1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
213 bfd_elf_gnu_hash (const char *namearg
)
215 const unsigned char *name
= (const unsigned char *) namearg
;
216 unsigned long h
= 5381;
219 while ((ch
= *name
++) != '\0')
220 h
= (h
<< 5) + h
+ ch
;
221 return h
& 0xffffffff;
225 bfd_elf_mkobject (bfd
*abfd
)
227 if (abfd
->tdata
.any
== NULL
)
229 abfd
->tdata
.any
= bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
230 if (abfd
->tdata
.any
== NULL
)
234 elf_tdata (abfd
)->program_header_size
= (bfd_size_type
) -1;
240 bfd_elf_mkcorefile (bfd
*abfd
)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd
);
247 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
249 Elf_Internal_Shdr
**i_shdrp
;
250 bfd_byte
*shstrtab
= NULL
;
252 bfd_size_type shstrtabsize
;
254 i_shdrp
= elf_elfsections (abfd
);
255 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
258 shstrtab
= i_shdrp
[shindex
]->contents
;
259 if (shstrtab
== NULL
)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset
= i_shdrp
[shindex
]->sh_offset
;
263 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize
+ 1 == 0
268 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
269 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
271 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
273 if (bfd_get_error () != bfd_error_system_call
)
274 bfd_set_error (bfd_error_file_truncated
);
278 shstrtab
[shstrtabsize
] = '\0';
279 i_shdrp
[shindex
]->contents
= shstrtab
;
281 return (char *) shstrtab
;
285 bfd_elf_string_from_elf_section (bfd
*abfd
,
286 unsigned int shindex
,
287 unsigned int strindex
)
289 Elf_Internal_Shdr
*hdr
;
294 hdr
= elf_elfsections (abfd
)[shindex
];
296 if (hdr
->contents
== NULL
297 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
300 if (strindex
>= hdr
->sh_size
)
302 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
303 (*_bfd_error_handler
)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
306 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
308 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
312 return ((char *) hdr
->contents
) + strindex
;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
322 bfd_elf_get_elf_syms (bfd
*ibfd
,
323 Elf_Internal_Shdr
*symtab_hdr
,
326 Elf_Internal_Sym
*intsym_buf
,
328 Elf_External_Sym_Shndx
*extshndx_buf
)
330 Elf_Internal_Shdr
*shndx_hdr
;
332 const bfd_byte
*esym
;
333 Elf_External_Sym_Shndx
*alloc_extshndx
;
334 Elf_External_Sym_Shndx
*shndx
;
335 Elf_Internal_Sym
*isym
;
336 Elf_Internal_Sym
*isymend
;
337 const struct elf_backend_data
*bed
;
345 /* Normal syms might have section extension entries. */
347 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
348 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
350 /* Read the symbols. */
352 alloc_extshndx
= NULL
;
353 bed
= get_elf_backend_data (ibfd
);
354 extsym_size
= bed
->s
->sizeof_sym
;
355 amt
= symcount
* extsym_size
;
356 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
357 if (extsym_buf
== NULL
)
359 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
360 extsym_buf
= alloc_ext
;
362 if (extsym_buf
== NULL
363 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
364 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
370 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
374 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
375 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
376 if (extshndx_buf
== NULL
)
378 alloc_extshndx
= bfd_malloc2 (symcount
,
379 sizeof (Elf_External_Sym_Shndx
));
380 extshndx_buf
= alloc_extshndx
;
382 if (extshndx_buf
== NULL
383 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
384 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
391 if (intsym_buf
== NULL
)
393 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
394 if (intsym_buf
== NULL
)
398 /* Convert the symbols to internal form. */
399 isymend
= intsym_buf
+ symcount
;
400 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
402 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
403 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
406 if (alloc_ext
!= NULL
)
408 if (alloc_extshndx
!= NULL
)
409 free (alloc_extshndx
);
414 /* Look up a symbol name. */
416 bfd_elf_sym_name (bfd
*abfd
,
417 Elf_Internal_Shdr
*symtab_hdr
,
418 Elf_Internal_Sym
*isym
,
422 unsigned int iname
= isym
->st_name
;
423 unsigned int shindex
= symtab_hdr
->sh_link
;
425 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
426 /* Check for a bogus st_shndx to avoid crashing. */
427 && isym
->st_shndx
< elf_numsections (abfd
)
428 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
430 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
431 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
434 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
437 else if (sym_sec
&& *name
== '\0')
438 name
= bfd_section_name (abfd
, sym_sec
);
443 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
444 sections. The first element is the flags, the rest are section
447 typedef union elf_internal_group
{
448 Elf_Internal_Shdr
*shdr
;
450 } Elf_Internal_Group
;
452 /* Return the name of the group signature symbol. Why isn't the
453 signature just a string? */
456 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
458 Elf_Internal_Shdr
*hdr
;
459 unsigned char esym
[sizeof (Elf64_External_Sym
)];
460 Elf_External_Sym_Shndx eshndx
;
461 Elf_Internal_Sym isym
;
463 /* First we need to ensure the symbol table is available. Make sure
464 that it is a symbol table section. */
465 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
466 if (hdr
->sh_type
!= SHT_SYMTAB
467 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
470 /* Go read the symbol. */
471 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
472 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
473 &isym
, esym
, &eshndx
) == NULL
)
476 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
479 /* Set next_in_group list pointer, and group name for NEWSECT. */
482 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
484 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
486 /* If num_group is zero, read in all SHT_GROUP sections. The count
487 is set to -1 if there are no SHT_GROUP sections. */
490 unsigned int i
, shnum
;
492 /* First count the number of groups. If we have a SHT_GROUP
493 section with just a flag word (ie. sh_size is 4), ignore it. */
494 shnum
= elf_numsections (abfd
);
496 for (i
= 0; i
< shnum
; i
++)
498 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
499 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
505 num_group
= (unsigned) -1;
506 elf_tdata (abfd
)->num_group
= num_group
;
510 /* We keep a list of elf section headers for group sections,
511 so we can find them quickly. */
514 elf_tdata (abfd
)->num_group
= num_group
;
515 elf_tdata (abfd
)->group_sect_ptr
516 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
517 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
521 for (i
= 0; i
< shnum
; i
++)
523 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
524 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
527 Elf_Internal_Group
*dest
;
529 /* Add to list of sections. */
530 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
533 /* Read the raw contents. */
534 BFD_ASSERT (sizeof (*dest
) >= 4);
535 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
536 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
538 if (shdr
->contents
== NULL
539 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
540 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
544 /* Translate raw contents, a flag word followed by an
545 array of elf section indices all in target byte order,
546 to the flag word followed by an array of elf section
548 src
= shdr
->contents
+ shdr
->sh_size
;
549 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
556 idx
= H_GET_32 (abfd
, src
);
557 if (src
== shdr
->contents
)
560 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
561 shdr
->bfd_section
->flags
562 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
567 ((*_bfd_error_handler
)
568 (_("%B: invalid SHT_GROUP entry"), abfd
));
571 dest
->shdr
= elf_elfsections (abfd
)[idx
];
578 if (num_group
!= (unsigned) -1)
582 for (i
= 0; i
< num_group
; i
++)
584 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
585 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
586 unsigned int n_elt
= shdr
->sh_size
/ 4;
588 /* Look through this group's sections to see if current
589 section is a member. */
591 if ((++idx
)->shdr
== hdr
)
595 /* We are a member of this group. Go looking through
596 other members to see if any others are linked via
598 idx
= (Elf_Internal_Group
*) shdr
->contents
;
599 n_elt
= shdr
->sh_size
/ 4;
601 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
602 && elf_next_in_group (s
) != NULL
)
606 /* Snarf the group name from other member, and
607 insert current section in circular list. */
608 elf_group_name (newsect
) = elf_group_name (s
);
609 elf_next_in_group (newsect
) = elf_next_in_group (s
);
610 elf_next_in_group (s
) = newsect
;
616 gname
= group_signature (abfd
, shdr
);
619 elf_group_name (newsect
) = gname
;
621 /* Start a circular list with one element. */
622 elf_next_in_group (newsect
) = newsect
;
625 /* If the group section has been created, point to the
627 if (shdr
->bfd_section
!= NULL
)
628 elf_next_in_group (shdr
->bfd_section
) = newsect
;
636 if (elf_group_name (newsect
) == NULL
)
638 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
645 _bfd_elf_setup_sections (bfd
*abfd
)
648 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
649 bfd_boolean result
= TRUE
;
652 /* Process SHF_LINK_ORDER. */
653 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
655 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
656 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
658 unsigned int elfsec
= this_hdr
->sh_link
;
659 /* FIXME: The old Intel compiler and old strip/objcopy may
660 not set the sh_link or sh_info fields. Hence we could
661 get the situation where elfsec is 0. */
664 const struct elf_backend_data
*bed
665 = get_elf_backend_data (abfd
);
666 if (bed
->link_order_error_handler
)
667 bed
->link_order_error_handler
668 (_("%B: warning: sh_link not set for section `%A'"),
675 this_hdr
= elf_elfsections (abfd
)[elfsec
];
678 Some strip/objcopy may leave an incorrect value in
679 sh_link. We don't want to proceed. */
680 link
= this_hdr
->bfd_section
;
683 (*_bfd_error_handler
)
684 (_("%B: sh_link [%d] in section `%A' is incorrect"),
685 s
->owner
, s
, elfsec
);
689 elf_linked_to_section (s
) = link
;
694 /* Process section groups. */
695 if (num_group
== (unsigned) -1)
698 for (i
= 0; i
< num_group
; i
++)
700 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
701 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
702 unsigned int n_elt
= shdr
->sh_size
/ 4;
705 if ((++idx
)->shdr
->bfd_section
)
706 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
707 else if (idx
->shdr
->sh_type
== SHT_RELA
708 || idx
->shdr
->sh_type
== SHT_REL
)
709 /* We won't include relocation sections in section groups in
710 output object files. We adjust the group section size here
711 so that relocatable link will work correctly when
712 relocation sections are in section group in input object
714 shdr
->bfd_section
->size
-= 4;
717 /* There are some unknown sections in the group. */
718 (*_bfd_error_handler
)
719 (_("%B: unknown [%d] section `%s' in group [%s]"),
721 (unsigned int) idx
->shdr
->sh_type
,
722 bfd_elf_string_from_elf_section (abfd
,
723 (elf_elfheader (abfd
)
726 shdr
->bfd_section
->name
);
734 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
736 return elf_next_in_group (sec
) != NULL
;
739 /* Make a BFD section from an ELF section. We store a pointer to the
740 BFD section in the bfd_section field of the header. */
743 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
744 Elf_Internal_Shdr
*hdr
,
750 const struct elf_backend_data
*bed
;
752 if (hdr
->bfd_section
!= NULL
)
754 BFD_ASSERT (strcmp (name
,
755 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
759 newsect
= bfd_make_section_anyway (abfd
, name
);
763 hdr
->bfd_section
= newsect
;
764 elf_section_data (newsect
)->this_hdr
= *hdr
;
765 elf_section_data (newsect
)->this_idx
= shindex
;
767 /* Always use the real type/flags. */
768 elf_section_type (newsect
) = hdr
->sh_type
;
769 elf_section_flags (newsect
) = hdr
->sh_flags
;
771 newsect
->filepos
= hdr
->sh_offset
;
773 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
774 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
775 || ! bfd_set_section_alignment (abfd
, newsect
,
776 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
779 flags
= SEC_NO_FLAGS
;
780 if (hdr
->sh_type
!= SHT_NOBITS
)
781 flags
|= SEC_HAS_CONTENTS
;
782 if (hdr
->sh_type
== SHT_GROUP
)
783 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
784 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
787 if (hdr
->sh_type
!= SHT_NOBITS
)
790 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
791 flags
|= SEC_READONLY
;
792 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
794 else if ((flags
& SEC_LOAD
) != 0)
796 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
799 newsect
->entsize
= hdr
->sh_entsize
;
800 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
801 flags
|= SEC_STRINGS
;
803 if (hdr
->sh_flags
& SHF_GROUP
)
804 if (!setup_group (abfd
, hdr
, newsect
))
806 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
807 flags
|= SEC_THREAD_LOCAL
;
809 if ((flags
& SEC_ALLOC
) == 0)
811 /* The debugging sections appear to be recognized only by name,
812 not any sort of flag. Their SEC_ALLOC bits are cleared. */
817 } debug_sections
[] =
819 { "debug", 5 }, /* 'd' */
820 { NULL
, 0 }, /* 'e' */
821 { NULL
, 0 }, /* 'f' */
822 { "gnu.linkonce.wi.", 17 }, /* 'g' */
823 { NULL
, 0 }, /* 'h' */
824 { NULL
, 0 }, /* 'i' */
825 { NULL
, 0 }, /* 'j' */
826 { NULL
, 0 }, /* 'k' */
827 { "line", 4 }, /* 'l' */
828 { NULL
, 0 }, /* 'm' */
829 { NULL
, 0 }, /* 'n' */
830 { NULL
, 0 }, /* 'o' */
831 { NULL
, 0 }, /* 'p' */
832 { NULL
, 0 }, /* 'q' */
833 { NULL
, 0 }, /* 'r' */
834 { "stab", 4 } /* 's' */
839 int i
= name
[1] - 'd';
841 && i
< (int) ARRAY_SIZE (debug_sections
)
842 && debug_sections
[i
].name
!= NULL
843 && strncmp (&name
[1], debug_sections
[i
].name
,
844 debug_sections
[i
].len
) == 0)
845 flags
|= SEC_DEBUGGING
;
849 /* As a GNU extension, if the name begins with .gnu.linkonce, we
850 only link a single copy of the section. This is used to support
851 g++. g++ will emit each template expansion in its own section.
852 The symbols will be defined as weak, so that multiple definitions
853 are permitted. The GNU linker extension is to actually discard
854 all but one of the sections. */
855 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
856 && elf_next_in_group (newsect
) == NULL
)
857 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
859 bed
= get_elf_backend_data (abfd
);
860 if (bed
->elf_backend_section_flags
)
861 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
864 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
867 if ((flags
& SEC_ALLOC
) != 0)
869 Elf_Internal_Phdr
*phdr
;
872 /* Look through the phdrs to see if we need to adjust the lma.
873 If all the p_paddr fields are zero, we ignore them, since
874 some ELF linkers produce such output. */
875 phdr
= elf_tdata (abfd
)->phdr
;
876 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
878 if (phdr
->p_paddr
!= 0)
881 if (i
< elf_elfheader (abfd
)->e_phnum
)
883 phdr
= elf_tdata (abfd
)->phdr
;
884 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
886 /* This section is part of this segment if its file
887 offset plus size lies within the segment's memory
888 span and, if the section is loaded, the extent of the
889 loaded data lies within the extent of the segment.
891 Note - we used to check the p_paddr field as well, and
892 refuse to set the LMA if it was 0. This is wrong
893 though, as a perfectly valid initialised segment can
894 have a p_paddr of zero. Some architectures, eg ARM,
895 place special significance on the address 0 and
896 executables need to be able to have a segment which
897 covers this address. */
898 if (phdr
->p_type
== PT_LOAD
899 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
900 && (hdr
->sh_offset
+ hdr
->sh_size
901 <= phdr
->p_offset
+ phdr
->p_memsz
)
902 && ((flags
& SEC_LOAD
) == 0
903 || (hdr
->sh_offset
+ hdr
->sh_size
904 <= phdr
->p_offset
+ phdr
->p_filesz
)))
906 if ((flags
& SEC_LOAD
) == 0)
907 newsect
->lma
= (phdr
->p_paddr
908 + hdr
->sh_addr
- phdr
->p_vaddr
);
910 /* We used to use the same adjustment for SEC_LOAD
911 sections, but that doesn't work if the segment
912 is packed with code from multiple VMAs.
913 Instead we calculate the section LMA based on
914 the segment LMA. It is assumed that the
915 segment will contain sections with contiguous
916 LMAs, even if the VMAs are not. */
917 newsect
->lma
= (phdr
->p_paddr
918 + hdr
->sh_offset
- phdr
->p_offset
);
920 /* With contiguous segments, we can't tell from file
921 offsets whether a section with zero size should
922 be placed at the end of one segment or the
923 beginning of the next. Decide based on vaddr. */
924 if (hdr
->sh_addr
>= phdr
->p_vaddr
925 && (hdr
->sh_addr
+ hdr
->sh_size
926 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
941 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
944 Helper functions for GDB to locate the string tables.
945 Since BFD hides string tables from callers, GDB needs to use an
946 internal hook to find them. Sun's .stabstr, in particular,
947 isn't even pointed to by the .stab section, so ordinary
948 mechanisms wouldn't work to find it, even if we had some.
