1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static bfd_boolean create_got_section
40 PARAMS ((bfd
*, struct bfd_link_info
*));
41 static bfd_boolean sparc64_elf_create_dynamic_sections
42 PARAMS ((bfd
*, struct bfd_link_info
*));
43 static bfd_reloc_status_type init_insn_reloc
44 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*,
45 bfd
*, bfd_vma
*, bfd_vma
*));
46 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
47 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
48 static void sparc64_elf_info_to_howto
49 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
51 static void sparc64_elf_build_plt
52 PARAMS ((bfd
*, unsigned char *, int));
53 static bfd_vma sparc64_elf_plt_entry_offset
55 static bfd_vma sparc64_elf_plt_ptr_offset
56 PARAMS ((bfd_vma
, bfd_vma
));
58 static bfd_boolean sparc64_elf_check_relocs
59 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*sec
,
60 const Elf_Internal_Rela
*));
61 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
62 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
63 static bfd_boolean sparc64_elf_omit_section_dynsym
64 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*));
65 static bfd_boolean sparc64_elf_size_dynamic_sections
66 PARAMS ((bfd
*, struct bfd_link_info
*));
67 static int sparc64_elf_get_symbol_type
68 PARAMS (( Elf_Internal_Sym
*, int));
69 static bfd_boolean sparc64_elf_add_symbol_hook
70 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
71 const char **, flagword
*, asection
**, bfd_vma
*));
72 static bfd_boolean sparc64_elf_output_arch_syms
73 PARAMS ((bfd
*, struct bfd_link_info
*, PTR
,
74 bfd_boolean (*) (PTR
, const char *, Elf_Internal_Sym
*,
75 asection
*, struct elf_link_hash_entry
*)));
76 static void sparc64_elf_symbol_processing
77 PARAMS ((bfd
*, asymbol
*));
79 static bfd_boolean sparc64_elf_merge_private_bfd_data
80 PARAMS ((bfd
*, bfd
*));
82 static bfd_boolean sparc64_elf_fake_sections
83 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
85 static const char *sparc64_elf_print_symbol_all
86 PARAMS ((bfd
*, PTR
, asymbol
*));
87 static bfd_boolean sparc64_elf_new_section_hook
88 PARAMS ((bfd
*, asection
*));
89 static bfd_boolean sparc64_elf_relax_section
90 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
91 static bfd_boolean sparc64_elf_relocate_section
92 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
93 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
94 static bfd_boolean sparc64_elf_finish_dynamic_symbol
95 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
97 static bfd_boolean sparc64_elf_finish_dynamic_sections
98 PARAMS ((bfd
*, struct bfd_link_info
*));
99 static bfd_boolean sparc64_elf_object_p
PARAMS ((bfd
*));
100 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
101 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
102 static bfd_boolean sparc64_elf_slurp_one_reloc_table
103 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, bfd_boolean
));
104 static bfd_boolean sparc64_elf_slurp_reloc_table
105 PARAMS ((bfd
*, asection
*, asymbol
**, bfd_boolean
));
106 static long sparc64_elf_canonicalize_reloc
107 PARAMS ((bfd
*, asection
*, arelent
**, asymbol
**));
108 static long sparc64_elf_canonicalize_dynamic_reloc
109 PARAMS ((bfd
*, arelent
**, asymbol
**));
110 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
111 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
112 PARAMS ((const Elf_Internal_Rela
*));
114 /* The relocation "howto" table. */
116 static bfd_reloc_status_type sparc_elf_notsup_reloc
117 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
118 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
119 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
120 static bfd_reloc_status_type sparc_elf_hix22_reloc
121 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
122 static bfd_reloc_status_type sparc_elf_lox10_reloc
123 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
125 static reloc_howto_type sparc64_elf_howto_table
[] =
127 HOWTO(R_SPARC_NONE
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", FALSE
,0,0x00000000,TRUE
),
128 HOWTO(R_SPARC_8
, 0,0, 8,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", FALSE
,0,0x000000ff,TRUE
),
129 HOWTO(R_SPARC_16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", FALSE
,0,0x0000ffff,TRUE
),
130 HOWTO(R_SPARC_32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", FALSE
,0,0xffffffff,TRUE
),
131 HOWTO(R_SPARC_DISP8
, 0,0, 8,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", FALSE
,0,0x000000ff,TRUE
),
132 HOWTO(R_SPARC_DISP16
, 0,1,16,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", FALSE
,0,0x0000ffff,TRUE
),
133 HOWTO(R_SPARC_DISP32
, 0,2,32,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", FALSE
,0,0xffffffff,TRUE
),
134 HOWTO(R_SPARC_WDISP30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", FALSE
,0,0x3fffffff,TRUE
),
135 HOWTO(R_SPARC_WDISP22
, 2,2,22,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", FALSE
,0,0x003fffff,TRUE
),
136 HOWTO(R_SPARC_HI22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", FALSE
,0,0x003fffff,TRUE
),
137 HOWTO(R_SPARC_22
, 0,2,22,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", FALSE
,0,0x003fffff,TRUE
),
138 HOWTO(R_SPARC_13
, 0,2,13,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", FALSE
,0,0x00001fff,TRUE
),
139 HOWTO(R_SPARC_LO10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", FALSE
,0,0x000003ff,TRUE
),
140 HOWTO(R_SPARC_GOT10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", FALSE
,0,0x000003ff,TRUE
),
141 HOWTO(R_SPARC_GOT13
, 0,2,13,FALSE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", FALSE
,0,0x00001fff,TRUE
),
142 HOWTO(R_SPARC_GOT22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", FALSE
,0,0x003fffff,TRUE
),
143 HOWTO(R_SPARC_PC10
, 0,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", FALSE
,0,0x000003ff,TRUE
),
144 HOWTO(R_SPARC_PC22
, 10,2,22,TRUE
, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", FALSE
,0,0x003fffff,TRUE
),
145 HOWTO(R_SPARC_WPLT30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", FALSE
,0,0x3fffffff,TRUE
),
146 HOWTO(R_SPARC_COPY
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", FALSE
,0,0x00000000,TRUE
),
147 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",FALSE
,0,0x00000000,TRUE
),
148 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",FALSE
,0,0x00000000,TRUE
),
149 HOWTO(R_SPARC_RELATIVE
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",FALSE
,0,0x00000000,TRUE
),
150 HOWTO(R_SPARC_UA32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", FALSE
,0,0xffffffff,TRUE
),
151 #ifndef SPARC64_OLD_RELOCS
152 HOWTO(R_SPARC_PLT32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT32", FALSE
,0,0xffffffff,TRUE
),
153 /* These aren't implemented yet. */
154 HOWTO(R_SPARC_HIPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", FALSE
,0,0x00000000,TRUE
),
155 HOWTO(R_SPARC_LOPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", FALSE
,0,0x00000000,TRUE
),
156 HOWTO(R_SPARC_PCPLT32
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", FALSE
,0,0x00000000,TRUE
),
157 HOWTO(R_SPARC_PCPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", FALSE
,0,0x00000000,TRUE
),
158 HOWTO(R_SPARC_PCPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", FALSE
,0,0x00000000,TRUE
),
160 HOWTO(R_SPARC_10
, 0,2,10,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", FALSE
,0,0x000003ff,TRUE
),
161 HOWTO(R_SPARC_11
, 0,2,11,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", FALSE
,0,0x000007ff,TRUE
),
162 HOWTO(R_SPARC_64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", FALSE
,0,MINUS_ONE
, TRUE
),
163 HOWTO(R_SPARC_OLO10
, 0,2,13,FALSE
,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", FALSE
,0,0x00001fff,TRUE
),
164 HOWTO(R_SPARC_HH22
, 42,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", FALSE
,0,0x003fffff,TRUE
),
165 HOWTO(R_SPARC_HM10
, 32,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", FALSE
,0,0x000003ff,TRUE
),
166 HOWTO(R_SPARC_LM22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", FALSE
,0,0x003fffff,TRUE
),
167 HOWTO(R_SPARC_PC_HH22
, 42,2,22,TRUE
, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", FALSE
,0,0x003fffff,TRUE
),
168 HOWTO(R_SPARC_PC_HM10
, 32,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", FALSE
,0,0x000003ff,TRUE
),
169 HOWTO(R_SPARC_PC_LM22
, 10,2,22,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", FALSE
,0,0x003fffff,TRUE
),
170 HOWTO(R_SPARC_WDISP16
, 2,2,16,TRUE
, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", FALSE
,0,0x00000000,TRUE
),
171 HOWTO(R_SPARC_WDISP19
, 2,2,19,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", FALSE
,0,0x0007ffff,TRUE
),
172 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",FALSE
,0,0x00000000,TRUE
),
173 HOWTO(R_SPARC_7
, 0,2, 7,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", FALSE
,0,0x0000007f,TRUE
),
174 HOWTO(R_SPARC_5
, 0,2, 5,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", FALSE
,0,0x0000001f,TRUE
),
175 HOWTO(R_SPARC_6
, 0,2, 6,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", FALSE
,0,0x0000003f,TRUE
),
176 HOWTO(R_SPARC_DISP64
, 0,4,64,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", FALSE
,0,MINUS_ONE
, TRUE
),
177 HOWTO(R_SPARC_PLT64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT64", FALSE
,0,MINUS_ONE
, TRUE
),
178 HOWTO(R_SPARC_HIX22
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", FALSE
,0,MINUS_ONE
, FALSE
),
179 HOWTO(R_SPARC_LOX10
, 0,4, 0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", FALSE
,0,MINUS_ONE
, FALSE
),
180 HOWTO(R_SPARC_H44
, 22,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", FALSE
,0,0x003fffff,FALSE
),
181 HOWTO(R_SPARC_M44
, 12,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", FALSE
,0,0x000003ff,FALSE
),
182 HOWTO(R_SPARC_L44
, 0,2,13,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", FALSE
