1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
32 #include "elf/x86-64.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table
[] =
42 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
43 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
45 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
46 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
48 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
49 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
51 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
52 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
54 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
55 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
57 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
58 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
60 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
61 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
63 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
64 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
66 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
67 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
69 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
70 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
72 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
73 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
75 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
76 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
78 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
80 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
81 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
82 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
83 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
84 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
85 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
86 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
87 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
89 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
90 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
92 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
93 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
95 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
96 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
98 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
99 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
101 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
102 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
104 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
105 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
107 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
108 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
110 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
111 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
113 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
114 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
115 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
116 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
117 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
118 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
119 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
120 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
122 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
123 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
125 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
126 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
127 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
128 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
129 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
131 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
132 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
136 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
137 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
140 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
141 complain_overflow_dont
, bfd_elf_generic_reloc
,
142 "R_X86_64_TLSDESC_CALL",
144 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
145 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
147 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
148 HOWTO(R_X86_64_IRELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
149 bfd_elf_generic_reloc
, "R_X86_64_IRELATIVE", FALSE
, MINUS_ONE
,
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
161 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
165 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
175 /* Map BFD relocs to the x86_64 elf relocs. */
178 bfd_reloc_code_real_type bfd_reloc_val
;
179 unsigned char elf_reloc_val
;
182 static const struct elf_reloc_map x86_64_reloc_map
[] =
184 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
185 { BFD_RELOC_64
, R_X86_64_64
, },
186 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
187 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
188 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
189 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
190 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
191 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
192 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
193 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
194 { BFD_RELOC_32
, R_X86_64_32
, },
195 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
196 { BFD_RELOC_16
, R_X86_64_16
, },
197 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
198 { BFD_RELOC_8
, R_X86_64_8
, },
199 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
200 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
201 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
202 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
203 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
204 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
205 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
206 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
207 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
208 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
209 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
210 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
211 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
212 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
213 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
214 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
215 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
218 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
219 { BFD_RELOC_X86_64_IRELATIVE
, R_X86_64_IRELATIVE
, },
220 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
221 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
224 static reloc_howto_type
*
225 elf64_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
229 if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type
>= (unsigned int) R_X86_64_max
)
232 if (r_type
>= (unsigned int) R_X86_64_standard
)
234 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
236 r_type
= R_X86_64_NONE
;
241 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
242 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
243 return &x86_64_elf_howto_table
[i
];
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type
*
248 elf64_x86_64_reloc_type_lookup (bfd
*abfd
,
249 bfd_reloc_code_real_type code
)
253 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
256 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
257 return elf64_x86_64_rtype_to_howto (abfd
,
258 x86_64_reloc_map
[i
].elf_reloc_val
);
263 static reloc_howto_type
*
264 elf64_x86_64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
270 i
< (sizeof (x86_64_elf_howto_table
)
271 / sizeof (x86_64_elf_howto_table
[0]));
273 if (x86_64_elf_howto_table
[i
].name
!= NULL
274 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
275 return &x86_64_elf_howto_table
[i
];
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
283 elf64_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
284 Elf_Internal_Rela
*dst
)
288 r_type
= ELF64_R_TYPE (dst
->r_info
);
289 cache_ptr
->howto
= elf64_x86_64_rtype_to_howto (abfd
, r_type
);
290 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
293 /* Support for core dump NOTE sections. */
295 elf64_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
300 switch (note
->descsz
)
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
307 elf_tdata (abfd
)->core_signal
308 = bfd_get_16 (abfd
, note
->descdata
+ 12);
311 elf_tdata (abfd
)->core_pid
312 = bfd_get_32 (abfd
, note
->descdata
+ 32);
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
323 size
, note
->descpos
+ offset
);
327 elf64_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
329 switch (note
->descsz
)
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd
)->core_program
336 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
337 elf_tdata (abfd
)->core_command
338 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
346 char *command
= elf_tdata (abfd
)->core_command
;
347 int n
= strlen (command
);
349 if (0 < n
&& command
[n
- 1] == ' ')
350 command
[n
- 1] = '\0';
356 /* Functions for the x86-64 ELF linker. */
358 /* The name of the dynamic interpreter. This is put in the .interp
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
367 #define ELIMINATE_COPY_RELOCS 1
369 /* The size in bytes of an entry in the global offset table. */
371 #define GOT_ENTRY_SIZE 8
373 /* The size in bytes of an entry in the procedure linkage table. */
375 #define PLT_ENTRY_SIZE 16
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
380 static const bfd_byte elf64_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
387 /* Subsequent entries in a procedure linkage table look like this. */
389 static const bfd_byte elf64_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
399 /* x86-64 ELF linker hash entry. */
401 struct elf64_x86_64_link_hash_entry
403 struct elf_link_hash_entry elf
;
405 /* Track dynamic relocs copied for this symbol. */
406 struct elf_dyn_relocs
*dyn_relocs
;
408 #define GOT_UNKNOWN 0
412 #define GOT_TLS_GDESC 4
413 #define GOT_TLS_GD_BOTH_P(type) \
414 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
415 #define GOT_TLS_GD_P(type) \
416 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
417 #define GOT_TLS_GDESC_P(type) \
418 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GD_ANY_P(type) \
420 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
421 unsigned char tls_type
;
423 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
424 starting at the end of the jump table. */
428 #define elf64_x86_64_hash_entry(ent) \
429 ((struct elf64_x86_64_link_hash_entry *)(ent))
431 struct elf64_x86_64_obj_tdata
433 struct elf_obj_tdata root
;
435 /* tls_type for each local got entry. */
436 char *local_got_tls_type
;
438 /* GOTPLT entries for TLS descriptors. */
439 bfd_vma
*local_tlsdesc_gotent
;
442 #define elf64_x86_64_tdata(abfd) \
443 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
445 #define elf64_x86_64_local_got_tls_type(abfd) \
446 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
448 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
449 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
451 #define is_x86_64_elf(bfd) \
452 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
453 && elf_tdata (bfd) != NULL \
454 && elf_object_id (bfd) == X86_64_ELF_TDATA)
457 elf64_x86_64_mkobject (bfd
*abfd
)
459 return bfd_elf_allocate_object (abfd
, sizeof (struct elf64_x86_64_obj_tdata
),
463 /* x86-64 ELF linker hash table. */
465 struct elf64_x86_64_link_hash_table
467 struct elf_link_hash_table elf
;
469 /* Short-cuts to get to dynamic linker sections. */
473 /* The offset into splt of the PLT entry for the TLS descriptor
474 resolver. Special values are 0, if not necessary (or not found
475 to be necessary yet), and -1 if needed but not determined
478 /* The offset into sgot of the GOT entry used by the PLT entry
483 bfd_signed_vma refcount
;
487 /* The amount of space used by the jump slots in the GOT. */
488 bfd_vma sgotplt_jump_table_size
;
490 /* Small local sym cache. */
491 struct sym_cache sym_cache
;
493 /* _TLS_MODULE_BASE_ symbol. */
494 struct bfd_link_hash_entry
*tls_module_base
;
496 /* Used by local STT_GNU_IFUNC symbols. */
497 htab_t loc_hash_table
;
498 void *loc_hash_memory
;
501 /* Get the x86-64 ELF linker hash table from a link_info structure. */
503 #define elf64_x86_64_hash_table(p) \
504 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
506 #define elf64_x86_64_compute_jump_table_size(htab) \
507 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
509 /* Create an entry in an x86-64 ELF linker hash table. */
511 static struct bfd_hash_entry
*
512 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
513 struct bfd_hash_table
*table
,
516 /* Allocate the structure if it has not already been allocated by a
520 entry
= bfd_hash_allocate (table
,
521 sizeof (struct elf64_x86_64_link_hash_entry
));
526 /* Call the allocation method of the superclass. */
527 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
530 struct elf64_x86_64_link_hash_entry
*eh
;
532 eh
= (struct elf64_x86_64_link_hash_entry
*) entry
;
533 eh
->dyn_relocs
= NULL
;
534 eh
->tls_type
= GOT_UNKNOWN
;
535 eh
->tlsdesc_got
= (bfd_vma
) -1;
541 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
542 for local symbol so that we can handle local STT_GNU_IFUNC symbols
543 as global symbol. We reuse indx and dynstr_index for local symbol
544 hash since they aren't used by global symbols in this backend. */
547 elf64_x86_64_local_htab_hash (const void *ptr
)
549 struct elf_link_hash_entry
*h
550 = (struct elf_link_hash_entry
*) ptr
;
551 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
554 /* Compare local hash entries. */
557 elf64_x86_64_local_htab_eq (const void *ptr1
, const void *ptr2
)
559 struct elf_link_hash_entry
*h1
560 = (struct elf_link_hash_entry
*) ptr1
;
561 struct elf_link_hash_entry
*h2
562 = (struct elf_link_hash_entry
*) ptr2
;
564 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
567 /* Find and/or create a hash entry for local symbol. */
569 static struct elf_link_hash_entry
*
570 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table
*htab
,
571 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
574 struct elf64_x86_64_link_hash_entry e
, *ret
;
575 asection
*sec
= abfd
->sections
;
576 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
577 ELF64_R_SYM (rel
->r_info
));
580 e
.elf
.indx
= sec
->id
;
581 e
.elf
.dynstr_index
= ELF64_R_SYM (rel
->r_info
);
582 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
583 create
? INSERT
: NO_INSERT
);
590 ret
= (struct elf64_x86_64_link_hash_entry
*) *slot
;
594 ret
= (struct elf64_x86_64_link_hash_entry
*)
595 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
596 sizeof (struct elf64_x86_64_link_hash_entry
));
599 memset (ret
, 0, sizeof (*ret
));
600 ret
->elf
.indx
= sec
->id
;
601 ret
->elf
.dynstr_index
= ELF64_R_SYM (rel
->r_info
);
602 ret
->elf
.dynindx
= -1;
603 ret
->elf
.plt
.offset
= (bfd_vma
) -1;
604 ret
->elf
.got
.offset
= (bfd_vma
) -1;
610 /* Create an X86-64 ELF linker hash table. */
612 static struct bfd_link_hash_table
*
613 elf64_x86_64_link_hash_table_create (bfd
*abfd
)
615 struct elf64_x86_64_link_hash_table
*ret
;
616 bfd_size_type amt
= sizeof (struct elf64_x86_64_link_hash_table
);
618 ret
= (struct elf64_x86_64_link_hash_table
*) bfd_malloc (amt
);
622 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
623 elf64_x86_64_link_hash_newfunc
,
624 sizeof (struct elf64_x86_64_link_hash_entry
)))
632 ret
->sym_cache
.abfd
= NULL
;
633 ret
->tlsdesc_plt
= 0;
634 ret
->tlsdesc_got
= 0;
635 ret
->tls_ld_got
.refcount
= 0;
636 ret
->sgotplt_jump_table_size
= 0;
637 ret
->tls_module_base
= NULL
;
639 ret
->loc_hash_table
= htab_try_create (1024,
640 elf64_x86_64_local_htab_hash
,
641 elf64_x86_64_local_htab_eq
,
643 ret
->loc_hash_memory
= objalloc_create ();
644 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
650 return &ret
->elf
.root
;
653 /* Destroy an X86-64 ELF linker hash table. */
656 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table
*hash
)
658 struct elf64_x86_64_link_hash_table
*htab
659 = (struct elf64_x86_64_link_hash_table
*) hash
;
661 if (htab
->loc_hash_table
)
662 htab_delete (htab
->loc_hash_table
);
663 if (htab
->loc_hash_memory
)
664 objalloc_free ((struct objalloc
*) htab
->loc_hash_memory
);
665 _bfd_generic_link_hash_table_free (hash
);
668 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
669 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
673 elf64_x86_64_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