951 struct elf_internal_shdr
*
952 bfd_elf_find_section (bfd
*abfd
, char *name
)
954 Elf_Internal_Shdr
**i_shdrp
;
959 i_shdrp
= elf_elfsections (abfd
);
962 shstrtab
= bfd_elf_get_str_section (abfd
,
963 elf_elfheader (abfd
)->e_shstrndx
);
964 if (shstrtab
!= NULL
)
966 max
= elf_numsections (abfd
);
967 for (i
= 1; i
< max
; i
++)
968 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
975 const char *const bfd_elf_section_type_names
[] = {
976 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
977 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
978 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
981 /* ELF relocs are against symbols. If we are producing relocatable
982 output, and the reloc is against an external symbol, and nothing
983 has given us any additional addend, the resulting reloc will also
984 be against the same symbol. In such a case, we don't want to
985 change anything about the way the reloc is handled, since it will
986 all be done at final link time. Rather than put special case code
987 into bfd_perform_relocation, all the reloc types use this howto
988 function. It just short circuits the reloc if producing
989 relocatable output against an external symbol. */
991 bfd_reloc_status_type
992 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
993 arelent
*reloc_entry
,
995 void *data ATTRIBUTE_UNUSED
,
996 asection
*input_section
,
998 char **error_message ATTRIBUTE_UNUSED
)
1000 if (output_bfd
!= NULL
1001 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1002 && (! reloc_entry
->howto
->partial_inplace
1003 || reloc_entry
->addend
== 0))
1005 reloc_entry
->address
+= input_section
->output_offset
;
1006 return bfd_reloc_ok
;
1009 return bfd_reloc_continue
;
1012 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1015 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1018 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1019 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1022 /* Finish SHF_MERGE section merging. */
1025 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1030 if (!is_elf_hash_table (info
->hash
))
1033 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1034 if ((ibfd
->flags
& DYNAMIC
) == 0)
1035 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1036 if ((sec
->flags
& SEC_MERGE
) != 0
1037 && !bfd_is_abs_section (sec
->output_section
))
1039 struct bfd_elf_section_data
*secdata
;
1041 secdata
= elf_section_data (sec
);
1042 if (! _bfd_add_merge_section (abfd
,
1043 &elf_hash_table (info
)->merge_info
,
1044 sec
, &secdata
->sec_info
))
1046 else if (secdata
->sec_info
)
1047 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1050 if (elf_hash_table (info
)->merge_info
!= NULL
)
1051 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1052 merge_sections_remove_hook
);
1057 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1059 sec
->output_section
= bfd_abs_section_ptr
;
1060 sec
->output_offset
= sec
->vma
;
1061 if (!is_elf_hash_table (info
->hash
))
1064 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1067 /* Copy the program header and other data from one object module to
1071 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1073 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1074 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1077 BFD_ASSERT (!elf_flags_init (obfd
)
1078 || (elf_elfheader (obfd
)->e_flags
1079 == elf_elfheader (ibfd
)->e_flags
));
1081 elf_gp (obfd
) = elf_gp (ibfd
);
1082 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1083 elf_flags_init (obfd
) = TRUE
;
1088 get_segment_type (unsigned int p_type
)
1093 case PT_NULL
: pt
= "NULL"; break;
1094 case PT_LOAD
: pt
= "LOAD"; break;
1095 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1096 case PT_INTERP
: pt
= "INTERP"; break;
1097 case PT_NOTE
: pt
= "NOTE"; break;
1098 case PT_SHLIB
: pt
= "SHLIB"; break;
1099 case PT_PHDR
: pt
= "PHDR"; break;
1100 case PT_TLS
: pt
= "TLS"; break;
1101 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1102 case PT_GNU_STACK
: pt
= "STACK"; break;
1103 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1104 default: pt
= NULL
; break;
1109 /* Print out the program headers. */
1112 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1115 Elf_Internal_Phdr
*p
;
1117 bfd_byte
*dynbuf
= NULL
;
1119 p
= elf_tdata (abfd
)->phdr
;
1124 fprintf (f
, _("\nProgram Header:\n"));
1125 c
= elf_elfheader (abfd
)->e_phnum
;
1126 for (i
= 0; i
< c
; i
++, p
++)
1128 const char *pt
= get_segment_type (p
->p_type
);
1133 sprintf (buf
, "0x%lx", p
->p_type
);
1136 fprintf (f
, "%8s off 0x", pt
);
1137 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1138 fprintf (f
, " vaddr 0x");
1139 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1140 fprintf (f
, " paddr 0x");
1141 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1142 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1143 fprintf (f
, " filesz 0x");
1144 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1145 fprintf (f
, " memsz 0x");
1146 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1147 fprintf (f
, " flags %c%c%c",
1148 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1149 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1150 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1151 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1152 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1157 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1161 unsigned long shlink
;
1162 bfd_byte
*extdyn
, *extdynend
;
1164 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1166 fprintf (f
, _("\nDynamic Section:\n"));
1168 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1171 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1174 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1176 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1177 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1180 extdynend
= extdyn
+ s
->size
;
1181 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1183 Elf_Internal_Dyn dyn
;
1186 bfd_boolean stringp
;
1188 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1190 if (dyn
.d_tag
== DT_NULL
)
1197 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1201 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1202 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1203 case DT_PLTGOT
: name
= "PLTGOT"; break;
1204 case DT_HASH
: name
= "HASH"; break;
1205 case DT_STRTAB
: name
= "STRTAB"; break;
1206 case DT_SYMTAB
: name
= "SYMTAB"; break;
1207 case DT_RELA
: name
= "RELA"; break;
1208 case DT_RELASZ
: name
= "RELASZ"; break;
1209 case DT_RELAENT
: name
= "RELAENT"; break;
1210 case DT_STRSZ
: name
= "STRSZ"; break;
1211 case DT_SYMENT
: name
= "SYMENT"; break;
1212 case DT_INIT
: name
= "INIT"; break;
1213 case DT_FINI
: name
= "FINI"; break;
1214 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1215 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1216 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1217 case DT_REL
: name
= "REL"; break;
1218 case DT_RELSZ
: name
= "RELSZ"; break;
1219 case DT_RELENT
: name
= "RELENT"; break;
1220 case DT_PLTREL
: name
= "PLTREL"; break;
1221 case DT_DEBUG
: name
= "DEBUG"; break;
1222 case DT_TEXTREL
: name
= "TEXTREL"; break;
1223 case DT_JMPREL
: name
= "JMPREL"; break;
1224 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1225 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1226 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1227 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1228 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1229 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1230 case DT_FLAGS
: name
= "FLAGS"; break;
1231 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1232 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1233 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1234 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1235 case DT_MOVEENT
: name
= "MOVEENT"; break;
1236 case DT_MOVESZ
: name
= "MOVESZ"; break;
1237 case DT_FEATURE
: name
= "FEATURE"; break;
1238 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1239 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1240 case DT_SYMINENT
: name
= "SYMINENT"; break;
1241 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1242 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1243 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1244 case DT_PLTPAD
: name
= "PLTPAD"; break;
1245 case DT_MOVETAB
: name
= "MOVETAB"; break;
1246 case DT_SYMINFO
: name
= "SYMINFO"; break;
1247 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1248 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1249 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1250 case DT_VERSYM
: name
= "VERSYM"; break;
1251 case DT_VERDEF
: name
= "VERDEF"; break;
1252 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1253 case DT_VERNEED
: name
= "VERNEED"; break;
1254 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1255 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1256 case DT_USED
: name
= "USED"; break;
1257 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1258 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1261 fprintf (f
, " %-11s ", name
);
1263 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1267 unsigned int tagv
= dyn
.d_un
.d_val
;
1269 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1272 fprintf (f
, "%s", string
);
1281 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1282 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1284 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1288 if (elf_dynverdef (abfd
) != 0)
1290 Elf_Internal_Verdef
*t
;
1292 fprintf (f
, _("\nVersion definitions:\n"));
1293 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1295 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1296 t
->vd_flags
, t
->vd_hash
,
1297 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1298 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1300 Elf_Internal_Verdaux
*a
;
1303 for (a
= t
->vd_auxptr
->vda_nextptr
;
1307 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1313 if (elf_dynverref (abfd
) != 0)
1315 Elf_Internal_Verneed
*t
;
1317 fprintf (f
, _("\nVersion References:\n"));
1318 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1320 Elf_Internal_Vernaux
*a
;
1322 fprintf (f
, _(" required from %s:\n"),
1323 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1324 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1325 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1326 a
->vna_flags
, a
->vna_other
,
1327 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1339 /* Display ELF-specific fields of a symbol. */
1342 bfd_elf_print_symbol (bfd
*abfd
,
1345 bfd_print_symbol_type how
)
1350 case bfd_print_symbol_name
:
1351 fprintf (file
, "%s", symbol
->name
);
1353 case bfd_print_symbol_more
:
1354 fprintf (file
, "elf ");
1355 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1356 fprintf (file
, " %lx", (long) symbol
->flags
);
1358 case bfd_print_symbol_all
:
1360 const char *section_name
;
1361 const char *name
= NULL
;
1362 const struct elf_backend_data
*bed
;
1363 unsigned char st_other
;
1366 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1368 bed
= get_elf_backend_data (abfd
);
1369 if (bed
->elf_backend_print_symbol_all
)
1370 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1374 name
= symbol
->name
;
1375 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1378 fprintf (file
, " %s\t", section_name
);
1379 /* Print the "other" value for a symbol. For common symbols,
1380 we've already printed the size; now print the alignment.
1381 For other symbols, we have no specified alignment, and
1382 we've printed the address; now print the size. */
1383 if (bfd_is_com_section (symbol
->section
))
1384 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1386 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1387 bfd_fprintf_vma (abfd
, file
, val
);
1389 /* If we have version information, print it. */
1390 if (elf_tdata (abfd
)->dynversym_section
!= 0
1391 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1392 || elf_tdata (abfd
)->dynverref_section
!= 0))
1394 unsigned int vernum
;
1395 const char *version_string
;
1397 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1400 version_string
= "";
1401 else if (vernum
== 1)
1402 version_string
= "Base";
1403 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1405 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1408 Elf_Internal_Verneed
*t
;
1410 version_string
= "";
1411 for (t
= elf_tdata (abfd
)->verref
;
1415 Elf_Internal_Vernaux
*a
;
1417 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1419 if (a
->vna_other
== vernum
)
1421 version_string
= a
->vna_nodename
;
1428 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1429 fprintf (file
, " %-11s", version_string
);
1434 fprintf (file
, " (%s)", version_string
);
1435 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1440 /* If the st_other field is not zero, print it. */
1441 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1446 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1447 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1448 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1450 /* Some other non-defined flags are also present, so print
1452 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1455 fprintf (file
, " %s", name
);
1461 /* Create an entry in an ELF linker hash table. */
1463 struct bfd_hash_entry
*
1464 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1465 struct bfd_hash_table
*table
,
1468 /* Allocate the structure if it has not already been allocated by a
1472 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1477 /* Call the allocation method of the superclass. */
1478 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1481 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1482 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1484 /* Set local fields. */
1487 ret
->got
= htab
->init_got_refcount
;
1488 ret
->plt
= htab
->init_plt_refcount
;
1489 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1490 - offsetof (struct elf_link_hash_entry
, size
)));
1491 /* Assume that we have been called by a non-ELF symbol reader.
1492 This flag is then reset by the code which reads an ELF input
1493 file. This ensures that a symbol created by a non-ELF symbol
1494 reader will have the flag set correctly. */
1501 /* Copy data from an indirect symbol to its direct symbol, hiding the
1502 old indirect symbol. Also used for copying flags to a weakdef. */
1505 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1506 struct elf_link_hash_entry
*dir
,
1507 struct elf_link_hash_entry
*ind
)
1509 struct elf_link_hash_table
*htab
;
1511 /* Copy down any references that we may have already seen to the
1512 symbol which just became indirect. */
1514 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1515 dir
->ref_regular
|= ind
->ref_regular
;
1516 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1517 dir
->non_got_ref
|= ind
->non_got_ref
;
1518 dir
->needs_plt
|= ind
->needs_plt
;
1519 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1521 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1524 /* Copy over the global and procedure linkage table refcount entries.
1525 These may have been already set up by a check_relocs routine. */
1526 htab
= elf_hash_table (info
);
1527 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1529 if (dir
->got
.refcount
< 0)
1530 dir
->got
.refcount
= 0;
1531 dir
->got
.refcount
+= ind
->got
.refcount
;
1532 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1535 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1537 if (dir
->plt
.refcount
< 0)
1538 dir
->plt
.refcount
= 0;
1539 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1540 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1543 if (ind
->dynindx
!= -1)
1545 if (dir
->dynindx
!= -1)
1546 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1547 dir
->dynindx
= ind
->dynindx
;
1548 dir
->dynstr_index
= ind
->dynstr_index
;
1550 ind
->dynstr_index
= 0;
1555 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1556 struct elf_link_hash_entry
*h
,
1557 bfd_boolean force_local
)
1559 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1563 h
->forced_local
= 1;
1564 if (h
->dynindx
!= -1)
1567 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1573 /* Initialize an ELF linker hash table. */
1576 _bfd_elf_link_hash_table_init
1577 (struct elf_link_hash_table
*table
,
1579 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1580 struct bfd_hash_table
*,
1582 unsigned int entsize
)
1585 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1587 table
->dynamic_sections_created
= FALSE
;
1588 table
->dynobj
= NULL
;
1589 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1590 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1591 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1592 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1593 /* The first dynamic symbol is a dummy. */
1594 table
->dynsymcount
= 1;
1595 table
->dynstr
= NULL
;
1596 table
->bucketcount
= 0;
1597 table
->needed
= NULL
;
1600 table
->merge_info
= NULL
;
1601 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1602 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1603 table
->dynlocal
= NULL
;
1604 table
->runpath
= NULL
;
1605 table
->tls_sec
= NULL
;
1606 table
->tls_size
= 0;
1607 table
->loaded
= NULL
;
1608 table
->is_relocatable_executable
= FALSE
;
1610 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1611 table
->root
.type
= bfd_link_elf_hash_table
;
1616 /* Create an ELF linker hash table. */
1618 struct bfd_link_hash_table
*
1619 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1621 struct elf_link_hash_table
*ret
;
1622 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1624 ret
= bfd_malloc (amt
);
1628 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1629 sizeof (struct elf_link_hash_entry
)))
1638 /* This is a hook for the ELF emulation code in the generic linker to
1639 tell the backend linker what file name to use for the DT_NEEDED
1640 entry for a dynamic object. */
1643 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1645 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1646 && bfd_get_format (abfd
) == bfd_object
)
1647 elf_dt_name (abfd
) = name
;
1651 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1654 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1655 && bfd_get_format (abfd
) == bfd_object
)
1656 lib_class
= elf_dyn_lib_class (abfd
);
1663 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1665 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1666 && bfd_get_format (abfd
) == bfd_object
)
1667 elf_dyn_lib_class (abfd
) = lib_class
;
1670 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1671 the linker ELF emulation code. */
1673 struct bfd_link_needed_list
*
1674 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1675 struct bfd_link_info
*info
)
1677 if (! is_elf_hash_table (info
->hash
))
1679 return elf_hash_table (info
)->needed
;
1682 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1683 hook for the linker ELF emulation code. */
1685 struct bfd_link_needed_list
*
1686 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1687 struct bfd_link_info
*info
)
1689 if (! is_elf_hash_table (info
->hash
))
1691 return elf_hash_table (info
)->runpath
;
1694 /* Get the name actually used for a dynamic object for a link. This
1695 is the SONAME entry if there is one. Otherwise, it is the string
1696 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1699 bfd_elf_get_dt_soname (bfd
*abfd
)
1701 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1702 && bfd_get_format (abfd
) == bfd_object
)
1703 return elf_dt_name (abfd
);
1707 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1708 the ELF linker emulation code. */
1711 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1712 struct bfd_link_needed_list
**pneeded
)
1715 bfd_byte
*dynbuf
= NULL
;
1717 unsigned long shlink
;
1718 bfd_byte
*extdyn
, *extdynend
;
1720 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1724 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1725 || bfd_get_format (abfd
) != bfd_object
)
1728 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1729 if (s
== NULL
|| s
->size
== 0)
1732 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1735 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1739 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1741 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1742 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1745 extdynend
= extdyn
+ s
->size
;
1746 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1748 Elf_Internal_Dyn dyn
;
1750 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1752 if (dyn
.d_tag
== DT_NULL
)
1755 if (dyn
.d_tag
== DT_NEEDED
)
1758 struct bfd_link_needed_list
*l
;
1759 unsigned int tagv
= dyn
.d_un
.d_val
;
1762 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1767 l
= bfd_alloc (abfd
, amt
);
