addiu of
10330 %lo(_GLOBAL_OFFSET_TABLE_). */
10331 rela.r_offset += 4;
10332 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10333 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10334 loc += sizeof (Elf32_External_Rela);
10336 /* Fix up the remaining relocations. They may have the wrong
10337 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10338 in which symbols were output. */
10339 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10341 Elf_Internal_Rela rel;
10343 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10344 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10345 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10346 loc += sizeof (Elf32_External_Rela);
10348 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10349 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10350 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10351 loc += sizeof (Elf32_External_Rela);
10353 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10354 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10355 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10356 loc += sizeof (Elf32_External_Rela);
10360 /* Install the PLT header for a VxWorks shared library. */
10362 static void
10363 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10365 unsigned int i;
10366 struct mips_elf_link_hash_table *htab;
10368 htab = mips_elf_hash_table (info);
10369 BFD_ASSERT (htab != NULL);
10371 /* We just need to copy the entry byte-by-byte. */
10372 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10373 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10374 htab->splt->contents + i * 4);
10377 /* Finish up the dynamic sections. */
10379 bfd_boolean
10380 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10381 struct bfd_link_info *info)
10383 bfd *dynobj;
10384 asection *sdyn;
10385 asection *sgot;
10386 struct mips_got_info *gg, *g;
10387 struct mips_elf_link_hash_table *htab;
10389 htab = mips_elf_hash_table (info);
10390 BFD_ASSERT (htab != NULL);
10392 dynobj = elf_hash_table (info)->dynobj;
10394 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10396 sgot = htab->sgot;
10397 gg = htab->got_info;
10399 if (elf_hash_table (info)->dynamic_sections_created)
10401 bfd_byte *b;
10402 int dyn_to_skip = 0, dyn_skipped = 0;
10404 BFD_ASSERT (sdyn != NULL);
10405 BFD_ASSERT (gg != NULL);
10407 g = mips_elf_got_for_ibfd (gg, output_bfd);
10408 BFD_ASSERT (g != NULL);
10410 for (b = sdyn->contents;
10411 b < sdyn->contents + sdyn->size;
10412 b += MIPS_ELF_DYN_SIZE (dynobj))
10414 Elf_Internal_Dyn dyn;
10415 const char *name;
10416 size_t elemsize;
10417 asection *s;
10418 bfd_boolean swap_out_p;
10420 /* Read in the current dynamic entry. */
10421 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10423 /* Assume that we're going to modify it and write it out. */
10424 swap_out_p = TRUE;
10426 switch (dyn.d_tag)
10428 case DT_RELENT:
10429 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10430 break;
10432 case DT_RELAENT:
10433 BFD_ASSERT (htab->is_vxworks);
10434 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10435 break;
10437 case DT_STRSZ:
10438 /* Rewrite DT_STRSZ. */
10439 dyn.d_un.d_val =
10440 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10441 break;
10443 case DT_PLTGOT:
10444 s = htab->sgot;
10445 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10446 break;
10448 case DT_MIPS_PLTGOT:
10449 s = htab->sgotplt;
10450 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10451 break;
10453 case DT_MIPS_RLD_VERSION:
10454 dyn.d_un.d_val = 1; /* XXX */
10455 break;
10457 case DT_MIPS_FLAGS:
10458 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10459 break;
10461 case DT_MIPS_TIME_STAMP:
10463 time_t t;
10464 time (&t);
10465 dyn.d_un.d_val = t;
10467 break;
10469 case DT_MIPS_ICHECKSUM:
10470 /* XXX FIXME: */
10471 swap_out_p = FALSE;
10472 break;
10474 case DT_MIPS_IVERSION:
10475 /* XXX FIXME: */
10476 swap_out_p = FALSE;
10477 break;
10479 case DT_MIPS_BASE_ADDRESS:
10480 s = output_bfd->sections;
10481 BFD_ASSERT (s != NULL);
10482 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10483 break;
10485 case DT_MIPS_LOCAL_GOTNO:
10486 dyn.d_un.d_val = g->local_gotno;
10487 break;
10489 case DT_MIPS_UNREFEXTNO:
10490 /* The index into the dynamic symbol table which is the
10491 entry of the first external symbol that is not
10492 referenced within the same object. */
10493 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10494 break;
10496 case DT_MIPS_GOTSYM:
10497 if (gg->global_gotsym)
10499 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10500 break;
10502 /* In case if we don't have global got symbols we default
10503 to setting DT_MIPS_GOTSYM to the same value as
10504 DT_MIPS_SYMTABNO, so we just fall through. */
10506 case DT_MIPS_SYMTABNO:
10507 name = ".dynsym";
10508 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10509 s = bfd_get_section_by_name (output_bfd, name);
10510 BFD_ASSERT (s != NULL);
10512 dyn.d_un.d_val = s->size / elemsize;
10513 break;
10515 case DT_MIPS_HIPAGENO:
10516 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10517 break;
10519 case DT_MIPS_RLD_MAP:
10520 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10521 break;
10523 case DT_MIPS_OPTIONS:
10524 s = (bfd_get_section_by_name
10525 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10526 dyn.d_un.d_ptr = s->vma;
10527 break;
10529 case DT_RELASZ:
10530 BFD_ASSERT (htab->is_vxworks);
10531 /* The count does not include the JUMP_SLOT relocations. */
10532 if (htab->srelplt)
10533 dyn.d_un.d_val -= htab->srelplt->size;
10534 break;
10536 case DT_PLTREL:
10537 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10538 if (htab->is_vxworks)
10539 dyn.d_un.d_val = DT_RELA;
10540 else
10541 dyn.d_un.d_val = DT_REL;
10542 break;
10544 case DT_PLTRELSZ:
10545 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10546 dyn.d_un.d_val = htab->srelplt->size;
10547 break;
10549 case DT_JMPREL:
10550 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10551 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10552 + htab->srelplt->output_offset);
10553 break;
10555 case DT_TEXTREL:
10556 /* If we didn't need any text relocations after all, delete
10557 the dynamic tag. */
10558 if (!(info->flags & DF_TEXTREL))
10560 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10561 swap_out_p = FALSE;
10563 break;
10565 case DT_FLAGS:
10566 /* If we didn't need any text relocations after all, clear
10567 DF_TEXTREL from DT_FLAGS. */
10568 if (!(info->flags & DF_TEXTREL))
10569 dyn.d_un.d_val &= ~DF_TEXTREL;
10570 else
10571 swap_out_p = FALSE;
10572 break;
10574 default:
10575 swap_out_p = FALSE;
10576 if (htab->is_vxworks
10577 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10578 swap_out_p = TRUE;
10579 break;
10582 if (swap_out_p || dyn_skipped)
10583 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10584 (dynobj, &dyn, b - dyn_skipped);
10586 if (dyn_to_skip)
10588 dyn_skipped += dyn_to_skip;
10589 dyn_to_skip = 0;
10593 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10594 if (dyn_skipped > 0)
10595 memset (b - dyn_skipped, 0, dyn_skipped);
10598 if (sgot != NULL && sgot->size > 0
10599 && !bfd_is_abs_section (sgot->output_section))
10601 if (htab->is_vxworks)
10603 /* The first entry of the global offset table points to the
10604 ".dynamic" section. The second is initialized by the
10605 loader and contains the shared library identifier.
10606 The third is also initialized by the loader and points
10607 to the lazy resolution stub. */
10608 MIPS_ELF_PUT_WORD (output_bfd,
10609 sdyn->output_offset + sdyn->output_section->vma,
10610 sgot->contents);
10611 MIPS_ELF_PUT_WORD (output_bfd, 0,
10612 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10613 MIPS_ELF_PUT_WORD (output_bfd, 0,
10614 sgot->contents
10615 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10617 else
10619 /* The first entry of the global offset table will be filled at
10620 runtime. The second entry will be used by some runtime loaders.
10621 This isn't the case of IRIX rld. */
10622 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10623 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10624 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10627 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10628 = MIPS_ELF_GOT_SIZE (output_bfd);
10631 /* Generate dynamic relocations for the non-primary gots. */
10632 if (gg != NULL && gg->next)
10634 Elf_Internal_Rela rel[3];
10635 bfd_vma addend = 0;
10637 memset (rel, 0, sizeof (rel));
10638 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10640 for (g = gg->next; g->next != gg; g = g->next)
10642 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10643 + g->next->tls_gotno;
10645 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10646 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10647 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10648 sgot->contents
10649 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10651 if (! info->shared)
10652 continue;
10654 while (got_index < g->assigned_gotno)
10656 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10657 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10658 if (!(mips_elf_create_dynamic_relocation
10659 (output_bfd, info, rel, NULL,
10660 bfd_abs_section_ptr,
10661 0, &addend, sgot)))
10662 return FALSE;
10663 BFD_ASSERT (addend == 0);
10668 /* The generation of dynamic relocations for the non-primary gots
10669 adds more dynamic relocations. We cannot count them until
10670 here. */
10672 if (elf_hash_table (info)->dynamic_sections_created)
10674 bfd_byte *b;
10675 bfd_boolean swap_out_p;
10677 BFD_ASSERT (sdyn != NULL);
10679 for (b = sdyn->contents;
10680 b < sdyn->contents + sdyn->size;
10681 b += MIPS_ELF_DYN_SIZE (dynobj))
10683 Elf_Internal_Dyn dyn;
10684 asection *s;
10686 /* Read in the current dynamic entry. */
10687 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10689 /* Assume that we're going to modify it and write it out. */
10690 swap_out_p = TRUE;
10692 switch (dyn.d_tag)
10694 case DT_RELSZ:
10695 /* Reduce DT_RELSZ to account for any relocations we
10696 decided not to make. This is for the n64 irix rld,
10697 which doesn't seem to apply any relocations if there
10698 are trailing null entries. */
10699 s = mips_elf_rel_dyn_section (info, FALSE);
10700 dyn.d_un.d_val = (s->reloc_count
10701 * (ABI_64_P (output_bfd)
10702 ? sizeof (Elf64_Mips_External_Rel)
10703 : sizeof (Elf32_External_Rel)));
10704 /* Adjust the section size too. Tools like the prelinker
10705 can reasonably expect the values to the same. */
10706 elf_section_data (s->output_section)->this_hdr.sh_size
10707 = dyn.d_un.d_val;
10708 break;
10710 default:
10711 swap_out_p = FALSE;
10712 break;
10715 if (swap_out_p)
10716 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10717 (dynobj, &dyn, b);
10722 asection *s;
10723 Elf32_compact_rel cpt;
10725 if (SGI_COMPAT (output_bfd))
10727 /* Write .compact_rel section out. */
10728 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10729 if (s != NULL)
10731 cpt.id1 = 1;
10732 cpt.num = s->reloc_count;
10733 cpt.id2 = 2;
10734 cpt.offset = (s->output_section->filepos
10735 + sizeof (Elf32_External_compact_rel));
10736 cpt.reserved0 = 0;
10737 cpt.reserved1 = 0;
10738 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10739 ((Elf32_External_compact_rel *)
10740 s->contents));
10742 /* Clean up a dummy stub function entry in .text. */
10743 if (htab->sstubs != NULL)
10745 file_ptr dummy_offset;
10747 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10748 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10749 memset (htab->sstubs->contents + dummy_offset, 0,
10750 htab->function_stub_size);
10755 /* The psABI says that the dynamic relocations must be sorted in
10756 increasing order of r_symndx. The VxWorks EABI doesn't require
10757 this, and because the code below handles REL rather than RELA
10758 relocations, using it for VxWorks would be outright harmful. */
10759 if (!htab->is_vxworks)
10761 s = mips_elf_rel_dyn_section (info, FALSE);
10762 if (s != NULL
10763 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10765 reldyn_sorting_bfd = output_bfd;
10767 if (ABI_64_P (output_bfd))
10768 qsort ((Elf64_External_Rel *) s->contents + 1,
10769 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10770 sort_dynamic_relocs_64);
10771 else
10772 qsort ((Elf32_External_Rel *) s->contents + 1,
10773 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10774 sort_dynamic_relocs);
10779 if (htab->splt && htab->splt->size > 0)
10781 if (htab->is_vxworks)
10783 if (info->shared)
10784 mips_vxworks_finish_shared_plt (output_bfd, info);
10785 else
10786 mips_vxworks_finish_exec_plt (output_bfd, info);
10788 else
10790 BFD_ASSERT (!info->shared);
10791 mips_finish_exec_plt (output_bfd, info);
10794 return TRUE;
10798 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10800 static void
10801 mips_set_isa_flags (bfd *abfd)
10803 flagword val;
10805 switch (bfd_get_mach (abfd))
10807 default:
10808 case bfd_mach_mips3000:
