1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static struct elf_backend_data elf32_arm_vxworks_bed
;
66 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
67 struct bfd_link_info
*link_info
,
71 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 static reloc_howto_type elf32_arm_howto_table_1
[] =
78 HOWTO (R_ARM_NONE
, /* type */
80 0, /* size (0 = byte, 1 = short, 2 = long) */
82 FALSE
, /* pc_relative */
84 complain_overflow_dont
,/* complain_on_overflow */
85 bfd_elf_generic_reloc
, /* special_function */
86 "R_ARM_NONE", /* name */
87 FALSE
, /* partial_inplace */
90 FALSE
), /* pcrel_offset */
92 HOWTO (R_ARM_PC24
, /* type */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
96 TRUE
, /* pc_relative */
98 complain_overflow_signed
,/* complain_on_overflow */
99 bfd_elf_generic_reloc
, /* special_function */
100 "R_ARM_PC24", /* name */
101 FALSE
, /* partial_inplace */
102 0x00ffffff, /* src_mask */
103 0x00ffffff, /* dst_mask */
104 TRUE
), /* pcrel_offset */
106 /* 32 bit absolute */
107 HOWTO (R_ARM_ABS32
, /* type */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
111 FALSE
, /* pc_relative */
113 complain_overflow_bitfield
,/* complain_on_overflow */
114 bfd_elf_generic_reloc
, /* special_function */
115 "R_ARM_ABS32", /* name */
116 FALSE
, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE
), /* pcrel_offset */
121 /* standard 32bit pc-relative reloc */
122 HOWTO (R_ARM_REL32
, /* type */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
126 TRUE
, /* pc_relative */
128 complain_overflow_bitfield
,/* complain_on_overflow */
129 bfd_elf_generic_reloc
, /* special_function */
130 "R_ARM_REL32", /* name */
131 FALSE
, /* partial_inplace */
132 0xffffffff, /* src_mask */
133 0xffffffff, /* dst_mask */
134 TRUE
), /* pcrel_offset */
136 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
137 HOWTO (R_ARM_LDR_PC_G0
, /* type */
139 0, /* size (0 = byte, 1 = short, 2 = long) */
141 TRUE
, /* pc_relative */
143 complain_overflow_dont
,/* complain_on_overflow */
144 bfd_elf_generic_reloc
, /* special_function */
145 "R_ARM_LDR_PC_G0", /* name */
146 FALSE
, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 TRUE
), /* pcrel_offset */
151 /* 16 bit absolute */
152 HOWTO (R_ARM_ABS16
, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 FALSE
, /* pc_relative */
158 complain_overflow_bitfield
,/* complain_on_overflow */
159 bfd_elf_generic_reloc
, /* special_function */
160 "R_ARM_ABS16", /* name */
161 FALSE
, /* partial_inplace */
162 0x0000ffff, /* src_mask */
163 0x0000ffff, /* dst_mask */
164 FALSE
), /* pcrel_offset */
166 /* 12 bit absolute */
167 HOWTO (R_ARM_ABS12
, /* type */
169 2, /* size (0 = byte, 1 = short, 2 = long) */
171 FALSE
, /* pc_relative */
173 complain_overflow_bitfield
,/* complain_on_overflow */
174 bfd_elf_generic_reloc
, /* special_function */
175 "R_ARM_ABS12", /* name */
176 FALSE
, /* partial_inplace */
177 0x00000fff, /* src_mask */
178 0x00000fff, /* dst_mask */
179 FALSE
), /* pcrel_offset */
181 HOWTO (R_ARM_THM_ABS5
, /* type */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
185 FALSE
, /* pc_relative */
187 complain_overflow_bitfield
,/* complain_on_overflow */
188 bfd_elf_generic_reloc
, /* special_function */
189 "R_ARM_THM_ABS5", /* name */
190 FALSE
, /* partial_inplace */
191 0x000007e0, /* src_mask */
192 0x000007e0, /* dst_mask */
193 FALSE
), /* pcrel_offset */
196 HOWTO (R_ARM_ABS8
, /* type */
198 0, /* size (0 = byte, 1 = short, 2 = long) */
200 FALSE
, /* pc_relative */
202 complain_overflow_bitfield
,/* complain_on_overflow */
203 bfd_elf_generic_reloc
, /* special_function */
204 "R_ARM_ABS8", /* name */
205 FALSE
, /* partial_inplace */
206 0x000000ff, /* src_mask */
207 0x000000ff, /* dst_mask */
208 FALSE
), /* pcrel_offset */
210 HOWTO (R_ARM_SBREL32
, /* type */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
214 FALSE
, /* pc_relative */
216 complain_overflow_dont
,/* complain_on_overflow */
217 bfd_elf_generic_reloc
, /* special_function */
218 "R_ARM_SBREL32", /* name */
219 FALSE
, /* partial_inplace */
220 0xffffffff, /* src_mask */
221 0xffffffff, /* dst_mask */
222 FALSE
), /* pcrel_offset */
224 HOWTO (R_ARM_THM_CALL
, /* type */
226 2, /* size (0 = byte, 1 = short, 2 = long) */
228 TRUE
, /* pc_relative */
230 complain_overflow_signed
,/* complain_on_overflow */
231 bfd_elf_generic_reloc
, /* special_function */
232 "R_ARM_THM_CALL", /* name */
233 FALSE
, /* partial_inplace */
234 0x07ff07ff, /* src_mask */
235 0x07ff07ff, /* dst_mask */
236 TRUE
), /* pcrel_offset */
238 HOWTO (R_ARM_THM_PC8
, /* type */
240 1, /* size (0 = byte, 1 = short, 2 = long) */
242 TRUE
, /* pc_relative */
244 complain_overflow_signed
,/* complain_on_overflow */
245 bfd_elf_generic_reloc
, /* special_function */
246 "R_ARM_THM_PC8", /* name */
247 FALSE
, /* partial_inplace */
248 0x000000ff, /* src_mask */
249 0x000000ff, /* dst_mask */
250 TRUE
), /* pcrel_offset */
252 HOWTO (R_ARM_BREL_ADJ
, /* type */
254 1, /* size (0 = byte, 1 = short, 2 = long) */
256 FALSE
, /* pc_relative */
258 complain_overflow_signed
,/* complain_on_overflow */
259 bfd_elf_generic_reloc
, /* special_function */
260 "R_ARM_BREL_ADJ", /* name */
261 FALSE
, /* partial_inplace */
262 0xffffffff, /* src_mask */
263 0xffffffff, /* dst_mask */
264 FALSE
), /* pcrel_offset */
266 HOWTO (R_ARM_SWI24
, /* type */
268 0, /* size (0 = byte, 1 = short, 2 = long) */
270 FALSE
, /* pc_relative */
272 complain_overflow_signed
,/* complain_on_overflow */
273 bfd_elf_generic_reloc
, /* special_function */
274 "R_ARM_SWI24", /* name */
275 FALSE
, /* partial_inplace */
276 0x00000000, /* src_mask */
277 0x00000000, /* dst_mask */
278 FALSE
), /* pcrel_offset */
280 HOWTO (R_ARM_THM_SWI8
, /* type */
282 0, /* size (0 = byte, 1 = short, 2 = long) */
284 FALSE
, /* pc_relative */
286 complain_overflow_signed
,/* complain_on_overflow */
287 bfd_elf_generic_reloc
, /* special_function */
288 "R_ARM_SWI8", /* name */
289 FALSE
, /* partial_inplace */
290 0x00000000, /* src_mask */
291 0x00000000, /* dst_mask */
292 FALSE
), /* pcrel_offset */
294 /* BLX instruction for the ARM. */
295 HOWTO (R_ARM_XPC25
, /* type */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
299 TRUE
, /* pc_relative */
301 complain_overflow_signed
,/* complain_on_overflow */
302 bfd_elf_generic_reloc
, /* special_function */
303 "R_ARM_XPC25", /* name */
304 FALSE
, /* partial_inplace */
305 0x00ffffff, /* src_mask */
306 0x00ffffff, /* dst_mask */
307 TRUE
), /* pcrel_offset */
309 /* BLX instruction for the Thumb. */
310 HOWTO (R_ARM_THM_XPC22
, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 TRUE
, /* pc_relative */
316 complain_overflow_signed
,/* complain_on_overflow */
317 bfd_elf_generic_reloc
, /* special_function */
318 "R_ARM_THM_XPC22", /* name */
319 FALSE
, /* partial_inplace */
320 0x07ff07ff, /* src_mask */
321 0x07ff07ff, /* dst_mask */
322 TRUE
), /* pcrel_offset */
324 /* Dynamic TLS relocations. */
326 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
330 FALSE
, /* pc_relative */
332 complain_overflow_bitfield
,/* complain_on_overflow */
333 bfd_elf_generic_reloc
, /* special_function */
334 "R_ARM_TLS_DTPMOD32", /* name */
335 TRUE
, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 FALSE
), /* pcrel_offset */
340 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
344 FALSE
, /* pc_relative */
346 complain_overflow_bitfield
,/* complain_on_overflow */
347 bfd_elf_generic_reloc
, /* special_function */
348 "R_ARM_TLS_DTPOFF32", /* name */
349 TRUE
, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 FALSE
), /* pcrel_offset */
354 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
356 2, /* size (0 = byte, 1 = short, 2 = long) */
358 FALSE
, /* pc_relative */
360 complain_overflow_bitfield
,/* complain_on_overflow */
361 bfd_elf_generic_reloc
, /* special_function */
362 "R_ARM_TLS_TPOFF32", /* name */
363 TRUE
, /* partial_inplace */
364 0xffffffff, /* src_mask */
365 0xffffffff, /* dst_mask */
366 FALSE
), /* pcrel_offset */
368 /* Relocs used in ARM Linux */
370 HOWTO (R_ARM_COPY
, /* type */
372 2, /* size (0 = byte, 1 = short, 2 = long) */
374 FALSE
, /* pc_relative */
376 complain_overflow_bitfield
,/* complain_on_overflow */
377 bfd_elf_generic_reloc
, /* special_function */
378 "R_ARM_COPY", /* name */
379 TRUE
, /* partial_inplace */
380 0xffffffff, /* src_mask */
381 0xffffffff, /* dst_mask */
382 FALSE
), /* pcrel_offset */
384 HOWTO (R_ARM_GLOB_DAT
, /* type */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
388 FALSE
, /* pc_relative */
390 complain_overflow_bitfield
,/* complain_on_overflow */
391 bfd_elf_generic_reloc
, /* special_function */
392 "R_ARM_GLOB_DAT", /* name */
393 TRUE
, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 FALSE
), /* pcrel_offset */
398 HOWTO (R_ARM_JUMP_SLOT
, /* type */
400 2, /* size (0 = byte, 1 = short, 2 = long) */
402 FALSE
, /* pc_relative */
404 complain_overflow_bitfield
,/* complain_on_overflow */
405 bfd_elf_generic_reloc
, /* special_function */
406 "R_ARM_JUMP_SLOT", /* name */
407 TRUE
, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 FALSE
), /* pcrel_offset */
412 HOWTO (R_ARM_RELATIVE
, /* type */
414 2, /* size (0 = byte, 1 = short, 2 = long) */
416 FALSE
, /* pc_relative */
418 complain_overflow_bitfield
,/* complain_on_overflow */
419 bfd_elf_generic_reloc
, /* special_function */
420 "R_ARM_RELATIVE", /* name */
421 TRUE
, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 FALSE
), /* pcrel_offset */
426 HOWTO (R_ARM_GOTOFF32
, /* type */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
430 FALSE
, /* pc_relative */
432 complain_overflow_bitfield
,/* complain_on_overflow */
433 bfd_elf_generic_reloc
, /* special_function */
434 "R_ARM_GOTOFF32", /* name */
435 TRUE
, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 FALSE
), /* pcrel_offset */
440 HOWTO (R_ARM_GOTPC
, /* type */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
444 TRUE
, /* pc_relative */
446 complain_overflow_bitfield
,/* complain_on_overflow */
447 bfd_elf_generic_reloc
, /* special_function */
448 "R_ARM_GOTPC", /* name */
449 TRUE
, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 TRUE
), /* pcrel_offset */
454 HOWTO (R_ARM_GOT32
, /* type */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
458 FALSE
, /* pc_relative */
460 complain_overflow_bitfield
,/* complain_on_overflow */
461 bfd_elf_generic_reloc
, /* special_function */
462 "R_ARM_GOT32", /* name */
463 TRUE
, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 FALSE
), /* pcrel_offset */
468 HOWTO (R_ARM_PLT32
, /* type */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
472 TRUE
, /* pc_relative */
474 complain_overflow_bitfield
,/* complain_on_overflow */
475 bfd_elf_generic_reloc
, /* special_function */
476 "R_ARM_PLT32", /* name */
477 FALSE
, /* partial_inplace */
478 0x00ffffff, /* src_mask */
479 0x00ffffff, /* dst_mask */
480 TRUE
), /* pcrel_offset */
482 HOWTO (R_ARM_CALL
, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 TRUE
, /* pc_relative */
488 complain_overflow_signed
,/* complain_on_overflow */
489 bfd_elf_generic_reloc
, /* special_function */
490 "R_ARM_CALL", /* name */
491 FALSE
, /* partial_inplace */
492 0x00ffffff, /* src_mask */
493 0x00ffffff, /* dst_mask */
494 TRUE
), /* pcrel_offset */
496 HOWTO (R_ARM_JUMP24
, /* type */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
500 TRUE
, /* pc_relative */
502 complain_overflow_signed
,/* complain_on_overflow */
503 bfd_elf_generic_reloc
, /* special_function */
504 "R_ARM_JUMP24", /* name */
505 FALSE
, /* partial_inplace */
506 0x00ffffff, /* src_mask */
507 0x00ffffff, /* dst_mask */
508 TRUE
), /* pcrel_offset */
510 HOWTO (R_ARM_THM_JUMP24
, /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 TRUE
, /* pc_relative */
516 complain_overflow_signed
,/* complain_on_overflow */
517 bfd_elf_generic_reloc
, /* special_function */
518 "R_ARM_THM_JUMP24", /* name */
519 FALSE
, /* partial_inplace */
520 0x07ff2fff, /* src_mask */
521 0x07ff2fff, /* dst_mask */
522 TRUE
), /* pcrel_offset */
524 HOWTO (R_ARM_BASE_ABS
, /* type */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE
, /* pc_relative */
530 complain_overflow_dont
,/* complain_on_overflow */
531 bfd_elf_generic_reloc
, /* special_function */
532 "R_ARM_BASE_ABS", /* name */
533 FALSE
, /* partial_inplace */
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
536 FALSE
), /* pcrel_offset */
538 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
542 TRUE
, /* pc_relative */
544 complain_overflow_dont
,/* complain_on_overflow */
545 bfd_elf_generic_reloc
, /* special_function */
546 "R_ARM_ALU_PCREL_7_0", /* name */
547 FALSE
, /* partial_inplace */
548 0x00000fff, /* src_mask */
549 0x00000fff, /* dst_mask */
550 TRUE
), /* pcrel_offset */
552 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
556 TRUE
, /* pc_relative */
558 complain_overflow_dont
,/* complain_on_overflow */
559 bfd_elf_generic_reloc
, /* special_function */
560 "R_ARM_ALU_PCREL_15_8",/* name */
561 FALSE
, /* partial_inplace */
562 0x00000fff, /* src_mask */
563 0x00000fff, /* dst_mask */
564 TRUE
), /* pcrel_offset */
566 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
570 TRUE
, /* pc_relative */
572 complain_overflow_dont
,/* complain_on_overflow */
573 bfd_elf_generic_reloc
, /* special_function */
574 "R_ARM_ALU_PCREL_23_15",/* name */
575 FALSE
, /* partial_inplace */
576 0x00000fff, /* src_mask */
577 0x00000fff, /* dst_mask */
578 TRUE
), /* pcrel_offset */
580 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
584 FALSE
, /* pc_relative */
586 complain_overflow_dont
,/* complain_on_overflow */
587 bfd_elf_generic_reloc
, /* special_function */
588 "R_ARM_LDR_SBREL_11_0",/* name */
589 FALSE
, /* partial_inplace */
590 0x00000fff, /* src_mask */
591 0x00000fff, /* dst_mask */
592 FALSE
), /* pcrel_offset */
594 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
598 FALSE
, /* pc_relative */
600 complain_overflow_dont
,/* complain_on_overflow */
601 bfd_elf_generic_reloc
, /* special_function */
602 "R_ARM_ALU_SBREL_19_12",/* name */
603 FALSE
, /* partial_inplace */
604 0x000ff000, /* src_mask */
605 0x000ff000, /* dst_mask */
606 FALSE
), /* pcrel_offset */
608 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
612 FALSE
, /* pc_relative */
614 complain_overflow_dont
,/* complain_on_overflow */
615 bfd_elf_generic_reloc
, /* special_function */
616 "R_ARM_ALU_SBREL_27_20",/* name */
617 FALSE
, /* partial_inplace */
618 0x0ff00000, /* src_mask */
619 0x0ff00000, /* dst_mask */
620 FALSE
), /* pcrel_offset */
622 HOWTO (R_ARM_TARGET1
, /* type */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
626 FALSE
, /* pc_relative */
628 complain_overflow_dont
,/* complain_on_overflow */
629 bfd_elf_generic_reloc
, /* special_function */
630 "R_ARM_TARGET1", /* name */
631 FALSE
, /* partial_inplace */
632 0xffffffff, /* src_mask */
633 0xffffffff, /* dst_mask */
634 FALSE
), /* pcrel_offset */
636 HOWTO (R_ARM_ROSEGREL32
, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 FALSE
, /* pc_relative */
642 complain_overflow_dont
,/* complain_on_overflow */
643 bfd_elf_generic_reloc
, /* special_function */
644 "R_ARM_ROSEGREL32", /* name */
645 FALSE
, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 FALSE
), /* pcrel_offset */
650 HOWTO (R_ARM_V4BX
, /* type */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
654 FALSE
, /* pc_relative */
656 complain_overflow_dont
,/* complain_on_overflow */
657 bfd_elf_generic_reloc
, /* special_function */
658 "R_ARM_V4BX", /* name */
659 FALSE
, /* partial_inplace */
660 0xffffffff, /* src_mask */
661 0xffffffff, /* dst_mask */
662 FALSE
), /* pcrel_offset */
664 HOWTO (R_ARM_TARGET2
, /* type */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
668 FALSE
, /* pc_relative */
670 complain_overflow_signed
,/* complain_on_overflow */
671 bfd_elf_generic_reloc
, /* special_function */
672 "R_ARM_TARGET2", /* name */
673 FALSE
, /* partial_inplace */
674 0xffffffff, /* src_mask */
675 0xffffffff, /* dst_mask */
676 TRUE
), /* pcrel_offset */
678 HOWTO (R_ARM_PREL31
, /* type */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
682 TRUE
, /* pc_relative */
684 complain_overflow_signed
,/* complain_on_overflow */
685 bfd_elf_generic_reloc
, /* special_function */
686 "R_ARM_PREL31", /* name */
687 FALSE
, /* partial_inplace */
688 0x7fffffff, /* src_mask */
689 0x7fffffff, /* dst_mask */
690 TRUE
), /* pcrel_offset */
692 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
696 FALSE
, /* pc_relative */
698 complain_overflow_dont
,/* complain_on_overflow */
699 bfd_elf_generic_reloc
, /* special_function */
700 "R_ARM_MOVW_ABS_NC", /* name */
701 FALSE
, /* partial_inplace */
702 0x000f0fff, /* src_mask */
703 0x000f0fff, /* dst_mask */
704 FALSE
), /* pcrel_offset */
706 HOWTO (R_ARM_MOVT_ABS
, /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 FALSE
, /* pc_relative */
712 complain_overflow_bitfield
,/* complain_on_overflow */
713 bfd_elf_generic_reloc
, /* special_function */
714 "R_ARM_MOVT_ABS", /* name */
715 FALSE
, /* partial_inplace */
716 0x000f0fff, /* src_mask */
717 0x000f0fff, /* dst_mask */
718 FALSE
), /* pcrel_offset */
720 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
724 TRUE
, /* pc_relative */
726 complain_overflow_dont
,/* complain_on_overflow */
727 bfd_elf_generic_reloc
, /* special_function */
728 "R_ARM_MOVW_PREL_NC", /* name */
729 FALSE
, /* partial_inplace */
730 0x000f0fff, /* src_mask */
731 0x000f0fff, /* dst_mask */
732 TRUE
), /* pcrel_offset */
734 HOWTO (R_ARM_MOVT_PREL
, /* type */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
738 TRUE
, /* pc_relative */
740 complain_overflow_bitfield
,/* complain_on_overflow */
741 bfd_elf_generic_reloc
, /* special_function */
742 "R_ARM_MOVT_PREL", /* name */
743 FALSE
, /* partial_inplace */
744 0x000f0fff, /* src_mask */
745 0x000f0fff, /* dst_mask */
746 TRUE
), /* pcrel_offset */
748 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
752 FALSE
, /* pc_relative */
754 complain_overflow_dont
,/* complain_on_overflow */
755 bfd_elf_generic_reloc
, /* special_function */
756 "R_ARM_THM_MOVW_ABS_NC",/* name */
757 FALSE
, /* partial_inplace */
758 0x040f70ff, /* src_mask */
759 0x040f70ff, /* dst_mask */
760 FALSE
), /* pcrel_offset */
762 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
766 FALSE
, /* pc_relative */
768 complain_overflow_bitfield
,/* complain_on_overflow */
769 bfd_elf_generic_reloc
, /* special_function */
770 "R_ARM_THM_MOVT_ABS", /* name */
771 FALSE
, /* partial_inplace */
772 0x040f70ff, /* src_mask */
773 0x040f70ff, /* dst_mask */
774 FALSE
), /* pcrel_offset */
776 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 TRUE
, /* pc_relative */
782 complain_overflow_dont
,/* complain_on_overflow */
783 bfd_elf_generic_reloc
, /* special_function */
784 "R_ARM_THM_MOVW_PREL_NC",/* name */
785 FALSE
, /* partial_inplace */
786 0x040f70ff, /* src_mask */
787 0x040f70ff, /* dst_mask */
788 TRUE
), /* pcrel_offset */
790 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
794 TRUE
, /* pc_relative */
796 complain_overflow_bitfield
,/* complain_on_overflow */
797 bfd_elf_generic_reloc
, /* special_function */
798 "R_ARM_THM_MOVT_PREL", /* name */
799 FALSE
, /* partial_inplace */
800 0x040f70ff, /* src_mask */
801 0x040f70ff, /* dst_mask */
802 TRUE
), /* pcrel_offset */
804 HOWTO (R_ARM_THM_JUMP19
, /* type */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
808 TRUE
, /* pc_relative */
810 complain_overflow_signed
,/* complain_on_overflow */
811 bfd_elf_generic_reloc
, /* special_function */
812 "R_ARM_THM_JUMP19", /* name */
813 FALSE
, /* partial_inplace */
814 0x043f2fff, /* src_mask */
815 0x043f2fff, /* dst_mask */
816 TRUE
), /* pcrel_offset */
818 HOWTO (R_ARM_THM_JUMP6
, /* type */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
822 TRUE
, /* pc_relative */
824 complain_overflow_unsigned
,/* complain_on_overflow */
825 bfd_elf_generic_reloc
, /* special_function */
826 "R_ARM_THM_JUMP6", /* name */
827 FALSE
, /* partial_inplace */
828 0x02f8, /* src_mask */
829 0x02f8, /* dst_mask */
830 TRUE
), /* pcrel_offset */
832 /* These are declared as 13-bit signed relocations because we can
833 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
837 2, /* size (0 = byte, 1 = short, 2 = long) */
839 TRUE
, /* pc_relative */
841 complain_overflow_dont
,/* complain_on_overflow */
842 bfd_elf_generic_reloc
, /* special_function */
843 "R_ARM_THM_ALU_PREL_11_0",/* name */
844 FALSE
, /* partial_inplace */
845 0xffffffff, /* src_mask */
846 0xffffffff, /* dst_mask */
847 TRUE
), /* pcrel_offset */
849 HOWTO (R_ARM_THM_PC12
, /* type */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
853 TRUE
, /* pc_relative */
855 complain_overflow_dont
,/* complain_on_overflow */
856 bfd_elf_generic_reloc
, /* special_function */
857 "R_ARM_THM_PC12", /* name */
858 FALSE
, /* partial_inplace */
859 0xffffffff, /* src_mask */
860 0xffffffff, /* dst_mask */
861 TRUE
), /* pcrel_offset */
863 HOWTO (R_ARM_ABS32_NOI
, /* type */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
867 FALSE
, /* pc_relative */
869 complain_overflow_dont
,/* complain_on_overflow */
870 bfd_elf_generic_reloc
, /* special_function */
871 "R_ARM_ABS32_NOI", /* name */
872 FALSE
, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 FALSE
), /* pcrel_offset */
877 HOWTO (R_ARM_REL32_NOI
, /* type */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
881 TRUE
, /* pc_relative */
883 complain_overflow_dont
,/* complain_on_overflow */
884 bfd_elf_generic_reloc
, /* special_function */
885 "R_ARM_REL32_NOI", /* name */
886 FALSE
, /* partial_inplace */
887 0xffffffff, /* src_mask */
888 0xffffffff, /* dst_mask */
889 FALSE
), /* pcrel_offset */
891 /* Group relocations. */
893 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
897 TRUE
, /* pc_relative */
899 complain_overflow_dont
,/* complain_on_overflow */
900 bfd_elf_generic_reloc
, /* special_function */
901 "R_ARM_ALU_PC_G0_NC", /* name */
902 FALSE
, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 TRUE
), /* pcrel_offset */
907 HOWTO (R_ARM_ALU_PC_G0
, /* type */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
911 TRUE
, /* pc_relative */
913 complain_overflow_dont
,/* complain_on_overflow */
914 bfd_elf_generic_reloc
, /* special_function */
915 "R_ARM_ALU_PC_G0", /* name */
916 FALSE
, /* partial_inplace */
917 0xffffffff, /* src_mask */
918 0xffffffff, /* dst_mask */
919 TRUE
), /* pcrel_offset */
921 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
925 TRUE
, /* pc_relative */
927 complain_overflow_dont
,/* complain_on_overflow */
928 bfd_elf_generic_reloc
, /* special_function */
929 "R_ARM_ALU_PC_G1_NC", /* name */
930 FALSE
, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 TRUE
), /* pcrel_offset */
935 HOWTO (R_ARM_ALU_PC_G1
, /* type */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
939 TRUE
, /* pc_relative */
941 complain_overflow_dont
,/* complain_on_overflow */
942 bfd_elf_generic_reloc
, /* special_function */
943 "R_ARM_ALU_PC_G1", /* name */
944 FALSE
, /* partial_inplace */
945 0xffffffff, /* src_mask */
946 0xffffffff, /* dst_mask */
947 TRUE
), /* pcrel_offset */
949 HOWTO (R_ARM_ALU_PC_G2
, /* type */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
953 TRUE
, /* pc_relative */
955 complain_overflow_dont
,/* complain_on_overflow */
956 bfd_elf_generic_reloc
, /* special_function */
957 "R_ARM_ALU_PC_G2", /* name */
958 FALSE
, /* partial_inplace */
959 0xffffffff, /* src_mask */
960 0xffffffff, /* dst_mask */
961 TRUE
), /* pcrel_offset */
963 HOWTO (R_ARM_LDR_PC_G1
, /* type */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
967 TRUE
, /* pc_relative */
969 complain_overflow_dont
,/* complain_on_overflow */
970 bfd_elf_generic_reloc
, /* special_function */
971 "R_ARM_LDR_PC_G1", /* name */
972 FALSE
, /* partial_inplace */
973 0xffffffff, /* src_mask */
974 0xffffffff, /* dst_mask */
975 TRUE
), /* pcrel_offset */
977 HOWTO (R_ARM_LDR_PC_G2
, /* type */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
981 TRUE
, /* pc_relative */
983 complain_overflow_dont
,/* complain_on_overflow */
984 bfd_elf_generic_reloc
, /* special_function */
985 "R_ARM_LDR_PC_G2", /* name */
986 FALSE
, /* partial_inplace */
987 0xffffffff, /* src_mask */
988 0xffffffff, /* dst_mask */
989 TRUE
), /* pcrel_offset */
991 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
995 TRUE
, /* pc_relative */
997 complain_overflow_dont
,/* complain_on_overflow */
998 bfd_elf_generic_reloc
, /* special_function */
999 "R_ARM_LDRS_PC_G0", /* name */
1000 FALSE
, /* partial_inplace */
1001 0xffffffff, /* src_mask */
1002 0xffffffff, /* dst_mask */
1003 TRUE
), /* pcrel_offset */
1005 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 TRUE
, /* pc_relative */
1011 complain_overflow_dont
,/* complain_on_overflow */
1012 bfd_elf_generic_reloc
, /* special_function */
1013 "R_ARM_LDRS_PC_G1", /* name */
1014 FALSE
, /* partial_inplace */
1015 0xffffffff, /* src_mask */
1016 0xffffffff, /* dst_mask */
1017 TRUE
), /* pcrel_offset */
1019 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 TRUE
, /* pc_relative */
1025 complain_overflow_dont
,/* complain_on_overflow */
1026 bfd_elf_generic_reloc
, /* special_function */
1027 "R_ARM_LDRS_PC_G2", /* name */
1028 FALSE
, /* partial_inplace */
1029 0xffffffff, /* src_mask */
1030 0xffffffff, /* dst_mask */
1031 TRUE
), /* pcrel_offset */
1033 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1035 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 TRUE
, /* pc_relative */
1039 complain_overflow_dont
,/* complain_on_overflow */
1040 bfd_elf_generic_reloc
, /* special_function */
1041 "R_ARM_LDC_PC_G0", /* name */
1042 FALSE
, /* partial_inplace */
1043 0xffffffff, /* src_mask */
1044 0xffffffff, /* dst_mask */
1045 TRUE
), /* pcrel_offset */
1047 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 TRUE
, /* pc_relative */
1053 complain_overflow_dont
,/* complain_on_overflow */
1054 bfd_elf_generic_reloc
, /* special_function */
1055 "R_ARM_LDC_PC_G1", /* name */
1056 FALSE
, /* partial_inplace */
1057 0xffffffff, /* src_mask */
1058 0xffffffff, /* dst_mask */
1059 TRUE
), /* pcrel_offset */
1061 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 TRUE
, /* pc_relative */
1067 complain_overflow_dont
,/* complain_on_overflow */
1068 bfd_elf_generic_reloc
, /* special_function */
1069 "R_ARM_LDC_PC_G2", /* name */
1070 FALSE
, /* partial_inplace */
1071 0xffffffff, /* src_mask */
1072 0xffffffff, /* dst_mask */
1073 TRUE
), /* pcrel_offset */
1075 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 TRUE
, /* pc_relative */
1081 complain_overflow_dont
,/* complain_on_overflow */
1082 bfd_elf_generic_reloc
, /* special_function */
1083 "R_ARM_ALU_SB_G0_NC", /* name */
1084 FALSE
, /* partial_inplace */
1085 0xffffffff, /* src_mask */
1086 0xffffffff, /* dst_mask */
1087 TRUE
), /* pcrel_offset */
1089 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 TRUE
, /* pc_relative */
1095 complain_overflow_dont
,/* complain_on_overflow */
1096 bfd_elf_generic_reloc
, /* special_function */
1097 "R_ARM_ALU_SB_G0", /* name */
1098 FALSE
, /* partial_inplace */
1099 0xffffffff, /* src_mask */
1100 0xffffffff, /* dst_mask */
1101 TRUE
), /* pcrel_offset */
1103 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 TRUE
, /* pc_relative */
1109 complain_overflow_dont
,/* complain_on_overflow */
1110 bfd_elf_generic_reloc
, /* special_function */
1111 "R_ARM_ALU_SB_G1_NC", /* name */
1112 FALSE
, /* partial_inplace */
1113 0xffffffff, /* src_mask */
1114 0xffffffff, /* dst_mask */
1115 TRUE
), /* pcrel_offset */
1117 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 TRUE
, /* pc_relative */
1123 complain_overflow_dont
,/* complain_on_overflow */
1124 bfd_elf_generic_reloc
, /* special_function */
1125 "R_ARM_ALU_SB_G1", /* name */
1126 FALSE
, /* partial_inplace */
1127 0xffffffff, /* src_mask */
1128 0xffffffff, /* dst_mask */
1129 TRUE
), /* pcrel_offset */
1131 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 TRUE
, /* pc_relative */
1137 complain_overflow_dont
,/* complain_on_overflow */
1138 bfd_elf_generic_reloc
, /* special_function */
1139 "R_ARM_ALU_SB_G2", /* name */
1140 FALSE
, /* partial_inplace */
1141 0xffffffff, /* src_mask */
1142 0xffffffff, /* dst_mask */
1143 TRUE
), /* pcrel_offset */
1145 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1147 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 TRUE
, /* pc_relative */
1151 complain_overflow_dont
,/* complain_on_overflow */
1152 bfd_elf_generic_reloc
, /* special_function */
1153 "R_ARM_LDR_SB_G0", /* name */
1154 FALSE
, /* partial_inplace */
1155 0xffffffff, /* src_mask */
1156 0xffffffff, /* dst_mask */
1157 TRUE
), /* pcrel_offset */
1159 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1161 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 TRUE
, /* pc_relative */
1165 complain_overflow_dont
,/* complain_on_overflow */
1166 bfd_elf_generic_reloc
, /* special_function */
1167 "R_ARM_LDR_SB_G1", /* name */
1168 FALSE
, /* partial_inplace */
1169 0xffffffff, /* src_mask */
1170 0xffffffff, /* dst_mask */
1171 TRUE
), /* pcrel_offset */
1173 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1175 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 TRUE
, /* pc_relative */
1179 complain_overflow_dont
,/* complain_on_overflow */
1180 bfd_elf_generic_reloc
, /* special_function */
1181 "R_ARM_LDR_SB_G2", /* name */
1182 FALSE
, /* partial_inplace */
1183 0xffffffff, /* src_mask */
1184 0xffffffff, /* dst_mask */
1185 TRUE
), /* pcrel_offset */
1187 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 TRUE
, /* pc_relative */
1193 complain_overflow_dont
,/* complain_on_overflow */
1194 bfd_elf_generic_reloc
, /* special_function */
1195 "R_ARM_LDRS_SB_G0", /* name */
1196 FALSE
, /* partial_inplace */
1197 0xffffffff, /* src_mask */
1198 0xffffffff, /* dst_mask */
1199 TRUE
), /* pcrel_offset */
1201 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 TRUE
, /* pc_relative */
1207 complain_overflow_dont
,/* complain_on_overflow */
1208 bfd_elf_generic_reloc
, /* special_function */
1209 "R_ARM_LDRS_SB_G1", /* name */
1210 FALSE
, /* partial_inplace */
1211 0xffffffff, /* src_mask */
1212 0xffffffff, /* dst_mask */
1213 TRUE
), /* pcrel_offset */
1215 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1217 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 TRUE
, /* pc_relative */
1221 complain_overflow_dont
,/* complain_on_overflow */
1222 bfd_elf_generic_reloc
, /* special_function */
1223 "R_ARM_LDRS_SB_G2", /* name */
1224 FALSE
, /* partial_inplace */
1225 0xffffffff, /* src_mask */
1226 0xffffffff, /* dst_mask */
1227 TRUE
), /* pcrel_offset */
1229 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 TRUE
, /* pc_relative */
1235 complain_overflow_dont
,/* complain_on_overflow */
1236 bfd_elf_generic_reloc
, /* special_function */
1237 "R_ARM_LDC_SB_G0", /* name */
1238 FALSE
, /* partial_inplace */
1239 0xffffffff, /* src_mask */
1240 0xffffffff, /* dst_mask */
1241 TRUE
), /* pcrel_offset */
1243 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1245 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 TRUE
, /* pc_relative */
1249 complain_overflow_dont
,/* complain_on_overflow */
1250 bfd_elf_generic_reloc
, /* special_function */
1251 "R_ARM_LDC_SB_G1", /* name */
1252 FALSE
, /* partial_inplace */
1253 0xffffffff, /* src_mask */
1254 0xffffffff, /* dst_mask */
1255 TRUE
), /* pcrel_offset */
1257 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 TRUE
, /* pc_relative */
1263 complain_overflow_dont
,/* complain_on_overflow */
1264 bfd_elf_generic_reloc
, /* special_function */
1265 "R_ARM_LDC_SB_G2", /* name */
1266 FALSE
, /* partial_inplace */
1267 0xffffffff, /* src_mask */
1268 0xffffffff, /* dst_mask */
1269 TRUE
), /* pcrel_offset */
1271 /* End of group relocations. */
1273 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1275 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 FALSE
, /* pc_relative */
1279 complain_overflow_dont
,/* complain_on_overflow */
1280 bfd_elf_generic_reloc
, /* special_function */
1281 "R_ARM_MOVW_BREL_NC", /* name */
1282 FALSE
, /* partial_inplace */
1283 0x0000ffff, /* src_mask */
1284 0x0000ffff, /* dst_mask */
1285 FALSE
), /* pcrel_offset */
1287 HOWTO (R_ARM_MOVT_BREL
, /* type */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 FALSE
, /* pc_relative */
1293 complain_overflow_bitfield
,/* complain_on_overflow */
1294 bfd_elf_generic_reloc
, /* special_function */
1295 "R_ARM_MOVT_BREL", /* name */
1296 FALSE
, /* partial_inplace */
1297 0x0000ffff, /* src_mask */
1298 0x0000ffff, /* dst_mask */
1299 FALSE
), /* pcrel_offset */
1301 HOWTO (R_ARM_MOVW_BREL
, /* type */
1303 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 FALSE
, /* pc_relative */
1307 complain_overflow_dont
,/* complain_on_overflow */
1308 bfd_elf_generic_reloc
, /* special_function */
1309 "R_ARM_MOVW_BREL", /* name */
1310 FALSE
, /* partial_inplace */
1311 0x0000ffff, /* src_mask */
1312 0x0000ffff, /* dst_mask */
1313 FALSE
), /* pcrel_offset */
1315 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1317 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 FALSE
, /* pc_relative */
1321 complain_overflow_dont
,/* complain_on_overflow */
1322 bfd_elf_generic_reloc
, /* special_function */
1323 "R_ARM_THM_MOVW_BREL_NC",/* name */
1324 FALSE
, /* partial_inplace */
1325 0x040f70ff, /* src_mask */
1326 0x040f70ff, /* dst_mask */
1327 FALSE
), /* pcrel_offset */
1329 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 FALSE
, /* pc_relative */
1335 complain_overflow_bitfield
,/* complain_on_overflow */
1336 bfd_elf_generic_reloc
, /* special_function */
1337 "R_ARM_THM_MOVT_BREL", /* name */
1338 FALSE
, /* partial_inplace */
1339 0x040f70ff, /* src_mask */
1340 0x040f70ff, /* dst_mask */
1341 FALSE
), /* pcrel_offset */
1343 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 FALSE
, /* pc_relative */
1349 complain_overflow_dont
,/* complain_on_overflow */
1350 bfd_elf_generic_reloc
, /* special_function */
1351 "R_ARM_THM_MOVW_BREL", /* name */
1352 FALSE
, /* partial_inplace */
1353 0x040f70ff, /* src_mask */
1354 0x040f70ff, /* dst_mask */
1355 FALSE
), /* pcrel_offset */
1357 EMPTY_HOWTO (90), /* Unallocated. */
1362 HOWTO (R_ARM_PLT32_ABS
, /* type */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1366 FALSE
, /* pc_relative */
1368 complain_overflow_dont
,/* complain_on_overflow */
1369 bfd_elf_generic_reloc
, /* special_function */
1370 "R_ARM_PLT32_ABS", /* name */
1371 FALSE
, /* partial_inplace */
1372 0xffffffff, /* src_mask */
1373 0xffffffff, /* dst_mask */
1374 FALSE
), /* pcrel_offset */
1376 HOWTO (R_ARM_GOT_ABS
, /* type */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1380 FALSE
, /* pc_relative */
1382 complain_overflow_dont
,/* complain_on_overflow */
1383 bfd_elf_generic_reloc
, /* special_function */
1384 "R_ARM_GOT_ABS", /* name */
1385 FALSE
, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE
), /* pcrel_offset */
1390 HOWTO (R_ARM_GOT_PREL
, /* type */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1394 TRUE
, /* pc_relative */
1396 complain_overflow_dont
, /* complain_on_overflow */
1397 bfd_elf_generic_reloc
, /* special_function */
1398 "R_ARM_GOT_PREL", /* name */
1399 FALSE
, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 TRUE
), /* pcrel_offset */
1404 HOWTO (R_ARM_GOT_BREL12
, /* type */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1408 FALSE
, /* pc_relative */
1410 complain_overflow_bitfield
,/* complain_on_overflow */
1411 bfd_elf_generic_reloc
, /* special_function */
1412 "R_ARM_GOT_BREL12", /* name */
1413 FALSE
, /* partial_inplace */
1414 0x00000fff, /* src_mask */
1415 0x00000fff, /* dst_mask */
1416 FALSE
), /* pcrel_offset */
1418 HOWTO (R_ARM_GOTOFF12
, /* type */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1422 FALSE
, /* pc_relative */
1424 complain_overflow_bitfield
,/* complain_on_overflow */
1425 bfd_elf_generic_reloc
, /* special_function */
1426 "R_ARM_GOTOFF12", /* name */
1427 FALSE
, /* partial_inplace */
1428 0x00000fff, /* src_mask */
1429 0x00000fff, /* dst_mask */
1430 FALSE
), /* pcrel_offset */
1432 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1434 /* GNU extension to record C++ vtable member usage */
1435 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1437 2, /* size (0 = byte, 1 = short, 2 = long) */
1439 FALSE
, /* pc_relative */
1441 complain_overflow_dont
, /* complain_on_overflow */
1442 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1443 "R_ARM_GNU_VTENTRY", /* name */
1444 FALSE
, /* partial_inplace */
1447 FALSE
), /* pcrel_offset */
1449 /* GNU extension to record C++ vtable hierarchy */
1450 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1454 FALSE
, /* pc_relative */
1456 complain_overflow_dont
, /* complain_on_overflow */
1457 NULL
, /* special_function */
1458 "R_ARM_GNU_VTINHERIT", /* name */
1459 FALSE
, /* partial_inplace */
1462 FALSE
), /* pcrel_offset */
1464 HOWTO (R_ARM_THM_JUMP11
, /* type */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1468 TRUE
, /* pc_relative */
1470 complain_overflow_signed
, /* complain_on_overflow */
1471 bfd_elf_generic_reloc
, /* special_function */
1472 "R_ARM_THM_JUMP11", /* name */
1473 FALSE
, /* partial_inplace */
1474 0x000007ff, /* src_mask */
1475 0x000007ff, /* dst_mask */
1476 TRUE
), /* pcrel_offset */
1478 HOWTO (R_ARM_THM_JUMP8
, /* type */
1480 1, /* size (0 = byte, 1 = short, 2 = long) */
1482 TRUE
, /* pc_relative */
1484 complain_overflow_signed
, /* complain_on_overflow */
1485 bfd_elf_generic_reloc
, /* special_function */
1486 "R_ARM_THM_JUMP8", /* name */
1487 FALSE
, /* partial_inplace */
1488 0x000000ff, /* src_mask */
1489 0x000000ff, /* dst_mask */
1490 TRUE
), /* pcrel_offset */
1492 /* TLS relocations */
1493 HOWTO (R_ARM_TLS_GD32
, /* type */
1495 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 FALSE
, /* pc_relative */
1499 complain_overflow_bitfield
,/* complain_on_overflow */
1500 NULL
, /* special_function */
1501 "R_ARM_TLS_GD32", /* name */
1502 TRUE
, /* partial_inplace */
1503 0xffffffff, /* src_mask */
1504 0xffffffff, /* dst_mask */
1505 FALSE
), /* pcrel_offset */
1507 HOWTO (R_ARM_TLS_LDM32
, /* type */
1509 2, /* size (0 = byte, 1 = short, 2 = long) */
1511 FALSE
, /* pc_relative */
1513 complain_overflow_bitfield
,/* complain_on_overflow */
1514 bfd_elf_generic_reloc
, /* special_function */
1515 "R_ARM_TLS_LDM32", /* name */
1516 TRUE
, /* partial_inplace */
1517 0xffffffff, /* src_mask */
1518 0xffffffff, /* dst_mask */
1519 FALSE
), /* pcrel_offset */
1521 HOWTO (R_ARM_TLS_LDO32
, /* type */
1523 2, /* size (0 = byte, 1 = short, 2 = long) */
1525 FALSE
, /* pc_relative */
1527 complain_overflow_bitfield
,/* complain_on_overflow */
1528 bfd_elf_generic_reloc
, /* special_function */
1529 "R_ARM_TLS_LDO32", /* name */
1530 TRUE
, /* partial_inplace */
1531 0xffffffff, /* src_mask */
1532 0xffffffff, /* dst_mask */
1533 FALSE
), /* pcrel_offset */
1535 HOWTO (R_ARM_TLS_IE32
, /* type */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1539 FALSE
, /* pc_relative */
1541 complain_overflow_bitfield
,/* complain_on_overflow */
1542 NULL
, /* special_function */
1543 "R_ARM_TLS_IE32", /* name */
1544 TRUE
, /* partial_inplace */
1545 0xffffffff, /* src_mask */
1546 0xffffffff, /* dst_mask */
1547 FALSE
), /* pcrel_offset */
1549 HOWTO (R_ARM_TLS_LE32
, /* type */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1553 FALSE
, /* pc_relative */
1555 complain_overflow_bitfield
,/* complain_on_overflow */
1556 bfd_elf_generic_reloc
, /* special_function */
1557 "R_ARM_TLS_LE32", /* name */
1558 TRUE
, /* partial_inplace */
1559 0xffffffff, /* src_mask */
1560 0xffffffff, /* dst_mask */
1561 FALSE
), /* pcrel_offset */
1563 HOWTO (R_ARM_TLS_LDO12
, /* type */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 FALSE
, /* pc_relative */
1569 complain_overflow_bitfield
,/* complain_on_overflow */
1570 bfd_elf_generic_reloc
, /* special_function */
1571 "R_ARM_TLS_LDO12", /* name */
1572 FALSE
, /* partial_inplace */
1573 0x00000fff, /* src_mask */
1574 0x00000fff, /* dst_mask */
1575 FALSE
), /* pcrel_offset */
1577 HOWTO (R_ARM_TLS_LE12
, /* type */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 FALSE
, /* pc_relative */
1583 complain_overflow_bitfield
,/* complain_on_overflow */
1584 bfd_elf_generic_reloc
, /* special_function */
1585 "R_ARM_TLS_LE12", /* name */
1586 FALSE
, /* partial_inplace */
1587 0x00000fff, /* src_mask */
1588 0x00000fff, /* dst_mask */
1589 FALSE
), /* pcrel_offset */
1591 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1595 FALSE
, /* pc_relative */
1597 complain_overflow_bitfield
,/* complain_on_overflow */
1598 bfd_elf_generic_reloc
, /* special_function */
1599 "R_ARM_TLS_IE12GP", /* name */
1600 FALSE
, /* partial_inplace */
1601 0x00000fff, /* src_mask */
1602 0x00000fff, /* dst_mask */
1603 FALSE
), /* pcrel_offset */
1606 /* 112-127 private relocations
1607 128 R_ARM_ME_TOO, obsolete
1608 129-255 unallocated in AAELF.
