bfd/
[binutils.git] / gold / layout.cc
blobe969a806a08526361ae36f00364c4f7734ffb471
1 // layout.cc -- lay out output file sections for gold
3 #include "gold.h"
5 #include <cassert>
6 #include <cstring>
7 #include <algorithm>
8 #include <iostream>
9 #include <utility>
11 #include "output.h"
12 #include "symtab.h"
13 #include "layout.h"
15 namespace gold
18 // Layout_task_runner methods.
20 // Lay out the sections. This is called after all the input objects
21 // have been read.
23 void
24 Layout_task_runner::run(Workqueue* workqueue)
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
36 this->symtab_, this->layout_, workqueue, of);
39 // Layout methods.
41 Layout::Layout(const General_options& options)
42 : options_(options), namepool_(), sympool_(), signatures_(),
43 section_name_map_(), segment_list_(), section_list_(),
44 special_output_list_(), tls_segment_(NULL)
46 // Make space for more than enough segments for a typical file.
47 // This is just for efficiency--it's OK if we wind up needing more.
48 segment_list_.reserve(12);
51 // Hash a key we use to look up an output section mapping.
53 size_t
54 Layout::Hash_key::operator()(const Layout::Key& k) const
56 return k.first + k.second.first + k.second.second;
59 // Whether to include this section in the link.
61 template<int size, bool big_endian>
62 bool
63 Layout::include_section(Object*, const char*,
64 const elfcpp::Shdr<size, big_endian>& shdr)
66 // Some section types are never linked. Some are only linked when
67 // doing a relocateable link.
68 switch (shdr.get_sh_type())
70 case elfcpp::SHT_NULL:
71 case elfcpp::SHT_SYMTAB:
72 case elfcpp::SHT_DYNSYM:
73 case elfcpp::SHT_STRTAB:
74 case elfcpp::SHT_HASH:
75 case elfcpp::SHT_DYNAMIC:
76 case elfcpp::SHT_SYMTAB_SHNDX:
77 return false;
79 case elfcpp::SHT_RELA:
80 case elfcpp::SHT_REL:
81 case elfcpp::SHT_GROUP:
82 return this->options_.is_relocatable();
84 default:
85 // FIXME: Handle stripping debug sections here.
86 return true;
90 // Return an output section named NAME, or NULL if there is none.
92 Output_section*
93 Layout::find_output_section(const char* name) const
95 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
96 p != this->section_name_map_.end();
97 ++p)
98 if (strcmp(p->second->name(), name) == 0)
99 return p->second;
100 return NULL;
103 // Return an output segment of type TYPE, with segment flags SET set
104 // and segment flags CLEAR clear. Return NULL if there is none.
106 Output_segment*
107 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
108 elfcpp::Elf_Word clear) const
110 for (Segment_list::const_iterator p = this->segment_list_.begin();
111 p != this->segment_list_.end();
112 ++p)
113 if (static_cast<elfcpp::PT>((*p)->type()) == type
114 && ((*p)->flags() & set) == set
115 && ((*p)->flags() & clear) == 0)
116 return *p;
117 return NULL;
120 // Return the output section to use for section NAME with type TYPE
121 // and section flags FLAGS.
123 Output_section*
124 Layout::get_output_section(const char* name, Stringpool::Key name_key,
125 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
127 // We should ignore some flags.
128 flags &= ~ (elfcpp::SHF_INFO_LINK
129 | elfcpp::SHF_LINK_ORDER
130 | elfcpp::SHF_GROUP);
132 const Key key(name_key, std::make_pair(type, flags));
133 const std::pair<Key, Output_section*> v(key, NULL);
134 std::pair<Section_name_map::iterator, bool> ins(
135 this->section_name_map_.insert(v));
137 if (!ins.second)
138 return ins.first->second;
139 else
141 // This is the first time we've seen this name/type/flags
142 // combination.
