1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
24 /* No specific ABI or "processor-specific supplement" defined. */
27 - "Traditional" linker relaxation (shrinking whole sections).
28 - Merge reloc stubs jumping to same location.
29 - GETA stub relaxation (call a stub for out of range new
30 R_MMIX_GETA_STUBBABLE). */
37 #include "opcode/mmix.h"
39 #define MINUS_ONE (((bfd_vma) 0) - 1)
41 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
43 /* Put these everywhere in new code. */
45 _bfd_abort (__FILE__, __LINE__, \
46 "Internal: Non-debugged code (test-case missing)")
49 _bfd_abort (__FILE__, __LINE__, \
52 struct _mmix_elf_section_data
54 struct bfd_elf_section_data elf
;
57 struct bpo_reloc_section_info
*reloc
;
58 struct bpo_greg_section_info
*greg
;
61 struct pushj_stub_info
63 /* Maximum number of stubs needed for this section. */
64 bfd_size_type n_pushj_relocs
;
66 /* Size of stubs after a mmix_elf_relax_section round. */
67 bfd_size_type stubs_size_sum
;
69 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
70 of these. Allocated in mmix_elf_check_common_relocs. */
71 bfd_size_type
*stub_size
;
73 /* Offset of next stub during relocation. Somewhat redundant with the
74 above: error coverage is easier and we don't have to reset the
75 stubs_size_sum for relocation. */
76 bfd_size_type stub_offset
;
80 #define mmix_elf_section_data(sec) \
81 ((struct _mmix_elf_section_data *) elf_section_data (sec))
83 /* For each section containing a base-plus-offset (BPO) reloc, we attach
84 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
86 struct bpo_reloc_section_info
88 /* The base is 1; this is the first number in this section. */
89 size_t first_base_plus_offset_reloc
;
91 /* Number of BPO-relocs in this section. */
92 size_t n_bpo_relocs_this_section
;
94 /* Running index, used at relocation time. */
97 /* We don't have access to the bfd_link_info struct in
98 mmix_final_link_relocate. What we really want to get at is the
99 global single struct greg_relocation, so we stash it here. */
100 asection
*bpo_greg_section
;
103 /* Helper struct (in global context) for the one below.
104 There's one of these created for every BPO reloc. */
105 struct bpo_reloc_request
109 /* Valid after relaxation. The base is 0; the first register number
110 must be added. The offset is in range 0..255. */
114 /* The order number for this BPO reloc, corresponding to the order in
115 which BPO relocs were found. Used to create an index after reloc
116 requests are sorted. */
119 /* Set when the value is computed. Better than coding "guard values"
120 into the other members. Is FALSE only for BPO relocs in a GC:ed
125 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
126 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
127 which is linked into the register contents section
128 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
129 linker; using the same hook as for usual with BPO relocs does not
131 struct bpo_greg_section_info
133 /* After GC, this reflects the number of remaining, non-excluded
137 /* This is the number of allocated bpo_reloc_requests; the size of
138 sorted_indexes. Valid after the check.*relocs functions are called
139 for all incoming sections. It includes the number of BPO relocs in
140 sections that were GC:ed. */
141 size_t n_max_bpo_relocs
;
143 /* A counter used to find out when to fold the BPO gregs, since we
144 don't have a single "after-relaxation" hook. */
145 size_t n_remaining_bpo_relocs_this_relaxation_round
;
147 /* The number of linker-allocated GREGs resulting from BPO relocs.
148 This is an approximation after _bfd_mmix_before_linker_allocation
149 and supposedly accurate after mmix_elf_relax_section is called for
150 all incoming non-collected sections. */
151 size_t n_allocated_bpo_gregs
;
153 /* Index into reloc_request[], sorted on increasing "value", secondary
154 by increasing index for strict sorting order. */
155 size_t *bpo_reloc_indexes
;
157 /* An array of all relocations, with the "value" member filled in by
158 the relaxation function. */
159 struct bpo_reloc_request
*reloc_request
;
162 static int mmix_elf_link_output_symbol_hook
163 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
164 asection
*, struct elf_link_hash_entry
*));
166 static bfd_reloc_status_type mmix_elf_reloc
167 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
169 static reloc_howto_type
*bfd_elf64_bfd_reloc_type_lookup
170 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
172 static void mmix_info_to_howto_rela
173 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
175 static int mmix_elf_sort_relocs
PARAMS ((const PTR
, const PTR
));
177 static bfd_boolean mmix_elf_new_section_hook
178 PARAMS ((bfd
*, asection
*));
180 static bfd_boolean mmix_elf_check_relocs
181 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
182 const Elf_Internal_Rela
*));
184 static bfd_boolean mmix_elf_check_common_relocs
185 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
186 const Elf_Internal_Rela
*));
188 static bfd_boolean mmix_elf_relocate_section
189 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
190 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
192 static bfd_reloc_status_type mmix_final_link_relocate
193 PARAMS ((reloc_howto_type
*, asection
*, bfd_byte
*,
194 bfd_vma
, bfd_signed_vma
, bfd_vma
, const char *, asection
*));
196 static bfd_reloc_status_type mmix_elf_perform_relocation
197 PARAMS ((asection
*, reloc_howto_type
*, PTR
, bfd_vma
, bfd_vma
));
199 static bfd_boolean mmix_elf_section_from_bfd_section
200 PARAMS ((bfd
*, asection
*, int *));
202 static bfd_boolean mmix_elf_add_symbol_hook
203 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
204 const char **, flagword
*, asection
**, bfd_vma
*));
206 static bfd_boolean mmix_elf_is_local_label_name
207 PARAMS ((bfd
*, const char *));
209 static int bpo_reloc_request_sort_fn
PARAMS ((const PTR
, const PTR
));
211 static bfd_boolean mmix_elf_relax_section
212 PARAMS ((bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
,
213 bfd_boolean
*again
));
215 extern bfd_boolean mmix_elf_final_link
PARAMS ((bfd
*, struct bfd_link_info
*));
217 extern void mmix_elf_symbol_processing
PARAMS ((bfd
*, asymbol
*));
219 /* Only intended to be called from a debugger. */
220 extern void mmix_dump_bpo_gregs
221 PARAMS ((struct bfd_link_info
*, bfd_error_handler_type
));
224 mmix_set_relaxable_size
225 PARAMS ((bfd
*, asection
*, void *));
228 /* Watch out: this currently needs to have elements with the same index as
229 their R_MMIX_ number. */
230 static reloc_howto_type elf_mmix_howto_table
[] =
232 /* This reloc does nothing. */
233 HOWTO (R_MMIX_NONE
, /* type */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
237 FALSE
, /* pc_relative */
239 complain_overflow_bitfield
, /* complain_on_overflow */
240 bfd_elf_generic_reloc
, /* special_function */
241 "R_MMIX_NONE", /* name */
242 FALSE
, /* partial_inplace */
245 FALSE
), /* pcrel_offset */
247 /* An 8 bit absolute relocation. */
248 HOWTO (R_MMIX_8
, /* type */
250 0, /* size (0 = byte, 1 = short, 2 = long) */
252 FALSE
, /* pc_relative */
254 complain_overflow_bitfield
, /* complain_on_overflow */
255 bfd_elf_generic_reloc
, /* special_function */
256 "R_MMIX_8", /* name */
257 FALSE
, /* partial_inplace */
260 FALSE
), /* pcrel_offset */
262 /* An 16 bit absolute relocation. */
263 HOWTO (R_MMIX_16
, /* type */
265 1, /* size (0 = byte, 1 = short, 2 = long) */
267 FALSE
, /* pc_relative */
269 complain_overflow_bitfield
, /* complain_on_overflow */
270 bfd_elf_generic_reloc
, /* special_function */
271 "R_MMIX_16", /* name */
272 FALSE
, /* partial_inplace */
274 0xffff, /* dst_mask */
275 FALSE
), /* pcrel_offset */
277 /* An 24 bit absolute relocation. */
278 HOWTO (R_MMIX_24
, /* type */
280 2, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_bitfield
, /* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_MMIX_24", /* name */
287 FALSE
, /* partial_inplace */
288 ~0xffffff, /* src_mask */
289 0xffffff, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* A 32 bit absolute relocation. */
293 HOWTO (R_MMIX_32
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 FALSE
, /* pc_relative */
299 complain_overflow_bitfield
, /* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_MMIX_32", /* name */
302 FALSE
, /* partial_inplace */
304 0xffffffff, /* dst_mask */
305 FALSE
), /* pcrel_offset */
307 /* 64 bit relocation. */
308 HOWTO (R_MMIX_64
, /* type */
310 4, /* size (0 = byte, 1 = short, 2 = long) */
312 FALSE
, /* pc_relative */
314 complain_overflow_bitfield
, /* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_MMIX_64", /* name */
317 FALSE
, /* partial_inplace */
319 MINUS_ONE
, /* dst_mask */
320 FALSE
), /* pcrel_offset */
322 /* An 8 bit PC-relative relocation. */
323 HOWTO (R_MMIX_PC_8
, /* type */
325 0, /* size (0 = byte, 1 = short, 2 = long) */
327 TRUE
, /* pc_relative */
329 complain_overflow_bitfield
, /* complain_on_overflow */
330 bfd_elf_generic_reloc
, /* special_function */
331 "R_MMIX_PC_8", /* name */
332 FALSE
, /* partial_inplace */
335 TRUE
), /* pcrel_offset */
337 /* An 16 bit PC-relative relocation. */
338 HOWTO (R_MMIX_PC_16
, /* type */
340 1, /* size (0 = byte, 1 = short, 2 = long) */
342 TRUE
, /* pc_relative */
344 complain_overflow_bitfield
, /* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_MMIX_PC_16", /* name */
347 FALSE
, /* partial_inplace */
349 0xffff, /* dst_mask */
350 TRUE
), /* pcrel_offset */
352 /* An 24 bit PC-relative relocation. */
353 HOWTO (R_MMIX_PC_24
, /* type */
355 2, /* size (0 = byte, 1 = short, 2 = long) */
357 TRUE
, /* pc_relative */
359 complain_overflow_bitfield
, /* complain_on_overflow */
360 bfd_elf_generic_reloc
, /* special_function */
361 "R_MMIX_PC_24", /* name */
362 FALSE
, /* partial_inplace */
363 ~0xffffff, /* src_mask */
364 0xffffff, /* dst_mask */
365 TRUE
), /* pcrel_offset */
367 /* A 32 bit absolute PC-relative relocation. */
368 HOWTO (R_MMIX_PC_32
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 TRUE
, /* pc_relative */
374 complain_overflow_bitfield
, /* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_MMIX_PC_32", /* name */
377 FALSE
, /* partial_inplace */
379 0xffffffff, /* dst_mask */
380 TRUE
), /* pcrel_offset */
382 /* 64 bit PC-relative relocation. */
383 HOWTO (R_MMIX_PC_64
, /* type */
385 4, /* size (0 = byte, 1 = short, 2 = long) */
387 TRUE
, /* pc_relative */