10809 val = E_MIPS_ARCH_1;
10810 break;
10812 case bfd_mach_mips3900:
10813 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10814 break;
10816 case bfd_mach_mips6000:
10817 val = E_MIPS_ARCH_2;
10818 break;
10820 case bfd_mach_mips4000:
10821 case bfd_mach_mips4300:
10822 case bfd_mach_mips4400:
10823 case bfd_mach_mips4600:
10824 val = E_MIPS_ARCH_3;
10825 break;
10827 case bfd_mach_mips4010:
10828 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10829 break;
10831 case bfd_mach_mips4100:
10832 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10833 break;
10835 case bfd_mach_mips4111:
10836 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10837 break;
10839 case bfd_mach_mips4120:
10840 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10841 break;
10843 case bfd_mach_mips4650:
10844 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10845 break;
10847 case bfd_mach_mips5400:
10848 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10849 break;
10851 case bfd_mach_mips5500:
10852 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10853 break;
10855 case bfd_mach_mips9000:
10856 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10857 break;
10859 case bfd_mach_mips5000:
10860 case bfd_mach_mips7000:
10861 case bfd_mach_mips8000:
10862 case bfd_mach_mips10000:
10863 case bfd_mach_mips12000:
10864 case bfd_mach_mips14000:
10865 case bfd_mach_mips16000:
10866 val = E_MIPS_ARCH_4;
10867 break;
10869 case bfd_mach_mips5:
10870 val = E_MIPS_ARCH_5;
10871 break;
10873 case bfd_mach_mips_loongson_2e:
10874 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10875 break;
10877 case bfd_mach_mips_loongson_2f:
10878 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10879 break;
10881 case bfd_mach_mips_sb1:
10882 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10883 break;
10885 case bfd_mach_mips_loongson_3a:
10886 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10887 break;
10889 case bfd_mach_mips_octeon:
10890 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10891 break;
10893 case bfd_mach_mips_xlr:
10894 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10895 break;
10897 case bfd_mach_mipsisa32:
10898 val = E_MIPS_ARCH_32;
10899 break;
10901 case bfd_mach_mipsisa64:
10902 val = E_MIPS_ARCH_64;
10903 break;
10905 case bfd_mach_mipsisa32r2:
10906 val = E_MIPS_ARCH_32R2;
10907 break;
10909 case bfd_mach_mipsisa64r2:
10910 val = E_MIPS_ARCH_64R2;
10911 break;
10913 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10914 elf_elfheader (abfd)->e_flags |= val;
10919 /* The final processing done just before writing out a MIPS ELF object
10920 file. This gets the MIPS architecture right based on the machine
10921 number. This is used by both the 32-bit and the 64-bit ABI. */
10923 void
10924 _bfd_mips_elf_final_write_processing (bfd *abfd,
10925 bfd_boolean linker ATTRIBUTE_UNUSED)
10927 unsigned int i;
10928 Elf_Internal_Shdr **hdrpp;
10929 const char *name;
10930 asection *sec;
10932 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10933 is nonzero. This is for compatibility with old objects, which used
10934 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10935 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10936 mips_set_isa_flags (abfd);
10938 /* Set the sh_info field for .gptab sections and other appropriate
10939 info for each special section. */
10940 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10941 i < elf_numsections (abfd);
10942 i++, hdrpp++)
10944 switch ((*hdrpp)->sh_type)
10946 case SHT_MIPS_MSYM:
10947 case SHT_MIPS_LIBLIST:
10948 sec = bfd_get_section_by_name (abfd, ".dynstr");
10949 if (sec != NULL)
10950 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10951 break;
10953 case SHT_MIPS_GPTAB:
10954 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10955 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10956 BFD_ASSERT (name != NULL
10957 && CONST_STRNEQ (name, ".gptab."));
10958 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10959 BFD_ASSERT (sec != NULL);
10960 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10961 break;
10963 case SHT_MIPS_CONTENT:
10964 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10965 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10966 BFD_ASSERT (name != NULL
10967 && CONST_STRNEQ (name, ".MIPS.content"));
10968 sec = bfd_get_section_by_name (abfd,
10969 name + sizeof ".MIPS.content" - 1);
10970 BFD_ASSERT (sec != NULL);
10971 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10972 break;
10974 case SHT_MIPS_SYMBOL_LIB:
10975 sec = bfd_get_section_by_name (abfd, ".dynsym");
10976 if (sec != NULL)
10977 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10978 sec = bfd_get_section_by_name (abfd, ".liblist");
10979 if (sec != NULL)
10980 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10981 break;
10983 case SHT_MIPS_EVENTS:
10984 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10985 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10986 BFD_ASSERT (name != NULL);
10987 if (CONST_STRNEQ (name, ".MIPS.events"))
10988 sec = bfd_get_section_by_name (abfd,
10989 name + sizeof ".MIPS.events" - 1);
10990 else
10992 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10993 sec = bfd_get_section_by_name (abfd,
10994 (name
10995 + sizeof ".MIPS.post_rel" - 1));
10997 BFD_ASSERT (sec != NULL);
10998 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10999 break;
11005 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11006 segments. */
11009 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11010 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11012 asection *s;
11013 int ret = 0;
11015 /* See if we need a PT_MIPS_REGINFO segment. */
11016 s = bfd_get_section_by_name (abfd, ".reginfo");
11017 if (s && (s->flags & SEC_LOAD))
11018 ++ret;
11020 /* See if we need a PT_MIPS_OPTIONS segment. */
11021 if (IRIX_COMPAT (abfd) == ict_irix6
11022 && bfd_get_section_by_name (abfd,
11023 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11024 ++ret;
11026 /* See if we need a PT_MIPS_RTPROC segment. */
11027 if (IRIX_COMPAT (abfd) == ict_irix5
11028 && bfd_get_section_by_name (abfd, ".dynamic")
11029 && bfd_get_section_by_name (abfd, ".mdebug"))
11030 ++ret;
11032 /* Allocate a PT_NULL header in dynamic objects. See
11033 _bfd_mips_elf_modify_segment_map for details. */
11034 if (!SGI_COMPAT (abfd)
11035 && bfd_get_section_by_name (abfd, ".dynamic"))
11036 ++ret;
11038 return ret;
11041 /* Modify the segment map for an IRIX5 executable. */
11043 bfd_boolean
11044 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11045 struct bfd_link_info *info)
11047 asection *s;
11048 struct elf_segment_map *m, **pm;
11049 bfd_size_type amt;
11051 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11052 segment. */
11053 s = bfd_get_section_by_name (abfd, ".reginfo");
11054 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11056 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11057 if (m->p_type == PT_MIPS_REGINFO)
11058 break;
11059 if (m == NULL)
11061 amt = sizeof *m;
11062 m = bfd_zalloc (abfd, amt);
11063 if (m == NULL)
11064 return FALSE;
11066 m->p_type = PT_MIPS_REGINFO;
11067 m->count = 1;
11068 m->sections[0] = s;
11070 /* We want to put it after the PHDR and INTERP segments. */
11071 pm = &elf_tdata (abfd)->segment_map;
11072 while (*pm != NULL
11073 && ((*pm)->p_type == PT_PHDR
11074 || (*pm)->p_type == PT_INTERP))
11075 pm = &(*pm)->next;
11077 m->next = *pm;
11078 *pm = m;
11082 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11083 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11084 PT_MIPS_OPTIONS segment immediately following the program header
11085 table. */
11086 if (NEWABI_P (abfd)
11087 /* On non-IRIX6 new abi, we'll have already created a segment
11088 for this section, so don't create another. I'm not sure this
11089 is not also the case for IRIX 6, but I can't test it right
11090 now. */
11091 && IRIX_COMPAT (abfd) == ict_irix6)
11093 for (s = abfd->sections; s; s = s->next)
11094 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11095 break;
11097 if (s)
11099 struct elf_segment_map *options_segment;
11101 pm = &elf_tdata (abfd)->segment_map;
11102 while (*pm != NULL
11103 && ((*pm)->p_type == PT_PHDR
11104 || (*pm)->p_type == PT_INTERP))
11105 pm = &(*pm)->next;
11107 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11109 amt = sizeof (struct elf_segment_map);
11110 options_segment = bfd_zalloc (abfd, amt);
11111 options_segment->next = *pm;
11112 options_segment->p_type = PT_MIPS_OPTIONS;
11113 options_segment->p_flags = PF_R;
11114 options_segment->p_flags_valid = TRUE;
11115 options_segment->count = 1;
11116 options_segment->sections[0] = s;
11117 *pm = options_segment;
11121 else
11123 if (IRIX_COMPAT (abfd) == ict_irix5)
11125 /* If there are .dynamic and .mdebug sections, we make a room
11126 for the RTPROC header. FIXME: Rewrite without section names. */
11127 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11128 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11129 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11131 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11132 if (m->p_type == PT_MIPS_RTPROC)
11133 break;
11134 if (m == NULL)
11136 amt = sizeof *m;
11137 m = bfd_zalloc (abfd, amt);
11138 if (m == NULL)
11139 return FALSE;
11141 m->p_type = PT_MIPS_RTPROC;
11143 s = bfd_get_section_by_name (abfd, ".rtproc");
11144 if (s == NULL)
11146 m->count = 0;
11147 m->p_flags = 0;
11148 m->p_flags_valid = 1;
11150 else
11152 m->count = 1;
11153 m->sections[0] = s;
11156 /* We want to put it after the DYNAMIC segment. */
11157 pm = &elf_tdata (abfd)->segment_map;
11158 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11159 pm = &(*pm)->next;
11160 if (*pm != NULL)
11161 pm = &(*pm)->next;
11163 m->next = *pm;
11164 *pm = m;
11168 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11169 .dynstr, .dynsym, and .hash sections, and everything in
11170 between. */
11171 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11172 pm = &(*pm)->next)
11173 if ((*pm)->p_type == PT_DYNAMIC)
11174 break;
11175 m = *pm;
11176 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11178 /* For a normal mips executable the permissions for the PT_DYNAMIC
11179 segment are read, write and execute. We do that here since
11180 the code in elf.c sets only the read permission. This matters
11181 sometimes for the dynamic linker. */
11182 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11184 m->p_flags = PF_R | PF_W | PF_X;
11185 m->p_flags_valid = 1;
11188 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11189 glibc's dynamic linker has traditionally derived the number of
11190 tags from the p_filesz field, and sometimes allocates stack
11191 arrays of that size. An overly-big PT_DYNAMIC segment can
11192 be actively harmful in such cases. Making PT_DYNAMIC contain
11193 other sections can also make life hard for the prelinker,
11194 which might move one of the other sections to a different
11195 PT_LOAD segment. */
11196 if (SGI_COMPAT (abfd)
11197 && m != NULL
11198 && m->count == 1
11199 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11201 static const char *sec_names[] =
11203 ".dynamic", ".dynstr", ".dynsym", ".hash"
11205 bfd_vma low, high;
11206 unsigned int i, c;
11207 struct elf_segment_map *n;
11209 low = ~(bfd_vma) 0;
11210 high = 0;
11211 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11213 s = bfd_get_section_by_name (abfd, sec_names[i]);
11214 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11216 bfd_size_type sz;
11218 if (low > s->vma)
11219 low = s->vma;
11220 sz = s->size;
11221 if (high < s->vma + sz)
11222 high = s->vma + sz;
11226 c = 0;
11227 for (s = abfd->sections; s != NULL; s = s->next)
11228 if ((s->flags & SEC_LOAD) != 0
11229 && s->vma >= low
11230 && s->vma + s->size <= high)
11231 ++c;
11233 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11234 n = bfd_zalloc (abfd, amt);
11235 if (n == NULL)
11236 return FALSE;
11237 *n = *m;
11238 n->count = c;
11240 i = 0;
11241 for (s = abfd->sections; s != NULL; s = s->next)
11243 if ((s->flags & SEC_LOAD) != 0
11244 && s->vma >= low
11245 && s->vma + s->size <= high)
11247 n->sections[i] = s;
11248 ++i;
11252 *pm = n;
11256 /* Allocate a spare program header in dynamic objects so that tools
11257 like the prelinker can add an extra PT_LOAD entry.
11259 If the prelinker needs to make room for a new PT_LOAD entry, its
11260 standard procedure is to move the first (read-only) sections into
11261 the new (writable) segment. However, the MIPS ABI requires
11262 .dynamic to be in a read-only segment, and the section will often
11263 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11265 Although the prelinker could in principle move .dynamic to a
11266 writable segment, it seems better to allocate a spare program
11267 header instead, and avoid the need to move any sections.
11268 There is a long tradition of allocating spare dynamic tags,
11269 so allocating a spare program header seems like a natural
11270 extension.