143 Output_section* os = this->make_output_section(name, type, flags);
144 ins.first->second = os;
145 return os;
149 // Return the output section to use for input section SHNDX, with name
150 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
151 // offset of this input section without the output section.
153 template<int size, bool big_endian>
154 Output_section*
155 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
156 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
158 if (!this->include_section(object, name, shdr))
159 return NULL;
161 // If we are not doing a relocateable link, choose the name to use
162 // for the output section.
163 size_t len = strlen(name);
164 if (!this->options_.is_relocatable())
165 name = Layout::output_section_name(name, &len);
167 // FIXME: Handle SHF_OS_NONCONFORMING here.
169 // Canonicalize the section name.
170 Stringpool::Key name_key;
171 name = this->namepool_.add(name, len, &name_key);
173 // Find the output section. The output section is selected based on
174 // the section name, type, and flags.
175 Output_section* os = this->get_output_section(name, name_key,
176 shdr.get_sh_type(),
177 shdr.get_sh_flags());
179 // FIXME: Handle SHF_LINK_ORDER somewhere.
181 *off = os->add_input_section(object, shndx, name, shdr);
183 return os;
186 // Add POSD to an output section using NAME, TYPE, and FLAGS.
188 void
189 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
190 elfcpp::Elf_Xword flags,
191 Output_section_data* posd)
193 // Canonicalize the name.
194 Stringpool::Key name_key;
195 name = this->namepool_.add(name, &name_key);
197 Output_section* os = this->get_output_section(name, name_key, type, flags);
198 os->add_output_section_data(posd);
201 // Map section flags to segment flags.
203 elfcpp::Elf_Word
204 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
206 elfcpp::Elf_Word ret = elfcpp::PF_R;
207 if ((flags & elfcpp::SHF_WRITE) != 0)
208 ret |= elfcpp::PF_W;
209 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
210 ret |= elfcpp::PF_X;
211 return ret;
214 // Make a new Output_section, and attach it to segments as
215 // appropriate.
217 Output_section*
218 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
219 elfcpp::Elf_Xword flags)
221 Output_section* os = new Output_section(name, type, flags, true);
223 if ((flags & elfcpp::SHF_ALLOC) == 0)
224 this->section_list_.push_back(os);
225 else
227 // This output section goes into a PT_LOAD segment.
229 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
231 // The only thing we really care about for PT_LOAD segments is
232 // whether or not they are writable, so that is how we search
233 // for them. People who need segments sorted on some other
234 // basis will have to wait until we implement a mechanism for
235 // them to describe the segments they want.
237 Segment_list::const_iterator p;
238 for (p = this->segment_list_.begin();
239 p != this->segment_list_.end();
240 ++p)
242 if ((*p)->type() == elfcpp::PT_LOAD
243 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
245 (*p)->add_output_section(os, seg_flags);
246 break;
250 if (p == this->segment_list_.end())
252 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
253 seg_flags);
254 this->segment_list_.push_back(oseg);
255 oseg->add_output_section(os, seg_flags);
258 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
259 // segment.
260 if (type == elfcpp::SHT_NOTE)
262 // See if we already have an equivalent PT_NOTE segment.
263 for (p = this->segment_list_.begin();
264 p != segment_list_.end();
265 ++p)
267 if ((*p)->type() == elfcpp::PT_NOTE
268 && (((*p)->flags() & elfcpp::PF_W)
269 == (seg_flags & elfcpp::PF_W)))
271 (*p)->add_output_section(os, seg_flags);
272 break;
276 if (p == this->segment_list_.end())
278 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
279 seg_flags);
280 this->segment_list_.push_back(oseg);
281 oseg->add_output_section(os, seg_flags);
285 // If we see a loadable SHF_TLS section, we create a PT_TLS
286 // segment. There can only be one such segment.
287 if ((flags & elfcpp::SHF_TLS) != 0)
289 if (this->tls_segment_ == NULL)
291 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
292 seg_flags);
293 this->segment_list_.push_back(this->tls_segment_);
295 this->tls_segment_->add_output_section(os, seg_flags);
299 return os;
302 // Find the first read-only PT_LOAD segment, creating one if
303 // necessary.