1610 249-255 extended, currently unused, relocations: */
1612 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1614 HOWTO (R_ARM_RREL32
, /* type */
1616 0, /* size (0 = byte, 1 = short, 2 = long) */
1618 FALSE
, /* pc_relative */
1620 complain_overflow_dont
,/* complain_on_overflow */
1621 bfd_elf_generic_reloc
, /* special_function */
1622 "R_ARM_RREL32", /* name */
1623 FALSE
, /* partial_inplace */
1626 FALSE
), /* pcrel_offset */
1628 HOWTO (R_ARM_RABS32
, /* type */
1630 0, /* size (0 = byte, 1 = short, 2 = long) */
1632 FALSE
, /* pc_relative */
1634 complain_overflow_dont
,/* complain_on_overflow */
1635 bfd_elf_generic_reloc
, /* special_function */
1636 "R_ARM_RABS32", /* name */
1637 FALSE
, /* partial_inplace */
1640 FALSE
), /* pcrel_offset */
1642 HOWTO (R_ARM_RPC24
, /* type */
1644 0, /* size (0 = byte, 1 = short, 2 = long) */
1646 FALSE
, /* pc_relative */
1648 complain_overflow_dont
,/* complain_on_overflow */
1649 bfd_elf_generic_reloc
, /* special_function */
1650 "R_ARM_RPC24", /* name */
1651 FALSE
, /* partial_inplace */
1654 FALSE
), /* pcrel_offset */
1656 HOWTO (R_ARM_RBASE
, /* type */
1658 0, /* size (0 = byte, 1 = short, 2 = long) */
1660 FALSE
, /* pc_relative */
1662 complain_overflow_dont
,/* complain_on_overflow */
1663 bfd_elf_generic_reloc
, /* special_function */
1664 "R_ARM_RBASE", /* name */
1665 FALSE
, /* partial_inplace */
1668 FALSE
) /* pcrel_offset */
1671 static reloc_howto_type
*
1672 elf32_arm_howto_from_type (unsigned int r_type
)
1674 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1675 return &elf32_arm_howto_table_1
[r_type
];
1677 if (r_type
>= R_ARM_RREL32
1678 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1679 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1685 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1686 Elf_Internal_Rela
* elf_reloc
)
1688 unsigned int r_type
;
1690 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1691 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1694 struct elf32_arm_reloc_map
1696 bfd_reloc_code_real_type bfd_reloc_val
;
1697 unsigned char elf_reloc_val
;
1700 /* All entries in this list must also be present in elf32_arm_howto_table. */
1701 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1703 {BFD_RELOC_NONE
, R_ARM_NONE
},
1704 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1705 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1706 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1707 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1708 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1709 {BFD_RELOC_32
, R_ARM_ABS32
},
1710 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1711 {BFD_RELOC_8
, R_ARM_ABS8
},
1712 {BFD_RELOC_16
, R_ARM_ABS16
},
1713 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1714 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1719 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1720 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1721 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1722 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1723 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1724 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1725 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1726 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1727 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1728 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1729 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1730 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1731 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1732 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1733 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1734 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1735 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1736 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1737 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1738 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1739 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1740 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1741 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1742 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1743 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1744 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1745 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1746 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1747 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1748 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1749 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1750 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1751 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1752 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1753 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1754 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1755 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1756 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1757 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1758 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1759 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1760 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1761 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1762 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1763 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1764 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1765 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1766 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1767 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1768 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1769 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1770 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1771 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1772 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1773 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1774 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1775 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1776 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1777 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1778 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1779 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1780 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1783 static reloc_howto_type
*
1784 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1785 bfd_reloc_code_real_type code
)
1789 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1790 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1791 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1796 static reloc_howto_type
*
1797 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1802 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1803 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1804 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1805 return &elf32_arm_howto_table_1
[i
];
1807 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1808 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1809 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1810 return &elf32_arm_howto_table_2
[i
];
1815 /* Support for core dump NOTE sections. */
1818 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1823 switch (note
->descsz
)
1828 case 148: /* Linux/ARM 32-bit. */
1830 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1833 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1844 size
, note
->descpos
+ offset
);
1848 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1850 switch (note
->descsz
)
1855 case 124: /* Linux/ARM elf_prpsinfo. */
1856 elf_tdata (abfd
)->core_program
1857 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1858 elf_tdata (abfd
)->core_command
1859 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
1866 char *command
= elf_tdata (abfd
)->core_command
;
1867 int n
= strlen (command
);
1869 if (0 < n
&& command
[n
- 1] == ' ')
1870 command
[n
- 1] = '\0';
1876 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877 #define TARGET_LITTLE_NAME "elf32-littlearm"
1878 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879 #define TARGET_BIG_NAME "elf32-bigarm"
1881 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1884 typedef unsigned long int insn32
;
1885 typedef unsigned short int insn16
;
1887 /* In lieu of proper flags, assume all EABIv4 or later objects are
1889 #define INTERWORK_FLAG(abfd) \
1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892 || ((abfd)->flags & BFD_LINKER_CREATED))
1894 /* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
1897 name can be changed. The only requirement is the %s be present. */
1898 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910 #define STUB_ENTRY_NAME "__%s_veneer"
1912 /* The name of the dynamic interpreter. This is put in the .interp
1914 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1916 #ifdef FOUR_WORD_PLT
1918 /* The first entry in a procedure linkage table looks like
1919 this. It is set up so that any shared library function that is
1920 called before the relocation has been set up calls the dynamic
1922 static const bfd_vma elf32_arm_plt0_entry
[] =
1924 0xe52de004, /* str lr, [sp, #-4]! */
1925 0xe59fe010, /* ldr lr, [pc, #16] */
1926 0xe08fe00e, /* add lr, pc, lr */
1927 0xe5bef008, /* ldr pc, [lr, #8]! */
1930 /* Subsequent entries in a procedure linkage table look like
1932 static const bfd_vma elf32_arm_plt_entry
[] =
1934 0xe28fc600, /* add ip, pc, #NN */
1935 0xe28cca00, /* add ip, ip, #NN */
1936 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1937 0x00000000, /* unused */
1942 /* The first entry in a procedure linkage table looks like
1943 this. It is set up so that any shared library function that is
1944 called before the relocation has been set up calls the dynamic
1946 static const bfd_vma elf32_arm_plt0_entry
[] =
1948 0xe52de004, /* str lr, [sp, #-4]! */
1949 0xe59fe004, /* ldr lr, [pc, #4] */
1950 0xe08fe00e, /* add lr, pc, lr */
1951 0xe5bef008, /* ldr pc, [lr, #8]! */
1952 0x00000000, /* &GOT[0] - . */
1955 /* Subsequent entries in a procedure linkage table look like
1957 static const bfd_vma elf32_arm_plt_entry
[] =
1959 0xe28fc600, /* add ip, pc, #0xNN00000 */
1960 0xe28cca00, /* add ip, ip, #0xNN000 */
1961 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1966 /* The format of the first entry in the procedure linkage table
1967 for a VxWorks executable. */
1968 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1970 0xe52dc008, /* str ip,[sp,#-8]! */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf008, /* ldr pc,[ip,#8] */
1973 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1976 /* The format of subsequent entries in a VxWorks executable. */
1977 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe59cf000, /* ldr pc,[ip] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xea000000, /* b _PLT */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 /* The format of entries in a VxWorks shared library. */
1988 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1990 0xe59fc000, /* ldr ip,[pc] */
1991 0xe79cf009, /* ldr pc,[ip,r9] */
1992 0x00000000, /* .long @got */
1993 0xe59fc000, /* ldr ip,[pc] */
1994 0xe599f008, /* ldr pc,[r9,#8] */
1995 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1998 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1999 #define PLT_THUMB_STUB_SIZE 4
2000 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2006 /* The entries in a PLT when using a DLL-based target with multiple
2008 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2010 0xe51ff004, /* ldr pc, [pc, #-4] */
2011 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2014 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2015 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2016 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2017 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2018 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2029 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2031 is inserted in arm_build_one_stub(). */
2032 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2033 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2034 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2035 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2036 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2037 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2042 enum stub_insn_type type
;
2043 unsigned int r_type
;
2047 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2048 to reach the stub if necessary. */
2049 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2051 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2052 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2055 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2057 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2059 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2060 ARM_INSN(0xe12fff1c), /* bx ip */
2061 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2064 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2065 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2067 THUMB16_INSN(0xb401), /* push {r0} */
2068 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2069 THUMB16_INSN(0x4684), /* mov ip, r0 */
2070 THUMB16_INSN(0xbc01), /* pop {r0} */
2071 THUMB16_INSN(0x4760), /* bx ip */
2072 THUMB16_INSN(0xbf00), /* nop */
2073 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2076 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2078 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2083 ARM_INSN(0xe12fff1c), /* bx ip */
2084 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2087 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2089 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2091 THUMB16_INSN(0x4778), /* bx pc */
2092 THUMB16_INSN(0x46c0), /* nop */
2093 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2094 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2097 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2098 one, when the destination is close enough. */
2099 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2101 THUMB16_INSN(0x4778), /* bx pc */
2102 THUMB16_INSN(0x46c0), /* nop */
2103 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2106 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2107 blx to reach the stub if necessary. */
2108 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2110 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2111 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2112 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2115 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2116 blx to reach the stub if necessary. We can not add into pc;
2117 it is not guaranteed to mode switch (different in ARMv6 and
2119 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2121 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2122 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2123 ARM_INSN(0xe12fff1c), /* bx ip */
2124 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2127 /* V4T ARM -> ARM long branch stub, PIC. */
2128 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2130 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2131 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2132 ARM_INSN(0xe12fff1c), /* bx ip */
2133 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2136 /* V4T Thumb -> ARM long branch stub, PIC. */
2137 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2139 THUMB16_INSN(0x4778), /* bx pc */
2140 THUMB16_INSN(0x46c0), /* nop */
2141 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2142 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2143 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2146 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2148 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2150 THUMB16_INSN(0xb401), /* push {r0} */
2151 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2152 THUMB16_INSN(0x46fc), /* mov ip, pc */
2153 THUMB16_INSN(0x4484), /* add ip, r0 */
2154 THUMB16_INSN(0xbc01), /* pop {r0} */
2155 THUMB16_INSN(0x4760), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2159 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2161 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2163 THUMB16_INSN(0x4778), /* bx pc */
2164 THUMB16_INSN(0x46c0), /* nop */
2165 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2166 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2167 ARM_INSN(0xe12fff1c), /* bx ip */
2168 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2171 /* Cortex-A8 erratum-workaround stubs. */
2173 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2174 can't use a conditional branch to reach this stub). */
2176 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2178 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2179 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2180 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2183 /* Stub used for b.w and bl.w instructions. */
2185 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2187 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2190 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2192 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2195 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2196 instruction (which switches to ARM mode) to point to this stub. Jump to the
2197 real destination using an ARM-mode branch. */
2199 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2201 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2204 /* Section name for stubs is the associated section name plus this
2206 #define STUB_SUFFIX ".stub"
2208 /* One entry per long/short branch stub defined above. */
2210 DEF_STUB(long_branch_any_any) \
2211 DEF_STUB(long_branch_v4t_arm_thumb) \
2212 DEF_STUB(long_branch_thumb_only) \
2213 DEF_STUB(long_branch_v4t_thumb_thumb) \
2214 DEF_STUB(long_branch_v4t_thumb_arm) \
2215 DEF_STUB(short_branch_v4t_thumb_arm) \
2216 DEF_STUB(long_branch_any_arm_pic) \
2217 DEF_STUB(long_branch_any_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2220 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2221 DEF_STUB(long_branch_thumb_only_pic) \
2222 DEF_STUB(a8_veneer_b_cond) \
2223 DEF_STUB(a8_veneer_b) \
2224 DEF_STUB(a8_veneer_bl) \
2225 DEF_STUB(a8_veneer_blx)
2227 #define DEF_STUB(x) arm_stub_##x,
2228 enum elf32_arm_stub_type
{
2231 /* Note the first a8_veneer type */
2232 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2238 const insn_sequence
* template;
2242 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2243 static const stub_def stub_definitions
[] = {
2248 struct elf32_arm_stub_hash_entry
2250 /* Base hash table entry structure. */
2251 struct bfd_hash_entry root
;
2253 /* The stub section. */
2256 /* Offset within stub_sec of the beginning of this stub. */
2257 bfd_vma stub_offset
;
2259 /* Given the symbol's value and its section we can determine its final
2260 value when building the stubs (so the stub knows where to jump). */
2261 bfd_vma target_value
;
2262 asection
*target_section
;
2264 /* Offset to apply to relocation referencing target_value. */
2265 bfd_vma target_addend
;
2267 /* The instruction which caused this stub to be generated (only valid for
2268 Cortex-A8 erratum workaround stubs at present). */
2269 unsigned long orig_insn
;
2271 /* The stub type. */
2272 enum elf32_arm_stub_type stub_type
;
2273 /* Its encoding size in bytes. */
2276 const insn_sequence
*stub_template
;
2277 /* The size of the template (number of entries). */
2278 int stub_template_size
;
2280 /* The symbol table entry, if any, that this was derived from. */
2281 struct elf32_arm_link_hash_entry
*h
;
2283 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2284 unsigned char st_type
;
2286 /* Where this stub is being called from, or, in the case of combined
2287 stub sections, the first input section in the group. */
2290 /* The name for the local symbol at the start of this stub. The
2291 stub name in the hash table has to be unique; this does not, so
2292 it can be friendlier. */
2296 /* Used to build a map of a section. This is required for mixed-endian
2299 typedef struct elf32_elf_section_map
2304 elf32_arm_section_map
;
2306 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2310 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2311 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2312 VFP11_ERRATUM_ARM_VENEER
,
2313 VFP11_ERRATUM_THUMB_VENEER
2315 elf32_vfp11_erratum_type
;
2317 typedef struct elf32_vfp11_erratum_list
2319 struct elf32_vfp11_erratum_list
*next
;
2325 struct elf32_vfp11_erratum_list
*veneer
;
2326 unsigned int vfp_insn
;
2330 struct elf32_vfp11_erratum_list
*branch
;
2334 elf32_vfp11_erratum_type type
;
2336 elf32_vfp11_erratum_list
;
2341 INSERT_EXIDX_CANTUNWIND_AT_END
2343 arm_unwind_edit_type
;
2345 /* A (sorted) list of edits to apply to an unwind table. */
2346 typedef struct arm_unwind_table_edit
2348 arm_unwind_edit_type type
;
2349 /* Note: we sometimes want to insert an unwind entry corresponding to a
2350 section different from the one we're currently writing out, so record the
2351 (text) section this edit relates to here. */
2352 asection
*linked_section
;
2354 struct arm_unwind_table_edit
*next
;
2356 arm_unwind_table_edit
;
2358 typedef struct _arm_elf_section_data
2360 /* Information about mapping symbols. */
2361 struct bfd_elf_section_data elf
;
2362 unsigned int mapcount
;
2363 unsigned int mapsize
;
2364 elf32_arm_section_map
*map
;
2365 /* Information about CPU errata. */
2366 unsigned int erratumcount
;
2367 elf32_vfp11_erratum_list
*erratumlist
;
2368 /* Information about unwind tables. */
2371 /* Unwind info attached to a text section. */
2374 asection
*arm_exidx_sec
;
2377 /* Unwind info attached to an .ARM.exidx section. */
2380 arm_unwind_table_edit
*unwind_edit_list
;
2381 arm_unwind_table_edit
*unwind_edit_tail
;
2385 _arm_elf_section_data
;
2387 #define elf32_arm_section_data(sec) \
2388 ((_arm_elf_section_data *) elf_section_data (sec))
2390 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2391 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2392 so may be created multiple times: we use an array of these entries whilst
2393 relaxing which we can refresh easily, then create stubs for each potentially
2394 erratum-triggering instruction once we've settled on a solution. */
2396 struct a8_erratum_fix
{
2401 unsigned long orig_insn
;
2403 enum elf32_arm_stub_type stub_type
;
2406 /* A table of relocs applied to branches which might trigger Cortex-A8
2409 struct a8_erratum_reloc
{
2411 bfd_vma destination
;
2412 unsigned int r_type
;
2413 unsigned char st_type
;
2414 const char *sym_name
;
2415 bfd_boolean non_a8_stub
;
2418 /* The size of the thread control block. */
2421 struct elf_arm_obj_tdata
2423 struct elf_obj_tdata root
;
2425 /* tls_type for each local got entry. */
2426 char *local_got_tls_type
;
2428 /* Zero to warn when linking objects with incompatible enum sizes. */
2429 int no_enum_size_warning
;
2431 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2432 int no_wchar_size_warning
;
2435 #define elf_arm_tdata(bfd) \
2436 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2438 #define elf32_arm_local_got_tls_type(bfd) \
2439 (elf_arm_tdata (bfd)->local_got_tls_type)
2441 #define is_arm_elf(bfd) \
2442 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2443 && elf_tdata (bfd) != NULL \
2444 && elf_object_id (bfd) == ARM_ELF_TDATA)
2447 elf32_arm_mkobject (bfd
*abfd
)
2449 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2453 /* The ARM linker needs to keep track of the number of relocs that it
2454 decides to copy in check_relocs for each symbol. This is so that
2455 it can discard PC relative relocs if it doesn't need them when
2456 linking with -Bsymbolic. We store the information in a field
2457 extending the regular ELF linker hash table. */
2459 /* This structure keeps track of the number of relocs we have copied
2460 for a given symbol. */
2461 struct elf32_arm_relocs_copied
2464 struct elf32_arm_relocs_copied
* next
;
2465 /* A section in dynobj. */
2467 /* Number of relocs copied in this section. */
2468 bfd_size_type count
;
2469 /* Number of PC-relative relocs copied in this section. */
2470 bfd_size_type pc_count
;
2473 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2475 /* Arm ELF linker hash entry. */
2476 struct elf32_arm_link_hash_entry
2478 struct elf_link_hash_entry root
;
2480 /* Number of PC relative relocs copied for this symbol. */
2481 struct elf32_arm_relocs_copied
* relocs_copied
;
2483 /* We reference count Thumb references to a PLT entry separately,
2484 so that we can emit the Thumb trampoline only if needed. */
2485 bfd_signed_vma plt_thumb_refcount
;
2487 /* Some references from Thumb code may be eliminated by BL->BLX
2488 conversion, so record them separately. */
2489 bfd_signed_vma plt_maybe_thumb_refcount
;
2491 /* Since PLT entries have variable size if the Thumb prologue is
2492 used, we need to record the index into .got.plt instead of
2493 recomputing it from the PLT offset. */
2494 bfd_signed_vma plt_got_offset
;
2496 #define GOT_UNKNOWN 0
2497 #define GOT_NORMAL 1
2498 #define GOT_TLS_GD 2
2499 #define GOT_TLS_IE 4
2500 unsigned char tls_type
;
2502 /* The symbol marking the real symbol location for exported thumb
2503 symbols with Arm stubs. */
2504 struct elf_link_hash_entry
*export_glue
;
2506 /* A pointer to the most recently used stub hash entry against this
2508 struct elf32_arm_stub_hash_entry
*stub_cache
;
2511 /* Traverse an arm ELF linker hash table. */
2512 #define elf32_arm_link_hash_traverse(table, func, info) \
2513 (elf_link_hash_traverse \
2515 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2518 /* Get the ARM elf linker hash table from a link_info structure. */
2519 #define elf32_arm_hash_table(info) \
2520 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2522 #define arm_stub_hash_lookup(table, string, create, copy) \
2523 ((struct elf32_arm_stub_hash_entry *) \
2524 bfd_hash_lookup ((table), (string), (create), (copy)))
2526 /* ARM ELF linker hash table. */
2527 struct elf32_arm_link_hash_table
2529 /* The main hash table. */
2530 struct elf_link_hash_table root
;
2532 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2533 bfd_size_type thumb_glue_size
;
2535 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2536 bfd_size_type arm_glue_size
;
2538 /* The size in bytes of section containing the ARMv4 BX veneers. */
2539 bfd_size_type bx_glue_size
;
2541 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2542 veneer has been populated. */
2543 bfd_vma bx_glue_offset
[15];
2545 /* The size in bytes of the section containing glue for VFP11 erratum
2547 bfd_size_type vfp11_erratum_glue_size
;
2549 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2550 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2551 elf32_arm_write_section(). */
2552 struct a8_erratum_fix
*a8_erratum_fixes
;
2553 unsigned int num_a8_erratum_fixes
;
2555 /* An arbitrary input BFD chosen to hold the glue sections. */
2556 bfd
* bfd_of_glue_owner
;
2558 /* Nonzero to output a BE8 image. */
2561 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2562 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2565 /* The relocation to use for R_ARM_TARGET2 relocations. */
2568 /* 0 = Ignore R_ARM_V4BX.
2569 1 = Convert BX to MOV PC.
2570 2 = Generate v4 interworing stubs. */
2573 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2576 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2579 /* What sort of code sequences we should look for which may trigger the
2580 VFP11 denorm erratum. */
2581 bfd_arm_vfp11_fix vfp11_fix
;
2583 /* Global counter for the number of fixes we have emitted. */
2584 int num_vfp11_fixes
;
2586 /* Nonzero to force PIC branch veneers. */
2589 /* The number of bytes in the initial entry in the PLT. */
2590 bfd_size_type plt_header_size
;
2592 /* The number of bytes in the subsequent PLT etries. */
2593 bfd_size_type plt_entry_size
;
2595 /* True if the target system is VxWorks. */
2598 /* True if the target system is Symbian OS. */
2601 /* True if the target uses REL relocations. */
2604 /* Short-cuts to get to dynamic linker sections. */
2613 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2616 /* Data for R_ARM_TLS_LDM32 relocations. */
2619 bfd_signed_vma refcount
;
2623 /* Small local sym cache. */
2624 struct sym_cache sym_cache
;
2626 /* For convenience in allocate_dynrelocs. */
2629 /* The stub hash table. */
2630 struct bfd_hash_table stub_hash_table
;
2632 /* Linker stub bfd. */
2635 /* Linker call-backs. */
2636 asection
* (*add_stub_section
) (const char *, asection
*);
2637 void (*layout_sections_again
) (void);
2639 /* Array to keep track of which stub sections have been created, and
2640 information on stub grouping. */
2643 /* This is the section to which stubs in the group will be
2646 /* The stub section. */
2650 /* Assorted information used by elf32_arm_size_stubs. */
2651 unsigned int bfd_count
;
2653 asection
**input_list
;
2656 /* Create an entry in an ARM ELF linker hash table. */
2658 static struct bfd_hash_entry
*
2659 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2660 struct bfd_hash_table
* table
,
2661 const char * string
)
2663 struct elf32_arm_link_hash_entry
* ret
=
2664 (struct elf32_arm_link_hash_entry
*) entry
;
2666 /* Allocate the structure if it has not already been allocated by a
2669 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2671 return (struct bfd_hash_entry
*) ret
;
2673 /* Call the allocation method of the superclass. */
2674 ret
= ((struct elf32_arm_link_hash_entry
*)
2675 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2679 ret
->relocs_copied
= NULL
;
2680 ret
->tls_type
= GOT_UNKNOWN
;
2681 ret
->plt_thumb_refcount
= 0;
2682 ret
->plt_maybe_thumb_refcount
= 0;
2683 ret
->plt_got_offset
= -1;
2684 ret
->export_glue
= NULL
;
2686 ret
->stub_cache
= NULL
;
2689 return (struct bfd_hash_entry
*) ret
;
2692 /* Initialize an entry in the stub hash table. */
2694 static struct bfd_hash_entry
*
2695 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2696 struct bfd_hash_table
*table
,
2699 /* Allocate the structure if it has not already been allocated by a
2703 entry
= bfd_hash_allocate (table
,
2704 sizeof (struct elf32_arm_stub_hash_entry
));
2709 /* Call the allocation method of the superclass. */
2710 entry
= bfd_hash_newfunc (entry
, table
, string
);
2713 struct elf32_arm_stub_hash_entry
*eh
;
2715 /* Initialize the local fields. */
2716 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2717 eh
->stub_sec
= NULL
;
2718 eh
->stub_offset
= 0;
2719 eh
->target_value
= 0;
2720 eh
->target_section
= NULL
;
2721 eh
->target_addend
= 0;
2723 eh
->stub_type
= arm_stub_none
;
2725 eh
->stub_template
= NULL
;
2726 eh
->stub_template_size
= 0;
2729 eh
->output_name
= NULL
;
2735 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2736 shortcuts to them in our hash table. */
2739 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2741 struct elf32_arm_link_hash_table
*htab
;
2743 htab
= elf32_arm_hash_table (info
);
2744 /* BPABI objects never have a GOT, or associated sections. */
2745 if (htab
->symbian_p
)
2748 if (! _bfd_elf_create_got_section (dynobj
, info
))
2751 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2752 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2753 if (!htab
->sgot
|| !htab
->sgotplt
)
2756 htab
->srelgot
= bfd_get_section_by_name (dynobj
,
2757 RELOC_SECTION (htab
, ".got"));
2758 if (htab
->srelgot
== NULL
)
2763 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2764 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2768 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2770 struct elf32_arm_link_hash_table
*htab
;
2772 htab
= elf32_arm_hash_table (info
);
2773 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2776 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2779 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2780 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2781 RELOC_SECTION (htab
, ".plt"));
2782 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2784 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2785 RELOC_SECTION (htab
, ".bss"));
2787 if (htab
->vxworks_p
)
2789 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2794 htab
->plt_header_size
= 0;
2795 htab
->plt_entry_size
2796 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2800 htab
->plt_header_size
2801 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2802 htab
->plt_entry_size
2803 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2810 || (!info
->shared
&& !htab
->srelbss
))
2816 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2819 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2820 struct elf_link_hash_entry
*dir
,
2821 struct elf_link_hash_entry
*ind
)
2823 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2825 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2826 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2828 if (eind
->relocs_copied
!= NULL
)
2830 if (edir
->relocs_copied
!= NULL
)
2832 struct elf32_arm_relocs_copied
**pp
;
2833 struct elf32_arm_relocs_copied
*p
;
2835 /* Add reloc counts against the indirect sym to the direct sym
2836 list. Merge any entries against the same section. */
2837 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2839 struct elf32_arm_relocs_copied
*q
;
2841 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2842 if (q
->section
== p
->section
)
2844 q
->pc_count
+= p
->pc_count
;
2845 q
->count
+= p
->count
;
2852 *pp
= edir
->relocs_copied
;
2855 edir
->relocs_copied
= eind
->relocs_copied
;
2856 eind
->relocs_copied
= NULL
;
2859 if (ind
->root
.type
== bfd_link_hash_indirect
)
2861 /* Copy over PLT info. */
2862 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2863 eind
->plt_thumb_refcount
= 0;
2864 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2865 eind
->plt_maybe_thumb_refcount
= 0;
2867 if (dir
->got
.refcount
<= 0)
2869 edir
->tls_type
= eind
->tls_type
;
2870 eind
->tls_type
= GOT_UNKNOWN
;
2874 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2877 /* Create an ARM elf linker hash table. */
2879 static struct bfd_link_hash_table
*
2880 elf32_arm_link_hash_table_create (bfd
*abfd
)
2882 struct elf32_arm_link_hash_table
*ret
;
2883 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2885 ret
= bfd_malloc (amt
);
2889 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2890 elf32_arm_link_hash_newfunc
,
2891 sizeof (struct elf32_arm_link_hash_entry
)))
2898 ret
->sgotplt
= NULL
;
2899 ret
->srelgot
= NULL
;
2901 ret
->srelplt
= NULL
;
2902 ret
->sdynbss
= NULL
;
2903 ret
->srelbss
= NULL
;
2904 ret
->srelplt2
= NULL
;
2905 ret
->thumb_glue_size
= 0;
2906 ret
->arm_glue_size
= 0;
2907 ret
->bx_glue_size
= 0;
2908 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2909 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2910 ret
->vfp11_erratum_glue_size
= 0;
2911 ret
->num_vfp11_fixes
= 0;
2912 ret
->fix_cortex_a8
= 0;
2913 ret
->bfd_of_glue_owner
= NULL
;
2914 ret
->byteswap_code
= 0;
2915 ret
->target1_is_rel
= 0;
2916 ret
->target2_reloc
= R_ARM_NONE
;
2917 #ifdef FOUR_WORD_PLT
2918 ret
->plt_header_size
= 16;
2919 ret
->plt_entry_size
= 16;
2921 ret
->plt_header_size
= 20;
2922 ret
->plt_entry_size
= 12;
2929 ret
->sym_cache
.abfd
= NULL
;
2931 ret
->tls_ldm_got
.refcount
= 0;
2932 ret
->stub_bfd
= NULL
;
2933 ret
->add_stub_section
= NULL
;
2934 ret
->layout_sections_again
= NULL
;
2935 ret
->stub_group
= NULL
;
2938 ret
->input_list
= NULL
;
2940 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2941 sizeof (struct elf32_arm_stub_hash_entry
)))
2947 return &ret
->root
.root
;
2950 /* Free the derived linker hash table. */
2953 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2955 struct elf32_arm_link_hash_table
*ret
2956 = (struct elf32_arm_link_hash_table
*) hash
;
2958 bfd_hash_table_free (&ret
->stub_hash_table
);
2959 _bfd_generic_link_hash_table_free (hash
);
2962 /* Determine if we're dealing with a Thumb only architecture. */
2965 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2967 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2971 if (arch
!= TAG_CPU_ARCH_V7
)
2974 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2975 Tag_CPU_arch_profile
);
2977 return profile
== 'M';
2980 /* Determine if we're dealing with a Thumb-2 object. */
2983 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2985 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2987 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2991 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
2995 case arm_stub_long_branch_thumb_only
:
2996 case arm_stub_long_branch_v4t_thumb_arm
:
2997 case arm_stub_short_branch_v4t_thumb_arm
:
2998 case arm_stub_long_branch_v4t_thumb_arm_pic
:
2999 case arm_stub_long_branch_thumb_only_pic
:
3010 /* Determine the type of stub needed, if any, for a call. */
3012 static enum elf32_arm_stub_type
3013 arm_type_of_stub (struct bfd_link_info
*info
,
3014 asection
*input_sec
,
3015 const Elf_Internal_Rela
*rel
,
3016 unsigned char st_type
,
3017 struct elf32_arm_link_hash_entry
*hash
,
3018 bfd_vma destination
,
3024 bfd_signed_vma branch_offset
;
3025 unsigned int r_type
;
3026 struct elf32_arm_link_hash_table
* globals
;
3029 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3032 /* We don't know the actual type of destination in case it is of
3033 type STT_SECTION: give up. */
3034 if (st_type
== STT_SECTION
)
3037 globals
= elf32_arm_hash_table (info
);
3039 thumb_only
= using_thumb_only (globals
);
3041 thumb2
= using_thumb2 (globals
);
3043 /* Determine where the call point is. */
3044 location
= (input_sec
->output_offset
3045 + input_sec
->output_section
->vma
3048 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3050 r_type
= ELF32_R_TYPE (rel
->r_info
);
3052 /* Keep a simpler condition, for the sake of clarity. */
3053 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
3056 /* Note when dealing with PLT entries: the main PLT stub is in
3057 ARM mode, so if the branch is in Thumb mode, another
3058 Thumb->ARM stub will be inserted later just before the ARM
3059 PLT stub. We don't take this extra distance into account
3060 here, because if a long branch stub is needed, we'll add a
3061 Thumb->Arm one and branch directly to the ARM PLT entry
3062 because it avoids spreading offset corrections in several
3066 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
3068 /* Handle cases where:
3069 - this call goes too far (different Thumb/Thumb2 max
3071 - it's a Thumb->Arm call and blx is not available, or it's a
3072 Thumb->Arm branch (not bl). A stub is needed in this case,
3073 but only if this call is not through a PLT entry. Indeed,
3074 PLT stubs handle mode switching already.
3077 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3078 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3080 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3081 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3082 || ((st_type
!= STT_ARM_TFUNC
)
3083 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
3084 || (r_type
== R_ARM_THM_JUMP24
))
3087 if (st_type
== STT_ARM_TFUNC
)
3089 /* Thumb to thumb. */
3092 stub_type
= (info
->shared
| globals
->pic_veneer
)
3094 ? ((globals
->use_blx
3095 && (r_type
==R_ARM_THM_CALL
))
3096 /* V5T and above. Stub starts with ARM code, so
3097 we must be able to switch mode before
3098 reaching it, which is only possible for 'bl'
3099 (ie R_ARM_THM_CALL relocation). */
3100 ? arm_stub_long_branch_any_thumb_pic
3101 /* On V4T, use Thumb code only. */
3102 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3104 /* non-PIC stubs. */
3105 : ((globals
->use_blx
3106 && (r_type
==R_ARM_THM_CALL
))
3107 /* V5T and above. */
3108 ? arm_stub_long_branch_any_any
3110 : arm_stub_long_branch_v4t_thumb_thumb
);
3114 stub_type
= (info
->shared
| globals
->pic_veneer
)
3116 ? arm_stub_long_branch_thumb_only_pic
3118 : arm_stub_long_branch_thumb_only
;
3125 && sym_sec
->owner
!= NULL
3126 && !INTERWORK_FLAG (sym_sec
->owner
))
3128 (*_bfd_error_handler
)
3129 (_("%B(%s): warning: interworking not enabled.\n"
3130 " first occurrence: %B: Thumb call to ARM"),
3131 sym_sec
->owner
, input_bfd
, name
);
3134 stub_type
= (info
->shared
| globals
->pic_veneer
)
3136 ? ((globals
->use_blx
3137 && (r_type
==R_ARM_THM_CALL
))
3138 /* V5T and above. */
3139 ? arm_stub_long_branch_any_arm_pic
3141 : arm_stub_long_branch_v4t_thumb_arm_pic
)
3143 /* non-PIC stubs. */
3144 : ((globals
->use_blx
3145 && (r_type
==R_ARM_THM_CALL
))
3146 /* V5T and above. */
3147 ? arm_stub_long_branch_any_any
3149 : arm_stub_long_branch_v4t_thumb_arm
);
3151 /* Handle v4t short branches. */
3152 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3153 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3154 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3155 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3159 else if (r_type
== R_ARM_CALL
|| r_type
== R_ARM_JUMP24
|| r_type
== R_ARM_PLT32
)
3161 if (st_type
== STT_ARM_TFUNC
)
3166 && sym_sec
->owner
!= NULL
3167 && !INTERWORK_FLAG (sym_sec
->owner
))
3169 (*_bfd_error_handler
)
3170 (_("%B(%s): warning: interworking not enabled.\n"
3171 " first occurrence: %B: ARM call to Thumb"),
3172 sym_sec
->owner
, input_bfd
, name
);
3175 /* We have an extra 2-bytes reach because of
3176 the mode change (bit 24 (H) of BLX encoding). */
3177 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3178 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3179 || ((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
3180 || (r_type
== R_ARM_JUMP24
)
3181 || (r_type
== R_ARM_PLT32
))
3183 stub_type
= (info
->shared
| globals
->pic_veneer
)
3185 ? ((globals
->use_blx
)
3186 /* V5T and above. */
3187 ? arm_stub_long_branch_any_thumb_pic
3189 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3191 /* non-PIC stubs. */
3192 : ((globals
->use_blx
)
3193 /* V5T and above. */
3194 ? arm_stub_long_branch_any_any
3196 : arm_stub_long_branch_v4t_arm_thumb
);
3202 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3203 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3205 stub_type
= (info
->shared
| globals
->pic_veneer
)
3207 ? arm_stub_long_branch_any_arm_pic
3208 /* non-PIC stubs. */
3209 : arm_stub_long_branch_any_any
;
3217 /* Build a name for an entry in the stub hash table. */
3220 elf32_arm_stub_name (const asection
*input_section
,
3221 const asection
*sym_sec
,
3222 const struct elf32_arm_link_hash_entry
*hash
,
3223 const Elf_Internal_Rela
*rel
)
3230 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
3231 stub_name
= bfd_malloc (len
);
3232 if (stub_name
!= NULL
)
3233 sprintf (stub_name
, "%08x_%s+%x",
3234 input_section
->id
& 0xffffffff,
3235 hash
->root
.root
.root
.string
,
3236 (int) rel
->r_addend
& 0xffffffff);
3240 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3241 stub_name
= bfd_malloc (len
);
3242 if (stub_name
!= NULL
)
3243 sprintf (stub_name
, "%08x_%x:%x+%x",
3244 input_section
->id
& 0xffffffff,
3245 sym_sec
->id
& 0xffffffff,
3246 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3247 (int) rel
->r_addend
& 0xffffffff);
3253 /* Look up an entry in the stub hash. Stub entries are cached because
3254 creating the stub name takes a bit of time. */
3256 static struct elf32_arm_stub_hash_entry
*
3257 elf32_arm_get_stub_entry (const asection
*input_section
,
3258 const asection
*sym_sec
,
3259 struct elf_link_hash_entry
*hash
,
3260 const Elf_Internal_Rela
*rel
,
3261 struct elf32_arm_link_hash_table
*htab
)
3263 struct elf32_arm_stub_hash_entry
*stub_entry
;
3264 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3265 const asection
*id_sec
;
3267 if ((input_section
->flags
& SEC_CODE
) == 0)
3270 /* If this input section is part of a group of sections sharing one
3271 stub section, then use the id of the first section in the group.