11272 If INFO is NULL, we may be copying an already prelinked binary
11273 with objcopy or strip, so do not add this header. */
11274 if (info != NULL
11275 && !SGI_COMPAT (abfd)
11276 && bfd_get_section_by_name (abfd, ".dynamic"))
11278 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11279 if ((*pm)->p_type == PT_NULL)
11280 break;
11281 if (*pm == NULL)
11283 m = bfd_zalloc (abfd, sizeof (*m));
11284 if (m == NULL)
11285 return FALSE;
11287 m->p_type = PT_NULL;
11288 *pm = m;
11292 return TRUE;
11295 /* Return the section that should be marked against GC for a given
11296 relocation. */
11298 asection *
11299 _bfd_mips_elf_gc_mark_hook (asection *sec,
11300 struct bfd_link_info *info,
11301 Elf_Internal_Rela *rel,
11302 struct elf_link_hash_entry *h,
11303 Elf_Internal_Sym *sym)
11305 /* ??? Do mips16 stub sections need to be handled special? */
11307 if (h != NULL)
11308 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11310 case R_MIPS_GNU_VTINHERIT:
11311 case R_MIPS_GNU_VTENTRY:
11312 return NULL;
11315 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11318 /* Update the got entry reference counts for the section being removed. */
11320 bfd_boolean
11321 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11322 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11323 asection *sec ATTRIBUTE_UNUSED,
11324 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11326 #if 0
11327 Elf_Internal_Shdr *symtab_hdr;
11328 struct elf_link_hash_entry **sym_hashes;
11329 bfd_signed_vma *local_got_refcounts;
11330 const Elf_Internal_Rela *rel, *relend;
11331 unsigned long r_symndx;
11332 struct elf_link_hash_entry *h;
11334 if (info->relocatable)
11335 return TRUE;
11337 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11338 sym_hashes = elf_sym_hashes (abfd);
11339 local_got_refcounts = elf_local_got_refcounts (abfd);
11341 relend = relocs + sec->reloc_count;
11342 for (rel = relocs; rel < relend; rel++)
11343 switch (ELF_R_TYPE (abfd, rel->r_info))
11345 case R_MIPS16_GOT16:
11346 case R_MIPS16_CALL16:
11347 case R_MIPS_GOT16:
11348 case R_MIPS_CALL16:
11349 case R_MIPS_CALL_HI16:
11350 case R_MIPS_CALL_LO16:
11351 case R_MIPS_GOT_HI16:
11352 case R_MIPS_GOT_LO16:
11353 case R_MIPS_GOT_DISP:
11354 case R_MIPS_GOT_PAGE:
11355 case R_MIPS_GOT_OFST:
11356 case R_MICROMIPS_GOT16:
11357 case R_MICROMIPS_CALL16:
11358 case R_MICROMIPS_CALL_HI16:
11359 case R_MICROMIPS_CALL_LO16:
11360 case R_MICROMIPS_GOT_HI16:
11361 case R_MICROMIPS_GOT_LO16:
11362 case R_MICROMIPS_GOT_DISP:
11363 case R_MICROMIPS_GOT_PAGE:
11364 case R_MICROMIPS_GOT_OFST:
11365 /* ??? It would seem that the existing MIPS code does no sort
11366 of reference counting or whatnot on its GOT and PLT entries,
11367 so it is not possible to garbage collect them at this time. */
11368 break;
11370 default:
11371 break;
11373 #endif
11375 return TRUE;
11378 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11379 hiding the old indirect symbol. Process additional relocation
11380 information. Also called for weakdefs, in which case we just let
11381 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11383 void
11384 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11385 struct elf_link_hash_entry *dir,
11386 struct elf_link_hash_entry *ind)
11388 struct mips_elf_link_hash_entry *dirmips, *indmips;
11390 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11392 dirmips = (struct mips_elf_link_hash_entry *) dir;
11393 indmips = (struct mips_elf_link_hash_entry *) ind;
11394 /* Any absolute non-dynamic relocations against an indirect or weak
11395 definition will be against the target symbol. */
11396 if (indmips->has_static_relocs)
11397 dirmips->has_static_relocs = TRUE;
11399 if (ind->root.type != bfd_link_hash_indirect)
11400 return;
11402 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11403 if (indmips->readonly_reloc)
11404 dirmips->readonly_reloc = TRUE;
11405 if (indmips->no_fn_stub)
11406 dirmips->no_fn_stub = TRUE;
11407 if (indmips->fn_stub)
11409 dirmips->fn_stub = indmips->fn_stub;
11410 indmips->fn_stub = NULL;
11412 if (indmips->need_fn_stub)
11414 dirmips->need_fn_stub = TRUE;
11415 indmips->need_fn_stub = FALSE;
11417 if (indmips->call_stub)
11419 dirmips->call_stub = indmips->call_stub;
11420 indmips->call_stub = NULL;
11422 if (indmips->call_fp_stub)
11424 dirmips->call_fp_stub = indmips->call_fp_stub;
11425 indmips->call_fp_stub = NULL;
11427 if (indmips->global_got_area < dirmips->global_got_area)
11428 dirmips->global_got_area = indmips->global_got_area;
11429 if (indmips->global_got_area < GGA_NONE)
11430 indmips->global_got_area = GGA_NONE;
11431 if (indmips->has_nonpic_branches)
11432 dirmips->has_nonpic_branches = TRUE;
11434 if (dirmips->tls_type == 0)
11435 dirmips->tls_type = indmips->tls_type;
11438 #define PDR_SIZE 32
11440 bfd_boolean
11441 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11442 struct bfd_link_info *info)
11444 asection *o;
11445 bfd_boolean ret = FALSE;
11446 unsigned char *tdata;
11447 size_t i, skip;
11449 o = bfd_get_section_by_name (abfd, ".pdr");
11450 if (! o)
11451 return FALSE;
11452 if (o->size == 0)
11453 return FALSE;
11454 if (o->size % PDR_SIZE != 0)
11455 return FALSE;
11456 if (o->output_section != NULL
11457 && bfd_is_abs_section (o->output_section))
11458 return FALSE;
11460 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11461 if (! tdata)
11462 return FALSE;
11464 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11465 info->keep_memory);
11466 if (!cookie->rels)
11468 free (tdata);
11469 return FALSE;
11472 cookie->rel = cookie->rels;
11473 cookie->relend = cookie->rels + o->reloc_count;
11475 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11477 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11479 tdata[i] = 1;
11480 skip ++;
11484 if (skip != 0)
11486 mips_elf_section_data (o)->u.tdata = tdata;
11487 o->size -= skip * PDR_SIZE;
11488 ret = TRUE;
11490 else
11491 free (tdata);
11493 if (! info->keep_memory)
11494 free (cookie->rels);
11496 return ret;
11499 bfd_boolean
11500 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11502 if (strcmp (sec->name, ".pdr") == 0)
11503 return TRUE;
11504 return FALSE;
11507 bfd_boolean
11508 _bfd_mips_elf_write_section (bfd *output_bfd,
11509 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11510 asection *sec, bfd_byte *contents)
11512 bfd_byte *to, *from, *end;
11513 int i;
11515 if (strcmp (sec->name, ".pdr") != 0)
11516 return FALSE;
11518 if (mips_elf_section_data (sec)->u.tdata == NULL)
11519 return FALSE;
11521 to = contents;
11522 end = contents + sec->size;
11523 for (from = contents, i = 0;
11524 from < end;
11525 from += PDR_SIZE, i++)
11527 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11528 continue;
11529 if (to != from)
11530 memcpy (to, from, PDR_SIZE);
11531 to += PDR_SIZE;
11533 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11534 sec->output_offset, sec->size);
11535 return TRUE;
11538 /* microMIPS code retains local labels for linker relaxation. Omit them
11539 from output by default for clarity. */
11541 bfd_boolean
11542 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11544 return _bfd_elf_is_local_label_name (abfd, sym->name);
11547 /* MIPS ELF uses a special find_nearest_line routine in order the
11548 handle the ECOFF debugging information. */
11550 struct mips_elf_find_line
11552 struct ecoff_debug_info d;
11553 struct ecoff_find_line i;
11556 bfd_boolean
11557 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11558 asymbol **symbols, bfd_vma offset,
11559 const char **filename_ptr,
11560 const char **functionname_ptr,
11561 unsigned int *line_ptr)
11563 asection *msec;
11565 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11566 filename_ptr, functionname_ptr,
11567 line_ptr))
11568 return TRUE;
11570 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11571 filename_ptr, functionname_ptr,
11572 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11573 &elf_tdata (abfd)->dwarf2_find_line_info))
11574 return TRUE;
11576 msec = bfd_get_section_by_name (abfd, ".mdebug");
11577 if (msec != NULL)
11579 flagword origflags;
11580 struct mips_elf_find_line *fi;
11581 const struct ecoff_debug_swap * const swap =
11582 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11584 /* If we are called during a link, mips_elf_final_link may have
11585 cleared the SEC_HAS_CONTENTS field. We force it back on here
11586 if appropriate (which it normally will be). */
11587 origflags = msec->flags;
11588 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11589 msec->flags |= SEC_HAS_CONTENTS;
11591 fi = elf_tdata (abfd)->find_line_info;
11592 if (fi == NULL)
11594 bfd_size_type external_fdr_size;
11595 char *fraw_src;
11596 char *fraw_end;
11597 struct fdr *fdr_ptr;
11598 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11600 fi = bfd_zalloc (abfd, amt);
11601 if (fi == NULL)
11603 msec->flags = origflags;
11604 return FALSE;
11607 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11609 msec->flags = origflags;
11610 return FALSE;
11613 /* Swap in the FDR information. */
11614 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11615 fi->d.fdr = bfd_alloc (abfd, amt);
11616 if (fi->d.fdr == NULL)
11618 msec->flags = origflags;
11619 return FALSE;
11621 external_fdr_size = swap->external_fdr_size;
11622 fdr_ptr = fi->d.fdr;
11623 fraw_src = (char *) fi->d.external_fdr;
11624 fraw_end = (fraw_src
11625 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11626 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11627 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11629 elf_tdata (abfd)->find_line_info = fi;
11631 /* Note that we don't bother to ever free this information.
11632 find_nearest_line is either called all the time, as in
11633 objdump -l, so the information should be saved, or it is
11634 rarely called, as in ld error messages, so the memory
11635 wasted is unimportant. Still, it would probably be a
11636 good idea for free_cached_info to throw it away. */
11639 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11640 &fi->i, filename_ptr, functionname_ptr,
11641 line_ptr))
11643 msec->flags = origflags;
11644 return TRUE;
11647 msec->flags = origflags;
11650 /* Fall back on the generic ELF find_nearest_line routine. */
11652 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11653 filename_ptr, functionname_ptr,
11654 line_ptr);
11657 bfd_boolean
11658 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11659 const char **filename_ptr,
11660 const char **functionname_ptr,
11661 unsigned int *line_ptr)
11663 bfd_boolean found;
11664 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11665 functionname_ptr, line_ptr,
11666 & elf_tdata (abfd)->dwarf2_find_line_info);
11667 return found;
11671 /* When are writing out the .options or .MIPS.options section,
11672 remember the bytes we are writing out, so that we can install the
11673 GP value in the section_processing routine. */
11675 bfd_boolean
11676 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11677 const void *location,
11678 file_ptr offset, bfd_size_type count)
11680 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11682 bfd_byte *c;
11684 if (elf_section_data (section) == NULL)
11686 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11687 section->used_by_bfd = bfd_zalloc (abfd, amt);
11688 if (elf_section_data (section) == NULL)
11689 return FALSE;
11691 c = mips_elf_section_data (section)->u.tdata;
11692 if (c == NULL)
11694 c = bfd_zalloc (abfd, section->size);
11695 if (c == NULL)
11696 return FALSE;
11697 mips_elf_section_data (section)->u.tdata = c;
11700 memcpy (c + offset, location, count);
11703 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11704 count);
11707 /* This is almost identical to bfd_generic_get_... except that some
11708 MIPS relocations need to be handled specially. Sigh. */
11710 bfd_byte *
11711 _bfd_elf_mips_get_relocated_section_contents
11712 (bfd *abfd,
11713 struct bfd_link_info *link_info,
11714 struct bfd_link_order *link_order,
11715 bfd_byte *data,
11716 bfd_boolean relocatable,
11717 asymbol **symbols)
11719 /* Get enough memory to hold the stuff */
11720 bfd *input_bfd = link_order->u.indirect.section->owner;
11721 asection *input_section = link_order->u.indirect.section;
11722 bfd_size_type sz;
11724 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11725 arelent **reloc_vector = NULL;
11726 long reloc_count;
11728 if (reloc_size < 0)
11729 goto error_return;
11731 reloc_vector = bfd_malloc (reloc_size);
11732 if (reloc_vector == NULL && reloc_size != 0)
11733 goto error_return;
11735 /* read in the section */
11736 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11737 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11738 goto error_return;
11740 reloc_count = bfd_canonicalize_reloc (input_bfd,
11741 input_section,
11742 reloc_vector,
11743 symbols);
11744 if (reloc_count < 0)
11745 goto error_return;
11747 if (reloc_count > 0)
11749 arelent **parent;
11750 /* for mips */
11751 int gp_found;
11752 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11755 struct bfd_hash_entry *h;
11756 struct bfd_link_hash_entry *lh;
11757 /* Skip all this stuff if we aren't mixing formats. */
11758 if (abfd && input_bfd
11759 && abfd->xvec == input_bfd->xvec)
11760 lh = 0;
11761 else
11763 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11764 lh = (struct bfd_link_hash_entry *) h;
11766 lookup:
11767 if (lh)
11769 switch (lh->type)
11771 case bfd_link_hash_undefined:
11772 case bfd_link_hash_undefweak:
11773 case bfd_link_hash_common:
11774 gp_found = 0;
11775 break;
11776 case bfd_link_hash_defined:
11777 case bfd_link_hash_defweak:
11778 gp_found = 1;
11779 gp = lh->u.def.value;
11780 break;
11781 case bfd_link_hash_indirect:
11782 case bfd_link_hash_warning:
11783 lh = lh->u.i.link;
11784 /* @@FIXME ignoring warning for now */
11785 goto lookup;
11786 case bfd_link_hash_new:
11787 default:
11788 abort ();
11791 else
11792 gp_found = 0;
11794 /* end mips */
11795 for (parent = reloc_vector; *parent != NULL; parent++)
11797 char *error_message = NULL;
11798 bfd_reloc_status_type r;
11800 /* Specific to MIPS: Deal with relocation types that require
11801 knowing the gp of the output bfd. */
11802 asymbol *sym = *(*parent)->sym_ptr_ptr;
11804 /* If we've managed to find the gp and have a special
11805 function for the relocation then go ahead, else default
11806 to the generic handling. */