305 Output_segment*
306 Layout::find_first_load_seg()
308 for (Segment_list::const_iterator p = this->segment_list_.begin();
309 p != this->segment_list_.end();
310 ++p)
312 if ((*p)->type() == elfcpp::PT_LOAD
313 && ((*p)->flags() & elfcpp::PF_R) != 0
314 && ((*p)->flags() & elfcpp::PF_W) == 0)
315 return *p;
318 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
319 this->segment_list_.push_back(load_seg);
320 return load_seg;
323 // Finalize the layout. When this is called, we have created all the
324 // output sections and all the output segments which are based on
325 // input sections. We have several things to do, and we have to do
326 // them in the right order, so that we get the right results correctly
327 // and efficiently.
329 // 1) Finalize the list of output segments and create the segment
330 // table header.
332 // 2) Finalize the dynamic symbol table and associated sections.
334 // 3) Determine the final file offset of all the output segments.
336 // 4) Determine the final file offset of all the SHF_ALLOC output
337 // sections.
339 // 5) Create the symbol table sections and the section name table
340 // section.
342 // 6) Finalize the symbol table: set symbol values to their final
343 // value and make a final determination of which symbols are going
344 // into the output symbol table.
346 // 7) Create the section table header.
348 // 8) Determine the final file offset of all the output sections which
349 // are not SHF_ALLOC, including the section table header.
351 // 9) Finalize the ELF file header.
353 // This function returns the size of the output file.
355 off_t
356 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
358 if (input_objects->any_dynamic())
360 // If there are any dynamic objects in the link, then we need
361 // some additional segments: PT_PHDRS, PT_INTERP, and
362 // PT_DYNAMIC. We also need to finalize the dynamic symbol
363 // table and create the dynamic hash table.
364 abort();
367 // FIXME: Handle PT_GNU_STACK.
369 Output_segment* load_seg = this->find_first_load_seg();
371 // Lay out the segment headers.
372 int size = input_objects->target()->get_size();
373 bool big_endian = input_objects->target()->is_big_endian();
374 Output_segment_headers* segment_headers;
375 segment_headers = new Output_segment_headers(size, big_endian,
376 this->segment_list_);
377 load_seg->add_initial_output_data(segment_headers);
378 this->special_output_list_.push_back(segment_headers);
379 // FIXME: Attach them to PT_PHDRS if necessary.
381 // Lay out the file header.
382 Output_file_header* file_header;
383 file_header = new Output_file_header(size,
384 big_endian,
385 this->options_,
386 input_objects->target(),
387 symtab,
388 segment_headers);
389 load_seg->add_initial_output_data(file_header);
390 this->special_output_list_.push_back(file_header);
392 // We set the output section indexes in set_segment_offsets and
393 // set_section_offsets.
394 unsigned int shndx = 1;
396 // Set the file offsets of all the segments, and all the sections
397 // they contain.
398 off_t off = this->set_segment_offsets(input_objects->target(), load_seg,
399 &shndx);
401 // Create the symbol table sections.
402 // FIXME: We don't need to do this if we are stripping symbols.
403 Output_section* osymtab;
404 Output_section* ostrtab;
405 this->create_symtab_sections(size, input_objects, symtab, &off,
406 &osymtab, &ostrtab);
408 // Create the .shstrtab section.
409 Output_section* shstrtab_section = this->create_shstrtab();
411 // Set the file offsets of all the sections not associated with
412 // segments.
413 off = this->set_section_offsets(off, &shndx);
415 // Now the section index of OSTRTAB is set.
416 osymtab->set_link(ostrtab->out_shndx());
418 // Create the section table header.
419 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
421 file_header->set_section_info(oshdrs, shstrtab_section);
423 // Now we know exactly where everything goes in the output file.