675 struct elf64_x86_64_link_hash_table
*htab
;
677 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
680 htab
= elf64_x86_64_hash_table (info
);
681 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
683 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
686 || (!info
->shared
&& !htab
->srelbss
))
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
695 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
696 struct elf_link_hash_entry
*dir
,
697 struct elf_link_hash_entry
*ind
)
699 struct elf64_x86_64_link_hash_entry
*edir
, *eind
;
701 edir
= (struct elf64_x86_64_link_hash_entry
*) dir
;
702 eind
= (struct elf64_x86_64_link_hash_entry
*) ind
;
704 if (eind
->dyn_relocs
!= NULL
)
706 if (edir
->dyn_relocs
!= NULL
)
708 struct elf_dyn_relocs
**pp
;
709 struct elf_dyn_relocs
*p
;
711 /* Add reloc counts against the indirect sym to the direct sym
712 list. Merge any entries against the same section. */
713 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
715 struct elf_dyn_relocs
*q
;
717 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
718 if (q
->sec
== p
->sec
)
720 q
->pc_count
+= p
->pc_count
;
721 q
->count
+= p
->count
;
728 *pp
= edir
->dyn_relocs
;
731 edir
->dyn_relocs
= eind
->dyn_relocs
;
732 eind
->dyn_relocs
= NULL
;
735 if (ind
->root
.type
== bfd_link_hash_indirect
736 && dir
->got
.refcount
<= 0)
738 edir
->tls_type
= eind
->tls_type
;
739 eind
->tls_type
= GOT_UNKNOWN
;
742 if (ELIMINATE_COPY_RELOCS
743 && ind
->root
.type
!= bfd_link_hash_indirect
744 && dir
->dynamic_adjusted
)
746 /* If called to transfer flags for a weakdef during processing
747 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
748 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
749 dir
->ref_dynamic
|= ind
->ref_dynamic
;
750 dir
->ref_regular
|= ind
->ref_regular
;
751 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
752 dir
->needs_plt
|= ind
->needs_plt
;
753 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
756 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
760 elf64_x86_64_elf_object_p (bfd
*abfd
)
762 /* Set the right machine number for an x86-64 elf64 file. */
763 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
781 /* Return TRUE if the TLS access code sequence support transition
785 elf64_x86_64_check_tls_transition (bfd
*abfd
, asection
*sec
,
787 Elf_Internal_Shdr
*symtab_hdr
,
788 struct elf_link_hash_entry
**sym_hashes
,
790 const Elf_Internal_Rela
*rel
,
791 const Elf_Internal_Rela
*relend
)
794 unsigned long r_symndx
;
795 struct elf_link_hash_entry
*h
;
798 /* Get the section contents. */
799 if (contents
== NULL
)
801 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
802 contents
= elf_section_data (sec
)->this_hdr
.contents
;
805 /* FIXME: How to better handle error condition? */
806 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
809 /* Cache the section contents for elf_link_input_bfd. */
810 elf_section_data (sec
)->this_hdr
.contents
= contents
;
814 offset
= rel
->r_offset
;
819 if ((rel
+ 1) >= relend
)
822 if (r_type
== R_X86_64_TLSGD
)
824 /* Check transition from GD access model. Only
825 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
826 .word 0x6666; rex64; call __tls_get_addr
827 can transit to different access model. */
829 static x86_64_opcode32 leaq
= { { 0x66, 0x48, 0x8d, 0x3d } },
830 call
= { { 0x66, 0x66, 0x48, 0xe8 } };
832 || (offset
+ 12) > sec
->size
833 || bfd_get_32 (abfd
, contents
+ offset
- 4) != leaq
.i
834 || bfd_get_32 (abfd
, contents
+ offset
+ 4) != call
.i
)
839 /* Check transition from LD access model. Only
840 leaq foo@tlsld(%rip), %rdi;
842 can transit to different access model. */
844 static x86_64_opcode32 ld
= { { 0x48, 0x8d, 0x3d, 0xe8 } };
847 if (offset
< 3 || (offset
+ 9) > sec
->size
)
850 op
.i
= bfd_get_32 (abfd
, contents
+ offset
- 3);
851 op
.c
[3] = bfd_get_8 (abfd
, contents
+ offset
+ 4);
856 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
857 if (r_symndx
< symtab_hdr
->sh_info
)
860 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
861 /* Use strncmp to check __tls_get_addr since __tls_get_addr
864 && h
->root
.root
.string
!= NULL
865 && (ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
866 || ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
867 && (strncmp (h
->root
.root
.string
,
868 "__tls_get_addr", 14) == 0));
870 case R_X86_64_GOTTPOFF
:
871 /* Check transition from IE access model:
872 movq foo@gottpoff(%rip), %reg
873 addq foo@gottpoff(%rip), %reg
876 if (offset
< 3 || (offset
+ 4) > sec
->size
)
879 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
880 if (val
!= 0x48 && val
!= 0x4c)
883 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
884 if (val
!= 0x8b && val
!= 0x03)
887 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
888 return (val
& 0xc7) == 5;
890 case R_X86_64_GOTPC32_TLSDESC
:
891 /* Check transition from GDesc access model:
892 leaq x@tlsdesc(%rip), %rax
894 Make sure it's a leaq adding rip to a 32-bit offset
895 into any register, although it's probably almost always
898 if (offset
< 3 || (offset
+ 4) > sec
->size
)
901 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
902 if ((val
& 0xfb) != 0x48)
905 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
908 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
909 return (val
& 0xc7) == 0x05;
911 case R_X86_64_TLSDESC_CALL
:
912 /* Check transition from GDesc access model:
913 call *x@tlsdesc(%rax)
915 if (offset
+ 2 <= sec
->size
)
917 /* Make sure that it's a call *x@tlsdesc(%rax). */
918 static x86_64_opcode16 call
= { { 0xff, 0x10 } };
919 return bfd_get_16 (abfd
, contents
+ offset
) == call
.i
;
929 /* Return TRUE if the TLS access transition is OK or no transition
930 will be performed. Update R_TYPE if there is a transition. */
933 elf64_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
934 asection
*sec
, bfd_byte
*contents
,
935 Elf_Internal_Shdr
*symtab_hdr
,
936 struct elf_link_hash_entry
**sym_hashes
,
937 unsigned int *r_type
, int tls_type
,
938 const Elf_Internal_Rela
*rel
,
939 const Elf_Internal_Rela
*relend
,
940 struct elf_link_hash_entry
*h
,
941 unsigned long r_symndx
)
943 unsigned int from_type
= *r_type
;
944 unsigned int to_type
= from_type
;
945 bfd_boolean check
= TRUE
;
950 case R_X86_64_GOTPC32_TLSDESC
:
951 case R_X86_64_TLSDESC_CALL
:
952 case R_X86_64_GOTTPOFF
:
953 if (info
->executable
)
956 to_type
= R_X86_64_TPOFF32
;
958 to_type
= R_X86_64_GOTTPOFF
;
961 /* When we are called from elf64_x86_64_relocate_section,
962 CONTENTS isn't NULL and there may be additional transitions
963 based on TLS_TYPE. */
964 if (contents
!= NULL
)
966 unsigned int new_to_type
= to_type
;
971 && tls_type
== GOT_TLS_IE
)
972 new_to_type
= R_X86_64_TPOFF32
;
974 if (to_type
== R_X86_64_TLSGD
975 || to_type
== R_X86_64_GOTPC32_TLSDESC
976 || to_type
== R_X86_64_TLSDESC_CALL
)
978 if (tls_type
== GOT_TLS_IE
)
979 new_to_type
= R_X86_64_GOTTPOFF
;
982 /* We checked the transition before when we were called from
983 elf64_x86_64_check_relocs. We only want to check the new
984 transition which hasn't been checked before. */
985 check
= new_to_type
!= to_type
&& from_type
== to_type
;
986 to_type
= new_to_type
;
992 if (info
->executable
)
993 to_type
= R_X86_64_TPOFF32
;
1000 /* Return TRUE if there is no transition. */
1001 if (from_type
== to_type
)
1004 /* Check if the transition can be performed. */
1006 && ! elf64_x86_64_check_tls_transition (abfd
, sec
, contents
,
1007 symtab_hdr
, sym_hashes
,
1008 from_type
, rel
, relend
))
1010 reloc_howto_type
*from
, *to
;
1013 from
= elf64_x86_64_rtype_to_howto (abfd
, from_type
);
1014 to
= elf64_x86_64_rtype_to_howto (abfd
, to_type
);
1017 name
= h
->root
.root
.string
;
1020 Elf_Internal_Sym
*isym
;
1021 struct elf64_x86_64_link_hash_table
*htab
;
1022 htab
= elf64_x86_64_hash_table (info
);
1023 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1025 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1028 (*_bfd_error_handler
)
1029 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1030 "in section `%A' failed"),
1031 abfd
, sec
, from
->name
, to
->name
, name
,
1032 (unsigned long) rel
->r_offset
);
1033 bfd_set_error (bfd_error_bad_value
);
1041 /* Look through the relocs for a section during the first phase, and
1042 calculate needed space in the global offset table, procedure
1043 linkage table, and dynamic reloc sections. */
1046 elf64_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
1048 const Elf_Internal_Rela
*relocs
)
1050 struct elf64_x86_64_link_hash_table
*htab
;
1051 Elf_Internal_Shdr
*symtab_hdr
;
1052 struct elf_link_hash_entry
**sym_hashes
;
1053 const Elf_Internal_Rela
*rel
;
1054 const Elf_Internal_Rela
*rel_end
;
1057 if (info
->relocatable
)
1060 BFD_ASSERT (is_x86_64_elf (abfd
));
1062 htab
= elf64_x86_64_hash_table (info
);
1063 symtab_hdr
= &elf_symtab_hdr (abfd
);
1064 sym_hashes
= elf_sym_hashes (abfd
);
1068 rel_end
= relocs
+ sec
->reloc_count
;
1069 for (rel
= relocs
; rel
< rel_end
; rel
++)
1071 unsigned int r_type
;
1072 unsigned long r_symndx
;
1073 struct elf_link_hash_entry
*h
;
1074 Elf_Internal_Sym
*isym
;
1077 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1078 r_type
= ELF64_R_TYPE (rel
->r_info
);
1080 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1082 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1087 if (r_symndx
< symtab_hdr
->sh_info
)
1089 /* A local symbol. */
1090 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1095 /* Check relocation against local STT_GNU_IFUNC symbol. */
1096 if (ELF64_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
1098 h
= elf64_x86_64_get_local_sym_hash (htab
, abfd
, rel
,
1103 /* Fake a STT_GNU_IFUNC symbol. */
1104 h
->type
= STT_GNU_IFUNC
;
1107 h
->forced_local
= 1;
1108 h
->root
.type
= bfd_link_hash_defined
;
1116 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1117 while (h
->root
.type
== bfd_link_hash_indirect
1118 || h
->root
.type
== bfd_link_hash_warning
)
1119 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1124 /* Create the ifunc sections for static executables. If we
1125 never see an indirect function symbol nor we are building
1126 a static executable, those sections will be empty and
1127 won't appear in output. */
1138 case R_X86_64_PLT32
:
1139 case R_X86_64_GOTPCREL
:
1140 case R_X86_64_GOTPCREL64
:
1141 if (!_bfd_elf_create_ifunc_sections (abfd
, info
))
1146 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1147 it here if it is defined in a non-shared object. */
1148 if (h
->type
== STT_GNU_IFUNC
1151 /* It is referenced by a non-shared object. */
1155 /* STT_GNU_IFUNC symbol must go through PLT. */
1156 h
->plt
.refcount
+= 1;
1158 /* STT_GNU_IFUNC needs dynamic sections. */
1159 if (htab
->elf
.dynobj
== NULL
)
1160 htab
->elf
.dynobj
= abfd
;
1165 if (h
->root
.root
.string
)
1166 name
= h
->root
.root
.string
;
1168 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1170 (*_bfd_error_handler
)
1171 (_("%B: relocation %s against STT_GNU_IFUNC "
1172 "symbol `%s' isn't handled by %s"), abfd
,
1173 x86_64_elf_howto_table
[r_type
].name
,
1174 name
, __FUNCTION__
);
1175 bfd_set_error (bfd_error_bad_value
);
1180 h
->pointer_equality_needed
= 1;
1183 /* We must copy these reloc types into the output
1184 file. Create a reloc section in dynobj and
1185 make room for this reloc. */
1186 sreloc
= _bfd_elf_create_ifunc_dyn_reloc
1187 (abfd
, info
, sec
, sreloc
,
1188 &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
);
1199 if (r_type
!= R_X86_64_PC32
1200 && r_type
!= R_X86_64_PC64
)
1201 h
->pointer_equality_needed
= 1;
1204 case R_X86_64_PLT32
:
1207 case R_X86_64_GOTPCREL
:
1208 case R_X86_64_GOTPCREL64
:
1209 h
->got
.refcount
+= 1;
1210 if (htab
->elf
.sgot
== NULL
1211 && !_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1221 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1222 symtab_hdr
, sym_hashes
,
1223 &r_type
, GOT_UNKNOWN
,
1224 rel
, rel_end
, h
, r_symndx
))
1229 case R_X86_64_TLSLD
:
1230 htab
->tls_ld_got
.refcount
+= 1;
1233 case R_X86_64_TPOFF32
:
1234 if (!info
->executable
)
1237 name
= h
->root
.root
.string
;
1239 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1241 (*_bfd_error_handler
)
1242 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1244 x86_64_elf_howto_table
[r_type
].name
, name
);
1245 bfd_set_error (bfd_error_bad_value
);
1250 case R_X86_64_GOTTPOFF
:
1251 if (!info
->executable
)
1252 info
->flags
|= DF_STATIC_TLS
;
1255 case R_X86_64_GOT32
:
1256 case R_X86_64_GOTPCREL
:
1257 case R_X86_64_TLSGD
:
1258 case R_X86_64_GOT64
:
1259 case R_X86_64_GOTPCREL64
:
1260 case R_X86_64_GOTPLT64
:
1261 case R_X86_64_GOTPC32_TLSDESC
:
1262 case R_X86_64_TLSDESC_CALL
:
1263 /* This symbol requires a global offset table entry. */
1265 int tls_type
, old_tls_type
;
1269 default: tls_type
= GOT_NORMAL
; break;
1270 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1271 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1272 case R_X86_64_GOTPC32_TLSDESC
:
1273 case R_X86_64_TLSDESC_CALL
:
1274 tls_type
= GOT_TLS_GDESC
; break;
1279 if (r_type
== R_X86_64_GOTPLT64
)
1281 /* This relocation indicates that we also need
1282 a PLT entry, as this is a function. We don't need
1283 a PLT entry for local symbols. */
1285 h
->plt
.refcount
+= 1;
1287 h
->got
.refcount
+= 1;
1288 old_tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1292 bfd_signed_vma
*local_got_refcounts
;
1294 /* This is a global offset table entry for a local symbol. */
1295 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1296 if (local_got_refcounts
== NULL
)
1300 size
= symtab_hdr
->sh_info
;
1301 size
*= sizeof (bfd_signed_vma
)
1302 + sizeof (bfd_vma
) + sizeof (char);
1303 local_got_refcounts
= ((bfd_signed_vma
*)
1304 bfd_zalloc (abfd
, size
));
1305 if (local_got_refcounts
== NULL
)
1307 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1308 elf64_x86_64_local_tlsdesc_gotent (abfd
)
1309 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1310 elf64_x86_64_local_got_tls_type (abfd
)
1311 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1313 local_got_refcounts
[r_symndx
] += 1;
1315 = elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1318 /* If a TLS symbol is accessed using IE at least once,
1319 there is no point to use dynamic model for it. */
1320 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1321 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1322 || tls_type
!= GOT_TLS_IE
))
1324 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1325 tls_type
= old_tls_type
;
1326 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1327 && GOT_TLS_GD_ANY_P (tls_type
))
1328 tls_type
|= old_tls_type
;
1332 name
= h
->root
.root
.string
;
1334 name
= bfd_elf_sym_name (abfd
, symtab_hdr
,
1336 (*_bfd_error_handler
)
1337 (_("%B: '%s' accessed both as normal and thread local symbol"),
1343 if (old_tls_type
!= tls_type
)
1346 elf64_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1348 elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1353 case R_X86_64_GOTOFF64
:
1354 case R_X86_64_GOTPC32
:
1355 case R_X86_64_GOTPC64
:
1357 if (htab
->elf
.sgot
== NULL
)
1359 if (htab
->elf
.dynobj
== NULL
)
1360 htab
->elf
.dynobj
= abfd
;
1361 if (!_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1367 case R_X86_64_PLT32
:
1368 /* This symbol requires a procedure linkage table entry. We
1369 actually build the entry in adjust_dynamic_symbol,
1370 because this might be a case of linking PIC code which is
1371 never referenced by a dynamic object, in which case we
1372 don't need to generate a procedure linkage table entry
1375 /* If this is a local symbol, we resolve it directly without
1376 creating a procedure linkage table entry. */
1381 h
->plt
.refcount
+= 1;
1384 case R_X86_64_PLTOFF64
:
1385 /* This tries to form the 'address' of a function relative
1386 to GOT. For global symbols we need a PLT entry. */
1390 h
->plt
.refcount
+= 1;
1398 /* Let's help debug shared library creation. These relocs
1399 cannot be used in shared libs. Don't error out for
1400 sections we don't care about, such as debug sections or
1401 non-constant sections. */
1403 && (sec
->flags
& SEC_ALLOC
) != 0
1404 && (sec
->flags
& SEC_READONLY
) != 0)
1407 name
= h
->root
.root
.string
;
1409 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1410 (*_bfd_error_handler
)
1411 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1412 abfd
, x86_64_elf_howto_table
[r_type
].name
, name
);
1413 bfd_set_error (bfd_error_bad_value
);
1423 if (h
!= NULL
&& info
->executable
)
1425 /* If this reloc is in a read-only section, we might
1426 need a copy reloc. We can't check reliably at this
1427 stage whether the section is read-only, as input
1428 sections have not yet been mapped to output sections.