11807 if (gp_found
11808 && (*parent)->howto->special_function
11809 == _bfd_mips_elf32_gprel16_reloc)
11810 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11811 input_section, relocatable,
11812 data, gp);
11813 else
11814 r = bfd_perform_relocation (input_bfd, *parent, data,
11815 input_section,
11816 relocatable ? abfd : NULL,
11817 &error_message);
11819 if (relocatable)
11821 asection *os = input_section->output_section;
11823 /* A partial link, so keep the relocs */
11824 os->orelocation[os->reloc_count] = *parent;
11825 os->reloc_count++;
11828 if (r != bfd_reloc_ok)
11830 switch (r)
11832 case bfd_reloc_undefined:
11833 if (!((*link_info->callbacks->undefined_symbol)
11834 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11835 input_bfd, input_section, (*parent)->address, TRUE)))
11836 goto error_return;
11837 break;
11838 case bfd_reloc_dangerous:
11839 BFD_ASSERT (error_message != NULL);
11840 if (!((*link_info->callbacks->reloc_dangerous)
11841 (link_info, error_message, input_bfd, input_section,
11842 (*parent)->address)))
11843 goto error_return;
11844 break;
11845 case bfd_reloc_overflow:
11846 if (!((*link_info->callbacks->reloc_overflow)
11847 (link_info, NULL,
11848 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11849 (*parent)->howto->name, (*parent)->addend,
11850 input_bfd, input_section, (*parent)->address)))
11851 goto error_return;
11852 break;
11853 case bfd_reloc_outofrange:
11854 default:
11855 abort ();
11856 break;
11862 if (reloc_vector != NULL)
11863 free (reloc_vector);
11864 return data;
11866 error_return:
11867 if (reloc_vector != NULL)
11868 free (reloc_vector);
11869 return NULL;
11872 static bfd_boolean
11873 mips_elf_relax_delete_bytes (bfd *abfd,
11874 asection *sec, bfd_vma addr, int count)
11876 Elf_Internal_Shdr *symtab_hdr;
11877 unsigned int sec_shndx;
11878 bfd_byte *contents;
11879 Elf_Internal_Rela *irel, *irelend;
11880 Elf_Internal_Sym *isym;
11881 Elf_Internal_Sym *isymend;
11882 struct elf_link_hash_entry **sym_hashes;
11883 struct elf_link_hash_entry **end_hashes;
11884 struct elf_link_hash_entry **start_hashes;
11885 unsigned int symcount;
11887 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11888 contents = elf_section_data (sec)->this_hdr.contents;
11890 irel = elf_section_data (sec)->relocs;
11891 irelend = irel + sec->reloc_count;
11893 /* Actually delete the bytes. */
11894 memmove (contents + addr, contents + addr + count,
11895 (size_t) (sec->size - addr - count));
11896 sec->size -= count;
11898 /* Adjust all the relocs. */
11899 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11901 /* Get the new reloc address. */
11902 if (irel->r_offset > addr)
11903 irel->r_offset -= count;
11906 BFD_ASSERT (addr % 2 == 0);
11907 BFD_ASSERT (count % 2 == 0);
11909 /* Adjust the local symbols defined in this section. */
11910 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11911 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11912 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11913 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11914 isym->st_value -= count;
11916 /* Now adjust the global symbols defined in this section. */
11917 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11918 - symtab_hdr->sh_info);
11919 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11920 end_hashes = sym_hashes + symcount;
11922 for (; sym_hashes < end_hashes; sym_hashes++)
11924 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11926 if ((sym_hash->root.type == bfd_link_hash_defined
11927 || sym_hash->root.type == bfd_link_hash_defweak)
11928 && sym_hash->root.u.def.section == sec)
11930 bfd_vma value = sym_hash->root.u.def.value;
11932 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11933 value &= MINUS_TWO;
11934 if (value > addr)
11935 sym_hash->root.u.def.value -= count;
11939 return TRUE;
11943 /* Opcodes needed for microMIPS relaxation as found in
11944 opcodes/micromips-opc.c. */
11946 struct opcode_descriptor {
11947 unsigned long match;
11948 unsigned long mask;
11951 /* The $ra register aka $31. */
11953 #define RA 31
11955 /* 32-bit instruction format register fields. */
11957 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11958 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11960 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11962 #define OP16_VALID_REG(r) \
11963 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11966 /* 32-bit and 16-bit branches. */
11968 static const struct opcode_descriptor b_insns_32[] = {
11969 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11970 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11971 { 0, 0 } /* End marker for find_match(). */
11974 static const struct opcode_descriptor bc_insn_32 =
11975 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11977 static const struct opcode_descriptor bz_insn_32 =
11978 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11980 static const struct opcode_descriptor bzal_insn_32 =
11981 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11983 static const struct opcode_descriptor beq_insn_32 =
11984 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11986 static const struct opcode_descriptor b_insn_16 =
11987 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11989 static const struct opcode_descriptor bz_insn_16 =
11990 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
11993 /* 32-bit and 16-bit branch EQ and NE zero. */
11995 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11996 eq and second the ne. This convention is used when replacing a
11997 32-bit BEQ/BNE with the 16-bit version. */
11999 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12001 static const struct opcode_descriptor bz_rs_insns_32[] = {
12002 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12003 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12004 { 0, 0 } /* End marker for find_match(). */
12007 static const struct opcode_descriptor bz_rt_insns_32[] = {
12008 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12009 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12010 { 0, 0 } /* End marker for find_match(). */
12013 static const struct opcode_descriptor bzc_insns_32[] = {
12014 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12015 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12016 { 0, 0 } /* End marker for find_match(). */
12019 static const struct opcode_descriptor bz_insns_16[] = {
12020 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12021 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12022 { 0, 0 } /* End marker for find_match(). */
12025 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12027 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12028 #define BZ16_REG_FIELD(r) \
12029 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12032 /* 32-bit instructions with a delay slot. */
12034 static const struct opcode_descriptor jal_insn_32_bd16 =
12035 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12037 static const struct opcode_descriptor jal_insn_32_bd32 =
12038 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12040 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12041 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12043 static const struct opcode_descriptor j_insn_32 =
12044 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12046 static const struct opcode_descriptor jalr_insn_32 =
12047 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12049 /* This table can be compacted, because no opcode replacement is made. */
12051 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12052 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12054 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12055 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12057 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12058 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12059 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12060 { 0, 0 } /* End marker for find_match(). */
12063 /* This table can be compacted, because no opcode replacement is made. */
12065 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12066 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12068 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12069 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12070 { 0, 0 } /* End marker for find_match(). */
12074 /* 16-bit instructions with a delay slot. */
12076 static const struct opcode_descriptor jalr_insn_16_bd16 =
12077 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12079 static const struct opcode_descriptor jalr_insn_16_bd32 =
12080 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12082 static const struct opcode_descriptor jr_insn_16 =
12083 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12085 #define JR16_REG(opcode) ((opcode) & 0x1f)
12087 /* This table can be compacted, because no opcode replacement is made. */
12089 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12090 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12092 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12093 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12094 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12095 { 0, 0 } /* End marker for find_match(). */
12099 /* LUI instruction. */
12101 static const struct opcode_descriptor lui_insn =
12102 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12105 /* ADDIU instruction. */
12107 static const struct opcode_descriptor addiu_insn =
12108 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12110 static const struct opcode_descriptor addiupc_insn =
12111 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12113 #define ADDIUPC_REG_FIELD(r) \
12114 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12117 /* Relaxable instructions in a JAL delay slot: MOVE. */
12119 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12120 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12121 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12122 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12124 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12125 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12127 static const struct opcode_descriptor move_insns_32[] = {
12128 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12129 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12130 { 0, 0 } /* End marker for find_match(). */
12133 static const struct opcode_descriptor move_insn_16 =
12134 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12137 /* NOP instructions. */
12139 static const struct opcode_descriptor nop_insn_32 =
12140 { /* "nop", "", */ 0x00000000, 0xffffffff };
12142 static const struct opcode_descriptor nop_insn_16 =
12143 { /* "nop", "", */ 0x0c00, 0xffff };
12146 /* Instruction match support. */
12148 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12150 static int
12151 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12153 unsigned long indx;
12155 for (indx = 0; insn[indx].mask != 0; indx++)
12156 if (MATCH (opcode, insn[indx]))
12157 return indx;
12159 return -1;
12163 /* Branch and delay slot decoding support. */
12165 /* If PTR points to what *might* be a 16-bit branch or jump, then
12166 return the minimum length of its delay slot, otherwise return 0.
12167 Non-zero results are not definitive as we might be checking against
12168 the second half of another instruction. */
12170 static int
12171 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12173 unsigned long opcode;
12174 int bdsize;
12176 opcode = bfd_get_16 (abfd, ptr);
12177 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12178 /* 16-bit branch/jump with a 32-bit delay slot. */
12179 bdsize = 4;
12180 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12181 || find_match (opcode, ds_insns_16_bd16) >= 0)
12182 /* 16-bit branch/jump with a 16-bit delay slot. */
12183 bdsize = 2;
12184 else
12185 /* No delay slot. */
12186 bdsize = 0;
12188 return bdsize;
12191 /* If PTR points to what *might* be a 32-bit branch or jump, then
12192 return the minimum length of its delay slot, otherwise return 0.
12193 Non-zero results are not definitive as we might be checking against
12194 the second half of another instruction. */
12196 static int
12197 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12199 unsigned long opcode;
12200 int bdsize;
12202 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12203 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12204 /* 32-bit branch/jump with a 32-bit delay slot. */
12205 bdsize = 4;
12206 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12207 /* 32-bit branch/jump with a 16-bit delay slot. */
12208 bdsize = 2;
12209 else
12210 /* No delay slot. */
12211 bdsize = 0;
12213 return bdsize;
12216 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12217 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12219 static bfd_boolean
12220 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12222 unsigned long opcode;
12224 opcode = bfd_get_16 (abfd, ptr);
12225 if (MATCH (opcode, b_insn_16)
12226 /* B16 */
12227 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12228 /* JR16 */
12229 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12230 /* BEQZ16, BNEZ16 */
12231 || (MATCH (opcode, jalr_insn_16_bd32)
12232 /* JALR16 */
12233 && reg != JR16_REG (opcode) && reg != RA))
12234 return TRUE;
12236 return FALSE;
12239 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12240 then return TRUE, otherwise FALSE. */
12242 static bfd_boolean
12243 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12245 unsigned long opcode;
12247 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12248 if (MATCH (opcode, j_insn_32)
12249 /* J */
12250 || MATCH (opcode, bc_insn_32)
12251 /* BC1F, BC1T, BC2F, BC2T */
12252 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12253 /* JAL, JALX */
12254 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12255 /* BGEZ, BGTZ, BLEZ, BLTZ */
12256 || (MATCH (opcode, bzal_insn_32)
12257 /* BGEZAL, BLTZAL */
12258 && reg != OP32_SREG (opcode) && reg != RA)
12259 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12260 /* JALR, JALR.HB, BEQ, BNE */
12261 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12262 return TRUE;
12264 return FALSE;
12267 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12268 IRELEND) at OFFSET indicate that there must be a compact branch there,
12269 then return TRUE, otherwise FALSE. */
12271 static bfd_boolean