425 return off;
428 // Return whether SEG1 should be before SEG2 in the output file. This
429 // is based entirely on the segment type and flags. When this is
430 // called the segment addresses has normally not yet been set.
432 bool
433 Layout::segment_precedes(const Output_segment* seg1,
434 const Output_segment* seg2)
436 elfcpp::Elf_Word type1 = seg1->type();
437 elfcpp::Elf_Word type2 = seg2->type();
439 // The single PT_PHDR segment is required to precede any loadable
440 // segment. We simply make it always first.
441 if (type1 == elfcpp::PT_PHDR)
443 assert(type2 != elfcpp::PT_PHDR);
444 return true;
446 if (type2 == elfcpp::PT_PHDR)
447 return false;
449 // The single PT_INTERP segment is required to precede any loadable
450 // segment. We simply make it always second.
451 if (type1 == elfcpp::PT_INTERP)
453 assert(type2 != elfcpp::PT_INTERP);
454 return true;
456 if (type2 == elfcpp::PT_INTERP)
457 return false;
459 // We then put PT_LOAD segments before any other segments.
460 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
461 return true;
462 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
463 return false;
465 // We put the PT_TLS segment last, because that is where the dynamic
466 // linker expects to find it (this is just for efficiency; other
467 // positions would also work correctly).
468 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
469 return false;
470 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
471 return true;
473 const elfcpp::Elf_Word flags1 = seg1->flags();
474 const elfcpp::Elf_Word flags2 = seg2->flags();
476 // The order of non-PT_LOAD segments is unimportant. We simply sort
477 // by the numeric segment type and flags values. There should not
478 // be more than one segment with the same type and flags.
479 if (type1 != elfcpp::PT_LOAD)
481 if (type1 != type2)
482 return type1 < type2;
483 assert(flags1 != flags2);
484 return flags1 < flags2;
487 // We sort PT_LOAD segments based on the flags. Readonly segments
488 // come before writable segments. Then executable segments come
489 // before non-executable segments. Then the unlikely case of a
490 // non-readable segment comes before the normal case of a readable
491 // segment. If there are multiple segments with the same type and
492 // flags, we require that the address be set, and we sort by
493 // virtual address and then physical address.
494 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
495 return (flags1 & elfcpp::PF_W) == 0;
496 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
497 return (flags1 & elfcpp::PF_X) != 0;
498 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
499 return (flags1 & elfcpp::PF_R) == 0;
501 uint64_t vaddr1 = seg1->vaddr();
502 uint64_t vaddr2 = seg2->vaddr();
503 if (vaddr1 != vaddr2)
504 return vaddr1 < vaddr2;
506 uint64_t paddr1 = seg1->paddr();
507 uint64_t paddr2 = seg2->paddr();
508 assert(paddr1 != paddr2);
509 return paddr1 < paddr2;
512 // Set the file offsets of all the segments, and all the sections they
513 // contain. They have all been created. LOAD_SEG must be be laid out
514 // first. Return the offset of the data to follow.
516 off_t
517 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
518 unsigned int *pshndx)
520 // Sort them into the final order.
521 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
522 Layout::Compare_segments());
524 // Find the PT_LOAD segments, and set their addresses and offsets
525 // and their section's addresses and offsets.
526 uint64_t addr = target->text_segment_address();
527 off_t off = 0;
528 bool was_readonly = false;
529 for (Segment_list::iterator p = this->segment_list_.begin();
530 p != this->segment_list_.end();
531 ++p)
533 if ((*p)->type() == elfcpp::PT_LOAD)
535 if (load_seg != NULL && load_seg != *p)
536 abort();
537 load_seg = NULL;
539 // If the last segment was readonly, and this one is not,
540 // then skip the address forward one page, maintaining the
541 // same position within the page. This lets us store both
542 // segments overlapping on a single page in the file, but
543 // the loader will put them on different pages in memory.