3272 Stub names need to include a section id, as there may well be
3273 more than one stub used to reach say, printf, and we need to
3274 distinguish between them. */
3275 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3277 if (h
!= NULL
&& h
->stub_cache
!= NULL
3278 && h
->stub_cache
->h
== h
3279 && h
->stub_cache
->id_sec
== id_sec
)
3281 stub_entry
= h
->stub_cache
;
3287 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
3288 if (stub_name
== NULL
)
3291 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3292 stub_name
, FALSE
, FALSE
);
3294 h
->stub_cache
= stub_entry
;
3302 /* Find or create a stub section. Returns a pointer to the stub section, and
3303 the section to which the stub section will be attached (in *LINK_SEC_P).
3304 LINK_SEC_P may be NULL. */
3307 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3308 struct elf32_arm_link_hash_table
*htab
)
3313 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3314 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3315 if (stub_sec
== NULL
)
3317 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3318 if (stub_sec
== NULL
)
3324 namelen
= strlen (link_sec
->name
);
3325 len
= namelen
+ sizeof (STUB_SUFFIX
);
3326 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3330 memcpy (s_name
, link_sec
->name
, namelen
);
3331 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3332 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3333 if (stub_sec
== NULL
)
3335 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3337 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3341 *link_sec_p
= link_sec
;
3346 /* Add a new stub entry to the stub hash. Not all fields of the new
3347 stub entry are initialised. */
3349 static struct elf32_arm_stub_hash_entry
*
3350 elf32_arm_add_stub (const char *stub_name
,
3352 struct elf32_arm_link_hash_table
*htab
)
3356 struct elf32_arm_stub_hash_entry
*stub_entry
;
3358 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3359 if (stub_sec
== NULL
)
3362 /* Enter this entry into the linker stub hash table. */
3363 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3365 if (stub_entry
== NULL
)
3367 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3373 stub_entry
->stub_sec
= stub_sec
;
3374 stub_entry
->stub_offset
= 0;
3375 stub_entry
->id_sec
= link_sec
;
3380 /* Store an Arm insn into an output section not processed by
3381 elf32_arm_write_section. */
3384 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3385 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3387 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3388 bfd_putl32 (val
, ptr
);
3390 bfd_putb32 (val
, ptr
);
3393 /* Store a 16-bit Thumb insn into an output section not processed by
3394 elf32_arm_write_section. */
3397 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3398 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3400 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3401 bfd_putl16 (val
, ptr
);
3403 bfd_putb16 (val
, ptr
);
3406 static bfd_reloc_status_type elf32_arm_final_link_relocate
3407 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3408 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3409 const char *, int, struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3412 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3416 struct elf32_arm_stub_hash_entry
*stub_entry
;
3417 struct bfd_link_info
*info
;
3418 struct elf32_arm_link_hash_table
*htab
;
3426 const insn_sequence
*template;
3428 struct elf32_arm_link_hash_table
* globals
;
3429 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3430 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3433 /* Massage our args to the form they really have. */
3434 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3435 info
= (struct bfd_link_info
*) in_arg
;
3437 globals
= elf32_arm_hash_table (info
);
3439 htab
= elf32_arm_hash_table (info
);
3440 stub_sec
= stub_entry
->stub_sec
;
3442 if ((htab
->fix_cortex_a8
< 0)
3443 != (stub_entry
->stub_type
>= arm_stub_a8_veneer_lwm
))
3444 /* We have to do the a8 fixes last, as they are less aligned than
3445 the other veneers. */
3448 /* Make a note of the offset within the stubs for this entry. */
3449 stub_entry
->stub_offset
= stub_sec
->size
;
3450 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3452 stub_bfd
= stub_sec
->owner
;
3454 /* This is the address of the start of the stub. */
3455 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3456 + stub_entry
->stub_offset
;
3458 /* This is the address of the stub destination. */
3459 sym_value
= (stub_entry
->target_value
3460 + stub_entry
->target_section
->output_offset
3461 + stub_entry
->target_section
->output_section
->vma
);
3463 template = stub_entry
->stub_template
;
3464 template_size
= stub_entry
->stub_template_size
;
3467 for (i
= 0; i
< template_size
; i
++)
3469 switch (template[i
].type
)
3473 bfd_vma data
= template[i
].data
;
3474 if (template[i
].reloc_addend
!= 0)
3476 /* We've borrowed the reloc_addend field to mean we should
3477 insert a condition code into this (Thumb-1 branch)
3478 instruction. See THUMB16_BCOND_INSN. */
3479 BFD_ASSERT ((data
& 0xff00) == 0xd000);
3480 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
3482 put_thumb_insn (globals
, stub_bfd
, data
, loc
+ size
);
3488 put_thumb_insn (globals
, stub_bfd
, (template[i
].data
>> 16) & 0xffff,
3490 put_thumb_insn (globals
, stub_bfd
, template[i
].data
& 0xffff,
3492 if (template[i
].r_type
!= R_ARM_NONE
)
3494 stub_reloc_idx
[nrelocs
] = i
;
3495 stub_reloc_offset
[nrelocs
++] = size
;
3501 put_arm_insn (globals
, stub_bfd
, template[i
].data
, loc
+ size
);
3502 /* Handle cases where the target is encoded within the
3504 if (template[i
].r_type
== R_ARM_JUMP24
)
3506 stub_reloc_idx
[nrelocs
] = i
;
3507 stub_reloc_offset
[nrelocs
++] = size
;
3513 bfd_put_32 (stub_bfd
, template[i
].data
, loc
+ size
);
3514 stub_reloc_idx
[nrelocs
] = i
;
3515 stub_reloc_offset
[nrelocs
++] = size
;
3525 stub_sec
->size
+= size
;
3527 /* Stub size has already been computed in arm_size_one_stub. Check
3529 BFD_ASSERT (size
== stub_entry
->stub_size
);
3531 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3532 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3535 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3537 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
3539 for (i
= 0; i
< nrelocs
; i
++)
3540 if (template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
3541 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
3542 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
3543 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
3545 Elf_Internal_Rela rel
;
3546 bfd_boolean unresolved_reloc
;
3547 char *error_message
;
3549 = (template[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
)
3550 ? STT_ARM_TFUNC
: 0;
3551 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
3553 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3554 rel
.r_info
= ELF32_R_INFO (0, template[stub_reloc_idx
[i
]].r_type
);
3555 rel
.r_addend
= template[stub_reloc_idx
[i
]].reloc_addend
;
3557 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
3558 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3559 template should refer back to the instruction after the original
3561 points_to
= sym_value
;
3563 /* There may be unintended consequences if this is not true. */
3564 BFD_ASSERT (stub_entry
->h
== NULL
);
3566 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3567 properly. We should probably use this function unconditionally,
3568 rather than only for certain relocations listed in the enclosing
3569 conditional, for the sake of consistency. */
3570 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3571 (template[stub_reloc_idx
[i
]].r_type
),
3572 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3573 points_to
, info
, stub_entry
->target_section
, "", sym_flags
,
3574 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
3579 _bfd_final_link_relocate (elf32_arm_howto_from_type
3580 (template[stub_reloc_idx
[i
]].r_type
), stub_bfd
, stub_sec
,
3581 stub_sec
->contents
, stub_entry
->stub_offset
+ stub_reloc_offset
[i
],
3582 sym_value
+ stub_entry
->target_addend
,
3583 template[stub_reloc_idx
[i
]].reloc_addend
);
3590 /* Calculate the template, template size and instruction size for a stub.
3591 Return value is the instruction size. */
3594 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
3595 const insn_sequence
**stub_template
,
3596 int *stub_template_size
)
3598 const insn_sequence
*template = NULL
;
3599 int template_size
= 0, i
;
3602 template = stub_definitions
[stub_type
].template;
3603 template_size
= stub_definitions
[stub_type
].template_size
;
3606 for (i
= 0; i
< template_size
; i
++)
3608 switch (template[i
].type
)
3627 *stub_template
= template;
3629 if (stub_template_size
)
3630 *stub_template_size
= template_size
;
3635 /* As above, but don't actually build the stub. Just bump offset so
3636 we know stub section sizes. */
3639 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3642 struct elf32_arm_stub_hash_entry
*stub_entry
;
3643 struct elf32_arm_link_hash_table
*htab
;
3644 const insn_sequence
*template;
3645 int template_size
, size
;
3647 /* Massage our args to the form they really have. */
3648 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3649 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3651 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
3652 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
3654 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template,
3657 stub_entry
->stub_size
= size
;
3658 stub_entry
->stub_template
= template;
3659 stub_entry
->stub_template_size
= template_size
;
3661 size
= (size
+ 7) & ~7;
3662 stub_entry
->stub_sec
->size
+= size
;
3667 /* External entry points for sizing and building linker stubs. */
3669 /* Set up various things so that we can make a list of input sections
3670 for each output section included in the link. Returns -1 on error,
3671 0 when no stubs will be needed, and 1 on success. */
3674 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3675 struct bfd_link_info
*info
)
3678 unsigned int bfd_count
;
3679 int top_id
, top_index
;
3681 asection
**input_list
, **list
;
3683 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3685 if (! is_elf_hash_table (htab
))
3688 /* Count the number of input BFDs and find the top input section id. */
3689 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3691 input_bfd
= input_bfd
->link_next
)
3694 for (section
= input_bfd
->sections
;
3696 section
= section
->next
)
3698 if (top_id
< section
->id
)
3699 top_id
= section
->id
;
3702 htab
->bfd_count
= bfd_count
;
3704 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3705 htab
->stub_group
= bfd_zmalloc (amt
);
3706 if (htab
->stub_group
== NULL
)
3709 /* We can't use output_bfd->section_count here to find the top output
3710 section index as some sections may have been removed, and
3711 _bfd_strip_section_from_output doesn't renumber the indices. */
3712 for (section
= output_bfd
->sections
, top_index
= 0;
3714 section
= section
->next
)
3716 if (top_index
< section
->index
)
3717 top_index
= section
->index
;
3720 htab
->top_index
= top_index
;
3721 amt
= sizeof (asection
*) * (top_index
+ 1);
3722 input_list
= bfd_malloc (amt
);
3723 htab
->input_list
= input_list
;
3724 if (input_list
== NULL
)
3727 /* For sections we aren't interested in, mark their entries with a
3728 value we can check later. */
3729 list
= input_list
+ top_index
;
3731 *list
= bfd_abs_section_ptr
;
3732 while (list
-- != input_list
);
3734 for (section
= output_bfd
->sections
;
3736 section
= section
->next
)
3738 if ((section
->flags
& SEC_CODE
) != 0)
3739 input_list
[section
->index
] = NULL
;
3745 /* The linker repeatedly calls this function for each input section,
3746 in the order that input sections are linked into output sections.
3747 Build lists of input sections to determine groupings between which
3748 we may insert linker stubs. */
3751 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3754 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3756 if (isec
->output_section
->index
<= htab
->top_index
)
3758 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3760 if (*list
!= bfd_abs_section_ptr
)
3762 /* Steal the link_sec pointer for our list. */
3763 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3764 /* This happens to make the list in reverse order,
3765 which we reverse later. */
3766 PREV_SEC (isec
) = *list
;
3772 /* See whether we can group stub sections together. Grouping stub
3773 sections may result in fewer stubs. More importantly, we need to
3774 put all .init* and .fini* stubs at the end of the .init or
3775 .fini output sections respectively, because glibc splits the
3776 _init and _fini functions into multiple parts. Putting a stub in
3777 the middle of a function is not a good idea. */
3780 group_sections (struct elf32_arm_link_hash_table
*htab
,
3781 bfd_size_type stub_group_size
,
3782 bfd_boolean stubs_always_after_branch
)
3784 asection
**list
= htab
->input_list
;
3788 asection
*tail
= *list
;
3791 if (tail
== bfd_abs_section_ptr
)
3794 /* Reverse the list: we must avoid placing stubs at the
3795 beginning of the section because the beginning of the text
3796 section may be required for an interrupt vector in bare metal
3798 #define NEXT_SEC PREV_SEC
3800 while (tail
!= NULL
)
3802 /* Pop from tail. */
3803 asection
*item
= tail
;
3804 tail
= PREV_SEC (item
);
3807 NEXT_SEC (item
) = head
;
3811 while (head
!= NULL
)
3815 bfd_vma stub_group_start
= head
->output_offset
;
3816 bfd_vma end_of_next
;
3819 while (NEXT_SEC (curr
) != NULL
)
3821 next
= NEXT_SEC (curr
);
3822 end_of_next
= next
->output_offset
+ next
->size
;
3823 if (end_of_next
- stub_group_start
>= stub_group_size
)
3824 /* End of NEXT is too far from start, so stop. */
3826 /* Add NEXT to the group. */
3830 /* OK, the size from the start to the start of CURR is less
3831 than stub_group_size and thus can be handled by one stub
3832 section. (Or the head section is itself larger than
3833 stub_group_size, in which case we may be toast.)
3834 We should really be keeping track of the total size of
3835 stubs added here, as stubs contribute to the final output
3839 next
= NEXT_SEC (head
);
3840 /* Set up this stub group. */
3841 htab
->stub_group
[head
->id
].link_sec
= curr
;
3843 while (head
!= curr
&& (head
= next
) != NULL
);
3845 /* But wait, there's more! Input sections up to stub_group_size
3846 bytes after the stub section can be handled by it too. */
3847 if (!stubs_always_after_branch
)
3849 stub_group_start
= curr
->output_offset
+ curr
->size
;
3851 while (next
!= NULL
)
3853 end_of_next
= next
->output_offset
+ next
->size
;
3854 if (end_of_next
- stub_group_start
>= stub_group_size
)
3855 /* End of NEXT is too far from stubs, so stop. */
3857 /* Add NEXT to the stub group. */
3859 next
= NEXT_SEC (head
);
3860 htab
->stub_group
[head
->id
].link_sec
= curr
;
3866 while (list
++ != htab
->input_list
+ htab
->top_index
);
3868 free (htab
->input_list
);
3873 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3877 a8_reloc_compare (const void *a
, const void *b
)
3879 const struct a8_erratum_reloc
*ra
= a
, *rb
= b
;
3881 if (ra
->from
< rb
->from
)
3883 else if (ra
->from
> rb
->from
)
3889 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
3890 const char *, char **);
3892 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3893 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3894 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3898 cortex_a8_erratum_scan (bfd
*input_bfd
,
3899 struct bfd_link_info
*info
,
3900 struct a8_erratum_fix
**a8_fixes_p
,
3901 unsigned int *num_a8_fixes_p
,
3902 unsigned int *a8_fix_table_size_p
,
3903 struct a8_erratum_reloc
*a8_relocs
,
3904 unsigned int num_a8_relocs
,
3905 unsigned prev_num_a8_fixes
,
3906 bfd_boolean
*stub_changed_p
)
3909 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3910 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
3911 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
3912 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
3914 for (section
= input_bfd
->sections
;
3916 section
= section
->next
)
3918 bfd_byte
*contents
= NULL
;
3919 struct _arm_elf_section_data
*sec_data
;
3923 if (elf_section_type (section
) != SHT_PROGBITS
3924 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
3925 || (section
->flags
& SEC_EXCLUDE
) != 0
3926 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3927 || (section
->output_section
== bfd_abs_section_ptr
))
3930 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
3932 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
3933 contents
= elf_section_data (section
)->this_hdr
.contents
;
3934 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
3937 sec_data
= elf32_arm_section_data (section
);
3939 for (span
= 0; span
< sec_data
->mapcount
; span
++)
3941 unsigned int span_start
= sec_data
->map
[span
].vma
;
3942 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
3943 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
3945 char span_type
= sec_data
->map
[span
].type
;
3946 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
3948 if (span_type
!= 't')
3951 /* Span is entirely within a single 4KB region: skip scanning. */
3952 if (((base_vma
+ span_start
) & ~0xfff)
3953 == ((base_vma
+ span_end
) & ~0xfff))
3956 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3958 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3959 * The branch target is in the same 4KB region as the
3960 first half of the branch.
3961 * The instruction before the branch is a 32-bit
3962 length non-branch instruction. */
3963 for (i
= span_start
; i
< span_end
;)
3965 unsigned int insn
= bfd_getl16 (&contents
[i
]);
3966 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
3967 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
3969 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
3974 /* Load the rest of the insn (in manual-friendly order). */
3975 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
3977 /* Encoding T4: B<c>.W. */
3978 is_b
= (insn
& 0xf800d000) == 0xf0009000;
3979 /* Encoding T1: BL<c>.W. */
3980 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
3981 /* Encoding T2: BLX<c>.W. */
3982 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
3983 /* Encoding T3: B<c>.W (not permitted in IT block). */
3984 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
3985 && (insn
& 0x07f00000) != 0x03800000;
3988 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
3990 if (((base_vma
+ i
) & 0xfff) == 0xffe
3994 && ! last_was_branch
)
3996 bfd_signed_vma offset
;
3997 bfd_boolean force_target_arm
= FALSE
;
3998 bfd_boolean force_target_thumb
= FALSE
;
4000 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4001 struct a8_erratum_reloc key
, *found
;
4003 key
.from
= base_vma
+ i
;
4004 found
= bsearch (&key
, a8_relocs
, num_a8_relocs
,
4005 sizeof (struct a8_erratum_reloc
),
4010 char *error_message
= NULL
;
4011 struct elf_link_hash_entry
*entry
;
4013 /* We don't care about the error returned from this
4014 function, only if there is glue or not. */
4015 entry
= find_thumb_glue (info
, found
->sym_name
,
4019 found
->non_a8_stub
= TRUE
;
4021 if (found
->r_type
== R_ARM_THM_CALL
4022 && found
->st_type
!= STT_ARM_TFUNC
)
4023 force_target_arm
= TRUE
;
4024 else if (found
->r_type
== R_ARM_THM_CALL
4025 && found
->st_type
== STT_ARM_TFUNC
)
4026 force_target_thumb
= TRUE
;
4029 /* Check if we have an offending branch instruction. */
4031 if (found
&& found
->non_a8_stub
)
4032 /* We've already made a stub for this instruction, e.g.
4033 it's a long branch or a Thumb->ARM stub. Assume that
4034 stub will suffice to work around the A8 erratum (see
4035 setting of always_after_branch above). */
4039 offset
= (insn
& 0x7ff) << 1;
4040 offset
|= (insn
& 0x3f0000) >> 4;
4041 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4042 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4043 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4044 if (offset
& 0x100000)
4045 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4046 stub_type
= arm_stub_a8_veneer_b_cond
;
4048 else if (is_b
|| is_bl
|| is_blx
)
4050 int s
= (insn
& 0x4000000) != 0;
4051 int j1
= (insn
& 0x2000) != 0;
4052 int j2
= (insn
& 0x800) != 0;
4056 offset
= (insn
& 0x7ff) << 1;
4057 offset
|= (insn
& 0x3ff0000) >> 4;
4061 if (offset
& 0x1000000)
4062 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4065 offset
&= ~ ((bfd_signed_vma
) 3);
4067 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4068 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4071 if (stub_type
!= arm_stub_none
)
4073 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4075 /* The original instruction is a BL, but the target is
4076 an ARM instruction. If we were not making a stub,
4077 the BL would have been converted to a BLX. Use the
4078 BLX stub instead in that case. */
4079 if (htab
->use_blx
&& force_target_arm
4080 && stub_type
== arm_stub_a8_veneer_bl
)
4082 stub_type
= arm_stub_a8_veneer_blx
;
4086 /* Conversely, if the original instruction was
4087 BLX but the target is Thumb mode, use the BL
4089 else if (force_target_thumb
4090 && stub_type
== arm_stub_a8_veneer_blx
)
4092 stub_type
= arm_stub_a8_veneer_bl
;
4098 pc_for_insn
&= ~ ((bfd_vma
) 3);
4100 /* If we found a relocation, use the proper destination,
4101 not the offset in the (unrelocated) instruction.
4102 Note this is always done if we switched the stub type
4106 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4108 target
= pc_for_insn
+ offset
;
4110 /* The BLX stub is ARM-mode code. Adjust the offset to
4111 take the different PC value (+8 instead of +4) into
4113 if (stub_type
== arm_stub_a8_veneer_blx
)
4116 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4118 char *stub_name
= NULL
;
4120 if (num_a8_fixes
== a8_fix_table_size
)
4122 a8_fix_table_size
*= 2;
4123 a8_fixes
= bfd_realloc (a8_fixes
,
4124 sizeof (struct a8_erratum_fix
)
4125 * a8_fix_table_size
);
4128 if (num_a8_fixes
< prev_num_a8_fixes
)
4130 /* If we're doing a subsequent scan,
4131 check if we've found the same fix as
4132 before, and try and reuse the stub
4134 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4135 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4136 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4140 *stub_changed_p
= TRUE
;
4146 stub_name
= bfd_malloc (8 + 1 + 8 + 1);
4147 if (stub_name
!= NULL
)
4148 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4151 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4152 a8_fixes
[num_a8_fixes
].section
= section
;
4153 a8_fixes
[num_a8_fixes
].offset
= i
;
4154 a8_fixes
[num_a8_fixes
].addend
= offset
;
4155 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4156 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4157 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4164 i
+= insn_32bit
? 4 : 2;
4165 last_was_32bit
= insn_32bit
;
4166 last_was_branch
= is_32bit_branch
;
4170 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4174 *a8_fixes_p
= a8_fixes
;
4175 *num_a8_fixes_p
= num_a8_fixes
;
4176 *a8_fix_table_size_p
= a8_fix_table_size
;
4181 /* Determine and set the size of the stub section for a final link.
4183 The basic idea here is to examine all the relocations looking for
4184 PC-relative calls to a target that is unreachable with a "bl"
4188 elf32_arm_size_stubs (bfd
*output_bfd
,
4190 struct bfd_link_info
*info
,
4191 bfd_signed_vma group_size
,
4192 asection
* (*add_stub_section
) (const char *, asection
*),
4193 void (*layout_sections_again
) (void))
4195 bfd_size_type stub_group_size
;
4196 bfd_boolean stubs_always_after_branch
;
4197 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4198 struct a8_erratum_fix
*a8_fixes
= NULL
;
4199 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4200 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4201 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4203 if (htab
->fix_cortex_a8
)
4205 a8_fixes
= bfd_zmalloc (sizeof (struct a8_erratum_fix
)
4206 * a8_fix_table_size
);
4207 a8_relocs
= bfd_zmalloc (sizeof (struct a8_erratum_reloc
)
4208 * a8_reloc_table_size
);
4211 /* Propagate mach to stub bfd, because it may not have been
4212 finalized when we created stub_bfd. */
4213 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4214 bfd_get_mach (output_bfd
));
4216 /* Stash our params away. */
4217 htab
->stub_bfd
= stub_bfd
;
4218 htab
->add_stub_section
= add_stub_section
;
4219 htab
->layout_sections_again
= layout_sections_again
;
4220 stubs_always_after_branch
= group_size
< 0;
4222 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4223 as the first half of a 32-bit branch straddling two 4K pages. This is a
4224 crude way of enforcing that. */
4225 if (htab
->fix_cortex_a8
)
4226 stubs_always_after_branch
= 1;
4229 stub_group_size
= -group_size
;
4231 stub_group_size
= group_size
;
4233 if (stub_group_size
== 1)
4235 /* Default values. */
4236 /* Thumb branch range is +-4MB has to be used as the default
4237 maximum size (a given section can contain both ARM and Thumb
4238 code, so the worst case has to be taken into account).
4240 This value is 24K less than that, which allows for 2025
4241 12-byte stubs. If we exceed that, then we will fail to link.
4242 The user will have to relink with an explicit group size
4244 stub_group_size
= 4170000;
4247 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4249 /* If we're applying the cortex A8 fix, we need to determine the
4250 program header size now, because we cannot change it later --
4251 that could alter section placements. Notice the A8 erratum fix
4252 ends up requiring the section addresses to remain unchanged
4253 modulo the page size. That's something we cannot represent
4254 inside BFD, and we don't want to force the section alignment to
4255 be the page size. */
4256 if (htab
->fix_cortex_a8
)
4257 (*htab
->layout_sections_again
) ();
4262 unsigned int bfd_indx
;
4264 bfd_boolean stub_changed
= FALSE
;
4265 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4268 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4270 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4272 Elf_Internal_Shdr
*symtab_hdr
;
4274 Elf_Internal_Sym
*local_syms
= NULL
;
4278 /* We'll need the symbol table in a second. */
4279 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4280 if (symtab_hdr
->sh_info
== 0)
4283 /* Walk over each section attached to the input bfd. */
4284 for (section
= input_bfd
->sections
;
4286 section
= section
->next
)
4288 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4290 /* If there aren't any relocs, then there's nothing more
4292 if ((section
->flags
& SEC_RELOC
) == 0
4293 || section
->reloc_count
== 0
4294 || (section
->flags
& SEC_CODE
) == 0)
4297 /* If this section is a link-once section that will be
4298 discarded, then don't create any stubs. */
4299 if (section
->output_section
== NULL
4300 || section
->output_section
->owner
!= output_bfd
)
4303 /* Get the relocs. */
4305 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4306 NULL
, info
->keep_memory
);
4307 if (internal_relocs
== NULL
)
4308 goto error_ret_free_local
;
4310 /* Now examine each relocation. */
4311 irela
= internal_relocs
;
4312 irelaend
= irela
+ section
->reloc_count
;
4313 for (; irela
< irelaend
; irela
++)
4315 unsigned int r_type
, r_indx
;
4316 enum elf32_arm_stub_type stub_type
;
4317 struct elf32_arm_stub_hash_entry
*stub_entry
;
4320 bfd_vma destination
;
4321 struct elf32_arm_link_hash_entry
*hash
;
4322 const char *sym_name
;
4324 const asection
*id_sec
;
4325 unsigned char st_type
;
4326 bfd_boolean created_stub
= FALSE
;
4328 r_type
= ELF32_R_TYPE (irela
->r_info
);
4329 r_indx
= ELF32_R_SYM (irela
->r_info
);
4331 if (r_type
>= (unsigned int) R_ARM_max
)
4333 bfd_set_error (bfd_error_bad_value
);
4334 error_ret_free_internal
:
4335 if (elf_section_data (section
)->relocs
== NULL
)
4336 free (internal_relocs
);
4337 goto error_ret_free_local
;
4340 /* Only look for stubs on branch instructions. */
4341 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4342 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4343 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4344 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4345 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4346 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4347 && (r_type
!= (unsigned int) R_ARM_PLT32
))
4350 /* Now determine the call target, its name, value,
4357 if (r_indx
< symtab_hdr
->sh_info
)
4359 /* It's a local symbol. */
4360 Elf_Internal_Sym
*sym
;
4361 Elf_Internal_Shdr
*hdr
;
4363 if (local_syms
== NULL
)
4366 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4367 if (local_syms
== NULL
)
4369 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4370 symtab_hdr
->sh_info
, 0,
4372 if (local_syms
== NULL
)
4373 goto error_ret_free_internal
;
4376 sym
= local_syms
+ r_indx
;
4377 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4378 sym_sec
= hdr
->bfd_section
;
4380 /* This is an undefined symbol. It can never
4384 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4385 sym_value
= sym
->st_value
;
4386 destination
= (sym_value
+ irela
->r_addend
4387 + sym_sec
->output_offset
4388 + sym_sec
->output_section
->vma
);
4389 st_type
= ELF_ST_TYPE (sym
->st_info
);
4391 = bfd_elf_string_from_elf_section (input_bfd
,
4392 symtab_hdr
->sh_link
,
4397 /* It's an external symbol. */
4400 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4401 hash
= ((struct elf32_arm_link_hash_entry
*)
4402 elf_sym_hashes (input_bfd
)[e_indx
]);
4404 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4405 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4406 hash
= ((struct elf32_arm_link_hash_entry
*)
4407 hash
->root
.root
.u
.i
.link
);
4409 if (hash
->root
.root
.type
== bfd_link_hash_defined
4410 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4412 sym_sec
= hash
->root
.root
.u
.def
.section
;
4413 sym_value
= hash
->root
.root
.u
.def
.value
;
4415 struct elf32_arm_link_hash_table
*globals
=
4416 elf32_arm_hash_table (info
);
4418 /* For a destination in a shared library,
4419 use the PLT stub as target address to
4420 decide whether a branch stub is
4422 if (globals
->splt
!= NULL
&& hash
!= NULL
4423 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4425 sym_sec
= globals
->splt
;
4426 sym_value
= hash
->root
.plt
.offset
;
4427 if (sym_sec
->output_section
!= NULL
)
4428 destination
= (sym_value
4429 + sym_sec
->output_offset
4430 + sym_sec
->output_section
->vma
);
4432 else if (sym_sec
->output_section
!= NULL
)
4433 destination
= (sym_value
+ irela
->r_addend
4434 + sym_sec
->output_offset
4435 + sym_sec
->output_section
->vma
);
4437 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
4438 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
4440 /* For a shared library, use the PLT stub as
4441 target address to decide whether a long
4442 branch stub is needed.
4443 For absolute code, they cannot be handled. */
4444 struct elf32_arm_link_hash_table
*globals
=
4445 elf32_arm_hash_table (info
);
4447 if (globals
->splt
!= NULL
&& hash
!= NULL
4448 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4450 sym_sec
= globals
->splt
;
4451 sym_value
= hash
->root
.plt
.offset
;
4452 if (sym_sec
->output_section
!= NULL
)
4453 destination
= (sym_value
4454 + sym_sec
->output_offset
4455 + sym_sec
->output_section
->vma
);
4462 bfd_set_error (bfd_error_bad_value
);
4463 goto error_ret_free_internal
;
4465 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4466 sym_name
= hash
->root
.root
.root
.string
;
4471 /* Determine what (if any) linker stub is needed. */
4472 stub_type
= arm_type_of_stub (info
, section
, irela
,
4474 destination
, sym_sec
,
4475 input_bfd
, sym_name
);
4476 if (stub_type
== arm_stub_none
)
4479 /* Support for grouping stub sections. */
4480 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4482 /* Get the name of this stub. */
4483 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
4486 goto error_ret_free_internal
;
4488 /* We've either created a stub for this reloc already,
4489 or we are about to. */
4490 created_stub
= TRUE
;
4492 stub_entry
= arm_stub_hash_lookup
4493 (&htab
->stub_hash_table
, stub_name
,
4495 if (stub_entry
!= NULL
)
4497 /* The proper stub has already been created. */
4499 stub_entry
->target_value
= sym_value
;
4503 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
4505 if (stub_entry
== NULL
)
4508 goto error_ret_free_internal
;
4511 stub_entry
->target_value
= sym_value
;
4512 stub_entry
->target_section
= sym_sec
;
4513 stub_entry
->stub_type
= stub_type
;
4514 stub_entry
->h
= hash
;
4515 stub_entry
->st_type
= st_type
;
4517 if (sym_name
== NULL
)
4518 sym_name
= "unnamed";
4519 stub_entry
->output_name
4520 = bfd_alloc (htab
->stub_bfd
,
4521 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
4522 + strlen (sym_name
));
4523 if (stub_entry
->output_name
== NULL
)
4526 goto error_ret_free_internal
;
4529 /* For historical reasons, use the existing names for
4530 ARM-to-Thumb and Thumb-to-ARM stubs. */
4531 if ( ((r_type
== (unsigned int) R_ARM_THM_CALL
)
4532 || (r_type
== (unsigned int) R_ARM_THM_JUMP24
))
4533 && st_type
!= STT_ARM_TFUNC
)
4534 sprintf (stub_entry
->output_name
,
4535 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
4536 else if ( ((r_type
== (unsigned int) R_ARM_CALL
)
4537 || (r_type
== (unsigned int) R_ARM_JUMP24
))
4538 && st_type
== STT_ARM_TFUNC
)
4539 sprintf (stub_entry
->output_name
,
4540 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
4542 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
4545 stub_changed
= TRUE
;
4549 /* Look for relocations which might trigger Cortex-A8
4551 if (htab
->fix_cortex_a8
4552 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
4553 || r_type
== (unsigned int) R_ARM_THM_JUMP19
4554 || r_type
== (unsigned int) R_ARM_THM_CALL
4555 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
4557 bfd_vma from
= section
->output_section
->vma
4558 + section
->output_offset
4561 if ((from
& 0xfff) == 0xffe)
4563 /* Found a candidate. Note we haven't checked the
4564 destination is within 4K here: if we do so (and
4565 don't create an entry in a8_relocs) we can't tell
4566 that a branch should have been relocated when
4568 if (num_a8_relocs
== a8_reloc_table_size
)
4570 a8_reloc_table_size
*= 2;
4571 a8_relocs
= bfd_realloc (a8_relocs
,
4572 sizeof (struct a8_erratum_reloc
)
4573 * a8_reloc_table_size
);
4576 a8_relocs
[num_a8_relocs
].from
= from
;
4577 a8_relocs
[num_a8_relocs
].destination
= destination
;
4578 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
4579 a8_relocs
[num_a8_relocs
].st_type
= st_type
;
4580 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
4581 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
4588 /* We're done with the internal relocs, free them. */
4589 if (elf_section_data (section
)->relocs
== NULL
)
4590 free (internal_relocs
);
4593 if (htab
->fix_cortex_a8
)
4595 /* Sort relocs which might apply to Cortex-A8 erratum. */
4596 qsort (a8_relocs
, num_a8_relocs
,
4597 sizeof (struct a8_erratum_reloc
),
4600 /* Scan for branches which might trigger Cortex-A8 erratum. */
4601 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
4602 &num_a8_fixes
, &a8_fix_table_size
,
4603 a8_relocs
, num_a8_relocs
,
4604 prev_num_a8_fixes
, &stub_changed
)
4606 goto error_ret_free_local
;
4610 if (prev_num_a8_fixes
!= num_a8_fixes
)
4611 stub_changed
= TRUE
;
4616 /* OK, we've added some stubs. Find out the new size of the
4618 for (stub_sec
= htab
->stub_bfd
->sections
;
4620 stub_sec
= stub_sec
->next
)
4622 /* Ignore non-stub sections. */
4623 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4629 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
4631 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4632 if (htab
->fix_cortex_a8
)
4633 for (i
= 0; i
< num_a8_fixes
; i
++)
4635 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
4636 a8_fixes
[i
].section
, htab
);
4638 if (stub_sec
== NULL
)
4639 goto error_ret_free_local
;
4642 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
4647 /* Ask the linker to do its stuff. */
4648 (*htab
->layout_sections_again
) ();
4651 /* Add stubs for Cortex-A8 erratum fixes now. */
4652 if (htab
->fix_cortex_a8
)
4654 for (i
= 0; i
< num_a8_fixes
; i
++)
4656 struct elf32_arm_stub_hash_entry
*stub_entry
;
4657 char *stub_name
= a8_fixes
[i
].stub_name
;
4658 asection
*section
= a8_fixes
[i
].section
;
4659 unsigned int section_id
= a8_fixes
[i
].section
->id
;
4660 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
4661 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
4662 const insn_sequence
*template;
4663 int template_size
, size
= 0;
4665 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4667 if (stub_entry
== NULL
)
4669 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
4675 stub_entry
->stub_sec
= stub_sec
;
4676 stub_entry
->stub_offset
= 0;
4677 stub_entry
->id_sec
= link_sec
;
4678 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
4679 stub_entry
->target_section
= a8_fixes
[i
].section
;
4680 stub_entry
->target_value
= a8_fixes
[i
].offset
;
4681 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
4682 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
4683 stub_entry
->st_type
= STT_ARM_TFUNC
;
4685 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
, &template,
4688 stub_entry
->stub_size
= size
;
4689 stub_entry
->stub_template
= template;
4690 stub_entry
->stub_template_size
= template_size
;
4693 /* Stash the Cortex-A8 erratum fix array for use later in
4694 elf32_arm_write_section(). */
4695 htab
->a8_erratum_fixes
= a8_fixes
;
4696 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
4700 htab
->a8_erratum_fixes
= NULL
;
4701 htab
->num_a8_erratum_fixes
= 0;
4705 error_ret_free_local
:
4709 /* Build all the stubs associated with the current output file. The
4710 stubs are kept in a hash table attached to the main linker hash
4711 table. We also set up the .plt entries for statically linked PIC
4712 functions here. This function is called via arm_elf_finish in the
4716 elf32_arm_build_stubs (struct bfd_link_info
*info
)
4719 struct bfd_hash_table
*table
;
4720 struct elf32_arm_link_hash_table
*htab
;
4722 htab
= elf32_arm_hash_table (info
);
4724 for (stub_sec
= htab
->stub_bfd
->sections
;
4726 stub_sec
= stub_sec
->next
)
4730 /* Ignore non-stub sections. */
4731 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4734 /* Allocate memory to hold the linker stubs. */
4735 size
= stub_sec
->size
;
4736 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
4737 if (stub_sec
->contents
== NULL
&& size
!= 0)
4742 /* Build the stubs as directed by the stub hash table. */
4743 table
= &htab
->stub_hash_table
;
4744 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4745 if (htab
->fix_cortex_a8
)
4747 /* Place the cortex a8 stubs last. */
4748 htab
->fix_cortex_a8
= -1;
4749 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4755 /* Locate the Thumb encoded calling stub for NAME. */
4757 static struct elf_link_hash_entry
*
4758 find_thumb_glue (struct bfd_link_info
*link_info
,
4760 char **error_message
)
4763 struct elf_link_hash_entry
*hash
;
4764 struct elf32_arm_link_hash_table
*hash_table
;
4766 /* We need a pointer to the armelf specific hash table. */
4767 hash_table
= elf32_arm_hash_table (link_info
);
4769 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4770 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4772 BFD_ASSERT (tmp_name
);
4774 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4776 hash
= elf_link_hash_lookup
4777 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4780 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
4781 tmp_name
, name
) == -1)
4782 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4789 /* Locate the ARM encoded calling stub for NAME. */
4791 static struct elf_link_hash_entry
*
4792 find_arm_glue (struct bfd_link_info
*link_info
,
4794 char **error_message
)
4797 struct elf_link_hash_entry
*myh
;
4798 struct elf32_arm_link_hash_table
*hash_table
;
4800 /* We need a pointer to the elfarm specific hash table. */
4801 hash_table
= elf32_arm_hash_table (link_info
);
4803 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4804 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4806 BFD_ASSERT (tmp_name
);
4808 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4810 myh
= elf_link_hash_lookup
4811 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4814 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
4815 tmp_name
, name
) == -1)
4816 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4823 /* ARM->Thumb glue (static images):
4827 ldr r12, __func_addr
4830 .word func @ behave as if you saw a ARM_32 reloc.
4837 .word func @ behave as if you saw a ARM_32 reloc.
4839 (relocatable images)
4842 ldr r12, __func_offset
4848 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4849 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
4850 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
4851 static const insn32 a2t3_func_addr_insn
= 0x00000001;
4853 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4854 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
4855 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
4857 #define ARM2THUMB_PIC_GLUE_SIZE 16
4858 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
4859 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
4860 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
4862 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4866 __func_from_thumb: __func_from_thumb:
4868 nop ldr r6, __func_addr
4878 #define THUMB2ARM_GLUE_SIZE 8
4879 static const insn16 t2a1_bx_pc_insn
= 0x4778;
4880 static const insn16 t2a2_noop_insn
= 0x46c0;
4881 static const insn32 t2a3_b_insn
= 0xea000000;
4883 #define VFP11_ERRATUM_VENEER_SIZE 8
4885 #define ARM_BX_VENEER_SIZE 12
4886 static const insn32 armbx1_tst_insn
= 0xe3100001;
4887 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
4888 static const insn32 armbx3_bx_insn
= 0xe12fff10;
4890 #ifndef ELFARM_NABI_C_INCLUDED
4892 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
4895 bfd_byte
* contents
;
4899 /* Do not include empty glue sections in the output. */
4902 s
= bfd_get_section_by_name (abfd
, name
);
4904 s
->flags
|= SEC_EXCLUDE
;
4909 BFD_ASSERT (abfd
!= NULL
);
4911 s
= bfd_get_section_by_name (abfd
, name
);
4912 BFD_ASSERT (s
!= NULL
);
4914 contents
= bfd_alloc (abfd
, size
);
4916 BFD_ASSERT (s
->size
== size
);
4917 s
->contents
= contents
;
4921 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
4923 struct elf32_arm_link_hash_table
* globals
;
4925 globals
= elf32_arm_hash_table (info
);
4926 BFD_ASSERT (globals
!= NULL
);
4928 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4929 globals
->arm_glue_size
,
4930 ARM2THUMB_GLUE_SECTION_NAME
);
4932 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4933 globals
->thumb_glue_size
,
4934 THUMB2ARM_GLUE_SECTION_NAME
);
4936 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4937 globals
->vfp11_erratum_glue_size
,
4938 VFP11_ERRATUM_VENEER_SECTION_NAME
);
4940 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4941 globals
->bx_glue_size
,
4942 ARM_BX_GLUE_SECTION_NAME
);
4947 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4948 returns the symbol identifying the stub. */
4950 static struct elf_link_hash_entry
*
4951 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
4952 struct elf_link_hash_entry
* h
)
4954 const char * name
= h
->root
.root
.string
;
4957 struct elf_link_hash_entry
* myh
;
4958 struct bfd_link_hash_entry
* bh
;
4959 struct elf32_arm_link_hash_table
* globals
;
4963 globals
= elf32_arm_hash_table (link_info
);
4965 BFD_ASSERT (globals
!= NULL
);
4966 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4968 s
= bfd_get_section_by_name
4969 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
4971 BFD_ASSERT (s
!= NULL
);
4973 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4975 BFD_ASSERT (tmp_name
);
4977 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4979 myh
= elf_link_hash_lookup
4980 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4984 /* We've already seen this guy. */
4989 /* The only trick here is using hash_table->arm_glue_size as the value.