12272 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12273 const Elf_Internal_Rela *internal_relocs,
12274 const Elf_Internal_Rela *irelend)
12276 const Elf_Internal_Rela *irel;
12277 unsigned long opcode;
12279 opcode = bfd_get_16 (abfd, ptr);
12280 opcode <<= 16;
12281 opcode |= bfd_get_16 (abfd, ptr + 2);
12282 if (find_match (opcode, bzc_insns_32) < 0)
12283 return FALSE;
12285 for (irel = internal_relocs; irel < irelend; irel++)
12286 if (irel->r_offset == offset
12287 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12288 return TRUE;
12290 return FALSE;
12293 /* Bitsize checking. */
12294 #define IS_BITSIZE(val, N) \
12295 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12296 - (1ULL << ((N) - 1))) == (val))
12299 bfd_boolean
12300 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12301 struct bfd_link_info *link_info,
12302 bfd_boolean *again)
12304 Elf_Internal_Shdr *symtab_hdr;
12305 Elf_Internal_Rela *internal_relocs;
12306 Elf_Internal_Rela *irel, *irelend;
12307 bfd_byte *contents = NULL;
12308 Elf_Internal_Sym *isymbuf = NULL;
12310 /* Assume nothing changes. */
12311 *again = FALSE;
12313 /* We don't have to do anything for a relocatable link, if
12314 this section does not have relocs, or if this is not a
12315 code section. */
12317 if (link_info->relocatable
12318 || (sec->flags & SEC_RELOC) == 0
12319 || sec->reloc_count == 0
12320 || (sec->flags & SEC_CODE) == 0)
12321 return TRUE;
12323 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12325 /* Get a copy of the native relocations. */
12326 internal_relocs = (_bfd_elf_link_read_relocs
12327 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12328 link_info->keep_memory));
12329 if (internal_relocs == NULL)
12330 goto error_return;
12332 /* Walk through them looking for relaxing opportunities. */
12333 irelend = internal_relocs + sec->reloc_count;
12334 for (irel = internal_relocs; irel < irelend; irel++)
12336 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12337 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12338 bfd_boolean target_is_micromips_code_p;
12339 unsigned long opcode;
12340 bfd_vma symval;
12341 bfd_vma pcrval;
12342 bfd_byte *ptr;
12343 int fndopc;
12345 /* The number of bytes to delete for relaxation and from where
12346 to delete these bytes starting at irel->r_offset. */
12347 int delcnt = 0;
12348 int deloff = 0;
12350 /* If this isn't something that can be relaxed, then ignore
12351 this reloc. */
12352 if (r_type != R_MICROMIPS_HI16
12353 && r_type != R_MICROMIPS_PC16_S1
12354 && r_type != R_MICROMIPS_26_S1)
12355 continue;
12357 /* Get the section contents if we haven't done so already. */
12358 if (contents == NULL)
12360 /* Get cached copy if it exists. */
12361 if (elf_section_data (sec)->this_hdr.contents != NULL)
12362 contents = elf_section_data (sec)->this_hdr.contents;
12363 /* Go get them off disk. */
12364 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12365 goto error_return;
12367 ptr = contents + irel->r_offset;
12369 /* Read this BFD's local symbols if we haven't done so already. */
12370 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12372 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12373 if (isymbuf == NULL)
12374 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12375 symtab_hdr->sh_info, 0,
12376 NULL, NULL, NULL);
12377 if (isymbuf == NULL)
12378 goto error_return;
12381 /* Get the value of the symbol referred to by the reloc. */
12382 if (r_symndx < symtab_hdr->sh_info)
12384 /* A local symbol. */
12385 Elf_Internal_Sym *isym;
12386 asection *sym_sec;
12388 isym = isymbuf + r_symndx;
12389 if (isym->st_shndx == SHN_UNDEF)
12390 sym_sec = bfd_und_section_ptr;
12391 else if (isym->st_shndx == SHN_ABS)
12392 sym_sec = bfd_abs_section_ptr;
12393 else if (isym->st_shndx == SHN_COMMON)
12394 sym_sec = bfd_com_section_ptr;
12395 else
12396 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12397 symval = (isym->st_value
12398 + sym_sec->output_section->vma
12399 + sym_sec->output_offset);
12400 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12402 else
12404 unsigned long indx;
12405 struct elf_link_hash_entry *h;
12407 /* An external symbol. */
12408 indx = r_symndx - symtab_hdr->sh_info;
12409 h = elf_sym_hashes (abfd)[indx];
12410 BFD_ASSERT (h != NULL);
12412 if (h->root.type != bfd_link_hash_defined
12413 && h->root.type != bfd_link_hash_defweak)
12414 /* This appears to be a reference to an undefined
12415 symbol. Just ignore it -- it will be caught by the
12416 regular reloc processing. */
12417 continue;
12419 symval = (h->root.u.def.value
12420 + h->root.u.def.section->output_section->vma
12421 + h->root.u.def.section->output_offset);
12422 target_is_micromips_code_p = (!h->needs_plt
12423 && ELF_ST_IS_MICROMIPS (h->other));
12427 /* For simplicity of coding, we are going to modify the
12428 section contents, the section relocs, and the BFD symbol
12429 table. We must tell the rest of the code not to free up this
12430 information. It would be possible to instead create a table
12431 of changes which have to be made, as is done in coff-mips.c;
12432 that would be more work, but would require less memory when
12433 the linker is run. */
12435 /* Only 32-bit instructions relaxed. */
12436 if (irel->r_offset + 4 > sec->size)
12437 continue;
12439 opcode = bfd_get_16 (abfd, ptr ) << 16;
12440 opcode |= bfd_get_16 (abfd, ptr + 2);
12442 /* This is the pc-relative distance from the instruction the
12443 relocation is applied to, to the symbol referred. */
12444 pcrval = (symval
12445 - (sec->output_section->vma + sec->output_offset)
12446 - irel->r_offset);
12448 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12449 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12450 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12452 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12454 where pcrval has first to be adjusted to apply against the LO16
12455 location (we make the adjustment later on, when we have figured
12456 out the offset). */
12457 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12459 bfd_boolean bzc = FALSE;
12460 unsigned long nextopc;
12461 unsigned long reg;
12462 bfd_vma offset;
12464 /* Give up if the previous reloc was a HI16 against this symbol
12465 too. */
12466 if (irel > internal_relocs
12467 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12468 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12469 continue;
12471 /* Or if the next reloc is not a LO16 against this symbol. */
12472 if (irel + 1 >= irelend
12473 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12474 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12475 continue;
12477 /* Or if the second next reloc is a LO16 against this symbol too. */
12478 if (irel + 2 >= irelend
12479 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12480 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12481 continue;
12483 /* See if the LUI instruction *might* be in a branch delay slot.
12484 We check whether what looks like a 16-bit branch or jump is
12485 actually an immediate argument to a compact branch, and let
12486 it through if so. */
12487 if (irel->r_offset >= 2
12488 && check_br16_dslot (abfd, ptr - 2)
12489 && !(irel->r_offset >= 4
12490 && (bzc = check_relocated_bzc (abfd,
12491 ptr - 4, irel->r_offset - 4,
12492 internal_relocs, irelend))))
12493 continue;
12494 if (irel->r_offset >= 4
12495 && !bzc
12496 && check_br32_dslot (abfd, ptr - 4))
12497 continue;
12499 reg = OP32_SREG (opcode);
12501 /* We only relax adjacent instructions or ones separated with
12502 a branch or jump that has a delay slot. The branch or jump
12503 must not fiddle with the register used to hold the address.
12504 Subtract 4 for the LUI itself. */
12505 offset = irel[1].r_offset - irel[0].r_offset;
12506 switch (offset - 4)
12508 case 0:
12509 break;
12510 case 2:
12511 if (check_br16 (abfd, ptr + 4, reg))
12512 break;
12513 continue;
12514 case 4:
12515 if (check_br32 (abfd, ptr + 4, reg))
12516 break;
12517 continue;
12518 default:
12519 continue;
12522 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12523 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12525 /* Give up unless the same register is used with both
12526 relocations. */
12527 if (OP32_SREG (nextopc) != reg)
12528 continue;
12530 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12531 and rounding up to take masking of the two LSBs into account. */
12532 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12534 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12535 if (IS_BITSIZE (symval, 16))
12537 /* Fix the relocation's type. */
12538 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12540 /* Instructions using R_MICROMIPS_LO16 have the base or
12541 source register in bits 20:16. This register becomes $0
12542 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12543 nextopc &= ~0x001f0000;
12544 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12545 contents + irel[1].r_offset);
12548 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12549 We add 4 to take LUI deletion into account while checking
12550 the PC-relative distance. */
12551 else if (symval % 4 == 0
12552 && IS_BITSIZE (pcrval + 4, 25)
12553 && MATCH (nextopc, addiu_insn)
12554 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12555 && OP16_VALID_REG (OP32_TREG (nextopc)))
12557 /* Fix the relocation's type. */
12558 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12560 /* Replace ADDIU with the ADDIUPC version. */
12561 nextopc = (addiupc_insn.match
12562 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12564 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12565 contents + irel[1].r_offset);
12566 bfd_put_16 (abfd, nextopc & 0xffff,
12567 contents + irel[1].r_offset + 2);
12570 /* Can't do anything, give up, sigh... */
12571 else
12572 continue;
12574 /* Fix the relocation's type. */
12575 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12577 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12578 delcnt = 4;
12579 deloff = 0;
12582 /* Compact branch relaxation -- due to the multitude of macros
12583 employed by the compiler/assembler, compact branches are not
12584 always generated. Obviously, this can/will be fixed elsewhere,
12585 but there is no drawback in double checking it here. */
12586 else if (r_type == R_MICROMIPS_PC16_S1
12587 && irel->r_offset + 5 < sec->size
12588 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12589 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12590 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12592 unsigned long reg;
12594 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12596 /* Replace BEQZ/BNEZ with the compact version. */
12597 opcode = (bzc_insns_32[fndopc].match
12598 | BZC32_REG_FIELD (reg)
12599 | (opcode & 0xffff)); /* Addend value. */
12601 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12602 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12604 /* Delete the 16-bit delay slot NOP: two bytes from
12605 irel->offset + 4. */
12606 delcnt = 2;
12607 deloff = 4;
12610 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12611 to check the distance from the next instruction, so subtract 2. */
12612 else if (r_type == R_MICROMIPS_PC16_S1
12613 && IS_BITSIZE (pcrval - 2, 11)
12614 && find_match (opcode, b_insns_32) >= 0)
12616 /* Fix the relocation's type. */
12617 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12619 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12620 bfd_put_16 (abfd,
12621 (b_insn_16.match
12622 | (opcode & 0x3ff)), /* Addend value. */
12623 ptr);
12625 /* Delete 2 bytes from irel->r_offset + 2. */
12626 delcnt = 2;
12627 deloff = 2;
12630 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12631 to check the distance from the next instruction, so subtract 2. */
12632 else if (r_type == R_MICROMIPS_PC16_S1
12633 && IS_BITSIZE (pcrval - 2, 8)
12634 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12635 && OP16_VALID_REG (OP32_SREG (opcode)))
12636 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12637 && OP16_VALID_REG (OP32_TREG (opcode)))))
12639 unsigned long reg;
12641 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12643 /* Fix the relocation's type. */
12644 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12646 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12647 bfd_put_16 (abfd,
12648 (bz_insns_16[fndopc].match
12649 | BZ16_REG_FIELD (reg)
12650 | (opcode & 0x7f)), /* Addend value. */
12651 ptr);
12653 /* Delete 2 bytes from irel->r_offset + 2. */
12654 delcnt = 2;
12655 deloff = 2;
12658 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12659 else if (r_type == R_MICROMIPS_26_S1
12660 && target_is_micromips_code_p
12661 && irel->r_offset + 7 < sec->size
12662 && MATCH (opcode, jal_insn_32_bd32))
12664 unsigned long n32opc;
12665 bfd_boolean relaxed = FALSE;
12667 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12668 n32opc |= bfd_get_16 (abfd, ptr + 6);
12670 if (MATCH (n32opc, nop_insn_32))
12672 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12673 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12675 relaxed = TRUE;
12677 else if (find_match (n32opc, move_insns_32) >= 0)
12679 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12680 bfd_put_16 (abfd,
12681 (move_insn_16.match
12682 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12683 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12684 ptr + 4);
12686 relaxed = TRUE;
12688 /* Other 32-bit instructions relaxable to 16-bit
12689 instructions will be handled here later. */
12691 if (relaxed)
12693 /* JAL with 32-bit delay slot that is changed to a JALS
12694 with 16-bit delay slot. */
12695 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12696 ptr);
12697 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12698 ptr + 2);
12700 /* Delete 2 bytes from irel->r_offset + 6. */
12701 delcnt = 2;
12702 deloff = 6;
12706 if (delcnt != 0)
12708 /* Note that we've changed the relocs, section contents, etc. */
12709 elf_section_data (sec)->relocs = internal_relocs;
12710 elf_section_data (sec)->this_hdr.contents = contents;
12711 symtab_hdr->contents = (unsigned char *) isymbuf;
12713 /* Delete bytes depending on the delcnt and deloff. */
12714 if (!mips_elf_relax_delete_bytes (abfd, sec,
12715 irel->r_offset + deloff, delcnt))
12716 goto error_return;
12718 /* That will change things, so we should relax again.