545 uint64_t orig_addr = addr;
546 uint64_t orig_off = off;
548 uint64_t aligned_addr = addr;
549 uint64_t abi_pagesize = target->abi_pagesize();
550 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
552 uint64_t align = (*p)->addralign();
554 addr = align_address(addr, align);
555 aligned_addr = addr;
556 if ((addr & (abi_pagesize - 1)) != 0)
557 addr = addr + abi_pagesize;
560 unsigned int shndx_hold = *pshndx;
561 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
562 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
564 // Now that we know the size of this segment, we may be able
565 // to save a page in memory, at the cost of wasting some
566 // file space, by instead aligning to the start of a new
567 // page. Here we use the real machine page size rather than
568 // the ABI mandated page size.
570 if (aligned_addr != addr)
572 uint64_t common_pagesize = target->common_pagesize();
573 uint64_t first_off = (common_pagesize
574 - (aligned_addr
575 & (common_pagesize - 1)));
576 uint64_t last_off = new_addr & (common_pagesize - 1);
577 if (first_off > 0
578 && last_off > 0
579 && ((aligned_addr & ~ (common_pagesize - 1))
580 != (new_addr & ~ (common_pagesize - 1)))
581 && first_off + last_off <= common_pagesize)
583 *pshndx = shndx_hold;
584 addr = align_address(aligned_addr, common_pagesize);
585 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
586 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
590 addr = new_addr;
592 if (((*p)->flags() & elfcpp::PF_W) == 0)
593 was_readonly = true;
597 // Handle the non-PT_LOAD segments, setting their offsets from their
598 // section's offsets.
599 for (Segment_list::iterator p = this->segment_list_.begin();
600 p != this->segment_list_.end();
601 ++p)
603 if ((*p)->type() != elfcpp::PT_LOAD)
604 (*p)->set_offset();
607 return off;
610 // Set the file offset of all the sections not associated with a
611 // segment.
613 off_t
614 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
616 for (Layout::Section_list::iterator p = this->section_list_.begin();
617 p != this->section_list_.end();
618 ++p)
620 (*p)->set_out_shndx(*pshndx);
621 ++*pshndx;
622 if ((*p)->offset() != -1)
623 continue;
624 off = align_address(off, (*p)->addralign());
625 (*p)->set_address(0, off);
626 off += (*p)->data_size();
628 return off;
631 // Create the symbol table sections.
633 void
634 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
635 Symbol_table* symtab,
636 off_t* poff,
637 Output_section** posymtab,
638 Output_section** postrtab)
640 int symsize;
641 unsigned int align;
642 if (size == 32)
644 symsize = elfcpp::Elf_sizes<32>::sym_size;
645 align = 4;
647 else if (size == 64)
649 symsize = elfcpp::Elf_sizes<64>::sym_size;
650 align = 8;
652 else
653 abort();
655 off_t off = *poff;
656 off = align_address(off, align);
657 off_t startoff = off;
659 // Save space for the dummy symbol at the start of the section. We
660 // never bother to write this out--it will just be left as zero.
661 off += symsize;
663 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
664 p != input_objects->relobj_end();
665 ++p)
667 Task_lock_obj<Object> tlo(**p);
668 off = (*p)->finalize_local_symbols(off, &this->sympool_);
671 unsigned int local_symcount = (off - startoff) / symsize;
672 assert(local_symcount * symsize == off - startoff);
674 off = symtab->finalize(off, &this->sympool_);
676 this->sympool_.set_string_offsets();
678 const char* symtab_name = this->namepool_.add(".symtab", NULL);
679 Output_section* osymtab = new Output_section_symtab(symtab_name,
680 off - startoff);
681 this->section_list_.push_back(osymtab);
683 const char* strtab_name = this->namepool_.add(".strtab", NULL);
684 Output_section *ostrtab = new Output_section_strtab(strtab_name,
685 &this->sympool_);
686 this->section_list_.push_back(ostrtab);
687 this->special_output_list_.push_back(ostrtab);
689 osymtab->set_address(0, startoff);
690 osymtab->set_info(local_symcount);
691 osymtab->set_entsize(symsize);
692 osymtab->set_addralign(align);
694 *poff = off;
695 *posymtab = osymtab;
696 *postrtab = ostrtab;
699 // Create the .shstrtab section, which holds the names of the
700 // sections. At the time this is called, we have created all the
701 // output sections except .shstrtab itself.