,0,0x00000fff,FALSE
),
183 HOWTO(R_SPARC_REGISTER
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",FALSE
,0,MINUS_ONE
, FALSE
),
184 HOWTO(R_SPARC_UA64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", FALSE
,0,MINUS_ONE
, TRUE
),
185 HOWTO(R_SPARC_UA16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", FALSE
,0,0x0000ffff,TRUE
),
186 HOWTO(R_SPARC_TLS_GD_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_HI22",FALSE
,0,0x003fffff,TRUE
),
187 HOWTO(R_SPARC_TLS_GD_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_LO10",FALSE
,0,0x000003ff,TRUE
),
188 HOWTO(R_SPARC_TLS_GD_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_ADD",FALSE
,0,0x00000000,TRUE
),
189 HOWTO(R_SPARC_TLS_GD_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_CALL",FALSE
,0,0x3fffffff,TRUE
),
190 HOWTO(R_SPARC_TLS_LDM_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_HI22",FALSE
,0,0x003fffff,TRUE
),
191 HOWTO(R_SPARC_TLS_LDM_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_LO10",FALSE
,0,0x000003ff,TRUE
),
192 HOWTO(R_SPARC_TLS_LDM_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_ADD",FALSE
,0,0x00000000,TRUE
),
193 HOWTO(R_SPARC_TLS_LDM_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_CALL",FALSE
,0,0x3fffffff,TRUE
),
194 HOWTO(R_SPARC_TLS_LDO_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
,"R_SPARC_TLS_LDO_HIX22",FALSE
,0,0x003fffff, FALSE
),
195 HOWTO(R_SPARC_TLS_LDO_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LDO_LOX10",FALSE
,0,0x000003ff, FALSE
),
196 HOWTO(R_SPARC_TLS_LDO_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDO_ADD",FALSE
,0,0x00000000,TRUE
),
197 HOWTO(R_SPARC_TLS_IE_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_HI22",FALSE
,0,0x003fffff,TRUE
),
198 HOWTO(R_SPARC_TLS_IE_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LO10",FALSE
,0,0x000003ff,TRUE
),
199 HOWTO(R_SPARC_TLS_IE_LD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LD",FALSE
,0,0x00000000,TRUE
),
200 HOWTO(R_SPARC_TLS_IE_LDX
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LDX",FALSE
,0,0x00000000,TRUE
),
201 HOWTO(R_SPARC_TLS_IE_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_ADD",FALSE
,0,0x00000000,TRUE
),
202 HOWTO(R_SPARC_TLS_LE_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_TLS_LE_HIX22",FALSE
,0,0x003fffff, FALSE
),
203 HOWTO(R_SPARC_TLS_LE_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LE_LOX10",FALSE
,0,0x000003ff, FALSE
),
204 HOWTO(R_SPARC_TLS_DTPMOD32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD32",FALSE
,0,0x00000000,TRUE
),
205 HOWTO(R_SPARC_TLS_DTPMOD64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD64",FALSE
,0,0x00000000,TRUE
),
206 HOWTO(R_SPARC_TLS_DTPOFF32
,0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF32",FALSE
,0,0xffffffff,TRUE
),
207 HOWTO(R_SPARC_TLS_DTPOFF64
,0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF64",FALSE
,0,MINUS_ONE
,TRUE
),
208 HOWTO(R_SPARC_TLS_TPOFF32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF32",FALSE
,0,0x00000000,TRUE
),
209 HOWTO(R_SPARC_TLS_TPOFF64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF64",FALSE
,0,0x00000000,TRUE
)
212 struct elf_reloc_map
{
213 bfd_reloc_code_real_type bfd_reloc_val
;
214 unsigned char elf_reloc_val
;
217 static const struct elf_reloc_map sparc_reloc_map
[] =
219 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
220 { BFD_RELOC_16
, R_SPARC_16
, },
221 { BFD_RELOC_16_PCREL
, R_SPARC_DISP16
},
222 { BFD_RELOC_8
, R_SPARC_8
},
223 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
224 { BFD_RELOC_CTOR
, R_SPARC_64
},
225 { BFD_RELOC_32
, R_SPARC_32
},
226 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
227 { BFD_RELOC_HI22
, R_SPARC_HI22
},
228 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
229 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
230 { BFD_RELOC_64_PCREL
, R_SPARC_DISP64
},
231 { BFD_RELOC_SPARC22
, R_SPARC_22
},
232 { BFD_RELOC_SPARC13
, R_SPARC_13
},
233 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
234 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
235 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
236 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
237 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
238 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
239 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
240 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
241 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
242 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
243 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
244 { BFD_RELOC_SPARC_UA16
, R_SPARC_UA16
},
245 { BFD_RELOC_SPARC_UA32
, R_SPARC_UA32
},
246 { BFD_RELOC_SPARC_UA64
, R_SPARC_UA64
},
247 { BFD_RELOC_SPARC_10
, R_SPARC_10
},
248 { BFD_RELOC_SPARC_11
, R_SPARC_11
},
249 { BFD_RELOC_SPARC_64
, R_SPARC_64
},
250 { BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
251 { BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
252 { BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
253 { BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
254 { BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
255 { BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
256 { BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
257 { BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
258 { BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
259 { BFD_RELOC_SPARC_7
, R_SPARC_7
},
260 { BFD_RELOC_SPARC_5
, R_SPARC_5
},
261 { BFD_RELOC_SPARC_6
, R_SPARC_6
},
262 { BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
263 { BFD_RELOC_SPARC_TLS_GD_HI22
, R_SPARC_TLS_GD_HI22
},
264 { BFD_RELOC_SPARC_TLS_GD_LO10
, R_SPARC_TLS_GD_LO10
},
265 { BFD_RELOC_SPARC_TLS_GD_ADD
, R_SPARC_TLS_GD_ADD
},
266 { BFD_RELOC_SPARC_TLS_GD_CALL
, R_SPARC_TLS_GD_CALL
},
267 { BFD_RELOC_SPARC_TLS_LDM_HI22
, R_SPARC_TLS_LDM_HI22
},
268 { BFD_RELOC_SPARC_TLS_LDM_LO10
, R_SPARC_TLS_LDM_LO10
},
269 { BFD_RELOC_SPARC_TLS_LDM_ADD
, R_SPARC_TLS_LDM_ADD
},
270 { BFD_RELOC_SPARC_TLS_LDM_CALL
, R_SPARC_TLS_LDM_CALL
},
271 { BFD_RELOC_SPARC_TLS_LDO_HIX22
, R_SPARC_TLS_LDO_HIX22
},
272 { BFD_RELOC_SPARC_TLS_LDO_LOX10
, R_SPARC_TLS_LDO_LOX10
},
273 { BFD_RELOC_SPARC_TLS_LDO_ADD
, R_SPARC_TLS_LDO_ADD
},
274 { BFD_RELOC_SPARC_TLS_IE_HI22
, R_SPARC_TLS_IE_HI22
},
275 { BFD_RELOC_SPARC_TLS_IE_LO10
, R_SPARC_TLS_IE_LO10
},
276 { BFD_RELOC_SPARC_TLS_IE_LD
, R_SPARC_TLS_IE_LD
},
277 { BFD_RELOC_SPARC_TLS_IE_LDX
, R_SPARC_TLS_IE_LDX
},
278 { BFD_RELOC_SPARC_TLS_IE_ADD
, R_SPARC_TLS_IE_ADD
},
279 { BFD_RELOC_SPARC_TLS_LE_HIX22
, R_SPARC_TLS_LE_HIX22
},
280 { BFD_RELOC_SPARC_TLS_LE_LOX10
, R_SPARC_TLS_LE_LOX10
},
281 { BFD_RELOC_SPARC_TLS_DTPMOD32
, R_SPARC_TLS_DTPMOD32
},
282 { BFD_RELOC_SPARC_TLS_DTPMOD64
, R_SPARC_TLS_DTPMOD64
},
283 { BFD_RELOC_SPARC_TLS_DTPOFF32
, R_SPARC_TLS_DTPOFF32
},
284 { BFD_RELOC_SPARC_TLS_DTPOFF64
, R_SPARC_TLS_DTPOFF64
},
285 { BFD_RELOC_SPARC_TLS_TPOFF32
, R_SPARC_TLS_TPOFF32
},
286 { BFD_RELOC_SPARC_TLS_TPOFF64
, R_SPARC_TLS_TPOFF64
},
287 #ifndef SPARC64_OLD_RELOCS
288 { BFD_RELOC_SPARC_PLT32
, R_SPARC_PLT32
},
290 { BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
291 { BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
292 { BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
293 { BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
294 { BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
295 { BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
296 { BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
299 static reloc_howto_type
*
300 sparc64_elf_reloc_type_lookup (abfd
, code
)
301 bfd
*abfd ATTRIBUTE_UNUSED
;
302 bfd_reloc_code_real_type code
;
305 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
307 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
308 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
314 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
315 bfd
*abfd ATTRIBUTE_UNUSED
;
317 Elf_Internal_Rela
*dst
;
319 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
320 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
323 struct sparc64_elf_section_data
325 struct bfd_elf_section_data elf
;
326 unsigned int do_relax
, reloc_count
;
329 #define sec_do_relax(sec) \
330 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
331 #define canon_reloc_count(sec) \
332 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
334 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
335 section can represent up to two relocs, we must tell the user to allocate
339 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
340 bfd
*abfd ATTRIBUTE_UNUSED
;
343 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
347 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
350 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
353 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
354 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
355 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
356 for the same location, R_SPARC_LO10 and R_SPARC_13. */
359 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
362 Elf_Internal_Shdr
*rel_hdr
;
366 PTR allocated
= NULL
;
367 bfd_byte
*native_relocs
;
374 allocated
= (PTR
) bfd_malloc (rel_hdr
->sh_size
);
375 if (allocated
== NULL
)
378 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
379 || bfd_bread (allocated
, rel_hdr
->sh_size
, abfd
) != rel_hdr
->sh_size
)
382 native_relocs
= (bfd_byte
*) allocated
;
384 relents
= asect
->relocation
+ canon_reloc_count (asect
);
386 entsize
= rel_hdr
->sh_entsize
;
387 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
389 count
= rel_hdr
->sh_size
/ entsize
;
391 for (i
= 0, relent
= relents
; i
< count
;
392 i
++, relent
++, native_relocs
+= entsize
)
394 Elf_Internal_Rela rela
;
396 bfd_elf64_swap_reloca_in (abfd
, native_relocs
, &rela
);
398 /* The address of an ELF reloc is section relative for an object
399 file, and absolute for an executable file or shared library.