389 complain_overflow_bitfield
, /* complain_on_overflow */
390 bfd_elf_generic_reloc
, /* special_function */
391 "R_MMIX_PC_64", /* name */
392 FALSE
, /* partial_inplace */
394 MINUS_ONE
, /* dst_mask */
395 TRUE
), /* pcrel_offset */
397 /* GNU extension to record C++ vtable hierarchy. */
398 HOWTO (R_MMIX_GNU_VTINHERIT
, /* type */
400 0, /* size (0 = byte, 1 = short, 2 = long) */
402 FALSE
, /* pc_relative */
404 complain_overflow_dont
, /* complain_on_overflow */
405 NULL
, /* special_function */
406 "R_MMIX_GNU_VTINHERIT", /* name */
407 FALSE
, /* partial_inplace */
410 TRUE
), /* pcrel_offset */
412 /* GNU extension to record C++ vtable member usage. */
413 HOWTO (R_MMIX_GNU_VTENTRY
, /* type */
415 0, /* size (0 = byte, 1 = short, 2 = long) */
417 FALSE
, /* pc_relative */
419 complain_overflow_dont
, /* complain_on_overflow */
420 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
421 "R_MMIX_GNU_VTENTRY", /* name */
422 FALSE
, /* partial_inplace */
425 FALSE
), /* pcrel_offset */
427 /* The GETA relocation is supposed to get any address that could
428 possibly be reached by the GETA instruction. It can silently expand
429 to get a 64-bit operand, but will complain if any of the two least
430 significant bits are set. The howto members reflect a simple GETA. */
431 HOWTO (R_MMIX_GETA
, /* type */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
435 TRUE
, /* pc_relative */
437 complain_overflow_signed
, /* complain_on_overflow */
438 mmix_elf_reloc
, /* special_function */
439 "R_MMIX_GETA", /* name */
440 FALSE
, /* partial_inplace */
441 ~0x0100ffff, /* src_mask */
442 0x0100ffff, /* dst_mask */
443 TRUE
), /* pcrel_offset */
445 HOWTO (R_MMIX_GETA_1
, /* type */
447 2, /* size (0 = byte, 1 = short, 2 = long) */
449 TRUE
, /* pc_relative */
451 complain_overflow_signed
, /* complain_on_overflow */
452 mmix_elf_reloc
, /* special_function */
453 "R_MMIX_GETA_1", /* name */
454 FALSE
, /* partial_inplace */
455 ~0x0100ffff, /* src_mask */
456 0x0100ffff, /* dst_mask */
457 TRUE
), /* pcrel_offset */
459 HOWTO (R_MMIX_GETA_2
, /* type */
461 2, /* size (0 = byte, 1 = short, 2 = long) */
463 TRUE
, /* pc_relative */
465 complain_overflow_signed
, /* complain_on_overflow */
466 mmix_elf_reloc
, /* special_function */
467 "R_MMIX_GETA_2", /* name */
468 FALSE
, /* partial_inplace */
469 ~0x0100ffff, /* src_mask */
470 0x0100ffff, /* dst_mask */
471 TRUE
), /* pcrel_offset */
473 HOWTO (R_MMIX_GETA_3
, /* type */
475 2, /* size (0 = byte, 1 = short, 2 = long) */
477 TRUE
, /* pc_relative */
479 complain_overflow_signed
, /* complain_on_overflow */
480 mmix_elf_reloc
, /* special_function */
481 "R_MMIX_GETA_3", /* name */
482 FALSE
, /* partial_inplace */
483 ~0x0100ffff, /* src_mask */
484 0x0100ffff, /* dst_mask */
485 TRUE
), /* pcrel_offset */
487 /* The conditional branches are supposed to reach any (code) address.
488 It can silently expand to a 64-bit operand, but will emit an error if
489 any of the two least significant bits are set. The howto members
490 reflect a simple branch. */
491 HOWTO (R_MMIX_CBRANCH
, /* type */
493 2, /* size (0 = byte, 1 = short, 2 = long) */
495 TRUE
, /* pc_relative */
497 complain_overflow_signed
, /* complain_on_overflow */
498 mmix_elf_reloc
, /* special_function */
499 "R_MMIX_CBRANCH", /* name */
500 FALSE
, /* partial_inplace */
501 ~0x0100ffff, /* src_mask */
502 0x0100ffff, /* dst_mask */
503 TRUE
), /* pcrel_offset */
505 HOWTO (R_MMIX_CBRANCH_J
, /* type */
507 2, /* size (0 = byte, 1 = short, 2 = long) */
509 TRUE
, /* pc_relative */
511 complain_overflow_signed
, /* complain_on_overflow */
512 mmix_elf_reloc
, /* special_function */
513 "R_MMIX_CBRANCH_J", /* name */
514 FALSE
, /* partial_inplace */
515 ~0x0100ffff, /* src_mask */
516 0x0100ffff, /* dst_mask */
517 TRUE
), /* pcrel_offset */
519 HOWTO (R_MMIX_CBRANCH_1
, /* type */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
523 TRUE
, /* pc_relative */
525 complain_overflow_signed
, /* complain_on_overflow */
526 mmix_elf_reloc
, /* special_function */
527 "R_MMIX_CBRANCH_1", /* name */
528 FALSE
, /* partial_inplace */
529 ~0x0100ffff, /* src_mask */
530 0x0100ffff, /* dst_mask */
531 TRUE
), /* pcrel_offset */
533 HOWTO (R_MMIX_CBRANCH_2
, /* type */
535 2, /* size (0 = byte, 1 = short, 2 = long) */
537 TRUE
, /* pc_relative */
539 complain_overflow_signed
, /* complain_on_overflow */
540 mmix_elf_reloc
, /* special_function */
541 "R_MMIX_CBRANCH_2", /* name */
542 FALSE
, /* partial_inplace */
543 ~0x0100ffff, /* src_mask */
544 0x0100ffff, /* dst_mask */
545 TRUE
), /* pcrel_offset */
547 HOWTO (R_MMIX_CBRANCH_3
, /* type */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
551 TRUE
, /* pc_relative */
553 complain_overflow_signed
, /* complain_on_overflow */
554 mmix_elf_reloc
, /* special_function */
555 "R_MMIX_CBRANCH_3", /* name */
556 FALSE
, /* partial_inplace */
557 ~0x0100ffff, /* src_mask */
558 0x0100ffff, /* dst_mask */
559 TRUE
), /* pcrel_offset */
561 /* The PUSHJ instruction can reach any (code) address, as long as it's
562 the beginning of a function (no usable restriction). It can silently
563 expand to a 64-bit operand, but will emit an error if any of the two
564 least significant bits are set. It can also expand into a call to a
565 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
567 HOWTO (R_MMIX_PUSHJ
, /* type */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
571 TRUE
, /* pc_relative */
573 complain_overflow_signed
, /* complain_on_overflow */
574 mmix_elf_reloc
, /* special_function */
575 "R_MMIX_PUSHJ", /* name */
576 FALSE
, /* partial_inplace */
577 ~0x0100ffff, /* src_mask */
578 0x0100ffff, /* dst_mask */
579 TRUE
), /* pcrel_offset */
581 HOWTO (R_MMIX_PUSHJ_1
, /* type */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
585 TRUE
, /* pc_relative */
587 complain_overflow_signed
, /* complain_on_overflow */
588 mmix_elf_reloc
, /* special_function */
589 "R_MMIX_PUSHJ_1", /* name */
590 FALSE
, /* partial_inplace */
591 ~0x0100ffff, /* src_mask */
592 0x0100ffff, /* dst_mask */
593 TRUE
), /* pcrel_offset */
595 HOWTO (R_MMIX_PUSHJ_2
, /* type */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
599 TRUE
, /* pc_relative */
601 complain_overflow_signed
, /* complain_on_overflow */
602 mmix_elf_reloc
, /* special_function */
603 "R_MMIX_PUSHJ_2", /* name */
604 FALSE
, /* partial_inplace */
605 ~0x0100ffff, /* src_mask */
606 0x0100ffff, /* dst_mask */
607 TRUE
), /* pcrel_offset */
609 HOWTO (R_MMIX_PUSHJ_3
, /* type */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
613 TRUE
, /* pc_relative */
615 complain_overflow_signed
, /* complain_on_overflow */
616 mmix_elf_reloc
, /* special_function */
617 "R_MMIX_PUSHJ_3", /* name */
618 FALSE
, /* partial_inplace */
619 ~0x0100ffff, /* src_mask */
620 0x0100ffff, /* dst_mask */
621 TRUE
), /* pcrel_offset */
623 /* A JMP is supposed to reach any (code) address. By itself, it can
624 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
625 limit is soon reached if you link the program in wildly different
626 memory segments. The howto members reflect a trivial JMP. */
627 HOWTO (R_MMIX_JMP
, /* type */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
631 TRUE
, /* pc_relative */
633 complain_overflow_signed
, /* complain_on_overflow */
634 mmix_elf_reloc
, /* special_function */
635 "R_MMIX_JMP", /* name */
636 FALSE
, /* partial_inplace */
637 ~0x1ffffff, /* src_mask */
638 0x1ffffff, /* dst_mask */
639 TRUE
), /* pcrel_offset */
641 HOWTO (R_MMIX_JMP_1
, /* type */
643 2, /* size (0 = byte, 1 = short, 2 = long) */
645 TRUE
, /* pc_relative */
647 complain_overflow_signed
, /* complain_on_overflow */
648 mmix_elf_reloc
, /* special_function */
649 "R_MMIX_JMP_1", /* name */
650 FALSE
, /* partial_inplace */
651 ~0x1ffffff, /* src_mask */
652 0x1ffffff, /* dst_mask */
653 TRUE
), /* pcrel_offset */
655 HOWTO (R_MMIX_JMP_2
, /* type */
657 2, /* size (0 = byte, 1 = short, 2 = long) */
659 TRUE
, /* pc_relative */
661 complain_overflow_signed
, /* complain_on_overflow */
662 mmix_elf_reloc
, /* special_function */
663 "R_MMIX_JMP_2", /* name */
664 FALSE
, /* partial_inplace */
665 ~0x1ffffff, /* src_mask */
666 0x1ffffff, /* dst_mask */
667 TRUE
), /* pcrel_offset */
669 HOWTO (R_MMIX_JMP_3
, /* type */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
673 TRUE
, /* pc_relative */
675 complain_overflow_signed
, /* complain_on_overflow */
676 mmix_elf_reloc
, /* special_function */
677 "R_MMIX_JMP_3", /* name */
678 FALSE
, /* partial_inplace */
679 ~0x1ffffff, /* src_mask */
680 0x1ffffff, /* dst_mask */
681 TRUE
), /* pcrel_offset */
683 /* When we don't emit link-time-relaxable code from the assembler, or
684 when relaxation has done all it can do, these relocs are used. For
685 GETA/PUSHJ/branches. */
686 HOWTO (R_MMIX_ADDR19
, /* type */
688 2, /* size (0 = byte, 1 = short, 2 = long) */
690 TRUE
, /* pc_relative */
692 complain_overflow_signed
, /* complain_on_overflow */
693 mmix_elf_reloc
, /* special_function */
694 "R_MMIX_ADDR19", /* name */
695 FALSE
, /* partial_inplace */
696 ~0x0100ffff, /* src_mask */
697 0x0100ffff, /* dst_mask */
698 TRUE
), /* pcrel_offset */
701 HOWTO (R_MMIX_ADDR27
, /* type */
703 2, /* size (0 = byte, 1 = short, 2 = long) */
705 TRUE
, /* pc_relative */
707 complain_overflow_signed
, /* complain_on_overflow */
708 mmix_elf_reloc
, /* special_function */
709 "R_MMIX_ADDR27", /* name */
710 FALSE
, /* partial_inplace */
711 ~0x1ffffff, /* src_mask */
712 0x1ffffff, /* dst_mask */
713 TRUE
), /* pcrel_offset */
715 /* A general register or the value 0..255. If a value, then the
716 instruction (offset -3) needs adjusting. */
717 HOWTO (R_MMIX_REG_OR_BYTE
, /* type */
719 1, /* size (0 = byte, 1 = short, 2 = long) */
721 FALSE
, /* pc_relative */
723 complain_overflow_bitfield
, /* complain_on_overflow */
724 mmix_elf_reloc
, /* special_function */
725 "R_MMIX_REG_OR_BYTE", /* name */
726 FALSE
, /* partial_inplace */
729 FALSE
), /* pcrel_offset */
731 /* A general register. */
732 HOWTO (R_MMIX_REG
, /* type */
734 1, /* size (0 = byte, 1 = short, 2 = long) */
736 FALSE
, /* pc_relative */
738 complain_overflow_bitfield
, /* complain_on_overflow */
739 mmix_elf_reloc
, /* special_function */
740 "R_MMIX_REG", /* name */
741 FALSE
, /* partial_inplace */
744 FALSE
), /* pcrel_offset */
746 /* A register plus an index, corresponding to the relocation expression.