703 Output_section*
704 Layout::create_shstrtab()
706 // FIXME: We don't need to create a .shstrtab section if we are
707 // stripping everything.
709 const char* name = this->namepool_.add(".shstrtab", NULL);
711 this->namepool_.set_string_offsets();
713 Output_section* os = new Output_section_strtab(name, &this->namepool_);
715 this->section_list_.push_back(os);
716 this->special_output_list_.push_back(os);
718 return os;
721 // Create the section headers. SIZE is 32 or 64. OFF is the file
722 // offset.
724 Output_section_headers*
725 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
727 Output_section_headers* oshdrs;
728 oshdrs = new Output_section_headers(size, big_endian, this->segment_list_,
729 this->section_list_,
730 &this->namepool_);
731 off_t off = align_address(*poff, oshdrs->addralign());
732 oshdrs->set_address(0, off);
733 off += oshdrs->data_size();
734 *poff = off;
735 this->special_output_list_.push_back(oshdrs);
736 return oshdrs;
739 // The mapping of .gnu.linkonce section names to real section names.
741 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
742 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
744 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
745 MAPPING_INIT("t", ".text"),
746 MAPPING_INIT("r", ".rodata"),
747 MAPPING_INIT("d", ".data"),
748 MAPPING_INIT("b", ".bss"),
749 MAPPING_INIT("s", ".sdata"),
750 MAPPING_INIT("sb", ".sbss"),
751 MAPPING_INIT("s2", ".sdata2"),
752 MAPPING_INIT("sb2", ".sbss2"),
753 MAPPING_INIT("wi", ".debug_info"),
754 MAPPING_INIT("td", ".tdata"),
755 MAPPING_INIT("tb", ".tbss"),
756 MAPPING_INIT("lr", ".lrodata"),
757 MAPPING_INIT("l", ".ldata"),
758 MAPPING_INIT("lb", ".lbss"),
760 #undef MAPPING_INIT
762 const int Layout::linkonce_mapping_count =
763 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
765 // Return the name of the output section to use for a .gnu.linkonce
766 // section. This is based on the default ELF linker script of the old
767 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
768 // to ".text". Set *PLEN to the length of the name. *PLEN is
769 // initialized to the length of NAME.
771 const char*
772 Layout::linkonce_output_name(const char* name, size_t *plen)
774 const char* s = name + sizeof(".gnu.linkonce") - 1;
775 if (*s != '.')
776 return name;
777 ++s;
778 const Linkonce_mapping* plm = linkonce_mapping;
779 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
781 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
783 *plen = plm->tolen;
784 return plm->to;
787 return name;
790 // Choose the output section name to use given an input section name.
791 // Set *PLEN to the length of the name. *PLEN is initialized to the
792 // length of NAME.
794 const char*
795 Layout::output_section_name(const char* name, size_t* plen)
797 if (Layout::is_linkonce(name))
799 // .gnu.linkonce sections are laid out as though they were named
800 // for the sections are placed into.
801 return Layout::linkonce_output_name(name, plen);
804 // If the section name has no '.', or only an initial '.', we use
805 // the name unchanged (i.e., ".text" is unchanged).
807 // Otherwise, if the section name does not include ".rel", we drop
808 // the last '.' and everything that follows (i.e., ".text.XXX"
809 // becomes ".text").
811 // Otherwise, if the section name has zero or one '.' after the
812 // ".rel", we use the name unchanged (i.e., ".rel.text" is
813 // unchanged).