400 The address of a normal BFD reloc is always section relative,
401 and the address of a dynamic reloc is absolute.. */
402 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
403 relent
->address
= rela
.r_offset
;
405 relent
->address
= rela
.r_offset
- asect
->vma
;
407 if (ELF64_R_SYM (rela
.r_info
) == 0)
408 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
413 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
416 /* Canonicalize ELF section symbols. FIXME: Why? */
417 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
418 relent
->sym_ptr_ptr
= ps
;
420 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
423 relent
->addend
= rela
.r_addend
;
425 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
426 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
428 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
429 relent
[1].address
= relent
->address
;
431 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
432 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
433 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
436 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
439 canon_reloc_count (asect
) += relent
- relents
;
441 if (allocated
!= NULL
)
447 if (allocated
!= NULL
)
452 /* Read in and swap the external relocs. */
455 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
461 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
462 Elf_Internal_Shdr
*rel_hdr
;
463 Elf_Internal_Shdr
*rel_hdr2
;
466 if (asect
->relocation
!= NULL
)
471 if ((asect
->flags
& SEC_RELOC
) == 0
472 || asect
->reloc_count
== 0)
475 rel_hdr
= &d
->rel_hdr
;
476 rel_hdr2
= d
->rel_hdr2
;
478 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
479 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
483 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
484 case because relocations against this section may use the
485 dynamic symbol table, and in that case bfd_section_from_shdr
486 in elf.c does not update the RELOC_COUNT. */
487 if (asect
->size
== 0)
490 rel_hdr
= &d
->this_hdr
;
491 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
495 amt
= asect
->reloc_count
;
496 amt
*= 2 * sizeof (arelent
);
497 asect
->relocation
= (arelent
*) bfd_alloc (abfd
, amt
);
498 if (asect
->relocation
== NULL
)
501 /* The sparc64_elf_slurp_one_reloc_table routine increments
502 canon_reloc_count. */
503 canon_reloc_count (asect
) = 0;
505 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
510 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
517 /* Canonicalize the relocs. */
520 sparc64_elf_canonicalize_reloc (abfd
, section
, relptr
, symbols
)
528 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
530 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
533 tblptr
= section
->relocation
;
534 for (i
= 0; i
< canon_reloc_count (section
); i
++)
535 *relptr
++ = tblptr
++;
539 return canon_reloc_count (section
);
543 /* Canonicalize the dynamic relocation entries. Note that we return
544 the dynamic relocations as a single block, although they are
545 actually associated with particular sections; the interface, which
546 was designed for SunOS style shared libraries, expects that there
547 is only one set of dynamic relocs. Any section that was actually
548 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
549 the dynamic symbol table, is considered to be a dynamic reloc
553 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
561 if (elf_dynsymtab (abfd
) == 0)
563 bfd_set_error (bfd_error_invalid_operation
);
568 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
570 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
571 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
576 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, TRUE
))
578 count
= canon_reloc_count (s
);
580 for (i
= 0; i
< count
; i
++)
591 /* Write out the relocs. */
594 sparc64_elf_write_relocs (abfd
, sec
, data
)
599 bfd_boolean
*failedp
= (bfd_boolean
*) data
;
600 Elf_Internal_Shdr
*rela_hdr
;
601 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
602 unsigned int idx
, count
;
603 asymbol
*last_sym
= 0;
604 int last_sym_idx
= 0;
606 /* If we have already failed, don't do anything. */
610 if ((sec
->flags
& SEC_RELOC
) == 0)
613 /* The linker backend writes the relocs out itself, and sets the
614 reloc_count field to zero to inhibit writing them here. Also,
615 sometimes the SEC_RELOC flag gets set even when there aren't any
617 if (sec
->reloc_count
== 0)
620 /* We can combine two relocs that refer to the same address
621 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
622 latter is R_SPARC_13 with no associated symbol. */
624 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
630 addr
= sec
->orelocation
[idx
]->address
;
631 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
632 && idx
< sec
->reloc_count
- 1)
634 arelent
*r
= sec
->orelocation
[idx
+ 1];
636 if (r
->howto
->type
== R_SPARC_13
637 && r
->address
== addr
638 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
639 && (*r
->sym_ptr_ptr
)->value
== 0)
644 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
646 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
647 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
648 if (rela_hdr
->contents
== NULL
)
654 /* Figure out whether the relocations are RELA or REL relocations. */
655 if (rela_hdr
->sh_type
!= SHT_RELA
)
658 /* orelocation has the data, reloc_count has the count... */
659 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
660 src_rela
= outbound_relocas
;
662 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
664 Elf_Internal_Rela dst_rela
;
669 ptr
= sec
->orelocation
[idx
];
671 /* The address of an ELF reloc is section relative for an object
672 file, and absolute for an executable file or shared library.
673 The address of a BFD reloc is always section relative. */
674 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
675 dst_rela
.r_offset
= ptr
->address
;
677 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
679 sym
= *ptr
->sym_ptr_ptr
;
682 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
687 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
696 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
697 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
698 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
704 if (ptr
->howto
->type
== R_SPARC_LO10
705 && idx
< sec
->reloc_count
- 1)
707 arelent
*r
= sec
->orelocation
[idx
+ 1];
709 if (r
->howto
->type
== R_SPARC_13
710 && r
->address
== ptr
->address
711 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
712 && (*r
->sym_ptr_ptr
)->value
== 0)
716 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
720 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
723 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
725 dst_rela
.r_addend
= ptr
->addend
;
726 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, (bfd_byte
*) src_rela
);
731 /* Sparc64 ELF linker hash table. */
733 struct sparc64_elf_app_reg
736 unsigned short shndx
;
741 struct sparc64_elf_link_hash_table
743 struct elf_link_hash_table root
;
745 /* Short-cuts to get to dynamic linker sections. */
749 struct sparc64_elf_app_reg app_regs
[4];
752 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
754 #define sparc64_elf_hash_table(p) \
755 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
757 /* Create a Sparc64 ELF linker hash table. */
759 static struct bfd_link_hash_table
*
760 sparc64_elf_bfd_link_hash_table_create (abfd
)
763 struct sparc64_elf_link_hash_table
*ret
;
764 bfd_size_type amt
= sizeof (struct sparc64_elf_link_hash_table
);
766 ret
= (struct sparc64_elf_link_hash_table
*) bfd_zmalloc (amt
);
767 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
770 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
771 _bfd_elf_link_hash_newfunc
))
777 return &ret
->root
.root
;
780 /* Create .got and .rela.got sections in DYNOBJ and set up
781 shortcuts to them in our hash table. */
784 create_got_section (dynobj
, info
)
786 struct bfd_link_info
*info
;
788 struct sparc64_elf_link_hash_table
*htab
;
790 if (! _bfd_elf_create_got_section (dynobj
, info
))
793 htab
= sparc64_elf_hash_table (info
);
794 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
795 BFD_ASSERT (htab
->sgot
!= NULL
);
797 htab
->srelgot
= bfd_make_section (dynobj
, ".rela.got");
798 if (htab
->srelgot
== NULL
799 || ! bfd_set_section_flags (dynobj
, htab
->srelgot
, SEC_ALLOC
805 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 3))
810 /* Create .plt, .rela.plt, .got, .rela.got, .dynbss, and
811 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
815 sparc64_elf_create_dynamic_sections (dynobj
, info
)
817 struct bfd_link_info
*info
;
819 struct sparc64_elf_link_hash_table
*htab
;
821 htab
= sparc64_elf_hash_table (info
);
822 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
825 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
831 /* Utility for performing the standard initial work of an instruction
833 *PRELOCATION will contain the relocated item.
834 *PINSN will contain the instruction from the input stream.
835 If the result is `bfd_reloc_other' the caller can continue with
836 performing the relocation. Otherwise it must stop and return the
837 value to its caller. */
839 static bfd_reloc_status_type
840 init_insn_reloc (abfd
,
849 arelent
*reloc_entry
;
852 asection
*input_section
;
854 bfd_vma
*prelocation
;
858 reloc_howto_type
*howto
= reloc_entry
->howto
;
860 if (output_bfd
!= (bfd
*) NULL
861 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
862 && (! howto
->partial_inplace
863 || reloc_entry
->addend
== 0))
865 reloc_entry
->address
+= input_section
->output_offset
;
869 /* This works because partial_inplace is FALSE. */
870 if (output_bfd
!= NULL
)
871 return bfd_reloc_continue
;
873 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
874 return bfd_reloc_outofrange
;
876 relocation
= (symbol
->value
877 + symbol
->section
->output_section
->vma
878 + symbol
->section
->output_offset
);
879 relocation
+= reloc_entry
->addend
;
880 if (howto
->pc_relative
)
882 relocation
-= (input_section
->output_section
->vma
883 + input_section
->output_offset
);
884 relocation
-= reloc_entry
->address
;
887 *prelocation
= relocation
;
888 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
889 return bfd_reloc_other
;
892 /* For unsupported relocs. */
894 static bfd_reloc_status_type
895 sparc_elf_notsup_reloc (abfd
,
902 bfd
*abfd ATTRIBUTE_UNUSED
;
903 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
904 asymbol
*symbol ATTRIBUTE_UNUSED
;
905 PTR data ATTRIBUTE_UNUSED
;
906 asection
*input_section ATTRIBUTE_UNUSED
;
907 bfd
*output_bfd ATTRIBUTE_UNUSED
;
908 char **error_message ATTRIBUTE_UNUSED
;
910 return bfd_reloc_notsupported
;
913 /* Handle the WDISP16 reloc. */
915 static bfd_reloc_status_type
916 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
917 output_bfd
, error_message
)
919 arelent
*reloc_entry
;
922 asection
*input_section
;
924 char **error_message ATTRIBUTE_UNUSED
;
928 bfd_reloc_status_type status
;
930 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
931 input_section
, output_bfd
, &relocation
, &insn
);
932 if (status
!= bfd_reloc_other
)
935 insn
&= ~ (bfd_vma
) 0x303fff;
936 insn
|= (((relocation
>> 2) & 0xc000) << 6) | ((relocation
>> 2) & 0x3fff);
937 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
939 if ((bfd_signed_vma
) relocation
< - 0x40000
940 || (bfd_signed_vma
) relocation
> 0x3ffff)
941 return bfd_reloc_overflow
;
946 /* Handle the HIX22 reloc. */
948 static bfd_reloc_status_type
949 sparc_elf_hix22_reloc (abfd
,
957 arelent
*reloc_entry
;
960 asection
*input_section
;
962 char **error_message ATTRIBUTE_UNUSED
;
966 bfd_reloc_status_type status
;
968 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
969 input_section
, output_bfd
, &relocation
, &insn
);
970 if (status
!= bfd_reloc_other
)
973 relocation
^= MINUS_ONE
;
974 insn
= (insn
&~ (bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
975 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
977 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
978 return bfd_reloc_overflow
;
983 /* Handle the LOX10 reloc. */
985 static bfd_reloc_status_type
986 sparc_elf_lox10_reloc (abfd
,
994 arelent
*reloc_entry
;
997 asection
*input_section
;
999 char **error_message ATTRIBUTE_UNUSED
;
1003 bfd_reloc_status_type status
;
1005 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
1006 input_section
, output_bfd
, &relocation
, &insn
);
1007 if (status
!= bfd_reloc_other
)
1010 insn
= (insn
&~ (bfd_vma
) 0x1fff) | 0x1c00 | (relocation
& 0x3ff);
1011 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
1013 return bfd_reloc_ok
;
1018 /* Both the headers and the entries are icache aligned. */
1019 #define PLT_ENTRY_SIZE 32
1020 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
1021 #define LARGE_PLT_THRESHOLD 32768
1022 #define GOT_RESERVED_ENTRIES 1
1024 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
1026 /* Fill in the .plt section. */
1029 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
1031 unsigned char *contents
;
1034 const unsigned int nop
= 0x01000000;
1037 /* The first four entries are reserved, and are initially undefined.