12719 Note that this is not required, and it may be slow. */
12720 *again = TRUE;
12724 if (isymbuf != NULL
12725 && symtab_hdr->contents != (unsigned char *) isymbuf)
12727 if (! link_info->keep_memory)
12728 free (isymbuf);
12729 else
12731 /* Cache the symbols for elf_link_input_bfd. */
12732 symtab_hdr->contents = (unsigned char *) isymbuf;
12736 if (contents != NULL
12737 && elf_section_data (sec)->this_hdr.contents != contents)
12739 if (! link_info->keep_memory)
12740 free (contents);
12741 else
12743 /* Cache the section contents for elf_link_input_bfd. */
12744 elf_section_data (sec)->this_hdr.contents = contents;
12748 if (internal_relocs != NULL
12749 && elf_section_data (sec)->relocs != internal_relocs)
12750 free (internal_relocs);
12752 return TRUE;
12754 error_return:
12755 if (isymbuf != NULL
12756 && symtab_hdr->contents != (unsigned char *) isymbuf)
12757 free (isymbuf);
12758 if (contents != NULL
12759 && elf_section_data (sec)->this_hdr.contents != contents)
12760 free (contents);
12761 if (internal_relocs != NULL
12762 && elf_section_data (sec)->relocs != internal_relocs)
12763 free (internal_relocs);
12765 return FALSE;
12768 /* Create a MIPS ELF linker hash table. */
12770 struct bfd_link_hash_table *
12771 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12773 struct mips_elf_link_hash_table *ret;
12774 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12776 ret = bfd_malloc (amt);
12777 if (ret == NULL)
12778 return NULL;
12780 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12781 mips_elf_link_hash_newfunc,
12782 sizeof (struct mips_elf_link_hash_entry),
12783 MIPS_ELF_DATA))
12785 free (ret);
12786 return NULL;
12789 #if 0
12790 /* We no longer use this. */
12791 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12792 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12793 #endif
12794 ret->procedure_count = 0;
12795 ret->compact_rel_size = 0;
12796 ret->use_rld_obj_head = FALSE;
12797 ret->rld_value = 0;
12798 ret->mips16_stubs_seen = FALSE;
12799 ret->use_plts_and_copy_relocs = FALSE;
12800 ret->is_vxworks = FALSE;
12801 ret->small_data_overflow_reported = FALSE;
12802 ret->srelbss = NULL;
12803 ret->sdynbss = NULL;
12804 ret->srelplt = NULL;
12805 ret->srelplt2 = NULL;
12806 ret->sgotplt = NULL;
12807 ret->splt = NULL;
12808 ret->sstubs = NULL;
12809 ret->sgot = NULL;
12810 ret->got_info = NULL;
12811 ret->plt_header_size = 0;
12812 ret->plt_entry_size = 0;
12813 ret->lazy_stub_count = 0;
12814 ret->function_stub_size = 0;
12815 ret->strampoline = NULL;
12816 ret->la25_stubs = NULL;
12817 ret->add_stub_section = NULL;
12819 return &ret->root.root;
12822 /* Likewise, but indicate that the target is VxWorks. */
12824 struct bfd_link_hash_table *
12825 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12827 struct bfd_link_hash_table *ret;
12829 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12830 if (ret)
12832 struct mips_elf_link_hash_table *htab;
12834 htab = (struct mips_elf_link_hash_table *) ret;
12835 htab->use_plts_and_copy_relocs = TRUE;
12836 htab->is_vxworks = TRUE;
12838 return ret;
12841 /* A function that the linker calls if we are allowed to use PLTs
12842 and copy relocs. */
12844 void
12845 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12847 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12850 /* We need to use a special link routine to handle the .reginfo and
12851 the .mdebug sections. We need to merge all instances of these
12852 sections together, not write them all out sequentially. */
12854 bfd_boolean
12855 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12857 asection *o;
12858 struct bfd_link_order *p;
12859 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12860 asection *rtproc_sec;
12861 Elf32_RegInfo reginfo;
12862 struct ecoff_debug_info debug;
12863 struct mips_htab_traverse_info hti;
12864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12865 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12866 HDRR *symhdr = &debug.symbolic_header;
12867 void *mdebug_handle = NULL;
12868 asection *s;
12869 EXTR esym;
12870 unsigned int i;
12871 bfd_size_type amt;
12872 struct mips_elf_link_hash_table *htab;
12874 static const char * const secname[] =
12876 ".text", ".init", ".fini", ".data",
12877 ".rodata", ".sdata", ".sbss", ".bss"
12879 static const int sc[] =
12881 scText, scInit, scFini, scData,
12882 scRData, scSData, scSBss, scBss
12885 /* Sort the dynamic symbols so that those with GOT entries come after
12886 those without. */
12887 htab = mips_elf_hash_table (info);
12888 BFD_ASSERT (htab != NULL);
12890 if (!mips_elf_sort_hash_table (abfd, info))
12891 return FALSE;
12893 /* Create any scheduled LA25 stubs. */
12894 hti.info = info;
12895 hti.output_bfd = abfd;
12896 hti.error = FALSE;
12897 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12898 if (hti.error)
12899 return FALSE;
12901 /* Get a value for the GP register. */
12902 if (elf_gp (abfd) == 0)
12904 struct bfd_link_hash_entry *h;
12906 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12907 if (h != NULL && h->type == bfd_link_hash_defined)
12908 elf_gp (abfd) = (h->u.def.value
12909 + h->u.def.section->output_section->vma
12910 + h->u.def.section->output_offset);
12911 else if (htab->is_vxworks
12912 && (h = bfd_link_hash_lookup (info->hash,
12913 "_GLOBAL_OFFSET_TABLE_",
12914 FALSE, FALSE, TRUE))
12915 && h->type == bfd_link_hash_defined)
12916 elf_gp (abfd) = (h->u.def.section->output_section->vma
12917 + h->u.def.section->output_offset
12918 + h->u.def.value);
12919 else if (info->relocatable)
12921 bfd_vma lo = MINUS_ONE;
12923 /* Find the GP-relative section with the lowest offset. */
12924 for (o = abfd->sections; o != NULL; o = o->next)
12925 if (o->vma < lo
12926 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12927 lo = o->vma;
12929 /* And calculate GP relative to that. */
12930 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12932 else
12934 /* If the relocate_section function needs to do a reloc
12935 involving the GP value, it should make a reloc_dangerous
12936 callback to warn that GP is not defined. */
12940 /* Go through the sections and collect the .reginfo and .mdebug
12941 information. */
12942 reginfo_sec = NULL;
12943 mdebug_sec = NULL;
12944 gptab_data_sec = NULL;
12945 gptab_bss_sec = NULL;
12946 for (o = abfd->sections; o != NULL; o = o->next)
12948 if (strcmp (o->name, ".reginfo") == 0)
12950 memset (&reginfo, 0, sizeof reginfo);
12952 /* We have found the .reginfo section in the output file.
12953 Look through all the link_orders comprising it and merge
12954 the information together. */
12955 for (p = o->map_head.link_order; p != NULL; p = p->next)
12957 asection *input_section;
12958 bfd *input_bfd;
12959 Elf32_External_RegInfo ext;
12960 Elf32_RegInfo sub;
12962 if (p->type != bfd_indirect_link_order)
12964 if (p->type == bfd_data_link_order)
12965 continue;
12966 abort ();
12969 input_section = p->u.indirect.section;
12970 input_bfd = input_section->owner;
12972 if (! bfd_get_section_contents (input_bfd, input_section,
12973 &ext, 0, sizeof ext))
12974 return FALSE;
12976 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12978 reginfo.ri_gprmask |= sub.ri_gprmask;
12979 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12980 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12981 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12982 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12984 /* ri_gp_value is set by the function
12985 mips_elf32_section_processing when the section is
12986 finally written out. */
12988 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12989 elf_link_input_bfd ignores this section. */
12990 input_section->flags &= ~SEC_HAS_CONTENTS;
12993 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12994 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12996 /* Skip this section later on (I don't think this currently
12997 matters, but someday it might). */
12998 o->map_head.link_order = NULL;
13000 reginfo_sec = o;
13003 if (strcmp (o->name, ".mdebug") == 0)
13005 struct extsym_info einfo;
13006 bfd_vma last;
13008 /* We have found the .mdebug section in the output file.
13009 Look through all the link_orders comprising it and merge
13010 the information together. */
13011 symhdr->magic = swap->sym_magic;
13012 /* FIXME: What should the version stamp be? */
13013 symhdr->vstamp = 0;
13014 symhdr->ilineMax = 0;
13015 symhdr->cbLine = 0;
13016 symhdr->idnMax = 0;
13017 symhdr->ipdMax = 0;
13018 symhdr->isymMax = 0;
13019 symhdr->ioptMax = 0;
13020 symhdr->iauxMax = 0;
13021 symhdr->issMax = 0;
13022 symhdr->issExtMax = 0;
13023 symhdr->ifdMax = 0;
13024 symhdr->crfd = 0;
13025 symhdr->iextMax = 0;
13027 /* We accumulate the debugging information itself in the
13028 debug_info structure. */
13029 debug.line = NULL;
13030 debug.external_dnr = NULL;
13031 debug.external_pdr = NULL;
13032 debug.external_sym = NULL;
13033 debug.external_opt = NULL;
13034 debug.external_aux = NULL;
13035 debug.ss = NULL;
13036 debug.ssext = debug.ssext_end = NULL;
13037 debug.external_fdr = NULL;
13038 debug.external_rfd = NULL;
13039 debug.external_ext = debug.external_ext_end = NULL;
13041 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13042 if (mdebug_handle == NULL)
13043 return FALSE;
13045 esym.jmptbl = 0;
13046 esym.cobol_main = 0;
13047 esym.weakext = 0;
13048 esym.reserved = 0;
13049 esym.ifd = ifdNil;
13050 esym.asym.iss = issNil;
13051 esym.asym.st = stLocal;
13052 esym.asym.reserved = 0;
13053 esym.asym.index = indexNil;
13054 last = 0;
13055 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13057 esym.asym.sc = sc[i];
13058 s = bfd_get_section_by_name (abfd, secname[i]);
13059 if (s != NULL)
13061 esym.asym.value = s->vma;
13062 last = s->vma + s->size;
13064 else
13065 esym.asym.value = last;
13066 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13067 secname[i], &esym))
13068 return FALSE;
13071 for (p = o->map_head.link_order; p != NULL; p = p->next)
13073 asection *input_section;
13074 bfd *input_bfd;
13075 const struct ecoff_debug_swap *input_swap;
13076 struct ecoff_debug_info input_debug;
13077 char *eraw_src;
13078 char *eraw_end;
13080 if (p->type != bfd_indirect_link_order)
13082 if (p->type == bfd_data_link_order)
13083 continue;
13084 abort ();
13087 input_section = p->u.indirect.section;
13088 input_bfd = input_section->owner;
13090 if (!is_mips_elf (input_bfd))
13092 /* I don't know what a non MIPS ELF bfd would be
13093 doing with a .mdebug section, but I don't really
13094 want to deal with it. */
13095 continue;
13098 input_swap = (get_elf_backend_data (input_bfd)
13099 ->elf_backend_ecoff_debug_swap);
13101 BFD_ASSERT (p->size == input_section->size);
13103 /* The ECOFF linking code expects that we have already
13104 read in the debugging information and set up an
13105 ecoff_debug_info structure, so we do that now. */
13106 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13107 &input_debug))
13108 return FALSE;
13110 if (! (bfd_ecoff_debug_accumulate
13111 (mdebug_handle, abfd, &debug, swap, input_bfd,
13112 &input_debug, input_swap, info)))
13113 return FALSE;
13115 /* Loop through the external symbols. For each one with
13116 interesting information, try to find the symbol in
13117 the linker global hash table and save the information
13118 for the output external symbols. */
13119 eraw_src = input_debug.external_ext;
13120 eraw_end = (eraw_src
13121 + (input_debug.symbolic_header.iextMax
13122 * input_swap->external_ext_size));
13123 for (;
13124 eraw_src < eraw_end;
13125 eraw_src += input_swap->external_ext_size)
13127 EXTR ext;
13128 const char *name;
13129 struct mips_elf_link_hash_entry *h;
13131 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13132 if (ext.asym.sc == scNil
13133 || ext.asym.sc == scUndefined
13134 || ext.asym.sc == scSUndefined)
13135 continue;
13137 name = input_debug.ssext + ext.asym.iss;
13138 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13139 name, FALSE, FALSE, TRUE);
13140 if (h == NULL || h->esym.ifd != -2)
13141 continue;
13143 if (ext.ifd != -1)
13145 BFD_ASSERT (ext.ifd
13146 < input_debug.symbolic_header.ifdMax);
13147 ext.ifd = input_debug.ifdmap[ext.ifd];
13150 h->esym = ext;
13153 /* Free up the information we just read. */
13154 free (input_debug.line);
13155 free (input_debug.external_dnr);
13156 free (input_debug.external_pdr);
13157 free (input_debug.external_sym);
13158 free (input_debug.external_opt);
13159 free (input_debug.external_aux);
13160 free (input_debug.ss);
13161 free (input_debug.ssext);
13162 free (input_debug.external_fdr);
13163 free (input_debug.external_rfd);
13164 free (input_debug.external_ext);
13166 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13167 elf_link_input_bfd ignores this section. */
13168 input_section->flags &= ~SEC_HAS_CONTENTS;
13171 if (SGI_COMPAT (abfd) && info->shared)
13173 /* Create .rtproc section. */
13174 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13175 if (rtproc_sec == NULL)
13177 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13178 | SEC_LINKER_CREATED | SEC_READONLY);
13180 rtproc_sec = bfd_make_section_with_flags (abfd,
13181 ".rtproc",
13182 flags);
13183 if (rtproc_sec == NULL
13184 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13185 return FALSE;
13188 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13189 info, rtproc_sec,
13190 &debug))
13191 return FALSE;
13194 /* Build the external symbol information. */
13195 einfo.abfd = abfd;
13196 einfo.info = info;
13197 einfo.debug = &debug;
13198 einfo.swap = swap;
13199 einfo.failed = FALSE;
13200 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13201 mips_elf_output_extsym, &einfo);
13202 if (einfo.failed)
13203 return FALSE;
13205 /* Set the size of the .mdebug section. */
13206 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13208 /* Skip this section later on (I don't think this currently
13209 matters, but someday it might). */
13210 o->map_head.link_order = NULL;
13212 mdebug_sec = o;
13215 if (CONST_STRNEQ (o->name, ".gptab."))