1429 Tentatively set the flag for now, and correct in
1430 adjust_dynamic_symbol. */
1433 /* We may need a .plt entry if the function this reloc
1434 refers to is in a shared lib. */
1435 h
->plt
.refcount
+= 1;
1436 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1437 h
->pointer_equality_needed
= 1;
1440 /* If we are creating a shared library, and this is a reloc
1441 against a global symbol, or a non PC relative reloc
1442 against a local symbol, then we need to copy the reloc
1443 into the shared library. However, if we are linking with
1444 -Bsymbolic, we do not need to copy a reloc against a
1445 global symbol which is defined in an object we are
1446 including in the link (i.e., DEF_REGULAR is set). At
1447 this point we have not seen all the input files, so it is
1448 possible that DEF_REGULAR is not set now but will be set
1449 later (it is never cleared). In case of a weak definition,
1450 DEF_REGULAR may be cleared later by a strong definition in
1451 a shared library. We account for that possibility below by
1452 storing information in the relocs_copied field of the hash
1453 table entry. A similar situation occurs when creating
1454 shared libraries and symbol visibility changes render the
1457 If on the other hand, we are creating an executable, we
1458 may need to keep relocations for symbols satisfied by a
1459 dynamic library if we manage to avoid copy relocs for the
1462 && (sec
->flags
& SEC_ALLOC
) != 0
1463 && (! IS_X86_64_PCREL_TYPE (r_type
)
1465 && (! SYMBOLIC_BIND (info
, h
)
1466 || h
->root
.type
== bfd_link_hash_defweak
1467 || !h
->def_regular
))))
1468 || (ELIMINATE_COPY_RELOCS
1470 && (sec
->flags
& SEC_ALLOC
) != 0
1472 && (h
->root
.type
== bfd_link_hash_defweak
1473 || !h
->def_regular
)))
1475 struct elf_dyn_relocs
*p
;
1476 struct elf_dyn_relocs
**head
;
1478 /* We must copy these reloc types into the output file.
1479 Create a reloc section in dynobj and make room for
1483 if (htab
->elf
.dynobj
== NULL
)
1484 htab
->elf
.dynobj
= abfd
;
1486 sreloc
= _bfd_elf_make_dynamic_reloc_section
1487 (sec
, htab
->elf
.dynobj
, 3, abfd
, /*rela?*/ TRUE
);
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1497 head
= &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1506 Elf_Internal_Sym
*isym
;
1508 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1513 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
1517 /* Beware of type punned pointers vs strict aliasing
1519 vpp
= &(elf_section_data (s
)->local_dynrel
);
1520 head
= (struct elf_dyn_relocs
**)vpp
;
1524 if (p
== NULL
|| p
->sec
!= sec
)
1526 bfd_size_type amt
= sizeof *p
;
1528 p
= ((struct elf_dyn_relocs
*)
1529 bfd_alloc (htab
->elf
.dynobj
, amt
));
1540 if (IS_X86_64_PCREL_TYPE (r_type
))
1545 /* This relocation describes the C++ object vtable hierarchy.
1546 Reconstruct it for later use during GC. */
1547 case R_X86_64_GNU_VTINHERIT
:
1548 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1552 /* This relocation describes which C++ vtable entries are actually
1553 used. Record for later use during GC. */
1554 case R_X86_64_GNU_VTENTRY
:
1555 BFD_ASSERT (h
!= NULL
);
1557 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1569 /* Return the section that should be marked against GC for a given
1573 elf64_x86_64_gc_mark_hook (asection
*sec
,
1574 struct bfd_link_info
*info
,
1575 Elf_Internal_Rela
*rel
,
1576 struct elf_link_hash_entry
*h
,
1577 Elf_Internal_Sym
*sym
)
1580 switch (ELF64_R_TYPE (rel
->r_info
))
1582 case R_X86_64_GNU_VTINHERIT
:
1583 case R_X86_64_GNU_VTENTRY
:
1587 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1590 /* Update the got entry reference counts for the section being removed. */
1593 elf64_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1595 const Elf_Internal_Rela
*relocs
)
1597 Elf_Internal_Shdr
*symtab_hdr
;
1598 struct elf_link_hash_entry
**sym_hashes
;
1599 bfd_signed_vma
*local_got_refcounts
;
1600 const Elf_Internal_Rela
*rel
, *relend
;
1602 if (info
->relocatable
)
1605 elf_section_data (sec
)->local_dynrel
= NULL
;
1607 symtab_hdr
= &elf_symtab_hdr (abfd
);
1608 sym_hashes
= elf_sym_hashes (abfd
);
1609 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1611 relend
= relocs
+ sec
->reloc_count
;
1612 for (rel
= relocs
; rel
< relend
; rel
++)
1614 unsigned long r_symndx
;
1615 unsigned int r_type
;
1616 struct elf_link_hash_entry
*h
= NULL
;
1618 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1619 if (r_symndx
>= symtab_hdr
->sh_info
)
1621 struct elf64_x86_64_link_hash_entry
*eh
;
1622 struct elf_dyn_relocs
**pp
;
1623 struct elf_dyn_relocs
*p
;
1625 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1626 while (h
->root
.type
== bfd_link_hash_indirect
1627 || h
->root
.type
== bfd_link_hash_warning
)
1628 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1629 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1631 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1634 /* Everything must go for SEC. */
1640 r_type
= ELF64_R_TYPE (rel
->r_info
);
1641 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1642 symtab_hdr
, sym_hashes
,
1643 &r_type
, GOT_UNKNOWN
,
1644 rel
, relend
, h
, r_symndx
))
1649 case R_X86_64_TLSLD
:
1650 if (elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
> 0)
1651 elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
-= 1;
1654 case R_X86_64_TLSGD
:
1655 case R_X86_64_GOTPC32_TLSDESC
:
1656 case R_X86_64_TLSDESC_CALL
:
1657 case R_X86_64_GOTTPOFF
:
1658 case R_X86_64_GOT32
:
1659 case R_X86_64_GOTPCREL
:
1660 case R_X86_64_GOT64
:
1661 case R_X86_64_GOTPCREL64
:
1662 case R_X86_64_GOTPLT64
:
1665 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
1666 h
->plt
.refcount
-= 1;
1667 if (h
->got
.refcount
> 0)
1668 h
->got
.refcount
-= 1;
1670 else if (local_got_refcounts
!= NULL
)
1672 if (local_got_refcounts
[r_symndx
] > 0)
1673 local_got_refcounts
[r_symndx
] -= 1;
1690 case R_X86_64_PLT32
:
1691 case R_X86_64_PLTOFF64
:
1694 if (h
->plt
.refcount
> 0)
1695 h
->plt
.refcount
-= 1;
1707 /* Adjust a symbol defined by a dynamic object and referenced by a
1708 regular object. The current definition is in some section of the
1709 dynamic object, but we're not including those sections. We have to
1710 change the definition to something the rest of the link can
1714 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1715 struct elf_link_hash_entry
*h
)
1717 struct elf64_x86_64_link_hash_table
*htab
;
1720 /* STT_GNU_IFUNC symbol must go through PLT. */
1721 if (h
->type
== STT_GNU_IFUNC
)
1723 if (h
->plt
.refcount
<= 0)
1725 h
->plt
.offset
= (bfd_vma
) -1;
1731 /* If this is a function, put it in the procedure linkage table. We
1732 will fill in the contents of the procedure linkage table later,
1733 when we know the address of the .got section. */
1734 if (h
->type
== STT_FUNC
1737 if (h
->plt
.refcount
<= 0
1738 || SYMBOL_CALLS_LOCAL (info
, h
)
1739 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1740 && h
->root
.type
== bfd_link_hash_undefweak
))
1742 /* This case can occur if we saw a PLT32 reloc in an input
1743 file, but the symbol was never referred to by a dynamic
1744 object, or if all references were garbage collected. In
1745 such a case, we don't actually need to build a procedure
1746 linkage table, and we can just do a PC32 reloc instead. */
1747 h
->plt
.offset
= (bfd_vma
) -1;
1754 /* It's possible that we incorrectly decided a .plt reloc was
1755 needed for an R_X86_64_PC32 reloc to a non-function sym in
1756 check_relocs. We can't decide accurately between function and
1757 non-function syms in check-relocs; Objects loaded later in
1758 the link may change h->type. So fix it now. */
1759 h
->plt
.offset
= (bfd_vma
) -1;
1761 /* If this is a weak symbol, and there is a real definition, the
1762 processor independent code will have arranged for us to see the
1763 real definition first, and we can just use the same value. */
1764 if (h
->u
.weakdef
!= NULL
)
1766 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1767 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1768 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1769 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1770 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
1771 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
1775 /* This is a reference to a symbol defined by a dynamic object which
1776 is not a function. */
1778 /* If we are creating a shared library, we must presume that the
1779 only references to the symbol are via the global offset table.
1780 For such cases we need not do anything here; the relocations will
1781 be handled correctly by relocate_section. */
1785 /* If there are no references to this symbol that do not use the
1786 GOT, we don't need to generate a copy reloc. */
1787 if (!h
->non_got_ref
)
1790 /* If -z nocopyreloc was given, we won't generate them either. */
1791 if (info
->nocopyreloc
)
1797 if (ELIMINATE_COPY_RELOCS
)
1799 struct elf64_x86_64_link_hash_entry
* eh
;
1800 struct elf_dyn_relocs
*p
;
1802 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1803 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1805 s
= p
->sec
->output_section
;
1806 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1810 /* If we didn't find any dynamic relocs in read-only sections, then
1811 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1821 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1822 h
->root
.root
.string
);
1826 /* We must allocate the symbol in our .dynbss section, which will
1827 become part of the .bss section of the executable. There will be
1828 an entry for this symbol in the .dynsym section. The dynamic
1829 object will contain position independent code, so all references
1830 from the dynamic object to this symbol will go through the global
1831 offset table. The dynamic linker will use the .dynsym entry to
1832 determine the address it must put in the global offset table, so
1833 both the dynamic object and the regular object will refer to the
1834 same memory location for the variable. */
1836 htab
= elf64_x86_64_hash_table (info
);
1838 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1839 to copy the initial value out of the dynamic object and into the
1840 runtime process image. */
1841 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1843 htab
->srelbss
->size
+= sizeof (Elf64_External_Rela
);
1849 return _bfd_elf_adjust_dynamic_copy (h
, s
);
1852 /* Allocate space in .plt, .got and associated reloc sections for
1856 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1858 struct bfd_link_info
*info
;
1859 struct elf64_x86_64_link_hash_table
*htab
;
1860 struct elf64_x86_64_link_hash_entry
*eh
;
1861 struct elf_dyn_relocs
*p
;
1863 if (h
->root
.type
== bfd_link_hash_indirect
)
1866 if (h
->root
.type
== bfd_link_hash_warning
)
1867 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1868 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1870 info
= (struct bfd_link_info
*) inf
;
1871 htab
= elf64_x86_64_hash_table (info
);
1873 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1874 here if it is defined and referenced in a non-shared object. */
1875 if (h
->type
== STT_GNU_IFUNC
1877 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
1881 else if (htab
->elf
.dynamic_sections_created
1882 && h
->plt
.refcount
> 0)
1884 /* Make sure this symbol is output as a dynamic symbol.