1038 We fill them with `illtrap 0' to force ld.so to do something. */
1040 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
1041 bfd_put_32 (output_bfd
, (bfd_vma
) 0, contents
+i
*4);
1043 /* The first 32768 entries are close enough to plt1 to get there via
1044 a straight branch. */
1046 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
1048 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
1049 unsigned int sethi
, ba
;
1051 /* sethi (. - plt0), %g1 */
1052 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
1054 /* ba,a,pt %xcc, plt1 */
1055 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
1057 bfd_put_32 (output_bfd
, (bfd_vma
) sethi
, entry
);
1058 bfd_put_32 (output_bfd
, (bfd_vma
) ba
, entry
+ 4);
1059 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
1060 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 12);
1061 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 16);
1062 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 20);
1063 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 24);
1064 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 28);
1067 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1068 160: 160 entries and 160 pointers. This is to separate code from data,
1069 which is much friendlier on the cache. */
1071 for (; i
< nentries
; i
+= 160)
1073 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
1074 for (j
= 0; j
< block
; ++j
)
1076 unsigned char *entry
, *ptr
;
1079 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
1080 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
1082 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1083 ldx
= 0xc25be000 | ((ptr
- (entry
+4)) & 0x1fff);
1091 bfd_put_32 (output_bfd
, (bfd_vma
) 0x8a10000f, entry
);
1092 bfd_put_32 (output_bfd
, (bfd_vma
) 0x40000002, entry
+ 4);
1093 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
1094 bfd_put_32 (output_bfd
, (bfd_vma
) ldx
, entry
+ 12);
1095 bfd_put_32 (output_bfd
, (bfd_vma
) 0x83c3c001, entry
+ 16);
1096 bfd_put_32 (output_bfd
, (bfd_vma
) 0x9e100005, entry
+ 20);
1098 bfd_put_64 (output_bfd
, (bfd_vma
) (contents
- (entry
+ 4)), ptr
);
1103 /* Return the offset of a particular plt entry within the .plt section. */
1106 sparc64_elf_plt_entry_offset (index
)
1111 if (index
< LARGE_PLT_THRESHOLD
)
1112 return index
* PLT_ENTRY_SIZE
;
1114 /* See above for details. */
1116 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
1117 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
1119 return (LARGE_PLT_THRESHOLD
+ block
* 160) * PLT_ENTRY_SIZE
+ ofs
* 6 * 4;
1123 sparc64_elf_plt_ptr_offset (index
, max
)
1127 bfd_vma block
, ofs
, last
;
1129 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
1131 /* See above for details. */
1133 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160) + LARGE_PLT_THRESHOLD
;
1134 ofs
= index
- block
;
1135 if (block
+ 160 > max
)
1136 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
1140 return (block
* PLT_ENTRY_SIZE
1145 /* Look through the relocs for a section during the first phase, and
1146 allocate space in the global offset table or procedure linkage
1150 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
1152 struct bfd_link_info
*info
;
1154 const Elf_Internal_Rela
*relocs
;
1157 Elf_Internal_Shdr
*symtab_hdr
;
1158 struct elf_link_hash_entry
**sym_hashes
;
1159 bfd_vma
*local_got_offsets
;
1160 const Elf_Internal_Rela
*rel
;
1161 const Elf_Internal_Rela
*rel_end
;
1166 if (info
->relocatable
|| !(sec
->flags
& SEC_ALLOC
))
1169 dynobj
= elf_hash_table (info
)->dynobj
;
1170 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1171 sym_hashes
= elf_sym_hashes (abfd
);
1172 local_got_offsets
= elf_local_got_offsets (abfd
);
1178 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1179 for (rel
= relocs
; rel
< rel_end
; rel
++)
1181 unsigned long r_symndx
;
1182 struct elf_link_hash_entry
*h
;
1184 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1185 if (r_symndx
< symtab_hdr
->sh_info
)
1188 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1190 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1195 /* This symbol requires a global offset table entry. */
1199 /* Create the .got and .rela.got sections. */
1200 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1201 if (! create_got_section (dynobj
, info
))
1207 sgot
= sparc64_elf_hash_table (info
)->sgot
;
1208 BFD_ASSERT (sgot
!= NULL
);
1211 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1213 srelgot
= sparc64_elf_hash_table (info
)->srelgot
;
1214 BFD_ASSERT (srelgot
!= NULL
);
1219 if (h
->got
.offset
!= (bfd_vma
) -1)
1221 /* We have already allocated space in the .got. */
1224 h
->got
.offset
= sgot
->size
;
1226 /* Make sure this symbol is output as a dynamic symbol. */
1227 if (h
->dynindx
== -1)
1229 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1233 srelgot
->size
+= sizeof (Elf64_External_Rela
);
1237 /* This is a global offset table entry for a local
1239 if (local_got_offsets
== NULL
)
1242 register unsigned int i
;
1244 size
= symtab_hdr
->sh_info
;
1245 size
*= sizeof (bfd_vma
);
1246 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1247 if (local_got_offsets
== NULL
)
1249 elf_local_got_offsets (abfd
) = local_got_offsets
;
1250 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1251 local_got_offsets
[i
] = (bfd_vma
) -1;
1253 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1255 /* We have already allocated space in the .got. */
1258 local_got_offsets
[r_symndx
] = sgot
->size
;
1262 /* If we are generating a shared object, we need to
1263 output a R_SPARC_RELATIVE reloc so that the
1264 dynamic linker can adjust this GOT entry. */
1265 srelgot
->size
+= sizeof (Elf64_External_Rela
);
1272 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1273 unsigned numbers. If we permit ourselves to modify
1274 code so we get sethi/xor, this could work.
1275 Question: do we consider conditionally re-enabling
1276 this for -fpic, once we know about object code models? */
1277 /* If the .got section is more than 0x1000 bytes, we add
1278 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1279 bit relocations have a greater chance of working. */
1280 if (sgot
->size
>= 0x1000
1281 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1282 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1287 case R_SPARC_WPLT30
:
1289 case R_SPARC_HIPLT22
:
1290 case R_SPARC_LOPLT10
:
1291 case R_SPARC_PCPLT32
:
1292 case R_SPARC_PCPLT22
:
1293 case R_SPARC_PCPLT10
:
1295 /* This symbol requires a procedure linkage table entry. We
1296 actually build the entry in adjust_dynamic_symbol,
1297 because this might be a case of linking PIC code without
1298 linking in any dynamic objects, in which case we don't
1299 need to generate a procedure linkage table after all. */
1303 /* It does not make sense to have a procedure linkage
1304 table entry for a local symbol. */
1305 bfd_set_error (bfd_error_bad_value
);
1309 /* Make sure this symbol is output as a dynamic symbol. */
1310 if (h
->dynindx
== -1)
1312 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1317 if (ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT32
1318 && ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT64
)
1323 case R_SPARC_PC_HH22
:
1324 case R_SPARC_PC_HM10
:
1325 case R_SPARC_PC_LM22
:
1327 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1331 case R_SPARC_DISP16
:
1332 case R_SPARC_DISP32
:
1333 case R_SPARC_DISP64
:
1334 case R_SPARC_WDISP30
:
1335 case R_SPARC_WDISP22
:
1336 case R_SPARC_WDISP19
:
1337 case R_SPARC_WDISP16
:
1366 /* When creating a shared object, we must copy these relocs
1367 into the output file. We create a reloc section in
1368 dynobj and make room for the reloc.
1370 But don't do this for debugging sections -- this shows up
1371 with DWARF2 -- first because they are not loaded, and
1372 second because DWARF sez the debug info is not to be
1373 biased by the load address. */
1374 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1380 name
= (bfd_elf_string_from_elf_section
1382 elf_elfheader (abfd
)->e_shstrndx
,
1383 elf_section_data (sec
)->rel_hdr
.sh_name
));
1387 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1388 && strcmp (bfd_get_section_name (abfd
, sec
),
1391 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1396 sreloc
= bfd_make_section (dynobj
, name
);
1397 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1398 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1399 if ((sec
->flags
& SEC_ALLOC
) != 0)
1400 flags
|= SEC_ALLOC
| SEC_LOAD
;
1402 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1403 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1406 if (sec
->flags
& SEC_READONLY
)
1407 info
->flags
|= DF_TEXTREL
;
1410 sreloc
->size
+= sizeof (Elf64_External_Rela
);
1414 case R_SPARC_REGISTER
:
1415 /* Nothing to do. */
1419 (*_bfd_error_handler
) (_("%B: check_relocs: unhandled reloc type %d"),
1420 abfd
, ELF64_R_TYPE_ID (rel
->r_info
));
1428 /* Hook called by the linker routine which adds symbols from an object
1429 file. We use it for STT_REGISTER symbols. */
1432 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1434 struct bfd_link_info
*info
;
1435 Elf_Internal_Sym
*sym
;
1437 flagword
*flagsp ATTRIBUTE_UNUSED
;
1438 asection
**secp ATTRIBUTE_UNUSED
;
1439 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1441 static const char *const stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1443 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1446 struct sparc64_elf_app_reg
*p
;
1448 reg
= (int)sym
->st_value
;
1451 case 2: reg
-= 2; break;
1452 case 6: reg
-= 4; break;
1454 (*_bfd_error_handler
)
1455 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
1460 if (info
->hash
->creator
!= abfd
->xvec
1461 || (abfd
->flags
& DYNAMIC
) != 0)
1463 /* STT_REGISTER only works when linking an elf64_sparc object.