13217 const char *subname;
13218 unsigned int c;
13219 Elf32_gptab *tab;
13220 Elf32_External_gptab *ext_tab;
13221 unsigned int j;
13223 /* The .gptab.sdata and .gptab.sbss sections hold
13224 information describing how the small data area would
13225 change depending upon the -G switch. These sections
13226 not used in executables files. */
13227 if (! info->relocatable)
13229 for (p = o->map_head.link_order; p != NULL; p = p->next)
13231 asection *input_section;
13233 if (p->type != bfd_indirect_link_order)
13235 if (p->type == bfd_data_link_order)
13236 continue;
13237 abort ();
13240 input_section = p->u.indirect.section;
13242 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13243 elf_link_input_bfd ignores this section. */
13244 input_section->flags &= ~SEC_HAS_CONTENTS;
13247 /* Skip this section later on (I don't think this
13248 currently matters, but someday it might). */
13249 o->map_head.link_order = NULL;
13251 /* Really remove the section. */
13252 bfd_section_list_remove (abfd, o);
13253 --abfd->section_count;
13255 continue;
13258 /* There is one gptab for initialized data, and one for
13259 uninitialized data. */
13260 if (strcmp (o->name, ".gptab.sdata") == 0)
13261 gptab_data_sec = o;
13262 else if (strcmp (o->name, ".gptab.sbss") == 0)
13263 gptab_bss_sec = o;
13264 else
13266 (*_bfd_error_handler)
13267 (_("%s: illegal section name `%s'"),
13268 bfd_get_filename (abfd), o->name);
13269 bfd_set_error (bfd_error_nonrepresentable_section);
13270 return FALSE;
13273 /* The linker script always combines .gptab.data and
13274 .gptab.sdata into .gptab.sdata, and likewise for
13275 .gptab.bss and .gptab.sbss. It is possible that there is
13276 no .sdata or .sbss section in the output file, in which
13277 case we must change the name of the output section. */
13278 subname = o->name + sizeof ".gptab" - 1;
13279 if (bfd_get_section_by_name (abfd, subname) == NULL)
13281 if (o == gptab_data_sec)
13282 o->name = ".gptab.data";
13283 else
13284 o->name = ".gptab.bss";
13285 subname = o->name + sizeof ".gptab" - 1;
13286 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13289 /* Set up the first entry. */
13290 c = 1;
13291 amt = c * sizeof (Elf32_gptab);
13292 tab = bfd_malloc (amt);
13293 if (tab == NULL)
13294 return FALSE;
13295 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13296 tab[0].gt_header.gt_unused = 0;
13298 /* Combine the input sections. */
13299 for (p = o->map_head.link_order; p != NULL; p = p->next)
13301 asection *input_section;
13302 bfd *input_bfd;
13303 bfd_size_type size;
13304 unsigned long last;
13305 bfd_size_type gpentry;
13307 if (p->type != bfd_indirect_link_order)
13309 if (p->type == bfd_data_link_order)
13310 continue;
13311 abort ();
13314 input_section = p->u.indirect.section;
13315 input_bfd = input_section->owner;
13317 /* Combine the gptab entries for this input section one
13318 by one. We know that the input gptab entries are
13319 sorted by ascending -G value. */
13320 size = input_section->size;
13321 last = 0;
13322 for (gpentry = sizeof (Elf32_External_gptab);
13323 gpentry < size;
13324 gpentry += sizeof (Elf32_External_gptab))
13326 Elf32_External_gptab ext_gptab;
13327 Elf32_gptab int_gptab;
13328 unsigned long val;
13329 unsigned long add;
13330 bfd_boolean exact;
13331 unsigned int look;
13333 if (! (bfd_get_section_contents
13334 (input_bfd, input_section, &ext_gptab, gpentry,
13335 sizeof (Elf32_External_gptab))))
13337 free (tab);
13338 return FALSE;
13341 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13342 &int_gptab);
13343 val = int_gptab.gt_entry.gt_g_value;
13344 add = int_gptab.gt_entry.gt_bytes - last;
13346 exact = FALSE;
13347 for (look = 1; look < c; look++)
13349 if (tab[look].gt_entry.gt_g_value >= val)
13350 tab[look].gt_entry.gt_bytes += add;
13352 if (tab[look].gt_entry.gt_g_value == val)
13353 exact = TRUE;
13356 if (! exact)
13358 Elf32_gptab *new_tab;
13359 unsigned int max;
13361 /* We need a new table entry. */
13362 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13363 new_tab = bfd_realloc (tab, amt);
13364 if (new_tab == NULL)
13366 free (tab);
13367 return FALSE;
13369 tab = new_tab;
13370 tab[c].gt_entry.gt_g_value = val;
13371 tab[c].gt_entry.gt_bytes = add;
13373 /* Merge in the size for the next smallest -G
13374 value, since that will be implied by this new
13375 value. */
13376 max = 0;
13377 for (look = 1; look < c; look++)
13379 if (tab[look].gt_entry.gt_g_value < val
13380 && (max == 0
13381 || (tab[look].gt_entry.gt_g_value
13382 > tab[max].gt_entry.gt_g_value)))
13383 max = look;
13385 if (max != 0)
13386 tab[c].gt_entry.gt_bytes +=
13387 tab[max].gt_entry.gt_bytes;
13389 ++c;
13392 last = int_gptab.gt_entry.gt_bytes;
13395 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13396 elf_link_input_bfd ignores this section. */
13397 input_section->flags &= ~SEC_HAS_CONTENTS;
13400 /* The table must be sorted by -G value. */
13401 if (c > 2)
13402 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13404 /* Swap out the table. */
13405 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13406 ext_tab = bfd_alloc (abfd, amt);
13407 if (ext_tab == NULL)
13409 free (tab);
13410 return FALSE;
13413 for (j = 0; j < c; j++)
13414 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13415 free (tab);
13417 o->size = c * sizeof (Elf32_External_gptab);
13418 o->contents = (bfd_byte *) ext_tab;
13420 /* Skip this section later on (I don't think this currently
13421 matters, but someday it might). */
13422 o->map_head.link_order = NULL;
13426 /* Invoke the regular ELF backend linker to do all the work. */
13427 if (!bfd_elf_final_link (abfd, info))
13428 return FALSE;
13430 /* Now write out the computed sections. */
13432 if (reginfo_sec != NULL)
13434 Elf32_External_RegInfo ext;
13436 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13437 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13438 return FALSE;
13441 if (mdebug_sec != NULL)
13443 BFD_ASSERT (abfd->output_has_begun);
13444 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13445 swap, info,
13446 mdebug_sec->filepos))
13447 return FALSE;
13449 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13452 if (gptab_data_sec != NULL)
13454 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13455 gptab_data_sec->contents,
13456 0, gptab_data_sec->size))
13457 return FALSE;
13460 if (gptab_bss_sec != NULL)
13462 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13463 gptab_bss_sec->contents,
13464 0, gptab_bss_sec->size))
13465 return FALSE;
13468 if (SGI_COMPAT (abfd))
13470 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13471 if (rtproc_sec != NULL)
13473 if (! bfd_set_section_contents (abfd, rtproc_sec,
13474 rtproc_sec->contents,
13475 0, rtproc_sec->size))
13476 return FALSE;
13480 return TRUE;
13483 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13485 struct mips_mach_extension {
13486 unsigned long extension, base;
13490 /* An array describing how BFD machines relate to one another. The entries
13491 are ordered topologically with MIPS I extensions listed last. */
13493 static const struct mips_mach_extension mips_mach_extensions[] = {
13494 /* MIPS64r2 extensions. */
13495 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13497 /* MIPS64 extensions. */
13498 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13499 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13500 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13501 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13503 /* MIPS V extensions. */
13504 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13506 /* R10000 extensions. */
13507 { bfd_mach_mips12000, bfd_mach_mips10000 },
13508 { bfd_mach_mips14000, bfd_mach_mips10000 },
13509 { bfd_mach_mips16000, bfd_mach_mips10000 },
13511 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13512 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13513 better to allow vr5400 and vr5500 code to be merged anyway, since
13514 many libraries will just use the core ISA. Perhaps we could add
13515 some sort of ASE flag if this ever proves a problem. */
13516 { bfd_mach_mips5500, bfd_mach_mips5400 },
13517 { bfd_mach_mips5400, bfd_mach_mips5000 },
13519 /* MIPS IV extensions. */
13520 { bfd_mach_mips5, bfd_mach_mips8000 },
13521 { bfd_mach_mips10000, bfd_mach_mips8000 },
13522 { bfd_mach_mips5000, bfd_mach_mips8000 },
13523 { bfd_mach_mips7000, bfd_mach_mips8000 },
13524 { bfd_mach_mips9000, bfd_mach_mips8000 },
13526 /* VR4100 extensions. */
13527 { bfd_mach_mips4120, bfd_mach_mips4100 },
13528 { bfd_mach_mips4111, bfd_mach_mips4100 },
13530 /* MIPS III extensions. */
13531 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13532 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13533 { bfd_mach_mips8000, bfd_mach_mips4000 },
13534 { bfd_mach_mips4650, bfd_mach_mips4000 },
13535 { bfd_mach_mips4600, bfd_mach_mips4000 },
13536 { bfd_mach_mips4400, bfd_mach_mips4000 },
13537 { bfd_mach_mips4300, bfd_mach_mips4000 },
13538 { bfd_mach_mips4100, bfd_mach_mips4000 },
13539 { bfd_mach_mips4010, bfd_mach_mips4000 },
13541 /* MIPS32 extensions. */
13542 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13544 /* MIPS II extensions. */
13545 { bfd_mach_mips4000, bfd_mach_mips6000 },
13546 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13548 /* MIPS I extensions. */
13549 { bfd_mach_mips6000, bfd_mach_mips3000 },
13550 { bfd_mach_mips3900, bfd_mach_mips3000 }
13554 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13556 static bfd_boolean
13557 mips_mach_extends_p (unsigned long base, unsigned long extension)
13559 size_t i;
13561 if (extension == base)
13562 return TRUE;
13564 if (base == bfd_mach_mipsisa32
13565 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13566 return TRUE;
13568 if (base == bfd_mach_mipsisa32r2
13569 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13570 return TRUE;
13572 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13573 if (extension == mips_mach_extensions[i].extension)
13575 extension = mips_mach_extensions[i].base;
13576 if (extension == base)
13577 return TRUE;
13580 return FALSE;
13584 /* Return true if the given ELF header flags describe a 32-bit binary. */
13586 static bfd_boolean
13587 mips_32bit_flags_p (flagword flags)
13589 return ((flags & EF_MIPS_32BITMODE) != 0
13590 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13591 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13592 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13593 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13594 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13599 /* Merge object attributes from IBFD into OBFD. Raise an error if
13600 there are conflicting attributes. */
13601 static bfd_boolean
13602 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13604 obj_attribute *in_attr;
13605 obj_attribute *out_attr;
13607 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13609 /* This is the first object. Copy the attributes. */
13610 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13612 /* Use the Tag_null value to indicate the attributes have been
13613 initialized. */
13614 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13616 return TRUE;
13619 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13620 non-conflicting ones. */
13621 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13622 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13623 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13625 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13626 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13627 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13628 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13630 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13631 _bfd_error_handler
13632 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13633 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13634 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13635 _bfd_error_handler
13636 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13637 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13638 else
13639 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13641 case 1:
13642 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13644 case 2:
13645 _bfd_error_handler
13646 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13647 obfd, ibfd);
13648 break;
13650 case 3:
13651 _bfd_error_handler
13652 (_("Warning: %B uses hard float, %B uses soft float"),
13653 obfd, ibfd);
13654 break;
13656 case 4:
13657 _bfd_error_handler
13658 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13659 obfd, ibfd);
13660 break;
13662 default:
13663 abort ();
13665 break;
13667 case 2:
13668 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13670 case 1:
13671 _bfd_error_handler
13672 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13673 ibfd, obfd);
13674 break;
13676 case 3:
13677 _bfd_error_handler
13678 (_("Warning: %B uses hard float, %B uses soft float"),
13679 obfd, ibfd);
13680 break;
13682 case 4:
13683 _bfd_error_handler
13684 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13685 obfd, ibfd);
13686 break;
13688 default:
13689 abort ();
13691 break;
13693 case 3:
13694 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13696 case 1:
13697 case 2:
13698 case 4:
13699 _bfd_error_handler
13700 (_("Warning: %B uses hard float, %B uses soft float"),
13701 ibfd, obfd);
13702 break;
13704 default:
13705 abort ();
13707 break;
13709 case 4:
13710 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13712 case 1:
13713 _bfd_error_handler
13714 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13715 ibfd, obfd);
13716 break;
13718 case 2:
13719 _bfd_error_handler
13720 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13721 ibfd, obfd);
13722 break;
13724 case 3:
13725 _bfd_error_handler
13726 (_("Warning: %B uses hard float, %B uses soft float"),
13727 obfd, ibfd);
13728 break;
13730 default:
13731 abort ();
13733 break;
13735 default:
13736 abort ();
13740 /* Merge Tag_compatibility attributes and any common GNU ones. */
13741 _bfd_elf_merge_object_attributes (ibfd, obfd);
13743 return TRUE;
13746 /* Merge backend specific data from an object file to the output
13747 object file when linking. */
13749 bfd_boolean
13750 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13752 flagword old_flags;
13753 flagword new_flags;
13754 bfd_boolean ok;
13755 bfd_boolean null_input_bfd = TRUE;
13756 asection *sec;
13758 /* Check if we have the same endianness. */
13759 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13761 (*_bfd_error_handler)
13762 (_("%B: endianness incompatible with that of the selected emulation"),
13763 ibfd);
13764 return FALSE;
13767 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13768 return TRUE;
13770 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13772 (*_bfd_error_handler)
13773 (_("%B: ABI is incompatible with that of the selected emulation"),
13774 ibfd);
13775 return FALSE;
13778 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13779 return FALSE;
13781 new_flags = elf_elfheader (ibfd)->e_flags;
13782 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13783 old_flags = elf_elfheader (obfd)->e_flags;
13785 if (! elf_flags_init (obfd))
13787 elf_flags_init (obfd) = TRUE;
13788 elf_elfheader (obfd)->e_flags = new_flags;
13789 elf_elfheader (obfd)->e_ident[EI_CLASS]
13790 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13792 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13793 && (bfd_get_arch_info (obfd)->the_default
13794 || mips_mach_extends_p (bfd_get_mach (obfd),
13795 bfd_get_mach (ibfd))))
13797 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13798 bfd_get_mach (ibfd)))
13799 return FALSE;
13802 return TRUE;
13805 /* Check flag compatibility. */
13807 new_flags &= ~EF_MIPS_NOREORDER;
13808 old_flags &= ~EF_MIPS_NOREORDER;
13810 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13811 doesn't seem to matter. */
13812 new_flags &= ~EF_MIPS_XGOT;
13813 old_flags &= ~EF_MIPS_XGOT;
13815 /* MIPSpro generates ucode info in n64 objects. Again, we should
13816 just be able to ignore this. */
13817 new_flags &= ~EF_MIPS_UCODE;
13818 old_flags &= ~EF_MIPS_UCODE;
13820 /* DSOs should only be linked with CPIC code. */
13821 if ((ibfd->flags & DYNAMIC) != 0)
13822 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13824 if (new_flags == old_flags)
13825 return TRUE;
13827 /* Check to see if the input BFD actually contains any sections.