747 The sizes must correspond to the valid range of the expression, while
748 the bitmasks correspond to what we store in the image. */
749 HOWTO (R_MMIX_BASE_PLUS_OFFSET
, /* type */
751 4, /* size (0 = byte, 1 = short, 2 = long) */
753 FALSE
, /* pc_relative */
755 complain_overflow_bitfield
, /* complain_on_overflow */
756 mmix_elf_reloc
, /* special_function */
757 "R_MMIX_BASE_PLUS_OFFSET", /* name */
758 FALSE
, /* partial_inplace */
760 0xffff, /* dst_mask */
761 FALSE
), /* pcrel_offset */
763 /* A "magic" relocation for a LOCAL expression, asserting that the
764 expression is less than the number of global registers. No actual
765 modification of the contents is done. Implementing this as a
766 relocation was less intrusive than e.g. putting such expressions in a
767 section to discard *after* relocation. */
768 HOWTO (R_MMIX_LOCAL
, /* type */
770 0, /* size (0 = byte, 1 = short, 2 = long) */
772 FALSE
, /* pc_relative */
774 complain_overflow_dont
, /* complain_on_overflow */
775 mmix_elf_reloc
, /* special_function */
776 "R_MMIX_LOCAL", /* name */
777 FALSE
, /* partial_inplace */
780 FALSE
), /* pcrel_offset */
782 HOWTO (R_MMIX_PUSHJ_STUBBABLE
, /* type */
784 2, /* size (0 = byte, 1 = short, 2 = long) */
786 TRUE
, /* pc_relative */
788 complain_overflow_signed
, /* complain_on_overflow */
789 mmix_elf_reloc
, /* special_function */
790 "R_MMIX_PUSHJ_STUBBABLE", /* name */
791 FALSE
, /* partial_inplace */
792 ~0x0100ffff, /* src_mask */
793 0x0100ffff, /* dst_mask */
794 TRUE
) /* pcrel_offset */
798 /* Map BFD reloc types to MMIX ELF reloc types. */
800 struct mmix_reloc_map
802 bfd_reloc_code_real_type bfd_reloc_val
;
803 enum elf_mmix_reloc_type elf_reloc_val
;
807 static const struct mmix_reloc_map mmix_reloc_map
[] =
809 {BFD_RELOC_NONE
, R_MMIX_NONE
},
810 {BFD_RELOC_8
, R_MMIX_8
},
811 {BFD_RELOC_16
, R_MMIX_16
},
812 {BFD_RELOC_24
, R_MMIX_24
},
813 {BFD_RELOC_32
, R_MMIX_32
},
814 {BFD_RELOC_64
, R_MMIX_64
},
815 {BFD_RELOC_8_PCREL
, R_MMIX_PC_8
},
816 {BFD_RELOC_16_PCREL
, R_MMIX_PC_16
},
817 {BFD_RELOC_24_PCREL
, R_MMIX_PC_24
},
818 {BFD_RELOC_32_PCREL
, R_MMIX_PC_32
},
819 {BFD_RELOC_64_PCREL
, R_MMIX_PC_64
},
820 {BFD_RELOC_VTABLE_INHERIT
, R_MMIX_GNU_VTINHERIT
},
821 {BFD_RELOC_VTABLE_ENTRY
, R_MMIX_GNU_VTENTRY
},
822 {BFD_RELOC_MMIX_GETA
, R_MMIX_GETA
},
823 {BFD_RELOC_MMIX_CBRANCH
, R_MMIX_CBRANCH
},
824 {BFD_RELOC_MMIX_PUSHJ
, R_MMIX_PUSHJ
},
825 {BFD_RELOC_MMIX_JMP
, R_MMIX_JMP
},
826 {BFD_RELOC_MMIX_ADDR19
, R_MMIX_ADDR19
},
827 {BFD_RELOC_MMIX_ADDR27
, R_MMIX_ADDR27
},
828 {BFD_RELOC_MMIX_REG_OR_BYTE
, R_MMIX_REG_OR_BYTE
},
829 {BFD_RELOC_MMIX_REG
, R_MMIX_REG
},
830 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET
, R_MMIX_BASE_PLUS_OFFSET
},
831 {BFD_RELOC_MMIX_LOCAL
, R_MMIX_LOCAL
},
832 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE
, R_MMIX_PUSHJ_STUBBABLE
}
835 static reloc_howto_type
*
836 bfd_elf64_bfd_reloc_type_lookup (abfd
, code
)
837 bfd
*abfd ATTRIBUTE_UNUSED
;
838 bfd_reloc_code_real_type code
;
843 i
< sizeof (mmix_reloc_map
) / sizeof (mmix_reloc_map
[0]);
846 if (mmix_reloc_map
[i
].bfd_reloc_val
== code
)
847 return &elf_mmix_howto_table
[mmix_reloc_map
[i
].elf_reloc_val
];
853 static reloc_howto_type
*
854 bfd_elf64_bfd_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
860 i
< sizeof (elf_mmix_howto_table
) / sizeof (elf_mmix_howto_table
[0]);
862 if (elf_mmix_howto_table
[i
].name
!= NULL
863 && strcasecmp (elf_mmix_howto_table
[i
].name
, r_name
) == 0)
864 return &elf_mmix_howto_table
[i
];
870 mmix_elf_new_section_hook (abfd
, sec
)
874 if (!sec
->used_by_bfd
)
876 struct _mmix_elf_section_data
*sdata
;
877 bfd_size_type amt
= sizeof (*sdata
);
879 sdata
= bfd_zalloc (abfd
, amt
);
882 sec
->used_by_bfd
= sdata
;
885 return _bfd_elf_new_section_hook (abfd
, sec
);
889 /* This function performs the actual bitfiddling and sanity check for a
890 final relocation. Each relocation gets its *worst*-case expansion
891 in size when it arrives here; any reduction in size should have been
892 caught in linker relaxation earlier. When we get here, the relocation
893 looks like the smallest instruction with SWYM:s (nop:s) appended to the
894 max size. We fill in those nop:s.
896 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
900 INCML $N,(foo >> 16) & 0xffff
901 INCMH $N,(foo >> 32) & 0xffff
902 INCH $N,(foo >> 48) & 0xffff
904 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
905 condbranches needing relaxation might be rare enough to not be
916 R_MMIX_PUSHJ: (FIXME: Relaxation...)
925 R_MMIX_JMP: (FIXME: Relaxation...)
934 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
936 static bfd_reloc_status_type
937 mmix_elf_perform_relocation (isec
, howto
, datap
, addr
, value
)
939 reloc_howto_type
*howto
;
944 bfd
*abfd
= isec
->owner
;
945 bfd_reloc_status_type flag
= bfd_reloc_ok
;
946 bfd_reloc_status_type r
;
950 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
951 We handle the differences here and the common sequence later. */
956 reg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
958 /* We change to an absolute value. */
964 int in1
= bfd_get_16 (abfd
, (bfd_byte
*) datap
) << 16;
966 /* Invert the condition and prediction bit, and set the offset
967 to five instructions ahead.
969 We *can* do better if we want to. If the branch is found to be
970 within limits, we could leave the branch as is; there'll just
971 be a bunch of NOP:s after it. But we shouldn't see this
972 sequence often enough that it's worth doing it. */
975 (((in1
^ ((PRED_INV_BIT
| COND_INV_BIT
) << 24)) & ~0xffff)
979 /* Put a "GO $255,$255,0" after the common sequence. */
981 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24) | 0xffff00,
982 (bfd_byte
*) datap
+ 20);
984 /* Common sequence starts at offset 4. */
987 /* We change to an absolute value. */
992 case R_MMIX_PUSHJ_STUBBABLE
:
993 /* If the address fits, we're fine. */
995 /* Note rightshift 0; see R_MMIX_JMP case below. */
996 && (r
= bfd_check_overflow (complain_overflow_signed
,
999 bfd_arch_bits_per_address (abfd
),
1000 value
)) == bfd_reloc_ok
)
1001 goto pcrel_mmix_reloc_fits
;
1004 bfd_size_type size
= isec
->rawsize
? isec
->rawsize
: isec
->size
;
1006 /* We have the bytes at the PUSHJ insn and need to get the
1007 position for the stub. There's supposed to be room allocated
1009 bfd_byte
*stubcontents
1010 = ((bfd_byte
*) datap
1011 - (addr
- (isec
->output_section
->vma
+ isec
->output_offset
))
1013 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1016 /* The address doesn't fit, so redirect the PUSHJ to the
1017 location of the stub. */
1018 r
= mmix_elf_perform_relocation (isec
,
1019 &elf_mmix_howto_table
1023 isec
->output_section
->vma
1024 + isec
->output_offset
1026 + (mmix_elf_section_data (isec
)
1029 if (r
!= bfd_reloc_ok
)
1033 = (isec
->output_section
->vma
1034 + isec
->output_offset
1036 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1038 /* We generate a simple JMP if that suffices, else the whole 5
1040 if (bfd_check_overflow (complain_overflow_signed
,
1041 elf_mmix_howto_table
[R_MMIX_ADDR27
].bitsize
,
1043 bfd_arch_bits_per_address (abfd
),
1044 addr
+ value
- stubaddr
) == bfd_reloc_ok
)
1046 bfd_put_32 (abfd
, JMP_INSN_BYTE
<< 24, stubcontents
);
1047 r
= mmix_elf_perform_relocation (isec
,
1048 &elf_mmix_howto_table
1052 value
+ addr
- stubaddr
);
1053 mmix_elf_section_data (isec
)->pjs
.stub_offset
+= 4;
1055 if (size
+ mmix_elf_section_data (isec
)->pjs
.stub_offset
1063 /* Put a "GO $255,0" after the common sequence. */
1065 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1066 | 0xff00, (bfd_byte
*) stubcontents
+ 16);
1068 /* Prepare for the general code to set the first part of the
1071 datap
= stubcontents
;
1072 mmix_elf_section_data (isec
)->pjs
.stub_offset
1073 += MAX_PUSHJ_STUB_SIZE
;
1080 int inreg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
1082 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1084 ((PUSHGO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1087 (bfd_byte
*) datap
+ 16);