1464 If STT_REGISTER comes from a dynamic object, don't put it into
1465 the output bfd. The dynamic linker will recheck it. */
1470 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1472 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1474 (*_bfd_error_handler
)
1475 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
1476 abfd
, p
->abfd
, (int) sym
->st_value
,
1477 **namep
? *namep
: "#scratch",
1478 *p
->name
? p
->name
: "#scratch");
1482 if (p
->name
== NULL
)
1486 struct elf_link_hash_entry
*h
;
1488 h
= (struct elf_link_hash_entry
*)
1489 bfd_link_hash_lookup (info
->hash
, *namep
, FALSE
, FALSE
, FALSE
);
1493 unsigned char type
= h
->type
;
1495 if (type
> STT_FUNC
)
1497 (*_bfd_error_handler
)
1498 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
1499 abfd
, p
->abfd
, *namep
, stt_types
[type
]);
1503 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1504 strlen (*namep
) + 1);
1508 strcpy (p
->name
, *namep
);
1512 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1514 p
->shndx
= sym
->st_shndx
;
1518 if (p
->bind
== STB_WEAK
1519 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1521 p
->bind
= STB_GLOBAL
;
1528 else if (*namep
&& **namep
1529 && info
->hash
->creator
== abfd
->xvec
)
1532 struct sparc64_elf_app_reg
*p
;
1534 p
= sparc64_elf_hash_table(info
)->app_regs
;
1535 for (i
= 0; i
< 4; i
++, p
++)
1536 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1538 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1540 if (type
> STT_FUNC
)
1542 (*_bfd_error_handler
)
1543 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
1544 abfd
, p
->abfd
, *namep
, stt_types
[type
]);
1551 /* This function takes care of emitting STT_REGISTER symbols
1552 which we cannot easily keep in the symbol hash table. */
1555 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1556 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1557 struct bfd_link_info
*info
;
1560 PARAMS ((PTR
, const char *, Elf_Internal_Sym
*, asection
*,
1561 struct elf_link_hash_entry
*));
1564 struct sparc64_elf_app_reg
*app_regs
=
1565 sparc64_elf_hash_table(info
)->app_regs
;
1566 Elf_Internal_Sym sym
;
1568 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1569 at the end of the dynlocal list, so they came at the end of the local
1570 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1571 to back up symtab->sh_info. */
1572 if (elf_hash_table (info
)->dynlocal
)
1574 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1575 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1576 struct elf_link_local_dynamic_entry
*e
;
1578 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1579 if (e
->input_indx
== -1)
1583 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1588 if (info
->strip
== strip_all
)
1591 for (reg
= 0; reg
< 4; reg
++)
1592 if (app_regs
[reg
].name
!= NULL
)
1594 if (info
->strip
== strip_some
1595 && bfd_hash_lookup (info
->keep_hash
,
1596 app_regs
[reg
].name
,
1597 FALSE
, FALSE
) == NULL
)
1600 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1603 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1604 sym
.st_shndx
= app_regs
[reg
].shndx
;
1605 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1606 sym
.st_shndx
== SHN_ABS
1607 ? bfd_abs_section_ptr
: bfd_und_section_ptr
,
1616 sparc64_elf_get_symbol_type (elf_sym
, type
)
1617 Elf_Internal_Sym
* elf_sym
;
1620 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1621 return STT_REGISTER
;
1626 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1627 even in SHN_UNDEF section. */
1630 sparc64_elf_symbol_processing (abfd
, asym
)
1631 bfd
*abfd ATTRIBUTE_UNUSED
;
1634 elf_symbol_type
*elfsym
;
1636 elfsym
= (elf_symbol_type
*) asym
;
1637 if (elfsym
->internal_elf_sym
.st_info
1638 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1640 asym
->flags
|= BSF_GLOBAL
;
1644 /* Adjust a symbol defined by a dynamic object and referenced by a
1645 regular object. The current definition is in some section of the
1646 dynamic object, but we're not including those sections. We have to
1647 change the definition to something the rest of the link can
1651 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1652 struct bfd_link_info
*info
;
1653 struct elf_link_hash_entry
*h
;
1657 unsigned int power_of_two
;
1659 dynobj
= elf_hash_table (info
)->dynobj
;
1661 /* Make sure we know what is going on here. */
1662 BFD_ASSERT (dynobj
!= NULL
1664 || h
->u
.weakdef
!= NULL
1667 && !h
->def_regular
)));
1669 /* If this is a function, put it in the procedure linkage table. We
1670 will fill in the contents of the procedure linkage table later
1671 (although we could actually do it here). The STT_NOTYPE
1672 condition is a hack specifically for the Oracle libraries
1673 delivered for Solaris; for some inexplicable reason, they define
1674 some of their functions as STT_NOTYPE when they really should be
1676 if (h
->type
== STT_FUNC
1678 || (h
->type
== STT_NOTYPE
1679 && (h
->root
.type
== bfd_link_hash_defined
1680 || h
->root
.type
== bfd_link_hash_defweak
)
1681 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1686 && h
->root
.type
!= bfd_link_hash_undefweak
1687 && h
->root
.type
!= bfd_link_hash_undefined
)
1689 /* This case can occur if we saw a WPLT30 reloc in an input
1690 file, but none of the input files were dynamic objects.
1691 In such a case, we don't actually need to build a
1692 procedure linkage table, and we can just do a WDISP30
1694 BFD_ASSERT (h
->needs_plt
);
1698 s
= bfd_get_section_by_name (dynobj
, ".plt");
1699 BFD_ASSERT (s
!= NULL
);
1701 /* The first four bit in .plt is reserved. */
1703 s
->size
= PLT_HEADER_SIZE
;
1705 /* To simplify matters later, just store the plt index here. */
1706 h
->plt
.offset
= s
->size
/ PLT_ENTRY_SIZE
;
1708 /* If this symbol is not defined in a regular file, and we are
1709 not generating a shared library, then set the symbol to this
1710 location in the .plt. This is required to make function
1711 pointers compare as equal between the normal executable and
1712 the shared library. */
1716 h
->root
.u
.def
.section
= s
;
1717 h
->root
.u
.def
.value
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
1720 /* Make room for this entry. */
1721 s
->size
+= PLT_ENTRY_SIZE
;
1723 /* We also need to make an entry in the .rela.plt section. */
1725 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1726 BFD_ASSERT (s
!= NULL
);
1728 s
->size
+= sizeof (Elf64_External_Rela
);
1730 /* The procedure linkage table size is bounded by the magnitude
1731 of the offset we can describe in the entry. */
1732 if (s
->size
>= (bfd_vma
)1 << 32)
1734 bfd_set_error (bfd_error_bad_value
);
1741 /* If this is a weak symbol, and there is a real definition, the
1742 processor independent code will have arranged for us to see the
1743 real definition first, and we can just use the same value. */
1744 if (h
->u
.weakdef
!= NULL
)
1746 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1747 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1748 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1749 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1753 /* This is a reference to a symbol defined by a dynamic object which
1754 is not a function. */
1756 /* If we are creating a shared library, we must presume that the
1757 only references to the symbol are via the global offset table.
1758 For such cases we need not do anything here; the relocations will
1759 be handled correctly by relocate_section. */
1763 /* We must allocate the symbol in our .dynbss section, which will
1764 become part of the .bss section of the executable. There will be
1765 an entry for this symbol in the .dynsym section. The dynamic
1766 object will contain position independent code, so all references
1767 from the dynamic object to this symbol will go through the global
1768 offset table. The dynamic linker will use the .dynsym entry to
1769 determine the address it must put in the global offset table, so
1770 both the dynamic object and the regular object will refer to the
1771 same memory location for the variable. */
1773 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1774 BFD_ASSERT (s
!= NULL
);
1776 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1777 to copy the initial value out of the dynamic object and into the
1778 runtime process image. We need to remember the offset into the
1779 .rel.bss section we are going to use. */
1780 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1784 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1785 BFD_ASSERT (srel
!= NULL
);
1786 srel
->size
+= sizeof (Elf64_External_Rela
);
1790 /* We need to figure out the alignment required for this symbol. I
1791 have no idea how ELF linkers handle this. 16-bytes is the size
1792 of the largest type that requires hard alignment -- long double. */
1793 power_of_two
= bfd_log2 (h
->size
);
1794 if (power_of_two
> 4)
1797 /* Apply the required alignment. */
1798 s
->size
= BFD_ALIGN (s
->size
, (bfd_size_type
) (1 << power_of_two
));
1799 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1801 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1805 /* Define the symbol as being at this point in the section. */
1806 h
->root
.u
.def
.section
= s
;
1807 h
->root
.u
.def
.value
= s
->size
;
1809 /* Increment the section size to make room for the symbol. */
1815 /* Return true if the dynamic symbol for a given section should be
1816 omitted when creating a shared library. */
1819 sparc64_elf_omit_section_dynsym (bfd
*output_bfd
,
1820 struct bfd_link_info
*info
,
1823 /* We keep the .got section symbol so that explicit relocations
1824 against the _GLOBAL_OFFSET_TABLE_ symbol emitted in PIC mode
1825 can be turned into relocations against the .got symbol. */
1826 if (strcmp (p
->name
, ".got") == 0)
1829 return _bfd_elf_link_omit_section_dynsym (output_bfd
, info
, p
);
1832 /* Set the sizes of the dynamic sections. */
1835 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1837 struct bfd_link_info
*info
;
1843 dynobj
= elf_hash_table (info
)->dynobj
;
1844 BFD_ASSERT (dynobj
!= NULL
);
1846 if (elf_hash_table (info
)->dynamic_sections_created
)
1848 /* Set the contents of the .interp section to the interpreter. */
1849 if (info
->executable
)
1851 s
= bfd_get_section_by_name (dynobj
, ".interp");
1852 BFD_ASSERT (s
!= NULL
);
1853 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1854 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1859 /* We may have created entries in the .rela.got section.