4990 Even though the section isn't allocated yet, this is where we will be
4991 putting it. The +1 on the value marks that the stub has not been
4992 output yet - not that it is a Thumb function. */
4994 val
= globals
->arm_glue_size
+ 1;
4995 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4996 tmp_name
, BSF_GLOBAL
, s
, val
,
4997 NULL
, TRUE
, FALSE
, &bh
);
4999 myh
= (struct elf_link_hash_entry
*) bh
;
5000 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5001 myh
->forced_local
= 1;
5005 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5006 || globals
->pic_veneer
)
5007 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5008 else if (globals
->use_blx
)
5009 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5011 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5014 globals
->arm_glue_size
+= size
;
5019 /* Allocate space for ARMv4 BX veneers. */
5022 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5025 struct elf32_arm_link_hash_table
*globals
;
5027 struct elf_link_hash_entry
*myh
;
5028 struct bfd_link_hash_entry
*bh
;
5031 /* BX PC does not need a veneer. */
5035 globals
= elf32_arm_hash_table (link_info
);
5037 BFD_ASSERT (globals
!= NULL
);
5038 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5040 /* Check if this veneer has already been allocated. */
5041 if (globals
->bx_glue_offset
[reg
])
5044 s
= bfd_get_section_by_name
5045 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5047 BFD_ASSERT (s
!= NULL
);
5049 /* Add symbol for veneer. */
5050 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5052 BFD_ASSERT (tmp_name
);
5054 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5056 myh
= elf_link_hash_lookup
5057 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5059 BFD_ASSERT (myh
== NULL
);
5062 val
= globals
->bx_glue_size
;
5063 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5064 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5065 NULL
, TRUE
, FALSE
, &bh
);
5067 myh
= (struct elf_link_hash_entry
*) bh
;
5068 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5069 myh
->forced_local
= 1;
5071 s
->size
+= ARM_BX_VENEER_SIZE
;
5072 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5073 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5077 /* Add an entry to the code/data map for section SEC. */
5080 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5082 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5083 unsigned int newidx
;
5085 if (sec_data
->map
== NULL
)
5087 sec_data
->map
= bfd_malloc (sizeof (elf32_arm_section_map
));
5088 sec_data
->mapcount
= 0;
5089 sec_data
->mapsize
= 1;
5092 newidx
= sec_data
->mapcount
++;
5094 if (sec_data
->mapcount
> sec_data
->mapsize
)
5096 sec_data
->mapsize
*= 2;
5097 sec_data
->map
= bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5098 * sizeof (elf32_arm_section_map
));
5103 sec_data
->map
[newidx
].vma
= vma
;
5104 sec_data
->map
[newidx
].type
= type
;
5109 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5110 veneers are handled for now. */
5113 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5114 elf32_vfp11_erratum_list
*branch
,
5116 asection
*branch_sec
,
5117 unsigned int offset
)
5120 struct elf32_arm_link_hash_table
*hash_table
;
5122 struct elf_link_hash_entry
*myh
;
5123 struct bfd_link_hash_entry
*bh
;
5125 struct _arm_elf_section_data
*sec_data
;
5127 elf32_vfp11_erratum_list
*newerr
;
5129 hash_table
= elf32_arm_hash_table (link_info
);
5131 BFD_ASSERT (hash_table
!= NULL
);
5132 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5134 s
= bfd_get_section_by_name
5135 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5137 sec_data
= elf32_arm_section_data (s
);
5139 BFD_ASSERT (s
!= NULL
);
5141 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
5142 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5144 BFD_ASSERT (tmp_name
);
5146 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5147 hash_table
->num_vfp11_fixes
);
5149 myh
= elf_link_hash_lookup
5150 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5152 BFD_ASSERT (myh
== NULL
);
5155 val
= hash_table
->vfp11_erratum_glue_size
;
5156 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5157 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5158 NULL
, TRUE
, FALSE
, &bh
);
5160 myh
= (struct elf_link_hash_entry
*) bh
;
5161 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5162 myh
->forced_local
= 1;
5164 /* Link veneer back to calling location. */
5165 errcount
= ++(sec_data
->erratumcount
);
5166 newerr
= bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5168 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5170 newerr
->u
.v
.branch
= branch
;
5171 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5172 branch
->u
.b
.veneer
= newerr
;
5174 newerr
->next
= sec_data
->erratumlist
;
5175 sec_data
->erratumlist
= newerr
;
5177 /* A symbol for the return from the veneer. */
5178 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5179 hash_table
->num_vfp11_fixes
);
5181 myh
= elf_link_hash_lookup
5182 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5189 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5190 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5192 myh
= (struct elf_link_hash_entry
*) bh
;
5193 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5194 myh
->forced_local
= 1;
5198 /* Generate a mapping symbol for the veneer section, and explicitly add an
5199 entry for that symbol to the code/data map for the section. */
5200 if (hash_table
->vfp11_erratum_glue_size
== 0)
5203 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5204 ever requires this erratum fix. */
5205 _bfd_generic_link_add_one_symbol (link_info
,
5206 hash_table
->bfd_of_glue_owner
, "$a",
5207 BSF_LOCAL
, s
, 0, NULL
,
5210 myh
= (struct elf_link_hash_entry
*) bh
;
5211 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5212 myh
->forced_local
= 1;
5214 /* The elf32_arm_init_maps function only cares about symbols from input
5215 BFDs. We must make a note of this generated mapping symbol
5216 ourselves so that code byteswapping works properly in
5217 elf32_arm_write_section. */
5218 elf32_arm_section_map_add (s
, 'a', 0);
5221 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5222 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5223 hash_table
->num_vfp11_fixes
++;
5225 /* The offset of the veneer. */
5229 #define ARM_GLUE_SECTION_FLAGS \
5230 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5231 | SEC_READONLY | SEC_LINKER_CREATED)
5233 /* Create a fake section for use by the ARM backend of the linker. */
5236 arm_make_glue_section (bfd
* abfd
, const char * name
)
5240 sec
= bfd_get_section_by_name (abfd
, name
);
5245 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5248 || !bfd_set_section_alignment (abfd
, sec
, 2))
5251 /* Set the gc mark to prevent the section from being removed by garbage
5252 collection, despite the fact that no relocs refer to this section. */
5258 /* Add the glue sections to ABFD. This function is called from the
5259 linker scripts in ld/emultempl/{armelf}.em. */
5262 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5263 struct bfd_link_info
*info
)
5265 /* If we are only performing a partial
5266 link do not bother adding the glue. */
5267 if (info
->relocatable
)
5270 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5271 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5272 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5273 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5276 /* Select a BFD to be used to hold the sections used by the glue code.
5277 This function is called from the linker scripts in ld/emultempl/
5281 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5283 struct elf32_arm_link_hash_table
*globals
;
5285 /* If we are only performing a partial link
5286 do not bother getting a bfd to hold the glue. */
5287 if (info
->relocatable
)
5290 /* Make sure we don't attach the glue sections to a dynamic object. */
5291 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5293 globals
= elf32_arm_hash_table (info
);
5295 BFD_ASSERT (globals
!= NULL
);
5297 if (globals
->bfd_of_glue_owner
!= NULL
)
5300 /* Save the bfd for later use. */
5301 globals
->bfd_of_glue_owner
= abfd
;
5307 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5309 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5311 globals
->use_blx
= 1;
5315 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5316 struct bfd_link_info
*link_info
)
5318 Elf_Internal_Shdr
*symtab_hdr
;
5319 Elf_Internal_Rela
*internal_relocs
= NULL
;
5320 Elf_Internal_Rela
*irel
, *irelend
;
5321 bfd_byte
*contents
= NULL
;
5324 struct elf32_arm_link_hash_table
*globals
;
5326 /* If we are only performing a partial link do not bother
5327 to construct any glue. */
5328 if (link_info
->relocatable
)
5331 /* Here we have a bfd that is to be included on the link. We have a
5332 hook to do reloc rummaging, before section sizes are nailed down. */
5333 globals
= elf32_arm_hash_table (link_info
);
5335 BFD_ASSERT (globals
!= NULL
);
5337 check_use_blx (globals
);
5339 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5341 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5346 /* PR 5398: If we have not decided to include any loadable sections in
5347 the output then we will not have a glue owner bfd. This is OK, it
5348 just means that there is nothing else for us to do here. */
5349 if (globals
->bfd_of_glue_owner
== NULL
)
5352 /* Rummage around all the relocs and map the glue vectors. */
5353 sec
= abfd
->sections
;
5358 for (; sec
!= NULL
; sec
= sec
->next
)
5360 if (sec
->reloc_count
== 0)
5363 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5366 symtab_hdr
= & elf_symtab_hdr (abfd
);
5368 /* Load the relocs. */
5370 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5372 if (internal_relocs
== NULL
)
5375 irelend
= internal_relocs
+ sec
->reloc_count
;
5376 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5379 unsigned long r_index
;
5381 struct elf_link_hash_entry
*h
;
5383 r_type
= ELF32_R_TYPE (irel
->r_info
);
5384 r_index
= ELF32_R_SYM (irel
->r_info
);
5386 /* These are the only relocation types we care about. */
5387 if ( r_type
!= R_ARM_PC24
5388 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
5391 /* Get the section contents if we haven't done so already. */
5392 if (contents
== NULL
)
5394 /* Get cached copy if it exists. */
5395 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5396 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5399 /* Go get them off disk. */
5400 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5405 if (r_type
== R_ARM_V4BX
)
5409 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
5410 record_arm_bx_glue (link_info
, reg
);
5414 /* If the relocation is not against a symbol it cannot concern us. */
5417 /* We don't care about local symbols. */
5418 if (r_index
< symtab_hdr
->sh_info
)
5421 /* This is an external symbol. */
5422 r_index
-= symtab_hdr
->sh_info
;
5423 h
= (struct elf_link_hash_entry
*)
5424 elf_sym_hashes (abfd
)[r_index
];
5426 /* If the relocation is against a static symbol it must be within
5427 the current section and so cannot be a cross ARM/Thumb relocation. */
5431 /* If the call will go through a PLT entry then we do not need
5433 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
5439 /* This one is a call from arm code. We need to look up
5440 the target of the call. If it is a thumb target, we
5442 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
5443 record_arm_to_thumb_glue (link_info
, h
);
5451 if (contents
!= NULL
5452 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5456 if (internal_relocs
!= NULL
5457 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5458 free (internal_relocs
);
5459 internal_relocs
= NULL
;
5465 if (contents
!= NULL
5466 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5468 if (internal_relocs
!= NULL
5469 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5470 free (internal_relocs
);
5477 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5480 bfd_elf32_arm_init_maps (bfd
*abfd
)
5482 Elf_Internal_Sym
*isymbuf
;
5483 Elf_Internal_Shdr
*hdr
;
5484 unsigned int i
, localsyms
;
5486 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5487 if (! is_arm_elf (abfd
))
5490 if ((abfd
->flags
& DYNAMIC
) != 0)
5493 hdr
= & elf_symtab_hdr (abfd
);
5494 localsyms
= hdr
->sh_info
;
5496 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5497 should contain the number of local symbols, which should come before any
5498 global symbols. Mapping symbols are always local. */
5499 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
5502 /* No internal symbols read? Skip this BFD. */
5503 if (isymbuf
== NULL
)
5506 for (i
= 0; i
< localsyms
; i
++)
5508 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
5509 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5513 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
5515 name
= bfd_elf_string_from_elf_section (abfd
,
5516 hdr
->sh_link
, isym
->st_name
);
5518 if (bfd_is_arm_special_symbol_name (name
,
5519 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
5520 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
5526 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5527 say what they wanted. */
5530 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5532 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5533 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5535 if (globals
->fix_cortex_a8
== -1)
5537 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5538 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
5539 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
5540 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
5541 globals
->fix_cortex_a8
= 1;
5543 globals
->fix_cortex_a8
= 0;
5549 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5551 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5552 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5554 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5555 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
5557 switch (globals
->vfp11_fix
)
5559 case BFD_ARM_VFP11_FIX_DEFAULT
:
5560 case BFD_ARM_VFP11_FIX_NONE
:
5561 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5565 /* Give a warning, but do as the user requests anyway. */
5566 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
5567 "workaround is not necessary for target architecture"), obfd
);
5570 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
5571 /* For earlier architectures, we might need the workaround, but do not
5572 enable it by default. If users is running with broken hardware, they
5573 must enable the erratum fix explicitly. */
5574 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5578 enum bfd_arm_vfp11_pipe
5586 /* Return a VFP register number. This is encoded as RX:X for single-precision
5587 registers, or X:RX for double-precision registers, where RX is the group of
5588 four bits in the instruction encoding and X is the single extension bit.
5589 RX and X fields are specified using their lowest (starting) bit. The return
5592 0...31: single-precision registers s0...s31
5593 32...63: double-precision registers d0...d31.
5595 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5596 encounter VFP3 instructions, so we allow the full range for DP registers. */
5599 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
5603 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
5605 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
5608 /* Set bits in *WMASK according to a register number REG as encoded by
5609 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5612 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
5617 *wmask
|= 3 << ((reg
- 32) * 2);
5620 /* Return TRUE if WMASK overwrites anything in REGS. */
5623 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
5627 for (i
= 0; i
< numregs
; i
++)
5629 unsigned int reg
= regs
[i
];
5631 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
5639 if ((wmask
& (3 << (reg
* 2))) != 0)
5646 /* In this function, we're interested in two things: finding input registers
5647 for VFP data-processing instructions, and finding the set of registers which
5648 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5649 hold the written set, so FLDM etc. are easy to deal with (we're only
5650 interested in 32 SP registers or 16 dp registers, due to the VFP version
5651 implemented by the chip in question). DP registers are marked by setting
5652 both SP registers in the write mask). */
5654 static enum bfd_arm_vfp11_pipe
5655 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
5658 enum bfd_arm_vfp11_pipe pipe
= VFP11_BAD
;
5659 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
5661 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5664 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5665 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5667 pqrs
= ((insn
& 0x00800000) >> 20)
5668 | ((insn
& 0x00300000) >> 19)
5669 | ((insn
& 0x00000040) >> 6);
5673 case 0: /* fmac[sd]. */
5674 case 1: /* fnmac[sd]. */
5675 case 2: /* fmsc[sd]. */
5676 case 3: /* fnmsc[sd]. */
5678 bfd_arm_vfp11_write_mask (destmask
, fd
);
5680 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5685 case 4: /* fmul[sd]. */
5686 case 5: /* fnmul[sd]. */
5687 case 6: /* fadd[sd]. */
5688 case 7: /* fsub[sd]. */
5692 case 8: /* fdiv[sd]. */
5695 bfd_arm_vfp11_write_mask (destmask
, fd
);
5696 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5701 case 15: /* extended opcode. */
5703 unsigned int extn
= ((insn
>> 15) & 0x1e)
5704 | ((insn
>> 7) & 1);
5708 case 0: /* fcpy[sd]. */
5709 case 1: /* fabs[sd]. */
5710 case 2: /* fneg[sd]. */
5711 case 8: /* fcmp[sd]. */
5712 case 9: /* fcmpe[sd]. */
5713 case 10: /* fcmpz[sd]. */
5714 case 11: /* fcmpez[sd]. */
5715 case 16: /* fuito[sd]. */
5716 case 17: /* fsito[sd]. */
5717 case 24: /* ftoui[sd]. */
5718 case 25: /* ftouiz[sd]. */
5719 case 26: /* ftosi[sd]. */
5720 case 27: /* ftosiz[sd]. */
5721 /* These instructions will not bounce due to underflow. */
5726 case 3: /* fsqrt[sd]. */
5727 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5728 registers to cause the erratum in previous instructions. */
5729 bfd_arm_vfp11_write_mask (destmask
, fd
);
5733 case 15: /* fcvt{ds,sd}. */
5737 bfd_arm_vfp11_write_mask (destmask
, fd
);
5739 /* Only FCVTSD can underflow. */
5740 if ((insn
& 0x100) != 0)
5759 /* Two-register transfer. */
5760 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
5762 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5764 if ((insn
& 0x100000) == 0)
5767 bfd_arm_vfp11_write_mask (destmask
, fm
);
5770 bfd_arm_vfp11_write_mask (destmask
, fm
);
5771 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
5777 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
5779 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5780 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
5784 case 0: /* Two-reg transfer. We should catch these above. */
5787 case 2: /* fldm[sdx]. */
5791 unsigned int i
, offset
= insn
& 0xff;
5796 for (i
= fd
; i
< fd
+ offset
; i
++)
5797 bfd_arm_vfp11_write_mask (destmask
, i
);
5801 case 4: /* fld[sd]. */
5803 bfd_arm_vfp11_write_mask (destmask
, fd
);
5812 /* Single-register transfer. Note L==0. */
5813 else if ((insn
& 0x0f100e10) == 0x0e000a10)
5815 unsigned int opcode
= (insn
>> 21) & 7;
5816 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
5820 case 0: /* fmsr/fmdlr. */
5821 case 1: /* fmdhr. */
5822 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5823 destination register. I don't know if this is exactly right,
5824 but it is the conservative choice. */
5825 bfd_arm_vfp11_write_mask (destmask
, fn
);
5839 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
5842 /* Look for potentially-troublesome code sequences which might trigger the
5843 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5844 (available from ARM) for details of the erratum. A short version is
5845 described in ld.texinfo. */
5848 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
5851 bfd_byte
*contents
= NULL
;
5853 int regs
[3], numregs
= 0;
5854 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5855 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
5857 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5858 The states transition as follows:
5860 0 -> 1 (vector) or 0 -> 2 (scalar)
5861 A VFP FMAC-pipeline instruction has been seen. Fill
5862 regs[0]..regs[numregs-1] with its input operands. Remember this
5863 instruction in 'first_fmac'.
5866 Any instruction, except for a VFP instruction which overwrites
5871 A VFP instruction has been seen which overwrites any of regs[*].
5872 We must make a veneer! Reset state to 0 before examining next
5876 If we fail to match anything in state 2, reset to state 0 and reset
5877 the instruction pointer to the instruction after 'first_fmac'.
5879 If the VFP11 vector mode is in use, there must be at least two unrelated
5880 instructions between anti-dependent VFP11 instructions to properly avoid
5881 triggering the erratum, hence the use of the extra state 1. */
5883 /* If we are only performing a partial link do not bother
5884 to construct any glue. */
5885 if (link_info
->relocatable
)
5888 /* Skip if this bfd does not correspond to an ELF image. */
5889 if (! is_arm_elf (abfd
))
5892 /* We should have chosen a fix type by the time we get here. */
5893 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
5895 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5898 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5899 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
5902 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5904 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5905 struct _arm_elf_section_data
*sec_data
;
5907 /* If we don't have executable progbits, we're not interested in this
5908 section. Also skip if section is to be excluded. */
5909 if (elf_section_type (sec
) != SHT_PROGBITS
5910 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5911 || (sec
->flags
& SEC_EXCLUDE
) != 0
5912 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
5913 || sec
->output_section
== bfd_abs_section_ptr
5914 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5917 sec_data
= elf32_arm_section_data (sec
);
5919 if (sec_data
->mapcount
== 0)
5922 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5923 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5924 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5927 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5928 elf32_arm_compare_mapping
);
5930 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5932 unsigned int span_start
= sec_data
->map
[span
].vma
;
5933 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5934 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5935 char span_type
= sec_data
->map
[span
].type
;
5937 /* FIXME: Only ARM mode is supported at present. We may need to
5938 support Thumb-2 mode also at some point. */
5939 if (span_type
!= 'a')
5942 for (i
= span_start
; i
< span_end
;)
5944 unsigned int next_i
= i
+ 4;
5945 unsigned int insn
= bfd_big_endian (abfd
)
5946 ? (contents
[i
] << 24)
5947 | (contents
[i
+ 1] << 16)
5948 | (contents
[i
+ 2] << 8)
5950 : (contents
[i
+ 3] << 24)
5951 | (contents
[i
+ 2] << 16)
5952 | (contents
[i
+ 1] << 8)
5954 unsigned int writemask
= 0;
5955 enum bfd_arm_vfp11_pipe pipe
;
5960 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
5962 /* I'm assuming the VFP11 erratum can trigger with denorm
5963 operands on either the FMAC or the DS pipeline. This might
5964 lead to slightly overenthusiastic veneer insertion. */
5965 if (pipe
== VFP11_FMAC
|| pipe
== VFP11_DS
)
5967 state
= use_vector
? 1 : 2;
5969 veneer_of_insn
= insn
;
5975 int other_regs
[3], other_numregs
;
5976 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5979 if (pipe
!= VFP11_BAD
5980 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5990 int other_regs
[3], other_numregs
;
5991 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5994 if (pipe
!= VFP11_BAD
5995 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6001 next_i
= first_fmac
+ 4;
6007 abort (); /* Should be unreachable. */
6012 elf32_vfp11_erratum_list
*newerr
6013 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6016 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
6018 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6023 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6030 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6035 newerr
->next
= sec_data
->erratumlist
;
6036 sec_data
->erratumlist
= newerr
;
6045 if (contents
!= NULL
6046 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6054 if (contents
!= NULL
6055 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6061 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6062 after sections have been laid out, using specially-named symbols. */
6065 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6066 struct bfd_link_info
*link_info
)
6069 struct elf32_arm_link_hash_table
*globals
;
6072 if (link_info
->relocatable
)
6075 /* Skip if this bfd does not correspond to an ELF image. */
6076 if (! is_arm_elf (abfd
))
6079 globals
= elf32_arm_hash_table (link_info
);
6081 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
6082 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6084 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6086 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6087 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6089 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6091 struct elf_link_hash_entry
*myh
;
6094 switch (errnode
->type
)
6096 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6097 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6098 /* Find veneer symbol. */
6099 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6100 errnode
->u
.b
.veneer
->u
.v
.id
);
6102 myh
= elf_link_hash_lookup
6103 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6106 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6107 "`%s'"), abfd
, tmp_name
);
6109 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6110 + myh
->root
.u
.def
.section
->output_offset
6111 + myh
->root
.u
.def
.value
;
6113 errnode
->u
.b
.veneer
->vma
= vma
;
6116 case VFP11_ERRATUM_ARM_VENEER
:
6117 case VFP11_ERRATUM_THUMB_VENEER
:
6118 /* Find return location. */
6119 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6122 myh
= elf_link_hash_lookup
6123 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6126 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6127 "`%s'"), abfd
, tmp_name
);
6129 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6130 + myh
->root
.u
.def
.section
->output_offset
6131 + myh
->root
.u
.def
.value
;
6133 errnode
->u
.v
.branch
->vma
= vma
;
6146 /* Set target relocation values needed during linking. */
6149 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6150 struct bfd_link_info
*link_info
,
6152 char * target2_type
,
6155 bfd_arm_vfp11_fix vfp11_fix
,
6156 int no_enum_warn
, int no_wchar_warn
,
6157 int pic_veneer
, int fix_cortex_a8
)
6159 struct elf32_arm_link_hash_table
*globals
;
6161 globals
= elf32_arm_hash_table (link_info
);
6163 globals
->target1_is_rel
= target1_is_rel
;
6164 if (strcmp (target2_type
, "rel") == 0)
6165 globals
->target2_reloc
= R_ARM_REL32
;
6166 else if (strcmp (target2_type
, "abs") == 0)
6167 globals
->target2_reloc
= R_ARM_ABS32
;
6168 else if (strcmp (target2_type
, "got-rel") == 0)
6169 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6172 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6175 globals
->fix_v4bx
= fix_v4bx
;
6176 globals
->use_blx
|= use_blx
;
6177 globals
->vfp11_fix
= vfp11_fix
;
6178 globals
->pic_veneer
= pic_veneer
;
6179 globals
->fix_cortex_a8
= fix_cortex_a8
;
6181 BFD_ASSERT (is_arm_elf (output_bfd
));
6182 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6183 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6186 /* Replace the target offset of a Thumb bl or b.w instruction. */
6189 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6195 BFD_ASSERT ((offset
& 1) == 0);
6197 upper
= bfd_get_16 (abfd
, insn
);
6198 lower
= bfd_get_16 (abfd
, insn
+ 2);
6199 reloc_sign
= (offset
< 0) ? 1 : 0;
6200 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6201 | ((offset
>> 12) & 0x3ff)
6202 | (reloc_sign
<< 10);
6203 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6204 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6205 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6206 | ((offset
>> 1) & 0x7ff);
6207 bfd_put_16 (abfd
, upper
, insn
);
6208 bfd_put_16 (abfd
, lower
, insn
+ 2);
6211 /* Thumb code calling an ARM function. */
6214 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6218 asection
* input_section
,
6219 bfd_byte
* hit_data
,
6222 bfd_signed_vma addend
,
6224 char **error_message
)
6228 long int ret_offset
;
6229 struct elf_link_hash_entry
* myh
;
6230 struct elf32_arm_link_hash_table
* globals
;
6232 myh
= find_thumb_glue (info
, name
, error_message
);
6236 globals
= elf32_arm_hash_table (info
);
6238 BFD_ASSERT (globals
!= NULL
);
6239 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6241 my_offset
= myh
->root
.u
.def
.value
;
6243 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6244 THUMB2ARM_GLUE_SECTION_NAME
);
6246 BFD_ASSERT (s
!= NULL
);
6247 BFD_ASSERT (s
->contents
!= NULL
);
6248 BFD_ASSERT (s
->output_section
!= NULL
);
6250 if ((my_offset
& 0x01) == 0x01)
6253 && sym_sec
->owner
!= NULL
6254 && !INTERWORK_FLAG (sym_sec
->owner
))
6256 (*_bfd_error_handler
)
6257 (_("%B(%s): warning: interworking not enabled.\n"
6258 " first occurrence: %B: thumb call to arm"),
6259 sym_sec
->owner
, input_bfd
, name
);
6265 myh
->root
.u
.def
.value
= my_offset
;
6267 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6268 s
->contents
+ my_offset
);
6270 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6271 s
->contents
+ my_offset
+ 2);
6274 /* Address of destination of the stub. */
6275 ((bfd_signed_vma
) val
)
6277 /* Offset from the start of the current section
6278 to the start of the stubs. */
6280 /* Offset of the start of this stub from the start of the stubs. */
6282 /* Address of the start of the current section. */
6283 + s
->output_section
->vma
)
6284 /* The branch instruction is 4 bytes into the stub. */
6286 /* ARM branches work from the pc of the instruction + 8. */
6289 put_arm_insn (globals
, output_bfd
,
6290 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6291 s
->contents
+ my_offset
+ 4);
6294 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6296 /* Now go back and fix up the original BL insn to point to here. */
6298 /* Address of where the stub is located. */
6299 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6300 /* Address of where the BL is located. */
6301 - (input_section
->output_section
->vma
+ input_section
->output_offset
6303 /* Addend in the relocation. */
6305 /* Biassing for PC-relative addressing. */
6308 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6313 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6315 static struct elf_link_hash_entry
*
6316 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6323 char ** error_message
)
6326 long int ret_offset
;
6327 struct elf_link_hash_entry
* myh
;
6328 struct elf32_arm_link_hash_table
* globals
;
6330 myh
= find_arm_glue (info
, name
, error_message
);
6334 globals
= elf32_arm_hash_table (info
);
6336 BFD_ASSERT (globals
!= NULL
);
6337 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6339 my_offset
= myh
->root
.u
.def
.value
;
6341 if ((my_offset
& 0x01) == 0x01)
6344 && sym_sec
->owner
!= NULL
6345 && !INTERWORK_FLAG (sym_sec
->owner
))
6347 (*_bfd_error_handler
)
6348 (_("%B(%s): warning: interworking not enabled.\n"
6349 " first occurrence: %B: arm call to thumb"),
6350 sym_sec
->owner
, input_bfd
, name
);
6354 myh
->root
.u
.def
.value
= my_offset
;
6356 if (info
->shared
|| globals
->root
.is_relocatable_executable
6357 || globals
->pic_veneer
)
6359 /* For relocatable objects we can't use absolute addresses,
6360 so construct the address from a relative offset. */
6361 /* TODO: If the offset is small it's probably worth
6362 constructing the address with adds. */
6363 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6364 s
->contents
+ my_offset
);
6365 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6366 s
->contents
+ my_offset
+ 4);
6367 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6368 s
->contents
+ my_offset
+ 8);
6369 /* Adjust the offset by 4 for the position of the add,
6370 and 8 for the pipeline offset. */
6371 ret_offset
= (val
- (s
->output_offset
6372 + s
->output_section
->vma
6375 bfd_put_32 (output_bfd
, ret_offset
,
6376 s
->contents
+ my_offset
+ 12);
6378 else if (globals
->use_blx
)
6380 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
6381 s
->contents
+ my_offset
);
6383 /* It's a thumb address. Add the low order bit. */
6384 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
6385 s
->contents
+ my_offset
+ 4);
6389 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
6390 s
->contents
+ my_offset
);
6392 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
6393 s
->contents
+ my_offset
+ 4);
6395 /* It's a thumb address. Add the low order bit. */
6396 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
6397 s
->contents
+ my_offset
+ 8);
6403 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
6408 /* Arm code calling a Thumb function. */
6411 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
6415 asection
* input_section
,
6416 bfd_byte
* hit_data
,
6419 bfd_signed_vma addend
,
6421 char **error_message
)
6423 unsigned long int tmp
;
6426 long int ret_offset
;
6427 struct elf_link_hash_entry
* myh
;
6428 struct elf32_arm_link_hash_table
* globals
;
6430 globals
= elf32_arm_hash_table (info
);
6432 BFD_ASSERT (globals
!= NULL
);
6433 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6435 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6436 ARM2THUMB_GLUE_SECTION_NAME
);
6437 BFD_ASSERT (s
!= NULL
);
6438 BFD_ASSERT (s
->contents
!= NULL
);
6439 BFD_ASSERT (s
->output_section
!= NULL
);
6441 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
6442 sym_sec
, val
, s
, error_message
);
6446 my_offset
= myh
->root
.u
.def
.value
;
6447 tmp
= bfd_get_32 (input_bfd
, hit_data
);
6448 tmp
= tmp
& 0xFF000000;
6450 /* Somehow these are both 4 too far, so subtract 8. */
6451 ret_offset
= (s
->output_offset
6453 + s
->output_section
->vma
6454 - (input_section
->output_offset
6455 + input_section
->output_section
->vma
6459 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
6461 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
6466 /* Populate Arm stub for an exported Thumb function. */
6469 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
6471 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
6473 struct elf_link_hash_entry
* myh
;
6474 struct elf32_arm_link_hash_entry
*eh
;
6475 struct elf32_arm_link_hash_table
* globals
;
6478 char *error_message
;
6480 eh
= elf32_arm_hash_entry (h
);
6481 /* Allocate stubs for exported Thumb functions on v4t. */
6482 if (eh
->export_glue
== NULL
)
6485 globals
= elf32_arm_hash_table (info
);
6487 BFD_ASSERT (globals
!= NULL
);
6488 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6490 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6491 ARM2THUMB_GLUE_SECTION_NAME
);
6492 BFD_ASSERT (s
!= NULL
);
6493 BFD_ASSERT (s
->contents
!= NULL
);
6494 BFD_ASSERT (s
->output_section
!= NULL
);
6496 sec
= eh
->export_glue
->root
.u
.def
.section
;
6498 BFD_ASSERT (sec
->output_section
!= NULL
);
6500 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
6501 + sec
->output_section
->vma
;
6503 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
6504 h
->root
.u
.def
.section
->owner
,
6505 globals
->obfd
, sec
, val
, s
,
6511 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6514 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
6519 struct elf32_arm_link_hash_table
*globals
;
6521 globals
= elf32_arm_hash_table (info
);
6523 BFD_ASSERT (globals
!= NULL
);
6524 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6526 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6527 ARM_BX_GLUE_SECTION_NAME
);
6528 BFD_ASSERT (s
!= NULL
);
6529 BFD_ASSERT (s
->contents
!= NULL
);
6530 BFD_ASSERT (s
->output_section
!= NULL
);
6532 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
6534 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
6536 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
6538 p
= s
->contents
+ glue_addr
;
6539 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
6540 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
6541 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
6542 globals
->bx_glue_offset
[reg
] |= 1;
6545 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
6548 /* Generate Arm stubs for exported Thumb symbols. */
6550 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
6551 struct bfd_link_info
*link_info
)
6553 struct elf32_arm_link_hash_table
* globals
;
6555 if (link_info
== NULL
)
6556 /* Ignore this if we are not called by the ELF backend linker. */
6559 globals
= elf32_arm_hash_table (link_info
);
6560 /* If blx is available then exported Thumb symbols are OK and there is
6562 if (globals
->use_blx
)
6565 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
6569 /* Some relocations map to different relocations depending on the
6570 target. Return the real relocation. */
6573 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
6579 if (globals
->target1_is_rel
)
6585 return globals
->target2_reloc
;
6592 /* Return the base VMA address which should be subtracted from real addresses
6593 when resolving @dtpoff relocation.
6594 This is PT_TLS segment p_vaddr. */
6597 dtpoff_base (struct bfd_link_info
*info
)
6599 /* If tls_sec is NULL, we should have signalled an error already. */
6600 if (elf_hash_table (info
)->tls_sec
== NULL
)
6602 return elf_hash_table (info
)->tls_sec
->vma
;
6605 /* Return the relocation value for @tpoff relocation
6606 if STT_TLS virtual address is ADDRESS. */
6609 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
6611 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6614 /* If tls_sec is NULL, we should have signalled an error already. */
6615 if (htab
->tls_sec
== NULL
)
6617 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
6618 return address
- htab
->tls_sec
->vma
+ base
;
6621 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6622 VALUE is the relocation value. */
6624 static bfd_reloc_status_type
6625 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
6628 return bfd_reloc_overflow
;
6630 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
6631 bfd_put_32 (abfd
, value
, data
);
6632 return bfd_reloc_ok
;
6635 /* For a given value of n, calculate the value of G_n as required to
6636 deal with group relocations. We return it in the form of an
6637 encoded constant-and-rotation, together with the final residual. If n is
6638 specified as less than zero, then final_residual is filled with the
6639 input value and no further action is performed. */
6642 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
6646 bfd_vma encoded_g_n
= 0;
6647 bfd_vma residual
= value
; /* Also known as Y_n. */
6649 for (current_n
= 0; current_n
<= n
; current_n
++)
6653 /* Calculate which part of the value to mask. */
6660 /* Determine the most significant bit in the residual and
6661 align the resulting value to a 2-bit boundary. */
6662 for (msb
= 30; msb
>= 0; msb
-= 2)
6663 if (residual
& (3 << msb
))
6666 /* The desired shift is now (msb - 6), or zero, whichever
6673 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6674 g_n
= residual
& (0xff << shift
);
6675 encoded_g_n
= (g_n
>> shift
)
6676 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
6678 /* Calculate the residual for the next time around. */
6682 *final_residual
= residual
;
6687 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6688 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6691 identify_add_or_sub (bfd_vma insn
)
6693 int opcode
= insn
& 0x1e00000;
6695 if (opcode
== 1 << 23) /* ADD */
6698 if (opcode
== 1 << 22) /* SUB */
6704 /* Perform a relocation as part of a final link. */
6706 static bfd_reloc_status_type
6707 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
6710 asection
* input_section
,
6711 bfd_byte
* contents
,
6712 Elf_Internal_Rela
* rel
,
6714 struct bfd_link_info
* info
,
6716 const char * sym_name
,
6718 struct elf_link_hash_entry
* h
,
6719 bfd_boolean
* unresolved_reloc_p
,
6720 char ** error_message
)
6722 unsigned long r_type
= howto
->type
;
6723 unsigned long r_symndx
;
6724 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
6725 bfd
* dynobj
= NULL
;
6726 Elf_Internal_Shdr
* symtab_hdr
;
6727 struct elf_link_hash_entry
** sym_hashes
;
6728 bfd_vma
* local_got_offsets
;
6729 asection
* sgot
= NULL
;
6730 asection
* splt
= NULL
;
6731 asection
* sreloc
= NULL
;
6733 bfd_signed_vma signed_addend
;
6734 struct elf32_arm_link_hash_table
* globals
;
6736 globals
= elf32_arm_hash_table (info
);
6738 BFD_ASSERT (is_arm_elf (input_bfd
));
6740 /* Some relocation types map to different relocations depending on the
6741 target. We pick the right one here. */
6742 r_type
= arm_real_reloc_type (globals
, r_type
);
6743 if (r_type
!= howto
->type
)
6744 howto
= elf32_arm_howto_from_type (r_type
);
6746 /* If the start address has been set, then set the EF_ARM_HASENTRY
6747 flag. Setting this more than once is redundant, but the cost is
6748 not too high, and it keeps the code simple.
6750 The test is done here, rather than somewhere else, because the
6751 start address is only set just before the final link commences.
6753 Note - if the user deliberately sets a start address of 0, the
6754 flag will not be set. */
6755 if (bfd_get_start_address (output_bfd
) != 0)
6756 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
6758 dynobj
= elf_hash_table (info
)->dynobj
;
6761 sgot
= bfd_get_section_by_name (dynobj
, ".got");
6762 splt
= bfd_get_section_by_name (dynobj
, ".plt");
6764 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
6765 sym_hashes
= elf_sym_hashes (input_bfd
);
6766 local_got_offsets
= elf_local_got_offsets (input_bfd
);
6767 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6769 if (globals
->use_rel
)
6771 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
6773 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6776 signed_addend
&= ~ howto
->src_mask
;
6777 signed_addend
|= addend
;
6780 signed_addend
= addend
;
6783 addend
= signed_addend
= rel
->r_addend
;
6788 /* We don't need to find a value for this symbol. It's just a
6790 *unresolved_reloc_p
= FALSE
;
6791 return bfd_reloc_ok
;
6794 if (!globals
->vxworks_p
)
6795 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6799 case R_ARM_ABS32_NOI
:
6801 case R_ARM_REL32_NOI
:
6807 /* Handle relocations which should use the PLT entry. ABS32/REL32
6808 will use the symbol's value, which may point to a PLT entry, but we
6809 don't need to handle that here. If we created a PLT entry, all
6810 branches in this object should go to it, except if the PLT is too
6811 far away, in which case a long branch stub should be inserted. */
6812 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
6813 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
6814 && r_type
!= R_ARM_CALL
6815 && r_type
!= R_ARM_JUMP24
6816 && r_type
!= R_ARM_PLT32
)
6819 && h
->plt
.offset
!= (bfd_vma
) -1)
6821 /* If we've created a .plt section, and assigned a PLT entry to
6822 this function, it should not be known to bind locally. If
6823 it were, we would have cleared the PLT entry. */
6824 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
6826 value
= (splt
->output_section
->vma
6827 + splt
->output_offset
6829 *unresolved_reloc_p
= FALSE
;
6830 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6831 contents
, rel
->r_offset
, value
,
6835 /* When generating a shared object or relocatable executable, these
6836 relocations are copied into the output file to be resolved at
6838 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
6839 && (input_section
->flags
& SEC_ALLOC
)
6840 && !(elf32_arm_hash_table (info
)->vxworks_p
6841 && strcmp (input_section
->output_section
->name
,
6843 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
6844 || !SYMBOL_CALLS_LOCAL (info
, h
))
6846 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6847 || h
->root
.type
!= bfd_link_hash_undefweak
)
6848 && r_type
!= R_ARM_PC24
6849 && r_type
!= R_ARM_CALL
6850 && r_type
!= R_ARM_JUMP24
6851 && r_type
!= R_ARM_PREL31
6852 && r_type
!= R_ARM_PLT32
)
6854 Elf_Internal_Rela outrel
;
6856 bfd_boolean skip
, relocate
;
6858 *unresolved_reloc_p
= FALSE
;
6862 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
6863 ! globals
->use_rel
);
6866 return bfd_reloc_notsupported
;
6872 outrel
.r_addend
= addend
;
6874 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
6876 if (outrel
.r_offset
== (bfd_vma
) -1)
6878 else if (outrel
.r_offset
== (bfd_vma
) -2)
6879 skip
= TRUE
, relocate
= TRUE
;
6880 outrel
.r_offset
+= (input_section
->output_section
->vma
6881 + input_section
->output_offset
);
6884 memset (&outrel
, 0, sizeof outrel
);
6889 || !h
->def_regular
))
6890 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
6895 /* This symbol is local, or marked to become local. */
6896 if (sym_flags
== STT_ARM_TFUNC
)
6898 if (globals
->symbian_p
)
6902 /* On Symbian OS, the data segment and text segement
6903 can be relocated independently. Therefore, we
6904 must indicate the segment to which this
6905 relocation is relative. The BPABI allows us to
6906 use any symbol in the right segment; we just use
6907 the section symbol as it is convenient. (We
6908 cannot use the symbol given by "h" directly as it
6909 will not appear in the dynamic symbol table.)