1089 /* We change to an absolute value. */
1095 /* This one is a little special. If we get here on a non-relaxing
1096 link, and the destination is actually in range, we don't need to
1098 If so, we fall through to the bit-fiddling relocs.
1100 FIXME: bfd_check_overflow seems broken; the relocation is
1101 rightshifted before testing, so supply a zero rightshift. */
1103 if (! ((value
& 3) == 0
1104 && (r
= bfd_check_overflow (complain_overflow_signed
,
1107 bfd_arch_bits_per_address (abfd
),
1108 value
)) == bfd_reloc_ok
))
1110 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1111 modified below, and put a "GO $255,$255,0" after the
1112 address-loading sequence. */
1114 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1116 (bfd_byte
*) datap
+ 16);
1118 /* We change to an absolute value. */
1125 pcrel_mmix_reloc_fits
:
1126 /* These must be in range, or else we emit an error. */
1127 if ((value
& 3) == 0
1128 /* Note rightshift 0; see above. */
1129 && (r
= bfd_check_overflow (complain_overflow_signed
,
1132 bfd_arch_bits_per_address (abfd
),
1133 value
)) == bfd_reloc_ok
)
1136 = bfd_get_32 (abfd
, (bfd_byte
*) datap
);
1139 if ((bfd_signed_vma
) value
< 0)
1142 value
+= (1 << (howto
->bitsize
- 1));
1150 (in1
& howto
->src_mask
)
1152 | (value
& howto
->dst_mask
),
1153 (bfd_byte
*) datap
);
1155 return bfd_reloc_ok
;
1158 return bfd_reloc_overflow
;
1160 case R_MMIX_BASE_PLUS_OFFSET
:
1162 struct bpo_reloc_section_info
*bpodata
1163 = mmix_elf_section_data (isec
)->bpo
.reloc
;
1164 asection
*bpo_greg_section
1165 = bpodata
->bpo_greg_section
;
1166 struct bpo_greg_section_info
*gregdata
1167 = mmix_elf_section_data (bpo_greg_section
)->bpo
.greg
;
1169 = gregdata
->bpo_reloc_indexes
[bpodata
->bpo_index
++];
1171 /* A consistency check: The value we now have in "relocation" must
1172 be the same as the value we stored for that relocation. It
1173 doesn't cost much, so can be left in at all times. */
1174 if (value
!= gregdata
->reloc_request
[bpo_index
].value
)
1176 (*_bfd_error_handler
)
1177 (_("%s: Internal inconsistency error for value for\n\
1178 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1179 bfd_get_filename (isec
->owner
),
1180 (unsigned long) (value
>> 32), (unsigned long) value
,
1181 (unsigned long) (gregdata
->reloc_request
[bpo_index
].value
1183 (unsigned long) gregdata
->reloc_request
[bpo_index
].value
);
1184 bfd_set_error (bfd_error_bad_value
);
1185 return bfd_reloc_overflow
;
1188 /* Then store the register number and offset for that register
1189 into datap and datap + 1 respectively. */
1191 gregdata
->reloc_request
[bpo_index
].regindex
1192 + bpo_greg_section
->output_section
->vma
/ 8,
1195 gregdata
->reloc_request
[bpo_index
].offset
,
1196 ((unsigned char *) datap
) + 1);
1197 return bfd_reloc_ok
;
1200 case R_MMIX_REG_OR_BYTE
:
1203 return bfd_reloc_overflow
;
1204 bfd_put_8 (abfd
, value
, datap
);
1205 return bfd_reloc_ok
;
1208 BAD_CASE (howto
->type
);
1211 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1214 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1215 everything that looks strange. */
1217 flag
= bfd_reloc_overflow
;
1220 (SETL_INSN_BYTE
<< 24) | (value
& 0xffff) | (reg
<< 16),
1221 (bfd_byte
*) datap
+ offs
);
1223 (INCML_INSN_BYTE
<< 24) | ((value
>> 16) & 0xffff) | (reg
<< 16),
1224 (bfd_byte
*) datap
+ offs
+ 4);
1226 (INCMH_INSN_BYTE
<< 24) | ((value
>> 32) & 0xffff) | (reg
<< 16),
1227 (bfd_byte
*) datap
+ offs
+ 8);
1229 (INCH_INSN_BYTE
<< 24) | ((value
>> 48) & 0xffff) | (reg
<< 16),
1230 (bfd_byte
*) datap
+ offs
+ 12);
1235 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1238 mmix_info_to_howto_rela (abfd
, cache_ptr
, dst
)
1239 bfd
*abfd ATTRIBUTE_UNUSED
;
1241 Elf_Internal_Rela
*dst
;
1243 unsigned int r_type
;
1245 r_type
= ELF64_R_TYPE (dst
->r_info
);
1246 BFD_ASSERT (r_type
< (unsigned int) R_MMIX_max
);
1247 cache_ptr
->howto
= &elf_mmix_howto_table
[r_type
];
1250 /* Any MMIX-specific relocation gets here at assembly time or when linking
1251 to other formats (such as mmo); this is the relocation function from
1252 the reloc_table. We don't get here for final pure ELF linking. */
1254 static bfd_reloc_status_type
1255 mmix_elf_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1256 output_bfd
, error_message
)
1258 arelent
*reloc_entry
;
1261 asection
*input_section
;
1263 char **error_message ATTRIBUTE_UNUSED
;
1266 bfd_reloc_status_type r
;
1267 asection
*reloc_target_output_section
;
1268 bfd_reloc_status_type flag
= bfd_reloc_ok
;
1269 bfd_vma output_base
= 0;
1272 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1273 input_section
, output_bfd
, error_message
);
1275 /* If that was all that was needed (i.e. this isn't a final link, only
1276 some segment adjustments), we're done. */
1277 if (r
!= bfd_reloc_continue
)
1280 if (bfd_is_und_section (symbol
->section
)
1281 && (symbol
->flags
& BSF_WEAK
) == 0
1282 && output_bfd
== (bfd
*) NULL
)
1283 return bfd_reloc_undefined
;
1285 /* Is the address of the relocation really within the section? */
1286 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1287 return bfd_reloc_outofrange
;
1289 /* Work out which section the relocation is targeted at and the
1290 initial relocation command value. */
1292 /* Get symbol value. (Common symbols are special.) */
1293 if (bfd_is_com_section (symbol
->section
))
1296 relocation
= symbol
->value
;
1298 reloc_target_output_section
= bfd_get_output_section (symbol
);
1300 /* Here the variable relocation holds the final address of the symbol we
1301 are relocating against, plus any addend. */
1305 output_base
= reloc_target_output_section
->vma
;
1307 relocation
+= output_base
+ symbol
->section
->output_offset
;
1309 /* Get position of relocation. */
1310 addr
= (reloc_entry
->address
+ input_section
->output_section
->vma
1311 + input_section
->output_offset
);
1312 if (output_bfd
!= (bfd
*) NULL
)
1314 /* Add in supplied addend. */
1315 relocation
+= reloc_entry
->addend
;
1317 /* This is a partial relocation, and we want to apply the
1318 relocation to the reloc entry rather than the raw data.
1319 Modify the reloc inplace to reflect what we now know. */
1320 reloc_entry
->addend
= relocation
;
1321 reloc_entry
->address
+= input_section
->output_offset
;
1325 return mmix_final_link_relocate (reloc_entry
->howto
, input_section
,
1326 data
, reloc_entry
->address
,
1327 reloc_entry
->addend
, relocation
,
1328 bfd_asymbol_name (symbol
),
1329 reloc_target_output_section
);
1332 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1333 for guidance if you're thinking of copying this. */
1336 mmix_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1337 contents
, relocs
, local_syms
, local_sections
)
1338 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1339 struct bfd_link_info
*info
;
1341 asection
*input_section
;
1343 Elf_Internal_Rela
*relocs
;
1344 Elf_Internal_Sym
*local_syms
;
1345 asection
**local_sections
;
1347 Elf_Internal_Shdr
*symtab_hdr
;
1348 struct elf_link_hash_entry
**sym_hashes
;
1349 Elf_Internal_Rela
*rel
;
1350 Elf_Internal_Rela
*relend
;
1354 size
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
1355 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1356 sym_hashes
= elf_sym_hashes (input_bfd
);
1357 relend
= relocs
+ input_section
->reloc_count
;
1359 /* Zero the stub area before we start. */
1360 if (input_section
->rawsize
!= 0
1361 && input_section
->size
> input_section
->rawsize
)
1362 memset (contents
+ input_section
->rawsize
, 0,
1363 input_section
->size
- input_section
->rawsize
);
1365 for (rel
= relocs
; rel
< relend
; rel
++)
1367 reloc_howto_type
*howto
;
1368 unsigned long r_symndx
;
1369 Elf_Internal_Sym
*sym
;
1371 struct elf_link_hash_entry
*h
;
1373 bfd_reloc_status_type r
;
1374 const char *name
= NULL
;
1376 bfd_boolean undefined_signalled
= FALSE
;
1378 r_type
= ELF64_R_TYPE (rel
->r_info
);
1380 if (r_type
== R_MMIX_GNU_VTINHERIT
1381 || r_type
== R_MMIX_GNU_VTENTRY
)
1384 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1386 howto
= elf_mmix_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
1391 if (r_symndx
< symtab_hdr
->sh_info
)
1393 sym
= local_syms
+ r_symndx
;
1394 sec
= local_sections
[r_symndx
];
1395 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1397 name
= bfd_elf_string_from_elf_section (input_bfd
,
1398 symtab_hdr
->sh_link
,
1401 name
= bfd_section_name (input_bfd
, sec
);
1405 bfd_boolean unresolved_reloc
;
1407 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
1408 r_symndx
, symtab_hdr
, sym_hashes
,
1410 unresolved_reloc
, undefined_signalled
);
1411 name
= h
->root
.root
.string
;
1414 if (sec
!= NULL
&& elf_discarded_section (sec
))
1416 /* For relocs against symbols from removed linkonce sections,
1417 or sections discarded by a linker script, we just want the
1418 section contents zeroed. Avoid any special processing. */
1419 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
1425 if (info
->relocatable
)
1427 /* This is a relocatable link. For most relocs we don't have to
1428 change anything, unless the reloc is against a section
1429 symbol, in which case we have to adjust according to where
1430 the section symbol winds up in the output section. */
1431 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1432 rel
->r_addend
+= sec
->output_offset
;
1434 /* For PUSHJ stub relocs however, we may need to change the
1435 reloc and the section contents, if the reloc doesn't reach
1436 beyond the end of the output section and previous stubs.