1860 However, if we are not creating the dynamic sections, we will
1861 not actually use these entries. Reset the size of .rela.got,
1862 which will cause it to get stripped from the output file
1864 s
= sparc64_elf_hash_table (info
)->srelgot
;
1869 /* The check_relocs and adjust_dynamic_symbol entry points have
1870 determined the sizes of the various dynamic sections. Allocate
1873 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1878 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1881 /* It's OK to base decisions on the section name, because none
1882 of the dynobj section names depend upon the input files. */
1883 name
= bfd_get_section_name (dynobj
, s
);
1887 if (strncmp (name
, ".rela", 5) == 0)
1891 /* If we don't need this section, strip it from the
1892 output file. This is to handle .rela.bss and
1893 .rel.plt. We must create it in
1894 create_dynamic_sections, because it must be created
1895 before the linker maps input sections to output
1896 sections. The linker does that before
1897 adjust_dynamic_symbol is called, and it is that
1898 function which decides whether anything needs to go
1899 into these sections. */
1904 if (strcmp (name
, ".rela.plt") == 0)
1907 /* We use the reloc_count field as a counter if we need
1908 to copy relocs into the output file. */
1912 else if (strcmp (name
, ".plt") != 0
1913 && strncmp (name
, ".got", 4) != 0)
1915 /* It's not one of our sections, so don't allocate space. */
1921 _bfd_strip_section_from_output (info
, s
);
1925 /* Allocate memory for the section contents. Zero the memory
1926 for the benefit of .rela.plt, which has 4 unused entries
1927 at the beginning, and we don't want garbage. */
1928 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1929 if (s
->contents
== NULL
&& s
->size
!= 0)
1933 if (elf_hash_table (info
)->dynamic_sections_created
)
1935 /* Add some entries to the .dynamic section. We fill in the
1936 values later, in sparc64_elf_finish_dynamic_sections, but we
1937 must add the entries now so that we get the correct size for
1938 the .dynamic section. The DT_DEBUG entry is filled in by the
1939 dynamic linker and used by the debugger. */
1940 #define add_dynamic_entry(TAG, VAL) \
1941 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1944 struct sparc64_elf_app_reg
* app_regs
;
1945 struct elf_strtab_hash
*dynstr
;
1946 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1948 if (info
->executable
)
1950 if (!add_dynamic_entry (DT_DEBUG
, 0))
1956 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1957 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1958 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1959 || !add_dynamic_entry (DT_JMPREL
, 0))
1963 if (!add_dynamic_entry (DT_RELA
, 0)
1964 || !add_dynamic_entry (DT_RELASZ
, 0)
1965 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1968 if (info
->flags
& DF_TEXTREL
)
1970 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1974 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1975 entries if needed. */
1976 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1977 dynstr
= eht
->dynstr
;
1979 for (reg
= 0; reg
< 4; reg
++)
1980 if (app_regs
[reg
].name
!= NULL
)
1982 struct elf_link_local_dynamic_entry
*entry
, *e
;
1984 if (!add_dynamic_entry (DT_SPARC_REGISTER
, 0))
1987 entry
= (struct elf_link_local_dynamic_entry
*)
1988 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1992 /* We cheat here a little bit: the symbol will not be local, so we
1993 put it at the end of the dynlocal linked list. We will fix it
1994 later on, as we have to fix other fields anyway. */
1995 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1996 entry
->isym
.st_size
= 0;
1997 if (*app_regs
[reg
].name
!= '\0')
1999 = _bfd_elf_strtab_add (dynstr
, app_regs
[reg
].name
, FALSE
);
2001 entry
->isym
.st_name
= 0;
2002 entry
->isym
.st_other
= 0;
2003 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
2005 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
2007 entry
->input_bfd
= output_bfd
;
2008 entry
->input_indx
= -1;
2010 if (eht
->dynlocal
== NULL
)
2011 eht
->dynlocal
= entry
;
2014 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
2021 #undef add_dynamic_entry
2027 sparc64_elf_new_section_hook (abfd
, sec
)
2031 struct sparc64_elf_section_data
*sdata
;
2032 bfd_size_type amt
= sizeof (*sdata
);
2034 sdata
= (struct sparc64_elf_section_data
*) bfd_zalloc (abfd
, amt
);
2037 sec
->used_by_bfd
= (PTR
) sdata
;
2039 return _bfd_elf_new_section_hook (abfd
, sec
);
2043 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
2044 bfd
*abfd ATTRIBUTE_UNUSED
;
2045 asection
*section ATTRIBUTE_UNUSED
;
2046 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
2050 sec_do_relax (section
) = 1;
2054 /* Relocate a SPARC64 ELF section. */
2057 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
2058 contents
, relocs
, local_syms
, local_sections
)
2060 struct bfd_link_info
*info
;
2062 asection
*input_section
;
2064 Elf_Internal_Rela
*relocs
;
2065 Elf_Internal_Sym
*local_syms
;
2066 asection
**local_sections
;
2069 Elf_Internal_Shdr
*symtab_hdr
;
2070 struct elf_link_hash_entry
**sym_hashes
;
2071 bfd_vma
*local_got_offsets
;
2076 Elf_Internal_Rela
*rel
;
2077 Elf_Internal_Rela
*relend
;
2079 if (info
->relocatable
)
2082 dynobj
= elf_hash_table (info
)->dynobj
;
2083 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2084 sym_hashes
= elf_sym_hashes (input_bfd
);
2085 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2087 if (elf_hash_table(info
)->hgot
== NULL
)
2090 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
2092 sgot
= splt
= sreloc
= NULL
;
2094 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2097 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
2098 for (; rel
< relend
; rel
++)
2101 reloc_howto_type
*howto
;
2102 unsigned long r_symndx
;
2103 struct elf_link_hash_entry
*h
;
2104 Elf_Internal_Sym
*sym
;
2106 bfd_vma relocation
, off
;
2107 bfd_reloc_status_type r
;
2108 bfd_boolean is_plt
= FALSE
;
2109 bfd_boolean unresolved_reloc
;
2111 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
2112 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
2114 bfd_set_error (bfd_error_bad_value
);
2117 howto
= sparc64_elf_howto_table
+ r_type
;
2119 /* This is a final link. */
2120 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2124 unresolved_reloc
= FALSE
;
2125 if (r_symndx
< symtab_hdr
->sh_info
)
2127 sym
= local_syms
+ r_symndx
;
2128 sec
= local_sections
[r_symndx
];
2129 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2135 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2136 r_symndx
, symtab_hdr
, sym_hashes
,
2138 unresolved_reloc
, warned
);
2141 /* To avoid generating warning messages about truncated
2142 relocations, set the relocation's address to be the same as
2143 the start of this section. */
2144 if (input_section
->output_section
!= NULL
)
2145 relocation
= input_section
->output_section
->vma
;
2152 /* When generating a shared object, these relocations are copied
2153 into the output file to be resolved at run time. */
2154 if (info
->shared
&& r_symndx
!= 0 && (input_section
->flags
& SEC_ALLOC
))
2160 case R_SPARC_PC_HH22
:
2161 case R_SPARC_PC_HM10
:
2162 case R_SPARC_PC_LM22
:
2164 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2168 case R_SPARC_DISP16
:
2169 case R_SPARC_DISP32
:
2170 case R_SPARC_DISP64
:
2171 case R_SPARC_WDISP30
:
2172 case R_SPARC_WDISP22
:
2173 case R_SPARC_WDISP19
:
2174 case R_SPARC_WDISP16
:
2204 Elf_Internal_Rela outrel
;
2206 bfd_boolean skip
, relocate
;
2211 (bfd_elf_string_from_elf_section
2213 elf_elfheader (input_bfd
)->e_shstrndx
,
2214 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2219 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2220 && strcmp (bfd_get_section_name(input_bfd
,
2224 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2225 BFD_ASSERT (sreloc
!= NULL
);
2232 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2234 if (outrel
.r_offset
== (bfd_vma
) -1)
2236 else if (outrel
.r_offset
== (bfd_vma
) -2)
2237 skip
= TRUE
, relocate
= TRUE
;
2239 outrel
.r_offset
+= (input_section
->output_section
->vma
2240 + input_section
->output_offset
);
2242 /* Optimize unaligned reloc usage now that we know where
2243 it finally resides. */
2247 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2250 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2253 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2256 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2259 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2262 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2265 case R_SPARC_DISP16
:
2266 case R_SPARC_DISP32
:
2267 case R_SPARC_DISP64
:
2268 /* If the symbol is not dynamic, we should not keep
2269 a dynamic relocation. But an .rela.* slot has been
2270 allocated for it, output R_SPARC_NONE.
2271 FIXME: Add code tracking needed dynamic relocs as
2273 if (h
->dynindx
== -1)
2274 skip
= TRUE
, relocate
= TRUE
;
2278 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2281 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2282 && h
->root
.type
== bfd_link_hash_undefweak
)
2283 skip
= TRUE
, relocate
= TRUE
;
2286 memset (&outrel
, 0, sizeof outrel
);
2287 /* h->dynindx may be -1 if the symbol was marked to
2289 else if (h
!= NULL
&& ! is_plt
2290 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2291 || !h
->def_regular
))
2293 BFD_ASSERT (h
->dynindx
!= -1);
2295 = ELF64_R_INFO (h
->dynindx
,
2297 ELF64_R_TYPE_DATA (rel
->r_info
),
2299 outrel
.r_addend
= rel
->r_addend
;
2303 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2304 if (r_type
== R_SPARC_64
)
2305 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2313 if (bfd_is_abs_section (sec
))
2315 else if (sec
== NULL
|| sec
->owner
== NULL
)
2317 bfd_set_error (bfd_error_bad_value
);
2324 osec
= sec
->output_section
;
2325 indx
= elf_section_data (osec
)->dynindx
;
2327 /* We are turning this relocation into one
2328 against a section symbol, so subtract out
2329 the output section's address but not the
2330 offset of the input section in the output
2332 outrel
.r_addend
-= osec
->vma
;
2334 /* FIXME: we really should be able to link non-pic
2335 shared libraries. */
2339 (*_bfd_error_handler
)
2340 (_("%B: probably compiled without -fPIC?"),
2342 bfd_set_error (bfd_error_bad_value
);
2348 = ELF64_R_INFO (indx
,
2350 ELF64_R_TYPE_DATA (rel
->r_info
),
2355 loc
= sreloc
->contents
;
2356 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2357 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2359 /* This reloc will be computed at runtime, so there's no
2360 need to do anything now. */
2373 /* Relocation is to the entry for this symbol in the global
2377 sgot
= sparc64_elf_hash_table (info
)->sgot
;
2378 BFD_ASSERT (sgot
!= NULL
);
2385 off
= h
->got
.offset
;
2386 BFD_ASSERT (off
!= (bfd_vma
) -1);
2387 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2389 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2396 /* This is actually a static link, or it is a -Bsymbolic
2397 link and the symbol is defined locally, or the symbol
2398 was forced to be local because of a version file. We
2399 must initialize this entry in the global offset table.
2400 Since the offset must always be a multiple of 8, we
2401 use the least significant bit to record whether we
2402 have initialized it already.
2404 When doing a dynamic link, we create a .rela.got
2405 relocation entry to initialize the value. This is
2406 done in the finish_dynamic_symbol routine. */
2412 bfd_put_64 (output_bfd
, relocation
,
2413 sgot
->contents
+ off
);
2418 unresolved_reloc
= FALSE
;
2422 BFD_ASSERT (local_got_offsets
!= NULL
);
2423 off
= local_got_offsets
[r_symndx
];
2424 BFD_ASSERT (off
!= (bfd_vma
) -1);
2426 /* The offset must always be a multiple of 8. We use
2427 the least significant bit to record whether we have
2428 already processed this entry. */
2433 local_got_offsets
[r_symndx
] |= 1;
2438 Elf_Internal_Rela outrel
;
2441 /* The Solaris 2.7 64-bit linker adds the contents
2442 of the location to the value of the reloc.