1788 /* Allocate an ELF string table--force the first byte to be zero. */
1790 struct bfd_strtab_hash
*
1791 _bfd_elf_stringtab_init (void)
1793 struct bfd_strtab_hash
*ret
;
1795 ret
= _bfd_stringtab_init ();
1800 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1801 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1802 if (loc
== (bfd_size_type
) -1)
1804 _bfd_stringtab_free (ret
);
1811 /* ELF .o/exec file reading */
1813 /* Create a new bfd section from an ELF section header. */
1816 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1818 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1819 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1820 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1823 name
= bfd_elf_string_from_elf_section (abfd
,
1824 elf_elfheader (abfd
)->e_shstrndx
,
1829 switch (hdr
->sh_type
)
1832 /* Inactive section. Throw it away. */
1835 case SHT_PROGBITS
: /* Normal section with contents. */
1836 case SHT_NOBITS
: /* .bss section. */
1837 case SHT_HASH
: /* .hash section. */
1838 case SHT_NOTE
: /* .note section. */
1839 case SHT_INIT_ARRAY
: /* .init_array section. */
1840 case SHT_FINI_ARRAY
: /* .fini_array section. */
1841 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1842 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1843 case SHT_GNU_HASH
: /* .gnu.hash section. */
1844 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1846 case SHT_DYNAMIC
: /* Dynamic linking information. */
1847 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1849 if (hdr
->sh_link
> elf_numsections (abfd
)
1850 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1852 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1854 Elf_Internal_Shdr
*dynsymhdr
;
1856 /* The shared libraries distributed with hpux11 have a bogus
1857 sh_link field for the ".dynamic" section. Find the
1858 string table for the ".dynsym" section instead. */
1859 if (elf_dynsymtab (abfd
) != 0)
1861 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1862 hdr
->sh_link
= dynsymhdr
->sh_link
;
1866 unsigned int i
, num_sec
;
1868 num_sec
= elf_numsections (abfd
);
1869 for (i
= 1; i
< num_sec
; i
++)
1871 dynsymhdr
= elf_elfsections (abfd
)[i
];
1872 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1874 hdr
->sh_link
= dynsymhdr
->sh_link
;
1882 case SHT_SYMTAB
: /* A symbol table */
1883 if (elf_onesymtab (abfd
) == shindex
)
1886 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1888 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1889 elf_onesymtab (abfd
) = shindex
;
1890 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1891 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1892 abfd
->flags
|= HAS_SYMS
;
1894 /* Sometimes a shared object will map in the symbol table. If
1895 SHF_ALLOC is set, and this is a shared object, then we also
1896 treat this section as a BFD section. We can not base the
1897 decision purely on SHF_ALLOC, because that flag is sometimes
1898 set in a relocatable object file, which would confuse the
1900 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1901 && (abfd
->flags
& DYNAMIC
) != 0
1902 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1906 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1907 can't read symbols without that section loaded as well. It
1908 is most likely specified by the next section header. */
1909 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1911 unsigned int i
, num_sec
;
1913 num_sec
= elf_numsections (abfd
);
1914 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1916 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1917 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1918 && hdr2
->sh_link
== shindex
)
1922 for (i
= 1; i
< shindex
; i
++)
1924 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1925 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1926 && hdr2
->sh_link
== shindex
)
1930 return bfd_section_from_shdr (abfd
, i
);
1934 case SHT_DYNSYM
: /* A dynamic symbol table */
1935 if (elf_dynsymtab (abfd
) == shindex
)
1938 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1940 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1941 elf_dynsymtab (abfd
) = shindex
;
1942 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1943 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1944 abfd
->flags
|= HAS_SYMS
;
1946 /* Besides being a symbol table, we also treat this as a regular
1947 section, so that objcopy can handle it. */
1948 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1950 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1951 if (elf_symtab_shndx (abfd
) == shindex
)
1954 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1955 elf_symtab_shndx (abfd
) = shindex
;
1956 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1957 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1960 case SHT_STRTAB
: /* A string table */
1961 if (hdr
->bfd_section
!= NULL
)
1963 if (ehdr
->e_shstrndx
== shindex
)
1965 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1966 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1969 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1972 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1973 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1976 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1979 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1980 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1981 elf_elfsections (abfd
)[shindex
] = hdr
;
1982 /* We also treat this as a regular section, so that objcopy
1984 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1988 /* If the string table isn't one of the above, then treat it as a
1989 regular section. We need to scan all the headers to be sure,
1990 just in case this strtab section appeared before the above. */
1991 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1993 unsigned int i
, num_sec
;
1995 num_sec
= elf_numsections (abfd
);
1996 for (i
= 1; i
< num_sec
; i
++)
1998 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1999 if (hdr2
->sh_link
== shindex
)
2001 /* Prevent endless recursion on broken objects. */
2004 if (! bfd_section_from_shdr (abfd
, i
))
2006 if (elf_onesymtab (abfd
) == i
)
2008 if (elf_dynsymtab (abfd
) == i
)
2009 goto dynsymtab_strtab
;
2013 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2017 /* *These* do a lot of work -- but build no sections! */
2019 asection
*target_sect
;
2020 Elf_Internal_Shdr
*hdr2
;
2021 unsigned int num_sec
= elf_numsections (abfd
);
2024 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2025 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2028 /* Check for a bogus link to avoid crashing. */
2029 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2030 || hdr
->sh_link
>= num_sec
)
2032 ((*_bfd_error_handler
)
2033 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2034 abfd
, hdr
->sh_link
, name
, shindex
));
2035 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2039 /* For some incomprehensible reason Oracle distributes
2040 libraries for Solaris in which some of the objects have
2041 bogus sh_link fields. It would be nice if we could just
2042 reject them, but, unfortunately, some people need to use
2043 them. We scan through the section headers; if we find only
2044 one suitable symbol table, we clobber the sh_link to point
2045 to it. I hope this doesn't break anything. */
2046 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2047 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2053 for (scan
= 1; scan
< num_sec
; scan
++)
2055 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2056 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2067 hdr
->sh_link
= found
;
2070 /* Get the symbol table. */
2071 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2072 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2073 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2076 /* If this reloc section does not use the main symbol table we
2077 don't treat it as a reloc section. BFD can't adequately
2078 represent such a section, so at least for now, we don't
2079 try. We just present it as a normal section. We also
2080 can't use it as a reloc section if it points to the null
2081 section, an invalid section, or another reloc section. */
2082 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2083 || hdr
->sh_info
== SHN_UNDEF
2084 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2085 || hdr
->sh_info
>= num_sec
2086 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2087 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2088 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2091 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2093 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2094 if (target_sect
== NULL
)
2097 if ((target_sect
->flags
& SEC_RELOC
) == 0
2098 || target_sect
->reloc_count
== 0)
2099 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2103 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2104 amt
= sizeof (*hdr2
);
2105 hdr2
= bfd_alloc (abfd
, amt
);
2106 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2109 elf_elfsections (abfd
)[shindex
] = hdr2
;
2110 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2111 target_sect
->flags
|= SEC_RELOC
;
2112 target_sect
->relocation
= NULL
;
2113 target_sect
->rel_filepos
= hdr
->sh_offset
;
2114 /* In the section to which the relocations apply, mark whether
2115 its relocations are of the REL or RELA variety. */
2116 if (hdr
->sh_size
!= 0)
2117 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2118 abfd
->flags
|= HAS_RELOC
;
2123 case SHT_GNU_verdef
:
2124 elf_dynverdef (abfd
) = shindex
;
2125 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2126 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2129 case SHT_GNU_versym
:
2130 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2132 elf_dynversym (abfd
) = shindex
;
2133 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2134 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2136 case SHT_GNU_verneed
:
2137 elf_dynverref (abfd
) = shindex
;
2138 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2139 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2145 /* We need a BFD section for objcopy and relocatable linking,
2146 and it's handy to have the signature available as the section
2148 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2150 name
= group_signature (abfd
, hdr
);
2153 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2155 if (hdr
->contents
!= NULL
)
2157 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2158 unsigned int n_elt
= hdr
->sh_size
/ 4;
2161 if (idx
->flags
& GRP_COMDAT
)
2162 hdr
->bfd_section
->flags
2163 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2165 /* We try to keep the same section order as it comes in. */
2167 while (--n_elt
!= 0)
2168 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2169 && elf_next_in_group (s
) != NULL
)
2171 elf_next_in_group (hdr
->bfd_section
) = s
;
2178 /* Check for any processor-specific section types. */
2179 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2182 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2184 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2185 /* FIXME: How to properly handle allocated section reserved
2186 for applications? */
2187 (*_bfd_error_handler
)
2188 (_("%B: don't know how to handle allocated, application "
2189 "specific section `%s' [0x%8x]"),
2190 abfd
, name
, hdr
->sh_type
);
2192 /* Allow sections reserved for applications. */
2193 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2196 else if (hdr
->sh_type
>= SHT_LOPROC
2197 && hdr
->sh_type
<= SHT_HIPROC
)
2198 /* FIXME: We should handle this section. */
2199 (*_bfd_error_handler
)
2200 (_("%B: don't know how to handle processor specific section "
2202 abfd
, name
, hdr
->sh_type
);
2203 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler
)
2206 (_("%B: don't know how to handle OS specific section "
2208 abfd
, name
, hdr
->sh_type
);
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler
)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd
, name
, hdr
->sh_type
);
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2225 bfd_section_from_r_symndx (bfd
*abfd
,
2226 struct sym_sec_cache
*cache
,
2228 unsigned long r_symndx
)
2230 Elf_Internal_Shdr
*symtab_hdr
;
2231 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2232 Elf_External_Sym_Shndx eshndx
;
2233 Elf_Internal_Sym isym
;
2234 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2236 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2237 return cache
->sec
[ent
];
2239 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2240 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2241 &isym
, esym
, &eshndx
) == NULL
)
2244 if (cache
->abfd
!= abfd
)
2246 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2249 cache
->indx
[ent
] = r_symndx
;
2250 cache
->sec
[ent
] = sec
;
2251 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2252 || isym
.st_shndx
> SHN_HIRESERVE
)
2255 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2257 cache
->sec
[ent
] = s
;
2259 return cache
->sec
[ent
];
2262 /* Given an ELF section number, retrieve the corresponding BFD
2266 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2268 if (index
>= elf_numsections (abfd
))
2270 return elf_elfsections (abfd
)[index
]->bfd_section
;
2273 static const struct bfd_elf_special_section special_sections_b
[] =
2275 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2276 { NULL
, 0, 0, 0, 0 }
2279 static const struct bfd_elf_special_section special_sections_c
[] =
2281 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2282 { NULL
, 0, 0, 0, 0 }
2285 static const struct bfd_elf_special_section special_sections_d
[] =
2287 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2288 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2289 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2290 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2291 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2292 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2293 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2294 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2295 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2296 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2297 { NULL
, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_f
[] =
2302 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2303 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2304 { NULL
, 0, 0, 0, 0 }
2307 static const struct bfd_elf_special_section special_sections_g
[] =
2309 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2310 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2311 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2312 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2313 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2314 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2315 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2316 { ".gnu.hash", 9, 0, SHT_GNU_HASH
, SHF_ALLOC
},
2317 { NULL
, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_h
[] =
2322 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2323 { NULL
, 0, 0, 0, 0 }
2326 static const struct bfd_elf_special_section special_sections_i
[] =
2328 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2329 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2330 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2331 { NULL
, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_l
[] =
2336 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2337 { NULL
, 0, 0, 0, 0 }
2340 static const struct bfd_elf_special_section special_sections_n
[] =
2342 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2343 { ".note", 5, -1, SHT_NOTE
, 0 },
2344 { NULL
, 0, 0, 0, 0 }
2347 static const struct bfd_elf_special_section special_sections_p
[] =
2349 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2350 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2351 { NULL
, 0, 0, 0, 0 }
2354 static const struct bfd_elf_special_section special_sections_r
[] =
2356 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2357 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2358 { ".rela", 5, -1, SHT_RELA
, 0 },
2359 { ".rel", 4, -1, SHT_REL
, 0 },
2360 { NULL
, 0, 0, 0, 0 }
2363 static const struct bfd_elf_special_section special_sections_s
[] =
2365 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2366 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2367 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2368 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2369 { NULL
, 0, 0, 0, 0 }
2372 static const struct bfd_elf_special_section special_sections_t
[] =
2374 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2375 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2376 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2377 { NULL
, 0, 0, 0, 0 }
2380 static const struct bfd_elf_special_section
*special_sections
[] =
2382 special_sections_b
, /* 'b' */
2383 special_sections_c
, /* 'b' */
2384 special_sections_d
, /* 'd' */
2386 special_sections_f
, /* 'f' */
2387 special_sections_g
, /* 'g' */
2388 special_sections_h
, /* 'h' */
2389 special_sections_i
, /* 'i' */
2392 special_sections_l
, /* 'l' */
2394 special_sections_n
, /* 'n' */
2396 special_sections_p
, /* 'p' */
2398 special_sections_r
, /* 'r' */
2399 special_sections_s
, /* 's' */
2400 special_sections_t
, /* 't' */
2403 const struct bfd_elf_special_section
*
2404 _bfd_elf_get_special_section (const char *name
,
2405 const struct bfd_elf_special_section
*spec
,
2411 len
= strlen (name
);
2413 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2416 int prefix_len
= spec
[i
].prefix_length
;
2418 if (len
< prefix_len
)
2420 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2423 suffix_len
= spec
[i
].suffix_length
;
2424 if (suffix_len
<= 0)
2426 if (name
[prefix_len
] != 0)
2428 if (suffix_len
== 0)
2430 if (name
[prefix_len
] != '.'
2431 && (suffix_len
== -2
2432 || (rela
&& spec
[i
].type
== SHT_REL
)))
2438 if (len
< prefix_len
+ suffix_len
)
2440 if (memcmp (name
+ len
- suffix_len
,
2441 spec
[i
].prefix
+ prefix_len
,
2451 const struct bfd_elf_special_section
*
2452 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2455 const struct bfd_elf_special_section
*spec
;
2456 const struct elf_backend_data
*bed
;
2458 /* See if this is one of the special sections. */
2459 if (sec
->name
== NULL
)
2462 bed
= get_elf_backend_data (abfd
);
2463 spec
= bed
->special_sections
;
2466 spec
= _bfd_elf_get_special_section (sec
->name
,
2467 bed
->special_sections
,
2473 if (sec
->name
[0] != '.')
2476 i
= sec
->name
[1] - 'b';
2477 if (i
< 0 || i
> 't' - 'b')
2480 spec
= special_sections
[i
];
2485 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2489 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2491 struct bfd_elf_section_data
*sdata
;
2492 const struct elf_backend_data
*bed
;
2493 const struct bfd_elf_special_section
*ssect
;
2495 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2498 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2501 sec
->used_by_bfd
= sdata
;
2504 /* Indicate whether or not this section should use RELA relocations. */
2505 bed
= get_elf_backend_data (abfd
);
2506 sec
->use_rela_p
= bed
->default_use_rela_p
;
2508 /* When we read a file, we don't need to set ELF section type and
2509 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2510 anyway. We will set ELF section type and flags for all linker
2511 created sections. If user specifies BFD section flags, we will
2512 set ELF section type and flags based on BFD section flags in
2513 elf_fake_sections. */
2514 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2515 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2517 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2520 elf_section_type (sec
) = ssect
->type
;
2521 elf_section_flags (sec
) = ssect
->attr
;
2525 return _bfd_generic_new_section_hook (abfd
, sec
);
2528 /* Create a new bfd section from an ELF program header.
2530 Since program segments have no names, we generate a synthetic name
2531 of the form segment<NUM>, where NUM is generally the index in the
2532 program header table. For segments that are split (see below) we
2533 generate the names segment<NUM>a and segment<NUM>b.
2535 Note that some program segments may have a file size that is different than
2536 (less than) the memory size. All this means is that at execution the
2537 system must allocate the amount of memory specified by the memory size,
2538 but only initialize it with the first "file size" bytes read from the
2539 file. This would occur for example, with program segments consisting
2540 of combined data+bss.
2542 To handle the above situation, this routine generates TWO bfd sections
2543 for the single program segment. The first has the length specified by
2544 the file size of the segment, and the second has the length specified
2545 by the difference between the two sizes. In effect, the segment is split
2546 into it's initialized and uninitialized parts.