6911 Note that the dynamic linker ignores the section
6912 symbol value, so we don't subtract osec->vma
6913 from the emitted reloc addend. */
6915 osec
= sym_sec
->output_section
;
6917 osec
= input_section
->output_section
;
6918 symbol
= elf_section_data (osec
)->dynindx
;
6921 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6923 if ((osec
->flags
& SEC_READONLY
) == 0
6924 && htab
->data_index_section
!= NULL
)
6925 osec
= htab
->data_index_section
;
6927 osec
= htab
->text_index_section
;
6928 symbol
= elf_section_data (osec
)->dynindx
;
6930 BFD_ASSERT (symbol
!= 0);
6933 /* On SVR4-ish systems, the dynamic loader cannot
6934 relocate the text and data segments independently,
6935 so the symbol does not matter. */
6937 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6938 if (globals
->use_rel
)
6941 outrel
.r_addend
+= value
;
6944 loc
= sreloc
->contents
;
6945 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6946 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6948 /* If this reloc is against an external symbol, we do not want to
6949 fiddle with the addend. Otherwise, we need to include the symbol
6950 value so that it becomes an addend for the dynamic reloc. */
6952 return bfd_reloc_ok
;
6954 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6955 contents
, rel
->r_offset
, value
,
6958 else switch (r_type
)
6961 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6963 case R_ARM_XPC25
: /* Arm BLX instruction. */
6966 case R_ARM_PC24
: /* Arm B/BL instruction. */
6969 bfd_signed_vma branch_offset
;
6970 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6972 if (r_type
== R_ARM_XPC25
)
6974 /* Check for Arm calling Arm function. */
6975 /* FIXME: Should we translate the instruction into a BL
6976 instruction instead ? */
6977 if (sym_flags
!= STT_ARM_TFUNC
)
6978 (*_bfd_error_handler
)
6979 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6981 h
? h
->root
.root
.string
: "(local)");
6983 else if (r_type
== R_ARM_PC24
)
6985 /* Check for Arm calling Thumb function. */
6986 if (sym_flags
== STT_ARM_TFUNC
)
6988 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
6989 output_bfd
, input_section
,
6990 hit_data
, sym_sec
, rel
->r_offset
,
6991 signed_addend
, value
,
6993 return bfd_reloc_ok
;
6995 return bfd_reloc_dangerous
;
6999 /* Check if a stub has to be inserted because the
7000 destination is too far or we are changing mode. */
7001 if ( r_type
== R_ARM_CALL
7002 || r_type
== R_ARM_JUMP24
7003 || r_type
== R_ARM_PLT32
)
7007 /* If the call goes through a PLT entry, make sure to
7008 check distance to the right destination address. */
7009 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7011 value
= (splt
->output_section
->vma
7012 + splt
->output_offset
7014 *unresolved_reloc_p
= FALSE
;
7017 from
= (input_section
->output_section
->vma
7018 + input_section
->output_offset
7020 branch_offset
= (bfd_signed_vma
)(value
- from
);
7022 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
7023 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
7024 || ((sym_flags
== STT_ARM_TFUNC
)
7025 && (((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
7026 || (r_type
== R_ARM_JUMP24
)
7027 || (r_type
== R_ARM_PLT32
) ))
7030 /* The target is out of reach, so redirect the
7031 branch to the local stub for this function. */
7033 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7036 if (stub_entry
!= NULL
)
7037 value
= (stub_entry
->stub_offset
7038 + stub_entry
->stub_sec
->output_offset
7039 + stub_entry
->stub_sec
->output_section
->vma
);
7043 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7045 S is the address of the symbol in the relocation.
7046 P is address of the instruction being relocated.
7047 A is the addend (extracted from the instruction) in bytes.
7049 S is held in 'value'.
7050 P is the base address of the section containing the
7051 instruction plus the offset of the reloc into that
7053 (input_section->output_section->vma +
7054 input_section->output_offset +
7056 A is the addend, converted into bytes, ie:
7059 Note: None of these operations have knowledge of the pipeline
7060 size of the processor, thus it is up to the assembler to
7061 encode this information into the addend. */
7062 value
-= (input_section
->output_section
->vma
7063 + input_section
->output_offset
);
7064 value
-= rel
->r_offset
;
7065 if (globals
->use_rel
)
7066 value
+= (signed_addend
<< howto
->size
);
7068 /* RELA addends do not have to be adjusted by howto->size. */
7069 value
+= signed_addend
;
7071 signed_addend
= value
;
7072 signed_addend
>>= howto
->rightshift
;
7074 /* A branch to an undefined weak symbol is turned into a jump to
7075 the next instruction unless a PLT entry will be created.
7076 Do the same for local undefined symbols. */
7077 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
7078 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7079 : bfd_is_und_section (sym_sec
))
7081 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000)
7086 /* Perform a signed range check. */
7087 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
7088 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
7089 return bfd_reloc_overflow
;
7091 addend
= (value
& 2);
7093 value
= (signed_addend
& howto
->dst_mask
)
7094 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7096 if (r_type
== R_ARM_CALL
)
7098 /* Set the H bit in the BLX instruction. */
7099 if (sym_flags
== STT_ARM_TFUNC
)
7104 value
&= ~(bfd_vma
)(1 << 24);
7107 /* Select the correct instruction (BL or BLX). */
7108 /* Only if we are not handling a BL to a stub. In this
7109 case, mode switching is performed by the stub. */
7110 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
7114 value
&= ~(bfd_vma
)(1 << 28);
7124 if (sym_flags
== STT_ARM_TFUNC
)
7128 case R_ARM_ABS32_NOI
:
7134 if (sym_flags
== STT_ARM_TFUNC
)
7136 value
-= (input_section
->output_section
->vma
7137 + input_section
->output_offset
+ rel
->r_offset
);
7140 case R_ARM_REL32_NOI
:
7142 value
-= (input_section
->output_section
->vma
7143 + input_section
->output_offset
+ rel
->r_offset
);
7147 value
-= (input_section
->output_section
->vma
7148 + input_section
->output_offset
+ rel
->r_offset
);
7149 value
+= signed_addend
;
7150 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
7152 /* Check for overflow. */
7153 if ((value
^ (value
>> 1)) & (1 << 30))
7154 return bfd_reloc_overflow
;
7156 value
&= 0x7fffffff;
7157 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
7158 if (sym_flags
== STT_ARM_TFUNC
)
7163 bfd_put_32 (input_bfd
, value
, hit_data
);
7164 return bfd_reloc_ok
;
7168 if ((long) value
> 0x7f || (long) value
< -0x80)
7169 return bfd_reloc_overflow
;
7171 bfd_put_8 (input_bfd
, value
, hit_data
);
7172 return bfd_reloc_ok
;
7177 if ((long) value
> 0x7fff || (long) value
< -0x8000)
7178 return bfd_reloc_overflow
;
7180 bfd_put_16 (input_bfd
, value
, hit_data
);
7181 return bfd_reloc_ok
;
7183 case R_ARM_THM_ABS5
:
7184 /* Support ldr and str instructions for the thumb. */
7185 if (globals
->use_rel
)
7187 /* Need to refetch addend. */
7188 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7189 /* ??? Need to determine shift amount from operand size. */
7190 addend
>>= howto
->rightshift
;
7194 /* ??? Isn't value unsigned? */
7195 if ((long) value
> 0x1f || (long) value
< -0x10)
7196 return bfd_reloc_overflow
;
7198 /* ??? Value needs to be properly shifted into place first. */
7199 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
7200 bfd_put_16 (input_bfd
, value
, hit_data
);
7201 return bfd_reloc_ok
;
7203 case R_ARM_THM_ALU_PREL_11_0
:
7204 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7207 bfd_signed_vma relocation
;
7209 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7210 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7212 if (globals
->use_rel
)
7214 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
7215 | ((insn
& (1 << 26)) >> 15);
7216 if (insn
& 0xf00000)
7217 signed_addend
= -signed_addend
;
7220 relocation
= value
+ signed_addend
;
7221 relocation
-= (input_section
->output_section
->vma
7222 + input_section
->output_offset
7225 value
= abs (relocation
);
7227 if (value
>= 0x1000)
7228 return bfd_reloc_overflow
;
7230 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
7231 | ((value
& 0x700) << 4)
7232 | ((value
& 0x800) << 15);
7236 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7237 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7239 return bfd_reloc_ok
;
7243 /* PR 10073: This reloc is not generated by the GNU toolchain,
7244 but it is supported for compatibility with third party libraries
7245 generated by other compilers, specifically the ARM/IAR. */
7248 bfd_signed_vma relocation
;
7250 insn
= bfd_get_16 (input_bfd
, hit_data
);
7252 if (globals
->use_rel
)
7253 addend
= (insn
& 0x00ff) << 2;
7255 relocation
= value
+ addend
;
7256 relocation
-= (input_section
->output_section
->vma
7257 + input_section
->output_offset
7260 value
= abs (relocation
);
7262 /* We do not check for overflow of this reloc. Although strictly
7263 speaking this is incorrect, it appears to be necessary in order
7264 to work with IAR generated relocs. Since GCC and GAS do not
7265 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7266 a problem for them. */
7269 insn
= (insn
& 0xff00) | (value
>> 2);
7271 bfd_put_16 (input_bfd
, insn
, hit_data
);
7273 return bfd_reloc_ok
;
7276 case R_ARM_THM_PC12
:
7277 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7280 bfd_signed_vma relocation
;
7282 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7283 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7285 if (globals
->use_rel
)
7287 signed_addend
= insn
& 0xfff;
7288 if (!(insn
& (1 << 23)))
7289 signed_addend
= -signed_addend
;
7292 relocation
= value
+ signed_addend
;
7293 relocation
-= (input_section
->output_section
->vma
7294 + input_section
->output_offset
7297 value
= abs (relocation
);
7299 if (value
>= 0x1000)
7300 return bfd_reloc_overflow
;
7302 insn
= (insn
& 0xff7ff000) | value
;
7303 if (relocation
>= 0)
7306 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7307 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7309 return bfd_reloc_ok
;
7312 case R_ARM_THM_XPC22
:
7313 case R_ARM_THM_CALL
:
7314 case R_ARM_THM_JUMP24
:
7315 /* Thumb BL (branch long instruction). */
7319 bfd_boolean overflow
= FALSE
;
7320 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7321 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7322 bfd_signed_vma reloc_signed_max
;
7323 bfd_signed_vma reloc_signed_min
;
7325 bfd_signed_vma signed_check
;
7327 int thumb2
= using_thumb2 (globals
);
7329 /* A branch to an undefined weak symbol is turned into a jump to
7330 the next instruction unless a PLT entry will be created. */
7331 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7332 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7334 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
7335 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
7336 return bfd_reloc_ok
;
7339 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7340 with Thumb-1) involving the J1 and J2 bits. */
7341 if (globals
->use_rel
)
7343 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
7344 bfd_vma upper
= upper_insn
& 0x3ff;
7345 bfd_vma lower
= lower_insn
& 0x7ff;
7346 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
7347 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
7348 bfd_vma i1
= j1
^ s
? 0 : 1;
7349 bfd_vma i2
= j2
^ s
? 0 : 1;
7351 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
7353 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
7355 signed_addend
= addend
;
7358 if (r_type
== R_ARM_THM_XPC22
)
7360 /* Check for Thumb to Thumb call. */
7361 /* FIXME: Should we translate the instruction into a BL
7362 instruction instead ? */
7363 if (sym_flags
== STT_ARM_TFUNC
)
7364 (*_bfd_error_handler
)
7365 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7367 h
? h
->root
.root
.string
: "(local)");
7371 /* If it is not a call to Thumb, assume call to Arm.
7372 If it is a call relative to a section name, then it is not a
7373 function call at all, but rather a long jump. Calls through
7374 the PLT do not require stubs. */
7375 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
7376 && (h
== NULL
|| splt
== NULL
7377 || h
->plt
.offset
== (bfd_vma
) -1))
7379 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7381 /* Convert BL to BLX. */
7382 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7384 else if (( r_type
!= R_ARM_THM_CALL
)
7385 && (r_type
!= R_ARM_THM_JUMP24
))
7387 if (elf32_thumb_to_arm_stub
7388 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
7389 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
7391 return bfd_reloc_ok
;
7393 return bfd_reloc_dangerous
;
7396 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
7397 && r_type
== R_ARM_THM_CALL
)
7399 /* Make sure this is a BL. */
7400 lower_insn
|= 0x1800;
7404 /* Handle calls via the PLT. */
7405 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7407 value
= (splt
->output_section
->vma
7408 + splt
->output_offset
7410 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7412 /* If the Thumb BLX instruction is available, convert the
7413 BL to a BLX instruction to call the ARM-mode PLT entry. */
7414 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7417 /* Target the Thumb stub before the ARM PLT entry. */
7418 value
-= PLT_THUMB_STUB_SIZE
;
7419 *unresolved_reloc_p
= FALSE
;
7422 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
7424 /* Check if a stub has to be inserted because the destination
7427 bfd_signed_vma branch_offset
;
7428 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7430 from
= (input_section
->output_section
->vma
7431 + input_section
->output_offset
7433 branch_offset
= (bfd_signed_vma
)(value
- from
);
7436 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
7437 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
7440 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
7441 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
7442 || ((sym_flags
!= STT_ARM_TFUNC
)
7443 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
7444 || r_type
== R_ARM_THM_JUMP24
)))
7446 /* The target is out of reach or we are changing modes, so
7447 redirect the branch to the local stub for this
7449 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7452 if (stub_entry
!= NULL
)
7453 value
= (stub_entry
->stub_offset
7454 + stub_entry
->stub_sec
->output_offset
7455 + stub_entry
->stub_sec
->output_section
->vma
);
7457 /* If this call becomes a call to Arm, force BLX. */
7458 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
7461 && !arm_stub_is_thumb (stub_entry
->stub_type
))
7462 || (sym_flags
!= STT_ARM_TFUNC
))
7463 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7468 relocation
= value
+ signed_addend
;
7470 relocation
-= (input_section
->output_section
->vma
7471 + input_section
->output_offset
7474 check
= relocation
>> howto
->rightshift
;
7476 /* If this is a signed value, the rightshift just dropped
7477 leading 1 bits (assuming twos complement). */
7478 if ((bfd_signed_vma
) relocation
>= 0)
7479 signed_check
= check
;
7481 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
7483 /* Calculate the permissable maximum and minimum values for
7484 this relocation according to whether we're relocating for
7486 bitsize
= howto
->bitsize
;
7489 reloc_signed_max
= ((1 << (bitsize
- 1)) - 1) >> howto
->rightshift
;
7490 reloc_signed_min
= ~reloc_signed_max
;
7492 /* Assumes two's complement. */
7493 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7496 if ((lower_insn
& 0x5000) == 0x4000)
7497 /* For a BLX instruction, make sure that the relocation is rounded up
7498 to a word boundary. This follows the semantics of the instruction
7499 which specifies that bit 1 of the target address will come from bit
7500 1 of the base address. */
7501 relocation
= (relocation
+ 2) & ~ 3;
7503 /* Put RELOCATION back into the insn. Assumes two's complement.
7504 We use the Thumb-2 encoding, which is safe even if dealing with
7505 a Thumb-1 instruction by virtue of our overflow check above. */
7506 reloc_sign
= (signed_check
< 0) ? 1 : 0;
7507 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
7508 | ((relocation
>> 12) & 0x3ff)
7509 | (reloc_sign
<< 10);
7510 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
7511 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
7512 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
7513 | ((relocation
>> 1) & 0x7ff);
7515 /* Put the relocated value back in the object file: */
7516 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7517 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7519 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7523 case R_ARM_THM_JUMP19
:
7524 /* Thumb32 conditional branch instruction. */
7527 bfd_boolean overflow
= FALSE
;
7528 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7529 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7530 bfd_signed_vma reloc_signed_max
= 0xffffe;
7531 bfd_signed_vma reloc_signed_min
= -0x100000;
7532 bfd_signed_vma signed_check
;
7534 /* Need to refetch the addend, reconstruct the top three bits,
7535 and squish the two 11 bit pieces together. */
7536 if (globals
->use_rel
)
7538 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
7539 bfd_vma upper
= (upper_insn
& 0x003f);
7540 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
7541 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
7542 bfd_vma lower
= (lower_insn
& 0x07ff);
7547 upper
-= 0x0100; /* Sign extend. */
7549 addend
= (upper
<< 12) | (lower
<< 1);
7550 signed_addend
= addend
;
7553 /* Handle calls via the PLT. */
7554 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7556 value
= (splt
->output_section
->vma
7557 + splt
->output_offset
7559 /* Target the Thumb stub before the ARM PLT entry. */
7560 value
-= PLT_THUMB_STUB_SIZE
;
7561 *unresolved_reloc_p
= FALSE
;
7564 /* ??? Should handle interworking? GCC might someday try to
7565 use this for tail calls. */
7567 relocation
= value
+ signed_addend
;
7568 relocation
-= (input_section
->output_section
->vma
7569 + input_section
->output_offset
7571 signed_check
= (bfd_signed_vma
) relocation
;
7573 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7576 /* Put RELOCATION back into the insn. */
7578 bfd_vma S
= (relocation
& 0x00100000) >> 20;
7579 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
7580 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
7581 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
7582 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
7584 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
7585 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
7588 /* Put the relocated value back in the object file: */
7589 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7590 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7592 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7595 case R_ARM_THM_JUMP11
:
7596 case R_ARM_THM_JUMP8
:
7597 case R_ARM_THM_JUMP6
:
7598 /* Thumb B (branch) instruction). */
7600 bfd_signed_vma relocation
;
7601 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
7602 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
7603 bfd_signed_vma signed_check
;
7605 /* CZB cannot jump backward. */
7606 if (r_type
== R_ARM_THM_JUMP6
)
7607 reloc_signed_min
= 0;
7609 if (globals
->use_rel
)
7611 /* Need to refetch addend. */
7612 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7613 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7616 signed_addend
&= ~ howto
->src_mask
;
7617 signed_addend
|= addend
;
7620 signed_addend
= addend
;
7621 /* The value in the insn has been right shifted. We need to
7622 undo this, so that we can perform the address calculation
7623 in terms of bytes. */
7624 signed_addend
<<= howto
->rightshift
;
7626 relocation
= value
+ signed_addend
;
7628 relocation
-= (input_section
->output_section
->vma
7629 + input_section
->output_offset
7632 relocation
>>= howto
->rightshift
;
7633 signed_check
= relocation
;
7635 if (r_type
== R_ARM_THM_JUMP6
)
7636 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
7638 relocation
&= howto
->dst_mask
;
7639 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7641 bfd_put_16 (input_bfd
, relocation
, hit_data
);
7643 /* Assumes two's complement. */
7644 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7645 return bfd_reloc_overflow
;
7647 return bfd_reloc_ok
;
7650 case R_ARM_ALU_PCREL7_0
:
7651 case R_ARM_ALU_PCREL15_8
:
7652 case R_ARM_ALU_PCREL23_15
:
7657 insn
= bfd_get_32 (input_bfd
, hit_data
);
7658 if (globals
->use_rel
)
7660 /* Extract the addend. */
7661 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
7662 signed_addend
= addend
;
7664 relocation
= value
+ signed_addend
;
7666 relocation
-= (input_section
->output_section
->vma
7667 + input_section
->output_offset
7669 insn
= (insn
& ~0xfff)
7670 | ((howto
->bitpos
<< 7) & 0xf00)
7671 | ((relocation
>> howto
->bitpos
) & 0xff);
7672 bfd_put_32 (input_bfd
, value
, hit_data
);
7674 return bfd_reloc_ok
;
7676 case R_ARM_GNU_VTINHERIT
:
7677 case R_ARM_GNU_VTENTRY
:
7678 return bfd_reloc_ok
;
7680 case R_ARM_GOTOFF32
:
7681 /* Relocation is relative to the start of the
7682 global offset table. */
7684 BFD_ASSERT (sgot
!= NULL
);
7686 return bfd_reloc_notsupported
;
7688 /* If we are addressing a Thumb function, we need to adjust the
7689 address by one, so that attempts to call the function pointer will
7690 correctly interpret it as Thumb code. */
7691 if (sym_flags
== STT_ARM_TFUNC
)
7694 /* Note that sgot->output_offset is not involved in this
7695 calculation. We always want the start of .got. If we
7696 define _GLOBAL_OFFSET_TABLE in a different way, as is
7697 permitted by the ABI, we might have to change this
7699 value
-= sgot
->output_section
->vma
;
7700 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7701 contents
, rel
->r_offset
, value
,
7705 /* Use global offset table as symbol value. */
7706 BFD_ASSERT (sgot
!= NULL
);
7709 return bfd_reloc_notsupported
;
7711 *unresolved_reloc_p
= FALSE
;
7712 value
= sgot
->output_section
->vma
;
7713 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7714 contents
, rel
->r_offset
, value
,
7718 case R_ARM_GOT_PREL
:
7719 /* Relocation is to the entry for this symbol in the
7720 global offset table. */
7722 return bfd_reloc_notsupported
;
7729 off
= h
->got
.offset
;
7730 BFD_ASSERT (off
!= (bfd_vma
) -1);
7731 dyn
= globals
->root
.dynamic_sections_created
;
7733 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7735 && SYMBOL_REFERENCES_LOCAL (info
, h
))
7736 || (ELF_ST_VISIBILITY (h
->other
)
7737 && h
->root
.type
== bfd_link_hash_undefweak
))
7739 /* This is actually a static link, or it is a -Bsymbolic link
7740 and the symbol is defined locally. We must initialize this
7741 entry in the global offset table. Since the offset must
7742 always be a multiple of 4, we use the least significant bit
7743 to record whether we have initialized it already.
7745 When doing a dynamic link, we create a .rel(a).got relocation
7746 entry to initialize the value. This is done in the
7747 finish_dynamic_symbol routine. */
7752 /* If we are addressing a Thumb function, we need to
7753 adjust the address by one, so that attempts to
7754 call the function pointer will correctly
7755 interpret it as Thumb code. */
7756 if (sym_flags
== STT_ARM_TFUNC
)
7759 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7764 *unresolved_reloc_p
= FALSE
;
7766 value
= sgot
->output_offset
+ off
;
7772 BFD_ASSERT (local_got_offsets
!= NULL
&&
7773 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
7775 off
= local_got_offsets
[r_symndx
];
7777 /* The offset must always be a multiple of 4. We use the
7778 least significant bit to record whether we have already
7779 generated the necessary reloc. */
7784 /* If we are addressing a Thumb function, we need to
7785 adjust the address by one, so that attempts to
7786 call the function pointer will correctly
7787 interpret it as Thumb code. */
7788 if (sym_flags
== STT_ARM_TFUNC
)
7791 if (globals
->use_rel
)
7792 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7797 Elf_Internal_Rela outrel
;
7800 srelgot
= (bfd_get_section_by_name
7801 (dynobj
, RELOC_SECTION (globals
, ".got")));
7802 BFD_ASSERT (srelgot
!= NULL
);
7804 outrel
.r_addend
= addend
+ value
;
7805 outrel
.r_offset
= (sgot
->output_section
->vma
7806 + sgot
->output_offset
7808 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
7809 loc
= srelgot
->contents
;
7810 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7811 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7814 local_got_offsets
[r_symndx
] |= 1;
7817 value
= sgot
->output_offset
+ off
;
7819 if (r_type
!= R_ARM_GOT32
)
7820 value
+= sgot
->output_section
->vma
;
7822 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7823 contents
, rel
->r_offset
, value
,
7826 case R_ARM_TLS_LDO32
:
7827 value
= value
- dtpoff_base (info
);
7829 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7830 contents
, rel
->r_offset
, value
,
7833 case R_ARM_TLS_LDM32
:
7837 if (globals
->sgot
== NULL
)
7840 off
= globals
->tls_ldm_got
.offset
;
7846 /* If we don't know the module number, create a relocation
7850 Elf_Internal_Rela outrel
;
7853 if (globals
->srelgot
== NULL
)
7856 outrel
.r_addend
= 0;
7857 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7858 + globals
->sgot
->output_offset
+ off
);
7859 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
7861 if (globals
->use_rel
)
7862 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7863 globals
->sgot
->contents
+ off
);
7865 loc
= globals
->srelgot
->contents
;
7866 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7867 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7870 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
7872 globals
->tls_ldm_got
.offset
|= 1;
7875 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7876 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7878 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7879 contents
, rel
->r_offset
, value
,
7883 case R_ARM_TLS_GD32
:
7884 case R_ARM_TLS_IE32
:
7890 if (globals
->sgot
== NULL
)
7897 dyn
= globals
->root
.dynamic_sections_created
;
7898 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7900 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
7902 *unresolved_reloc_p
= FALSE
;
7905 off
= h
->got
.offset
;
7906 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
7910 if (local_got_offsets
== NULL
)
7912 off
= local_got_offsets
[r_symndx
];
7913 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
7916 if (tls_type
== GOT_UNKNOWN
)
7923 bfd_boolean need_relocs
= FALSE
;
7924 Elf_Internal_Rela outrel
;
7925 bfd_byte
*loc
= NULL
;
7928 /* The GOT entries have not been initialized yet. Do it
7929 now, and emit any relocations. If both an IE GOT and a
7930 GD GOT are necessary, we emit the GD first. */
7932 if ((info
->shared
|| indx
!= 0)
7934 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7935 || h
->root
.type
!= bfd_link_hash_undefweak
))
7938 if (globals
->srelgot
== NULL
)
7940 loc
= globals
->srelgot
->contents
;
7941 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
7944 if (tls_type
& GOT_TLS_GD
)
7948 outrel
.r_addend
= 0;
7949 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7950 + globals
->sgot
->output_offset
7952 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
7954 if (globals
->use_rel
)
7955 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7956 globals
->sgot
->contents
+ cur_off
);
7958 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7959 globals
->srelgot
->reloc_count
++;
7960 loc
+= RELOC_SIZE (globals
);
7963 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7964 globals
->sgot
->contents
+ cur_off
+ 4);
7967 outrel
.r_addend
= 0;
7968 outrel
.r_info
= ELF32_R_INFO (indx
,
7969 R_ARM_TLS_DTPOFF32
);
7970 outrel
.r_offset
+= 4;
7972 if (globals
->use_rel
)
7973 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7974 globals
->sgot
->contents
+ cur_off
+ 4);
7977 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7978 globals
->srelgot
->reloc_count
++;
7979 loc
+= RELOC_SIZE (globals
);
7984 /* If we are not emitting relocations for a
7985 general dynamic reference, then we must be in a
7986 static link or an executable link with the
7987 symbol binding locally. Mark it as belonging
7988 to module 1, the executable. */
7989 bfd_put_32 (output_bfd
, 1,
7990 globals
->sgot
->contents
+ cur_off
);
7991 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7992 globals
->sgot
->contents
+ cur_off
+ 4);
7998 if (tls_type
& GOT_TLS_IE
)
8003 outrel
.r_addend
= value
- dtpoff_base (info
);
8005 outrel
.r_addend
= 0;
8006 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
8007 + globals
->sgot
->output_offset
8009 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
8011 if (globals
->use_rel
)
8012 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8013 globals
->sgot
->contents
+ cur_off
);
8015 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8016 globals
->srelgot
->reloc_count
++;
8017 loc
+= RELOC_SIZE (globals
);
8020 bfd_put_32 (output_bfd
, tpoff (info
, value
),
8021 globals
->sgot
->contents
+ cur_off
);
8028 local_got_offsets
[r_symndx
] |= 1;
8031 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
8033 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
8034 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
8036 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8037 contents
, rel
->r_offset
, value
,
8041 case R_ARM_TLS_LE32
:
8044 (*_bfd_error_handler
)
8045 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8046 input_bfd
, input_section
,
8047 (long) rel
->r_offset
, howto
->name
);
8051 value
= tpoff (info
, value
);
8053 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8054 contents
, rel
->r_offset
, value
,
8058 if (globals
->fix_v4bx
)
8060 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8062 /* Ensure that we have a BX instruction. */
8063 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
8065 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
8067 /* Branch to veneer. */
8069 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
8070 glue_addr
-= input_section
->output_section
->vma
8071 + input_section
->output_offset
8072 + rel
->r_offset
+ 8;
8073 insn
= (insn
& 0xf0000000) | 0x0a000000
8074 | ((glue_addr
>> 2) & 0x00ffffff);
8078 /* Preserve Rm (lowest four bits) and the condition code
8079 (highest four bits). Other bits encode MOV PC,Rm. */
8080 insn
= (insn
& 0xf000000f) | 0x01a0f000;
8083 bfd_put_32 (input_bfd
, insn
, hit_data
);
8085 return bfd_reloc_ok
;
8087 case R_ARM_MOVW_ABS_NC
:
8088 case R_ARM_MOVT_ABS
:
8089 case R_ARM_MOVW_PREL_NC
:
8090 case R_ARM_MOVT_PREL
:
8091 /* Until we properly support segment-base-relative addressing then
8092 we assume the segment base to be zero, as for the group relocations.
8093 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8094 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8095 case R_ARM_MOVW_BREL_NC
:
8096 case R_ARM_MOVW_BREL
:
8097 case R_ARM_MOVT_BREL
:
8099 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8101 if (globals
->use_rel
)
8103 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
8104 signed_addend
= (addend
^ 0x8000) - 0x8000;
8107 value
+= signed_addend
;
8109 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
8110 value
-= (input_section
->output_section
->vma
8111 + input_section
->output_offset
+ rel
->r_offset
);
8113 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
8114 return bfd_reloc_overflow
;
8116 if (sym_flags
== STT_ARM_TFUNC
)
8119 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
8120 || r_type
== R_ARM_MOVT_BREL
)
8124 insn
|= value
& 0xfff;
8125 insn
|= (value
& 0xf000) << 4;
8126 bfd_put_32 (input_bfd
, insn
, hit_data
);
8128 return bfd_reloc_ok
;
8130 case R_ARM_THM_MOVW_ABS_NC
:
8131 case R_ARM_THM_MOVT_ABS
:
8132 case R_ARM_THM_MOVW_PREL_NC
:
8133 case R_ARM_THM_MOVT_PREL
:
8134 /* Until we properly support segment-base-relative addressing then
8135 we assume the segment base to be zero, as for the above relocations.
8136 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8137 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8138 as R_ARM_THM_MOVT_ABS. */
8139 case R_ARM_THM_MOVW_BREL_NC
:
8140 case R_ARM_THM_MOVW_BREL
:
8141 case R_ARM_THM_MOVT_BREL
:
8145 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
8146 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
8148 if (globals
->use_rel
)
8150 addend
= ((insn
>> 4) & 0xf000)
8151 | ((insn
>> 15) & 0x0800)
8152 | ((insn
>> 4) & 0x0700)
8154 signed_addend
= (addend
^ 0x8000) - 0x8000;
8157 value
+= signed_addend
;
8159 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
8160 value
-= (input_section
->output_section
->vma
8161 + input_section
->output_offset
+ rel
->r_offset
);
8163 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
8164 return bfd_reloc_overflow
;
8166 if (sym_flags
== STT_ARM_TFUNC
)
8169 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
8170 || r_type
== R_ARM_THM_MOVT_BREL
)
8174 insn
|= (value
& 0xf000) << 4;
8175 insn
|= (value
& 0x0800) << 15;
8176 insn
|= (value
& 0x0700) << 4;
8177 insn
|= (value
& 0x00ff);
8179 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8180 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8182 return bfd_reloc_ok
;
8184 case R_ARM_ALU_PC_G0_NC
:
8185 case R_ARM_ALU_PC_G1_NC
:
8186 case R_ARM_ALU_PC_G0
:
8187 case R_ARM_ALU_PC_G1
:
8188 case R_ARM_ALU_PC_G2
:
8189 case R_ARM_ALU_SB_G0_NC
:
8190 case R_ARM_ALU_SB_G1_NC
:
8191 case R_ARM_ALU_SB_G0
:
8192 case R_ARM_ALU_SB_G1
:
8193 case R_ARM_ALU_SB_G2
:
8195 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8196 bfd_vma pc
= input_section
->output_section
->vma
8197 + input_section
->output_offset
+ rel
->r_offset
;
8198 /* sb should be the origin of the *segment* containing the symbol.
8199 It is not clear how to obtain this OS-dependent value, so we
8200 make an arbitrary choice of zero. */
8204 bfd_signed_vma signed_value
;
8207 /* Determine which group of bits to select. */
8210 case R_ARM_ALU_PC_G0_NC
:
8211 case R_ARM_ALU_PC_G0
:
8212 case R_ARM_ALU_SB_G0_NC
:
8213 case R_ARM_ALU_SB_G0
:
8217 case R_ARM_ALU_PC_G1_NC
:
8218 case R_ARM_ALU_PC_G1
:
8219 case R_ARM_ALU_SB_G1_NC
:
8220 case R_ARM_ALU_SB_G1
:
8224 case R_ARM_ALU_PC_G2
:
8225 case R_ARM_ALU_SB_G2
:
8233 /* If REL, extract the addend from the insn. If RELA, it will
8234 have already been fetched for us. */
8235 if (globals
->use_rel
)
8238 bfd_vma constant
= insn
& 0xff;
8239 bfd_vma rotation
= (insn
& 0xf00) >> 8;
8242 signed_addend
= constant
;
8245 /* Compensate for the fact that in the instruction, the
8246 rotation is stored in multiples of 2 bits. */
8249 /* Rotate "constant" right by "rotation" bits. */
8250 signed_addend
= (constant
>> rotation
) |
8251 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
8254 /* Determine if the instruction is an ADD or a SUB.
8255 (For REL, this determines the sign of the addend.) */
8256 negative
= identify_add_or_sub (insn
);
8259 (*_bfd_error_handler
)
8260 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8261 input_bfd
, input_section
,
8262 (long) rel
->r_offset
, howto
->name
);
8263 return bfd_reloc_overflow
;
8266 signed_addend
*= negative
;
8269 /* Compute the value (X) to go in the place. */
8270 if (r_type
== R_ARM_ALU_PC_G0_NC
8271 || r_type
== R_ARM_ALU_PC_G1_NC
8272 || r_type
== R_ARM_ALU_PC_G0
8273 || r_type
== R_ARM_ALU_PC_G1
8274 || r_type
== R_ARM_ALU_PC_G2
)
8276 signed_value
= value
- pc
+ signed_addend
;
8278 /* Section base relative. */
8279 signed_value
= value
- sb
+ signed_addend
;
8281 /* If the target symbol is a Thumb function, then set the
8282 Thumb bit in the address. */
8283 if (sym_flags
== STT_ARM_TFUNC
)
8286 /* Calculate the value of the relevant G_n, in encoded
8287 constant-with-rotation format. */
8288 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
8291 /* Check for overflow if required. */
8292 if ((r_type
== R_ARM_ALU_PC_G0
8293 || r_type
== R_ARM_ALU_PC_G1
8294 || r_type
== R_ARM_ALU_PC_G2
8295 || r_type
== R_ARM_ALU_SB_G0
8296 || r_type
== R_ARM_ALU_SB_G1
8297 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
8299 (*_bfd_error_handler
)
8300 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8301 input_bfd
, input_section
,
8302 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8303 return bfd_reloc_overflow
;
8306 /* Mask out the value and the ADD/SUB part of the opcode; take care
8307 not to destroy the S bit. */
8310 /* Set the opcode according to whether the value to go in the
8311 place is negative. */
8312 if (signed_value
< 0)
8317 /* Encode the offset. */
8320 bfd_put_32 (input_bfd
, insn
, hit_data
);
8322 return bfd_reloc_ok
;
8324 case R_ARM_LDR_PC_G0
:
8325 case R_ARM_LDR_PC_G1
:
8326 case R_ARM_LDR_PC_G2
:
8327 case R_ARM_LDR_SB_G0
:
8328 case R_ARM_LDR_SB_G1
:
8329 case R_ARM_LDR_SB_G2
:
8331 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8332 bfd_vma pc
= input_section
->output_section
->vma
8333 + input_section
->output_offset
+ rel
->r_offset
;
8334 bfd_vma sb
= 0; /* See note above. */
8336 bfd_signed_vma signed_value
;
8339 /* Determine which groups of bits to calculate. */
8342 case R_ARM_LDR_PC_G0
:
8343 case R_ARM_LDR_SB_G0
:
8347 case R_ARM_LDR_PC_G1
:
8348 case R_ARM_LDR_SB_G1
:
8352 case R_ARM_LDR_PC_G2
:
8353 case R_ARM_LDR_SB_G2
:
8361 /* If REL, extract the addend from the insn. If RELA, it will
8362 have already been fetched for us. */
8363 if (globals
->use_rel
)
8365 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8366 signed_addend
= negative
* (insn
& 0xfff);
8369 /* Compute the value (X) to go in the place. */
8370 if (r_type
== R_ARM_LDR_PC_G0
8371 || r_type
== R_ARM_LDR_PC_G1
8372 || r_type
== R_ARM_LDR_PC_G2
)
8374 signed_value
= value
- pc
+ signed_addend
;
8376 /* Section base relative. */
8377 signed_value
= value
- sb
+ signed_addend
;
8379 /* Calculate the value of the relevant G_{n-1} to obtain
8380 the residual at that stage. */
8381 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8383 /* Check for overflow. */
8384 if (residual
>= 0x1000)
8386 (*_bfd_error_handler
)
8387 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8388 input_bfd
, input_section
,
8389 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8390 return bfd_reloc_overflow
;
8393 /* Mask out the value and U bit. */
8396 /* Set the U bit if the value to go in the place is non-negative. */
8397 if (signed_value
>= 0)
8400 /* Encode the offset. */
8403 bfd_put_32 (input_bfd
, insn
, hit_data
);
8405 return bfd_reloc_ok
;
8407 case R_ARM_LDRS_PC_G0
:
8408 case R_ARM_LDRS_PC_G1
:
8409 case R_ARM_LDRS_PC_G2
:
8410 case R_ARM_LDRS_SB_G0
:
8411 case R_ARM_LDRS_SB_G1
:
8412 case R_ARM_LDRS_SB_G2
:
8414 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8415 bfd_vma pc
= input_section
->output_section
->vma
8416 + input_section
->output_offset
+ rel
->r_offset
;
8417 bfd_vma sb
= 0; /* See note above. */
8419 bfd_signed_vma signed_value
;
8422 /* Determine which groups of bits to calculate. */
8425 case R_ARM_LDRS_PC_G0
:
8426 case R_ARM_LDRS_SB_G0
:
8430 case R_ARM_LDRS_PC_G1
:
8431 case R_ARM_LDRS_SB_G1
:
8435 case R_ARM_LDRS_PC_G2
:
8436 case R_ARM_LDRS_SB_G2
:
8444 /* If REL, extract the addend from the insn. If RELA, it will
8445 have already been fetched for us. */
8446 if (globals
->use_rel
)
8448 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8449 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
8452 /* Compute the value (X) to go in the place. */
8453 if (r_type
== R_ARM_LDRS_PC_G0
8454 || r_type
== R_ARM_LDRS_PC_G1
8455 || r_type
== R_ARM_LDRS_PC_G2
)
8457 signed_value
= value
- pc
+ signed_addend
;
8459 /* Section base relative. */
8460 signed_value
= value
- sb
+ signed_addend
;
8462 /* Calculate the value of the relevant G_{n-1} to obtain
8463 the residual at that stage. */
8464 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8466 /* Check for overflow. */
8467 if (residual
>= 0x100)
8469 (*_bfd_error_handler
)
8470 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8471 input_bfd
, input_section
,
8472 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8473 return bfd_reloc_overflow
;
8476 /* Mask out the value and U bit. */
8479 /* Set the U bit if the value to go in the place is non-negative. */
8480 if (signed_value
>= 0)
8483 /* Encode the offset. */
8484 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
8486 bfd_put_32 (input_bfd
, insn
, hit_data
);
8488 return bfd_reloc_ok
;
8490 case R_ARM_LDC_PC_G0
:
8491 case R_ARM_LDC_PC_G1
:
8492 case R_ARM_LDC_PC_G2
:
8493 case R_ARM_LDC_SB_G0
:
8494 case R_ARM_LDC_SB_G1
:
8495 case R_ARM_LDC_SB_G2
:
8497 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8498 bfd_vma pc
= input_section
->output_section
->vma
8499 + input_section
->output_offset
+ rel
->r_offset
;
8500 bfd_vma sb
= 0; /* See note above. */
8502 bfd_signed_vma signed_value
;
8505 /* Determine which groups of bits to calculate. */
8508 case R_ARM_LDC_PC_G0
:
8509 case R_ARM_LDC_SB_G0
:
8513 case R_ARM_LDC_PC_G1
:
8514 case R_ARM_LDC_SB_G1
:
8518 case R_ARM_LDC_PC_G2
:
8519 case R_ARM_LDC_SB_G2
:
8527 /* If REL, extract the addend from the insn. If RELA, it will
8528 have already been fetched for us. */
8529 if (globals
->use_rel
)
8531 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8532 signed_addend
= negative
* ((insn
& 0xff) << 2);
8535 /* Compute the value (X) to go in the place. */
8536 if (r_type
== R_ARM_LDC_PC_G0
8537 || r_type
== R_ARM_LDC_PC_G1
8538 || r_type
== R_ARM_LDC_PC_G2
)
8540 signed_value
= value
- pc
+ signed_addend
;
8542 /* Section base relative. */
8543 signed_value
= value
- sb
+ signed_addend
;
8545 /* Calculate the value of the relevant G_{n-1} to obtain
8546 the residual at that stage. */
8547 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8549 /* Check for overflow. (The absolute value to go in the place must be
8550 divisible by four and, after having been divided by four, must
8551 fit in eight bits.) */
8552 if ((residual
& 0x3) != 0 || residual
>= 0x400)
8554 (*_bfd_error_handler
)
8555 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8556 input_bfd
, input_section
,
8557 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8558 return bfd_reloc_overflow
;
8561 /* Mask out the value and U bit. */
8564 /* Set the U bit if the value to go in the place is non-negative. */
8565 if (signed_value
>= 0)
8568 /* Encode the offset. */
8569 insn
|= residual
>> 2;
8571 bfd_put_32 (input_bfd
, insn
, hit_data
);
8573 return bfd_reloc_ok
;
8576 return bfd_reloc_notsupported
;
8580 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8582 arm_add_to_rel (bfd
* abfd
,
8584 reloc_howto_type
* howto
,
8585 bfd_signed_vma increment
)
8587 bfd_signed_vma addend
;
8589 if (howto
->type
== R_ARM_THM_CALL
8590 || howto
->type
== R_ARM_THM_JUMP24
)
8592 int upper_insn
, lower_insn
;
8595 upper_insn
= bfd_get_16 (abfd
, address
);
8596 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
8597 upper
= upper_insn
& 0x7ff;
8598 lower
= lower_insn
& 0x7ff;
8600 addend
= (upper
<< 12) | (lower
<< 1);
8601 addend
+= increment
;
8604 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
8605 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
8607 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
8608 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
8614 contents
= bfd_get_32 (abfd
, address
);
8616 /* Get the (signed) value from the instruction. */
8617 addend
= contents
& howto
->src_mask
;
8618 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8620 bfd_signed_vma mask
;
8623 mask
&= ~ howto
->src_mask
;
8627 /* Add in the increment, (which is a byte value). */
8628 switch (howto
->type
)
8631 addend
+= increment
;
8638 addend
<<= howto
->size
;
8639 addend
+= increment
;
8641 /* Should we check for overflow here ? */
8643 /* Drop any undesired bits. */
8644 addend
>>= howto
->rightshift
;
8648 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
8650 bfd_put_32 (abfd
, contents
, address
);
8654 #define IS_ARM_TLS_RELOC(R_TYPE) \
8655 ((R_TYPE) == R_ARM_TLS_GD32 \
8656 || (R_TYPE) == R_ARM_TLS_LDO32 \
8657 || (R_TYPE) == R_ARM_TLS_LDM32 \
8658 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8659 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8660 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8661 || (R_TYPE) == R_ARM_TLS_LE32 \
8662 || (R_TYPE) == R_ARM_TLS_IE32)
8664 /* Relocate an ARM ELF section. */
8667 elf32_arm_relocate_section (bfd
* output_bfd
,
8668 struct bfd_link_info
* info
,
8670 asection
* input_section
,
8671 bfd_byte
* contents
,
8672 Elf_Internal_Rela
* relocs
,
8673 Elf_Internal_Sym
* local_syms
,
8674 asection
** local_sections
)
8676 Elf_Internal_Shdr
*symtab_hdr
;
8677 struct elf_link_hash_entry
**sym_hashes
;
8678 Elf_Internal_Rela
*rel
;
8679 Elf_Internal_Rela
*relend
;
8681 struct elf32_arm_link_hash_table
* globals
;
8683 globals
= elf32_arm_hash_table (info
);
8685 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
8686 sym_hashes
= elf_sym_hashes (input_bfd
);
8689 relend
= relocs
+ input_section
->reloc_count
;
8690 for (; rel
< relend
; rel
++)
8693 reloc_howto_type
* howto
;
8694 unsigned long r_symndx
;
8695 Elf_Internal_Sym
* sym
;
8697 struct elf_link_hash_entry
* h
;
8699 bfd_reloc_status_type r
;
8702 bfd_boolean unresolved_reloc
= FALSE
;
8703 char *error_message
= NULL
;
8705 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8706 r_type
= ELF32_R_TYPE (rel
->r_info
);
8707 r_type
= arm_real_reloc_type (globals
, r_type
);
8709 if ( r_type
== R_ARM_GNU_VTENTRY
8710 || r_type
== R_ARM_GNU_VTINHERIT
)
8713 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
8714 howto
= bfd_reloc
.howto
;
8720 if (r_symndx
< symtab_hdr
->sh_info
)
8722 sym
= local_syms
+ r_symndx
;
8723 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
8724 sec
= local_sections
[r_symndx
];
8726 /* An object file might have a reference to a local
8727 undefined symbol. This is a daft object file, but we
8728 should at least do something about it. V4BX & NONE
8729 relocations do not use the symbol and are explicitly
8730 allowed to use the undefined symbol, so allow those. */
8731 if (r_type
!= R_ARM_V4BX
8732 && r_type
!= R_ARM_NONE
8733 && bfd_is_und_section (sec
)
8734 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
8736 if (!info
->callbacks
->undefined_symbol
8737 (info
, bfd_elf_string_from_elf_section
8738 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
8739 input_bfd
, input_section
,
8740 rel
->r_offset
, TRUE
))
8744 if (globals
->use_rel
)
8746 relocation
= (sec
->output_section
->vma
8747 + sec
->output_offset
8749 if (!info
->relocatable
8750 && (sec
->flags
& SEC_MERGE
)
8751 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8754 bfd_vma addend
, value
;
8758 case R_ARM_MOVW_ABS_NC
:
8759 case R_ARM_MOVT_ABS
:
8760 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8761 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
8762 addend
= (addend
^ 0x8000) - 0x8000;
8765 case R_ARM_THM_MOVW_ABS_NC
:
8766 case R_ARM_THM_MOVT_ABS
:
8767 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
8769 value
|= bfd_get_16 (input_bfd
,
8770 contents
+ rel
->r_offset
+ 2);
8771 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
8772 | ((value
& 0x04000000) >> 15);
8773 addend
= (addend
^ 0x8000) - 0x8000;
8777 if (howto
->rightshift
8778 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
8780 (*_bfd_error_handler
)
8781 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8782 input_bfd
, input_section
,
8783 (long) rel
->r_offset
, howto
->name
);
8787 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8789 /* Get the (signed) value from the instruction. */
8790 addend
= value
& howto
->src_mask
;
8791 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8793 bfd_signed_vma mask
;
8796 mask
&= ~ howto
->src_mask
;
8804 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
8806 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
8808 /* Cases here must match those in the preceeding
8809 switch statement. */
8812 case R_ARM_MOVW_ABS_NC
:
8813 case R_ARM_MOVT_ABS
:
8814 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
8816 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8819 case R_ARM_THM_MOVW_ABS_NC
:
8820 case R_ARM_THM_MOVT_ABS
:
8821 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
8822 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
8823 bfd_put_16 (input_bfd
, value
>> 16,
8824 contents
+ rel
->r_offset
);
8825 bfd_put_16 (input_bfd
, value
,
8826 contents
+ rel
->r_offset
+ 2);
8830 value
= (value
& ~ howto
->dst_mask
)
8831 | (addend
& howto
->dst_mask
);
8832 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8838 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8844 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
8845 r_symndx
, symtab_hdr
, sym_hashes
,
8847 unresolved_reloc
, warned
);
8852 if (sec
!= NULL
&& elf_discarded_section (sec
))
8854 /* For relocs against symbols from removed linkonce sections,
8855 or sections discarded by a linker script, we just want the
8856 section contents zeroed. Avoid any special processing. */
8857 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8863 if (info
->relocatable
)
8865 /* This is a relocatable link. We don't have to change
8866 anything, unless the reloc is against a section symbol,
8867 in which case we have to adjust according to where the
8868 section symbol winds up in the output section. */
8869 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8871 if (globals
->use_rel
)
8872 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
8873 howto
, (bfd_signed_vma
) sec
->output_offset
);
8875 rel
->r_addend
+= sec
->output_offset
;
8881 name
= h
->root
.root
.string
;
8884 name
= (bfd_elf_string_from_elf_section
8885 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
8886 if (name
== NULL
|| *name
== '\0')
8887 name
= bfd_section_name (input_bfd
, sec
);
8891 && r_type
!= R_ARM_NONE
8893 || h
->root
.type
== bfd_link_hash_defined
8894 || h
->root
.type
== bfd_link_hash_defweak
)
8895 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
8897 (*_bfd_error_handler
)
8898 ((sym_type
== STT_TLS
8899 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8900 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8903 (long) rel
->r_offset
,
8908 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
8909 input_section
, contents
, rel
,
8910 relocation
, info
, sec
, name
,
8911 (h
? ELF_ST_TYPE (h
->type
) :
8912 ELF_ST_TYPE (sym
->st_info
)), h
,
8913 &unresolved_reloc
, &error_message
);
8915 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8916 because such sections are not SEC_ALLOC and thus ld.so will
8917 not process them. */
8918 if (unresolved_reloc
8919 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
8922 (*_bfd_error_handler
)
8923 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8926 (long) rel
->r_offset
,
8928 h
->root
.root
.string
);
8932 if (r
!= bfd_reloc_ok
)
8936 case bfd_reloc_overflow
:
8937 /* If the overflowing reloc was to an undefined symbol,
8938 we have already printed one error message and there
8939 is no point complaining again. */
8941 h
->root
.type
!= bfd_link_hash_undefined
)
8942 && (!((*info
->callbacks
->reloc_overflow
)
8943 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
8944 (bfd_vma
) 0, input_bfd
, input_section
,
8949 case bfd_reloc_undefined
:
8950 if (!((*info
->callbacks
->undefined_symbol
)
8951 (info
, name
, input_bfd
, input_section
,
8952 rel
->r_offset
, TRUE
)))
8956 case bfd_reloc_outofrange
:
8957 error_message
= _("out of range");
8960 case bfd_reloc_notsupported
:
8961 error_message
= _("unsupported relocation");
8964 case bfd_reloc_dangerous
:
8965 /* error_message should already be set. */
8969 error_message
= _("unknown error");
8973 BFD_ASSERT (error_message
!= NULL
);
8974 if (!((*info
->callbacks
->reloc_dangerous
)
8975 (info
, error_message
, input_bfd
, input_section
,
8986 /* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
8987 adds the edit to the start of the list. (The list must be built in order of
8988 ascending INDEX: the function's callers are primarily responsible for
8989 maintaining that condition). */
8992 add_unwind_table_edit (arm_unwind_table_edit
**head
,
8993 arm_unwind_table_edit
**tail
,
8994 arm_unwind_edit_type type
,
8995 asection
*linked_section
,
8998 arm_unwind_table_edit
*new_edit
= xmalloc (sizeof (arm_unwind_table_edit
));
9000 new_edit
->type
= type
;
9001 new_edit
->linked_section
= linked_section
;
9002 new_edit
->index
= index
;
9006 new_edit
->next
= NULL
;
9009 (*tail
)->next
= new_edit
;
9018 new_edit
->next
= *head
;
9027 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
9029 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9031 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
9035 if (!exidx_sec
->rawsize
)
9036 exidx_sec
->rawsize
= exidx_sec
->size
;
9038 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
9039 out_sec
= exidx_sec
->output_section
;
9040 /* Adjust size of output section. */
9041 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
9044 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9046 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
9048 struct _arm_elf_section_data
*exidx_arm_data
;
9050 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9051 add_unwind_table_edit (
9052 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
9053 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
9054 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
9056 adjust_exidx_size(exidx_sec
, 8);
9059 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9060 made to those tables, such that:
9062 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9063 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9064 codes which have been inlined into the index).