2443 Note this is different behaviour to the
2444 32-bit linker, which both adds the contents
2445 and ignores the addend. So clear the location. */
2446 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2447 sgot
->contents
+ off
);
2449 /* We need to generate a R_SPARC_RELATIVE reloc
2450 for the dynamic linker. */
2451 s
= sparc64_elf_hash_table (info
)->srelgot
;
2452 BFD_ASSERT (s
!= NULL
);
2454 outrel
.r_offset
= (sgot
->output_section
->vma
2455 + sgot
->output_offset
2457 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2458 outrel
.r_addend
= relocation
;
2460 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2461 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2464 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2467 relocation
= sgot
->output_offset
+ off
- got_base
;
2470 case R_SPARC_WPLT30
:
2472 case R_SPARC_HIPLT22
:
2473 case R_SPARC_LOPLT10
:
2474 case R_SPARC_PCPLT32
:
2475 case R_SPARC_PCPLT22
:
2476 case R_SPARC_PCPLT10
:
2478 /* Relocation is to the entry for this symbol in the
2479 procedure linkage table. */
2480 BFD_ASSERT (h
!= NULL
);
2482 if (h
->plt
.offset
== (bfd_vma
) -1 || splt
== NULL
)
2484 /* We didn't make a PLT entry for this symbol. This
2485 happens when statically linking PIC code, or when
2486 using -Bsymbolic. */
2490 relocation
= (splt
->output_section
->vma
2491 + splt
->output_offset
2492 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2493 unresolved_reloc
= FALSE
;
2494 if (r_type
== R_SPARC_WPLT30
)
2496 if (r_type
== R_SPARC_PLT32
|| r_type
== R_SPARC_PLT64
)
2498 r_type
= r_type
== R_SPARC_PLT32
? R_SPARC_32
: R_SPARC_64
;
2508 relocation
+= rel
->r_addend
;
2509 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2511 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2512 x
= (x
& ~(bfd_vma
) 0x1fff) | (relocation
& 0x1fff);
2513 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2515 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2516 howto
->bitsize
, howto
->rightshift
,
2517 bfd_arch_bits_per_address (input_bfd
),
2522 case R_SPARC_WDISP16
:
2526 relocation
+= rel
->r_addend
;
2527 /* Adjust for pc-relative-ness. */
2528 relocation
-= (input_section
->output_section
->vma
2529 + input_section
->output_offset
);
2530 relocation
-= rel
->r_offset
;
2532 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2533 x
&= ~(bfd_vma
) 0x303fff;
2534 x
|= ((((relocation
>> 2) & 0xc000) << 6)
2535 | ((relocation
>> 2) & 0x3fff));
2536 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2538 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2539 howto
->bitsize
, howto
->rightshift
,
2540 bfd_arch_bits_per_address (input_bfd
),
2549 relocation
+= rel
->r_addend
;
2550 relocation
= relocation
^ MINUS_ONE
;
2552 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2553 x
= (x
& ~(bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2554 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2556 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2557 howto
->bitsize
, howto
->rightshift
,
2558 bfd_arch_bits_per_address (input_bfd
),
2567 relocation
+= rel
->r_addend
;
2568 relocation
= (relocation
& 0x3ff) | 0x1c00;
2570 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2571 x
= (x
& ~(bfd_vma
) 0x1fff) | relocation
;
2572 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2578 case R_SPARC_WDISP30
:
2580 if (sec_do_relax (input_section
)
2581 && rel
->r_offset
+ 4 < input_section
->size
)
2585 #define XCC (2 << 20)
2586 #define COND(x) (((x)&0xf)<<25)
2587 #define CONDA COND(0x8)
2588 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2589 #define INSN_BA (F2(0,2) | CONDA)
2590 #define INSN_OR F3(2, 0x2, 0)
2591 #define INSN_NOP F2(0,4)
2595 /* If the instruction is a call with either:
2597 arithmetic instruction with rd == %o7
2598 where rs1 != %o7 and rs2 if it is register != %o7
2599 then we can optimize if the call destination is near
2600 by changing the call into a branch always. */
2601 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2602 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2603 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2605 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2606 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2607 && (y
& RD(~0)) == RD(O7
)))
2608 && (y
& RS1(~0)) != RS1(O7
)
2610 || (y
& RS2(~0)) != RS2(O7
)))
2614 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2615 reloc
-= (input_section
->output_section
->vma
2616 + input_section
->output_offset
);
2620 /* Ensure the branch fits into simm22. */
2621 if ((reloc
& ~(bfd_vma
)0x7fffff)
2622 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2626 /* Check whether it fits into simm19. */
2627 if ((reloc
& 0x3c0000) == 0
2628 || (reloc
& 0x3c0000) == 0x3c0000)
2629 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2631 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2632 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2634 if (rel
->r_offset
>= 4
2635 && (y
& (0xffffffff ^ RS1(~0)))
2636 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2641 z
= bfd_get_32 (input_bfd
,
2642 contents
+ rel
->r_offset
- 4);
2643 if ((z
& (0xffffffff ^ RD(~0)))
2644 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2652 If call foo was replaced with ba, replace
2653 or %rN, %g0, %o7 with nop. */
2655 reg
= (y
& RS1(~0)) >> 14;
2656 if (reg
!= ((z
& RD(~0)) >> 25)
2657 || reg
== G0
|| reg
== O7
)
2660 bfd_put_32 (input_bfd
, (bfd_vma
) INSN_NOP
,
2661 contents
+ rel
->r_offset
+ 4);
2671 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2672 contents
, rel
->r_offset
,
2673 relocation
, rel
->r_addend
);
2677 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2678 because such sections are not SEC_ALLOC and thus ld.so will
2679 not process them. */
2680 if (unresolved_reloc
2681 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2683 (*_bfd_error_handler
)
2684 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2685 input_bfd
, input_section
,
2686 (long) rel
->r_offset
,
2687 h
->root
.root
.string
);
2695 case bfd_reloc_outofrange
:
2698 case bfd_reloc_overflow
:
2702 /* The Solaris native linker silently disregards
2703 overflows. We don't, but this breaks stabs debugging
2704 info, whose relocations are only 32-bits wide. Ignore
2705 overflows in this case and also for discarded entries. */
2706 if ((r_type
== R_SPARC_32
|| r_type
== R_SPARC_DISP32
)
2707 && (((input_section
->flags
& SEC_DEBUGGING
) != 0
2708 && strcmp (bfd_section_name (input_bfd
, input_section
),
2710 || _bfd_elf_section_offset (output_bfd
, info
,
2712 rel
->r_offset
) == (bfd_vma
)-1))
2717 if (h
->root
.type
== bfd_link_hash_undefweak
2718 && howto
->pc_relative
)
2720 /* Assume this is a call protected by other code that
2721 detect the symbol is undefined. If this is the case,
2722 we can safely ignore the overflow. If not, the
2723 program is hosed anyway, and a little warning isn't
2732 name
= (bfd_elf_string_from_elf_section
2734 symtab_hdr
->sh_link
,
2739 name
= bfd_section_name (input_bfd
, sec
);
2741 if (! ((*info
->callbacks
->reloc_overflow
)
2742 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2743 (bfd_vma
) 0, input_bfd
, input_section
,
2754 /* Finish up dynamic symbol handling. We set the contents of various
2755 dynamic sections here. */
2758 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2760 struct bfd_link_info
*info
;
2761 struct elf_link_hash_entry
*h
;
2762 Elf_Internal_Sym
*sym
;
2766 dynobj
= elf_hash_table (info
)->dynobj
;
2768 if (h
->plt
.offset
!= (bfd_vma
) -1)
2772 Elf_Internal_Rela rela
;
2775 /* This symbol has an entry in the PLT. Set it up. */
2777 BFD_ASSERT (h
->dynindx
!= -1);
2779 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2780 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2781 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2783 /* Fill in the entry in the .rela.plt section. */
2785 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2787 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2792 bfd_vma max
= splt
->size
/ PLT_ENTRY_SIZE
;
2793 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2794 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2795 -(splt
->output_section
->vma
+ splt
->output_offset
);
2797 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2798 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2800 /* Adjust for the first 4 reserved elements in the .plt section
2801 when setting the offset in the .rela.plt section.
2802 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2803 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2805 loc
= srela
->contents
;
2806 loc
+= (h
->plt
.offset
- 4) * sizeof (Elf64_External_Rela
);
2807 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2809 if (!h
->def_regular
)
2811 /* Mark the symbol as undefined, rather than as defined in
2812 the .plt section. Leave the value alone. */
2813 sym
->st_shndx
= SHN_UNDEF
;
2814 /* If the symbol is weak, we do need to clear the value.
2815 Otherwise, the PLT entry would provide a definition for
2816 the symbol even if the symbol wasn't defined anywhere,
2817 and so the symbol would never be NULL. */
2818 if (!h
->ref_regular_nonweak
)
2823 if (h
->got
.offset
!= (bfd_vma
) -1)
2827 Elf_Internal_Rela rela
;
2830 /* This symbol has an entry in the GOT. Set it up. */
2832 sgot
= sparc64_elf_hash_table (info
)->sgot
;
2833 srela
= sparc64_elf_hash_table (info
)->srelgot
;
2834 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2836 rela
.r_offset
= (sgot
->output_section
->vma
2837 + sgot
->output_offset
2838 + (h
->got
.offset
&~ (bfd_vma
) 1));
2840 /* If this is a -Bsymbolic link, and the symbol is defined
2841 locally, we just want to emit a RELATIVE reloc. Likewise if
2842 the symbol was forced to be local because of a version file.