1437 Then we change the section contents to be a PUSHJ to the end
1438 of the input section plus stubs (we can do that without using
1439 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1440 at the stub location. */
1441 if (r_type
== R_MMIX_PUSHJ_STUBBABLE
)
1443 /* We've already checked whether we need a stub; use that
1445 if (mmix_elf_section_data (input_section
)->pjs
.stub_size
[pjsno
]
1448 Elf_Internal_Rela relcpy
;
1450 if (mmix_elf_section_data (input_section
)
1451 ->pjs
.stub_size
[pjsno
] != MAX_PUSHJ_STUB_SIZE
)
1454 /* There's already a PUSHJ insn there, so just fill in
1455 the offset bits to the stub. */
1456 if (mmix_final_link_relocate (elf_mmix_howto_table
1463 ->output_section
->vma
1464 + input_section
->output_offset
1466 + mmix_elf_section_data (input_section
)
1468 NULL
, NULL
) != bfd_reloc_ok
)
1471 /* Put a JMP insn at the stub; it goes with the
1472 R_MMIX_JMP reloc. */
1473 bfd_put_32 (output_bfd
, JMP_INSN_BYTE
<< 24,
1476 + mmix_elf_section_data (input_section
)
1479 /* Change the reloc to be at the stub, and to a full
1480 R_MMIX_JMP reloc. */
1481 rel
->r_info
= ELF64_R_INFO (r_symndx
, R_MMIX_JMP
);
1484 + mmix_elf_section_data (input_section
)
1487 mmix_elf_section_data (input_section
)->pjs
.stub_offset
1488 += MAX_PUSHJ_STUB_SIZE
;
1490 /* Shift this reloc to the end of the relocs to maintain
1491 the r_offset sorted reloc order. */
1493 memmove (rel
, rel
+ 1, (char *) relend
- (char *) rel
);
1494 relend
[-1] = relcpy
;
1496 /* Back up one reloc, or else we'd skip the next reloc
1506 r
= mmix_final_link_relocate (howto
, input_section
,
1507 contents
, rel
->r_offset
,
1508 rel
->r_addend
, relocation
, name
, sec
);
1510 if (r
!= bfd_reloc_ok
)
1512 bfd_boolean check_ok
= TRUE
;
1513 const char * msg
= (const char *) NULL
;
1517 case bfd_reloc_overflow
:
1518 check_ok
= info
->callbacks
->reloc_overflow
1519 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
1520 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
1523 case bfd_reloc_undefined
:
1524 /* We may have sent this message above. */
1525 if (! undefined_signalled
)
1526 check_ok
= info
->callbacks
->undefined_symbol
1527 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
1529 undefined_signalled
= TRUE
;
1532 case bfd_reloc_outofrange
:
1533 msg
= _("internal error: out of range error");
1536 case bfd_reloc_notsupported
:
1537 msg
= _("internal error: unsupported relocation error");
1540 case bfd_reloc_dangerous
:
1541 msg
= _("internal error: dangerous relocation");
1545 msg
= _("internal error: unknown error");
1550 check_ok
= info
->callbacks
->warning
1551 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
1561 /* Perform a single relocation. By default we use the standard BFD
1562 routines. A few relocs we have to do ourselves. */
1564 static bfd_reloc_status_type
1565 mmix_final_link_relocate (howto
, input_section
, contents
,
1566 r_offset
, r_addend
, relocation
, symname
, symsec
)
1567 reloc_howto_type
*howto
;
1568 asection
*input_section
;
1571 bfd_signed_vma r_addend
;
1573 const char *symname
;
1576 bfd_reloc_status_type r
= bfd_reloc_ok
;
1578 = (input_section
->output_section
->vma
1579 + input_section
->output_offset
1582 = (bfd_signed_vma
) relocation
+ r_addend
;
1584 switch (howto
->type
)
1586 /* All these are PC-relative. */
1587 case R_MMIX_PUSHJ_STUBBABLE
:
1589 case R_MMIX_CBRANCH
:
1594 contents
+= r_offset
;
1596 srel
-= (input_section
->output_section
->vma
1597 + input_section
->output_offset
1600 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1604 case R_MMIX_BASE_PLUS_OFFSET
:
1606 return bfd_reloc_undefined
;
1608 /* Check that we're not relocating against a register symbol. */
1609 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1610 MMIX_REG_CONTENTS_SECTION_NAME
) == 0
1611 || strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1612 MMIX_REG_SECTION_NAME
) == 0)
1614 /* Note: This is separated out into two messages in order
1615 to ease the translation into other languages. */
1616 if (symname
== NULL
|| *symname
== 0)
1617 (*_bfd_error_handler
)
1618 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1619 bfd_get_filename (input_section
->owner
),
1620 bfd_get_section_name (symsec
->owner
, symsec
));
1622 (*_bfd_error_handler
)
1623 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1624 bfd_get_filename (input_section
->owner
), symname
,
1625 bfd_get_section_name (symsec
->owner
, symsec
));
1626 return bfd_reloc_overflow
;
1630 case R_MMIX_REG_OR_BYTE
:
1632 /* For now, we handle these alike. They must refer to an register
1633 symbol, which is either relative to the register section and in
1634 the range 0..255, or is in the register contents section with vma
1637 /* FIXME: A better way to check for reg contents section?
1638 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1640 return bfd_reloc_undefined
;
1642 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1643 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1645 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1647 /* The bfd_reloc_outofrange return value, though intuitively
1648 a better value, will not get us an error. */
1649 return bfd_reloc_overflow
;
1653 else if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1654 MMIX_REG_SECTION_NAME
) == 0)
1656 if (srel
< 0 || srel
> 255)
1657 /* The bfd_reloc_outofrange return value, though intuitively a
1658 better value, will not get us an error. */
1659 return bfd_reloc_overflow
;
1663 /* Note: This is separated out into two messages in order
1664 to ease the translation into other languages. */
1665 if (symname
== NULL
|| *symname
== 0)
1666 (*_bfd_error_handler
)
1667 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1668 bfd_get_filename (input_section
->owner
),
1669 bfd_get_section_name (symsec
->owner
, symsec
));
1671 (*_bfd_error_handler
)
1672 (_("%s: register relocation against non-register symbol: %s in %s"),
1673 bfd_get_filename (input_section
->owner
), symname
,
1674 bfd_get_section_name (symsec
->owner
, symsec
));
1676 /* The bfd_reloc_outofrange return value, though intuitively a
1677 better value, will not get us an error. */
1678 return bfd_reloc_overflow
;
1681 contents
+= r_offset
;
1682 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1687 /* This isn't a real relocation, it's just an assertion that the
1688 final relocation value corresponds to a local register. We
1689 ignore the actual relocation; nothing is changed. */
1692 = bfd_get_section_by_name (input_section
->output_section
->owner
,
1693 MMIX_REG_CONTENTS_SECTION_NAME
);
1694 bfd_vma first_global
;
1696 /* Check that this is an absolute value, or a reference to the
1697 register contents section or the register (symbol) section.
1698 Absolute numbers can get here as undefined section. Undefined
1699 symbols are signalled elsewhere, so there's no conflict in us
1700 accidentally handling it. */
1701 if (!bfd_is_abs_section (symsec
)
1702 && !bfd_is_und_section (symsec
)
1703 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1704 MMIX_REG_CONTENTS_SECTION_NAME
) != 0
1705 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1706 MMIX_REG_SECTION_NAME
) != 0)
1708 (*_bfd_error_handler
)
1709 (_("%s: directive LOCAL valid only with a register or absolute value"),
1710 bfd_get_filename (input_section
->owner
));
1712 return bfd_reloc_overflow
;
1715 /* If we don't have a register contents section, then $255 is the
1716 first global register. */
1721 first_global
= bfd_get_section_vma (abfd
, regsec
) / 8;
1722 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1723 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1725 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1726 /* The bfd_reloc_outofrange return value, though
1727 intuitively a better value, will not get us an error. */
1728 return bfd_reloc_overflow
;
1733 if ((bfd_vma
) srel
>= first_global
)
1735 /* FIXME: Better error message. */
1736 (*_bfd_error_handler
)
1737 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1738 bfd_get_filename (input_section
->owner
), (long) srel
, (long) first_global
);
1740 return bfd_reloc_overflow
;
1747 r
= _bfd_final_link_relocate (howto
, input_section
->owner
, input_section
,
1749 relocation
, r_addend
);
1755 /* Return the section that should be marked against GC for a given
1759 mmix_elf_gc_mark_hook (asection
*sec
,
1760 struct bfd_link_info
*info
,
1761 Elf_Internal_Rela
*rel
,
1762 struct elf_link_hash_entry
*h
,
1763 Elf_Internal_Sym
*sym
)
1766 switch (ELF64_R_TYPE (rel
->r_info
))
1768 case R_MMIX_GNU_VTINHERIT
:
1769 case R_MMIX_GNU_VTENTRY
:
1773 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1776 /* Update relocation info for a GC-excluded section. We could supposedly
1777 perform the allocation after GC, but there's no suitable hook between
1778 GC (or section merge) and the point when all input sections must be
1779 present. Better to waste some memory and (perhaps) a little time. */
1782 mmix_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1783 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1785 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
1787 struct bpo_reloc_section_info
*bpodata
1788 = mmix_elf_section_data (sec
)->bpo
.reloc
;
1789 asection
*allocated_gregs_section
;
1791 /* If no bpodata here, we have nothing to do. */
1792 if (bpodata
== NULL
)
1795 allocated_gregs_section
= bpodata
->bpo_greg_section
;
1797 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
->n_bpo_relocs
1798 -= bpodata
->n_bpo_relocs_this_section
;
1803 /* Sort register relocs to come before expanding relocs. */
1806 mmix_elf_sort_relocs (p1
, p2
)
1810 const Elf_Internal_Rela
*r1
= (const Elf_Internal_Rela
*) p1
;
1811 const Elf_Internal_Rela
*r2
= (const Elf_Internal_Rela
*) p2
;
1812 int r1_is_reg
, r2_is_reg
;
1814 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1816 if ((r1
->r_offset
& ~(bfd_vma
) 3) > (r2
->r_offset
& ~(bfd_vma
) 3))
1818 else if ((r1
->r_offset
& ~(bfd_vma
) 3) < (r2
->r_offset
& ~(bfd_vma
) 3))
1822 = (ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG_OR_BYTE
1823 || ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG
);
1825 = (ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG_OR_BYTE
1826 || ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG
);
1827 if (r1_is_reg
!= r2_is_reg
)
1828 return r2_is_reg
- r1_is_reg
;
1830 /* Neither or both are register relocs. Then sort on full offset. */