1885 Undefined weak syms won't yet be marked as dynamic. */
1886 if (h
->dynindx
== -1
1887 && !h
->forced_local
)
1889 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1894 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
1896 asection
*s
= htab
->elf
.splt
;
1898 /* If this is the first .plt entry, make room for the special
1901 s
->size
+= PLT_ENTRY_SIZE
;
1903 h
->plt
.offset
= s
->size
;
1905 /* If this symbol is not defined in a regular file, and we are
1906 not generating a shared library, then set the symbol to this
1907 location in the .plt. This is required to make function
1908 pointers compare as equal between the normal executable and
1909 the shared library. */
1913 h
->root
.u
.def
.section
= s
;
1914 h
->root
.u
.def
.value
= h
->plt
.offset
;
1917 /* Make room for this entry. */
1918 s
->size
+= PLT_ENTRY_SIZE
;
1920 /* We also need to make an entry in the .got.plt section, which
1921 will be placed in the .got section by the linker script. */
1922 htab
->elf
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
1924 /* We also need to make an entry in the .rela.plt section. */
1925 htab
->elf
.srelplt
->size
+= sizeof (Elf64_External_Rela
);
1926 htab
->elf
.srelplt
->reloc_count
++;
1930 h
->plt
.offset
= (bfd_vma
) -1;
1936 h
->plt
.offset
= (bfd_vma
) -1;
1940 eh
->tlsdesc_got
= (bfd_vma
) -1;
1942 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1943 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1944 if (h
->got
.refcount
> 0
1947 && elf64_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
1949 h
->got
.offset
= (bfd_vma
) -1;
1951 else if (h
->got
.refcount
> 0)
1955 int tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1957 /* Make sure this symbol is output as a dynamic symbol.
1958 Undefined weak syms won't yet be marked as dynamic. */
1959 if (h
->dynindx
== -1
1960 && !h
->forced_local
)
1962 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1966 if (GOT_TLS_GDESC_P (tls_type
))
1968 eh
->tlsdesc_got
= htab
->elf
.sgotplt
->size
1969 - elf64_x86_64_compute_jump_table_size (htab
);
1970 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
1971 h
->got
.offset
= (bfd_vma
) -2;
1973 if (! GOT_TLS_GDESC_P (tls_type
)
1974 || GOT_TLS_GD_P (tls_type
))
1977 h
->got
.offset
= s
->size
;
1978 s
->size
+= GOT_ENTRY_SIZE
;
1979 if (GOT_TLS_GD_P (tls_type
))
1980 s
->size
+= GOT_ENTRY_SIZE
;
1982 dyn
= htab
->elf
.dynamic_sections_created
;
1983 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1985 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1986 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
1987 || tls_type
== GOT_TLS_IE
)
1988 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
1989 else if (GOT_TLS_GD_P (tls_type
))
1990 htab
->elf
.srelgot
->size
+= 2 * sizeof (Elf64_External_Rela
);
1991 else if (! GOT_TLS_GDESC_P (tls_type
)
1992 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1993 || h
->root
.type
!= bfd_link_hash_undefweak
)
1995 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
1996 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
1997 if (GOT_TLS_GDESC_P (tls_type
))
1999 htab
->elf
.srelplt
->size
+= sizeof (Elf64_External_Rela
);
2000 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2004 h
->got
.offset
= (bfd_vma
) -1;
2006 if (eh
->dyn_relocs
== NULL
)
2009 /* In the shared -Bsymbolic case, discard space allocated for
2010 dynamic pc-relative relocs against symbols which turn out to be
2011 defined in regular objects. For the normal shared case, discard
2012 space for pc-relative relocs that have become local due to symbol
2013 visibility changes. */
2017 /* Relocs that use pc_count are those that appear on a call
2018 insn, or certain REL relocs that can generated via assembly.
2019 We want calls to protected symbols to resolve directly to the
2020 function rather than going via the plt. If people want
2021 function pointer comparisons to work as expected then they
2022 should avoid writing weird assembly. */
2023 if (SYMBOL_CALLS_LOCAL (info
, h
))
2025 struct elf_dyn_relocs
**pp
;
2027 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
2029 p
->count
-= p
->pc_count
;
2038 /* Also discard relocs on undefined weak syms with non-default
2040 if (eh
->dyn_relocs
!= NULL
2041 && h
->root
.type
== bfd_link_hash_undefweak
)
2043 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2044 eh
->dyn_relocs
= NULL
;
2046 /* Make sure undefined weak symbols are output as a dynamic
2048 else if (h
->dynindx
== -1
2049 && ! h
->forced_local
2050 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2055 else if (ELIMINATE_COPY_RELOCS
)
2057 /* For the non-shared case, discard space for relocs against
2058 symbols which turn out to need copy relocs or are not
2064 || (htab
->elf
.dynamic_sections_created
2065 && (h
->root
.type
== bfd_link_hash_undefweak
2066 || h
->root
.type
== bfd_link_hash_undefined
))))
2068 /* Make sure this symbol is output as a dynamic symbol.
2069 Undefined weak syms won't yet be marked as dynamic. */
2070 if (h
->dynindx
== -1
2071 && ! h
->forced_local
2072 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2075 /* If that succeeded, we know we'll be keeping all the
2077 if (h
->dynindx
!= -1)
2081 eh
->dyn_relocs
= NULL
;
2086 /* Finally, allocate space. */
2087 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2091 sreloc
= elf_section_data (p
->sec
)->sreloc
;
2093 BFD_ASSERT (sreloc
!= NULL
);
2095 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2101 /* Allocate space in .plt, .got and associated reloc sections for
2102 local dynamic relocs. */
2105 elf64_x86_64_allocate_local_dynrelocs (void **slot
, void *inf
)
2107 struct elf_link_hash_entry
*h
2108 = (struct elf_link_hash_entry
*) *slot
;
2110 if (h
->type
!= STT_GNU_IFUNC
2114 || h
->root
.type
!= bfd_link_hash_defined
)
2117 return elf64_x86_64_allocate_dynrelocs (h
, inf
);
2120 /* Find any dynamic relocs that apply to read-only sections. */
2123 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
2125 struct elf64_x86_64_link_hash_entry
*eh
;
2126 struct elf_dyn_relocs
*p
;
2128 if (h
->root
.type
== bfd_link_hash_warning
)
2129 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2131 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
2132 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2134 asection
*s
= p
->sec
->output_section
;
2136 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2138 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
2140 info
->flags
|= DF_TEXTREL
;
2142 /* Not an error, just cut short the traversal. */
2149 /* Set the sizes of the dynamic sections. */
2152 elf64_x86_64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2153 struct bfd_link_info
*info
)
2155 struct elf64_x86_64_link_hash_table
*htab
;
2161 htab
= elf64_x86_64_hash_table (info
);
2162 dynobj
= htab
->elf
.dynobj
;
2166 if (htab
->elf
.dynamic_sections_created
)
2168 /* Set the contents of the .interp section to the interpreter. */
2169 if (info
->executable
)
2171 s
= bfd_get_section_by_name (dynobj
, ".interp");
2174 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2175 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2179 /* Set up .got offsets for local syms, and space for local dynamic
2181 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2183 bfd_signed_vma
*local_got
;
2184 bfd_signed_vma
*end_local_got
;
2185 char *local_tls_type
;
2186 bfd_vma
*local_tlsdesc_gotent
;
2187 bfd_size_type locsymcount
;
2188 Elf_Internal_Shdr
*symtab_hdr
;
2191 if (! is_x86_64_elf (ibfd
))
2194 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2196 struct elf_dyn_relocs
*p
;
2198 for (p
= (struct elf_dyn_relocs
*)
2199 (elf_section_data (s
)->local_dynrel
);
2203 if (!bfd_is_abs_section (p
->sec
)
2204 && bfd_is_abs_section (p
->sec
->output_section
))
2206 /* Input section has been discarded, either because
2207 it is a copy of a linkonce section or due to
2208 linker script /DISCARD/, so we'll be discarding
2211 else if (p
->count
!= 0)
2213 srel
= elf_section_data (p
->sec
)->sreloc
;
2214 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2215 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2216 info
->flags
|= DF_TEXTREL
;
2221 local_got
= elf_local_got_refcounts (ibfd
);
2225 symtab_hdr
= &elf_symtab_hdr (ibfd
);
2226 locsymcount
= symtab_hdr
->sh_info
;
2227 end_local_got
= local_got
+ locsymcount
;
2228 local_tls_type
= elf64_x86_64_local_got_tls_type (ibfd
);
2229 local_tlsdesc_gotent
= elf64_x86_64_local_tlsdesc_gotent (ibfd
);
2231 srel
= htab
->elf
.srelgot
;
2232 for (; local_got
< end_local_got
;
2233 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2235 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2238 if (GOT_TLS_GDESC_P (*local_tls_type
))
2240 *local_tlsdesc_gotent
= htab
->elf
.sgotplt
->size
2241 - elf64_x86_64_compute_jump_table_size (htab
);
2242 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2243 *local_got
= (bfd_vma
) -2;
2245 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2246 || GOT_TLS_GD_P (*local_tls_type
))
2248 *local_got
= s
->size
;
2249 s
->size
+= GOT_ENTRY_SIZE
;
2250 if (GOT_TLS_GD_P (*local_tls_type
))
2251 s
->size
+= GOT_ENTRY_SIZE
;
2254 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2255 || *local_tls_type
== GOT_TLS_IE
)
2257 if (GOT_TLS_GDESC_P (*local_tls_type
))
2259 htab
->elf
.srelplt
->size
2260 += sizeof (Elf64_External_Rela
);
2261 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2263 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2264 || GOT_TLS_GD_P (*local_tls_type
))
2265 srel
->size
+= sizeof (Elf64_External_Rela
);
2269 *local_got
= (bfd_vma
) -1;
2273 if (htab
->tls_ld_got
.refcount
> 0)
2275 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2277 htab
->tls_ld_got
.offset
= htab
->elf
.sgot
->size
;
2278 htab
->elf
.sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2279 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
2282 htab
->tls_ld_got
.offset
= -1;
2284 /* Allocate global sym .plt and .got entries, and space for global
2285 sym dynamic relocs. */
2286 elf_link_hash_traverse (&htab
->elf
, elf64_x86_64_allocate_dynrelocs
,
2289 /* Allocate .plt and .got entries, and space for local symbols. */
2290 htab_traverse (htab
->loc_hash_table
,
2291 elf64_x86_64_allocate_local_dynrelocs
,
2294 /* For every jump slot reserved in the sgotplt, reloc_count is
2295 incremented. However, when we reserve space for TLS descriptors,
2296 it's not incremented, so in order to compute the space reserved
2297 for them, it suffices to multiply the reloc count by the jump
2299 if (htab
->elf
.srelplt
)
2300 htab
->sgotplt_jump_table_size
2301 = elf64_x86_64_compute_jump_table_size (htab
);
2303 if (htab
->tlsdesc_plt
)
2305 /* If we're not using lazy TLS relocations, don't generate the
2306 PLT and GOT entries they require. */
2307 if ((info
->flags
& DF_BIND_NOW
))
2308 htab
->tlsdesc_plt
= 0;
2311 htab
->tlsdesc_got
= htab
->elf
.sgot
->size
;
2312 htab
->elf
.sgot
->size
+= GOT_ENTRY_SIZE
;
2313 /* Reserve room for the initial entry.
2314 FIXME: we could probably do away with it in this case. */
2315 if (htab
->elf
.splt
->size
== 0)
2316 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2317 htab
->tlsdesc_plt
= htab
->elf
.splt
->size
;
2318 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2322 /* We now have determined the sizes of the various dynamic sections.