2843 The entry in the global offset table will already have been
2844 initialized in the relocate_section function. */
2846 && (info
->symbolic
|| h
->dynindx
== -1)
2849 asection
*sec
= h
->root
.u
.def
.section
;
2850 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2851 rela
.r_addend
= (h
->root
.u
.def
.value
2852 + sec
->output_section
->vma
2853 + sec
->output_offset
);
2857 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2861 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2862 sgot
->contents
+ (h
->got
.offset
&~ (bfd_vma
) 1));
2863 loc
= srela
->contents
;
2864 loc
+= srela
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2865 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2871 Elf_Internal_Rela rela
;
2874 /* This symbols needs a copy reloc. Set it up. */
2875 BFD_ASSERT (h
->dynindx
!= -1);
2877 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2879 BFD_ASSERT (s
!= NULL
);
2881 rela
.r_offset
= (h
->root
.u
.def
.value
2882 + h
->root
.u
.def
.section
->output_section
->vma
2883 + h
->root
.u
.def
.section
->output_offset
);
2884 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2886 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2887 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2890 /* Mark some specially defined symbols as absolute. */
2891 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2892 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2893 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2894 sym
->st_shndx
= SHN_ABS
;
2899 /* Finish up the dynamic sections. */
2902 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2904 struct bfd_link_info
*info
;
2907 int stt_regidx
= -1;
2911 dynobj
= elf_hash_table (info
)->dynobj
;
2913 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2915 if (elf_hash_table (info
)->dynamic_sections_created
)
2918 Elf64_External_Dyn
*dyncon
, *dynconend
;
2920 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2921 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2923 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2924 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2925 for (; dyncon
< dynconend
; dyncon
++)
2927 Elf_Internal_Dyn dyn
;
2931 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2935 case DT_PLTGOT
: name
= ".plt"; size
= FALSE
; break;
2936 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= TRUE
; break;
2937 case DT_JMPREL
: name
= ".rela.plt"; size
= FALSE
; break;
2938 case DT_SPARC_REGISTER
:
2939 if (stt_regidx
== -1)
2942 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2943 if (stt_regidx
== -1)
2946 dyn
.d_un
.d_val
= stt_regidx
++;
2947 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2949 default: name
= NULL
; size
= FALSE
; break;
2956 s
= bfd_get_section_by_name (output_bfd
, name
);
2962 dyn
.d_un
.d_ptr
= s
->vma
;
2964 dyn
.d_un
.d_val
= s
->size
;
2966 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2970 /* Initialize the contents of the .plt section. */
2972 sparc64_elf_build_plt (output_bfd
, splt
->contents
,
2973 (int) (splt
->size
/ PLT_ENTRY_SIZE
));
2975 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2979 /* Set the first entry in the global offset table to the address of
2980 the dynamic section. */
2981 sgot
= sparc64_elf_hash_table (info
)->sgot
;
2982 BFD_ASSERT (sgot
!= NULL
);
2986 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2988 bfd_put_64 (output_bfd
,
2989 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2993 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2998 static enum elf_reloc_type_class
2999 sparc64_elf_reloc_type_class (rela
)
3000 const Elf_Internal_Rela
*rela
;
3002 switch ((int) ELF64_R_TYPE (rela
->r_info
))
3004 case R_SPARC_RELATIVE
:
3005 return reloc_class_relative
;
3006 case R_SPARC_JMP_SLOT
:
3007 return reloc_class_plt
;
3009 return reloc_class_copy
;
3011 return reloc_class_normal
;
3015 /* Functions for dealing with the e_flags field. */
3017 /* Merge backend specific data from an object file to the output
3018 object file when linking. */
3021 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
3026 flagword new_flags
, old_flags
;
3029 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
3030 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
3033 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3034 old_flags
= elf_elfheader (obfd
)->e_flags
;
3036 if (!elf_flags_init (obfd
)) /* First call, no flags set */
3038 elf_flags_init (obfd
) = TRUE
;
3039 elf_elfheader (obfd
)->e_flags
= new_flags
;
3042 else if (new_flags
== old_flags
) /* Compatible flags are ok */
3045 else /* Incompatible flags */
3049 #define EF_SPARC_ISA_EXTENSIONS \
3050 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3052 if ((ibfd
->flags
& DYNAMIC
) != 0)
3054 /* We don't want dynamic objects memory ordering and
3055 architecture to have any role. That's what dynamic linker
3057 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
3058 new_flags
|= (old_flags
3059 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
3063 /* Choose the highest architecture requirements. */
3064 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
3065 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
3066 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
3067 && (old_flags
& EF_SPARC_HAL_R1
))
3070 (*_bfd_error_handler
)
3071 (_("%B: linking UltraSPARC specific with HAL specific code"),
3074 /* Choose the most restrictive memory ordering. */
3075 old_mm
= (old_flags
& EF_SPARCV9_MM
);
3076 new_mm
= (new_flags
& EF_SPARCV9_MM
);
3077 old_flags
&= ~EF_SPARCV9_MM
;
3078 new_flags
&= ~EF_SPARCV9_MM
;
3079 if (new_mm
< old_mm
)
3081 old_flags
|= old_mm
;
3082 new_flags
|= old_mm
;
3085 /* Warn about any other mismatches */
3086 if (new_flags
!= old_flags
)
3089 (*_bfd_error_handler
)
3090 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3091 ibfd
, (long) new_flags
, (long) old_flags
);
3094 elf_elfheader (obfd
)->e_flags
= old_flags
;
3098 bfd_set_error (bfd_error_bad_value
);
3105 /* MARCO: Set the correct entry size for the .stab section. */
3108 sparc64_elf_fake_sections (abfd
, hdr
, sec
)
3109 bfd
*abfd ATTRIBUTE_UNUSED
;
3110 Elf_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
3115 name
= bfd_get_section_name (abfd
, sec
);
3117 if (strcmp (name
, ".stab") == 0)
3119 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3120 elf_section_data (sec
)->this_hdr
.sh_entsize
= 12;
3126 /* Print a STT_REGISTER symbol to file FILE. */
3129 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3130 bfd
*abfd ATTRIBUTE_UNUSED
;
3134 FILE *file
= (FILE *) filep
;
3137 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3141 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3142 type
= symbol
->flags
;
3143 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3145 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3146 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3147 (type
& BSF_WEAK
) ? 'w' : ' ');
3148 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3151 return symbol
->name
;
3154 /* Set the right machine number for a SPARC64 ELF file. */
3157 sparc64_elf_object_p (abfd
)
3160 unsigned long mach
= bfd_mach_sparc_v9
;
3162 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3163 mach
= bfd_mach_sparc_v9b
;
3164 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3165 mach
= bfd_mach_sparc_v9a
;
3166 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3169 /* Return address for Ith PLT stub in section PLT, for relocation REL
3170 or (bfd_vma) -1 if it should not be included. */
3173 sparc64_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
3174 const arelent
*rel ATTRIBUTE_UNUSED
)
3178 i
+= PLT_HEADER_SIZE
/ PLT_ENTRY_SIZE
;
3179 if (i
< LARGE_PLT_THRESHOLD
)
3180 return plt
->vma
+ i
* PLT_ENTRY_SIZE
;
3182 j
= (i
- LARGE_PLT_THRESHOLD
) % 160;
3184 return plt
->vma
+ i
* PLT_ENTRY_SIZE
+ j
* 4 * 6;
3187 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3188 standard ELF, because R_SPARC_OLO10 has secondary addend in
3189 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3190 relocation handling routines. */
3192 const struct elf_size_info sparc64_elf_size_info
=
3194 sizeof (Elf64_External_Ehdr
),
3195 sizeof (Elf64_External_Phdr
),
3196 sizeof (Elf64_External_Shdr
),
3197 sizeof (Elf64_External_Rel
),
3198 sizeof (Elf64_External_Rela
),
3199 sizeof (Elf64_External_Sym
),
3200 sizeof (Elf64_External_Dyn
),
3201 sizeof (Elf_External_Note
),
3202 4, /* hash-table entry size. */
3203 /* Internal relocations per external relocations.
3204 For link purposes we use just 1 internal per
3205 1 external, for assembly and slurp symbol table
3208 64, /* arch_size. */
3209 3, /* log_file_align. */
3212 bfd_elf64_write_out_phdrs
,
3213 bfd_elf64_write_shdrs_and_ehdr
,
3214 sparc64_elf_write_relocs
,
3215 bfd_elf64_swap_symbol_in
,
3216 bfd_elf64_swap_symbol_out
,
3217 sparc64_elf_slurp_reloc_table
,
3218 bfd_elf64_slurp_symbol_table
,
3219 bfd_elf64_swap_dyn_in
,
3220 bfd_elf64_swap_dyn_out
,
3221 bfd_elf64_swap_reloc_in
,
3222 bfd_elf64_swap_reloc_out
,
3223 bfd_elf64_swap_reloca_in
,
3224 bfd_elf64_swap_reloca_out
3227 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3228 #define TARGET_BIG_NAME "elf64-sparc"
3229 #define ELF_ARCH bfd_arch_sparc
3230 #define ELF_MAXPAGESIZE 0x100000
3232 /* This is the official ABI value. */
3233 #define ELF_MACHINE_CODE EM_SPARCV9
3235 /* This is the value that we used before the ABI was released. */
3236 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3238 #define bfd_elf64_bfd_link_hash_table_create \
3239 sparc64_elf_bfd_link_hash_table_create
3241 #define elf_info_to_howto \
3242 sparc64_elf_info_to_howto
3243 #define bfd_elf64_get_reloc_upper_bound \
3244 sparc64_elf_get_reloc_upper_bound
3245 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3246 sparc64_elf_get_dynamic_reloc_upper_bound
3247 #define bfd_elf64_canonicalize_reloc \
3248 sparc64_elf_canonicalize_reloc
3249 #define bfd_elf64_canonicalize_dynamic_reloc \
3250 sparc64_elf_canonicalize_dynamic_reloc
3251 #define bfd_elf64_bfd_reloc_type_lookup \
3252 sparc64_elf_reloc_type_lookup
3253 #define bfd_elf64_bfd_relax_section \
3254 sparc64_elf_relax_section
3255 #define bfd_elf64_new_section_hook \
3256 sparc64_elf_new_section_hook
3258 #define elf_backend_create_dynamic_sections \
3259 sparc64_elf_create_dynamic_sections
3260 #define elf_backend_add_symbol_hook \
3261 sparc64_elf_add_symbol_hook
3262 #define elf_backend_get_symbol_type \
3263 sparc64_elf_get_symbol_type
3264 #define elf_backend_symbol_processing \
3265 sparc64_elf_symbol_processing
3266 #define elf_backend_check_relocs \
3267 sparc64_elf_check_relocs
3268 #define elf_backend_adjust_dynamic_symbol \
3269 sparc64_elf_adjust_dynamic_symbol
3270 #define elf_backend_omit_section_dynsym \
3271 sparc64_elf_omit_section_dynsym
3272 #define elf_backend_size_dynamic_sections \
3273 sparc64_elf_size_dynamic_sections
3274 #define elf_backend_relocate_section \
3275 sparc64_elf_relocate_section
3276 #define elf_backend_finish_dynamic_symbol \
3277 sparc64_elf_finish_dynamic_symbol
3278 #define elf_backend_finish_dynamic_sections \
3279 sparc64_elf_finish_dynamic_sections
3280 #define elf_backend_print_symbol_all \
3281 sparc64_elf_print_symbol_all
3282 #define elf_backend_output_arch_syms \
3283 sparc64_elf_output_arch_syms
3284 #define bfd_elf64_bfd_merge_private_bfd_data \
3285 sparc64_elf_merge_private_bfd_data
3286 #define elf_backend_fake_sections \
3287 sparc64_elf_fake_sections
3288 #define elf_backend_plt_sym_val \
3289 sparc64_elf_plt_sym_val
3291 #define elf_backend_size_info \
3292 sparc64_elf_size_info
3293 #define elf_backend_object_p \
3294 sparc64_elf_object_p
3295 #define elf_backend_reloc_type_class \
3296 sparc64_elf_reloc_type_class
3298 #define elf_backend_want_got_plt 0
3299 #define elf_backend_plt_readonly 0
3300 #define elf_backend_want_plt_sym 1
3301 #define elf_backend_rela_normal 1
3303 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3304 #define elf_backend_plt_alignment 8
3306 #define elf_backend_got_header_size 8
3308 #include "elf64-target.h"