1831 if (r1
->r_offset
> r2
->r_offset
)
1833 else if (r1
->r_offset
< r2
->r_offset
)
1838 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1841 mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
)
1843 struct bfd_link_info
*info
;
1845 const Elf_Internal_Rela
*relocs
;
1847 bfd
*bpo_greg_owner
= NULL
;
1848 asection
*allocated_gregs_section
= NULL
;
1849 struct bpo_greg_section_info
*gregdata
= NULL
;
1850 struct bpo_reloc_section_info
*bpodata
= NULL
;
1851 const Elf_Internal_Rela
*rel
;
1852 const Elf_Internal_Rela
*rel_end
;
1854 /* We currently have to abuse this COFF-specific member, since there's
1855 no target-machine-dedicated member. There's no alternative outside
1856 the bfd_link_info struct; we can't specialize a hash-table since
1857 they're different between ELF and mmo. */
1858 bpo_greg_owner
= (bfd
*) info
->base_file
;
1860 rel_end
= relocs
+ sec
->reloc_count
;
1861 for (rel
= relocs
; rel
< rel_end
; rel
++)
1863 switch (ELF64_R_TYPE (rel
->r_info
))
1865 /* This relocation causes a GREG allocation. We need to count
1866 them, and we need to create a section for them, so we need an
1867 object to fake as the owner of that section. We can't use
1868 the ELF dynobj for this, since the ELF bits assume lots of
1869 DSO-related stuff if that member is non-NULL. */
1870 case R_MMIX_BASE_PLUS_OFFSET
:
1871 /* We don't do anything with this reloc for a relocatable link. */
1872 if (info
->relocatable
)
1875 if (bpo_greg_owner
== NULL
)
1877 bpo_greg_owner
= abfd
;
1878 info
->base_file
= (PTR
) bpo_greg_owner
;
1881 if (allocated_gregs_section
== NULL
)
1882 allocated_gregs_section
1883 = bfd_get_section_by_name (bpo_greg_owner
,
1884 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
1886 if (allocated_gregs_section
== NULL
)
1888 allocated_gregs_section
1889 = bfd_make_section_with_flags (bpo_greg_owner
,
1890 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
,
1893 | SEC_LINKER_CREATED
));
1894 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1895 treated like any other section, and we'd get errors for
1896 address overlap with the text section. Let's set none of
1897 those flags, as that is what currently happens for usual
1898 GREG allocations, and that works. */
1899 if (allocated_gregs_section
== NULL
1900 || !bfd_set_section_alignment (bpo_greg_owner
,
1901 allocated_gregs_section
,
1905 gregdata
= (struct bpo_greg_section_info
*)
1906 bfd_zalloc (bpo_greg_owner
, sizeof (struct bpo_greg_section_info
));
1907 if (gregdata
== NULL
)
1909 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
1912 else if (gregdata
== NULL
)
1914 = mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
;
1916 /* Get ourselves some auxiliary info for the BPO-relocs. */
1917 if (bpodata
== NULL
)
1919 /* No use doing a separate iteration pass to find the upper
1920 limit - just use the number of relocs. */
1921 bpodata
= (struct bpo_reloc_section_info
*)
1922 bfd_alloc (bpo_greg_owner
,
1923 sizeof (struct bpo_reloc_section_info
)
1924 * (sec
->reloc_count
+ 1));
1925 if (bpodata
== NULL
)
1927 mmix_elf_section_data (sec
)->bpo
.reloc
= bpodata
;
1928 bpodata
->first_base_plus_offset_reloc
1929 = bpodata
->bpo_index
1930 = gregdata
->n_max_bpo_relocs
;
1931 bpodata
->bpo_greg_section
1932 = allocated_gregs_section
;
1933 bpodata
->n_bpo_relocs_this_section
= 0;
1936 bpodata
->n_bpo_relocs_this_section
++;
1937 gregdata
->n_max_bpo_relocs
++;
1939 /* We don't get another chance to set this before GC; we've not
1940 set up any hook that runs before GC. */
1941 gregdata
->n_bpo_relocs
1942 = gregdata
->n_max_bpo_relocs
;
1945 case R_MMIX_PUSHJ_STUBBABLE
:
1946 mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
++;
1951 /* Allocate per-reloc stub storage and initialize it to the max stub
1953 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
!= 0)
1957 mmix_elf_section_data (sec
)->pjs
.stub_size
1958 = bfd_alloc (abfd
, mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
1959 * sizeof (mmix_elf_section_data (sec
)
1960 ->pjs
.stub_size
[0]));
1961 if (mmix_elf_section_data (sec
)->pjs
.stub_size
== NULL
)
1964 for (i
= 0; i
< mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
; i
++)
1965 mmix_elf_section_data (sec
)->pjs
.stub_size
[i
] = MAX_PUSHJ_STUB_SIZE
;
1971 /* Look through the relocs for a section during the first phase. */
1974 mmix_elf_check_relocs (abfd
, info
, sec
, relocs
)
1976 struct bfd_link_info
*info
;
1978 const Elf_Internal_Rela
*relocs
;
1980 Elf_Internal_Shdr
*symtab_hdr
;
1981 struct elf_link_hash_entry
**sym_hashes
;
1982 const Elf_Internal_Rela
*rel
;
1983 const Elf_Internal_Rela
*rel_end
;
1985 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1986 sym_hashes
= elf_sym_hashes (abfd
);
1988 /* First we sort the relocs so that any register relocs come before
1989 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1990 qsort ((PTR
) relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
1991 mmix_elf_sort_relocs
);
1993 /* Do the common part. */
1994 if (!mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
))
1997 if (info
->relocatable
)
2000 rel_end
= relocs
+ sec
->reloc_count
;
2001 for (rel
= relocs
; rel
< rel_end
; rel
++)
2003 struct elf_link_hash_entry
*h
;
2004 unsigned long r_symndx
;
2006 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2007 if (r_symndx
< symtab_hdr
->sh_info
)
2011 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2012 while (h
->root
.type
== bfd_link_hash_indirect
2013 || h
->root
.type
== bfd_link_hash_warning
)
2014 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2017 switch (ELF64_R_TYPE (rel
->r_info
))
2019 /* This relocation describes the C++ object vtable hierarchy.
2020 Reconstruct it for later use during GC. */
2021 case R_MMIX_GNU_VTINHERIT
:
2022 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2026 /* This relocation describes which C++ vtable entries are actually
2027 used. Record for later use during GC. */
2028 case R_MMIX_GNU_VTENTRY
:
2029 BFD_ASSERT (h
!= NULL
);
2031 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
2040 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2041 Copied from elf_link_add_object_symbols. */
2044 _bfd_mmix_check_all_relocs (abfd
, info
)
2046 struct bfd_link_info
*info
;
2050 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2052 Elf_Internal_Rela
*internal_relocs
;
2055 if ((o
->flags
& SEC_RELOC
) == 0
2056 || o
->reloc_count
== 0
2057 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2058 && (o
->flags
& SEC_DEBUGGING
) != 0)
2059 || bfd_is_abs_section (o
->output_section
))
2063 = _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
2064 (Elf_Internal_Rela
*) NULL
,
2066 if (internal_relocs
== NULL
)
2069 ok
= mmix_elf_check_common_relocs (abfd
, info
, o
, internal_relocs
);
2071 if (! info
->keep_memory
)
2072 free (internal_relocs
);
2081 /* Change symbols relative to the reg contents section to instead be to
2082 the register section, and scale them down to correspond to the register
2086 mmix_elf_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
2087 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2088 const char *name ATTRIBUTE_UNUSED
;
2089 Elf_Internal_Sym
*sym
;
2090 asection
*input_sec
;
2091 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
;
2093 if (input_sec
!= NULL
2094 && input_sec
->name
!= NULL
2095 && ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
2096 && strcmp (input_sec
->name
, MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
2099 sym
->st_shndx
= SHN_REGISTER
;
2105 /* We fake a register section that holds values that are register numbers.
2106 Having a SHN_REGISTER and register section translates better to other
2107 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2108 This section faking is based on a construct in elf32-mips.c. */
2109 static asection mmix_elf_reg_section
;
2110 static asymbol mmix_elf_reg_section_symbol
;
2111 static asymbol
*mmix_elf_reg_section_symbol_ptr
;
2113 /* Handle the special section numbers that a symbol may use. */
2116 mmix_elf_symbol_processing (abfd
, asym
)
2117 bfd
*abfd ATTRIBUTE_UNUSED
;
2120 elf_symbol_type
*elfsym
;
2122 elfsym
= (elf_symbol_type
*) asym
;
2123 switch (elfsym
->internal_elf_sym
.st_shndx
)
2126 if (mmix_elf_reg_section
.name
== NULL
)
2128 /* Initialize the register section. */
2129 mmix_elf_reg_section
.name
= MMIX_REG_SECTION_NAME
;
2130 mmix_elf_reg_section
.flags
= SEC_NO_FLAGS
;
2131 mmix_elf_reg_section
.output_section
= &mmix_elf_reg_section
;
2132 mmix_elf_reg_section
.symbol
= &mmix_elf_reg_section_symbol
;
2133 mmix_elf_reg_section
.symbol_ptr_ptr
= &mmix_elf_reg_section_symbol_ptr
;
2134 mmix_elf_reg_section_symbol
.name
= MMIX_REG_SECTION_NAME
;
2135 mmix_elf_reg_section_symbol
.flags
= BSF_SECTION_SYM
;
2136 mmix_elf_reg_section_symbol
.section
= &mmix_elf_reg_section
;
2137 mmix_elf_reg_section_symbol_ptr
= &mmix_elf_reg_section_symbol
;
2139 asym
->section
= &mmix_elf_reg_section
;
2147 /* Given a BFD section, try to locate the corresponding ELF section
2151 mmix_elf_section_from_bfd_section (abfd
, sec
, retval
)
2152 bfd
* abfd ATTRIBUTE_UNUSED
;
2156 if (strcmp (bfd_get_section_name (abfd
, sec
), MMIX_REG_SECTION_NAME
) == 0)
2157 *retval
= SHN_REGISTER
;
2164 /* Hook called by the linker routine which adds symbols from an object
2165 file. We must handle the special SHN_REGISTER section number here.
2167 We also check that we only have *one* each of the section-start
2168 symbols, since otherwise having two with the same value would cause
2169 them to be "merged", but with the contents serialized. */
2172 mmix_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
2174 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2175 Elf_Internal_Sym
*sym
;
2176 const char **namep ATTRIBUTE_UNUSED
;
2177 flagword
*flagsp ATTRIBUTE_UNUSED
;
2179 bfd_vma
*valp ATTRIBUTE_UNUSED
;
2181 if (sym
->st_shndx
== SHN_REGISTER
)
2183 *secp
= bfd_make_section_old_way (abfd
, MMIX_REG_SECTION_NAME
);
2184 (*secp
)->flags
|= SEC_LINKER_CREATED
;
2186 else if ((*namep
)[0] == '_' && (*namep
)[1] == '_' && (*namep
)[2] == '.'
2187 && CONST_STRNEQ (*namep
, MMIX_LOC_SECTION_START_SYMBOL_PREFIX
))
2189 /* See if we have another one. */
2190 struct bfd_link_hash_entry
*h
= bfd_link_hash_lookup (info
->hash
,
2196 if (h
!= NULL
&& h
->type
!= bfd_link_hash_undefined
)
2198 /* How do we get the asymbol (or really: the filename) from h?