2323 Allocate memory for them. */
2325 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2327 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2330 if (s
== htab
->elf
.splt
2331 || s
== htab
->elf
.sgot
2332 || s
== htab
->elf
.sgotplt
2333 || s
== htab
->elf
.iplt
2334 || s
== htab
->elf
.igotplt
2335 || s
== htab
->sdynbss
)
2337 /* Strip this section if we don't need it; see the
2340 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2342 if (s
->size
!= 0 && s
!= htab
->elf
.srelplt
)
2345 /* We use the reloc_count field as a counter if we need
2346 to copy relocs into the output file. */
2347 if (s
!= htab
->elf
.srelplt
)
2352 /* It's not one of our sections, so don't allocate space. */
2358 /* If we don't need this section, strip it from the
2359 output file. This is mostly to handle .rela.bss and
2360 .rela.plt. We must create both sections in
2361 create_dynamic_sections, because they must be created
2362 before the linker maps input sections to output
2363 sections. The linker does that before
2364 adjust_dynamic_symbol is called, and it is that
2365 function which decides whether anything needs to go
2366 into these sections. */
2368 s
->flags
|= SEC_EXCLUDE
;
2372 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2375 /* Allocate memory for the section contents. We use bfd_zalloc
2376 here in case unused entries are not reclaimed before the
2377 section's contents are written out. This should not happen,
2378 but this way if it does, we get a R_X86_64_NONE reloc instead
2380 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2381 if (s
->contents
== NULL
)
2385 if (htab
->elf
.dynamic_sections_created
)
2387 /* Add some entries to the .dynamic section. We fill in the
2388 values later, in elf64_x86_64_finish_dynamic_sections, but we
2389 must add the entries now so that we get the correct size for
2390 the .dynamic section. The DT_DEBUG entry is filled in by the
2391 dynamic linker and used by the debugger. */
2392 #define add_dynamic_entry(TAG, VAL) \
2393 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2395 if (info
->executable
)
2397 if (!add_dynamic_entry (DT_DEBUG
, 0))
2401 if (htab
->elf
.splt
->size
!= 0)
2403 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2404 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2405 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2406 || !add_dynamic_entry (DT_JMPREL
, 0))
2409 if (htab
->tlsdesc_plt
2410 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2411 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2417 if (!add_dynamic_entry (DT_RELA
, 0)
2418 || !add_dynamic_entry (DT_RELASZ
, 0)
2419 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
2422 /* If any dynamic relocs apply to a read-only section,
2423 then we need a DT_TEXTREL entry. */
2424 if ((info
->flags
& DF_TEXTREL
) == 0)
2425 elf_link_hash_traverse (&htab
->elf
,
2426 elf64_x86_64_readonly_dynrelocs
,
2429 if ((info
->flags
& DF_TEXTREL
) != 0)
2431 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2436 #undef add_dynamic_entry
2442 elf64_x86_64_always_size_sections (bfd
*output_bfd
,
2443 struct bfd_link_info
*info
)
2445 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2449 struct elf_link_hash_entry
*tlsbase
;
2451 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2452 "_TLS_MODULE_BASE_",
2453 FALSE
, FALSE
, FALSE
);
2455 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2457 struct bfd_link_hash_entry
*bh
= NULL
;
2458 const struct elf_backend_data
*bed
2459 = get_elf_backend_data (output_bfd
);
2461 if (!(_bfd_generic_link_add_one_symbol
2462 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2463 tls_sec
, 0, NULL
, FALSE
,
2464 bed
->collect
, &bh
)))
2467 elf64_x86_64_hash_table (info
)->tls_module_base
= bh
;
2469 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2470 tlsbase
->def_regular
= 1;
2471 tlsbase
->other
= STV_HIDDEN
;
2472 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2479 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2480 executables. Rather than setting it to the beginning of the TLS
2481 section, we have to set it to the end. This function may be called
2482 multiple times, it is idempotent. */
2485 elf64_x86_64_set_tls_module_base (struct bfd_link_info
*info
)
2487 struct bfd_link_hash_entry
*base
;
2489 if (!info
->executable
)
2492 base
= elf64_x86_64_hash_table (info
)->tls_module_base
;
2497 base
->u
.def
.value
= elf_hash_table (info
)->tls_size
;
2500 /* Return the base VMA address which should be subtracted from real addresses
2501 when resolving @dtpoff relocation.
2502 This is PT_TLS segment p_vaddr. */
2505 elf64_x86_64_dtpoff_base (struct bfd_link_info
*info
)
2507 /* If tls_sec is NULL, we should have signalled an error already. */
2508 if (elf_hash_table (info
)->tls_sec
== NULL
)
2510 return elf_hash_table (info
)->tls_sec
->vma
;
2513 /* Return the relocation value for @tpoff relocation
2514 if STT_TLS virtual address is ADDRESS. */
2517 elf64_x86_64_tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2519 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2521 /* If tls_segment is NULL, we should have signalled an error already. */
2522 if (htab
->tls_sec
== NULL
)
2524 return address
- htab
->tls_size
- htab
->tls_sec
->vma
;
2527 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2531 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2533 /* Opcode Instruction
2536 0x0f 0x8x conditional jump */
2538 && (contents
[offset
- 1] == 0xe8
2539 || contents
[offset
- 1] == 0xe9))
2541 && contents
[offset
- 2] == 0x0f
2542 && (contents
[offset
- 1] & 0xf0) == 0x80));
2545 /* Relocate an x86_64 ELF section. */
2548 elf64_x86_64_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
2549 bfd
*input_bfd
, asection
*input_section
,
2550 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
2551 Elf_Internal_Sym
*local_syms
,
2552 asection
**local_sections
)
2554 struct elf64_x86_64_link_hash_table
*htab
;
2555 Elf_Internal_Shdr
*symtab_hdr
;
2556 struct elf_link_hash_entry
**sym_hashes
;
2557 bfd_vma
*local_got_offsets
;
2558 bfd_vma
*local_tlsdesc_gotents
;
2559 Elf_Internal_Rela
*rel
;
2560 Elf_Internal_Rela
*relend
;
2562 BFD_ASSERT (is_x86_64_elf (input_bfd
));
2564 htab
= elf64_x86_64_hash_table (info
);
2565 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
2566 sym_hashes
= elf_sym_hashes (input_bfd
);
2567 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2568 local_tlsdesc_gotents
= elf64_x86_64_local_tlsdesc_gotent (input_bfd
);
2570 elf64_x86_64_set_tls_module_base (info
);
2573 relend
= relocs
+ input_section
->reloc_count
;
2574 for (; rel
< relend
; rel
++)
2576 unsigned int r_type
;
2577 reloc_howto_type
*howto
;
2578 unsigned long r_symndx
;
2579 struct elf_link_hash_entry
*h
;
2580 Elf_Internal_Sym
*sym
;
2582 bfd_vma off
, offplt
;
2584 bfd_boolean unresolved_reloc
;
2585 bfd_reloc_status_type r
;
2589 r_type
= ELF64_R_TYPE (rel
->r_info
);
2590 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
2591 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
2594 if (r_type
>= R_X86_64_max
)
2596 bfd_set_error (bfd_error_bad_value
);
2600 howto
= x86_64_elf_howto_table
+ r_type
;
2601 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2605 unresolved_reloc
= FALSE
;
2606 if (r_symndx
< symtab_hdr
->sh_info
)
2608 sym
= local_syms
+ r_symndx
;
2609 sec
= local_sections
[r_symndx
];
2611 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
,
2614 /* Relocate against local STT_GNU_IFUNC symbol. */
2615 if (!info
->relocatable
2616 && ELF64_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
2618 h
= elf64_x86_64_get_local_sym_hash (htab
, input_bfd
,
2623 /* Set STT_GNU_IFUNC symbol value. */
2624 h
->root
.u
.def
.value
= sym
->st_value
;
2625 h
->root
.u
.def
.section
= sec
;
2632 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2633 r_symndx
, symtab_hdr
, sym_hashes
,
2635 unresolved_reloc
, warned
);
2638 if (sec
!= NULL
&& elf_discarded_section (sec
))
2640 /* For relocs against symbols from removed linkonce sections,
2641 or sections discarded by a linker script, we just want the
2642 section contents zeroed. Avoid any special processing. */
2643 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2649 if (info
->relocatable
)
2652 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2653 it here if it is defined in a non-shared object. */
2655 && h
->type
== STT_GNU_IFUNC
2662 if ((input_section
->flags
& SEC_ALLOC
) == 0
2663 || h
->plt
.offset
== (bfd_vma
) -1)
2666 /* STT_GNU_IFUNC symbol must go through PLT. */
2667 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
2668 relocation
= (plt
->output_section
->vma
2669 + plt
->output_offset
+ h
->plt
.offset
);
2674 if (h
->root
.root
.string
)
2675 name
= h
->root
.root
.string
;
2677 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
2679 (*_bfd_error_handler
)
2680 (_("%B: relocation %s against STT_GNU_IFUNC "
2681 "symbol `%s' isn't handled by %s"), input_bfd
,
2682 x86_64_elf_howto_table
[r_type
].name
,
2683 name
, __FUNCTION__
);
2684 bfd_set_error (bfd_error_bad_value
);
2693 if (rel
->r_addend
!= 0)
2695 if (h
->root
.root
.string
)
2696 name
= h
->root
.root
.string
;
2698 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
2700 (*_bfd_error_handler
)
2701 (_("%B: relocation %s against STT_GNU_IFUNC "
2702 "symbol `%s' has non-zero addend: %d"),
2703 input_bfd
, x86_64_elf_howto_table
[r_type
].name
,
2704 name
, rel
->r_addend
);
2705 bfd_set_error (bfd_error_bad_value
);
2709 /* Generate dynamic relcoation only when there is a
2710 non-GOF reference in a shared object. */
2711 if (info
->shared
&& h
->non_got_ref
)
2713 Elf_Internal_Rela outrel
;
2717 /* Need a dynamic relocation to get the real function
2719 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
2723 if (outrel
.r_offset
== (bfd_vma
) -1
2724 || outrel
.r_offset
== (bfd_vma
) -2)
2727 outrel
.r_offset
+= (input_section
->output_section
->vma
2728 + input_section
->output_offset
);
2730 if (h
->dynindx
== -1
2732 || info
->executable
)
2734 /* This symbol is resolved locally. */
2735 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_IRELATIVE
);
2736 outrel
.r_addend
= (h
->root
.u
.def
.value
2737 + h
->root
.u
.def
.section
->output_section
->vma
2738 + h
->root
.u
.def
.section
->output_offset
);
2742 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
2743 outrel
.r_addend
= 0;
2746 sreloc
= htab
->elf
.irelifunc
;
2747 loc
= sreloc
->contents
;
2748 loc
+= (sreloc
->reloc_count
++
2749 * sizeof (Elf64_External_Rela
));
2750 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2752 /* If this reloc is against an external symbol, we
2753 do not want to fiddle with the addend. Otherwise,
2754 we need to include the symbol value so that it
2755 becomes an addend for the dynamic reloc. For an
2756 internal symbol, we have updated addend. */
2763 case R_X86_64_PLT32
:
2766 case R_X86_64_GOTPCREL
:
2767 case R_X86_64_GOTPCREL64
:
2768 base_got
= htab
->elf
.sgot
;
2769 off
= h
->got
.offset
;
2771 if (base_got
== NULL
)
2774 if (off
== (bfd_vma
) -1)
2776 /* We can't use h->got.offset here to save state, or
2777 even just remember the offset, as finish_dynamic_symbol
2778 would use that as offset into .got. */
2780 if (htab
->elf
.splt
!= NULL
)
2782 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2783 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2784 base_got
= htab
->elf
.sgotplt
;
2788 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
2789 off
= plt_index
* GOT_ENTRY_SIZE
;
2790 base_got
= htab
->elf
.igotplt
;
2793 if (h
->dynindx
== -1
2797 /* This references the local defitionion. We must
2798 initialize this entry in the global offset table.
2799 Since the offset must always be a multiple of 8,
2800 we use the least significant bit to record
2801 whether we have initialized it already.
2803 When doing a dynamic link, we create a .rela.got
2804 relocation entry to initialize the value. This
2805 is done in the finish_dynamic_symbol routine. */
2810 bfd_put_64 (output_bfd
, relocation
,
2811 base_got
->contents
+ off
);
2812 /* Note that this is harmless for the GOTPLT64
2813 case, as -1 | 1 still is -1. */
2819 relocation
= (base_got
->output_section
->vma
2820 + base_got
->output_offset
+ off
);
2822 if (r_type
!= R_X86_64_GOTPCREL
2823 && r_type
!= R_X86_64_GOTPCREL64
)
2826 if (htab
->elf
.splt
!= NULL
)
2827 gotplt
= htab
->elf
.sgotplt
;
2829 gotplt
= htab
->elf
.igotplt
;
2830 relocation
-= (gotplt
->output_section
->vma
2831 - gotplt
->output_offset
);
2838 /* When generating a shared object, the relocations handled here are
2839 copied into the output file to be resolved at run time. */
2842 case R_X86_64_GOT32
:
2843 case R_X86_64_GOT64
:
2844 /* Relocation is to the entry for this symbol in the global
2846 case R_X86_64_GOTPCREL
:
2847 case R_X86_64_GOTPCREL64
:
2848 /* Use global offset table entry as symbol value. */
2849 case R_X86_64_GOTPLT64
:
2850 /* This is the same as GOT64 for relocation purposes, but
2851 indicates the existence of a PLT entry. The difficulty is,
2852 that we must calculate the GOT slot offset from the PLT
2853 offset, if this symbol got a PLT entry (it was global).
2854 Additionally if it's computed from the PLT entry, then that
2855 GOT offset is relative to .got.plt, not to .got. */
2856 base_got
= htab
->elf
.sgot
;
2858 if (htab
->elf
.sgot
== NULL
)
2865 off
= h
->got
.offset
;
2867 && h
->plt
.offset
!= (bfd_vma
)-1
2868 && off
== (bfd_vma
)-1)
2870 /* We can't use h->got.offset here to save
2871 state, or even just remember the offset, as
2872 finish_dynamic_symbol would use that as offset into
2874 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2875 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2876 base_got
= htab
->elf
.sgotplt
;
2879 dyn
= htab
->elf
.dynamic_sections_created
;
2881 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2883 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2884 || (ELF_ST_VISIBILITY (h
->other
)
2885 && h
->root
.type
== bfd_link_hash_undefweak
))
2887 /* This is actually a static link, or it is a -Bsymbolic
2888 link and the symbol is defined locally, or the symbol
2889 was forced to be local because of a version file. We
2890 must initialize this entry in the global offset table.
2891 Since the offset must always be a multiple of 8, we
2892 use the least significant bit to record whether we
2893 have initialized it already.