9066 The edits are applied when the tables are written
9067 (in elf32_arm_write_section).
9071 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
9072 unsigned int num_text_sections
,
9073 struct bfd_link_info
*info
)
9076 unsigned int last_second_word
= 0, i
;
9077 asection
*last_exidx_sec
= NULL
;
9078 asection
*last_text_sec
= NULL
;
9079 int last_unwind_type
= -1;
9081 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9083 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
9087 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
9089 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
9090 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
9092 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
9095 if (elf_sec
->linked_to
)
9097 Elf_Internal_Shdr
*linked_hdr
9098 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
9099 struct _arm_elf_section_data
*linked_sec_arm_data
9100 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
9102 if (linked_sec_arm_data
== NULL
)
9105 /* Link this .ARM.exidx section back from the text section it
9107 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
9112 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9113 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9114 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
9117 for (i
= 0; i
< num_text_sections
; i
++)
9119 asection
*sec
= text_section_order
[i
];
9120 asection
*exidx_sec
;
9121 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
9122 struct _arm_elf_section_data
*exidx_arm_data
;
9123 bfd_byte
*contents
= NULL
;
9124 int deleted_exidx_bytes
= 0;
9126 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
9127 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
9128 Elf_Internal_Shdr
*hdr
;
9131 if (arm_data
== NULL
)
9134 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
9135 if (exidx_sec
== NULL
)
9137 /* Section has no unwind data. */
9138 if (last_unwind_type
== 0 || !last_exidx_sec
)
9141 /* Ignore zero sized sections. */
9145 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9146 last_unwind_type
= 0;
9150 /* Skip /DISCARD/ sections. */
9151 if (bfd_is_abs_section (exidx_sec
->output_section
))
9154 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
9155 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
9158 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9159 if (exidx_arm_data
== NULL
)
9162 ibfd
= exidx_sec
->owner
;
9164 if (hdr
->contents
!= NULL
)
9165 contents
= hdr
->contents
;
9166 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
9170 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
9172 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
9176 /* An EXIDX_CANTUNWIND entry. */
9177 if (second_word
== 1)
9179 if (last_unwind_type
== 0)
9183 /* Inlined unwinding data. Merge if equal to previous. */
9184 else if ((second_word
& 0x80000000) != 0)
9186 if (last_second_word
== second_word
&& last_unwind_type
== 1)
9189 last_second_word
= second_word
;
9191 /* Normal table entry. In theory we could merge these too,
9192 but duplicate entries are likely to be much less common. */
9198 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
9199 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
9201 deleted_exidx_bytes
+= 8;
9204 last_unwind_type
= unwind_type
;
9207 /* Free contents if we allocated it ourselves. */
9208 if (contents
!= hdr
->contents
)
9211 /* Record edits to be applied later (in elf32_arm_write_section). */
9212 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
9213 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
9215 if (deleted_exidx_bytes
> 0)
9216 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
9218 last_exidx_sec
= exidx_sec
;
9219 last_text_sec
= sec
;
9222 /* Add terminating CANTUNWIND entry. */
9223 if (last_exidx_sec
&& last_unwind_type
!= 0)
9224 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9230 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
9231 bfd
*ibfd
, const char *name
)
9233 asection
*sec
, *osec
;
9235 sec
= bfd_get_section_by_name (ibfd
, name
);
9236 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
9239 osec
= sec
->output_section
;
9240 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
9243 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
9244 sec
->output_offset
, sec
->size
))
9251 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9253 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
9255 /* Invoke the regular ELF backend linker to do all the work. */
9256 if (!bfd_elf_final_link (abfd
, info
))
9259 /* Write out any glue sections now that we have created all the
9261 if (globals
->bfd_of_glue_owner
!= NULL
)
9263 if (! elf32_arm_output_glue_section (info
, abfd
,
9264 globals
->bfd_of_glue_owner
,
9265 ARM2THUMB_GLUE_SECTION_NAME
))
9268 if (! elf32_arm_output_glue_section (info
, abfd
,
9269 globals
->bfd_of_glue_owner
,
9270 THUMB2ARM_GLUE_SECTION_NAME
))
9273 if (! elf32_arm_output_glue_section (info
, abfd
,
9274 globals
->bfd_of_glue_owner
,
9275 VFP11_ERRATUM_VENEER_SECTION_NAME
))
9278 if (! elf32_arm_output_glue_section (info
, abfd
,
9279 globals
->bfd_of_glue_owner
,
9280 ARM_BX_GLUE_SECTION_NAME
))
9287 /* Set the right machine number. */
9290 elf32_arm_object_p (bfd
*abfd
)
9294 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
9296 if (mach
!= bfd_mach_arm_unknown
)
9297 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9299 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
9300 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
9303 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9308 /* Function to keep ARM specific flags in the ELF header. */
9311 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
9313 if (elf_flags_init (abfd
)
9314 && elf_elfheader (abfd
)->e_flags
!= flags
)
9316 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
9318 if (flags
& EF_ARM_INTERWORK
)
9319 (*_bfd_error_handler
)
9320 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9324 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9330 elf_elfheader (abfd
)->e_flags
= flags
;
9331 elf_flags_init (abfd
) = TRUE
;
9337 /* Copy backend specific data from one object module to another. */
9340 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9345 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
9348 in_flags
= elf_elfheader (ibfd
)->e_flags
;
9349 out_flags
= elf_elfheader (obfd
)->e_flags
;
9351 if (elf_flags_init (obfd
)
9352 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
9353 && in_flags
!= out_flags
)
9355 /* Cannot mix APCS26 and APCS32 code. */
9356 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
9359 /* Cannot mix float APCS and non-float APCS code. */
9360 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
9363 /* If the src and dest have different interworking flags
9364 then turn off the interworking bit. */
9365 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
9367 if (out_flags
& EF_ARM_INTERWORK
)
9369 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9372 in_flags
&= ~EF_ARM_INTERWORK
;
9375 /* Likewise for PIC, though don't warn for this case. */
9376 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
9377 in_flags
&= ~EF_ARM_PIC
;
9380 elf_elfheader (obfd
)->e_flags
= in_flags
;
9381 elf_flags_init (obfd
) = TRUE
;
9383 /* Also copy the EI_OSABI field. */
9384 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
9385 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
9387 /* Copy object attributes. */
9388 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9393 /* Values for Tag_ABI_PCS_R9_use. */
9402 /* Values for Tag_ABI_PCS_RW_data. */
9405 AEABI_PCS_RW_data_absolute
,
9406 AEABI_PCS_RW_data_PCrel
,
9407 AEABI_PCS_RW_data_SBrel
,
9408 AEABI_PCS_RW_data_unused
9411 /* Values for Tag_ABI_enum_size. */
9417 AEABI_enum_forced_wide
9420 /* Determine whether an object attribute tag takes an integer, a
9424 elf32_arm_obj_attrs_arg_type (int tag
)
9426 if (tag
== Tag_compatibility
)
9427 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
9428 else if (tag
== Tag_nodefaults
)
9429 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
9430 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
9431 return ATTR_TYPE_FLAG_STR_VAL
;
9433 return ATTR_TYPE_FLAG_INT_VAL
;
9435 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
9438 /* The ABI defines that Tag_conformance should be emitted first, and that
9439 Tag_nodefaults should be second (if either is defined). This sets those
9440 two positions, and bumps up the position of all the remaining tags to
9443 elf32_arm_obj_attrs_order (int num
)
9446 return Tag_conformance
;
9448 return Tag_nodefaults
;
9449 if ((num
- 2) < Tag_nodefaults
)
9451 if ((num
- 1) < Tag_conformance
)
9456 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9457 Returns -1 if no architecture could be read. */
9460 get_secondary_compatible_arch (bfd
*abfd
)
9462 obj_attribute
*attr
=
9463 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9465 /* Note: the tag and its argument below are uleb128 values, though
9466 currently-defined values fit in one byte for each. */
9468 && attr
->s
[0] == Tag_CPU_arch
9469 && (attr
->s
[1] & 128) != 128
9473 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9477 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9478 The tag is removed if ARCH is -1. */
9481 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
9483 obj_attribute
*attr
=
9484 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9492 /* Note: the tag and its argument below are uleb128 values, though
9493 currently-defined values fit in one byte for each. */
9495 attr
->s
= bfd_alloc (abfd
, 3);
9496 attr
->s
[0] = Tag_CPU_arch
;
9501 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9505 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
9506 int newtag
, int secondary_compat
)
9508 #define T(X) TAG_CPU_ARCH_##X
9509 int tagl
, tagh
, result
;
9512 T(V6T2
), /* PRE_V4. */
9516 T(V6T2
), /* V5TE. */
9517 T(V6T2
), /* V5TEJ. */
9524 T(V6K
), /* PRE_V4. */
9529 T(V6K
), /* V5TEJ. */
9531 T(V6KZ
), /* V6KZ. */
9537 T(V7
), /* PRE_V4. */
9556 T(V6K
), /* V5TEJ. */
9558 T(V6KZ
), /* V6KZ. */
9571 T(V6K
), /* V5TEJ. */
9573 T(V6KZ
), /* V6KZ. */
9577 T(V6S_M
), /* V6_M. */
9578 T(V6S_M
) /* V6S_M. */
9580 const int v4t_plus_v6_m
[] =
9586 T(V5TE
), /* V5TE. */
9587 T(V5TEJ
), /* V5TEJ. */
9589 T(V6KZ
), /* V6KZ. */
9590 T(V6T2
), /* V6T2. */
9593 T(V6_M
), /* V6_M. */
9594 T(V6S_M
), /* V6S_M. */
9595 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
9604 /* Pseudo-architecture. */
9608 /* Check we've not got a higher architecture than we know about. */
9610 if (oldtag
>= MAX_TAG_CPU_ARCH
|| newtag
>= MAX_TAG_CPU_ARCH
)
9612 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
9616 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9618 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
9619 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
9620 oldtag
= T(V4T_PLUS_V6_M
);
9622 /* And override the new tag if we have a Tag_also_compatible_with on the
9625 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
9626 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
9627 newtag
= T(V4T_PLUS_V6_M
);
9629 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
9630 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
9632 /* Architectures before V6KZ add features monotonically. */
9633 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
9636 result
= comb
[tagh
- T(V6T2
)][tagl
];
9638 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9639 as the canonical version. */
9640 if (result
== T(V4T_PLUS_V6_M
))
9643 *secondary_compat_out
= T(V6_M
);
9646 *secondary_compat_out
= -1;
9650 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9651 ibfd
, oldtag
, newtag
);
9659 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9660 are conflicting attributes. */
9663 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
9665 obj_attribute
*in_attr
;
9666 obj_attribute
*out_attr
;
9667 obj_attribute_list
*in_list
;
9668 obj_attribute_list
*out_list
;
9669 obj_attribute_list
**out_listp
;
9670 /* Some tags have 0 = don't care, 1 = strong requirement,
9671 2 = weak requirement. */
9672 static const int order_021
[3] = {0, 2, 1};
9673 /* For use with Tag_VFP_arch. */
9674 static const int order_01243
[5] = {0, 1, 2, 4, 3};
9676 bfd_boolean result
= TRUE
;
9678 /* Skip the linker stubs file. This preserves previous behavior
9679 of accepting unknown attributes in the first input file - but
9681 if (ibfd
->flags
& BFD_LINKER_CREATED
)
9684 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
9686 /* This is the first object. Copy the attributes. */
9687 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9689 /* Use the Tag_null value to indicate the attributes have been
9691 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
9696 in_attr
= elf_known_obj_attributes_proc (ibfd
);
9697 out_attr
= elf_known_obj_attributes_proc (obfd
);
9698 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9699 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
9701 /* Ignore mismatches if the object doesn't use floating point. */
9702 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
9703 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
9704 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
9707 (_("error: %B uses VFP register arguments, %B does not"),
9713 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
9715 /* Merge this attribute with existing attributes. */
9718 case Tag_CPU_raw_name
:
9720 /* These are merged after Tag_CPU_arch. */
9723 case Tag_ABI_optimization_goals
:
9724 case Tag_ABI_FP_optimization_goals
:
9725 /* Use the first value seen. */
9730 int secondary_compat
= -1, secondary_compat_out
= -1;
9731 unsigned int saved_out_attr
= out_attr
[i
].i
;
9732 static const char *name_table
[] = {
9733 /* These aren't real CPU names, but we can't guess
9734 that from the architecture version alone. */
9750 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9751 secondary_compat
= get_secondary_compatible_arch (ibfd
);
9752 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
9753 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
9754 &secondary_compat_out
,
9757 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
9759 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9760 if (out_attr
[i
].i
== saved_out_attr
)
9761 ; /* Leave the names alone. */
9762 else if (out_attr
[i
].i
== in_attr
[i
].i
)
9764 /* The output architecture has been changed to match the
9765 input architecture. Use the input names. */
9766 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
9767 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
9769 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
9770 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
9775 out_attr
[Tag_CPU_name
].s
= NULL
;
9776 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
9779 /* If we still don't have a value for Tag_CPU_name,
9780 make one up now. Tag_CPU_raw_name remains blank. */
9781 if (out_attr
[Tag_CPU_name
].s
== NULL
9782 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
9783 out_attr
[Tag_CPU_name
].s
=
9784 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
9788 case Tag_ARM_ISA_use
:
9789 case Tag_THUMB_ISA_use
:
9791 case Tag_Advanced_SIMD_arch
:
9792 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
9793 case Tag_ABI_FP_rounding
:
9794 case Tag_ABI_FP_exceptions
:
9795 case Tag_ABI_FP_user_exceptions
:
9796 case Tag_ABI_FP_number_model
:
9797 case Tag_VFP_HP_extension
:
9798 case Tag_CPU_unaligned_access
:
9800 case Tag_Virtualization_use
:
9801 case Tag_MPextension_use
:
9802 /* Use the largest value specified. */
9803 if (in_attr
[i
].i
> out_attr
[i
].i
)
9804 out_attr
[i
].i
= in_attr
[i
].i
;
9807 case Tag_ABI_align8_preserved
:
9808 case Tag_ABI_PCS_RO_data
:
9809 /* Use the smallest value specified. */
9810 if (in_attr
[i
].i
< out_attr
[i
].i
)
9811 out_attr
[i
].i
= in_attr
[i
].i
;
9814 case Tag_ABI_align8_needed
:
9815 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
9816 && (in_attr
[Tag_ABI_align8_preserved
].i
== 0
9817 || out_attr
[Tag_ABI_align8_preserved
].i
== 0))
9819 /* This error message should be enabled once all non-conformant
9820 binaries in the toolchain have had the attributes set
9823 (_("error: %B: 8-byte data alignment conflicts with %B"),
9828 case Tag_ABI_FP_denormal
:
9829 case Tag_ABI_PCS_GOT_use
:
9830 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9831 value if greater than 2 (for future-proofing). */
9832 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
9833 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
9834 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
9835 out_attr
[i
].i
= in_attr
[i
].i
;
9839 case Tag_CPU_arch_profile
:
9840 if (out_attr
[i
].i
!= in_attr
[i
].i
)
9842 /* 0 will merge with anything.
9843 'A' and 'S' merge to 'A'.
9844 'R' and 'S' merge to 'R'.
9845 'M' and 'A|R|S' is an error. */
9846 if (out_attr
[i
].i
== 0
9847 || (out_attr
[i
].i
== 'S'
9848 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
9849 out_attr
[i
].i
= in_attr
[i
].i
;
9850 else if (in_attr
[i
].i
== 0
9851 || (in_attr
[i
].i
== 'S'
9852 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
9857 (_("error: %B: Conflicting architecture profiles %c/%c"),
9859 in_attr
[i
].i
? in_attr
[i
].i
: '0',
9860 out_attr
[i
].i
? out_attr
[i
].i
: '0');
9866 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9867 largest value if greater than 4 (for future-proofing). */
9868 if ((in_attr
[i
].i
> 4 && in_attr
[i
].i
> out_attr
[i
].i
)
9869 || (in_attr
[i
].i
<= 4 && out_attr
[i
].i
<= 4
9870 && order_01243
[in_attr
[i
].i
] > order_01243
[out_attr
[i
].i
]))
9871 out_attr
[i
].i
= in_attr
[i
].i
;
9873 case Tag_PCS_config
:
9874 if (out_attr
[i
].i
== 0)
9875 out_attr
[i
].i
= in_attr
[i
].i
;
9876 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9878 /* It's sometimes ok to mix different configs, so this is only
9881 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
9884 case Tag_ABI_PCS_R9_use
:
9885 if (in_attr
[i
].i
!= out_attr
[i
].i
9886 && out_attr
[i
].i
!= AEABI_R9_unused
9887 && in_attr
[i
].i
!= AEABI_R9_unused
)
9890 (_("error: %B: Conflicting use of R9"), ibfd
);
9893 if (out_attr
[i
].i
== AEABI_R9_unused
)
9894 out_attr
[i
].i
= in_attr
[i
].i
;
9896 case Tag_ABI_PCS_RW_data
:
9897 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
9898 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
9899 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
9902 (_("error: %B: SB relative addressing conflicts with use of R9"),
9906 /* Use the smallest value specified. */
9907 if (in_attr
[i
].i
< out_attr
[i
].i
)
9908 out_attr
[i
].i
= in_attr
[i
].i
;
9910 case Tag_ABI_PCS_wchar_t
:
9911 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
9912 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
9915 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9916 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
9918 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
9919 out_attr
[i
].i
= in_attr
[i
].i
;
9921 case Tag_ABI_enum_size
:
9922 if (in_attr
[i
].i
!= AEABI_enum_unused
)
9924 if (out_attr
[i
].i
== AEABI_enum_unused
9925 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
9927 /* The existing object is compatible with anything.
9928 Use whatever requirements the new object has. */
9929 out_attr
[i
].i
= in_attr
[i
].i
;
9931 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
9932 && out_attr
[i
].i
!= in_attr
[i
].i
9933 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
9935 static const char *aeabi_enum_names
[] =
9936 { "", "variable-size", "32-bit", "" };
9937 const char *in_name
=
9938 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
9939 ? aeabi_enum_names
[in_attr
[i
].i
]
9941 const char *out_name
=
9942 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
9943 ? aeabi_enum_names
[out_attr
[i
].i
]
9946 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
9947 ibfd
, in_name
, out_name
);
9951 case Tag_ABI_VFP_args
:
9954 case Tag_ABI_WMMX_args
:
9955 if (in_attr
[i
].i
!= out_attr
[i
].i
)
9958 (_("error: %B uses iWMMXt register arguments, %B does not"),
9963 case Tag_compatibility
:
9964 /* Merged in target-independent code. */
9966 case Tag_ABI_HardFP_use
:
9967 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
9968 if ((in_attr
[i
].i
== 1 && out_attr
[i
].i
== 2)
9969 || (in_attr
[i
].i
== 2 && out_attr
[i
].i
== 1))
9971 else if (in_attr
[i
].i
> out_attr
[i
].i
)
9972 out_attr
[i
].i
= in_attr
[i
].i
;
9974 case Tag_ABI_FP_16bit_format
:
9975 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9977 if (in_attr
[i
].i
!= out_attr
[i
].i
)
9980 (_("error: fp16 format mismatch between %B and %B"),
9985 if (in_attr
[i
].i
!= 0)
9986 out_attr
[i
].i
= in_attr
[i
].i
;
9989 case Tag_nodefaults
:
9990 /* This tag is set if it exists, but the value is unused (and is
9991 typically zero). We don't actually need to do anything here -
9992 the merge happens automatically when the type flags are merged
9995 case Tag_also_compatible_with
:
9996 /* Already done in Tag_CPU_arch. */
9998 case Tag_conformance
:
9999 /* Keep the attribute if it matches. Throw it away otherwise.
10000 No attribute means no claim to conform. */
10001 if (!in_attr
[i
].s
|| !out_attr
[i
].s
10002 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
10003 out_attr
[i
].s
= NULL
;
10008 bfd
*err_bfd
= NULL
;
10010 /* The "known_obj_attributes" table does contain some undefined
10011 attributes. Ensure that there are unused. */
10012 if (out_attr
[i
].i
!= 0 || out_attr
[i
].s
!= NULL
)
10014 else if (in_attr
[i
].i
!= 0 || in_attr
[i
].s
!= NULL
)
10017 if (err_bfd
!= NULL
)
10019 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10020 if ((i
& 127) < 64)
10023 (_("%B: Unknown mandatory EABI object attribute %d"),
10025 bfd_set_error (bfd_error_bad_value
);
10031 (_("Warning: %B: Unknown EABI object attribute %d"),
10036 /* Only pass on attributes that match in both inputs. */
10037 if (in_attr
[i
].i
!= out_attr
[i
].i
10038 || in_attr
[i
].s
!= out_attr
[i
].s
10039 || (in_attr
[i
].s
!= NULL
&& out_attr
[i
].s
!= NULL
10040 && strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0))
10043 out_attr
[i
].s
= NULL
;
10048 /* If out_attr was copied from in_attr then it won't have a type yet. */
10049 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
10050 out_attr
[i
].type
= in_attr
[i
].type
;
10053 /* Merge Tag_compatibility attributes and any common GNU ones. */
10054 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
10056 /* Check for any attributes not known on ARM. */
10057 in_list
= elf_other_obj_attributes_proc (ibfd
);
10058 out_listp
= &elf_other_obj_attributes_proc (obfd
);
10059 out_list
= *out_listp
;
10061 for (; in_list
|| out_list
; )
10063 bfd
*err_bfd
= NULL
;
10066 /* The tags for each list are in numerical order. */
10067 /* If the tags are equal, then merge. */
10068 if (out_list
&& (!in_list
|| in_list
->tag
> out_list
->tag
))
10070 /* This attribute only exists in obfd. We can't merge, and we don't
10071 know what the tag means, so delete it. */
10073 err_tag
= out_list
->tag
;
10074 *out_listp
= out_list
->next
;
10075 out_list
= *out_listp
;
10077 else if (in_list
&& (!out_list
|| in_list
->tag
< out_list
->tag
))
10079 /* This attribute only exists in ibfd. We can't merge, and we don't
10080 know what the tag means, so ignore it. */
10082 err_tag
= in_list
->tag
;
10083 in_list
= in_list
->next
;
10085 else /* The tags are equal. */
10087 /* As present, all attributes in the list are unknown, and
10088 therefore can't be merged meaningfully. */
10090 err_tag
= out_list
->tag
;
10092 /* Only pass on attributes that match in both inputs. */
10093 if (in_list
->attr
.i
!= out_list
->attr
.i
10094 || in_list
->attr
.s
!= out_list
->attr
.s
10095 || (in_list
->attr
.s
&& out_list
->attr
.s
10096 && strcmp (in_list
->attr
.s
, out_list
->attr
.s
) != 0))
10098 /* No match. Delete the attribute. */
10099 *out_listp
= out_list
->next
;
10100 out_list
= *out_listp
;
10104 /* Matched. Keep the attribute and move to the next. */
10105 out_list
= out_list
->next
;
10106 in_list
= in_list
->next
;
10112 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10113 if ((err_tag
& 127) < 64)
10116 (_("%B: Unknown mandatory EABI object attribute %d"),
10118 bfd_set_error (bfd_error_bad_value
);
10124 (_("Warning: %B: Unknown EABI object attribute %d"),
10133 /* Return TRUE if the two EABI versions are incompatible. */
10136 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
10138 /* v4 and v5 are the same spec before and after it was released,
10139 so allow mixing them. */
10140 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
10141 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
10144 return (iver
== over
);
10147 /* Merge backend specific data from an object file to the output
10148 object file when linking. */
10151 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
10153 flagword out_flags
;
10155 bfd_boolean flags_compatible
= TRUE
;
10158 /* Check if we have the same endianess. */
10159 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
10162 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10165 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
10168 /* The input BFD must have had its flags initialised. */
10169 /* The following seems bogus to me -- The flags are initialized in
10170 the assembler but I don't think an elf_flags_init field is
10171 written into the object. */
10172 /* BFD_ASSERT (elf_flags_init (ibfd)); */
10174 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10175 out_flags
= elf_elfheader (obfd
)->e_flags
;
10177 /* In theory there is no reason why we couldn't handle this. However
10178 in practice it isn't even close to working and there is no real
10179 reason to want it. */
10180 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
10181 && !(ibfd
->flags
& DYNAMIC
)
10182 && (in_flags
& EF_ARM_BE8
))
10184 _bfd_error_handler (_("error: %B is already in final BE8 format"),
10189 if (!elf_flags_init (obfd
))
10191 /* If the input is the default architecture and had the default
10192 flags then do not bother setting the flags for the output
10193 architecture, instead allow future merges to do this. If no
10194 future merges ever set these flags then they will retain their
10195 uninitialised values, which surprise surprise, correspond
10196 to the default values. */
10197 if (bfd_get_arch_info (ibfd
)->the_default
10198 && elf_elfheader (ibfd
)->e_flags
== 0)
10201 elf_flags_init (obfd
) = TRUE
;
10202 elf_elfheader (obfd
)->e_flags
= in_flags
;
10204 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
10205 && bfd_get_arch_info (obfd
)->the_default
)
10206 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
10211 /* Determine what should happen if the input ARM architecture
10212 does not match the output ARM architecture. */
10213 if (! bfd_arm_merge_machines (ibfd
, obfd
))
10216 /* Identical flags must be compatible. */
10217 if (in_flags
== out_flags
)
10220 /* Check to see if the input BFD actually contains any sections. If
10221 not, its flags may not have been initialised either, but it
10222 cannot actually cause any incompatiblity. Do not short-circuit
10223 dynamic objects; their section list may be emptied by
10224 elf_link_add_object_symbols.