2199 h->u.def.section->owner is NULL. */
2200 ((*_bfd_error_handler
)
2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2202 bfd_get_filename (abfd
), *namep
,
2203 *namep
+ strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)));
2204 bfd_set_error (bfd_error_bad_value
);
2212 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2215 mmix_elf_is_local_label_name (abfd
, name
)
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd
, name
))
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos
= strchr (name
, ':');
2231 if (colpos
== NULL
|| strchr (colpos
+ 1, ':') != NULL
)
2234 /* Check that there are remaining characters and that they are digits. */
2238 digits
= strspn (colpos
+ 1, "0123456789");
2239 return digits
!= 0 && colpos
[1 + digits
] == 0;
2242 /* We get rid of the register section here. */
2245 mmix_elf_final_link (abfd
, info
)
2247 struct bfd_link_info
*info
;
2249 /* We never output a register section, though we create one for
2250 temporary measures. Check that nobody entered contents into it. */
2251 asection
*reg_section
;
2253 reg_section
= bfd_get_section_by_name (abfd
, MMIX_REG_SECTION_NAME
);
2255 if (reg_section
!= NULL
)
2257 /* FIXME: Pass error state gracefully. */
2258 if (bfd_get_section_flags (abfd
, reg_section
) & SEC_HAS_CONTENTS
)
2259 _bfd_abort (__FILE__
, __LINE__
, _("Register section has contents\n"));
2261 /* Really remove the section, if it hasn't already been done. */
2262 if (!bfd_section_removed_from_list (abfd
, reg_section
))
2264 bfd_section_list_remove (abfd
, reg_section
);
2265 --abfd
->section_count
;
2269 if (! bfd_elf_final_link (abfd
, info
))
2272 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2273 the regular linker machinery. We do it here, like other targets with
2274 special sections. */
2275 if (info
->base_file
!= NULL
)
2277 asection
*greg_section
2278 = bfd_get_section_by_name ((bfd
*) info
->base_file
,
2279 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2280 if (!bfd_set_section_contents (abfd
,
2281 greg_section
->output_section
,
2282 greg_section
->contents
,
2283 (file_ptr
) greg_section
->output_offset
,
2284 greg_section
->size
))
2290 /* We need to include the maximum size of PUSHJ-stubs in the initial
2291 section size. This is expected to shrink during linker relaxation. */
2294 mmix_set_relaxable_size (abfd
, sec
, ptr
)
2295 bfd
*abfd ATTRIBUTE_UNUSED
;
2299 struct bfd_link_info
*info
= ptr
;
2301 /* Make sure we only do this for section where we know we want this,
2302 otherwise we might end up resetting the size of COMMONs. */
2303 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0)
2306 sec
->rawsize
= sec
->size
;
2307 sec
->size
+= (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2308 * MAX_PUSHJ_STUB_SIZE
);
2310 /* For use in relocatable link, we start with a max stubs size. See
2311 mmix_elf_relax_section. */
2312 if (info
->relocatable
&& sec
->output_section
)
2313 mmix_elf_section_data (sec
->output_section
)->pjs
.stubs_size_sum
2314 += (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2315 * MAX_PUSHJ_STUB_SIZE
);
2318 /* Initialize stuff for the linker-generated GREGs to match
2319 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2322 _bfd_mmix_before_linker_allocation (abfd
, info
)
2323 bfd
*abfd ATTRIBUTE_UNUSED
;
2324 struct bfd_link_info
*info
;
2326 asection
*bpo_gregs_section
;
2327 bfd
*bpo_greg_owner
;
2328 struct bpo_greg_section_info
*gregdata
;
2332 size_t *bpo_reloc_indexes
;
2335 /* Set the initial size of sections. */
2336 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2337 bfd_map_over_sections (ibfd
, mmix_set_relaxable_size
, info
);
2339 /* The bpo_greg_owner bfd is supposed to have been set by
2340 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2341 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2342 bpo_greg_owner
= (bfd
*) info
->base_file
;
2343 if (bpo_greg_owner
== NULL
)
2347 = bfd_get_section_by_name (bpo_greg_owner
,
2348 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2350 if (bpo_gregs_section
== NULL
)
2353 /* We use the target-data handle in the ELF section data. */
2354 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2355 if (gregdata
== NULL
)
2358 n_gregs
= gregdata
->n_bpo_relocs
;
2359 gregdata
->n_allocated_bpo_gregs
= n_gregs
;
2361 /* When this reaches zero during relaxation, all entries have been
2362 filled in and the size of the linker gregs can be calculated. */
2363 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
= n_gregs
;
2365 /* Set the zeroth-order estimate for the GREGs size. */
2366 gregs_size
= n_gregs
* 8;
2368 if (!bfd_set_section_size (bpo_greg_owner
, bpo_gregs_section
, gregs_size
))
2371 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2372 time. Note that we must use the max number ever noted for the array,
2373 since the index numbers were created before GC. */
2374 gregdata
->reloc_request
2375 = bfd_zalloc (bpo_greg_owner
,
2376 sizeof (struct bpo_reloc_request
)
2377 * gregdata
->n_max_bpo_relocs
);
2379 gregdata
->bpo_reloc_indexes
2381 = bfd_alloc (bpo_greg_owner
,
2382 gregdata
->n_max_bpo_relocs
2384 if (bpo_reloc_indexes
== NULL
)
2387 /* The default order is an identity mapping. */
2388 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2390 bpo_reloc_indexes
[i
] = i
;
2391 gregdata
->reloc_request
[i
].bpo_reloc_no
= i
;
2397 /* Fill in contents in the linker allocated gregs. Everything is
2398 calculated at this point; we just move the contents into place here. */
2401 _bfd_mmix_after_linker_allocation (abfd
, link_info
)
2402 bfd
*abfd ATTRIBUTE_UNUSED
;
2403 struct bfd_link_info
*link_info
;
2405 asection
*bpo_gregs_section
;
2406 bfd
*bpo_greg_owner
;
2407 struct bpo_greg_section_info
*gregdata
;
2413 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2414 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2415 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2416 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2417 if (bpo_greg_owner
== NULL
)
2421 = bfd_get_section_by_name (bpo_greg_owner
,
2422 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2424 /* This can't happen without DSO handling. When DSOs are handled
2425 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2427 if (bpo_gregs_section
== NULL
)
2430 /* We use the target-data handle in the ELF section data. */
2432 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2433 if (gregdata
== NULL
)
2436 n_gregs
= gregdata
->n_allocated_bpo_gregs
;
2438 bpo_gregs_section
->contents
2439 = contents
= bfd_alloc (bpo_greg_owner
, bpo_gregs_section
->size
);
2440 if (contents
== NULL
)
2443 /* Sanity check: If these numbers mismatch, some relocation has not been
2444 accounted for and the rest of gregdata is probably inconsistent.
2445 It's a bug, but it's more helpful to identify it than segfaulting
2447 if (gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2448 != gregdata
->n_bpo_relocs
)
2450 (*_bfd_error_handler
)
2451 (_("Internal inconsistency: remaining %u != max %u.\n\
2452 Please report this bug."),
2453 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2454 gregdata
->n_bpo_relocs
);
2458 for (lastreg
= 255, i
= 0, j
= 0; j
< n_gregs
; i
++)
2459 if (gregdata
->reloc_request
[i
].regindex
!= lastreg
)
2461 bfd_put_64 (bpo_greg_owner
, gregdata
->reloc_request
[i
].value
,
2463 lastreg
= gregdata
->reloc_request
[i
].regindex
;
2470 /* Sort valid relocs to come before non-valid relocs, then on increasing
2474 bpo_reloc_request_sort_fn (p1
, p2
)
2478 const struct bpo_reloc_request
*r1
= (const struct bpo_reloc_request
*) p1
;
2479 const struct bpo_reloc_request
*r2
= (const struct bpo_reloc_request
*) p2
;
2481 /* Primary function is validity; non-valid relocs sorted after valid
2483 if (r1
->valid
!= r2
->valid
)
2484 return r2
->valid
- r1
->valid
;
2486 /* Then sort on value. Don't simplify and return just the difference of
2487 the values: the upper bits of the 64-bit value would be truncated on
2488 a host with 32-bit ints. */
2489 if (r1
->value
!= r2
->value
)
2490 return r1
->value
> r2
->value
? 1 : -1;
2492 /* As a last re-sort, use the relocation number, so we get a stable
2493 sort. The *addresses* aren't stable since items are swapped during
2494 sorting. It depends on the qsort implementation if this actually
2496 return r1
->bpo_reloc_no
> r2
->bpo_reloc_no
2497 ? 1 : (r1
->bpo_reloc_no
< r2
->bpo_reloc_no
? -1 : 0);
2500 /* For debug use only. Dumps the global register allocations resulting
2501 from base-plus-offset relocs. */
2504 mmix_dump_bpo_gregs (link_info
, pf
)
2505 struct bfd_link_info
*link_info
;
2506 bfd_error_handler_type pf
;
2508 bfd
*bpo_greg_owner
;
2509 asection
*bpo_gregs_section
;
2510 struct bpo_greg_section_info
*gregdata
;
2513 if (link_info
== NULL
|| link_info
->base_file
== NULL
)
2516 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2519 = bfd_get_section_by_name (bpo_greg_owner
,
2520 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2522 if (bpo_gregs_section
== NULL
)
2525 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2526 if (gregdata
== NULL
)
2530 pf
= _bfd_error_handler
;
2532 /* These format strings are not translated. They are for debug purposes
2533 only and never displayed to an end user. Should they escape, we
2534 surely want them in original. */
2535 (*pf
) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2536 n_allocated_bpo_gregs: %u\n", gregdata
->n_bpo_relocs
,
2537 gregdata
->n_max_bpo_relocs
,
2538 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2539 gregdata
->n_allocated_bpo_gregs
);
2541 if (gregdata
->reloc_request
)
2542 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2543 (*pf
) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2545 (gregdata
->bpo_reloc_indexes
!= NULL
2546 ? gregdata
->bpo_reloc_indexes
[i
] : (size_t) -1),
2547 gregdata
->reloc_request
[i
].bpo_reloc_no
,
2548 gregdata
->reloc_request
[i
].valid
,
2550 (unsigned long) (gregdata
->reloc_request
[i
].value
>> 32),
2551 (unsigned long) gregdata
->reloc_request
[i
].value
,
2552 gregdata
->reloc_request
[i
].regindex
,
2553 gregdata
->reloc_request
[i
].offset
);
2556 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2557 when the last such reloc is done, an index-array is sorted according to
2558 the values and iterated over to produce register numbers (indexed by 0
2559 from the first allocated register number) and offsets for use in real
2560 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2562 PUSHJ stub accounting is also done here.