2895 When doing a dynamic link, we create a .rela.got
2896 relocation entry to initialize the value. This is
2897 done in the finish_dynamic_symbol routine. */
2902 bfd_put_64 (output_bfd
, relocation
,
2903 base_got
->contents
+ off
);
2904 /* Note that this is harmless for the GOTPLT64 case,
2905 as -1 | 1 still is -1. */
2910 unresolved_reloc
= FALSE
;
2914 if (local_got_offsets
== NULL
)
2917 off
= local_got_offsets
[r_symndx
];
2919 /* The offset must always be a multiple of 8. We use
2920 the least significant bit to record whether we have
2921 already generated the necessary reloc. */
2926 bfd_put_64 (output_bfd
, relocation
,
2927 base_got
->contents
+ off
);
2932 Elf_Internal_Rela outrel
;
2935 /* We need to generate a R_X86_64_RELATIVE reloc
2936 for the dynamic linker. */
2937 s
= htab
->elf
.srelgot
;
2941 outrel
.r_offset
= (base_got
->output_section
->vma
2942 + base_got
->output_offset
2944 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2945 outrel
.r_addend
= relocation
;
2947 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2948 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2951 local_got_offsets
[r_symndx
] |= 1;
2955 if (off
>= (bfd_vma
) -2)
2958 relocation
= base_got
->output_section
->vma
2959 + base_got
->output_offset
+ off
;
2960 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
2961 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
2962 - htab
->elf
.sgotplt
->output_offset
;
2966 case R_X86_64_GOTOFF64
:
2967 /* Relocation is relative to the start of the global offset
2970 /* Check to make sure it isn't a protected function symbol
2971 for shared library since it may not be local when used
2972 as function address. */
2976 && h
->type
== STT_FUNC
2977 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2979 (*_bfd_error_handler
)
2980 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2981 input_bfd
, h
->root
.root
.string
);
2982 bfd_set_error (bfd_error_bad_value
);
2986 /* Note that sgot is not involved in this
2987 calculation. We always want the start of .got.plt. If we
2988 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2989 permitted by the ABI, we might have to change this
2991 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
2992 + htab
->elf
.sgotplt
->output_offset
;
2995 case R_X86_64_GOTPC32
:
2996 case R_X86_64_GOTPC64
:
2997 /* Use global offset table as symbol value. */
2998 relocation
= htab
->elf
.sgotplt
->output_section
->vma
2999 + htab
->elf
.sgotplt
->output_offset
;
3000 unresolved_reloc
= FALSE
;
3003 case R_X86_64_PLTOFF64
:
3004 /* Relocation is PLT entry relative to GOT. For local
3005 symbols it's the symbol itself relative to GOT. */
3007 /* See PLT32 handling. */
3008 && h
->plt
.offset
!= (bfd_vma
) -1
3009 && htab
->elf
.splt
!= NULL
)
3011 relocation
= (htab
->elf
.splt
->output_section
->vma
3012 + htab
->elf
.splt
->output_offset
3014 unresolved_reloc
= FALSE
;
3017 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3018 + htab
->elf
.sgotplt
->output_offset
;
3021 case R_X86_64_PLT32
:
3022 /* Relocation is to the entry for this symbol in the
3023 procedure linkage table. */
3025 /* Resolve a PLT32 reloc against a local symbol directly,
3026 without using the procedure linkage table. */
3030 if (h
->plt
.offset
== (bfd_vma
) -1
3031 || htab
->elf
.splt
== NULL
)
3033 /* We didn't make a PLT entry for this symbol. This
3034 happens when statically linking PIC code, or when
3035 using -Bsymbolic. */
3039 relocation
= (htab
->elf
.splt
->output_section
->vma
3040 + htab
->elf
.splt
->output_offset
3042 unresolved_reloc
= FALSE
;
3049 && (input_section
->flags
& SEC_ALLOC
) != 0
3050 && (input_section
->flags
& SEC_READONLY
) != 0
3053 bfd_boolean fail
= FALSE
;
3055 = (r_type
== R_X86_64_PC32
3056 && is_32bit_relative_branch (contents
, rel
->r_offset
));
3058 if (SYMBOL_REFERENCES_LOCAL (info
, h
))
3060 /* Symbol is referenced locally. Make sure it is
3061 defined locally or for a branch. */
3062 fail
= !h
->def_regular
&& !branch
;
3066 /* Symbol isn't referenced locally. We only allow
3067 branch to symbol with non-default visibility. */
3069 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
);
3076 const char *pic
= "";
3078 switch (ELF_ST_VISIBILITY (h
->other
))
3081 v
= _("hidden symbol");
3084 v
= _("internal symbol");
3087 v
= _("protected symbol");
3091 pic
= _("; recompile with -fPIC");
3096 fmt
= _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3098 fmt
= _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3100 (*_bfd_error_handler
) (fmt
, input_bfd
,
3101 x86_64_elf_howto_table
[r_type
].name
,
3102 v
, h
->root
.root
.string
, pic
);
3103 bfd_set_error (bfd_error_bad_value
);
3114 /* FIXME: The ABI says the linker should make sure the value is
3115 the same when it's zeroextended to 64 bit. */
3117 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3122 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3123 || h
->root
.type
!= bfd_link_hash_undefweak
)
3124 && (! IS_X86_64_PCREL_TYPE (r_type
)
3125 || ! SYMBOL_CALLS_LOCAL (info
, h
)))
3126 || (ELIMINATE_COPY_RELOCS
3133 || h
->root
.type
== bfd_link_hash_undefweak
3134 || h
->root
.type
== bfd_link_hash_undefined
)))
3136 Elf_Internal_Rela outrel
;
3138 bfd_boolean skip
, relocate
;
3141 /* When generating a shared object, these relocations
3142 are copied into the output file to be resolved at run
3148 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3150 if (outrel
.r_offset
== (bfd_vma
) -1)
3152 else if (outrel
.r_offset
== (bfd_vma
) -2)
3153 skip
= TRUE
, relocate
= TRUE
;
3155 outrel
.r_offset
+= (input_section
->output_section
->vma
3156 + input_section
->output_offset
);
3159 memset (&outrel
, 0, sizeof outrel
);
3161 /* h->dynindx may be -1 if this symbol was marked to
3165 && (IS_X86_64_PCREL_TYPE (r_type
)
3167 || ! SYMBOLIC_BIND (info
, h
)
3168 || ! h
->def_regular
))
3170 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
3171 outrel
.r_addend
= rel
->r_addend
;
3175 /* This symbol is local, or marked to become local. */
3176 if (r_type
== R_X86_64_64
)
3179 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3180 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3186 if (bfd_is_abs_section (sec
))
3188 else if (sec
== NULL
|| sec
->owner
== NULL
)
3190 bfd_set_error (bfd_error_bad_value
);
3197 /* We are turning this relocation into one
3198 against a section symbol. It would be
3199 proper to subtract the symbol's value,
3200 osec->vma, from the emitted reloc addend,
3201 but ld.so expects buggy relocs. */
3202 osec
= sec
->output_section
;
3203 sindx
= elf_section_data (osec
)->dynindx
;
3206 asection
*oi
= htab
->elf
.text_index_section
;
3207 sindx
= elf_section_data (oi
)->dynindx
;
3209 BFD_ASSERT (sindx
!= 0);
3212 outrel
.r_info
= ELF64_R_INFO (sindx
, r_type
);
3213 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3217 sreloc
= elf_section_data (input_section
)->sreloc
;
3219 BFD_ASSERT (sreloc
!= NULL
&& sreloc
->contents
!= NULL
);
3221 loc
= sreloc
->contents
;
3222 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3223 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3225 /* If this reloc is against an external symbol, we do
3226 not want to fiddle with the addend. Otherwise, we
3227 need to include the symbol value so that it becomes
3228 an addend for the dynamic reloc. */
3235 case R_X86_64_TLSGD
:
3236 case R_X86_64_GOTPC32_TLSDESC
:
3237 case R_X86_64_TLSDESC_CALL
:
3238 case R_X86_64_GOTTPOFF
:
3239 tls_type
= GOT_UNKNOWN
;
3240 if (h
== NULL
&& local_got_offsets
)
3241 tls_type
= elf64_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
3243 tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
3245 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3246 input_section
, contents
,
3247 symtab_hdr
, sym_hashes
,
3248 &r_type
, tls_type
, rel
,
3249 relend
, h
, r_symndx
))
3252 if (r_type
== R_X86_64_TPOFF32
)
3254 bfd_vma roff
= rel
->r_offset
;
3256 BFD_ASSERT (! unresolved_reloc
);
3258 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3260 /* GD->LE transition.
3261 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3262 .word 0x6666; rex64; call __tls_get_addr
3265 leaq foo@tpoff(%rax), %rax */
3266 memcpy (contents
+ roff
- 4,
3267 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3269 bfd_put_32 (output_bfd
,
3270 elf64_x86_64_tpoff (info
, relocation
),
3271 contents
+ roff
+ 8);
3272 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3276 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3278 /* GDesc -> LE transition.
3279 It's originally something like:
3280 leaq x@tlsdesc(%rip), %rax
3286 unsigned int val
, type
, type2
;
3288 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3289 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3290 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3291 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
3292 contents
+ roff
- 3);
3293 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
3294 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
3295 contents
+ roff
- 1);
3296 bfd_put_32 (output_bfd
,
3297 elf64_x86_64_tpoff (info
, relocation
),
3301 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3303 /* GDesc -> LE transition.
3308 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3309 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3312 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
3314 /* IE->LE transition:
3315 Originally it can be one of:
3316 movq foo@gottpoff(%rip), %reg
3317 addq foo@gottpoff(%rip), %reg
3320 leaq foo(%reg), %reg
3323 unsigned int val
, type
, reg
;
3325 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3326 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3327 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3333 bfd_put_8 (output_bfd
, 0x49,
3334 contents
+ roff
- 3);
3335 bfd_put_8 (output_bfd
, 0xc7,
3336 contents
+ roff
- 2);
3337 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3338 contents
+ roff
- 1);
3342 /* addq -> addq - addressing with %rsp/%r12 is
3345 bfd_put_8 (output_bfd
, 0x49,
3346 contents
+ roff
- 3);
3347 bfd_put_8 (output_bfd
, 0x81,
3348 contents
+ roff
- 2);
3349 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3350 contents
+ roff
- 1);
3356 bfd_put_8 (output_bfd
, 0x4d,
3357 contents
+ roff
- 3);
3358 bfd_put_8 (output_bfd
, 0x8d,
3359 contents
+ roff
- 2);
3360 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
3361 contents
+ roff
- 1);
3363 bfd_put_32 (output_bfd
,
3364 elf64_x86_64_tpoff (info
, relocation
),
3372 if (htab
->elf
.sgot
== NULL
)
3377 off
= h
->got
.offset
;
3378 offplt
= elf64_x86_64_hash_entry (h
)->tlsdesc_got
;
3382 if (local_got_offsets
== NULL
)
3385 off
= local_got_offsets
[r_symndx
];
3386 offplt
= local_tlsdesc_gotents
[r_symndx
];
3393 Elf_Internal_Rela outrel
;
3398 if (htab
->elf
.srelgot
== NULL
)
3401 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
3403 if (GOT_TLS_GDESC_P (tls_type
))
3405 outrel
.r_info
= ELF64_R_INFO (indx
, R_X86_64_TLSDESC
);
3406 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
3407 + 2 * GOT_ENTRY_SIZE
<= htab
->elf
.sgotplt
->size
);
3408 outrel
.r_offset
= (htab
->elf
.sgotplt
->output_section
->vma
3409 + htab
->elf
.sgotplt
->output_offset
3411 + htab
->sgotplt_jump_table_size
);
3412 sreloc
= htab
->elf
.srelplt
;
3413 loc
= sreloc
->contents
;
3414 loc
+= sreloc
->reloc_count
++
3415 * sizeof (Elf64_External_Rela
);
3416 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
3417 <= sreloc
->contents
+ sreloc
->size
);
3419 outrel
.r_addend
= relocation
- elf64_x86_64_dtpoff_base (info
);
3421 outrel
.r_addend
= 0;
3422 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3425 sreloc
= htab
->elf
.srelgot
;
3427 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3428 + htab
->elf
.sgot
->output_offset
+ off
);
3430 if (GOT_TLS_GD_P (tls_type
))
3431 dr_type
= R_X86_64_DTPMOD64
;
3432 else if (GOT_TLS_GDESC_P (tls_type
))
3435 dr_type
= R_X86_64_TPOFF64
;
3437 bfd_put_64 (output_bfd
, 0, htab
->elf
.sgot
->contents
+ off
);
3438 outrel
.r_addend
= 0;
3439 if ((dr_type
== R_X86_64_TPOFF64
3440 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
3441 outrel
.r_addend
= relocation
- elf64_x86_64_dtpoff_base (info
);
3442 outrel
.r_info
= ELF64_R_INFO (indx
, dr_type
);
3444 loc
= sreloc
->contents
;
3445 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3446 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
3447 <= sreloc
->contents
+ sreloc
->size
);
3448 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3450 if (GOT_TLS_GD_P (tls_type
))
3454 BFD_ASSERT (! unresolved_reloc
);
3455 bfd_put_64 (output_bfd
,
3456 relocation
- elf64_x86_64_dtpoff_base (info
),
3457 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3461 bfd_put_64 (output_bfd
, 0,
3462 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3463 outrel
.r_info
= ELF64_R_INFO (indx
,
3465 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
3466 sreloc
->reloc_count
++;
3467 loc
+= sizeof (Elf64_External_Rela
);
3468 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
3469 <= sreloc
->contents
+ sreloc
->size
);
3470 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3478 local_got_offsets
[r_symndx
] |= 1;
3481 if (off
>= (bfd_vma
) -2
3482 && ! GOT_TLS_GDESC_P (tls_type
))
3484 if (r_type
== ELF64_R_TYPE (rel
->r_info
))
3486 if (r_type
== R_X86_64_GOTPC32_TLSDESC
3487 || r_type
== R_X86_64_TLSDESC_CALL
)
3488 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3489 + htab
->elf
.sgotplt
->output_offset
3490 + offplt
+ htab
->sgotplt_jump_table_size
;
3492 relocation
= htab
->elf
.sgot
->output_section
->vma
3493 + htab
->elf
.sgot
->output_offset
+ off
;
3494 unresolved_reloc
= FALSE
;
3498 bfd_vma roff
= rel
->r_offset
;
3500 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3502 /* GD->IE transition.