10226 Also check to see if there are no code sections in the input.
10227 In this case there is no need to check for code specific flags.
10228 XXX - do we need to worry about floating-point format compatability
10229 in data sections ? */
10230 if (!(ibfd
->flags
& DYNAMIC
))
10232 bfd_boolean null_input_bfd
= TRUE
;
10233 bfd_boolean only_data_sections
= TRUE
;
10235 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
10237 /* Ignore synthetic glue sections. */
10238 if (strcmp (sec
->name
, ".glue_7")
10239 && strcmp (sec
->name
, ".glue_7t"))
10241 if ((bfd_get_section_flags (ibfd
, sec
)
10242 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
10243 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
10244 only_data_sections
= FALSE
;
10246 null_input_bfd
= FALSE
;
10251 if (null_input_bfd
|| only_data_sections
)
10255 /* Complain about various flag mismatches. */
10256 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
10257 EF_ARM_EABI_VERSION (out_flags
)))
10260 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
10262 (in_flags
& EF_ARM_EABIMASK
) >> 24,
10263 (out_flags
& EF_ARM_EABIMASK
) >> 24);
10267 /* Not sure what needs to be checked for EABI versions >= 1. */
10268 /* VxWorks libraries do not use these flags. */
10269 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
10270 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
10271 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
10273 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10276 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
10278 in_flags
& EF_ARM_APCS_26
? 26 : 32,
10279 out_flags
& EF_ARM_APCS_26
? 26 : 32);
10280 flags_compatible
= FALSE
;
10283 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10285 if (in_flags
& EF_ARM_APCS_FLOAT
)
10287 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
10291 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
10294 flags_compatible
= FALSE
;
10297 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
10299 if (in_flags
& EF_ARM_VFP_FLOAT
)
10301 (_("error: %B uses VFP instructions, whereas %B does not"),
10305 (_("error: %B uses FPA instructions, whereas %B does not"),
10308 flags_compatible
= FALSE
;
10311 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
10313 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
10315 (_("error: %B uses Maverick instructions, whereas %B does not"),
10319 (_("error: %B does not use Maverick instructions, whereas %B does"),
10322 flags_compatible
= FALSE
;
10325 #ifdef EF_ARM_SOFT_FLOAT
10326 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
10328 /* We can allow interworking between code that is VFP format
10329 layout, and uses either soft float or integer regs for
10330 passing floating point arguments and results. We already
10331 know that the APCS_FLOAT flags match; similarly for VFP
10333 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
10334 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
10336 if (in_flags
& EF_ARM_SOFT_FLOAT
)
10338 (_("error: %B uses software FP, whereas %B uses hardware FP"),
10342 (_("error: %B uses hardware FP, whereas %B uses software FP"),
10345 flags_compatible
= FALSE
;
10350 /* Interworking mismatch is only a warning. */
10351 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10353 if (in_flags
& EF_ARM_INTERWORK
)
10356 (_("Warning: %B supports interworking, whereas %B does not"),
10362 (_("Warning: %B does not support interworking, whereas %B does"),
10368 return flags_compatible
;
10371 /* Display the flags field. */
10374 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
10376 FILE * file
= (FILE *) ptr
;
10377 unsigned long flags
;
10379 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
10381 /* Print normal ELF private data. */
10382 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
10384 flags
= elf_elfheader (abfd
)->e_flags
;
10385 /* Ignore init flag - it may not be set, despite the flags field
10386 containing valid data. */
10388 /* xgettext:c-format */
10389 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
10391 switch (EF_ARM_EABI_VERSION (flags
))
10393 case EF_ARM_EABI_UNKNOWN
:
10394 /* The following flag bits are GNU extensions and not part of the
10395 official ARM ELF extended ABI. Hence they are only decoded if
10396 the EABI version is not set. */
10397 if (flags
& EF_ARM_INTERWORK
)
10398 fprintf (file
, _(" [interworking enabled]"));
10400 if (flags
& EF_ARM_APCS_26
)
10401 fprintf (file
, " [APCS-26]");
10403 fprintf (file
, " [APCS-32]");
10405 if (flags
& EF_ARM_VFP_FLOAT
)
10406 fprintf (file
, _(" [VFP float format]"));
10407 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
10408 fprintf (file
, _(" [Maverick float format]"));
10410 fprintf (file
, _(" [FPA float format]"));
10412 if (flags
& EF_ARM_APCS_FLOAT
)
10413 fprintf (file
, _(" [floats passed in float registers]"));
10415 if (flags
& EF_ARM_PIC
)
10416 fprintf (file
, _(" [position independent]"));
10418 if (flags
& EF_ARM_NEW_ABI
)
10419 fprintf (file
, _(" [new ABI]"));
10421 if (flags
& EF_ARM_OLD_ABI
)
10422 fprintf (file
, _(" [old ABI]"));
10424 if (flags
& EF_ARM_SOFT_FLOAT
)
10425 fprintf (file
, _(" [software FP]"));
10427 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
10428 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
10429 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
10430 | EF_ARM_MAVERICK_FLOAT
);
10433 case EF_ARM_EABI_VER1
:
10434 fprintf (file
, _(" [Version1 EABI]"));
10436 if (flags
& EF_ARM_SYMSARESORTED
)
10437 fprintf (file
, _(" [sorted symbol table]"));
10439 fprintf (file
, _(" [unsorted symbol table]"));
10441 flags
&= ~ EF_ARM_SYMSARESORTED
;
10444 case EF_ARM_EABI_VER2
:
10445 fprintf (file
, _(" [Version2 EABI]"));
10447 if (flags
& EF_ARM_SYMSARESORTED
)
10448 fprintf (file
, _(" [sorted symbol table]"));
10450 fprintf (file
, _(" [unsorted symbol table]"));
10452 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
10453 fprintf (file
, _(" [dynamic symbols use segment index]"));
10455 if (flags
& EF_ARM_MAPSYMSFIRST
)
10456 fprintf (file
, _(" [mapping symbols precede others]"));
10458 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
10459 | EF_ARM_MAPSYMSFIRST
);
10462 case EF_ARM_EABI_VER3
:
10463 fprintf (file
, _(" [Version3 EABI]"));
10466 case EF_ARM_EABI_VER4
:
10467 fprintf (file
, _(" [Version4 EABI]"));
10470 case EF_ARM_EABI_VER5
:
10471 fprintf (file
, _(" [Version5 EABI]"));
10473 if (flags
& EF_ARM_BE8
)
10474 fprintf (file
, _(" [BE8]"));
10476 if (flags
& EF_ARM_LE8
)
10477 fprintf (file
, _(" [LE8]"));
10479 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
10483 fprintf (file
, _(" <EABI version unrecognised>"));
10487 flags
&= ~ EF_ARM_EABIMASK
;
10489 if (flags
& EF_ARM_RELEXEC
)
10490 fprintf (file
, _(" [relocatable executable]"));
10492 if (flags
& EF_ARM_HASENTRY
)
10493 fprintf (file
, _(" [has entry point]"));
10495 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
10498 fprintf (file
, _("<Unrecognised flag bits set>"));
10500 fputc ('\n', file
);
10506 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
10508 switch (ELF_ST_TYPE (elf_sym
->st_info
))
10510 case STT_ARM_TFUNC
:
10511 return ELF_ST_TYPE (elf_sym
->st_info
);
10513 case STT_ARM_16BIT
:
10514 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10515 This allows us to distinguish between data used by Thumb instructions
10516 and non-data (which is probably code) inside Thumb regions of an
10518 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
10519 return ELF_ST_TYPE (elf_sym
->st_info
);
10530 elf32_arm_gc_mark_hook (asection
*sec
,
10531 struct bfd_link_info
*info
,
10532 Elf_Internal_Rela
*rel
,
10533 struct elf_link_hash_entry
*h
,
10534 Elf_Internal_Sym
*sym
)
10537 switch (ELF32_R_TYPE (rel
->r_info
))
10539 case R_ARM_GNU_VTINHERIT
:
10540 case R_ARM_GNU_VTENTRY
:
10544 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10547 /* Update the got entry reference counts for the section being removed. */
10550 elf32_arm_gc_sweep_hook (bfd
* abfd
,
10551 struct bfd_link_info
* info
,
10553 const Elf_Internal_Rela
* relocs
)
10555 Elf_Internal_Shdr
*symtab_hdr
;
10556 struct elf_link_hash_entry
**sym_hashes
;
10557 bfd_signed_vma
*local_got_refcounts
;
10558 const Elf_Internal_Rela
*rel
, *relend
;
10559 struct elf32_arm_link_hash_table
* globals
;
10561 if (info
->relocatable
)
10564 globals
= elf32_arm_hash_table (info
);
10566 elf_section_data (sec
)->local_dynrel
= NULL
;
10568 symtab_hdr
= & elf_symtab_hdr (abfd
);
10569 sym_hashes
= elf_sym_hashes (abfd
);
10570 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10572 check_use_blx (globals
);
10574 relend
= relocs
+ sec
->reloc_count
;
10575 for (rel
= relocs
; rel
< relend
; rel
++)
10577 unsigned long r_symndx
;
10578 struct elf_link_hash_entry
*h
= NULL
;
10581 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10582 if (r_symndx
>= symtab_hdr
->sh_info
)
10584 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10585 while (h
->root
.type
== bfd_link_hash_indirect
10586 || h
->root
.type
== bfd_link_hash_warning
)
10587 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10590 r_type
= ELF32_R_TYPE (rel
->r_info
);
10591 r_type
= arm_real_reloc_type (globals
, r_type
);
10595 case R_ARM_GOT_PREL
:
10596 case R_ARM_TLS_GD32
:
10597 case R_ARM_TLS_IE32
:
10600 if (h
->got
.refcount
> 0)
10601 h
->got
.refcount
-= 1;
10603 else if (local_got_refcounts
!= NULL
)
10605 if (local_got_refcounts
[r_symndx
] > 0)
10606 local_got_refcounts
[r_symndx
] -= 1;
10610 case R_ARM_TLS_LDM32
:
10611 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
10615 case R_ARM_ABS32_NOI
:
10617 case R_ARM_REL32_NOI
:
10623 case R_ARM_THM_CALL
:
10624 case R_ARM_THM_JUMP24
:
10625 case R_ARM_THM_JUMP19
:
10626 case R_ARM_MOVW_ABS_NC
:
10627 case R_ARM_MOVT_ABS
:
10628 case R_ARM_MOVW_PREL_NC
:
10629 case R_ARM_MOVT_PREL
:
10630 case R_ARM_THM_MOVW_ABS_NC
:
10631 case R_ARM_THM_MOVT_ABS
:
10632 case R_ARM_THM_MOVW_PREL_NC
:
10633 case R_ARM_THM_MOVT_PREL
:
10634 /* Should the interworking branches be here also? */
10638 struct elf32_arm_link_hash_entry
*eh
;
10639 struct elf32_arm_relocs_copied
**pp
;
10640 struct elf32_arm_relocs_copied
*p
;
10642 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10644 if (h
->plt
.refcount
> 0)
10646 h
->plt
.refcount
-= 1;
10647 if (r_type
== R_ARM_THM_CALL
)
10648 eh
->plt_maybe_thumb_refcount
--;
10650 if (r_type
== R_ARM_THM_JUMP24
10651 || r_type
== R_ARM_THM_JUMP19
)
10652 eh
->plt_thumb_refcount
--;
10655 if (r_type
== R_ARM_ABS32
10656 || r_type
== R_ARM_REL32
10657 || r_type
== R_ARM_ABS32_NOI
10658 || r_type
== R_ARM_REL32_NOI
)
10660 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
10662 if (p
->section
== sec
)
10665 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
10666 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
10684 /* Look through the relocs for a section during the first phase. */
10687 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
10688 asection
*sec
, const Elf_Internal_Rela
*relocs
)
10690 Elf_Internal_Shdr
*symtab_hdr
;
10691 struct elf_link_hash_entry
**sym_hashes
;
10692 const Elf_Internal_Rela
*rel
;
10693 const Elf_Internal_Rela
*rel_end
;
10696 bfd_vma
*local_got_offsets
;
10697 struct elf32_arm_link_hash_table
*htab
;
10698 bfd_boolean needs_plt
;
10699 unsigned long nsyms
;
10701 if (info
->relocatable
)
10704 BFD_ASSERT (is_arm_elf (abfd
));
10706 htab
= elf32_arm_hash_table (info
);
10709 /* Create dynamic sections for relocatable executables so that we can
10710 copy relocations. */
10711 if (htab
->root
.is_relocatable_executable
10712 && ! htab
->root
.dynamic_sections_created
)
10714 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
10718 dynobj
= elf_hash_table (info
)->dynobj
;
10719 local_got_offsets
= elf_local_got_offsets (abfd
);
10721 symtab_hdr
= & elf_symtab_hdr (abfd
);
10722 sym_hashes
= elf_sym_hashes (abfd
);
10723 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
10725 rel_end
= relocs
+ sec
->reloc_count
;
10726 for (rel
= relocs
; rel
< rel_end
; rel
++)
10728 struct elf_link_hash_entry
*h
;
10729 struct elf32_arm_link_hash_entry
*eh
;
10730 unsigned long r_symndx
;
10733 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10734 r_type
= ELF32_R_TYPE (rel
->r_info
);
10735 r_type
= arm_real_reloc_type (htab
, r_type
);
10737 if (r_symndx
>= nsyms
10738 /* PR 9934: It is possible to have relocations that do not
10739 refer to symbols, thus it is also possible to have an
10740 object file containing relocations but no symbol table. */
10741 && (r_symndx
> 0 || nsyms
> 0))
10743 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
10748 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
10752 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10753 while (h
->root
.type
== bfd_link_hash_indirect
10754 || h
->root
.type
== bfd_link_hash_warning
)
10755 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10758 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10763 case R_ARM_GOT_PREL
:
10764 case R_ARM_TLS_GD32
:
10765 case R_ARM_TLS_IE32
:
10766 /* This symbol requires a global offset table entry. */
10768 int tls_type
, old_tls_type
;
10772 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
10773 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
10774 default: tls_type
= GOT_NORMAL
; break;
10780 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
10784 bfd_signed_vma
*local_got_refcounts
;
10786 /* This is a global offset table entry for a local symbol. */
10787 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10788 if (local_got_refcounts
== NULL
)
10790 bfd_size_type size
;
10792 size
= symtab_hdr
->sh_info
;
10793 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
10794 local_got_refcounts
= bfd_zalloc (abfd
, size
);
10795 if (local_got_refcounts
== NULL
)
10797 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
10798 elf32_arm_local_got_tls_type (abfd
)
10799 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
10801 local_got_refcounts
[r_symndx
] += 1;
10802 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
10805 /* We will already have issued an error message if there is a
10806 TLS / non-TLS mismatch, based on the symbol type. We don't
10807 support any linker relaxations. So just combine any TLS
10809 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
10810 && tls_type
!= GOT_NORMAL
)
10811 tls_type
|= old_tls_type
;
10813 if (old_tls_type
!= tls_type
)
10816 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
10818 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
10821 /* Fall through. */
10823 case R_ARM_TLS_LDM32
:
10824 if (r_type
== R_ARM_TLS_LDM32
)
10825 htab
->tls_ldm_got
.refcount
++;
10826 /* Fall through. */
10828 case R_ARM_GOTOFF32
:
10830 if (htab
->sgot
== NULL
)
10832 if (htab
->root
.dynobj
== NULL
)
10833 htab
->root
.dynobj
= abfd
;
10834 if (!create_got_section (htab
->root
.dynobj
, info
))
10840 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10841 ldr __GOTT_INDEX__ offsets. */
10842 if (!htab
->vxworks_p
)
10844 /* Fall through. */
10851 case R_ARM_THM_CALL
:
10852 case R_ARM_THM_JUMP24
:
10853 case R_ARM_THM_JUMP19
:
10857 case R_ARM_MOVW_ABS_NC
:
10858 case R_ARM_MOVT_ABS
:
10859 case R_ARM_THM_MOVW_ABS_NC
:
10860 case R_ARM_THM_MOVT_ABS
:
10863 (*_bfd_error_handler
)
10864 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10865 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
10866 (h
) ? h
->root
.root
.string
: "a local symbol");
10867 bfd_set_error (bfd_error_bad_value
);
10871 /* Fall through. */
10873 case R_ARM_ABS32_NOI
:
10875 case R_ARM_REL32_NOI
:
10876 case R_ARM_MOVW_PREL_NC
:
10877 case R_ARM_MOVT_PREL
:
10878 case R_ARM_THM_MOVW_PREL_NC
:
10879 case R_ARM_THM_MOVT_PREL
:
10883 /* Should the interworking branches be listed here? */
10886 /* If this reloc is in a read-only section, we might
10887 need a copy reloc. We can't check reliably at this
10888 stage whether the section is read-only, as input
10889 sections have not yet been mapped to output sections.
10890 Tentatively set the flag for now, and correct in
10891 adjust_dynamic_symbol. */
10893 h
->non_got_ref
= 1;
10895 /* We may need a .plt entry if the function this reloc
10896 refers to is in a different object. We can't tell for
10897 sure yet, because something later might force the
10902 /* If we create a PLT entry, this relocation will reference
10903 it, even if it's an ABS32 relocation. */
10904 h
->plt
.refcount
+= 1;
10906 /* It's too early to use htab->use_blx here, so we have to
10907 record possible blx references separately from
10908 relocs that definitely need a thumb stub. */
10910 if (r_type
== R_ARM_THM_CALL
)
10911 eh
->plt_maybe_thumb_refcount
+= 1;
10913 if (r_type
== R_ARM_THM_JUMP24
10914 || r_type
== R_ARM_THM_JUMP19
)
10915 eh
->plt_thumb_refcount
+= 1;
10918 /* If we are creating a shared library or relocatable executable,
10919 and this is a reloc against a global symbol, or a non PC
10920 relative reloc against a local symbol, then we need to copy
10921 the reloc into the shared library. However, if we are linking
10922 with -Bsymbolic, we do not need to copy a reloc against a
10923 global symbol which is defined in an object we are
10924 including in the link (i.e., DEF_REGULAR is set). At
10925 this point we have not seen all the input files, so it is
10926 possible that DEF_REGULAR is not set now but will be set
10927 later (it is never cleared). We account for that
10928 possibility below by storing information in the
10929 relocs_copied field of the hash table entry. */
10930 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
10931 && (sec
->flags
& SEC_ALLOC
) != 0
10932 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
10933 || (h
!= NULL
&& ! h
->needs_plt
10934 && (! info
->symbolic
|| ! h
->def_regular
))))
10936 struct elf32_arm_relocs_copied
*p
, **head
;
10938 /* When creating a shared object, we must copy these
10939 reloc types into the output file. We create a reloc
10940 section in dynobj and make room for this reloc. */
10941 if (sreloc
== NULL
)
10943 sreloc
= _bfd_elf_make_dynamic_reloc_section
10944 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
10946 if (sreloc
== NULL
)
10949 /* BPABI objects never have dynamic relocations mapped. */
10950 if (htab
->symbian_p
)
10954 flags
= bfd_get_section_flags (dynobj
, sreloc
);
10955 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
10956 bfd_set_section_flags (dynobj
, sreloc
, flags
);
10960 /* If this is a global symbol, we count the number of
10961 relocations we need for this symbol. */
10964 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
10968 /* Track dynamic relocs needed for local syms too.
10969 We really need local syms available to do this
10970 easily. Oh well. */
10973 Elf_Internal_Sym
*isym
;
10975 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
10980 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
10984 vpp
= &elf_section_data (s
)->local_dynrel
;
10985 head
= (struct elf32_arm_relocs_copied
**) vpp
;
10989 if (p
== NULL
|| p
->section
!= sec
)
10991 bfd_size_type amt
= sizeof *p
;
10993 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
11003 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
11009 /* This relocation describes the C++ object vtable hierarchy.
11010 Reconstruct it for later use during GC. */
11011 case R_ARM_GNU_VTINHERIT
:
11012 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
11016 /* This relocation describes which C++ vtable entries are actually
11017 used. Record for later use during GC. */
11018 case R_ARM_GNU_VTENTRY
:
11019 BFD_ASSERT (h
!= NULL
);
11021 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
11030 /* Unwinding tables are not referenced directly. This pass marks them as
11031 required if the corresponding code section is marked. */
11034 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
11035 elf_gc_mark_hook_fn gc_mark_hook
)
11038 Elf_Internal_Shdr
**elf_shdrp
;
11041 /* Marking EH data may cause additional code sections to be marked,
11042 requiring multiple passes. */
11047 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11051 if (! is_arm_elf (sub
))
11054 elf_shdrp
= elf_elfsections (sub
);
11055 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11057 Elf_Internal_Shdr
*hdr
;
11059 hdr
= &elf_section_data (o
)->this_hdr
;
11060 if (hdr
->sh_type
== SHT_ARM_EXIDX
11062 && hdr
->sh_link
< elf_numsections (sub
)
11064 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
11067 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11077 /* Treat mapping symbols as special target symbols. */
11080 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
11082 return bfd_is_arm_special_symbol_name (sym
->name
,
11083 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
11086 /* This is a copy of elf_find_function() from elf.c except that
11087 ARM mapping symbols are ignored when looking for function names
11088 and STT_ARM_TFUNC is considered to a function type. */
11091 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
11092 asection
* section
,
11093 asymbol
** symbols
,
11095 const char ** filename_ptr
,
11096 const char ** functionname_ptr
)
11098 const char * filename
= NULL
;
11099 asymbol
* func
= NULL
;
11100 bfd_vma low_func
= 0;
11103 for (p
= symbols
; *p
!= NULL
; p
++)
11105 elf_symbol_type
*q
;
11107 q
= (elf_symbol_type
*) *p
;
11109 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
11114 filename
= bfd_asymbol_name (&q
->symbol
);
11117 case STT_ARM_TFUNC
:
11119 /* Skip mapping symbols. */
11120 if ((q
->symbol
.flags
& BSF_LOCAL
)
11121 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
11122 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
11124 /* Fall through. */
11125 if (bfd_get_section (&q
->symbol
) == section
11126 && q
->symbol
.value
>= low_func
11127 && q
->symbol
.value
<= offset
)
11129 func
= (asymbol
*) q
;
11130 low_func
= q
->symbol
.value
;
11140 *filename_ptr
= filename
;
11141 if (functionname_ptr
)
11142 *functionname_ptr
= bfd_asymbol_name (func
);
11148 /* Find the nearest line to a particular section and offset, for error
11149 reporting. This code is a duplicate of the code in elf.c, except
11150 that it uses arm_elf_find_function. */
11153 elf32_arm_find_nearest_line (bfd
* abfd
,
11154 asection
* section
,
11155 asymbol
** symbols
,
11157 const char ** filename_ptr
,
11158 const char ** functionname_ptr
,
11159 unsigned int * line_ptr
)
11161 bfd_boolean found
= FALSE
;
11163 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11165 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11166 filename_ptr
, functionname_ptr
,
11168 & elf_tdata (abfd
)->dwarf2_find_line_info
))
11170 if (!*functionname_ptr
)
11171 arm_elf_find_function (abfd
, section
, symbols
, offset
,
11172 *filename_ptr
? NULL
: filename_ptr
,
11178 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
11179 & found
, filename_ptr
,
11180 functionname_ptr
, line_ptr
,
11181 & elf_tdata (abfd
)->line_info
))
11184 if (found
&& (*functionname_ptr
|| *line_ptr
))
11187 if (symbols
== NULL
)
11190 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
11191 filename_ptr
, functionname_ptr
))
11199 elf32_arm_find_inliner_info (bfd
* abfd
,
11200 const char ** filename_ptr
,
11201 const char ** functionname_ptr
,
11202 unsigned int * line_ptr
)
11205 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11206 functionname_ptr
, line_ptr
,
11207 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11211 /* Adjust a symbol defined by a dynamic object and referenced by a
11212 regular object. The current definition is in some section of the
11213 dynamic object, but we're not including those sections. We have to
11214 change the definition to something the rest of the link can
11218 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
11219 struct elf_link_hash_entry
* h
)
11223 struct elf32_arm_link_hash_entry
* eh
;
11224 struct elf32_arm_link_hash_table
*globals
;
11226 globals
= elf32_arm_hash_table (info
);
11227 dynobj
= elf_hash_table (info
)->dynobj
;
11229 /* Make sure we know what is going on here. */
11230 BFD_ASSERT (dynobj
!= NULL
11232 || h
->u
.weakdef
!= NULL
11235 && !h
->def_regular
)));
11237 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11239 /* If this is a function, put it in the procedure linkage table. We
11240 will fill in the contents of the procedure linkage table later,
11241 when we know the address of the .got section. */
11242 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
11245 if (h
->plt
.refcount
<= 0
11246 || SYMBOL_CALLS_LOCAL (info
, h
)
11247 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
11248 && h
->root
.type
== bfd_link_hash_undefweak
))
11250 /* This case can occur if we saw a PLT32 reloc in an input
11251 file, but the symbol was never referred to by a dynamic
11252 object, or if all references were garbage collected. In
11253 such a case, we don't actually need to build a procedure
11254 linkage table, and we can just do a PC24 reloc instead. */
11255 h
->plt
.offset
= (bfd_vma
) -1;
11256 eh
->plt_thumb_refcount
= 0;
11257 eh
->plt_maybe_thumb_refcount
= 0;
11265 /* It's possible that we incorrectly decided a .plt reloc was
11266 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11267 in check_relocs. We can't decide accurately between function
11268 and non-function syms in check-relocs; Objects loaded later in
11269 the link may change h->type. So fix it now. */
11270 h
->plt
.offset
= (bfd_vma
) -1;
11271 eh
->plt_thumb_refcount
= 0;
11272 eh
->plt_maybe_thumb_refcount
= 0;
11275 /* If this is a weak symbol, and there is a real definition, the
11276 processor independent code will have arranged for us to see the
11277 real definition first, and we can just use the same value. */
11278 if (h
->u
.weakdef
!= NULL
)
11280 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
11281 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
11282 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
11283 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
11287 /* If there are no non-GOT references, we do not need a copy
11289 if (!h
->non_got_ref
)
11292 /* This is a reference to a symbol defined by a dynamic object which
11293 is not a function. */
11295 /* If we are creating a shared library, we must presume that the
11296 only references to the symbol are via the global offset table.
11297 For such cases we need not do anything here; the relocations will
11298 be handled correctly by relocate_section. Relocatable executables
11299 can reference data in shared objects directly, so we don't need to
11300 do anything here. */
11301 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
11306 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
11307 h
->root
.root
.string
);
11311 /* We must allocate the symbol in our .dynbss section, which will
11312 become part of the .bss section of the executable. There will be
11313 an entry for this symbol in the .dynsym section. The dynamic
11314 object will contain position independent code, so all references
11315 from the dynamic object to this symbol will go through the global
11316 offset table. The dynamic linker will use the .dynsym entry to
11317 determine the address it must put in the global offset table, so
11318 both the dynamic object and the regular object will refer to the
11319 same memory location for the variable. */
11320 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
11321 BFD_ASSERT (s
!= NULL
);
11323 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11324 copy the initial value out of the dynamic object and into the
11325 runtime process image. We need to remember the offset into the
11326 .rel(a).bss section we are going to use. */
11327 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
11331 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
11332 BFD_ASSERT (srel
!= NULL
);
11333 srel
->size
+= RELOC_SIZE (globals
);
11337 return _bfd_elf_adjust_dynamic_copy (h
, s
);
11340 /* Allocate space in .plt, .got and associated reloc sections for
11344 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
11346 struct bfd_link_info
*info
;
11347 struct elf32_arm_link_hash_table
*htab
;
11348 struct elf32_arm_link_hash_entry
*eh
;
11349 struct elf32_arm_relocs_copied
*p
;
11350 bfd_signed_vma thumb_refs
;
11352 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11354 if (h
->root
.type
== bfd_link_hash_indirect
)
11357 if (h
->root
.type
== bfd_link_hash_warning
)
11358 /* When warning symbols are created, they **replace** the "real"
11359 entry in the hash table, thus we never get to see the real
11360 symbol in a hash traversal. So look at it now. */
11361 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11363 info
= (struct bfd_link_info
*) inf
;
11364 htab
= elf32_arm_hash_table (info
);
11366 if (htab
->root
.dynamic_sections_created
11367 && h
->plt
.refcount
> 0)
11369 /* Make sure this symbol is output as a dynamic symbol.
11370 Undefined weak syms won't yet be marked as dynamic. */
11371 if (h
->dynindx
== -1
11372 && !h
->forced_local
)
11374 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11379 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
11381 asection
*s
= htab
->splt
;
11383 /* If this is the first .plt entry, make room for the special
11386 s
->size
+= htab
->plt_header_size
;
11388 h
->plt
.offset
= s
->size
;
11390 /* If we will insert a Thumb trampoline before this PLT, leave room
11392 thumb_refs
= eh
->plt_thumb_refcount
;
11393 if (!htab
->use_blx
)
11394 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11396 if (thumb_refs
> 0)
11398 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
11399 s
->size
+= PLT_THUMB_STUB_SIZE
;
11402 /* If this symbol is not defined in a regular file, and we are
11403 not generating a shared library, then set the symbol to this
11404 location in the .plt. This is required to make function
11405 pointers compare as equal between the normal executable and
11406 the shared library. */
11408 && !h
->def_regular
)
11410 h
->root
.u
.def
.section
= s
;
11411 h
->root
.u
.def
.value
= h
->plt
.offset
;
11414 /* Make sure the function is not marked as Thumb, in case
11415 it is the target of an ABS32 relocation, which will
11416 point to the PLT entry. */
11417 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
11418 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11420 /* Make room for this entry. */
11421 s
->size
+= htab
->plt_entry_size
;
11423 if (!htab
->symbian_p
)
11425 /* We also need to make an entry in the .got.plt section, which
11426 will be placed in the .got section by the linker script. */
11427 eh
->plt_got_offset
= htab
->sgotplt
->size
;
11428 htab
->sgotplt
->size
+= 4;
11431 /* We also need to make an entry in the .rel(a).plt section. */
11432 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
11434 /* VxWorks executables have a second set of relocations for
11435 each PLT entry. They go in a separate relocation section,
11436 which is processed by the kernel loader. */
11437 if (htab
->vxworks_p
&& !info
->shared
)
11439 /* There is a relocation for the initial PLT entry:
11440 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11441 if (h
->plt
.offset
== htab
->plt_header_size
)
11442 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
11444 /* There are two extra relocations for each subsequent
11445 PLT entry: an R_ARM_32 relocation for the GOT entry,
11446 and an R_ARM_32 relocation for the PLT entry. */
11447 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
11452 h
->plt
.offset
= (bfd_vma
) -1;
11458 h
->plt
.offset
= (bfd_vma
) -1;
11462 if (h
->got
.refcount
> 0)
11466 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
11469 /* Make sure this symbol is output as a dynamic symbol.
11470 Undefined weak syms won't yet be marked as dynamic. */
11471 if (h
->dynindx
== -1
11472 && !h
->forced_local
)
11474 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11478 if (!htab
->symbian_p
)
11481 h
->got
.offset
= s
->size
;
11483 if (tls_type
== GOT_UNKNOWN
)
11486 if (tls_type
== GOT_NORMAL
)
11487 /* Non-TLS symbols need one GOT slot. */
11491 if (tls_type
& GOT_TLS_GD
)
11492 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11494 if (tls_type
& GOT_TLS_IE
)
11495 /* R_ARM_TLS_IE32 needs one GOT slot. */
11499 dyn
= htab
->root
.dynamic_sections_created
;
11502 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
11504 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11507 if (tls_type
!= GOT_NORMAL
11508 && (info
->shared
|| indx
!= 0)
11509 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11510 || h
->root
.type
!= bfd_link_hash_undefweak
))
11512 if (tls_type
& GOT_TLS_IE
)
11513 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11515 if (tls_type
& GOT_TLS_GD
)
11516 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11518 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
11519 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11521 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11522 || h
->root
.type
!= bfd_link_hash_undefweak
)
11524 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
11525 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11529 h
->got
.offset
= (bfd_vma
) -1;
11531 /* Allocate stubs for exported Thumb functions on v4t. */
11532 if (!htab
->use_blx
&& h
->dynindx
!= -1
11534 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
11535 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
11537 struct elf_link_hash_entry
* th
;
11538 struct bfd_link_hash_entry
* bh
;
11539 struct elf_link_hash_entry
* myh
;
11543 /* Create a new symbol to regist the real location of the function. */
11544 s
= h
->root
.u
.def
.section
;
11545 sprintf (name
, "__real_%s", h
->root
.root
.string
);
11546 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
11547 name
, BSF_GLOBAL
, s
,
11548 h
->root
.u
.def
.value
,
11549 NULL
, TRUE
, FALSE
, &bh
);
11551 myh
= (struct elf_link_hash_entry
*) bh
;
11552 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
11553 myh
->forced_local
= 1;
11554 eh
->export_glue
= myh
;
11555 th
= record_arm_to_thumb_glue (info
, h
);
11556 /* Point the symbol at the stub. */
11557 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11558 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
11559 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
11562 if (eh
->relocs_copied
== NULL
)
11565 /* In the shared -Bsymbolic case, discard space allocated for
11566 dynamic pc-relative relocs against symbols which turn out to be
11567 defined in regular objects. For the normal shared case, discard
11568 space for pc-relative relocs that have become local due to symbol
11569 visibility changes. */
11571 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
11573 /* The only relocs that use pc_count are R_ARM_REL32 and
11574 R_ARM_REL32_NOI, which will appear on something like
11575 ".long foo - .". We want calls to protected symbols to resolve
11576 directly to the function rather than going via the plt. If people
11577 want function pointer comparisons to work as expected then they
11578 should avoid writing assembly like ".long foo - .". */
11579 if (SYMBOL_CALLS_LOCAL (info
, h
))
11581 struct elf32_arm_relocs_copied
**pp
;
11583 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11585 p
->count
-= p
->pc_count
;
11594 if (elf32_arm_hash_table (info
)->vxworks_p
)
11596 struct elf32_arm_relocs_copied
**pp
;
11598 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11600 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
11607 /* Also discard relocs on undefined weak syms with non-default
11609 if (eh
->relocs_copied
!= NULL
11610 && h
->root
.type
== bfd_link_hash_undefweak
)
11612 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
11613 eh
->relocs_copied
= NULL
;
11615 /* Make sure undefined weak symbols are output as a dynamic
11617 else if (h
->dynindx
== -1
11618 && !h
->forced_local
)
11620 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11625 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
11626 && h
->root
.type
== bfd_link_hash_new
)
11628 /* Output absolute symbols so that we can create relocations
11629 against them. For normal symbols we output a relocation
11630 against the section that contains them. */
11631 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11638 /* For the non-shared case, discard space for relocs against
11639 symbols which turn out to need copy relocs or are not
11642 if (!h
->non_got_ref
11643 && ((h
->def_dynamic
11644 && !h
->def_regular
)
11645 || (htab
->root
.dynamic_sections_created
11646 && (h
->root
.type
== bfd_link_hash_undefweak
11647 || h
->root
.type
== bfd_link_hash_undefined
))))
11649 /* Make sure this symbol is output as a dynamic symbol.
11650 Undefined weak syms won't yet be marked as dynamic. */
11651 if (h
->dynindx
== -1
11652 && !h
->forced_local
)
11654 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11658 /* If that succeeded, we know we'll be keeping all the
11660 if (h
->dynindx
!= -1)
11664 eh
->relocs_copied
= NULL
;
11669 /* Finally, allocate space. */
11670 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11672 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
11673 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
11679 /* Find any dynamic relocs that apply to read-only sections. */
11682 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
11684 struct elf32_arm_link_hash_entry
* eh
;
11685 struct elf32_arm_relocs_copied
* p
;
11687 if (h
->root
.type
== bfd_link_hash_warning
)
11688 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11690 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11691 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11693 asection
*s
= p
->section
;
11695 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
11697 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11699 info
->flags
|= DF_TEXTREL
;
11701 /* Not an error, just cut short the traversal. */
11709 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
11712 struct elf32_arm_link_hash_table
*globals
;
11714 globals
= elf32_arm_hash_table (info
);
11715 globals
->byteswap_code
= byteswap_code
;
11718 /* Set the sizes of the dynamic sections. */
11721 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
11722 struct bfd_link_info
* info
)
11727 bfd_boolean relocs
;
11729 struct elf32_arm_link_hash_table
*htab
;
11731 htab
= elf32_arm_hash_table (info
);
11732 dynobj
= elf_hash_table (info
)->dynobj
;
11733 BFD_ASSERT (dynobj
!= NULL
);
11734 check_use_blx (htab
);
11736 if (elf_hash_table (info
)->dynamic_sections_created
)
11738 /* Set the contents of the .interp section to the interpreter. */
11739 if (info
->executable
)
11741 s
= bfd_get_section_by_name (dynobj
, ".interp");
11742 BFD_ASSERT (s
!= NULL
);
11743 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
11744 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
11748 /* Set up .got offsets for local syms, and space for local dynamic
11750 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11752 bfd_signed_vma
*local_got
;
11753 bfd_signed_vma
*end_local_got
;
11754 char *local_tls_type
;
11755 bfd_size_type locsymcount
;
11756 Elf_Internal_Shdr
*symtab_hdr
;
11758 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
11760 if (! is_arm_elf (ibfd
))
11763 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
11765 struct elf32_arm_relocs_copied
*p
;
11767 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
11769 if (!bfd_is_abs_section (p
->section
)
11770 && bfd_is_abs_section (p
->section
->output_section
))
11772 /* Input section has been discarded, either because
11773 it is a copy of a linkonce section or due to
11774 linker script /DISCARD/, so we'll be discarding
11777 else if (is_vxworks
11778 && strcmp (p
->section
->output_section
->name
,
11781 /* Relocations in vxworks .tls_vars sections are
11782 handled specially by the loader. */
11784 else if (p
->count
!= 0)
11786 srel
= elf_section_data (p
->section
)->sreloc
;
11787 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
11788 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
11789 info
->flags
|= DF_TEXTREL
;
11794 local_got
= elf_local_got_refcounts (ibfd
);
11798 symtab_hdr
= & elf_symtab_hdr (ibfd
);
11799 locsymcount
= symtab_hdr
->sh_info
;
11800 end_local_got
= local_got
+ locsymcount
;
11801 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
11803 srel
= htab
->srelgot
;
11804 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
11806 if (*local_got
> 0)
11808 *local_got
= s
->size
;
11809 if (*local_tls_type
& GOT_TLS_GD
)
11810 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11812 if (*local_tls_type
& GOT_TLS_IE
)
11814 if (*local_tls_type
== GOT_NORMAL
)
11817 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
11818 srel
->size
+= RELOC_SIZE (htab
);
11821 *local_got
= (bfd_vma
) -1;
11825 if (htab
->tls_ldm_got
.refcount
> 0)
11827 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11828 for R_ARM_TLS_LDM32 relocations. */
11829 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
11830 htab
->sgot
->size
+= 8;
11832 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11835 htab
->tls_ldm_got
.offset
= -1;
11837 /* Allocate global sym .plt and .got entries, and space for global
11838 sym dynamic relocs. */
11839 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
11841 /* Here we rummage through the found bfds to collect glue information. */
11842 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11844 if (! is_arm_elf (ibfd
))
11847 /* Initialise mapping tables for code/data. */
11848 bfd_elf32_arm_init_maps (ibfd
);
11850 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
11851 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
11852 /* xgettext:c-format */
11853 _bfd_error_handler (_("Errors encountered processing file %s"),
11857 /* Allocate space for the glue sections now that we've sized them. */
11858 bfd_elf32_arm_allocate_interworking_sections (info
);
11860 /* The check_relocs and adjust_dynamic_symbol entry points have
11861 determined the sizes of the various dynamic sections. Allocate
11862 memory for them. */
11865 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
11869 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
11872 /* It's OK to base decisions on the section name, because none
11873 of the dynobj section names depend upon the input files. */
11874 name
= bfd_get_section_name (dynobj
, s
);
11876 if (strcmp (name
, ".plt") == 0)
11878 /* Remember whether there is a PLT. */
11879 plt
= s
->size
!= 0;
11881 else if (CONST_STRNEQ (name
, ".rel"))
11885 /* Remember whether there are any reloc sections other
11886 than .rel(a).plt and .rela.plt.unloaded. */
11887 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
11890 /* We use the reloc_count field as a counter if we need
11891 to copy relocs into the output file. */
11892 s
->reloc_count
= 0;
11895 else if (! CONST_STRNEQ (name
, ".got")
11896 && strcmp (name
, ".dynbss") != 0)
11898 /* It's not one of our sections, so don't allocate space. */
11904 /* If we don't need this section, strip it from the
11905 output file. This is mostly to handle .rel(a).bss and
11906 .rel(a).plt. We must create both sections in
11907 create_dynamic_sections, because they must be created
11908 before the linker maps input sections to output
11909 sections. The linker does that before
11910 adjust_dynamic_symbol is called, and it is that
11911 function which decides whether anything needs to go
11912 into these sections. */
11913 s
->flags
|= SEC_EXCLUDE
;
11917 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
11920 /* Allocate memory for the section contents. */
11921 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
11922 if (s
->contents
== NULL
)
11926 if (elf_hash_table (info
)->dynamic_sections_created
)
11928 /* Add some entries to the .dynamic section. We fill in the
11929 values later, in elf32_arm_finish_dynamic_sections, but we
11930 must add the entries now so that we get the correct size for
11931 the .dynamic section. The DT_DEBUG entry is filled in by the
11932 dynamic linker and used by the debugger. */
11933 #define add_dynamic_entry(TAG, VAL) \
11934 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11936 if (info
->executable
)
11938 if (!add_dynamic_entry (DT_DEBUG
, 0))
11944 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
11945 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
11946 || !add_dynamic_entry (DT_PLTREL
,
11947 htab
->use_rel
? DT_REL
: DT_RELA
)
11948 || !add_dynamic_entry (DT_JMPREL
, 0))
11956 if (!add_dynamic_entry (DT_REL
, 0)
11957 || !add_dynamic_entry (DT_RELSZ
, 0)
11958 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
11963 if (!add_dynamic_entry (DT_RELA
, 0)
11964 || !add_dynamic_entry (DT_RELASZ
, 0)
11965 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
11970 /* If any dynamic relocs apply to a read-only section,
11971 then we need a DT_TEXTREL entry. */
11972 if ((info
->flags
& DF_TEXTREL
) == 0)
11973 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
11976 if ((info
->flags
& DF_TEXTREL
) != 0)
11978 if (!add_dynamic_entry (DT_TEXTREL
, 0))
11981 if (htab
->vxworks_p
11982 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
11985 #undef add_dynamic_entry
11990 /* Finish up dynamic symbol handling. We set the contents of various
11991 dynamic sections here. */
11994 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
11995 struct bfd_link_info
* info
,
11996 struct elf_link_hash_entry
* h
,
11997 Elf_Internal_Sym
* sym
)
12000 struct elf32_arm_link_hash_table
*htab
;
12001 struct elf32_arm_link_hash_entry
*eh
;
12003 dynobj
= elf_hash_table (info
)->dynobj
;
12004 htab
= elf32_arm_hash_table (info
);
12005 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12007 if (h
->plt
.offset
!= (bfd_vma
) -1)
12013 Elf_Internal_Rela rel
;
12015 /* This symbol has an entry in the procedure linkage table. Set
12018 BFD_ASSERT (h
->dynindx
!= -1);
12020 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12021 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
12022 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
12024 /* Fill in the entry in the procedure linkage table. */
12025 if (htab
->symbian_p
)
12027 put_arm_insn (htab
, output_bfd
,
12028 elf32_arm_symbian_plt_entry
[0],
12029 splt
->contents
+ h
->plt
.offset
);
12030 bfd_put_32 (output_bfd
,
12031 elf32_arm_symbian_plt_entry
[1],
12032 splt
->contents
+ h
->plt
.offset
+ 4);
12034 /* Fill in the entry in the .rel.plt section. */
12035 rel
.r_offset
= (splt
->output_section
->vma
12036 + splt
->output_offset
12037 + h
->plt
.offset
+ 4);
12038 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12040 /* Get the index in the procedure linkage table which
12041 corresponds to this symbol. This is the index of this symbol
12042 in all the symbols for which we are making plt entries. The
12043 first entry in the procedure linkage table is reserved. */
12044 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
12045 / htab
->plt_entry_size
);
12049 bfd_vma got_offset
, got_address
, plt_address
;
12050 bfd_vma got_displacement
;
12054 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12055 BFD_ASSERT (sgot
!= NULL
);
12057 /* Get the offset into the .got.plt table of the entry that
12058 corresponds to this function. */
12059 got_offset
= eh
->plt_got_offset
;
12061 /* Get the index in the procedure linkage table which
12062 corresponds to this symbol. This is the index of this symbol
12063 in all the symbols for which we are making plt entries. The
12064 first three entries in .got.plt are reserved; after that
12065 symbols appear in the same order as in .plt. */
12066 plt_index
= (got_offset
- 12) / 4;
12068 /* Calculate the address of the GOT entry. */
12069 got_address
= (sgot
->output_section
->vma
12070 + sgot
->output_offset
12073 /* ...and the address of the PLT entry. */
12074 plt_address
= (splt
->output_section
->vma
12075 + splt
->output_offset
12078 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
12079 if (htab
->vxworks_p
&& info
->shared
)
12084 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12086 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
12088 val
|= got_address
- sgot
->output_section
->vma
;
12090 val
|= plt_index
* RELOC_SIZE (htab
);
12091 if (i
== 2 || i
== 5)
12092 bfd_put_32 (output_bfd
, val
, ptr
);
12094 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12097 else if (htab
->vxworks_p
)
12102 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12104 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
12106 val
|= got_address
;
12108 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
12110 val
|= plt_index
* RELOC_SIZE (htab
);
12111 if (i
== 2 || i
== 5)
12112 bfd_put_32 (output_bfd
, val
, ptr
);
12114 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12117 loc
= (htab
->srelplt2
->contents
12118 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
12120 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12121 referencing the GOT for this PLT entry. */
12122 rel
.r_offset
= plt_address
+ 8;
12123 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12124 rel
.r_addend
= got_offset
;
12125 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12126 loc
+= RELOC_SIZE (htab
);
12128 /* Create the R_ARM_ABS32 relocation referencing the
12129 beginning of the PLT for this GOT entry. */
12130 rel
.r_offset
= got_address
;
12131 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12133 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12137 bfd_signed_vma thumb_refs
;
12138 /* Calculate the displacement between the PLT slot and the
12139 entry in the GOT. The eight-byte offset accounts for the
12140 value produced by adding to pc in the first instruction
12141 of the PLT stub. */
12142 got_displacement
= got_address
- (plt_address
+ 8);
12144 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
12146 thumb_refs
= eh
->plt_thumb_refcount
;
12147 if (!htab
->use_blx
)
12148 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12150 if (thumb_refs
> 0)
12152 put_thumb_insn (htab
, output_bfd
,
12153 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
12154 put_thumb_insn (htab
, output_bfd
,
12155 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
12158 put_arm_insn (htab
, output_bfd
,
12159 elf32_arm_plt_entry
[0]
12160 | ((got_displacement
& 0x0ff00000) >> 20),
12162 put_arm_insn (htab
, output_bfd
,
12163 elf32_arm_plt_entry
[1]
12164 | ((got_displacement
& 0x000ff000) >> 12),
12166 put_arm_insn (htab
, output_bfd
,
12167 elf32_arm_plt_entry
[2]
12168 | (got_displacement
& 0x00000fff),
12170 #ifdef FOUR_WORD_PLT
12171 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
12175 /* Fill in the entry in the global offset table. */
12176 bfd_put_32 (output_bfd
,
12177 (splt
->output_section
->vma
12178 + splt
->output_offset
),
12179 sgot
->contents
+ got_offset
);
12181 /* Fill in the entry in the .rel(a).plt section. */
12183 rel
.r_offset
= got_address
;
12184 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
12187 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
12188 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12190 if (!h
->def_regular
)
12192 /* Mark the symbol as undefined, rather than as defined in
12193 the .plt section. Leave the value alone. */
12194 sym
->st_shndx
= SHN_UNDEF
;
12195 /* If the symbol is weak, we do need to clear the value.
12196 Otherwise, the PLT entry would provide a definition for
12197 the symbol even if the symbol wasn't defined anywhere,
12198 and so the symbol would never be NULL. */
12199 if (!h
->ref_regular_nonweak
)
12204 if (h
->got
.offset
!= (bfd_vma
) -1
12205 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
12206 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
12210 Elf_Internal_Rela rel
;
12214 /* This symbol has an entry in the global offset table. Set it
12216 sgot
= bfd_get_section_by_name (dynobj
, ".got");
12217 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
12218 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
12220 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
12222 rel
.r_offset
= (sgot
->output_section
->vma
12223 + sgot
->output_offset
12226 /* If this is a static link, or it is a -Bsymbolic link and the
12227 symbol is defined locally or was forced to be local because
12228 of a version file, we just want to emit a RELATIVE reloc.