2551 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2552 Elf_Internal_Phdr
*hdr
,
2554 const char *typename
)
2562 split
= ((hdr
->p_memsz
> 0)
2563 && (hdr
->p_filesz
> 0)
2564 && (hdr
->p_memsz
> hdr
->p_filesz
));
2565 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2566 len
= strlen (namebuf
) + 1;
2567 name
= bfd_alloc (abfd
, len
);
2570 memcpy (name
, namebuf
, len
);
2571 newsect
= bfd_make_section (abfd
, name
);
2572 if (newsect
== NULL
)
2574 newsect
->vma
= hdr
->p_vaddr
;
2575 newsect
->lma
= hdr
->p_paddr
;
2576 newsect
->size
= hdr
->p_filesz
;
2577 newsect
->filepos
= hdr
->p_offset
;
2578 newsect
->flags
|= SEC_HAS_CONTENTS
;
2579 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2580 if (hdr
->p_type
== PT_LOAD
)
2582 newsect
->flags
|= SEC_ALLOC
;
2583 newsect
->flags
|= SEC_LOAD
;
2584 if (hdr
->p_flags
& PF_X
)
2586 /* FIXME: all we known is that it has execute PERMISSION,
2588 newsect
->flags
|= SEC_CODE
;
2591 if (!(hdr
->p_flags
& PF_W
))
2593 newsect
->flags
|= SEC_READONLY
;
2598 sprintf (namebuf
, "%s%db", typename
, index
);
2599 len
= strlen (namebuf
) + 1;
2600 name
= bfd_alloc (abfd
, len
);
2603 memcpy (name
, namebuf
, len
);
2604 newsect
= bfd_make_section (abfd
, name
);
2605 if (newsect
== NULL
)
2607 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2608 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2609 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2610 if (hdr
->p_type
== PT_LOAD
)
2612 newsect
->flags
|= SEC_ALLOC
;
2613 if (hdr
->p_flags
& PF_X
)
2614 newsect
->flags
|= SEC_CODE
;
2616 if (!(hdr
->p_flags
& PF_W
))
2617 newsect
->flags
|= SEC_READONLY
;
2624 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2626 const struct elf_backend_data
*bed
;
2628 switch (hdr
->p_type
)
2631 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2634 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2637 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2640 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2643 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2645 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2650 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2653 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2655 case PT_GNU_EH_FRAME
:
2656 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2660 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2663 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2666 /* Check for any processor-specific program segment types. */
2667 bed
= get_elf_backend_data (abfd
);
2668 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2672 /* Initialize REL_HDR, the section-header for new section, containing
2673 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2674 relocations; otherwise, we use REL relocations. */
2677 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2678 Elf_Internal_Shdr
*rel_hdr
,
2680 bfd_boolean use_rela_p
)
2683 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2684 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2686 name
= bfd_alloc (abfd
, amt
);
2689 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2691 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2693 if (rel_hdr
->sh_name
== (unsigned int) -1)
2695 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2696 rel_hdr
->sh_entsize
= (use_rela_p
2697 ? bed
->s
->sizeof_rela
2698 : bed
->s
->sizeof_rel
);
2699 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2700 rel_hdr
->sh_flags
= 0;
2701 rel_hdr
->sh_addr
= 0;
2702 rel_hdr
->sh_size
= 0;
2703 rel_hdr
->sh_offset
= 0;
2708 /* Set up an ELF internal section header for a section. */
2711 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2713 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2714 bfd_boolean
*failedptr
= failedptrarg
;
2715 Elf_Internal_Shdr
*this_hdr
;
2719 /* We already failed; just get out of the bfd_map_over_sections
2724 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2726 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2727 asect
->name
, FALSE
);
2728 if (this_hdr
->sh_name
== (unsigned int) -1)
2734 /* Don't clear sh_flags. Assembler may set additional bits. */
2736 if ((asect
->flags
& SEC_ALLOC
) != 0
2737 || asect
->user_set_vma
)
2738 this_hdr
->sh_addr
= asect
->vma
;
2740 this_hdr
->sh_addr
= 0;
2742 this_hdr
->sh_offset
= 0;
2743 this_hdr
->sh_size
= asect
->size
;
2744 this_hdr
->sh_link
= 0;
2745 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2746 /* The sh_entsize and sh_info fields may have been set already by
2747 copy_private_section_data. */
2749 this_hdr
->bfd_section
= asect
;
2750 this_hdr
->contents
= NULL
;
2752 /* If the section type is unspecified, we set it based on
2754 if (this_hdr
->sh_type
== SHT_NULL
)
2756 if ((asect
->flags
& SEC_GROUP
) != 0)
2757 this_hdr
->sh_type
= SHT_GROUP
;
2758 else if ((asect
->flags
& SEC_ALLOC
) != 0
2759 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2760 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2761 this_hdr
->sh_type
= SHT_NOBITS
;
2763 this_hdr
->sh_type
= SHT_PROGBITS
;
2766 switch (this_hdr
->sh_type
)
2772 case SHT_INIT_ARRAY
:
2773 case SHT_FINI_ARRAY
:
2774 case SHT_PREINIT_ARRAY
:
2781 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2785 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2789 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2793 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2794 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2798 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2799 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2802 case SHT_GNU_versym
:
2803 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2806 case SHT_GNU_verdef
:
2807 this_hdr
->sh_entsize
= 0;
2808 /* objcopy or strip will copy over sh_info, but may not set
2809 cverdefs. The linker will set cverdefs, but sh_info will be
2811 if (this_hdr
->sh_info
== 0)
2812 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2814 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2815 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2818 case SHT_GNU_verneed
:
2819 this_hdr
->sh_entsize
= 0;
2820 /* objcopy or strip will copy over sh_info, but may not set
2821 cverrefs. The linker will set cverrefs, but sh_info will be
2823 if (this_hdr
->sh_info
== 0)
2824 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2826 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2827 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2831 this_hdr
->sh_entsize
= 4;
2835 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2839 if ((asect
->flags
& SEC_ALLOC
) != 0)
2840 this_hdr
->sh_flags
|= SHF_ALLOC
;
2841 if ((asect
->flags
& SEC_READONLY
) == 0)
2842 this_hdr
->sh_flags
|= SHF_WRITE
;
2843 if ((asect
->flags
& SEC_CODE
) != 0)
2844 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2845 if ((asect
->flags
& SEC_MERGE
) != 0)
2847 this_hdr
->sh_flags
|= SHF_MERGE
;
2848 this_hdr
->sh_entsize
= asect
->entsize
;
2849 if ((asect
->flags
& SEC_STRINGS
) != 0)
2850 this_hdr
->sh_flags
|= SHF_STRINGS
;
2852 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2853 this_hdr
->sh_flags
|= SHF_GROUP
;
2854 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2856 this_hdr
->sh_flags
|= SHF_TLS
;
2857 if (asect
->size
== 0
2858 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2860 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2862 this_hdr
->sh_size
= 0;
2865 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2866 if (this_hdr
->sh_size
!= 0)
2867 this_hdr
->sh_type
= SHT_NOBITS
;
2872 /* Check for processor-specific section types. */
2873 if (bed
->elf_backend_fake_sections
2874 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2877 /* If the section has relocs, set up a section header for the
2878 SHT_REL[A] section. If two relocation sections are required for
2879 this section, it is up to the processor-specific back-end to
2880 create the other. */
2881 if ((asect
->flags
& SEC_RELOC
) != 0
2882 && !_bfd_elf_init_reloc_shdr (abfd
,
2883 &elf_section_data (asect
)->rel_hdr
,
2889 /* Fill in the contents of a SHT_GROUP section. */
2892 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2894 bfd_boolean
*failedptr
= failedptrarg
;
2895 unsigned long symindx
;
2896 asection
*elt
, *first
;
2900 /* Ignore linker created group section. See elfNN_ia64_object_p in
2902 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2907 if (elf_group_id (sec
) != NULL
)
2908 symindx
= elf_group_id (sec
)->udata
.i
;
2912 /* If called from the assembler, swap_out_syms will have set up
2913 elf_section_syms; If called for "ld -r", use target_index. */
2914 if (elf_section_syms (abfd
) != NULL
)
2915 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2917 symindx
= sec
->target_index
;
2919 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2921 /* The contents won't be allocated for "ld -r" or objcopy. */
2923 if (sec
->contents
== NULL
)
2926 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2928 /* Arrange for the section to be written out. */
2929 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2930 if (sec
->contents
== NULL
)
2937 loc
= sec
->contents
+ sec
->size
;
2939 /* Get the pointer to the first section in the group that gas
2940 squirreled away here. objcopy arranges for this to be set to the
2941 start of the input section group. */
2942 first
= elt
= elf_next_in_group (sec
);
2944 /* First element is a flag word. Rest of section is elf section
2945 indices for all the sections of the group. Write them backwards
2946 just to keep the group in the same order as given in .section
2947 directives, not that it matters. */
2956 s
= s
->output_section
;
2959 idx
= elf_section_data (s
)->this_idx
;
2960 H_PUT_32 (abfd
, idx
, loc
);
2961 elt
= elf_next_in_group (elt
);
2966 if ((loc
-= 4) != sec
->contents
)
2969 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2972 /* Assign all ELF section numbers. The dummy first section is handled here
2973 too. The link/info pointers for the standard section types are filled
2974 in here too, while we're at it. */
2977 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2979 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2981 unsigned int section_number
, secn
;
2982 Elf_Internal_Shdr
**i_shdrp
;
2983 struct bfd_elf_section_data
*d
;
2987 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2989 /* SHT_GROUP sections are in relocatable files only. */
2990 if (link_info
== NULL
|| link_info
->relocatable
)
2992 /* Put SHT_GROUP sections first. */
2993 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2995 d
= elf_section_data (sec
);
2997 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2999 if (sec
->flags
& SEC_LINKER_CREATED
)
3001 /* Remove the linker created SHT_GROUP sections. */
3002 bfd_section_list_remove (abfd
, sec
);
3003 abfd
->section_count
--;
3007 if (section_number
== SHN_LORESERVE
)
3008 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3009 d
->this_idx
= section_number
++;
3015 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3017 d
= elf_section_data (sec
);
3019 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
3021 if (section_number
== SHN_LORESERVE
)
3022 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3023 d
->this_idx
= section_number
++;
3025 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3026 if ((sec
->flags
& SEC_RELOC
) == 0)
3030 if (section_number
== SHN_LORESERVE
)
3031 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3032 d
->rel_idx
= section_number
++;
3033 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3038 if (section_number
== SHN_LORESERVE
)
3039 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3040 d
->rel_idx2
= section_number
++;
3041 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3047 if (section_number
== SHN_LORESERVE
)
3048 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3049 t
->shstrtab_section
= section_number
++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3051 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3053 if (bfd_get_symcount (abfd
) > 0)
3055 if (section_number
== SHN_LORESERVE
)
3056 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3057 t
->symtab_section
= section_number
++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3059 if (section_number
> SHN_LORESERVE
- 2)
3061 if (section_number
== SHN_LORESERVE
)
3062 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3063 t
->symtab_shndx_section
= section_number
++;
3064 t
->symtab_shndx_hdr
.sh_name
3065 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3066 ".symtab_shndx", FALSE
);
3067 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3070 if (section_number
== SHN_LORESERVE
)
3071 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3072 t
->strtab_section
= section_number
++;
3073 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3076 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3077 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3079 elf_numsections (abfd
) = section_number
;
3080 elf_elfheader (abfd
)->e_shnum
= section_number
;
3081 if (section_number
> SHN_LORESERVE
)
3082 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3084 /* Set up the list of section header pointers, in agreement with the
3086 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3087 if (i_shdrp
== NULL
)
3090 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3091 if (i_shdrp
[0] == NULL
)
3093 bfd_release (abfd
, i_shdrp
);
3097 elf_elfsections (abfd
) = i_shdrp
;
3099 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3100 if (bfd_get_symcount (abfd
) > 0)
3102 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3103 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3105 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3106 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3108 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3109 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3112 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3114 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3118 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3119 if (d
->rel_idx
!= 0)
3120 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3121 if (d
->rel_idx2
!= 0)
3122 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3124 /* Fill in the sh_link and sh_info fields while we're at it. */
3126 /* sh_link of a reloc section is the section index of the symbol
3127 table. sh_info is the section index of the section to which
3128 the relocation entries apply. */
3129 if (d
->rel_idx
!= 0)
3131 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3132 d
->rel_hdr
.sh_info
= d
->this_idx
;
3134 if (d
->rel_idx2
!= 0)
3136 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3137 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3140 /* We need to set up sh_link for SHF_LINK_ORDER. */
3141 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3143 s
= elf_linked_to_section (sec
);
3146 /* elf_linked_to_section points to the input section. */
3147 if (link_info
!= NULL
)
3149 /* Check discarded linkonce section. */
3150 if (elf_discarded_section (s
))
3153 (*_bfd_error_handler
)
3154 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3155 abfd
, d
->this_hdr
.bfd_section
,
3157 /* Point to the kept section if it has the same
3158 size as the discarded one. */
3159 kept
= _bfd_elf_check_kept_section (s
);
3162 bfd_set_error (bfd_error_bad_value
);
3168 s
= s
->output_section
;
3169 BFD_ASSERT (s
!= NULL
);
3173 /* Handle objcopy. */
3174 if (s
->output_section
== NULL
)
3176 (*_bfd_error_handler
)
3177 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3178 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3179 bfd_set_error (bfd_error_bad_value
);
3182 s
= s
->output_section
;
3184 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3189 The Intel C compiler generates SHT_IA_64_UNWIND with
3190 SHF_LINK_ORDER. But it doesn't set the sh_link or
3191 sh_info fields. Hence we could get the situation
3193 const struct elf_backend_data
*bed
3194 = get_elf_backend_data (abfd
);
3195 if (bed
->link_order_error_handler
)
3196 bed
->link_order_error_handler
3197 (_("%B: warning: sh_link not set for section `%A'"),
3202 switch (d
->this_hdr
.sh_type
)
3206 /* A reloc section which we are treating as a normal BFD
3207 section. sh_link is the section index of the symbol
3208 table. sh_info is the section index of the section to
3209 which the relocation entries apply. We assume that an
3210 allocated reloc section uses the dynamic symbol table.
3211 FIXME: How can we be sure? */
3212 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3214 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3216 /* We look up the section the relocs apply to by name. */
3218 if (d
->this_hdr
.sh_type
== SHT_REL
)
3222 s
= bfd_get_section_by_name (abfd
, name
);
3224 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3228 /* We assume that a section named .stab*str is a stabs
3229 string section. We look for a section with the same name
3230 but without the trailing ``str'', and set its sh_link
3231 field to point to this section. */
3232 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3233 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3238 len
= strlen (sec
->name
);
3239 alc
= bfd_malloc (len
- 2);
3242 memcpy (alc
, sec
->name
, len
- 3);
3243 alc
[len
- 3] = '\0';
3244 s
= bfd_get_section_by_name (abfd
, alc
);
3248 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3250 /* This is a .stab section. */
3251 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3252 elf_section_data (s
)->this_hdr
.sh_entsize
3253 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3260 case SHT_GNU_verneed
:
3261 case SHT_GNU_verdef
:
3262 /* sh_link is the section header index of the string table
3263 used for the dynamic entries, or the symbol table, or the
3265 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3267 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3270 case SHT_GNU_LIBLIST
:
3271 /* sh_link is the section header index of the prelink library
3273 used for the dynamic entries, or the symbol table, or the
3275 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3276 ? ".dynstr" : ".gnu.libstr");
3278 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3283 case SHT_GNU_versym
:
3284 /* sh_link is the section header index of the symbol table
3285 this hash table or version table is for. */
3286 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3288 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3292 d
->this_hdr
.sh_link
= t
->symtab_section
;
3296 for (secn
= 1; secn
< section_number
; ++secn
)
3297 if (i_shdrp
[secn
] == NULL
)
3298 i_shdrp
[secn
] = i_shdrp
[0];
3300 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3301 i_shdrp
[secn
]->sh_name
);
3305 /* Map symbol from it's internal number to the external number, moving
3306 all local symbols to be at the head of the list. */
3309 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3311 /* If the backend has a special mapping, use it. */
3312 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3313 if (bed
->elf_backend_sym_is_global
)
3314 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3316 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3317 || bfd_is_und_section (bfd_get_section (sym
))
3318 || bfd_is_com_section (bfd_get_section (sym
)));
3321 /* Don't output section symbols for sections that are not going to be
3322 output. Also, don't output section symbols for reloc and other
3323 special sections. */
3326 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3328 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3330 || (sym
->section
->owner
!= abfd
3331 && (sym
->section
->output_section
->owner
!= abfd
3332 || sym
->section
->output_offset
!= 0))));
3336 elf_map_symbols (bfd
*abfd
)
3338 unsigned int symcount
= bfd_get_symcount (abfd
);
3339 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3340 asymbol
**sect_syms
;
3341 unsigned int num_locals
= 0;
3342 unsigned int num_globals
= 0;
3343 unsigned int num_locals2
= 0;
3344 unsigned int num_globals2
= 0;
3351 fprintf (stderr
, "elf_map_symbols\n");
3355 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3357 if (max_index
< asect
->index
)
3358 max_index
= asect
->index
;
3362 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3363 if (sect_syms
== NULL
)
3365 elf_section_syms (abfd
) = sect_syms
;
3366 elf_num_section_syms (abfd
) = max_index
;
3368 /* Init sect_syms entries for any section symbols we have already
3369 decided to output. */
3370 for (idx
= 0; idx
< symcount
; idx
++)
3372 asymbol
*sym
= syms
[idx
];
3374 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3375 && !ignore_section_sym (abfd
, sym
))
3377 asection
*sec
= sym
->section
;
3379 if (sec
->owner
!= abfd
)
3380 sec
= sec
->output_section
;
3382 sect_syms
[sec
->index
] = syms
[idx
];
3386 /* Classify all of the symbols. */
3387 for (idx
= 0; idx
< symcount
; idx
++)
3389 if (ignore_section_sym (abfd
, syms
[idx
]))
3391 if (!sym_is_global (abfd
, syms
[idx
]))
3397 /* We will be adding a section symbol for each normal BFD section. Most
3398 sections will already have a section symbol in outsymbols, but
3399 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3400 at least in that case. */
3401 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3403 if (sect_syms
[asect
->index
] == NULL
)
3405 if (!sym_is_global (abfd
, asect
->symbol
))
3412 /* Now sort the symbols so the local symbols are first. */
3413 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3415 if (new_syms
== NULL
)
3418 for (idx
= 0; idx
< symcount
; idx
++)
3420 asymbol
*sym
= syms
[idx
];
3423 if (ignore_section_sym (abfd
, sym
))
3425 if (!sym_is_global (abfd
, sym
))
3428 i
= num_locals
+ num_globals2
++;
3430 sym
->udata
.i
= i
+ 1;
3432 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3434 if (sect_syms
[asect
->index
] == NULL
)
3436 asymbol
*sym
= asect
->symbol
;
3439 sect_syms
[asect
->index
] = sym
;
3440 if (!sym_is_global (abfd
, sym
))
3443 i
= num_locals