13828 If not, its flags may not have been initialised either, but it cannot
13829 actually cause any incompatibility. */
13830 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13832 /* Ignore synthetic sections and empty .text, .data and .bss sections
13833 which are automatically generated by gas. Also ignore fake
13834 (s)common sections, since merely defining a common symbol does
13835 not affect compatibility. */
13836 if ((sec->flags & SEC_IS_COMMON) == 0
13837 && strcmp (sec->name, ".reginfo")
13838 && strcmp (sec->name, ".mdebug")
13839 && (sec->size != 0
13840 || (strcmp (sec->name, ".text")
13841 && strcmp (sec->name, ".data")
13842 && strcmp (sec->name, ".bss"))))
13844 null_input_bfd = FALSE;
13845 break;
13848 if (null_input_bfd)
13849 return TRUE;
13851 ok = TRUE;
13853 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13854 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13856 (*_bfd_error_handler)
13857 (_("%B: warning: linking abicalls files with non-abicalls files"),
13858 ibfd);
13859 ok = TRUE;
13862 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13863 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13864 if (! (new_flags & EF_MIPS_PIC))
13865 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13867 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13868 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13870 /* Compare the ISAs. */
13871 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13873 (*_bfd_error_handler)
13874 (_("%B: linking 32-bit code with 64-bit code"),
13875 ibfd);
13876 ok = FALSE;
13878 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13880 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13881 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13883 /* Copy the architecture info from IBFD to OBFD. Also copy
13884 the 32-bit flag (if set) so that we continue to recognise
13885 OBFD as a 32-bit binary. */
13886 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13887 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13888 elf_elfheader (obfd)->e_flags
13889 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13891 /* Copy across the ABI flags if OBFD doesn't use them
13892 and if that was what caused us to treat IBFD as 32-bit. */
13893 if ((old_flags & EF_MIPS_ABI) == 0
13894 && mips_32bit_flags_p (new_flags)
13895 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13896 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13898 else
13900 /* The ISAs aren't compatible. */
13901 (*_bfd_error_handler)
13902 (_("%B: linking %s module with previous %s modules"),
13903 ibfd,
13904 bfd_printable_name (ibfd),
13905 bfd_printable_name (obfd));
13906 ok = FALSE;
13910 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13911 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13913 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13914 does set EI_CLASS differently from any 32-bit ABI. */
13915 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13916 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13917 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13919 /* Only error if both are set (to different values). */
13920 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13921 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13922 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13924 (*_bfd_error_handler)
13925 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13926 ibfd,
13927 elf_mips_abi_name (ibfd),
13928 elf_mips_abi_name (obfd));
13929 ok = FALSE;
13931 new_flags &= ~EF_MIPS_ABI;
13932 old_flags &= ~EF_MIPS_ABI;
13935 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13936 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13937 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13939 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13940 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13941 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13942 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13943 int micro_mis = old_m16 && new_micro;
13944 int m16_mis = old_micro && new_m16;
13946 if (m16_mis || micro_mis)
13948 (*_bfd_error_handler)
13949 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13950 ibfd,
13951 m16_mis ? "MIPS16" : "microMIPS",
13952 m16_mis ? "microMIPS" : "MIPS16");
13953 ok = FALSE;
13956 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13958 new_flags &= ~ EF_MIPS_ARCH_ASE;
13959 old_flags &= ~ EF_MIPS_ARCH_ASE;
13962 /* Warn about any other mismatches */
13963 if (new_flags != old_flags)
13965 (*_bfd_error_handler)
13966 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13967 ibfd, (unsigned long) new_flags,
13968 (unsigned long) old_flags);
13969 ok = FALSE;
13972 if (! ok)
13974 bfd_set_error (bfd_error_bad_value);
13975 return FALSE;
13978 return TRUE;
13981 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13983 bfd_boolean
13984 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13986 BFD_ASSERT (!elf_flags_init (abfd)
13987 || elf_elfheader (abfd)->e_flags == flags);
13989 elf_elfheader (abfd)->e_flags = flags;
13990 elf_flags_init (abfd) = TRUE;
13991 return TRUE;
13994 char *
13995 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13997 switch (dtag)
13999 default: return "";
14000 case DT_MIPS_RLD_VERSION:
14001 return "MIPS_RLD_VERSION";
14002 case DT_MIPS_TIME_STAMP:
14003 return "MIPS_TIME_STAMP";
14004 case DT_MIPS_ICHECKSUM:
14005 return "MIPS_ICHECKSUM";
14006 case DT_MIPS_IVERSION:
14007 return "MIPS_IVERSION";
14008 case DT_MIPS_FLAGS:
14009 return "MIPS_FLAGS";
14010 case DT_MIPS_BASE_ADDRESS:
14011 return "MIPS_BASE_ADDRESS";
14012 case DT_MIPS_MSYM:
14013 return "MIPS_MSYM";
14014 case DT_MIPS_CONFLICT:
14015 return "MIPS_CONFLICT";
14016 case DT_MIPS_LIBLIST:
14017 return "MIPS_LIBLIST";
14018 case DT_MIPS_LOCAL_GOTNO:
14019 return "MIPS_LOCAL_GOTNO";
14020 case DT_MIPS_CONFLICTNO:
14021 return "MIPS_CONFLICTNO";
14022 case DT_MIPS_LIBLISTNO:
14023 return "MIPS_LIBLISTNO";
14024 case DT_MIPS_SYMTABNO:
14025 return "MIPS_SYMTABNO";
14026 case DT_MIPS_UNREFEXTNO:
14027 return "MIPS_UNREFEXTNO";
14028 case DT_MIPS_GOTSYM:
14029 return "MIPS_GOTSYM";
14030 case DT_MIPS_HIPAGENO:
14031 return "MIPS_HIPAGENO";
14032 case DT_MIPS_RLD_MAP:
14033 return "MIPS_RLD_MAP";
14034 case DT_MIPS_DELTA_CLASS:
14035 return "MIPS_DELTA_CLASS";
14036 case DT_MIPS_DELTA_CLASS_NO:
14037 return "MIPS_DELTA_CLASS_NO";
14038 case DT_MIPS_DELTA_INSTANCE:
14039 return "MIPS_DELTA_INSTANCE";
14040 case DT_MIPS_DELTA_INSTANCE_NO:
14041 return "MIPS_DELTA_INSTANCE_NO";
14042 case DT_MIPS_DELTA_RELOC:
14043 return "MIPS_DELTA_RELOC";
14044 case DT_MIPS_DELTA_RELOC_NO:
14045 return "MIPS_DELTA_RELOC_NO";
14046 case DT_MIPS_DELTA_SYM:
14047 return "MIPS_DELTA_SYM";
14048 case DT_MIPS_DELTA_SYM_NO:
14049 return "MIPS_DELTA_SYM_NO";
14050 case DT_MIPS_DELTA_CLASSSYM:
14051 return "MIPS_DELTA_CLASSSYM";
14052 case DT_MIPS_DELTA_CLASSSYM_NO:
14053 return "MIPS_DELTA_CLASSSYM_NO";
14054 case DT_MIPS_CXX_FLAGS:
14055 return "MIPS_CXX_FLAGS";
14056 case DT_MIPS_PIXIE_INIT:
14057 return "MIPS_PIXIE_INIT";
14058 case DT_MIPS_SYMBOL_LIB:
14059 return "MIPS_SYMBOL_LIB";
14060 case DT_MIPS_LOCALPAGE_GOTIDX:
14061 return "MIPS_LOCALPAGE_GOTIDX";
14062 case DT_MIPS_LOCAL_GOTIDX:
14063 return "MIPS_LOCAL_GOTIDX";
14064 case DT_MIPS_HIDDEN_GOTIDX:
14065 return "MIPS_HIDDEN_GOTIDX";
14066 case DT_MIPS_PROTECTED_GOTIDX:
14067 return "MIPS_PROTECTED_GOT_IDX";
14068 case DT_MIPS_OPTIONS:
14069 return "MIPS_OPTIONS";
14070 case DT_MIPS_INTERFACE:
14071 return "MIPS_INTERFACE";
14072 case DT_MIPS_DYNSTR_ALIGN:
14073 return "DT_MIPS_DYNSTR_ALIGN";
14074 case DT_MIPS_INTERFACE_SIZE:
14075 return "DT_MIPS_INTERFACE_SIZE";
14076 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14077 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14078 case DT_MIPS_PERF_SUFFIX:
14079 return "DT_MIPS_PERF_SUFFIX";
14080 case DT_MIPS_COMPACT_SIZE:
14081 return "DT_MIPS_COMPACT_SIZE";
14082 case DT_MIPS_GP_VALUE:
14083 return "DT_MIPS_GP_VALUE";
14084 case DT_MIPS_AUX_DYNAMIC:
14085 return "DT_MIPS_AUX_DYNAMIC";
14086 case DT_MIPS_PLTGOT:
14087 return "DT_MIPS_PLTGOT";
14088 case DT_MIPS_RWPLT:
14089 return "DT_MIPS_RWPLT";
14093 bfd_boolean
14094 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14096 FILE *file = ptr;
14098 BFD_ASSERT (abfd != NULL && ptr != NULL);
14100 /* Print normal ELF private data. */
14101 _bfd_elf_print_private_bfd_data (abfd, ptr);
14103 /* xgettext:c-format */
14104 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14106 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14107 fprintf (file, _(" [abi=O32]"));
14108 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14109 fprintf (file, _(" [abi=O64]"));
14110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14111 fprintf (file, _(" [abi=EABI32]"));
14112 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14113 fprintf (file, _(" [abi=EABI64]"));
14114 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14115 fprintf (file, _(" [abi unknown]"));
14116 else if (ABI_N32_P (abfd))
14117 fprintf (file, _(" [abi=N32]"));
14118 else if (ABI_64_P (abfd))
14119 fprintf (file, _(" [abi=64]"));
14120 else
14121 fprintf (file, _(" [no abi set]"));
14123 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14124 fprintf (file, " [mips1]");
14125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14126 fprintf (file, " [mips2]");
14127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14128 fprintf (file, " [mips3]");
14129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14130 fprintf (file, " [mips4]");
14131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14132 fprintf (file, " [mips5]");
14133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14134 fprintf (file, " [mips32]");
14135 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14136 fprintf (file, " [mips64]");
14137 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14138 fprintf (file, " [mips32r2]");
14139 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14140 fprintf (file, " [mips64r2]");
14141 else
14142 fprintf (file, _(" [unknown ISA]"));
14144 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14145 fprintf (file, " [mdmx]");
14147 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14148 fprintf (file, " [mips16]");
14150 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14151 fprintf (file, " [micromips]");
14153 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14154 fprintf (file, " [32bitmode]");
14155 else
14156 fprintf (file, _(" [not 32bitmode]"));
14158 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14159 fprintf (file, " [noreorder]");
14161 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14162 fprintf (file, " [PIC]");
14164 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14165 fprintf (file, " [CPIC]");
14167 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14168 fprintf (file, " [XGOT]");
14170 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14171 fprintf (file, " [UCODE]");
14173 fputc ('\n', file);
14175 return TRUE;
14178 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14180 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14181 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14182 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14183 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14184 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14185 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14186 { NULL, 0, 0, 0, 0 }
14189 /* Merge non visibility st_other attributes. Ensure that the
14190 STO_OPTIONAL flag is copied into h->other, even if this is not a
14191 definiton of the symbol. */
14192 void
14193 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14194 const Elf_Internal_Sym *isym,
14195 bfd_boolean definition,
14196 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14198 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14200 unsigned char other;
14202 other = (definition ? isym->st_other : h->other);
14203 other &= ~ELF_ST_VISIBILITY (-1);
14204 h->other = other | ELF_ST_VISIBILITY (h->other);
14207 if (!definition
14208 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14209 h->other |= STO_OPTIONAL;
14212 /* Decide whether an undefined symbol is special and can be ignored.
14213 This is the case for OPTIONAL symbols on IRIX. */
14214 bfd_boolean
14215 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14217 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14220 bfd_boolean
14221 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14223 return (sym->st_shndx == SHN_COMMON
14224 || sym->st_shndx == SHN_MIPS_ACOMMON
14225 || sym->st_shndx == SHN_MIPS_SCOMMON);
14228 /* Return address for Ith PLT stub in section PLT, for relocation REL
14229 or (bfd_vma) -1 if it should not be included. */
14231 bfd_vma
14232 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14233 const arelent *rel ATTRIBUTE_UNUSED)
14235 return (plt->vma
14236 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14237 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14240 void
14241 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14243 struct mips_elf_link_hash_table *htab;
14244 Elf_Internal_Ehdr *i_ehdrp;
14246 i_ehdrp = elf_elfheader (abfd);
14247 if (link_info)
14249 htab = mips_elf_hash_table (link_info);
14250 BFD_ASSERT (htab != NULL);
14252 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14253 i_ehdrp->e_ident[EI_ABIVERSION] = 1;