12229 The entry in the global offset table will already have been
12230 initialized in the relocate_section function. */
12232 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12234 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
12235 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12236 if (!htab
->use_rel
)
12238 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
12239 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12244 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
12245 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12246 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12249 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
12250 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12256 Elf_Internal_Rela rel
;
12259 /* This symbol needs a copy reloc. Set it up. */
12260 BFD_ASSERT (h
->dynindx
!= -1
12261 && (h
->root
.type
== bfd_link_hash_defined
12262 || h
->root
.type
== bfd_link_hash_defweak
));
12264 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
12265 RELOC_SECTION (htab
, ".bss"));
12266 BFD_ASSERT (s
!= NULL
);
12269 rel
.r_offset
= (h
->root
.u
.def
.value
12270 + h
->root
.u
.def
.section
->output_section
->vma
12271 + h
->root
.u
.def
.section
->output_offset
);
12272 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
12273 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
12274 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12277 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12278 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12279 to the ".got" section. */
12280 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
12281 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
12282 sym
->st_shndx
= SHN_ABS
;
12287 /* Finish up the dynamic sections. */
12290 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
12296 dynobj
= elf_hash_table (info
)->dynobj
;
12298 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12299 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
12300 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
12302 if (elf_hash_table (info
)->dynamic_sections_created
)
12305 Elf32_External_Dyn
*dyncon
, *dynconend
;
12306 struct elf32_arm_link_hash_table
*htab
;
12308 htab
= elf32_arm_hash_table (info
);
12309 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12310 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
12312 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
12313 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
12315 for (; dyncon
< dynconend
; dyncon
++)
12317 Elf_Internal_Dyn dyn
;
12321 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
12328 if (htab
->vxworks_p
12329 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12330 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12335 goto get_vma_if_bpabi
;
12338 goto get_vma_if_bpabi
;
12341 goto get_vma_if_bpabi
;
12343 name
= ".gnu.version";
12344 goto get_vma_if_bpabi
;
12346 name
= ".gnu.version_d";
12347 goto get_vma_if_bpabi
;
12349 name
= ".gnu.version_r";
12350 goto get_vma_if_bpabi
;
12356 name
= RELOC_SECTION (htab
, ".plt");
12358 s
= bfd_get_section_by_name (output_bfd
, name
);
12359 BFD_ASSERT (s
!= NULL
);
12360 if (!htab
->symbian_p
)
12361 dyn
.d_un
.d_ptr
= s
->vma
;
12363 /* In the BPABI, tags in the PT_DYNAMIC section point
12364 at the file offset, not the memory address, for the
12365 convenience of the post linker. */
12366 dyn
.d_un
.d_ptr
= s
->filepos
;
12367 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12371 if (htab
->symbian_p
)
12376 s
= bfd_get_section_by_name (output_bfd
,
12377 RELOC_SECTION (htab
, ".plt"));
12378 BFD_ASSERT (s
!= NULL
);
12379 dyn
.d_un
.d_val
= s
->size
;
12380 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12385 if (!htab
->symbian_p
)
12387 /* My reading of the SVR4 ABI indicates that the
12388 procedure linkage table relocs (DT_JMPREL) should be
12389 included in the overall relocs (DT_REL). This is
12390 what Solaris does. However, UnixWare can not handle
12391 that case. Therefore, we override the DT_RELSZ entry
12392 here to make it not include the JMPREL relocs. Since
12393 the linker script arranges for .rel(a).plt to follow all
12394 other relocation sections, we don't have to worry
12395 about changing the DT_REL entry. */
12396 s
= bfd_get_section_by_name (output_bfd
,
12397 RELOC_SECTION (htab
, ".plt"));
12399 dyn
.d_un
.d_val
-= s
->size
;
12400 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12403 /* Fall through. */
12407 /* In the BPABI, the DT_REL tag must point at the file
12408 offset, not the VMA, of the first relocation
12409 section. So, we use code similar to that in
12410 elflink.c, but do not check for SHF_ALLOC on the
12411 relcoation section, since relocations sections are
12412 never allocated under the BPABI. The comments above
12413 about Unixware notwithstanding, we include all of the
12414 relocations here. */
12415 if (htab
->symbian_p
)
12418 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12419 ? SHT_REL
: SHT_RELA
);
12420 dyn
.d_un
.d_val
= 0;
12421 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
12423 Elf_Internal_Shdr
*hdr
12424 = elf_elfsections (output_bfd
)[i
];
12425 if (hdr
->sh_type
== type
)
12427 if (dyn
.d_tag
== DT_RELSZ
12428 || dyn
.d_tag
== DT_RELASZ
)
12429 dyn
.d_un
.d_val
+= hdr
->sh_size
;
12430 else if ((ufile_ptr
) hdr
->sh_offset
12431 <= dyn
.d_un
.d_val
- 1)
12432 dyn
.d_un
.d_val
= hdr
->sh_offset
;
12435 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12439 /* Set the bottom bit of DT_INIT/FINI if the
12440 corresponding function is Thumb. */
12442 name
= info
->init_function
;
12445 name
= info
->fini_function
;
12447 /* If it wasn't set by elf_bfd_final_link
12448 then there is nothing to adjust. */
12449 if (dyn
.d_un
.d_val
!= 0)
12451 struct elf_link_hash_entry
* eh
;
12453 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
12454 FALSE
, FALSE
, TRUE
);
12456 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
12458 dyn
.d_un
.d_val
|= 1;
12459 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12466 /* Fill in the first entry in the procedure linkage table. */
12467 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
12469 const bfd_vma
*plt0_entry
;
12470 bfd_vma got_address
, plt_address
, got_displacement
;
12472 /* Calculate the addresses of the GOT and PLT. */
12473 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
12474 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
12476 if (htab
->vxworks_p
)
12478 /* The VxWorks GOT is relocated by the dynamic linker.
12479 Therefore, we must emit relocations rather than simply
12480 computing the values now. */
12481 Elf_Internal_Rela rel
;
12483 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
12484 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12485 splt
->contents
+ 0);
12486 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12487 splt
->contents
+ 4);
12488 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12489 splt
->contents
+ 8);
12490 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
12492 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12493 rel
.r_offset
= plt_address
+ 12;
12494 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12496 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
12497 htab
->srelplt2
->contents
);
12501 got_displacement
= got_address
- (plt_address
+ 16);
12503 plt0_entry
= elf32_arm_plt0_entry
;
12504 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12505 splt
->contents
+ 0);
12506 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12507 splt
->contents
+ 4);
12508 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12509 splt
->contents
+ 8);
12510 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
12511 splt
->contents
+ 12);
12513 #ifdef FOUR_WORD_PLT
12514 /* The displacement value goes in the otherwise-unused
12515 last word of the second entry. */
12516 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
12518 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
12523 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12524 really seem like the right value. */
12525 if (splt
->output_section
->owner
== output_bfd
)
12526 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
12528 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
12530 /* Correct the .rel(a).plt.unloaded relocations. They will have
12531 incorrect symbol indexes. */
12535 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
12536 / htab
->plt_entry_size
);
12537 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
12539 for (; num_plts
; num_plts
--)
12541 Elf_Internal_Rela rel
;
12543 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12544 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12545 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12546 p
+= RELOC_SIZE (htab
);
12548 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12549 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12550 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12551 p
+= RELOC_SIZE (htab
);
12556 /* Fill in the first three entries in the global offset table. */
12559 if (sgot
->size
> 0)
12562 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12564 bfd_put_32 (output_bfd
,
12565 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
12567 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
12568 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
12571 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
12578 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
12580 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
12581 struct elf32_arm_link_hash_table
*globals
;
12583 i_ehdrp
= elf_elfheader (abfd
);
12585 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
12586 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
12588 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
12589 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
12593 globals
= elf32_arm_hash_table (link_info
);
12594 if (globals
->byteswap_code
)
12595 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
12599 static enum elf_reloc_type_class
12600 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
12602 switch ((int) ELF32_R_TYPE (rela
->r_info
))
12604 case R_ARM_RELATIVE
:
12605 return reloc_class_relative
;
12606 case R_ARM_JUMP_SLOT
:
12607 return reloc_class_plt
;
12609 return reloc_class_copy
;
12611 return reloc_class_normal
;
12615 /* Set the right machine number for an Arm ELF file. */
12618 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
12620 if (hdr
->sh_type
== SHT_NOTE
)
12621 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
12627 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
12629 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
12632 /* Return TRUE if this is an unwinding table entry. */
12635 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
12637 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
12638 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
12642 /* Set the type and flags for an ARM section. We do this by
12643 the section name, which is a hack, but ought to work. */
12646 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
12650 name
= bfd_get_section_name (abfd
, sec
);
12652 if (is_arm_elf_unwind_section_name (abfd
, name
))
12654 hdr
->sh_type
= SHT_ARM_EXIDX
;
12655 hdr
->sh_flags
|= SHF_LINK_ORDER
;
12660 /* Handle an ARM specific section when reading an object file. This is
12661 called when bfd_section_from_shdr finds a section with an unknown
12665 elf32_arm_section_from_shdr (bfd
*abfd
,
12666 Elf_Internal_Shdr
* hdr
,
12670 /* There ought to be a place to keep ELF backend specific flags, but
12671 at the moment there isn't one. We just keep track of the
12672 sections by their name, instead. Fortunately, the ABI gives
12673 names for all the ARM specific sections, so we will probably get
12675 switch (hdr
->sh_type
)
12677 case SHT_ARM_EXIDX
:
12678 case SHT_ARM_PREEMPTMAP
:
12679 case SHT_ARM_ATTRIBUTES
:
12686 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
12692 /* A structure used to record a list of sections, independently
12693 of the next and prev fields in the asection structure. */
12694 typedef struct section_list
12697 struct section_list
* next
;
12698 struct section_list
* prev
;
12702 /* Unfortunately we need to keep a list of sections for which
12703 an _arm_elf_section_data structure has been allocated. This
12704 is because it is possible for functions like elf32_arm_write_section
12705 to be called on a section which has had an elf_data_structure
12706 allocated for it (and so the used_by_bfd field is valid) but
12707 for which the ARM extended version of this structure - the
12708 _arm_elf_section_data structure - has not been allocated. */
12709 static section_list
* sections_with_arm_elf_section_data
= NULL
;
12712 record_section_with_arm_elf_section_data (asection
* sec
)
12714 struct section_list
* entry
;
12716 entry
= bfd_malloc (sizeof (* entry
));
12720 entry
->next
= sections_with_arm_elf_section_data
;
12721 entry
->prev
= NULL
;
12722 if (entry
->next
!= NULL
)
12723 entry
->next
->prev
= entry
;
12724 sections_with_arm_elf_section_data
= entry
;
12727 static struct section_list
*
12728 find_arm_elf_section_entry (asection
* sec
)
12730 struct section_list
* entry
;
12731 static struct section_list
* last_entry
= NULL
;
12733 /* This is a short cut for the typical case where the sections are added
12734 to the sections_with_arm_elf_section_data list in forward order and
12735 then looked up here in backwards order. This makes a real difference
12736 to the ld-srec/sec64k.exp linker test. */
12737 entry
= sections_with_arm_elf_section_data
;
12738 if (last_entry
!= NULL
)
12740 if (last_entry
->sec
== sec
)
12741 entry
= last_entry
;
12742 else if (last_entry
->next
!= NULL
12743 && last_entry
->next
->sec
== sec
)
12744 entry
= last_entry
->next
;
12747 for (; entry
; entry
= entry
->next
)
12748 if (entry
->sec
== sec
)
12752 /* Record the entry prior to this one - it is the entry we are most
12753 likely to want to locate next time. Also this way if we have been
12754 called from unrecord_section_with_arm_elf_section_data() we will not
12755 be caching a pointer that is about to be freed. */
12756 last_entry
= entry
->prev
;
12761 static _arm_elf_section_data
*
12762 get_arm_elf_section_data (asection
* sec
)
12764 struct section_list
* entry
;
12766 entry
= find_arm_elf_section_entry (sec
);
12769 return elf32_arm_section_data (entry
->sec
);
12775 unrecord_section_with_arm_elf_section_data (asection
* sec
)
12777 struct section_list
* entry
;
12779 entry
= find_arm_elf_section_entry (sec
);
12783 if (entry
->prev
!= NULL
)
12784 entry
->prev
->next
= entry
->next
;
12785 if (entry
->next
!= NULL
)
12786 entry
->next
->prev
= entry
->prev
;
12787 if (entry
== sections_with_arm_elf_section_data
)
12788 sections_with_arm_elf_section_data
= entry
->next
;
12797 struct bfd_link_info
*info
;
12800 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
12801 asection
*, struct elf_link_hash_entry
*);
12802 } output_arch_syminfo
;
12804 enum map_symbol_type
12812 /* Output a single mapping symbol. */
12815 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
12816 enum map_symbol_type type
,
12819 static const char *names
[3] = {"$a", "$t", "$d"};
12820 struct elf32_arm_link_hash_table
*htab
;
12821 Elf_Internal_Sym sym
;
12823 htab
= elf32_arm_hash_table (osi
->info
);
12824 sym
.st_value
= osi
->sec
->output_section
->vma
12825 + osi
->sec
->output_offset
12829 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
12830 sym
.st_shndx
= osi
->sec_shndx
;
12831 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
12835 /* Output mapping symbols for PLT entries associated with H. */
12838 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
12840 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
12841 struct elf32_arm_link_hash_table
*htab
;
12842 struct elf32_arm_link_hash_entry
*eh
;
12845 htab
= elf32_arm_hash_table (osi
->info
);
12847 if (h
->root
.type
== bfd_link_hash_indirect
)
12850 if (h
->root
.type
== bfd_link_hash_warning
)
12851 /* When warning symbols are created, they **replace** the "real"
12852 entry in the hash table, thus we never get to see the real
12853 symbol in a hash traversal. So look at it now. */
12854 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12856 if (h
->plt
.offset
== (bfd_vma
) -1)
12859 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12860 addr
= h
->plt
.offset
;
12861 if (htab
->symbian_p
)
12863 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12865 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
12868 else if (htab
->vxworks_p
)
12870 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12872 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
12874 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
12876 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
12881 bfd_signed_vma thumb_refs
;
12883 thumb_refs
= eh
->plt_thumb_refcount
;
12884 if (!htab
->use_blx
)
12885 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12887 if (thumb_refs
> 0)
12889 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
12892 #ifdef FOUR_WORD_PLT
12893 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12895 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
12898 /* A three-word PLT with no Thumb thunk contains only Arm code,
12899 so only need to output a mapping symbol for the first PLT entry and
12900 entries with thumb thunks. */
12901 if (thumb_refs
> 0 || addr
== 20)
12903 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12912 /* Output a single local symbol for a generated stub. */
12915 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
12916 bfd_vma offset
, bfd_vma size
)
12918 struct elf32_arm_link_hash_table
*htab
;
12919 Elf_Internal_Sym sym
;
12921 htab
= elf32_arm_hash_table (osi
->info
);
12922 sym
.st_value
= osi
->sec
->output_section
->vma
12923 + osi
->sec
->output_offset
12925 sym
.st_size
= size
;
12927 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
12928 sym
.st_shndx
= osi
->sec_shndx
;
12929 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
12933 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
12936 struct elf32_arm_stub_hash_entry
*stub_entry
;
12937 struct bfd_link_info
*info
;
12938 struct elf32_arm_link_hash_table
*htab
;
12939 asection
*stub_sec
;
12942 output_arch_syminfo
*osi
;
12943 const insn_sequence
*template;
12944 enum stub_insn_type prev_type
;
12947 enum map_symbol_type sym_type
;
12949 /* Massage our args to the form they really have. */
12950 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
12951 osi
= (output_arch_syminfo
*) in_arg
;
12955 htab
= elf32_arm_hash_table (info
);
12956 stub_sec
= stub_entry
->stub_sec
;
12958 /* Ensure this stub is attached to the current section being
12960 if (stub_sec
!= osi
->sec
)
12963 addr
= (bfd_vma
) stub_entry
->stub_offset
;
12964 stub_name
= stub_entry
->output_name
;
12966 template = stub_entry
->stub_template
;
12967 switch (template[0].type
)
12970 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
12975 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
12976 stub_entry
->stub_size
))
12984 prev_type
= DATA_TYPE
;
12986 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
12988 switch (template[i
].type
)
12991 sym_type
= ARM_MAP_ARM
;
12996 sym_type
= ARM_MAP_THUMB
;
13000 sym_type
= ARM_MAP_DATA
;
13008 if (template[i
].type
!= prev_type
)
13010 prev_type
= template[i
].type
;
13011 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
13015 switch (template[i
].type
)
13039 /* Output mapping symbols for linker generated sections. */
13042 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
13043 struct bfd_link_info
*info
,
13045 int (*func
) (void *, const char *,
13046 Elf_Internal_Sym
*,
13048 struct elf_link_hash_entry
*))
13050 output_arch_syminfo osi
;
13051 struct elf32_arm_link_hash_table
*htab
;
13053 bfd_size_type size
;
13055 htab
= elf32_arm_hash_table (info
);
13056 check_use_blx (htab
);
13062 /* ARM->Thumb glue. */
13063 if (htab
->arm_glue_size
> 0)
13065 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13066 ARM2THUMB_GLUE_SECTION_NAME
);
13068 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13069 (output_bfd
, osi
.sec
->output_section
);
13070 if (info
->shared
|| htab
->root
.is_relocatable_executable
13071 || htab
->pic_veneer
)
13072 size
= ARM2THUMB_PIC_GLUE_SIZE
;
13073 else if (htab
->use_blx
)
13074 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
13076 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
13078 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
13080 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
13081 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
13085 /* Thumb->ARM glue. */
13086 if (htab
->thumb_glue_size
> 0)
13088 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13089 THUMB2ARM_GLUE_SECTION_NAME
);
13091 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13092 (output_bfd
, osi
.sec
->output_section
);
13093 size
= THUMB2ARM_GLUE_SIZE
;
13095 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
13097 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
13098 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
13102 /* ARMv4 BX veneers. */
13103 if (htab
->bx_glue_size
> 0)
13105 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13106 ARM_BX_GLUE_SECTION_NAME
);
13108 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13109 (output_bfd
, osi
.sec
->output_section
);
13111 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
13114 /* Long calls stubs. */
13115 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
13117 asection
* stub_sec
;
13119 for (stub_sec
= htab
->stub_bfd
->sections
;
13121 stub_sec
= stub_sec
->next
)
13123 /* Ignore non-stub sections. */
13124 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
13127 osi
.sec
= stub_sec
;
13129 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13130 (output_bfd
, osi
.sec
->output_section
);
13132 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
13136 /* Finally, output mapping symbols for the PLT. */
13137 if (!htab
->splt
|| htab
->splt
->size
== 0)
13140 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
13141 htab
->splt
->output_section
);
13142 osi
.sec
= htab
->splt
;
13143 /* Output mapping symbols for the plt header. SymbianOS does not have a
13145 if (htab
->vxworks_p
)
13147 /* VxWorks shared libraries have no PLT header. */
13150 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13152 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
13156 else if (!htab
->symbian_p
)
13158 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13160 #ifndef FOUR_WORD_PLT
13161 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
13166 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
13170 /* Allocate target specific section data. */
13173 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
13175 if (!sec
->used_by_bfd
)
13177 _arm_elf_section_data
*sdata
;
13178 bfd_size_type amt
= sizeof (*sdata
);
13180 sdata
= bfd_zalloc (abfd
, amt
);
13183 sec
->used_by_bfd
= sdata
;
13186 record_section_with_arm_elf_section_data (sec
);
13188 return _bfd_elf_new_section_hook (abfd
, sec
);
13192 /* Used to order a list of mapping symbols by address. */
13195 elf32_arm_compare_mapping (const void * a
, const void * b
)
13197 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
13198 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
13200 if (amap
->vma
> bmap
->vma
)
13202 else if (amap
->vma
< bmap
->vma
)
13204 else if (amap
->type
> bmap
->type
)
13205 /* Ensure results do not depend on the host qsort for objects with
13206 multiple mapping symbols at the same address by sorting on type
13209 else if (amap
->type
< bmap
->type
)
13215 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13217 static unsigned long
13218 offset_prel31 (unsigned long addr
, bfd_vma offset
)
13220 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
13223 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13227 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
13229 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
13230 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
13232 /* High bit of first word is supposed to be zero. */
13233 if ((first_word
& 0x80000000ul
) == 0)
13234 first_word
= offset_prel31 (first_word
, offset
);
13236 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13237 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13238 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
13239 second_word
= offset_prel31 (second_word
, offset
);
13241 bfd_put_32 (output_bfd
, first_word
, to
);
13242 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
13245 /* Data for make_branch_to_a8_stub(). */
13247 struct a8_branch_to_stub_data
{
13248 asection
*writing_section
;
13249 bfd_byte
*contents
;
13253 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13254 places for a particular section. */
13257 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
13260 struct elf32_arm_stub_hash_entry
*stub_entry
;
13261 struct a8_branch_to_stub_data
*data
;
13262 bfd_byte
*contents
;
13263 unsigned long branch_insn
;
13264 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
13265 bfd_signed_vma branch_offset
;
13267 unsigned int index
;
13269 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13270 data
= (struct a8_branch_to_stub_data
*) in_arg
;
13272 if (stub_entry
->target_section
!= data
->writing_section
13273 || stub_entry
->stub_type
< arm_stub_a8_veneer_b_cond
)
13276 contents
= data
->contents
;
13278 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
13279 + stub_entry
->target_section
->output_offset
13280 + stub_entry
->target_value
;
13282 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
13283 + stub_entry
->stub_sec
->output_offset
13284 + stub_entry
->stub_offset
;
13286 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
13287 veneered_insn_loc
&= ~3u;
13289 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
13291 abfd
= stub_entry
->target_section
->owner
;
13292 index
= stub_entry
->target_value
;
13294 /* We attempt to avoid this condition by setting stubs_always_after_branch
13295 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13296 This check is just to be on the safe side... */
13297 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
13299 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
13300 "allocated in unsafe location"), abfd
);
13304 switch (stub_entry
->stub_type
)
13306 case arm_stub_a8_veneer_b
:
13307 case arm_stub_a8_veneer_b_cond
:
13308 branch_insn
= 0xf0009000;
13311 case arm_stub_a8_veneer_blx
:
13312 branch_insn
= 0xf000e800;
13315 case arm_stub_a8_veneer_bl
:
13317 unsigned int i1
, j1
, i2
, j2
, s
;
13319 branch_insn
= 0xf000d000;
13322 if (branch_offset
< -16777216 || branch_offset
> 16777214)
13324 /* There's not much we can do apart from complain if this
13326 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
13327 "of range (input file too large)"), abfd
);
13331 /* i1 = not(j1 eor s), so:
13333 j1 = (not i1) eor s. */
13335 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
13336 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
13337 i2
= (branch_offset
>> 22) & 1;
13338 i1
= (branch_offset
>> 23) & 1;
13339 s
= (branch_offset
>> 24) & 1;
13342 branch_insn
|= j2
<< 11;
13343 branch_insn
|= j1
<< 13;
13344 branch_insn
|= s
<< 26;
13353 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[index
]);
13354 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[index
+ 2]);
13359 /* Do code byteswapping. Return FALSE afterwards so that the section is
13360 written out as normal. */
13363 elf32_arm_write_section (bfd
*output_bfd
,
13364 struct bfd_link_info
*link_info
,
13366 bfd_byte
*contents
)
13368 unsigned int mapcount
, errcount
;
13369 _arm_elf_section_data
*arm_data
;
13370 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
13371 elf32_arm_section_map
*map
;
13372 elf32_vfp11_erratum_list
*errnode
;
13375 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
13379 /* If this section has not been allocated an _arm_elf_section_data
13380 structure then we cannot record anything. */
13381 arm_data
= get_arm_elf_section_data (sec
);
13382 if (arm_data
== NULL
)
13385 mapcount
= arm_data
->mapcount
;
13386 map
= arm_data
->map
;
13387 errcount
= arm_data
->erratumcount
;
13391 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
13393 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
13394 errnode
= errnode
->next
)
13396 bfd_vma index
= errnode
->vma
- offset
;
13398 switch (errnode
->type
)
13400 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
13402 bfd_vma branch_to_veneer
;
13403 /* Original condition code of instruction, plus bit mask for
13404 ARM B instruction. */
13405 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
13408 /* The instruction is before the label. */
13411 /* Above offset included in -4 below. */
13412 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
13413 - errnode
->vma
- 4;
13415 if ((signed) branch_to_veneer
< -(1 << 25)
13416 || (signed) branch_to_veneer
>= (1 << 25))
13417 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13418 "range"), output_bfd
);
13420 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
13421 contents
[endianflip
^ index
] = insn
& 0xff;
13422 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
13423 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
13424 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
13428 case VFP11_ERRATUM_ARM_VENEER
:
13430 bfd_vma branch_from_veneer
;
13433 /* Take size of veneer into account. */
13434 branch_from_veneer
= errnode
->u
.v
.branch
->vma
13435 - errnode
->vma
- 12;
13437 if ((signed) branch_from_veneer
< -(1 << 25)
13438 || (signed) branch_from_veneer
>= (1 << 25))
13439 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13440 "range"), output_bfd
);
13442 /* Original instruction. */
13443 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
13444 contents
[endianflip
^ index
] = insn
& 0xff;
13445 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
13446 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
13447 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
13449 /* Branch back to insn after original insn. */
13450 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
13451 contents
[endianflip
^ (index
+ 4)] = insn
& 0xff;
13452 contents
[endianflip
^ (index
+ 5)] = (insn
>> 8) & 0xff;
13453 contents
[endianflip
^ (index
+ 6)] = (insn
>> 16) & 0xff;
13454 contents
[endianflip
^ (index
+ 7)] = (insn
>> 24) & 0xff;
13464 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
13466 arm_unwind_table_edit
*edit_node
13467 = arm_data
->u
.exidx
.unwind_edit_list
;
13468 /* Now, sec->size is the size of the section we will write. The original
13469 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13470 markers) was sec->rawsize. (This isn't the case if we perform no
13471 edits, then rawsize will be zero and we should use size). */
13472 bfd_byte
*edited_contents
= bfd_malloc (sec
->size
);
13473 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
13474 unsigned int in_index
, out_index
;
13475 bfd_vma add_to_offsets
= 0;
13477 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
13481 unsigned int edit_index
= edit_node
->index
;
13483 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
13485 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13486 contents
+ in_index
* 8, add_to_offsets
);
13490 else if (in_index
== edit_index
13491 || (in_index
* 8 >= input_size
13492 && edit_index
== UINT_MAX
))
13494 switch (edit_node
->type
)
13496 case DELETE_EXIDX_ENTRY
:
13498 add_to_offsets
+= 8;
13501 case INSERT_EXIDX_CANTUNWIND_AT_END
:
13503 asection
*text_sec
= edit_node
->linked_section
;
13504 bfd_vma text_offset
= text_sec
->output_section
->vma
13505 + text_sec
->output_offset
13507 bfd_vma exidx_offset
= offset
+ out_index
* 8;
13508 unsigned long prel31_offset
;
13510 /* Note: this is meant to be equivalent to an
13511 R_ARM_PREL31 relocation. These synthetic
13512 EXIDX_CANTUNWIND markers are not relocated by the
13513 usual BFD method. */
13514 prel31_offset
= (text_offset
- exidx_offset
)
13517 /* First address we can't unwind. */
13518 bfd_put_32 (output_bfd
, prel31_offset
,
13519 &edited_contents
[out_index
* 8]);
13521 /* Code for EXIDX_CANTUNWIND. */
13522 bfd_put_32 (output_bfd
, 0x1,
13523 &edited_contents
[out_index
* 8 + 4]);
13526 add_to_offsets
-= 8;
13531 edit_node
= edit_node
->next
;
13536 /* No more edits, copy remaining entries verbatim. */
13537 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13538 contents
+ in_index
* 8, add_to_offsets
);
13544 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
13545 bfd_set_section_contents (output_bfd
, sec
->output_section
,
13547 (file_ptr
) sec
->output_offset
, sec
->size
);
13552 /* Fix code to point to Cortex-A8 erratum stubs. */
13553 if (globals
->fix_cortex_a8
)
13555 struct a8_branch_to_stub_data data
;
13557 data
.writing_section
= sec
;
13558 data
.contents
= contents
;
13560 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
13567 if (globals
->byteswap_code
)
13569 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
13572 for (i
= 0; i
< mapcount
; i
++)
13574 if (i
== mapcount
- 1)
13577 end
= map
[i
+ 1].vma
;
13579 switch (map
[i
].type
)
13582 /* Byte swap code words. */
13583 while (ptr
+ 3 < end
)
13585 tmp
= contents
[ptr
];
13586 contents
[ptr
] = contents
[ptr
+ 3];
13587 contents
[ptr
+ 3] = tmp
;
13588 tmp
= contents
[ptr
+ 1];
13589 contents
[ptr
+ 1] = contents
[ptr
+ 2];
13590 contents
[ptr
+ 2] = tmp
;
13596 /* Byte swap code halfwords. */
13597 while (ptr
+ 1 < end
)
13599 tmp
= contents
[ptr
];
13600 contents
[ptr
] = contents
[ptr
+ 1];
13601 contents
[ptr
+ 1] = tmp
;
13607 /* Leave data alone. */
13615 arm_data
->mapcount
= 0;
13616 arm_data
->mapsize
= 0;
13617 arm_data
->map
= NULL
;
13618 unrecord_section_with_arm_elf_section_data (sec
);
13624 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
13626 void * ignore ATTRIBUTE_UNUSED
)
13628 unrecord_section_with_arm_elf_section_data (sec
);
13632 elf32_arm_close_and_cleanup (bfd
* abfd
)
13634 if (abfd
->sections
)
13635 bfd_map_over_sections (abfd
,
13636 unrecord_section_via_map_over_sections
,
13639 return _bfd_elf_close_and_cleanup (abfd
);
13643 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
13645 if (abfd
->sections
)
13646 bfd_map_over_sections (abfd
,
13647 unrecord_section_via_map_over_sections
,
13650 return _bfd_free_cached_info (abfd
);
13653 /* Display STT_ARM_TFUNC symbols as functions. */
13656 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
13659 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
13661 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
13662 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
13666 /* Mangle thumb function symbols as we read them in. */
13669 elf32_arm_swap_symbol_in (bfd
* abfd
,
13672 Elf_Internal_Sym
*dst
)
13674 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
13677 /* New EABI objects mark thumb function symbols by setting the low bit of
13678 the address. Turn these into STT_ARM_TFUNC. */
13679 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
13680 && (dst
->st_value
& 1))
13682 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
13683 dst
->st_value
&= ~(bfd_vma
) 1;
13689 /* Mangle thumb function symbols as we write them out. */
13692 elf32_arm_swap_symbol_out (bfd
*abfd
,
13693 const Elf_Internal_Sym
*src
,
13697 Elf_Internal_Sym newsym
;
13699 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13700 of the address set, as per the new EABI. We do this unconditionally
13701 because objcopy does not set the elf header flags until after
13702 it writes out the symbol table. */
13703 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
13706 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
13707 if (newsym
.st_shndx
!= SHN_UNDEF
)
13709 /* Do this only for defined symbols. At link type, the static
13710 linker will simulate the work of dynamic linker of resolving
13711 symbols and will carry over the thumbness of found symbols to
13712 the output symbol table. It's not clear how it happens, but
13713 the thumbness of undefined symbols can well be different at
13714 runtime, and writing '1' for them will be confusing for users
13715 and possibly for dynamic linker itself.
13717 newsym
.st_value
|= 1;
13722 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
13725 /* Add the PT_ARM_EXIDX program header. */
13728 elf32_arm_modify_segment_map (bfd
*abfd
,
13729 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13731 struct elf_segment_map
*m
;
13734 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13735 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13737 /* If there is already a PT_ARM_EXIDX header, then we do not
13738 want to add another one. This situation arises when running
13739 "strip"; the input binary already has the header. */
13740 m
= elf_tdata (abfd
)->segment_map
;
13741 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
13745 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
13748 m
->p_type
= PT_ARM_EXIDX
;
13750 m
->sections
[0] = sec
;
13752 m
->next
= elf_tdata (abfd
)->segment_map
;
13753 elf_tdata (abfd
)->segment_map
= m
;
13760 /* We may add a PT_ARM_EXIDX program header. */
13763 elf32_arm_additional_program_headers (bfd
*abfd
,
13764 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13768 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13769 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13775 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13778 elf32_arm_is_function_type (unsigned int type
)
13780 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
13783 /* We use this to override swap_symbol_in and swap_symbol_out. */
13784 const struct elf_size_info elf32_arm_size_info
=
13786 sizeof (Elf32_External_Ehdr
),
13787 sizeof (Elf32_External_Phdr
),
13788 sizeof (Elf32_External_Shdr
),
13789 sizeof (Elf32_External_Rel
),
13790 sizeof (Elf32_External_Rela
),
13791 sizeof (Elf32_External_Sym
),
13792 sizeof (Elf32_External_Dyn
),
13793 sizeof (Elf_External_Note
),
13797 ELFCLASS32
, EV_CURRENT
,
13798 bfd_elf32_write_out_phdrs
,
13799 bfd_elf32_write_shdrs_and_ehdr
,
13800 bfd_elf32_checksum_contents
,
13801 bfd_elf32_write_relocs
,
13802 elf32_arm_swap_symbol_in
,
13803 elf32_arm_swap_symbol_out
,
13804 bfd_elf32_slurp_reloc_table
,
13805 bfd_elf32_slurp_symbol_table
,
13806 bfd_elf32_swap_dyn_in
,
13807 bfd_elf32_swap_dyn_out
,
13808 bfd_elf32_swap_reloc_in
,
13809 bfd_elf32_swap_reloc_out
,
13810 bfd_elf32_swap_reloca_in
,
13811 bfd_elf32_swap_reloca_out
13814 #define ELF_ARCH bfd_arch_arm
13815 #define ELF_MACHINE_CODE EM_ARM
13816 #ifdef __QNXTARGET__
13817 #define ELF_MAXPAGESIZE 0x1000
13819 #define ELF_MAXPAGESIZE 0x8000
13821 #define ELF_MINPAGESIZE 0x1000
13822 #define ELF_COMMONPAGESIZE 0x1000
13824 #define bfd_elf32_mkobject elf32_arm_mkobject
13826 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13827 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13828 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13829 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13830 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13831 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13832 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13833 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13834 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13835 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13836 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13837 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13838 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
13839 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
13840 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13842 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13843 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13844 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13845 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13846 #define elf_backend_check_relocs elf32_arm_check_relocs
13847 #define elf_backend_relocate_section elf32_arm_relocate_section
13848 #define elf_backend_write_section elf32_arm_write_section
13849 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13850 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13851 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13852 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13853 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13854 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13855 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13856 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13857 #define elf_backend_object_p elf32_arm_object_p
13858 #define elf_backend_section_flags elf32_arm_section_flags
13859 #define elf_backend_fake_sections elf32_arm_fake_sections
13860 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13861 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13862 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13863 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13864 #define elf_backend_size_info elf32_arm_size_info
13865 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13866 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13867 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13868 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13869 #define elf_backend_is_function_type elf32_arm_is_function_type
13871 #define elf_backend_can_refcount 1
13872 #define elf_backend_can_gc_sections 1
13873 #define elf_backend_plt_readonly 1
13874 #define elf_backend_want_got_plt 1
13875 #define elf_backend_want_plt_sym 0
13876 #define elf_backend_may_use_rel_p 1
13877 #define elf_backend_may_use_rela_p 0
13878 #define elf_backend_default_use_rela_p 0
13880 #define elf_backend_got_header_size 12
13882 #undef elf_backend_obj_attrs_vendor
13883 #define elf_backend_obj_attrs_vendor "aeabi"
13884 #undef elf_backend_obj_attrs_section
13885 #define elf_backend_obj_attrs_section ".ARM.attributes"
13886 #undef elf_backend_obj_attrs_arg_type
13887 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13888 #undef elf_backend_obj_attrs_section_type
13889 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13890 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13892 #include "elf32-target.h"
13894 /* VxWorks Targets. */
13896 #undef TARGET_LITTLE_SYM
13897 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13898 #undef TARGET_LITTLE_NAME
13899 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13900 #undef TARGET_BIG_SYM
13901 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13902 #undef TARGET_BIG_NAME
13903 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13905 /* Like elf32_arm_link_hash_table_create -- but overrides
13906 appropriately for VxWorks. */
13908 static struct bfd_link_hash_table
*
13909 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
13911 struct bfd_link_hash_table
*ret
;
13913 ret
= elf32_arm_link_hash_table_create (abfd
);
13916 struct elf32_arm_link_hash_table
*htab
13917 = (struct elf32_arm_link_hash_table
*) ret
;
13919 htab
->vxworks_p
= 1;
13925 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
13927 elf32_arm_final_write_processing (abfd
, linker
);
13928 elf_vxworks_final_write_processing (abfd
, linker
);
13932 #define elf32_bed elf32_arm_vxworks_bed
13934 #undef bfd_elf32_bfd_link_hash_table_create
13935 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13936 #undef elf_backend_add_symbol_hook
13937 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13938 #undef elf_backend_final_write_processing
13939 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13940 #undef elf_backend_emit_relocs
13941 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13943 #undef elf_backend_may_use_rel_p
13944 #define elf_backend_may_use_rel_p 0
13945 #undef elf_backend_may_use_rela_p
13946 #define elf_backend_may_use_rela_p 1
13947 #undef elf_backend_default_use_rela_p
13948 #define elf_backend_default_use_rela_p 1
13949 #undef elf_backend_want_plt_sym
13950 #define elf_backend_want_plt_sym 1
13951 #undef ELF_MAXPAGESIZE
13952 #define ELF_MAXPAGESIZE 0x1000
13954 #include "elf32-target.h"
13957 /* Symbian OS Targets. */
13959 #undef TARGET_LITTLE_SYM
13960 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
13961 #undef TARGET_LITTLE_NAME
13962 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
13963 #undef TARGET_BIG_SYM
13964 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
13965 #undef TARGET_BIG_NAME
13966 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
13968 /* Like elf32_arm_link_hash_table_create -- but overrides
13969 appropriately for Symbian OS. */
13971 static struct bfd_link_hash_table
*
13972 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
13974 struct bfd_link_hash_table
*ret
;
13976 ret
= elf32_arm_link_hash_table_create (abfd
);
13979 struct elf32_arm_link_hash_table
*htab
13980 = (struct elf32_arm_link_hash_table
*)ret
;
13981 /* There is no PLT header for Symbian OS. */
13982 htab
->plt_header_size
= 0;
13983 /* The PLT entries are each one instruction and one word. */
13984 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
13985 htab
->symbian_p
= 1;
13986 /* Symbian uses armv5t or above, so use_blx is always true. */
13988 htab
->root
.is_relocatable_executable
= 1;
13993 static const struct bfd_elf_special_section
13994 elf32_arm_symbian_special_sections
[] =
13996 /* In a BPABI executable, the dynamic linking sections do not go in
13997 the loadable read-only segment. The post-linker may wish to
13998 refer to these sections, but they are not part of the final
14000 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
14001 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
14002 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
14003 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
14004 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
14005 /* These sections do not need to be writable as the SymbianOS
14006 postlinker will arrange things so that no dynamic relocation is
14008 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
14009 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
14010 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
14011 { NULL
, 0, 0, 0, 0 }
14015 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
14016 struct bfd_link_info
*link_info
)
14018 /* BPABI objects are never loaded directly by an OS kernel; they are
14019 processed by a postlinker first, into an OS-specific format. If
14020 the D_PAGED bit is set on the file, BFD will align segments on
14021 page boundaries, so that an OS can directly map the file. With
14022 BPABI objects, that just results in wasted space. In addition,
14023 because we clear the D_PAGED bit, map_sections_to_segments will
14024 recognize that the program headers should not be mapped into any
14025 loadable segment. */
14026 abfd
->flags
&= ~D_PAGED
;
14027 elf32_arm_begin_write_processing (abfd
, link_info
);
14031 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
14032 struct bfd_link_info
*info
)
14034 struct elf_segment_map
*m
;
14037 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14038 segment. However, because the .dynamic section is not marked
14039 with SEC_LOAD, the generic ELF code will not create such a
14041 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
14044 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
14045 if (m
->p_type
== PT_DYNAMIC
)
14050 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
14051 m
->next
= elf_tdata (abfd
)->segment_map
;
14052 elf_tdata (abfd
)->segment_map
= m
;
14056 /* Also call the generic arm routine. */
14057 return elf32_arm_modify_segment_map (abfd
, info
);
14060 /* Return address for Ith PLT stub in section PLT, for relocation REL
14061 or (bfd_vma) -1 if it should not be included. */
14064 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
14065 const arelent
*rel ATTRIBUTE_UNUSED
)
14067 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
14072 #define elf32_bed elf32_arm_symbian_bed
14074 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14075 will process them and then discard them. */
14076 #undef ELF_DYNAMIC_SEC_FLAGS
14077 #define ELF_DYNAMIC_SEC_FLAGS \
14078 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14080 #undef elf_backend_add_symbol_hook
14081 #undef elf_backend_emit_relocs
14083 #undef bfd_elf32_bfd_link_hash_table_create
14084 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14085 #undef elf_backend_special_sections
14086 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14087 #undef elf_backend_begin_write_processing
14088 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14089 #undef elf_backend_final_write_processing
14090 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14092 #undef elf_backend_modify_segment_map
14093 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14095 /* There is no .got section for BPABI objects, and hence no header. */
14096 #undef elf_backend_got_header_size
14097 #define elf_backend_got_header_size 0
14099 /* Similarly, there is no .got.plt section. */
14100 #undef elf_backend_want_got_plt
14101 #define elf_backend_want_got_plt 0
14103 #undef elf_backend_plt_sym_val
14104 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14106 #undef elf_backend_may_use_rel_p
14107 #define elf_backend_may_use_rel_p 1
14108 #undef elf_backend_may_use_rela_p
14109 #define elf_backend_may_use_rela_p 0
14110 #undef elf_backend_default_use_rela_p
14111 #define elf_backend_default_use_rela_p 0
14112 #undef elf_backend_want_plt_sym
14113 #define elf_backend_want_plt_sym 0
14114 #undef ELF_MAXPAGESIZE
14115 #define ELF_MAXPAGESIZE 0x8000
14117 #include "elf32-target.h"