2564 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2567 mmix_elf_relax_section (abfd
, sec
, link_info
, again
)
2570 struct bfd_link_info
*link_info
;
2573 Elf_Internal_Shdr
*symtab_hdr
;
2574 Elf_Internal_Rela
*internal_relocs
;
2575 Elf_Internal_Rela
*irel
, *irelend
;
2576 asection
*bpo_gregs_section
= NULL
;
2577 struct bpo_greg_section_info
*gregdata
;
2578 struct bpo_reloc_section_info
*bpodata
2579 = mmix_elf_section_data (sec
)->bpo
.reloc
;
2580 /* The initialization is to quiet compiler warnings. The value is to
2581 spot a missing actual initialization. */
2582 size_t bpono
= (size_t) -1;
2584 bfd
*bpo_greg_owner
;
2585 Elf_Internal_Sym
*isymbuf
= NULL
;
2586 bfd_size_type size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
2588 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
= 0;
2590 /* Assume nothing changes. */
2593 /* We don't have to do anything if this section does not have relocs, or
2594 if this is not a code section. */
2595 if ((sec
->flags
& SEC_RELOC
) == 0
2596 || sec
->reloc_count
== 0
2597 || (sec
->flags
& SEC_CODE
) == 0
2598 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2599 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2600 then nothing to do. */
2602 && mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0))
2605 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2607 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2609 if (bpodata
!= NULL
)
2611 bpo_gregs_section
= bpodata
->bpo_greg_section
;
2612 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2613 bpono
= bpodata
->first_base_plus_offset_reloc
;
2618 /* Get a copy of the native relocations. */
2620 = _bfd_elf_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
2621 (Elf_Internal_Rela
*) NULL
,
2622 link_info
->keep_memory
);
2623 if (internal_relocs
== NULL
)
2626 /* Walk through them looking for relaxing opportunities. */
2627 irelend
= internal_relocs
+ sec
->reloc_count
;
2628 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2631 struct elf_link_hash_entry
*h
= NULL
;
2633 /* We only process two relocs. */
2634 if (ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_BASE_PLUS_OFFSET
2635 && ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_PUSHJ_STUBBABLE
)
2638 /* We process relocs in a distinctly different way when this is a
2639 relocatable link (for one, we don't look at symbols), so we avoid
2640 mixing its code with that for the "normal" relaxation. */
2641 if (link_info
->relocatable
)
2643 /* The only transformation in a relocatable link is to generate
2644 a full stub at the location of the stub calculated for the
2645 input section, if the relocated stub location, the end of the
2646 output section plus earlier stubs, cannot be reached. Thus
2647 relocatable linking can only lead to worse code, but it still
2649 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_PUSHJ_STUBBABLE
)
2651 /* If we can reach the end of the output-section and beyond
2652 any current stubs, then we don't need a stub for this
2653 reloc. The relaxed order of output stub allocation may
2654 not exactly match the straightforward order, so we always
2655 assume presence of output stubs, which will allow
2656 relaxation only on relocations indifferent to the
2657 presence of output stub allocations for other relocations
2658 and thus the order of output stub allocation. */
2659 if (bfd_check_overflow (complain_overflow_signed
,
2662 bfd_arch_bits_per_address (abfd
),
2663 /* Output-stub location. */
2664 sec
->output_section
->rawsize
2665 + (mmix_elf_section_data (sec
2667 ->pjs
.stubs_size_sum
)
2668 /* Location of this PUSHJ reloc. */
2669 - (sec
->output_offset
+ irel
->r_offset
)
2670 /* Don't count *this* stub twice. */
2671 - (mmix_elf_section_data (sec
)
2672 ->pjs
.stub_size
[pjsno
]
2673 + MAX_PUSHJ_STUB_SIZE
))
2675 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2677 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2678 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2686 /* Get the value of the symbol referred to by the reloc. */
2687 if (ELF64_R_SYM (irel
->r_info
) < symtab_hdr
->sh_info
)
2689 /* A local symbol. */
2690 Elf_Internal_Sym
*isym
;
2693 /* Read this BFD's local symbols if we haven't already. */
2694 if (isymbuf
== NULL
)
2696 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2697 if (isymbuf
== NULL
)
2698 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
2699 symtab_hdr
->sh_info
, 0,
2705 isym
= isymbuf
+ ELF64_R_SYM (irel
->r_info
);
2706 if (isym
->st_shndx
== SHN_UNDEF
)
2707 sym_sec
= bfd_und_section_ptr
;
2708 else if (isym
->st_shndx
== SHN_ABS
)
2709 sym_sec
= bfd_abs_section_ptr
;
2710 else if (isym
->st_shndx
== SHN_COMMON
)
2711 sym_sec
= bfd_com_section_ptr
;
2713 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
2714 symval
= (isym
->st_value
2715 + sym_sec
->output_section
->vma
2716 + sym_sec
->output_offset
);
2722 /* An external symbol. */
2723 indx
= ELF64_R_SYM (irel
->r_info
) - symtab_hdr
->sh_info
;
2724 h
= elf_sym_hashes (abfd
)[indx
];
2725 BFD_ASSERT (h
!= NULL
);
2726 if (h
->root
.type
!= bfd_link_hash_defined
2727 && h
->root
.type
!= bfd_link_hash_defweak
)
2729 /* This appears to be a reference to an undefined symbol. Just
2730 ignore it--it will be caught by the regular reloc processing.
2731 We need to keep BPO reloc accounting consistent, though
2732 else we'll abort instead of emitting an error message. */
2733 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_BASE_PLUS_OFFSET
2734 && gregdata
!= NULL
)
2736 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2742 symval
= (h
->root
.u
.def
.value
2743 + h
->root
.u
.def
.section
->output_section
->vma
2744 + h
->root
.u
.def
.section
->output_offset
);
2747 if (ELF64_R_TYPE (irel
->r_info
) == (int) R_MMIX_PUSHJ_STUBBABLE
)
2749 bfd_vma value
= symval
+ irel
->r_addend
;
2751 = (sec
->output_section
->vma
2752 + sec
->output_offset
2755 = (sec
->output_section
->vma
2756 + sec
->output_offset
2758 + mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
);
2760 if ((value
& 3) == 0
2761 && bfd_check_overflow (complain_overflow_signed
,
2764 bfd_arch_bits_per_address (abfd
),
2767 ? mmix_elf_section_data (sec
)
2768 ->pjs
.stub_size
[pjsno
]
2771 /* If the reloc fits, no stub is needed. */
2772 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2774 /* Maybe we can get away with just a JMP insn? */
2775 if ((value
& 3) == 0
2776 && bfd_check_overflow (complain_overflow_signed
,
2779 bfd_arch_bits_per_address (abfd
),
2782 ? mmix_elf_section_data (sec
)
2783 ->pjs
.stub_size
[pjsno
] - 4
2786 /* Yep, account for a stub consisting of a single JMP insn. */
2787 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 4;
2789 /* Nope, go for the full insn stub. It doesn't seem useful to
2790 emit the intermediate sizes; those will only be useful for
2791 a >64M program assuming contiguous code. */
2792 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
]
2793 = MAX_PUSHJ_STUB_SIZE
;
2795 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2796 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2801 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2803 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
]].value
2804 = symval
+ irel
->r_addend
;
2805 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
++]].valid
= TRUE
;
2806 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2809 /* Check if that was the last BPO-reloc. If so, sort the values and
2810 calculate how many registers we need to cover them. Set the size of
2811 the linker gregs, and if the number of registers changed, indicate
2812 that we need to relax some more because we have more work to do. */
2813 if (gregdata
!= NULL
2814 && gregdata
->n_remaining_bpo_relocs_this_relaxation_round
== 0)
2820 /* First, reset the remaining relocs for the next round. */
2821 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2822 = gregdata
->n_bpo_relocs
;
2824 qsort ((PTR
) gregdata
->reloc_request
,
2825 gregdata
->n_max_bpo_relocs
,
2826 sizeof (struct bpo_reloc_request
),
2827 bpo_reloc_request_sort_fn
);
2829 /* Recalculate indexes. When we find a change (however unlikely
2830 after the initial iteration), we know we need to relax again,
2831 since items in the GREG-array are sorted by increasing value and
2832 stored in the relaxation phase. */
2833 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2834 if (gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2837 gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2842 /* Allocate register numbers (indexing from 0). Stop at the first
2844 for (i
= 0, regindex
= 0, prev_base
= gregdata
->reloc_request
[0].value
;
2845 i
< gregdata
->n_bpo_relocs
;
2848 if (gregdata
->reloc_request
[i
].value
> prev_base
+ 255)
2851 prev_base
= gregdata
->reloc_request
[i
].value
;
2853 gregdata
->reloc_request
[i
].regindex
= regindex
;
2854 gregdata
->reloc_request
[i
].offset
2855 = gregdata
->reloc_request
[i
].value
- prev_base
;
2858 /* If it's not the same as the last time, we need to relax again,
2859 because the size of the section has changed. I'm not sure we
2860 actually need to do any adjustments since the shrinking happens
2861 at the start of this section, but better safe than sorry. */
2862 if (gregdata
->n_allocated_bpo_gregs
!= regindex
+ 1)
2864 gregdata
->n_allocated_bpo_gregs
= regindex
+ 1;
2868 bpo_gregs_section
->size
= (regindex
+ 1) * 8;
2871 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2873 if (! link_info
->keep_memory
)
2877 /* Cache the symbols for elf_link_input_bfd. */
2878 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
2882 if (internal_relocs
!= NULL
2883 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2884 free (internal_relocs
);
2886 if (sec
->size
< size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2889 if (sec
->size
> size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2891 sec
->size
= size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
;
2898 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2900 if (internal_relocs
!= NULL
2901 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2902 free (internal_relocs
);
2906 #define ELF_ARCH bfd_arch_mmix
2907 #define ELF_MACHINE_CODE EM_MMIX
2909 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2910 However, that's too much for something somewhere in the linker part of
2911 BFD; perhaps the start-address has to be a non-zero multiple of this
2912 number, or larger than this number. The symptom is that the linker
2913 complains: "warning: allocated section `.text' not in segment". We
2914 settle for 64k; the page-size used in examples is 8k.
2915 #define ELF_MAXPAGESIZE 0x10000
2917 Unfortunately, this causes excessive padding in the supposedly small
2918 for-education programs that are the expected usage (where people would
2919 inspect output). We stick to 256 bytes just to have *some* default
2921 #define ELF_MAXPAGESIZE 0x100
2923 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2924 #define TARGET_BIG_NAME "elf64-mmix"
2926 #define elf_info_to_howto_rel NULL
2927 #define elf_info_to_howto mmix_info_to_howto_rela
2928 #define elf_backend_relocate_section mmix_elf_relocate_section
2929 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2930 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2932 #define elf_backend_link_output_symbol_hook \
2933 mmix_elf_link_output_symbol_hook
2934 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2936 #define elf_backend_check_relocs mmix_elf_check_relocs
2937 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2938 #define elf_backend_omit_section_dynsym \
2939 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2941 #define bfd_elf64_bfd_is_local_label_name \
2942 mmix_elf_is_local_label_name
2944 #define elf_backend_may_use_rel_p 0
2945 #define elf_backend_may_use_rela_p 1
2946 #define elf_backend_default_use_rela_p 1
2948 #define elf_backend_can_gc_sections 1
2949 #define elf_backend_section_from_bfd_section \
2950 mmix_elf_section_from_bfd_section
2952 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2953 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2954 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2956 #include "elf64-target.h"