+ num_globals2
++;
3445 sym
->udata
.i
= i
+ 1;
3449 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3451 elf_num_locals (abfd
) = num_locals
;
3452 elf_num_globals (abfd
) = num_globals
;
3456 /* Align to the maximum file alignment that could be required for any
3457 ELF data structure. */
3459 static inline file_ptr
3460 align_file_position (file_ptr off
, int align
)
3462 return (off
+ align
- 1) & ~(align
- 1);
3465 /* Assign a file position to a section, optionally aligning to the
3466 required section alignment. */
3469 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3477 al
= i_shdrp
->sh_addralign
;
3479 offset
= BFD_ALIGN (offset
, al
);
3481 i_shdrp
->sh_offset
= offset
;
3482 if (i_shdrp
->bfd_section
!= NULL
)
3483 i_shdrp
->bfd_section
->filepos
= offset
;
3484 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3485 offset
+= i_shdrp
->sh_size
;
3489 /* Compute the file positions we are going to put the sections at, and
3490 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3491 is not NULL, this is being called by the ELF backend linker. */
3494 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3495 struct bfd_link_info
*link_info
)
3497 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3499 struct bfd_strtab_hash
*strtab
= NULL
;
3500 Elf_Internal_Shdr
*shstrtab_hdr
;
3502 if (abfd
->output_has_begun
)
3505 /* Do any elf backend specific processing first. */
3506 if (bed
->elf_backend_begin_write_processing
)
3507 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3509 if (! prep_headers (abfd
))
3512 /* Post process the headers if necessary. */
3513 if (bed
->elf_backend_post_process_headers
)
3514 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3517 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3521 if (!assign_section_numbers (abfd
, link_info
))
3524 /* The backend linker builds symbol table information itself. */
3525 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3527 /* Non-zero if doing a relocatable link. */
3528 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3530 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3534 if (link_info
== NULL
)
3536 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3541 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3542 /* sh_name was set in prep_headers. */
3543 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3544 shstrtab_hdr
->sh_flags
= 0;
3545 shstrtab_hdr
->sh_addr
= 0;
3546 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3547 shstrtab_hdr
->sh_entsize
= 0;
3548 shstrtab_hdr
->sh_link
= 0;
3549 shstrtab_hdr
->sh_info
= 0;
3550 /* sh_offset is set in assign_file_positions_except_relocs. */
3551 shstrtab_hdr
->sh_addralign
= 1;
3553 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3556 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3559 Elf_Internal_Shdr
*hdr
;
3561 off
= elf_tdata (abfd
)->next_file_pos
;
3563 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3564 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3566 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3567 if (hdr
->sh_size
!= 0)
3568 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3570 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3571 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3573 elf_tdata (abfd
)->next_file_pos
= off
;
3575 /* Now that we know where the .strtab section goes, write it
3577 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3578 || ! _bfd_stringtab_emit (abfd
, strtab
))
3580 _bfd_stringtab_free (strtab
);
3583 abfd
->output_has_begun
= TRUE
;
3588 /* Make an initial estimate of the size of the program header. If we
3589 get the number wrong here, we'll redo section placement. */
3591 static bfd_size_type
3592 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3596 const struct elf_backend_data
*bed
;
3598 /* Assume we will need exactly two PT_LOAD segments: one for text
3599 and one for data. */
3602 s
= bfd_get_section_by_name (abfd
, ".interp");
3603 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3605 /* If we have a loadable interpreter section, we need a
3606 PT_INTERP segment. In this case, assume we also need a
3607 PT_PHDR segment, although that may not be true for all
3612 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3614 /* We need a PT_DYNAMIC segment. */
3618 if (elf_tdata (abfd
)->eh_frame_hdr
)
3620 /* We need a PT_GNU_EH_FRAME segment. */
3624 if (elf_tdata (abfd
)->stack_flags
)
3626 /* We need a PT_GNU_STACK segment. */
3630 if (elf_tdata (abfd
)->relro
)
3632 /* We need a PT_GNU_RELRO segment. */
3636 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3638 if ((s
->flags
& SEC_LOAD
) != 0
3639 && strncmp (s
->name
, ".note", 5) == 0)
3641 /* We need a PT_NOTE segment. */
3646 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3648 if (s
->flags
& SEC_THREAD_LOCAL
)
3650 /* We need a PT_TLS segment. */
3656 /* Let the backend count up any program headers it might need. */
3657 bed
= get_elf_backend_data (abfd
);
3658 if (bed
->elf_backend_additional_program_headers
)
3662 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3668 return segs
* bed
->s
->sizeof_phdr
;
3671 /* Create a mapping from a set of sections to a program segment. */
3673 static struct elf_segment_map
*
3674 make_mapping (bfd
*abfd
,
3675 asection
**sections
,
3680 struct elf_segment_map
*m
;
3685 amt
= sizeof (struct elf_segment_map
);
3686 amt
+= (to
- from
- 1) * sizeof (asection
*);
3687 m
= bfd_zalloc (abfd
, amt
);
3691 m
->p_type
= PT_LOAD
;
3692 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3693 m
->sections
[i
- from
] = *hdrpp
;
3694 m
->count
= to
- from
;
3696 if (from
== 0 && phdr
)
3698 /* Include the headers in the first PT_LOAD segment. */
3699 m
->includes_filehdr
= 1;
3700 m
->includes_phdrs
= 1;
3706 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3709 struct elf_segment_map
*
3710 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3712 struct elf_segment_map
*m
;
3714 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3718 m
->p_type
= PT_DYNAMIC
;
3720 m
->sections
[0] = dynsec
;
3725 /* Possibly add or remove segments from the segment map. */
3728 elf_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
3730 struct elf_segment_map
*m
;
3731 const struct elf_backend_data
*bed
;
3733 /* The placement algorithm assumes that non allocated sections are
3734 not in PT_LOAD segments. We ensure this here by removing such
3735 sections from the segment map. We also remove excluded
3737 for (m
= elf_tdata (abfd
)->segment_map
;
3741 unsigned int i
, new_count
;
3744 for (i
= 0; i
< m
->count
; i
++)
3746 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3747 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
3748 || m
->p_type
!= PT_LOAD
))
3751 m
->sections
[new_count
] = m
->sections
[i
];
3757 if (new_count
!= m
->count
)
3758 m
->count
= new_count
;
3761 bed
= get_elf_backend_data (abfd
);
3762 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3764 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3771 /* Set up a mapping from BFD sections to program segments. */
3774 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3777 struct elf_segment_map
*m
;
3778 asection
**sections
= NULL
;
3779 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3781 if (elf_tdata (abfd
)->segment_map
== NULL
3782 && bfd_count_sections (abfd
) != 0)
3786 struct elf_segment_map
*mfirst
;
3787 struct elf_segment_map
**pm
;
3790 unsigned int phdr_index
;
3791 bfd_vma maxpagesize
;
3793 bfd_boolean phdr_in_segment
= TRUE
;
3794 bfd_boolean writable
;
3796 asection
*first_tls
= NULL
;
3797 asection
*dynsec
, *eh_frame_hdr
;
3800 /* Select the allocated sections, and sort them. */
3802 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3803 if (sections
== NULL
)
3807 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3809 if ((s
->flags
& SEC_ALLOC
) != 0)
3815 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3818 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3820 /* Build the mapping. */
3825 /* If we have a .interp section, then create a PT_PHDR segment for
3826 the program headers and a PT_INTERP segment for the .interp
3828 s
= bfd_get_section_by_name (abfd
, ".interp");
3829 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3831 amt
= sizeof (struct elf_segment_map
);
3832 m
= bfd_zalloc (abfd
, amt
);
3836 m
->p_type
= PT_PHDR
;
3837 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3838 m
->p_flags
= PF_R
| PF_X
;
3839 m
->p_flags_valid
= 1;
3840 m
->includes_phdrs
= 1;
3845 amt
= sizeof (struct elf_segment_map
);
3846 m
= bfd_zalloc (abfd
, amt
);
3850 m
->p_type
= PT_INTERP
;
3858 /* Look through the sections. We put sections in the same program
3859 segment when the start of the second section can be placed within
3860 a few bytes of the end of the first section. */
3864 maxpagesize
= bed
->maxpagesize
;
3866 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3868 && (dynsec
->flags
& SEC_LOAD
) == 0)
3871 /* Deal with -Ttext or something similar such that the first section
3872 is not adjacent to the program headers. This is an
3873 approximation, since at this point we don't know exactly how many
3874 program headers we will need. */
3877 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3879 if (phdr_size
== (bfd_size_type
) -1)
3880 phdr_size
= get_program_header_size (abfd
, info
);
3881 if ((abfd
->flags
& D_PAGED
) == 0
3882 || sections
[0]->lma
< phdr_size
3883 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3884 phdr_in_segment
= FALSE
;
3887 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3890 bfd_boolean new_segment
;
3894 /* See if this section and the last one will fit in the same
3897 if (last_hdr
== NULL
)
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment
= FALSE
;
3903 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3910 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3911 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3913 /* If putting this section in this segment would force us to
3914 skip a page in the segment, then we need a new segment. */
3917 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3918 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3920 /* We don't want to put a loadable section after a
3921 nonloadable section in the same segment.
3922 Consider .tbss sections as loadable for this purpose. */
3925 else if ((abfd
->flags
& D_PAGED
) == 0)
3927 /* If the file is not demand paged, which means that we
3928 don't require the sections to be correctly aligned in the
3929 file, then there is no other reason for a new segment. */
3930 new_segment
= FALSE
;
3933 && (hdr
->flags
& SEC_READONLY
) == 0
3934 && (((last_hdr
->lma
+ last_size
- 1)
3935 & ~(maxpagesize
- 1))
3936 != (hdr
->lma
& ~(maxpagesize
- 1))))
3938 /* We don't want to put a writable section in a read only
3939 segment, unless they are on the same page in memory
3940 anyhow. We already know that the last section does not
3941 bring us past the current section on the page, so the
3942 only case in which the new section is not on the same
3943 page as the previous section is when the previous section
3944 ends precisely on a page boundary. */
3949 /* Otherwise, we can use the same segment. */
3950 new_segment
= FALSE
;
3955 if ((hdr
->flags
& SEC_READONLY
) == 0)
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3960 != SEC_THREAD_LOCAL
)
3961 last_size
= hdr
->size
;
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3970 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3977 if ((hdr
->flags
& SEC_READONLY
) == 0)
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3985 last_size
= hdr
->size
;
3989 phdr_in_segment
= FALSE
;
3992 /* Create a final PT_LOAD program segment. */
3993 if (last_hdr
!= NULL
)
3995 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4003 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4006 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4013 /* For each loadable .note section, add a PT_NOTE segment. We don't
4014 use bfd_get_section_by_name, because if we link together
4015 nonloadable .note sections and loadable .note sections, we will
4016 generate two .note sections in the output file. FIXME: Using
4017 names for section types is bogus anyhow. */
4018 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4020 if ((s
->flags
& SEC_LOAD
) != 0
4021 && strncmp (s
->name
, ".note", 5) == 0)
4023 amt
= sizeof (struct elf_segment_map
);
4024 m
= bfd_zalloc (abfd
, amt
);
4028 m
->p_type
= PT_NOTE
;
4035 if (s
->flags
& SEC_THREAD_LOCAL
)
4043 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4048 amt
= sizeof (struct elf_segment_map
);
4049 amt
+= (tls_count
- 1) * sizeof (asection
*);
4050 m
= bfd_zalloc (abfd
, amt
);
4055 m
->count
= tls_count
;
4056 /* Mandated PF_R. */
4058 m
->p_flags_valid
= 1;
4059 for (i
= 0; i
< tls_count
; ++i
)
4061 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4062 m
->sections
[i
] = first_tls
;
4063 first_tls
= first_tls
->next
;
4070 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4072 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4073 if (eh_frame_hdr
!= NULL
4074 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4076 amt
= sizeof (struct elf_segment_map
);
4077 m
= bfd_zalloc (abfd
, amt
);
4081 m
->p_type
= PT_GNU_EH_FRAME
;
4083 m
->sections
[0] = eh_frame_hdr
->output_section
;
4089 if (elf_tdata (abfd
)->stack_flags
)
4091 amt
= sizeof (struct elf_segment_map
);
4092 m
= bfd_zalloc (abfd
, amt
);
4096 m
->p_type
= PT_GNU_STACK
;
4097 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4098 m
->p_flags_valid
= 1;
4104 if (elf_tdata (abfd
)->relro
)
4106 amt
= sizeof (struct elf_segment_map
);
4107 m
= bfd_zalloc (abfd
, amt
);
4111 m
->p_type
= PT_GNU_RELRO
;
4113 m
->p_flags_valid
= 1;
4120 elf_tdata (abfd
)->segment_map
= mfirst
;
4123 if (!elf_modify_segment_map (abfd
, info
))
4126 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4128 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4133 if (sections
!= NULL
)
4138 /* Sort sections by address. */
4141 elf_sort_sections (const void *arg1
, const void *arg2
)
4143 const asection
*sec1
= *(const asection
**) arg1
;
4144 const asection
*sec2
= *(const asection
**) arg2
;
4145 bfd_size_type size1
, size2
;
4147 /* Sort by LMA first, since this is the address used to
4148 place the section into a segment. */
4149 if (sec1
->lma
< sec2
->lma
)
4151 else if (sec1
->lma
> sec2
->lma
)
4154 /* Then sort by VMA. Normally the LMA and the VMA will be
4155 the same, and this will do nothing. */
4156 if (sec1
->vma
< sec2
->vma
)
4158 else if (sec1
->vma
> sec2
->vma
)
4161 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4163 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4169 /* If the indicies are the same, do not return 0
4170 here, but continue to try the next comparison. */
4171 if (sec1
->target_index
- sec2
->target_index
!= 0)
4172 return sec1
->target_index
- sec2
->target_index
;
4177 else if (TOEND (sec2
))
4182 /* Sort by size, to put zero sized sections
4183 before others at the same address. */
4185 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4186 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4193 return sec1
->target_index
- sec2
->target_index
;
4196 /* Ian Lance Taylor writes:
4198 We shouldn't be using % with a negative signed number. That's just
4199 not good. We have to make sure either that the number is not
4200 negative, or that the number has an unsigned type. When the types
4201 are all the same size they wind up as unsigned. When file_ptr is a
4202 larger signed type, the arithmetic winds up as signed long long,
4205 What we're trying to say here is something like ``increase OFF by
4206 the least amount that will cause it to be equal to the VMA modulo
4208 /* In other words, something like:
4210 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4211 off_offset = off % bed->maxpagesize;
4212 if (vma_offset < off_offset)
4213 adjustment = vma_offset + bed->maxpagesize - off_offset;
4215 adjustment = vma_offset - off_offset;
4217 which can can be collapsed into the expression below. */
4220 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4222 return ((vma
- off
) % maxpagesize
);
4225 /* Assign file positions to the sections based on the mapping from
4226 sections to segments. This function also sets up some fields in
4230 assign_file_positions_for_load_sections (bfd
*abfd
,
4231 struct bfd_link_info
*link_info
)
4233 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4234 struct elf_segment_map
*m
;
4235 Elf_Internal_Phdr
*phdrs
;
4236 Elf_Internal_Phdr
*p
;
4238 bfd_size_type maxpagesize
;
4242 if (link_info
== NULL
4243 && !elf_modify_segment_map (abfd
, link_info
))
4247 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4250 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4251 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4252 elf_elfheader (abfd
)->e_phnum
= alloc
;
4254 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4255 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4257 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4258 == alloc
* bed
->s
->sizeof_phdr
);
4262 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4266 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4267 elf_tdata (abfd
)->phdr
= phdrs
;
4272 if ((abfd
->flags
& D_PAGED
) != 0)
4273 maxpagesize
= bed
->maxpagesize
;
4275 off
= bed
->s
->sizeof_ehdr
;
4276 off
+= alloc
* bed
->s
->sizeof_phdr
;
4278 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4284 /* If elf_segment_map is not from map_sections_to_segments, the
4285 sections may not be correctly ordered. NOTE: sorting should
4286 not be done to the PT_NOTE section of a corefile, which may
4287 contain several pseudo-sections artificially created by bfd.
4288 Sorting these pseudo-sections breaks things badly. */
4290 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4291 && m
->p_type
== PT_NOTE
))
4292 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4295 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4296 number of sections with contents contributing to both p_filesz
4297 and p_memsz, followed by a number of sections with no contents
4298 that just contribute to p_memsz. In this loop, OFF tracks next
4299 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4300 an adjustment we use for segments that have no file contents
4301 but need zero filled memory allocation. */
4303 p
->p_type
= m
->p_type
;
4304 p
->p_flags
= m
->p_flags
;
4309 p
->p_vaddr
= m
->sections
[0]->vma
;
4311 if (m
->p_paddr_valid
)
4312 p
->p_paddr
= m
->p_paddr
;
4313 else if (m
->count
== 0)
4316 p
->p_paddr
= m
->sections
[0]->lma
;
4318 if (p
->p_type
== PT_LOAD
4319 && (abfd
->flags
& D_PAGED
) != 0)
4321 /* p_align in demand paged PT_LOAD segments effectively stores
4322 the maximum page size. When copying an executable with
4323 objcopy, we set m->p_align from the input file. Use this
4324 value for maxpagesize rather than bed->maxpagesize, which
4325 may be different. Note that we use maxpagesize for PT_TLS
4326 segment alignment later in this function, so we are relying
4327 on at least one PT_LOAD segment appearing before a PT_TLS
4329 if (m
->p_align_valid
)
4330 maxpagesize
= m
->p_align
;
4332 p
->p_align
= maxpagesize
;
4334 else if (m
->count
== 0)
4335 p
->p_align
= 1 << bed
->s
->log_file_align
;
4339 if (p
->p_type
== PT_LOAD
4342 bfd_size_type align
;
4344 unsigned int align_power
= 0;
4346 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4348 unsigned int secalign
;
4350 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4351 if (secalign
> align_power
)
4352 align_power
= secalign
;
4354 align
= (bfd_size_type
) 1 << align_power
;
4356 if (align
< maxpagesize
)
4357 align
= maxpagesize
;
4359 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4362 && !m
->includes_filehdr
4363 && !m
->includes_phdrs
4364 && (ufile_ptr
) off
>= align
)
4366 /* If the first section isn't loadable, the same holds for
4367 any other sections. Since the segment won't need file
4368 space, we can make p_offset overlap some prior segment.
4369 However, .tbss is special. If a segment starts with
4370 .tbss, we need to look at the next section to decide
4371 whether the segment has any loadable sections. */
4373 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4375 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4379 voff
= adjust
- align
;
4385 /* Make sure the .dynamic section is the first section in the
4386 PT_DYNAMIC segment. */
4387 else if (p
->p_type
== PT_DYNAMIC
4389 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4392 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4394 bfd_set_error (bfd_error_bad_value
);
4402 if (m
->includes_filehdr
)
4404 if (! m
->p_flags_valid
)
4407 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4408 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4411 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4413 if (p
->p_vaddr
< (bfd_vma
) off
)
4415 (*_bfd_error_handler
)
4416 (_("%B: Not enough room for program headers, try linking with -N"),
4418 bfd_set_error (bfd_error_bad_value
);
4423 if (! m
->p_paddr_valid
)
4428 if (m
->includes_phdrs
)
4430 if (! m
->p_flags_valid
)
4433 if (!m
->includes_filehdr
)
4435 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4439 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4440 p
->p_vaddr
-= off
- p
->p_offset
;
4441 if (! m
->p_paddr_valid
)
4442 p
->p_paddr
-= off
- p
->p_offset
;
4446 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4447 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4450 if (p
->p_type
== PT_LOAD
4451 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4453 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4454 p
->p_offset
= off
+ voff
;
4459 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4460 p
->p_filesz
+= adjust
;
4461 p
->p_memsz
+= adjust
;
4465 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4466 maps. Set filepos for sections in PT_LOAD segments, and in
4467 core files, for sections in PT_NOTE segments.