3503 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3504 .word 0x6666; rex64; call __tls_get_addr@plt
3507 addq foo@gottpoff(%rip), %rax */
3508 memcpy (contents
+ roff
- 4,
3509 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3512 relocation
= (htab
->elf
.sgot
->output_section
->vma
3513 + htab
->elf
.sgot
->output_offset
+ off
3515 - input_section
->output_section
->vma
3516 - input_section
->output_offset
3518 bfd_put_32 (output_bfd
, relocation
,
3519 contents
+ roff
+ 8);
3520 /* Skip R_X86_64_PLT32. */
3524 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3526 /* GDesc -> IE transition.
3527 It's originally something like:
3528 leaq x@tlsdesc(%rip), %rax
3531 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3534 unsigned int val
, type
, type2
;
3536 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3537 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3538 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3540 /* Now modify the instruction as appropriate. To
3541 turn a leaq into a movq in the form we use it, it
3542 suffices to change the second byte from 0x8d to
3544 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3546 bfd_put_32 (output_bfd
,
3547 htab
->elf
.sgot
->output_section
->vma
3548 + htab
->elf
.sgot
->output_offset
+ off
3550 - input_section
->output_section
->vma
3551 - input_section
->output_offset
3556 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3558 /* GDesc -> IE transition.
3565 unsigned int val
, type
;
3567 type
= bfd_get_8 (input_bfd
, contents
+ roff
);
3568 val
= bfd_get_8 (input_bfd
, contents
+ roff
+ 1);
3569 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3570 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3578 case R_X86_64_TLSLD
:
3579 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3580 input_section
, contents
,
3581 symtab_hdr
, sym_hashes
,
3582 &r_type
, GOT_UNKNOWN
,
3583 rel
, relend
, h
, r_symndx
))
3586 if (r_type
!= R_X86_64_TLSLD
)
3588 /* LD->LE transition:
3589 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3591 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3593 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
3594 memcpy (contents
+ rel
->r_offset
- 3,
3595 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3596 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3601 if (htab
->elf
.sgot
== NULL
)
3604 off
= htab
->tls_ld_got
.offset
;
3609 Elf_Internal_Rela outrel
;
3612 if (htab
->elf
.srelgot
== NULL
)
3615 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3616 + htab
->elf
.sgot
->output_offset
+ off
);
3618 bfd_put_64 (output_bfd
, 0,
3619 htab
->elf
.sgot
->contents
+ off
);
3620 bfd_put_64 (output_bfd
, 0,
3621 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3622 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_DTPMOD64
);
3623 outrel
.r_addend
= 0;
3624 loc
= htab
->elf
.srelgot
->contents
;
3625 loc
+= htab
->elf
.srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3626 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3627 htab
->tls_ld_got
.offset
|= 1;
3629 relocation
= htab
->elf
.sgot
->output_section
->vma
3630 + htab
->elf
.sgot
->output_offset
+ off
;
3631 unresolved_reloc
= FALSE
;
3634 case R_X86_64_DTPOFF32
:
3635 if (!info
->executable
|| (input_section
->flags
& SEC_CODE
) == 0)
3636 relocation
-= elf64_x86_64_dtpoff_base (info
);
3638 relocation
= elf64_x86_64_tpoff (info
, relocation
);
3641 case R_X86_64_TPOFF32
:
3642 BFD_ASSERT (info
->executable
);
3643 relocation
= elf64_x86_64_tpoff (info
, relocation
);
3650 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3651 because such sections are not SEC_ALLOC and thus ld.so will
3652 not process them. */
3653 if (unresolved_reloc
3654 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3656 (*_bfd_error_handler
)
3657 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3660 (long) rel
->r_offset
,
3662 h
->root
.root
.string
);
3665 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3666 contents
, rel
->r_offset
,
3667 relocation
, rel
->r_addend
);
3669 if (r
!= bfd_reloc_ok
)
3674 name
= h
->root
.root
.string
;
3677 name
= bfd_elf_string_from_elf_section (input_bfd
,
3678 symtab_hdr
->sh_link
,
3683 name
= bfd_section_name (input_bfd
, sec
);
3686 if (r
== bfd_reloc_overflow
)
3688 if (! ((*info
->callbacks
->reloc_overflow
)
3689 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3690 (bfd_vma
) 0, input_bfd
, input_section
,
3696 (*_bfd_error_handler
)
3697 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3698 input_bfd
, input_section
,
3699 (long) rel
->r_offset
, name
, (int) r
);
3708 /* Finish up dynamic symbol handling. We set the contents of various
3709 dynamic sections here. */
3712 elf64_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
3713 struct bfd_link_info
*info
,
3714 struct elf_link_hash_entry
*h
,
3715 Elf_Internal_Sym
*sym
)
3717 struct elf64_x86_64_link_hash_table
*htab
;
3719 htab
= elf64_x86_64_hash_table (info
);
3721 if (h
->plt
.offset
!= (bfd_vma
) -1)
3725 Elf_Internal_Rela rela
;
3727 asection
*plt
, *gotplt
, *relplt
;
3729 /* When building a static executable, use .iplt, .igot.plt and
3730 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3731 if (htab
->elf
.splt
!= NULL
)
3733 plt
= htab
->elf
.splt
;
3734 gotplt
= htab
->elf
.sgotplt
;
3735 relplt
= htab
->elf
.srelplt
;
3739 plt
= htab
->elf
.iplt
;
3740 gotplt
= htab
->elf
.igotplt
;
3741 relplt
= htab
->elf
.irelplt
;
3744 /* This symbol has an entry in the procedure linkage table. Set
3746 if ((h
->dynindx
== -1
3747 && !((h
->forced_local
|| info
->executable
)
3749 && h
->type
== STT_GNU_IFUNC
))
3755 /* Get the index in the procedure linkage table which
3756 corresponds to this symbol. This is the index of this symbol
3757 in all the symbols for which we are making plt entries. The
3758 first entry in the procedure linkage table is reserved.
3760 Get the offset into the .got table of the entry that
3761 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3762 bytes. The first three are reserved for the dynamic linker.
3764 For static executables, we don't reserve anything. */
3766 if (plt
== htab
->elf
.splt
)
3768 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3769 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3773 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
3774 got_offset
= plt_index
* GOT_ENTRY_SIZE
;
3777 /* Fill in the entry in the procedure linkage table. */
3778 memcpy (plt
->contents
+ h
->plt
.offset
, elf64_x86_64_plt_entry
,
3781 /* Insert the relocation positions of the plt section. The magic
3782 numbers at the end of the statements are the positions of the
3783 relocations in the plt section. */
3784 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3785 instruction uses 6 bytes, subtract this value. */
3786 bfd_put_32 (output_bfd
,
3787 (gotplt
->output_section
->vma
3788 + gotplt
->output_offset
3790 - plt
->output_section
->vma
3791 - plt
->output_offset
3794 plt
->contents
+ h
->plt
.offset
+ 2);
3796 /* Don't fill PLT entry for static executables. */
3797 if (plt
== htab
->elf
.splt
)
3799 /* Put relocation index. */
3800 bfd_put_32 (output_bfd
, plt_index
,
3801 plt
->contents
+ h
->plt
.offset
+ 7);
3802 /* Put offset for jmp .PLT0. */
3803 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
3804 plt
->contents
+ h
->plt
.offset
+ 12);
3807 /* Fill in the entry in the global offset table, initially this
3808 points to the pushq instruction in the PLT which is at offset 6. */
3809 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
3810 + plt
->output_offset
3811 + h
->plt
.offset
+ 6),
3812 gotplt
->contents
+ got_offset
);
3814 /* Fill in the entry in the .rela.plt section. */
3815 rela
.r_offset
= (gotplt
->output_section
->vma
3816 + gotplt
->output_offset
3818 if (h
->dynindx
== -1
3819 || ((info
->executable
3820 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
3822 && h
->type
== STT_GNU_IFUNC
))
3824 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3825 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3826 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_IRELATIVE
);
3827 rela
.r_addend
= (h
->root
.u
.def
.value
3828 + h
->root
.u
.def
.section
->output_section
->vma
3829 + h
->root
.u
.def
.section
->output_offset
);
3833 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_JUMP_SLOT
);
3836 loc
= relplt
->contents
+ plt_index
* sizeof (Elf64_External_Rela
);
3837 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3839 if (!h
->def_regular
)
3841 /* Mark the symbol as undefined, rather than as defined in
3842 the .plt section. Leave the value if there were any
3843 relocations where pointer equality matters (this is a clue
3844 for the dynamic linker, to make function pointer
3845 comparisons work between an application and shared
3846 library), otherwise set it to zero. If a function is only
3847 called from a binary, there is no need to slow down
3848 shared libraries because of that. */
3849 sym
->st_shndx
= SHN_UNDEF
;
3850 if (!h
->pointer_equality_needed
)
3855 if (h
->got
.offset
!= (bfd_vma
) -1
3856 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h
)->tls_type
)
3857 && elf64_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
3859 Elf_Internal_Rela rela
;
3862 /* This symbol has an entry in the global offset table. Set it
3864 if (htab
->elf
.sgot
== NULL
|| htab
->elf
.srelgot
== NULL
)
3867 rela
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3868 + htab
->elf
.sgot
->output_offset
3869 + (h
->got
.offset
&~ (bfd_vma
) 1));
3871 /* If this is a static link, or it is a -Bsymbolic link and the
3872 symbol is defined locally or was forced to be local because
3873 of a version file, we just want to emit a RELATIVE reloc.
3874 The entry in the global offset table will already have been
3875 initialized in the relocate_section function. */
3877 && h
->type
== STT_GNU_IFUNC
)
3881 /* Generate R_X86_64_GLOB_DAT. */
3886 if (!h
->pointer_equality_needed
)
3889 /* For non-shared object, we can't use .got.plt, which
3890 contains the real function addres if we need pointer
3891 equality. We load the GOT entry with the PLT entry. */
3892 asection
*plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
3893 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
3894 + plt
->output_offset
3896 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
3900 else if (info
->shared
3901 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3903 if (!h
->def_regular
)
3905 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3906 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3907 rela
.r_addend
= (h
->root
.u
.def
.value
3908 + h
->root
.u
.def
.section
->output_section
->vma
3909 + h
->root
.u
.def
.section
->output_offset
);
3913 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3915 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3916 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
3917 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_GLOB_DAT
);
3921 loc
= htab
->elf
.srelgot
->contents
;
3922 loc
+= htab
->elf
.srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3923 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3928 Elf_Internal_Rela rela
;
3931 /* This symbol needs a copy reloc. Set it up. */
3933 if (h
->dynindx
== -1
3934 || (h
->root
.type
!= bfd_link_hash_defined
3935 && h
->root
.type
!= bfd_link_hash_defweak
)
3936 || htab
->srelbss
== NULL
)
3939 rela
.r_offset
= (h
->root
.u
.def
.value
3940 + h
->root
.u
.def
.section
->output_section
->vma
3941 + h
->root
.u
.def
.section
->output_offset
);
3942 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_COPY
);
3944 loc
= htab
->srelbss
->contents
;
3945 loc
+= htab
->srelbss
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3946 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3949 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
3950 be NULL for local symbols. */
3952 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3953 || h
== htab
->elf
.hgot
))
3954 sym
->st_shndx
= SHN_ABS
;
3959 /* Finish up local dynamic symbol handling. We set the contents of
3960 various dynamic sections here. */
3963 elf64_x86_64_finish_local_dynamic_symbol (void **slot
, void *inf
)
3965 struct elf_link_hash_entry
*h
3966 = (struct elf_link_hash_entry
*) *slot
;
3967 struct bfd_link_info
*info
3968 = (struct bfd_link_info
*) inf
;
3970 return elf64_x86_64_finish_dynamic_symbol (info
->output_bfd
,
3974 /* Used to decide how to sort relocs in an optimal manner for the
3975 dynamic linker, before writing them out. */
3977 static enum elf_reloc_type_class
3978 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
3980 switch ((int) ELF64_R_TYPE (rela
->r_info
))
3982 case R_X86_64_RELATIVE
:
3983 return reloc_class_relative
;
3984 case R_X86_64_JUMP_SLOT
:
3985 return reloc_class_plt
;
3987 return reloc_class_copy
;
3989 return reloc_class_normal
;
3993 /* Finish up the dynamic sections. */
3996 elf64_x86_64_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
3998 struct elf64_x86_64_link_hash_table
*htab
;
4002 htab
= elf64_x86_64_hash_table (info
);
4003 dynobj
= htab
->elf
.dynobj
;
4004 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4006 if (htab
->elf
.dynamic_sections_created
)
4008 Elf64_External_Dyn
*dyncon
, *dynconend
;
4010 if (sdyn
== NULL
|| htab
->elf
.sgot
== NULL
)
4013 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
4014 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4015 for (; dyncon
< dynconend
; dyncon
++)
4017 Elf_Internal_Dyn dyn
;
4020 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4028 s
= htab
->elf
.sgotplt
;
4029 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4033 dyn
.d_un
.d_ptr
= htab
->elf
.srelplt
->output_section
->vma
;
4037 s
= htab
->elf
.srelplt
->output_section
;
4038 dyn
.d_un
.d_val
= s
->size
;
4042 /* The procedure linkage table relocs (DT_JMPREL) should
4043 not be included in the overall relocs (DT_RELA).