815 // Otherwise, we drop the last '.' and everything that follows
816 // (i.e., ".rel.text.XXX" becomes ".rel.text").
818 const char* s = name;
819 if (*s == '.')
820 ++s;
821 const char* sdot = strchr(s, '.');
822 if (sdot == NULL)
823 return name;
825 const char* srel = strstr(s, ".rel");
826 if (srel == NULL)
828 *plen = sdot - name;
829 return name;
832 sdot = strchr(srel + 1, '.');
833 if (sdot == NULL)
834 return name;
835 sdot = strchr(sdot + 1, '.');
836 if (sdot == NULL)
837 return name;
839 *plen = sdot - name;
840 return name;
843 // Record the signature of a comdat section, and return whether to
844 // include it in the link. If GROUP is true, this is a regular
845 // section group. If GROUP is false, this is a group signature
846 // derived from the name of a linkonce section. We want linkonce
847 // signatures and group signatures to block each other, but we don't
848 // want a linkonce signature to block another linkonce signature.
850 bool
851 Layout::add_comdat(const char* signature, bool group)
853 std::string sig(signature);
854 std::pair<Signatures::iterator, bool> ins(
855 this->signatures_.insert(std::make_pair(sig, group)));
857 if (ins.second)
859 // This is the first time we've seen this signature.
860 return true;
863 if (ins.first->second)
865 // We've already seen a real section group with this signature.
866 return false;
868 else if (group)
870 // This is a real section group, and we've already seen a
871 // linkonce section with tihs signature. Record that we've seen
872 // a section group, and don't include this section group.
873 ins.first->second = true;
874 return false;
876 else
878 // We've already seen a linkonce section and this is a linkonce
879 // section. These don't block each other--this may be the same
880 // symbol name with different section types.
881 return true;
885 // Write out data not associated with a section or the symbol table.
887 void
888 Layout::write_data(Output_file* of) const
890 for (Data_list::const_iterator p = this->special_output_list_.begin();
891 p != this->special_output_list_.end();
892 ++p)
893 (*p)->write(of);
896 // Write_data_task methods.
898 // We can always run this task.
900 Task::Is_runnable_type
901 Write_data_task::is_runnable(Workqueue*)
903 return IS_RUNNABLE;
906 // We need to unlock FINAL_BLOCKER when finished.
908 Task_locker*
909 Write_data_task::locks(Workqueue* workqueue)
911 return new Task_locker_block(*this->final_blocker_, workqueue);
914 // Run the task--write out the data.
916 void
917 Write_data_task::run(Workqueue*)
919 this->layout_->write_data(this->of_);
922 // Write_symbols_task methods.
924 // We can always run this task.
926 Task::Is_runnable_type
927 Write_symbols_task::is_runnable(Workqueue*)
929 return IS_RUNNABLE;
932 // We need to unlock FINAL_BLOCKER when finished.
934 Task_locker*
935 Write_symbols_task::locks(Workqueue* workqueue)
937 return new Task_locker_block(*this->final_blocker_, workqueue);
940 // Run the task--write out the symbols.
942 void
943 Write_symbols_task::run(Workqueue*)
945 this->symtab_->write_globals(this->target_, this->sympool_, this->of_);
948 // Close_task_runner methods.
950 // Run the task--close the file.
952 void
953 Close_task_runner::run(Workqueue*)
955 this->of_->close();
958 // Instantiate the templates we need. We could use the configure
959 // script to restrict this to only the ones for implemented targets.
961 template
962 Output_section*
963 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
964 const elfcpp::Shdr<32, false>& shdr, off_t*);
966 template
967 Output_section*
968 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
969 const elfcpp::Shdr<32, true>& shdr, off_t*);
971 template
972 Output_section*
973 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
974 const elfcpp::Shdr<64, false>& shdr, off_t*);
976 template
977 Output_section*
978 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
979 const elfcpp::Shdr<64, true>& shdr, off_t*);
982 } // End namespace gold.