4468 assign_file_positions_for_non_load_sections will set filepos
4469 for other sections and update p_filesz for other segments. */
4470 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4474 bfd_size_type align
;
4478 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4480 if (p
->p_type
== PT_LOAD
4481 || p
->p_type
== PT_TLS
)
4483 bfd_signed_vma adjust
;
4485 if ((flags
& SEC_LOAD
) != 0)
4487 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4490 (*_bfd_error_handler
)
4491 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4492 abfd
, sec
, (unsigned long) sec
->lma
);
4496 p
->p_filesz
+= adjust
;
4497 p
->p_memsz
+= adjust
;
4499 /* .tbss is special. It doesn't contribute to p_memsz of
4501 else if ((flags
& SEC_ALLOC
) != 0
4502 && ((flags
& SEC_THREAD_LOCAL
) == 0
4503 || p
->p_type
== PT_TLS
))
4505 /* The section VMA must equal the file position
4506 modulo the page size. */
4507 bfd_size_type page
= align
;
4508 if (page
< maxpagesize
)
4510 adjust
= vma_page_aligned_bias (sec
->vma
,
4511 p
->p_vaddr
+ p
->p_memsz
,
4513 p
->p_memsz
+= adjust
;
4517 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4519 /* The section at i == 0 is the one that actually contains
4525 p
->p_filesz
= sec
->size
;
4531 /* The rest are fake sections that shouldn't be written. */
4540 if (p
->p_type
== PT_LOAD
)
4543 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4544 1997, and the exact reason for it isn't clear. One
4545 plausible explanation is that it is to work around
4546 a problem we have with linker scripts using data
4547 statements in NOLOAD sections. I don't think it
4548 makes a great deal of sense to have such a section
4549 assigned to a PT_LOAD segment, but apparently
4550 people do this. The data statement results in a
4551 bfd_data_link_order being built, and these need
4552 section contents to write into. Eventually, we get
4553 to _bfd_elf_write_object_contents which writes any
4554 section with contents to the output. Make room
4555 here for the write, so that following segments are
4557 if ((flags
& SEC_LOAD
) != 0
4558 || (flags
& SEC_HAS_CONTENTS
) != 0)
4562 if ((flags
& SEC_LOAD
) != 0)
4564 p
->p_filesz
+= sec
->size
;
4565 p
->p_memsz
+= sec
->size
;
4568 /* .tbss is special. It doesn't contribute to p_memsz of
4570 else if ((flags
& SEC_ALLOC
) != 0
4571 && ((flags
& SEC_THREAD_LOCAL
) == 0
4572 || p
->p_type
== PT_TLS
))
4573 p
->p_memsz
+= sec
->size
;
4575 if (p
->p_type
== PT_TLS
4577 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4579 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4581 p
->p_memsz
+= o
->offset
+ o
->size
;
4584 if (align
> p
->p_align
4585 && (p
->p_type
!= PT_LOAD
4586 || (abfd
->flags
& D_PAGED
) == 0))
4590 if (! m
->p_flags_valid
)
4593 if ((flags
& SEC_CODE
) != 0)
4595 if ((flags
& SEC_READONLY
) == 0)
4601 elf_tdata (abfd
)->next_file_pos
= off
;
4605 /* Assign file positions for the other sections. */
4608 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4609 struct bfd_link_info
*link_info
)
4611 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4612 Elf_Internal_Shdr
**i_shdrpp
;
4613 Elf_Internal_Shdr
**hdrpp
;
4614 Elf_Internal_Phdr
*phdrs
;
4615 Elf_Internal_Phdr
*p
;
4616 struct elf_segment_map
*m
;
4617 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4618 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4620 unsigned int num_sec
;
4624 i_shdrpp
= elf_elfsections (abfd
);
4625 num_sec
= elf_numsections (abfd
);
4626 off
= elf_tdata (abfd
)->next_file_pos
;
4627 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4629 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4630 Elf_Internal_Shdr
*hdr
;
4633 if (hdr
->bfd_section
!= NULL
4634 && hdr
->bfd_section
->filepos
!= 0)
4635 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4636 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4638 ((*_bfd_error_handler
)
4639 (_("%B: warning: allocated section `%s' not in segment"),
4641 (hdr
->bfd_section
== NULL
4643 : hdr
->bfd_section
->name
)));
4644 if ((abfd
->flags
& D_PAGED
) != 0)
4645 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4648 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4650 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4653 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4654 && hdr
->bfd_section
== NULL
)
4655 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4656 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4657 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4658 hdr
->sh_offset
= -1;
4660 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4662 if (i
== SHN_LORESERVE
- 1)
4664 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4665 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4669 /* Now that we have set the section file positions, we can set up
4670 the file positions for the non PT_LOAD segments. */
4674 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4676 phdrs
= elf_tdata (abfd
)->phdr
;
4677 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4682 if (p
->p_type
!= PT_LOAD
)
4685 if (m
->includes_filehdr
)
4687 filehdr_vaddr
= p
->p_vaddr
;
4688 filehdr_paddr
= p
->p_paddr
;
4690 if (m
->includes_phdrs
)
4692 phdrs_vaddr
= p
->p_vaddr
;
4693 phdrs_paddr
= p
->p_paddr
;
4694 if (m
->includes_filehdr
)
4696 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4697 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4702 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4708 if (p
->p_type
!= PT_LOAD
4709 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4711 Elf_Internal_Shdr
*hdr
;
4712 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4714 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4715 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4716 - m
->sections
[0]->filepos
);
4717 if (hdr
->sh_type
!= SHT_NOBITS
)
4718 p
->p_filesz
+= hdr
->sh_size
;
4720 p
->p_offset
= m
->sections
[0]->filepos
;
4725 if (m
->includes_filehdr
)
4727 p
->p_vaddr
= filehdr_vaddr
;
4728 if (! m
->p_paddr_valid
)
4729 p
->p_paddr
= filehdr_paddr
;
4731 else if (m
->includes_phdrs
)
4733 p
->p_vaddr
= phdrs_vaddr
;
4734 if (! m
->p_paddr_valid
)
4735 p
->p_paddr
= phdrs_paddr
;
4737 else if (p
->p_type
== PT_GNU_RELRO
)
4739 Elf_Internal_Phdr
*lp
;
4741 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4743 if (lp
->p_type
== PT_LOAD
4744 && lp
->p_vaddr
<= link_info
->relro_end
4745 && lp
->p_vaddr
>= link_info
->relro_start
4746 && (lp
->p_vaddr
+ lp
->p_filesz
4747 >= link_info
->relro_end
))
4751 if (lp
< phdrs
+ count
4752 && link_info
->relro_end
> lp
->p_vaddr
)
4754 p
->p_vaddr
= lp
->p_vaddr
;
4755 p
->p_paddr
= lp
->p_paddr
;
4756 p
->p_offset
= lp
->p_offset
;
4757 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4758 p
->p_memsz
= p
->p_filesz
;
4760 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4764 memset (p
, 0, sizeof *p
);
4765 p
->p_type
= PT_NULL
;
4771 elf_tdata (abfd
)->next_file_pos
= off
;
4776 /* Work out the file positions of all the sections. This is called by
4777 _bfd_elf_compute_section_file_positions. All the section sizes and
4778 VMAs must be known before this is called.
4780 Reloc sections come in two flavours: Those processed specially as
4781 "side-channel" data attached to a section to which they apply, and
4782 those that bfd doesn't process as relocations. The latter sort are
4783 stored in a normal bfd section by bfd_section_from_shdr. We don't
4784 consider the former sort here, unless they form part of the loadable
4785 image. Reloc sections not assigned here will be handled later by
4786 assign_file_positions_for_relocs.
4788 We also don't set the positions of the .symtab and .strtab here. */
4791 assign_file_positions_except_relocs (bfd
*abfd
,
4792 struct bfd_link_info
*link_info
)
4794 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4795 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4797 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4799 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4800 && bfd_get_format (abfd
) != bfd_core
)
4802 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4803 unsigned int num_sec
= elf_numsections (abfd
);
4804 Elf_Internal_Shdr
**hdrpp
;
4807 /* Start after the ELF header. */
4808 off
= i_ehdrp
->e_ehsize
;
4810 /* We are not creating an executable, which means that we are
4811 not creating a program header, and that the actual order of
4812 the sections in the file is unimportant. */
4813 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4815 Elf_Internal_Shdr
*hdr
;
4818 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4819 && hdr
->bfd_section
== NULL
)
4820 || i
== tdata
->symtab_section
4821 || i
== tdata
->symtab_shndx_section
4822 || i
== tdata
->strtab_section
)
4824 hdr
->sh_offset
= -1;
4827 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4829 if (i
== SHN_LORESERVE
- 1)
4831 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4832 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4840 /* Assign file positions for the loaded sections based on the
4841 assignment of sections to segments. */
4842 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4845 /* And for non-load sections. */
4846 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4849 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4851 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4855 /* Write out the program headers. */
4856 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4857 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4858 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4861 off
= tdata
->next_file_pos
;
4864 /* Place the section headers. */
4865 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4866 i_ehdrp
->e_shoff
= off
;
4867 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4869 tdata
->next_file_pos
= off
;
4875 prep_headers (bfd
*abfd
)
4877 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4878 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4879 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4880 struct elf_strtab_hash
*shstrtab
;
4881 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4883 i_ehdrp
= elf_elfheader (abfd
);
4884 i_shdrp
= elf_elfsections (abfd
);
4886 shstrtab
= _bfd_elf_strtab_init ();
4887 if (shstrtab
== NULL
)
4890 elf_shstrtab (abfd
) = shstrtab
;
4892 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4893 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4894 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4895 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4897 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4898 i_ehdrp
->e_ident
[EI_DATA
] =
4899 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4900 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4902 if ((abfd
->flags
& DYNAMIC
) != 0)
4903 i_ehdrp
->e_type
= ET_DYN
;
4904 else if ((abfd
->flags
& EXEC_P
) != 0)
4905 i_ehdrp
->e_type
= ET_EXEC
;
4906 else if (bfd_get_format (abfd
) == bfd_core
)
4907 i_ehdrp
->e_type
= ET_CORE
;
4909 i_ehdrp
->e_type
= ET_REL
;
4911 switch (bfd_get_arch (abfd
))
4913 case bfd_arch_unknown
:
4914 i_ehdrp
->e_machine
= EM_NONE
;
4917 /* There used to be a long list of cases here, each one setting
4918 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4919 in the corresponding bfd definition. To avoid duplication,
4920 the switch was removed. Machines that need special handling
4921 can generally do it in elf_backend_final_write_processing(),
4922 unless they need the information earlier than the final write.
4923 Such need can generally be supplied by replacing the tests for
4924 e_machine with the conditions used to determine it. */
4926 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4929 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4930 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4932 /* No program header, for now. */
4933 i_ehdrp
->e_phoff
= 0;
4934 i_ehdrp
->e_phentsize
= 0;
4935 i_ehdrp
->e_phnum
= 0;
4937 /* Each bfd section is section header entry. */
4938 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4939 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4941 /* If we're building an executable, we'll need a program header table. */
4942 if (abfd
->flags
& EXEC_P
)
4943 /* It all happens later. */
4947 i_ehdrp
->e_phentsize
= 0;
4949 i_ehdrp
->e_phoff
= 0;
4952 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4953 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4954 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4955 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4956 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4957 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4958 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4959 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4960 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4966 /* Assign file positions for all the reloc sections which are not part
4967 of the loadable file image. */
4970 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4973 unsigned int i
, num_sec
;
4974 Elf_Internal_Shdr
**shdrpp
;
4976 off
= elf_tdata (abfd
)->next_file_pos
;
4978 num_sec
= elf_numsections (abfd
);
4979 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4981 Elf_Internal_Shdr
*shdrp
;
4984 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4985 && shdrp
->sh_offset
== -1)
4986 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4989 elf_tdata (abfd
)->next_file_pos
= off
;
4993 _bfd_elf_write_object_contents (bfd
*abfd
)
4995 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4996 Elf_Internal_Ehdr
*i_ehdrp
;
4997 Elf_Internal_Shdr
**i_shdrp
;
4999 unsigned int count
, num_sec
;
5001 if (! abfd
->output_has_begun
5002 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5005 i_shdrp
= elf_elfsections (abfd
);
5006 i_ehdrp
= elf_elfheader (abfd
);
5009 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5013 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5015 /* After writing the headers, we need to write the sections too... */
5016 num_sec
= elf_numsections (abfd
);
5017 for (count
= 1; count
< num_sec
; count
++)
5019 if (bed
->elf_backend_section_processing
)
5020 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5021 if (i_shdrp
[count
]->contents
)
5023 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5025 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5026 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5029 if (count
== SHN_LORESERVE
- 1)
5030 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5033 /* Write out the section header names. */
5034 if (elf_shstrtab (abfd
) != NULL
5035 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5036 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5039 if (bed
->elf_backend_final_write_processing
)
5040 (*bed
->elf_backend_final_write_processing
) (abfd
,
5041 elf_tdata (abfd
)->linker
);
5043 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5047 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5049 /* Hopefully this can be done just like an object file. */
5050 return _bfd_elf_write_object_contents (abfd
);
5053 /* Given a section, search the header to find them. */
5056 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5058 const struct elf_backend_data
*bed
;
5061 if (elf_section_data (asect
) != NULL
5062 && elf_section_data (asect
)->this_idx
!= 0)
5063 return elf_section_data (asect
)->this_idx
;
5065 if (bfd_is_abs_section (asect
))
5067 else if (bfd_is_com_section (asect
))
5069 else if (bfd_is_und_section (asect
))
5074 bed
= get_elf_backend_data (abfd
);
5075 if (bed
->elf_backend_section_from_bfd_section
)
5079 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5084 bfd_set_error (bfd_error_nonrepresentable_section
);
5089 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5093 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5095 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5097 flagword flags
= asym_ptr
->flags
;
5099 /* When gas creates relocations against local labels, it creates its
5100 own symbol for the section, but does put the symbol into the
5101 symbol chain, so udata is 0. When the linker is generating
5102 relocatable output, this section symbol may be for one of the
5103 input sections rather than the output section. */
5104 if (asym_ptr
->udata
.i
== 0
5105 && (flags
& BSF_SECTION_SYM
)
5106 && asym_ptr
->section
)
5111 sec
= asym_ptr
->section
;
5112 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5113 sec
= sec
->output_section
;
5114 if (sec
->owner
== abfd
5115 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5116 && elf_section_syms (abfd
)[indx
] != NULL
)
5117 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5120 idx
= asym_ptr
->udata
.i
;
5124 /* This case can occur when using --strip-symbol on a symbol
5125 which is used in a relocation entry. */
5126 (*_bfd_error_handler
)
5127 (_("%B: symbol `%s' required but not present"),
5128 abfd
, bfd_asymbol_name (asym_ptr
));
5129 bfd_set_error (bfd_error_no_symbols
);
5136 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5137 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5138 elf_symbol_flags (flags
));
5146 /* Rewrite program header information. */
5149 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5151 Elf_Internal_Ehdr
*iehdr
;
5152 struct elf_segment_map
*map
;
5153 struct elf_segment_map
*map_first
;
5154 struct elf_segment_map
**pointer_to_map
;
5155 Elf_Internal_Phdr
*segment
;
5158 unsigned int num_segments
;
5159 bfd_boolean phdr_included
= FALSE
;
5160 bfd_vma maxpagesize
;
5161 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5162 unsigned int phdr_adjust_num
= 0;
5163 const struct elf_backend_data
*bed
;
5165 bed
= get_elf_backend_data (ibfd
);
5166 iehdr
= elf_elfheader (ibfd
);
5169 pointer_to_map
= &map_first
;
5171 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5172 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5174 /* Returns the end address of the segment + 1. */
5175 #define SEGMENT_END(segment, start) \
5176 (start + (segment->p_memsz > segment->p_filesz \
5177 ? segment->p_memsz : segment->p_filesz))
5179 #define SECTION_SIZE(section, segment) \
5180 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5181 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5182 ? section->size : 0)
5184 /* Returns TRUE if the given section is contained within
5185 the given segment. VMA addresses are compared. */
5186 #define IS_CONTAINED_BY_VMA(section, segment) \
5187 (section->vma >= segment->p_vaddr \
5188 && (section->vma + SECTION_SIZE (section, segment) \
5189 <= (SEGMENT_END (segment, segment->p_vaddr))))
5191 /* Returns TRUE if the given section is contained within
5192 the given segment. LMA addresses are compared. */
5193 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5194 (section->lma >= base \
5195 && (section->lma + SECTION_SIZE (section, segment) \
5196 <= SEGMENT_END (segment, base)))
5198 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5199 #define IS_COREFILE_NOTE(p, s) \
5200 (p->p_type == PT_NOTE \
5201 && bfd_get_format (ibfd) == bfd_core \
5202 && s->vma == 0 && s->lma == 0 \
5203 && (bfd_vma) s->filepos >= p->p_offset \
5204 && ((bfd_vma) s->filepos + s->size \
5205 <= p->p_offset + p->p_filesz))
5207 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5208 linker, which generates a PT_INTERP section with p_vaddr and
5209 p_memsz set to 0. */
5210 #define IS_SOLARIS_PT_INTERP(p, s) \
5212 && p->p_paddr == 0 \
5213 && p->p_memsz == 0 \
5214 && p->p_filesz > 0 \
5215 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5217 && (bfd_vma) s->filepos >= p->p_offset \
5218 && ((bfd_vma) s->filepos + s->size \
5219 <= p->p_offset + p->p_filesz))
5221 /* Decide if the given section should be included in the given segment.