4044 Therefore, we override the DT_RELASZ entry here to
4045 make it not include the JMPREL relocs. Since the
4046 linker script arranges for .rela.plt to follow all
4047 other relocation sections, we don't have to worry
4048 about changing the DT_RELA entry. */
4049 if (htab
->elf
.srelplt
!= NULL
)
4051 s
= htab
->elf
.srelplt
->output_section
;
4052 dyn
.d_un
.d_val
-= s
->size
;
4056 case DT_TLSDESC_PLT
:
4058 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4059 + htab
->tlsdesc_plt
;
4062 case DT_TLSDESC_GOT
:
4064 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4065 + htab
->tlsdesc_got
;
4069 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4072 /* Fill in the special first entry in the procedure linkage table. */
4073 if (htab
->elf
.splt
&& htab
->elf
.splt
->size
> 0)
4075 /* Fill in the first entry in the procedure linkage table. */
4076 memcpy (htab
->elf
.splt
->contents
, elf64_x86_64_plt0_entry
,
4078 /* Add offset for pushq GOT+8(%rip), since the instruction
4079 uses 6 bytes subtract this value. */
4080 bfd_put_32 (output_bfd
,
4081 (htab
->elf
.sgotplt
->output_section
->vma
4082 + htab
->elf
.sgotplt
->output_offset
4084 - htab
->elf
.splt
->output_section
->vma
4085 - htab
->elf
.splt
->output_offset
4087 htab
->elf
.splt
->contents
+ 2);
4088 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4089 the end of the instruction. */
4090 bfd_put_32 (output_bfd
,
4091 (htab
->elf
.sgotplt
->output_section
->vma
4092 + htab
->elf
.sgotplt
->output_offset
4094 - htab
->elf
.splt
->output_section
->vma
4095 - htab
->elf
.splt
->output_offset
4097 htab
->elf
.splt
->contents
+ 8);
4099 elf_section_data (htab
->elf
.splt
->output_section
)->this_hdr
.sh_entsize
=
4102 if (htab
->tlsdesc_plt
)
4104 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4105 htab
->elf
.sgot
->contents
+ htab
->tlsdesc_got
);
4107 memcpy (htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
,
4108 elf64_x86_64_plt0_entry
,
4111 /* Add offset for pushq GOT+8(%rip), since the
4112 instruction uses 6 bytes subtract this value. */
4113 bfd_put_32 (output_bfd
,
4114 (htab
->elf
.sgotplt
->output_section
->vma
4115 + htab
->elf
.sgotplt
->output_offset
4117 - htab
->elf
.splt
->output_section
->vma
4118 - htab
->elf
.splt
->output_offset
4121 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 2);
4122 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4123 htab->tlsdesc_got. The 12 is the offset to the end of
4125 bfd_put_32 (output_bfd
,
4126 (htab
->elf
.sgot
->output_section
->vma
4127 + htab
->elf
.sgot
->output_offset
4129 - htab
->elf
.splt
->output_section
->vma
4130 - htab
->elf
.splt
->output_offset
4133 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 8);
4138 if (htab
->elf
.sgotplt
)
4140 /* Fill in the first three entries in the global offset table. */
4141 if (htab
->elf
.sgotplt
->size
> 0)
4143 /* Set the first entry in the global offset table to the address of
4144 the dynamic section. */
4146 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
);
4148 bfd_put_64 (output_bfd
,
4149 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
4150 htab
->elf
.sgotplt
->contents
);
4151 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4152 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
4153 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
4156 elf_section_data (htab
->elf
.sgotplt
->output_section
)->this_hdr
.sh_entsize
=
4160 if (htab
->elf
.sgot
&& htab
->elf
.sgot
->size
> 0)
4161 elf_section_data (htab
->elf
.sgot
->output_section
)->this_hdr
.sh_entsize
4164 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4165 htab_traverse (htab
->loc_hash_table
,
4166 elf64_x86_64_finish_local_dynamic_symbol
,
4172 /* Return address for Ith PLT stub in section PLT, for relocation REL
4173 or (bfd_vma) -1 if it should not be included. */
4176 elf64_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
4177 const arelent
*rel ATTRIBUTE_UNUSED
)
4179 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
4182 /* Handle an x86-64 specific section when reading an object file. This
4183 is called when elfcode.h finds a section with an unknown type. */
4186 elf64_x86_64_section_from_shdr (bfd
*abfd
,
4187 Elf_Internal_Shdr
*hdr
,
4191 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
4194 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
4200 /* Hook called by the linker routine which adds symbols from an object
4201 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4205 elf64_x86_64_add_symbol_hook (bfd
*abfd
,
4206 struct bfd_link_info
*info
,
4207 Elf_Internal_Sym
*sym
,
4208 const char **namep ATTRIBUTE_UNUSED
,
4209 flagword
*flagsp ATTRIBUTE_UNUSED
,
4215 switch (sym
->st_shndx
)
4217 case SHN_X86_64_LCOMMON
:
4218 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
4221 lcomm
= bfd_make_section_with_flags (abfd
,
4225 | SEC_LINKER_CREATED
));
4228 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
4231 *valp
= sym
->st_size
;
4235 if (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
4236 elf_tdata (info
->output_bfd
)->has_ifunc_symbols
= TRUE
;
4242 /* Given a BFD section, try to locate the corresponding ELF section
4246 elf64_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
4247 asection
*sec
, int *index
)
4249 if (sec
== &_bfd_elf_large_com_section
)
4251 *index
= SHN_X86_64_LCOMMON
;
4257 /* Process a symbol. */
4260 elf64_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
4263 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
4265 switch (elfsym
->internal_elf_sym
.st_shndx
)
4267 case SHN_X86_64_LCOMMON
:
4268 asym
->section
= &_bfd_elf_large_com_section
;
4269 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4270 /* Common symbol doesn't set BSF_GLOBAL. */
4271 asym
->flags
&= ~BSF_GLOBAL
;
4277 elf64_x86_64_common_definition (Elf_Internal_Sym
*sym
)
4279 return (sym
->st_shndx
== SHN_COMMON
4280 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
4284 elf64_x86_64_common_section_index (asection
*sec
)
4286 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4289 return SHN_X86_64_LCOMMON
;
4293 elf64_x86_64_common_section (asection
*sec
)
4295 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4296 return bfd_com_section_ptr
;
4298 return &_bfd_elf_large_com_section
;
4302 elf64_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
4303 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
4304 struct elf_link_hash_entry
*h
,
4305 Elf_Internal_Sym
*sym
,
4307 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
4308 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
4309 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
4310 bfd_boolean
*override ATTRIBUTE_UNUSED
,
4311 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
4312 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
4313 bfd_boolean
*newdef ATTRIBUTE_UNUSED
,
4314 bfd_boolean
*newdyn
,
4315 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
4316 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
4317 bfd
*abfd ATTRIBUTE_UNUSED
,
4319 bfd_boolean
*olddef ATTRIBUTE_UNUSED
,
4320 bfd_boolean
*olddyn
,
4321 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
4322 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
4326 /* A normal common symbol and a large common symbol result in a
4327 normal common symbol. We turn the large common symbol into a
4330 && h
->root
.type
== bfd_link_hash_common
4332 && bfd_is_com_section (*sec
)
4335 if (sym
->st_shndx
== SHN_COMMON
4336 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
4338 h
->root
.u
.c
.p
->section
4339 = bfd_make_section_old_way (oldbfd
, "COMMON");
4340 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
4342 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
4343 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
4344 *psec
= *sec
= bfd_com_section_ptr
;
4351 elf64_x86_64_additional_program_headers (bfd
*abfd
,
4352 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4357 /* Check to see if we need a large readonly segment. */
4358 s
= bfd_get_section_by_name (abfd
, ".lrodata");
4359 if (s
&& (s
->flags
& SEC_LOAD
))
4362 /* Check to see if we need a large data segment. Since .lbss sections
4363 is placed right after the .bss section, there should be no need for
4364 a large data segment just because of .lbss. */
4365 s
= bfd_get_section_by_name (abfd
, ".ldata");
4366 if (s
&& (s
->flags
& SEC_LOAD
))
4372 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4375 elf64_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
4377 if (h
->plt
.offset
!= (bfd_vma
) -1
4379 && !h
->pointer_equality_needed
)
4382 return _bfd_elf_hash_symbol (h
);
4385 static const struct bfd_elf_special_section
4386 elf64_x86_64_special_sections
[]=
4388 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4389 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4390 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
4391 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4392 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4393 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4394 { NULL
, 0, 0, 0, 0 }
4397 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4398 #define TARGET_LITTLE_NAME "elf64-x86-64"
4399 #define ELF_ARCH bfd_arch_i386
4400 #define ELF_MACHINE_CODE EM_X86_64
4401 #define ELF_MAXPAGESIZE 0x200000
4402 #define ELF_MINPAGESIZE 0x1000
4403 #define ELF_COMMONPAGESIZE 0x1000
4405 #define elf_backend_can_gc_sections 1
4406 #define elf_backend_can_refcount 1
4407 #define elf_backend_want_got_plt 1
4408 #define elf_backend_plt_readonly 1
4409 #define elf_backend_want_plt_sym 0
4410 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4411 #define elf_backend_rela_normal 1
4413 #define elf_info_to_howto elf64_x86_64_info_to_howto
4415 #define bfd_elf64_bfd_link_hash_table_create \
4416 elf64_x86_64_link_hash_table_create
4417 #define bfd_elf64_bfd_link_hash_table_free \
4418 elf64_x86_64_link_hash_table_free
4419 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4420 #define bfd_elf64_bfd_reloc_name_lookup \
4421 elf64_x86_64_reloc_name_lookup
4423 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4424 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4425 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4426 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4427 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4428 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4429 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4430 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4431 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4432 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4433 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4434 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4435 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4436 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4437 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4438 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4439 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4440 #define elf_backend_object_p elf64_x86_64_elf_object_p
4441 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4443 #define elf_backend_section_from_shdr \
4444 elf64_x86_64_section_from_shdr
4446 #define elf_backend_section_from_bfd_section \
4447 elf64_x86_64_elf_section_from_bfd_section
4448 #define elf_backend_add_symbol_hook \
4449 elf64_x86_64_add_symbol_hook
4450 #define elf_backend_symbol_processing \
4451 elf64_x86_64_symbol_processing
4452 #define elf_backend_common_section_index \
4453 elf64_x86_64_common_section_index
4454 #define elf_backend_common_section \
4455 elf64_x86_64_common_section
4456 #define elf_backend_common_definition \
4457 elf64_x86_64_common_definition
4458 #define elf_backend_merge_symbol \
4459 elf64_x86_64_merge_symbol
4460 #define elf_backend_special_sections \
4461 elf64_x86_64_special_sections
4462 #define elf_backend_additional_program_headers \
4463 elf64_x86_64_additional_program_headers
4464 #define elf_backend_hash_symbol \
4465 elf64_x86_64_hash_symbol
4467 #undef elf_backend_post_process_headers
4468 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4470 #include "elf64-target.h"
4472 /* FreeBSD support. */
4474 #undef TARGET_LITTLE_SYM
4475 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4476 #undef TARGET_LITTLE_NAME
4477 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4480 #define ELF_OSABI ELFOSABI_FREEBSD
4483 #define elf64_bed elf64_x86_64_fbsd_bed
4485 #include "elf64-target.h"
4487 /* Intel L1OM support. */
4490 elf64_l1om_elf_object_p (bfd
*abfd
)
4492 /* Set the right machine number for an L1OM elf64 file. */
4493 bfd_default_set_arch_mach (abfd
, bfd_arch_l1om
, bfd_mach_l1om
);
4497 #undef TARGET_LITTLE_SYM
4498 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4499 #undef TARGET_LITTLE_NAME
4500 #define TARGET_LITTLE_NAME "elf64-l1om"
4502 #define ELF_ARCH bfd_arch_l1om
4504 #undef ELF_MACHINE_CODE
4505 #define ELF_MACHINE_CODE EM_L1OM
4510 #define elf64_bed elf64_l1om_bed
4512 #undef elf_backend_object_p
4513 #define elf_backend_object_p elf64_l1om_elf_object_p
4515 #undef elf_backend_post_process_headers
4517 #include "elf64-target.h"
4519 /* FreeBSD L1OM support. */
4521 #undef TARGET_LITTLE_SYM
4522 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4523 #undef TARGET_LITTLE_NAME
4524 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4527 #define ELF_OSABI ELFOSABI_FREEBSD
4530 #define elf64_bed elf64_l1om_fbsd_bed
4532 #undef elf_backend_post_process_headers
4533 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4535 #include "elf64-target.h"