5222 A section will be included if:
5223 1. It is within the address space of the segment -- we use the LMA
5224 if that is set for the segment and the VMA otherwise,
5225 2. It is an allocated segment,
5226 3. There is an output section associated with it,
5227 4. The section has not already been allocated to a previous segment.
5228 5. PT_GNU_STACK segments do not include any sections.
5229 6. PT_TLS segment includes only SHF_TLS sections.
5230 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5231 8. PT_DYNAMIC should not contain empty sections at the beginning
5232 (with the possible exception of .dynamic). */
5233 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5234 ((((segment->p_paddr \
5235 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5236 : IS_CONTAINED_BY_VMA (section, segment)) \
5237 && (section->flags & SEC_ALLOC) != 0) \
5238 || IS_COREFILE_NOTE (segment, section)) \
5239 && section->output_section != NULL \
5240 && segment->p_type != PT_GNU_STACK \
5241 && (segment->p_type != PT_TLS \
5242 || (section->flags & SEC_THREAD_LOCAL)) \
5243 && (segment->p_type == PT_LOAD \
5244 || segment->p_type == PT_TLS \
5245 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5246 && (segment->p_type != PT_DYNAMIC \
5247 || SECTION_SIZE (section, segment) > 0 \
5248 || (segment->p_paddr \
5249 ? segment->p_paddr != section->lma \
5250 : segment->p_vaddr != section->vma) \
5251 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5253 && ! section->segment_mark)
5255 /* Returns TRUE iff seg1 starts after the end of seg2. */
5256 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5257 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5259 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5260 their VMA address ranges and their LMA address ranges overlap.
5261 It is possible to have overlapping VMA ranges without overlapping LMA
5262 ranges. RedBoot images for example can have both .data and .bss mapped
5263 to the same VMA range, but with the .data section mapped to a different
5265 #define SEGMENT_OVERLAPS(seg1, seg2) \
5266 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5267 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5268 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5269 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5271 /* Initialise the segment mark field. */
5272 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5273 section
->segment_mark
= FALSE
;
5275 /* Scan through the segments specified in the program header
5276 of the input BFD. For this first scan we look for overlaps
5277 in the loadable segments. These can be created by weird
5278 parameters to objcopy. Also, fix some solaris weirdness. */
5279 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5284 Elf_Internal_Phdr
*segment2
;
5286 if (segment
->p_type
== PT_INTERP
)
5287 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5288 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5290 /* Mininal change so that the normal section to segment
5291 assignment code will work. */
5292 segment
->p_vaddr
= section
->vma
;
5296 if (segment
->p_type
!= PT_LOAD
)
5299 /* Determine if this segment overlaps any previous segments. */
5300 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5302 bfd_signed_vma extra_length
;
5304 if (segment2
->p_type
!= PT_LOAD
5305 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5308 /* Merge the two segments together. */
5309 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5311 /* Extend SEGMENT2 to include SEGMENT and then delete
5314 SEGMENT_END (segment
, segment
->p_vaddr
)
5315 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5317 if (extra_length
> 0)
5319 segment2
->p_memsz
+= extra_length
;
5320 segment2
->p_filesz
+= extra_length
;
5323 segment
->p_type
= PT_NULL
;
5325 /* Since we have deleted P we must restart the outer loop. */
5327 segment
= elf_tdata (ibfd
)->phdr
;
5332 /* Extend SEGMENT to include SEGMENT2 and then delete
5335 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5336 - SEGMENT_END (segment
, segment
->p_vaddr
);
5338 if (extra_length
> 0)
5340 segment
->p_memsz
+= extra_length
;
5341 segment
->p_filesz
+= extra_length
;
5344 segment2
->p_type
= PT_NULL
;
5349 /* The second scan attempts to assign sections to segments. */
5350 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5354 unsigned int section_count
;
5355 asection
** sections
;
5356 asection
* output_section
;
5358 bfd_vma matching_lma
;
5359 bfd_vma suggested_lma
;
5363 if (segment
->p_type
== PT_NULL
)
5366 /* Compute how many sections might be placed into this segment. */
5367 for (section
= ibfd
->sections
, section_count
= 0;
5369 section
= section
->next
)
5370 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5373 /* Allocate a segment map big enough to contain
5374 all of the sections we have selected. */
5375 amt
= sizeof (struct elf_segment_map
);
5376 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5377 map
= bfd_alloc (obfd
, amt
);
5381 /* Initialise the fields of the segment map. Default to
5382 using the physical address of the segment in the input BFD. */
5384 map
->p_type
= segment
->p_type
;
5385 map
->p_flags
= segment
->p_flags
;
5386 map
->p_flags_valid
= 1;
5387 map
->p_paddr
= segment
->p_paddr
;
5388 map
->p_paddr_valid
= 1;
5390 /* Determine if this segment contains the ELF file header
5391 and if it contains the program headers themselves. */
5392 map
->includes_filehdr
= (segment
->p_offset
== 0
5393 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5395 map
->includes_phdrs
= 0;
5397 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5399 map
->includes_phdrs
=
5400 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5401 && (segment
->p_offset
+ segment
->p_filesz
5402 >= ((bfd_vma
) iehdr
->e_phoff
5403 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5405 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5406 phdr_included
= TRUE
;
5409 if (section_count
== 0)
5411 /* Special segments, such as the PT_PHDR segment, may contain
5412 no sections, but ordinary, loadable segments should contain
5413 something. They are allowed by the ELF spec however, so only
5414 a warning is produced. */
5415 if (segment
->p_type
== PT_LOAD
)
5416 (*_bfd_error_handler
)
5417 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5421 *pointer_to_map
= map
;
5422 pointer_to_map
= &map
->next
;
5427 /* Now scan the sections in the input BFD again and attempt
5428 to add their corresponding output sections to the segment map.
5429 The problem here is how to handle an output section which has
5430 been moved (ie had its LMA changed). There are four possibilities:
5432 1. None of the sections have been moved.
5433 In this case we can continue to use the segment LMA from the
5436 2. All of the sections have been moved by the same amount.
5437 In this case we can change the segment's LMA to match the LMA
5438 of the first section.
5440 3. Some of the sections have been moved, others have not.
5441 In this case those sections which have not been moved can be
5442 placed in the current segment which will have to have its size,
5443 and possibly its LMA changed, and a new segment or segments will
5444 have to be created to contain the other sections.
5446 4. The sections have been moved, but not by the same amount.
5447 In this case we can change the segment's LMA to match the LMA
5448 of the first section and we will have to create a new segment
5449 or segments to contain the other sections.
5451 In order to save time, we allocate an array to hold the section
5452 pointers that we are interested in. As these sections get assigned
5453 to a segment, they are removed from this array. */
5455 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5456 to work around this long long bug. */
5457 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5458 if (sections
== NULL
)
5461 /* Step One: Scan for segment vs section LMA conflicts.
5462 Also add the sections to the section array allocated above.
5463 Also add the sections to the current segment. In the common
5464 case, where the sections have not been moved, this means that
5465 we have completely filled the segment, and there is nothing
5471 for (j
= 0, section
= ibfd
->sections
;
5473 section
= section
->next
)
5475 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5477 output_section
= section
->output_section
;
5479 sections
[j
++] = section
;
5481 /* The Solaris native linker always sets p_paddr to 0.
5482 We try to catch that case here, and set it to the
5483 correct value. Note - some backends require that
5484 p_paddr be left as zero. */
5485 if (segment
->p_paddr
== 0
5486 && segment
->p_vaddr
!= 0
5487 && (! bed
->want_p_paddr_set_to_zero
)
5489 && output_section
->lma
!= 0
5490 && (output_section
->vma
== (segment
->p_vaddr
5491 + (map
->includes_filehdr
5494 + (map
->includes_phdrs
5496 * iehdr
->e_phentsize
)
5498 map
->p_paddr
= segment
->p_vaddr
;
5500 /* Match up the physical address of the segment with the
5501 LMA address of the output section. */
5502 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5503 || IS_COREFILE_NOTE (segment
, section
)
5504 || (bed
->want_p_paddr_set_to_zero
&&
5505 IS_CONTAINED_BY_VMA (output_section
, segment
))
5508 if (matching_lma
== 0)
5509 matching_lma
= output_section
->lma
;
5511 /* We assume that if the section fits within the segment
5512 then it does not overlap any other section within that
5514 map
->sections
[isec
++] = output_section
;
5516 else if (suggested_lma
== 0)
5517 suggested_lma
= output_section
->lma
;
5521 BFD_ASSERT (j
== section_count
);
5523 /* Step Two: Adjust the physical address of the current segment,
5525 if (isec
== section_count
)
5527 /* All of the sections fitted within the segment as currently
5528 specified. This is the default case. Add the segment to
5529 the list of built segments and carry on to process the next
5530 program header in the input BFD. */
5531 map
->count
= section_count
;
5532 *pointer_to_map
= map
;
5533 pointer_to_map
= &map
->next
;
5540 if (matching_lma
!= 0)
5542 /* At least one section fits inside the current segment.
5543 Keep it, but modify its physical address to match the
5544 LMA of the first section that fitted. */
5545 map
->p_paddr
= matching_lma
;
5549 /* None of the sections fitted inside the current segment.
5550 Change the current segment's physical address to match
5551 the LMA of the first section. */
5552 map
->p_paddr
= suggested_lma
;
5555 /* Offset the segment physical address from the lma
5556 to allow for space taken up by elf headers. */
5557 if (map
->includes_filehdr
)
5558 map
->p_paddr
-= iehdr
->e_ehsize
;
5560 if (map
->includes_phdrs
)
5562 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5564 /* iehdr->e_phnum is just an estimate of the number
5565 of program headers that we will need. Make a note
5566 here of the number we used and the segment we chose
5567 to hold these headers, so that we can adjust the
5568 offset when we know the correct value. */
5569 phdr_adjust_num
= iehdr
->e_phnum
;
5570 phdr_adjust_seg
= map
;
5574 /* Step Three: Loop over the sections again, this time assigning
5575 those that fit to the current segment and removing them from the
5576 sections array; but making sure not to leave large gaps. Once all
5577 possible sections have been assigned to the current segment it is
5578 added to the list of built segments and if sections still remain
5579 to be assigned, a new segment is constructed before repeating
5587 /* Fill the current segment with sections that fit. */
5588 for (j
= 0; j
< section_count
; j
++)
5590 section
= sections
[j
];
5592 if (section
== NULL
)
5595 output_section
= section
->output_section
;
5597 BFD_ASSERT (output_section
!= NULL
);
5599 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5600 || IS_COREFILE_NOTE (segment
, section
))
5602 if (map
->count
== 0)
5604 /* If the first section in a segment does not start at
5605 the beginning of the segment, then something is
5607 if (output_section
->lma
!=
5609 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5610 + (map
->includes_phdrs
5611 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5617 asection
* prev_sec
;
5619 prev_sec
= map
->sections
[map
->count
- 1];
5621 /* If the gap between the end of the previous section
5622 and the start of this section is more than
5623 maxpagesize then we need to start a new segment. */
5624 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5626 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5627 || ((prev_sec
->lma
+ prev_sec
->size
)
5628 > output_section
->lma
))
5630 if (suggested_lma
== 0)
5631 suggested_lma
= output_section
->lma
;
5637 map
->sections
[map
->count
++] = output_section
;
5640 section
->segment_mark
= TRUE
;
5642 else if (suggested_lma
== 0)
5643 suggested_lma
= output_section
->lma
;
5646 BFD_ASSERT (map
->count
> 0);
5648 /* Add the current segment to the list of built segments. */
5649 *pointer_to_map
= map
;
5650 pointer_to_map
= &map
->next
;
5652 if (isec
< section_count
)
5654 /* We still have not allocated all of the sections to
5655 segments. Create a new segment here, initialise it
5656 and carry on looping. */
5657 amt
= sizeof (struct elf_segment_map
);
5658 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5659 map
= bfd_alloc (obfd
, amt
);
5666 /* Initialise the fields of the segment map. Set the physical
5667 physical address to the LMA of the first section that has
5668 not yet been assigned. */
5670 map
->p_type
= segment
->p_type
;
5671 map
->p_flags
= segment
->p_flags
;
5672 map
->p_flags_valid
= 1;
5673 map
->p_paddr
= suggested_lma
;
5674 map
->p_paddr_valid
= 1;
5675 map
->includes_filehdr
= 0;
5676 map
->includes_phdrs
= 0;
5679 while (isec
< section_count
);
5684 /* The Solaris linker creates program headers in which all the
5685 p_paddr fields are zero. When we try to objcopy or strip such a
5686 file, we get confused. Check for this case, and if we find it
5687 reset the p_paddr_valid fields. */
5688 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5689 if (map
->p_paddr
!= 0)
5692 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5693 map
->p_paddr_valid
= 0;
5695 elf_tdata (obfd
)->segment_map
= map_first
;
5697 /* If we had to estimate the number of program headers that were
5698 going to be needed, then check our estimate now and adjust
5699 the offset if necessary. */
5700 if (phdr_adjust_seg
!= NULL
)
5704 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5707 if (count
> phdr_adjust_num
)
5708 phdr_adjust_seg
->p_paddr
5709 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5714 #undef IS_CONTAINED_BY_VMA
5715 #undef IS_CONTAINED_BY_LMA
5716 #undef IS_COREFILE_NOTE
5717 #undef IS_SOLARIS_PT_INTERP
5718 #undef INCLUDE_SECTION_IN_SEGMENT
5719 #undef SEGMENT_AFTER_SEGMENT
5720 #undef SEGMENT_OVERLAPS
5724 /* Copy ELF program header information. */
5727 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5729 Elf_Internal_Ehdr
*iehdr
;
5730 struct elf_segment_map
*map
;
5731 struct elf_segment_map
*map_first
;
5732 struct elf_segment_map
**pointer_to_map
;
5733 Elf_Internal_Phdr
*segment
;
5735 unsigned int num_segments
;
5736 bfd_boolean phdr_included
= FALSE
;
5738 iehdr
= elf_elfheader (ibfd
);
5741 pointer_to_map
= &map_first
;
5743 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5744 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5749 unsigned int section_count
;
5751 Elf_Internal_Shdr
*this_hdr
;
5753 /* FIXME: Do we need to copy PT_NULL segment? */
5754 if (segment
->p_type
== PT_NULL
)
5757 /* Compute how many sections are in this segment. */
5758 for (section
= ibfd
->sections
, section_count
= 0;
5760 section
= section
->next
)
5762 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5763 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5767 /* Allocate a segment map big enough to contain
5768 all of the sections we have selected. */
5769 amt
= sizeof (struct elf_segment_map
);
5770 if (section_count
!= 0)
5771 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5772 map
= bfd_alloc (obfd
, amt
);
5776 /* Initialize the fields of the output segment map with the
5779 map
->p_type
= segment
->p_type
;
5780 map
->p_flags
= segment
->p_flags
;
5781 map
->p_flags_valid
= 1;
5782 map
->p_paddr
= segment
->p_paddr
;
5783 map
->p_paddr_valid
= 1;
5784 map
->p_align
= segment
->p_align
;
5785 map
->p_align_valid
= 1;
5787 /* Determine if this segment contains the ELF file header
5788 and if it contains the program headers themselves. */
5789 map
->includes_filehdr
= (segment
->p_offset
== 0
5790 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5792 map
->includes_phdrs
= 0;
5793 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5795 map
->includes_phdrs
=
5796 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5797 && (segment
->p_offset
+ segment
->p_filesz
5798 >= ((bfd_vma
) iehdr
->e_phoff
5799 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5801 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5802 phdr_included
= TRUE
;
5805 if (section_count
!= 0)
5807 unsigned int isec
= 0;
5809 for (section
= ibfd
->sections
;
5811 section
= section
->next
)
5813 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5815 map
->sections
[isec
++] = section
->output_section
;
5819 map
->count
= section_count
;
5820 *pointer_to_map
= map
;
5821 pointer_to_map
= &map
->next
;
5824 elf_tdata (obfd
)->segment_map
= map_first
;
5828 /* Copy private BFD data. This copies or rewrites ELF program header
5832 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5834 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5835 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5838 if (elf_tdata (ibfd
)->phdr
== NULL
)
5841 if (ibfd
->xvec
== obfd
->xvec
)
5843 /* Check if any sections in the input BFD covered by ELF program
5844 header are changed. */
5845 Elf_Internal_Phdr
*segment
;
5846 asection
*section
, *osec
;
5847 unsigned int i
, num_segments
;
5848 Elf_Internal_Shdr
*this_hdr
;
5850 /* Initialize the segment mark field. */
5851 for (section
= obfd
->sections
; section
!= NULL
;
5852 section
= section
->next
)
5853 section
->segment_mark
= FALSE
;
5855 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5856 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5860 for (section
= ibfd
->sections
;
5861 section
!= NULL
; section
= section
->next
)
5863 /* We mark the output section so that we know it comes
5864 from the input BFD. */
5865 osec
= section
->output_section
;
5867 osec
->segment_mark
= TRUE
;
5869 /* Check if this section is covered by the segment. */
5870 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5871 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5873 /* FIXME: Check if its output section is changed or
5874 removed. What else do we need to check? */
5876 || section
->flags
!= osec
->flags
5877 || section
->lma
!= osec
->lma
5878 || section
->vma
!= osec
->vma
5879 || section
->size
!= osec
->size
5880 || section
->rawsize
!= osec
->rawsize
5881 || section
->alignment_power
!= osec
->alignment_power
)
5887 /* Check to see if any output section doesn't come from the
5889 for (section
= obfd
->sections
; section
!= NULL
;
5890 section
= section
->next
)
5892 if (section
->segment_mark
== FALSE
)
5895 section
->segment_mark
= FALSE
;
5898 return copy_elf_program_header (ibfd
, obfd
);
5902 return rewrite_elf_program_header (ibfd
, obfd
);
5905 /* Initialize private output section information from input section. */
5908 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5912 struct bfd_link_info
*link_info
)
5915 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5916 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5918 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5919 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5922 /* Don't copy the output ELF section type from input if the
5923 output BFD section flags have been set to something different.
5924 elf_fake_sections will set ELF section type based on BFD
5926 if (osec
->flags
== isec
->flags
5927 || (osec
->flags
== 0 && elf_section_type (osec
) == SHT_NULL
))
5928 elf_section_type (osec
) = elf_section_type (isec
);
5930 /* Set things up for objcopy and relocatable link. The output
5931 SHT_GROUP section will have its elf_next_in_group pointing back
5932 to the input group members. Ignore linker created group section.
5933 See elfNN_ia64_object_p in elfxx-ia64.c. */
5936 if (elf_sec_group (isec
) == NULL
5937 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5939 if (elf_section_flags (isec
) & SHF_GROUP
)
5940 elf_section_flags (osec
) |= SHF_GROUP
;
5941 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5942 elf_group_name (osec
) = elf_group_name (isec
);
5946 ihdr
= &elf_section_data (isec
)->this_hdr
;
5948 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5949 don't use the output section of the linked-to section since it
5950 may be NULL at this point. */
5951 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5953 ohdr
= &elf_section_data (osec
)->this_hdr
;
5954 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5955 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5958 osec
->use_rela_p
= isec
->use_rela_p
;
5963 /* Copy private section information. This copies over the entsize
5964 field, and sometimes the info field. */
5967 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5972 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5974 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5975 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5978 ihdr
= &elf_section_data (isec
)->this_hdr
;
5979 ohdr
= &elf_section_data (osec
)->this_hdr
;
5981 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5983 if (ihdr
->sh_type
== SHT_SYMTAB
5984 || ihdr
->sh_type
== SHT_DYNSYM
5985 || ihdr
->sh_type
== SHT_GNU_verneed
5986 || ihdr
->sh_type
== SHT_GNU_verdef
)
5987 ohdr
->sh_info
= ihdr
->sh_info
;
5989 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
5993 /* Copy private header information. */
5996 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5998 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5999 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6002 /* Copy over private BFD data if it has not already been copied.
6003 This must be done here, rather than in the copy_private_bfd_data
6004 entry point, because the latter is called after the section
6005 contents have been set, which means that the program headers have
6006 already been worked out. */
6007 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6009 if (! copy_private_bfd_data (ibfd
, obfd
))
6016 /* Copy private symbol information. If this symbol is in a section
6017 which we did not map into a BFD section, try to map the section
6018 index correctly. We use special macro definitions for the mapped
6019 section indices; these definitions are interpreted by the
6020 swap_out_syms function. */
6022 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6023 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6024 #define MAP_STRTAB (SHN_HIOS + 3)
6025 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6026 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6029 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6034 elf_symbol_type
*isym
, *osym
;
6036 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6037 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6040 isym
= elf_symbol_from (ibfd
, isymarg
);
6041 osym
= elf_symbol_from (obfd
, osymarg
);
6045 && bfd_is_abs_section (isym
->symbol
.section
))
6049 shndx
= isym
->internal_elf_sym
.st_shndx
;
6050 if (shndx
== elf_onesymtab (ibfd
))
6051 shndx
= MAP_ONESYMTAB
;
6052 else if (shndx
== elf_dynsymtab (ibfd
))
6053 shndx
= MAP_DYNSYMTAB
;
6054 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6056 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6057 shndx
= MAP_SHSTRTAB
;
6058 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6059 shndx
= MAP_SYM_SHNDX
;
6060 osym
->internal_elf_sym
.st_shndx
= shndx
;
6066 /* Swap out the symbols. */
6069 swap_out_syms (bfd
*abfd
,
6070 struct bfd_strtab_hash
**sttp
,
6073 const struct elf_backend_data
*bed
;
6076 struct bfd_strtab_hash
*stt
;
6077 Elf_Internal_Shdr
*symtab_hdr
;
6078 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6079 Elf_Internal_Shdr
*symstrtab_hdr
;
6080 bfd_byte
*outbound_syms
;
6081 bfd_byte
*outbound_shndx
;
6084 bfd_boolean name_local_sections
;
6086 if (!elf_map_symbols (abfd
))
6089 /* Dump out the symtabs. */
6090 stt
= _bfd_elf_stringtab_init ();
6094 bed
= get_elf_backend_data (abfd
);
6095 symcount
= bfd_get_symcount (abfd
);
6096 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6097 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6098 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6099 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6100 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6101 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6103 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6104 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6106 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6107 if (outbound_syms
== NULL
)
6109 _bfd_stringtab_free (stt
);
6112 symtab_hdr
->contents
= outbound_syms
;
6114 outbound_shndx
= NULL
;
6115 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6116 if (symtab_shndx_hdr
->sh_name
!= 0)
6118 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6119 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6120 sizeof (Elf_External_Sym_Shndx
));
6121 if (outbound_shndx
== NULL
)
6123 _bfd_stringtab_free (stt
);
6127 symtab_shndx_hdr
->contents
= outbound_shndx
;
6128 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6129 symtab_shndx_hdr
->sh_size
= amt
;
6130 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6131 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6134 /* Now generate the data (for "contents"). */
6136 /* Fill in zeroth symbol and swap it out. */
6137 Elf_Internal_Sym sym
;
6143 sym
.st_shndx
= SHN_UNDEF
;
6144 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6145 outbound_syms
+= bed
->s
->sizeof_sym
;
6146 if (outbound_shndx
!= NULL
)
6147 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6151 = (bed
->elf_backend_name_local_section_symbols
6152 && bed
->elf_backend_name_local_section_symbols (abfd
));
6154 syms
= bfd_get_outsymbols (abfd
);
6155 for (idx
= 0; idx
< symcount
; idx
++)
6157 Elf_Internal_Sym sym
;
6158 bfd_vma value
= syms
[idx
]->value
;
6159 elf_symbol_type
*type_ptr
;
6160 flagword flags
= syms
[idx
]->flags
;
6163 if (!name_local_sections
6164 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6166 /* Local section symbols have no name. */
6171 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6174 if (sym
.st_name
== (unsigned long) -1)
6176 _bfd_stringtab_free (stt
);
6181 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6183 if ((flags
& BSF_SECTION_SYM
) == 0
6184 && bfd_is_com_section (syms
[idx
]->section
))
6186 /* ELF common symbols put the alignment into the `value' field,
6187 and the size into the `size' field. This is backwards from
6188 how BFD handles it, so reverse it here. */
6189 sym
.st_size
= value
;
6190 if (type_ptr
== NULL
6191 || type_ptr
->internal_elf_sym
.st_value
== 0)
6192 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6194 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6195 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6196 (abfd
, syms
[idx
]->section
);
6200 asection
*sec
= syms
[idx
]->section
;
6203 if (sec
->output_section
)
6205 value
+= sec
->output_offset
;
6206 sec
= sec
->output_section
;
6209 /* Don't add in the section vma for relocatable output. */
6210 if (! relocatable_p
)
6212 sym
.st_value
= value
;
6213 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6215 if (bfd_is_abs_section (sec
)
6217 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6219 /* This symbol is in a real ELF section which we did
6220 not create as a BFD section. Undo the mapping done
6221 by copy_private_symbol_data. */
6222 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6226 shndx
= elf_onesymtab (abfd
);
6229 shndx
= elf_dynsymtab (abfd
);
6232 shndx
= elf_tdata (abfd
)->strtab_section
;
6235 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6238 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6246 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6252 /* Writing this would be a hell of a lot easier if
6253 we had some decent documentation on bfd, and
6254 knew what to expect of the library, and what to
6255 demand of applications. For example, it
6256 appears that `objcopy' might not set the
6257 section of a symbol to be a section that is
6258 actually in the output file. */
6259 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6262 _bfd_error_handler (_("\
6263 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6264 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6266 bfd_set_error (bfd_error_invalid_operation
);
6267 _bfd_stringtab_free (stt
);
6271 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6272 BFD_ASSERT (shndx
!= -1);
6276 sym
.st_shndx
= shndx
;
6279 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6281 else if ((flags
& BSF_FUNCTION
) != 0)
6283 else if ((flags
& BSF_OBJECT
) != 0)
6288 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6291 /* Processor-specific types. */
6292 if (type_ptr
!= NULL
6293 && bed
->elf_backend_get_symbol_type
)
6294 type
= ((*bed
->elf_backend_get_symbol_type
)
6295 (&type_ptr
->internal_elf_sym
, type
));
6297 if (flags
& BSF_SECTION_SYM
)
6299 if (flags
& BSF_GLOBAL
)
6300 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6302 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6304 else if (bfd_is_com_section (syms
[idx
]->section
))
6305 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6306 else if (bfd_is_und_section (syms
[idx
]->section
))
6307 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6311 else if (flags
& BSF_FILE
)
6312 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6315 int bind
= STB_LOCAL
;
6317 if (flags
& BSF_LOCAL
)
6319 else if (flags
& BSF_WEAK
)
6321 else if (flags
& BSF_GLOBAL
)
6324 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6327 if (type_ptr
!= NULL
)
6328 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6332 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6333 outbound_syms
+= bed
->s
->sizeof_sym
;
6334 if (outbound_shndx
!= NULL
)
6335 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6339 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6340 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6342 symstrtab_hdr
->sh_flags
= 0;
6343 symstrtab_hdr
->sh_addr
= 0;
6344 symstrtab_hdr
->sh_entsize
= 0;
6345 symstrtab_hdr
->sh_link
= 0;
6346 symstrtab_hdr
->sh_info
= 0;
6347 symstrtab_hdr
->sh_addralign
= 1;
6352 /* Return the number of bytes required to hold the symtab vector.
6354 Note that we base it on the count plus 1, since we will null terminate
6355 the vector allocated based on this size. However, the ELF symbol table
6356 always has a dummy entry as symbol #0, so it ends up even. */
6359 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6363 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6365 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6366 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6368 symtab_size
-= sizeof (asymbol
*);
6374 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6378 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6380 if (elf_dynsymtab (abfd
) == 0)
6382 bfd_set_error (bfd_error_invalid_operation
);
6386 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6387 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6389 symtab_size
-= sizeof (asymbol
*);
6395 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6398 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6401 /* Canonicalize the relocs. */
6404 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6411 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6413 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6416 tblptr
= section
->relocation
;
6417 for (i
= 0; i
< section
->reloc_count
; i
++)
6418 *relptr
++ = tblptr
++;
6422 return section
->reloc_count
;
6426 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6428 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6429 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6432 bfd_get_symcount (abfd
) = symcount
;
6437 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6438 asymbol
**allocation
)
6440 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6441 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6444 bfd_get_dynamic_symcount (abfd
) = symcount
;
6448 /* Return the size required for the dynamic reloc entries. Any loadable
6449 section that was actually installed in the BFD, and has type SHT_REL
6450 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6451 dynamic reloc section. */
6454 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6459 if (elf_dynsymtab (abfd
) == 0)
6461 bfd_set_error (bfd_error_invalid_operation
);
6465 ret
= sizeof (arelent
*);
6466 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6467 if ((s
->flags
& SEC_LOAD
) != 0
6468 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6469 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6470 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6471 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6472 * sizeof (arelent
*));
6477 /* Canonicalize the dynamic relocation entries. Note that we return the
6478 dynamic relocations as a single block, although they are actually
6479 associated with particular sections; the interface, which was
6480 designed for SunOS style shared libraries, expects that there is only
6481 one set of dynamic relocs. Any loadable section that was actually
6482 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6483 dynamic symbol table, is considered to be a dynamic reloc section. */
6486 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6490 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6494 if (elf_dynsymtab (abfd
) == 0)
6496 bfd_set_error (bfd_error_invalid_operation
);
6500 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6502 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6504 if ((s
->flags
& SEC_LOAD
) != 0
6505 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6506 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6507 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6512 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6514 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6516 for (i
= 0; i
< count
; i
++)
6527 /* Read in the version information. */
6530 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6532 bfd_byte
*contents
= NULL
;
6533 unsigned int freeidx
= 0;
6535 if (elf_dynverref (abfd
) != 0)
6537 Elf_Internal_Shdr
*hdr
;
6538 Elf_External_Verneed
*everneed
;
6539 Elf_Internal_Verneed
*iverneed
;
6541 bfd_byte
*contents_end
;
6543 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6545 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6546 sizeof (Elf_Internal_Verneed
));
6547 if (elf_tdata (abfd
)->verref
== NULL
)
6550 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6552 contents
= bfd_malloc (hdr
->sh_size
);
6553 if (contents
== NULL
)
6555 error_return_verref
:
6556 elf_tdata (abfd
)->verref
= NULL
;
6557 elf_tdata (abfd
)->cverrefs
= 0;
6560 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6561 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6562 goto error_return_verref
;
6564 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6565 goto error_return_verref
;
6567 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6568 == sizeof (Elf_External_Vernaux
));
6569 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6570 everneed
= (Elf_External_Verneed
*) contents
;
6571 iverneed
= elf_tdata (abfd
)->verref
;
6572 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6574 Elf_External_Vernaux
*evernaux
;
6575 Elf_Internal_Vernaux
*ivernaux
;
6578 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6580 iverneed
->vn_bfd
= abfd
;
6582 iverneed
->vn_filename
=
6583 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6585 if (iverneed
->vn_filename
== NULL
)
6586 goto error_return_verref
;
6588 if (iverneed
->vn_cnt
== 0)
6589 iverneed
->vn_auxptr
= NULL
;
6592 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6593 sizeof (Elf_Internal_Vernaux
));
6594 if (iverneed
->vn_auxptr
== NULL
)
6595 goto error_return_verref
;
6598 if (iverneed
->vn_aux
6599 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6600 goto error_return_verref
;
6602 evernaux
= ((Elf_External_Vernaux
*)
6603 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6604 ivernaux
= iverneed
->vn_auxptr
;
6605 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6607 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6609 ivernaux
->vna_nodename
=
6610 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6611 ivernaux
->vna_name
);
6612 if (ivernaux
->vna_nodename
== NULL
)
6613 goto error_return_verref
;
6615 if (j
+ 1 < iverneed
->vn_cnt
)
6616 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6618 ivernaux
->vna_nextptr
= NULL
;
6620 if (ivernaux
->vna_next
6621 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6622 goto error_return_verref
;
6624 evernaux
= ((Elf_External_Vernaux
*)
6625 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6627 if (ivernaux
->vna_other
> freeidx
)
6628 freeidx
= ivernaux
->vna_other
;
6631 if (i
+ 1 < hdr
->sh_info
)
6632 iverneed
->vn_nextref
= iverneed
+ 1;
6634 iverneed
->vn_nextref
= NULL
;
6636 if (iverneed
->vn_next
6637 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6638 goto error_return_verref
;
6640 everneed
= ((Elf_External_Verneed
*)
6641 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6648 if (elf_dynverdef (abfd
) != 0)
6650 Elf_Internal_Shdr
*hdr
;
6651 Elf_External_Verdef
*everdef
;
6652 Elf_Internal_Verdef
*iverdef
;
6653 Elf_Internal_Verdef
*iverdefarr
;
6654 Elf_Internal_Verdef iverdefmem
;
6656 unsigned int maxidx
;
6657 bfd_byte
*contents_end_def
, *contents_end_aux
;
6659 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6661 contents
= bfd_malloc (hdr
->sh_size
);
6662 if (contents
== NULL
)
6664 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6665 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6668 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6671 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6672 >= sizeof (Elf_External_Verdaux
));
6673 contents_end_def
= contents
+ hdr
->sh_size
6674 - sizeof (Elf_External_Verdef
);
6675 contents_end_aux
= contents
+ hdr
->sh_size
6676 - sizeof (Elf_External_Verdaux
);
6678 /* We know the number of entries in the section but not the maximum
6679 index. Therefore we have to run through all entries and find
6681 everdef
= (Elf_External_Verdef
*) contents
;
6683 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6685 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6687 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6688 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6690 if (iverdefmem
.vd_next
6691 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6694 everdef
= ((Elf_External_Verdef
*)
6695 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6698 if (default_imported_symver
)
6700 if (freeidx
> maxidx
)
6705 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6706 sizeof (Elf_Internal_Verdef
));
6707 if (elf_tdata (abfd
)->verdef
== NULL
)
6710 elf_tdata (abfd
)->cverdefs
= maxidx
;
6712 everdef
= (Elf_External_Verdef
*) contents
;
6713 iverdefarr
= elf_tdata (abfd
)->verdef
;
6714 for (i
= 0; i
< hdr
->sh_info
; i
++)
6716 Elf_External_Verdaux
*everdaux
;
6717 Elf_Internal_Verdaux
*iverdaux
;
6720 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6722 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6724 error_return_verdef
:
6725 elf_tdata (abfd
)->verdef
= NULL
;
6726 elf_tdata (abfd
)->cverdefs
= 0;
6730 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6731 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6733 iverdef
->vd_bfd
= abfd
;
6735 if (iverdef
->vd_cnt
== 0)
6736 iverdef
->vd_auxptr
= NULL
;
6739 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6740 sizeof (Elf_Internal_Verdaux
));
6741 if (iverdef
->vd_auxptr
== NULL
)
6742 goto error_return_verdef
;
6746 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6747 goto error_return_verdef
;
6749 everdaux
= ((Elf_External_Verdaux
*)
6750 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6751 iverdaux
= iverdef
->vd_auxptr
;
6752 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6754 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6756 iverdaux
->vda_nodename
=
6757 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6758 iverdaux
->vda_name
);
6759 if (iverdaux
->vda_nodename
== NULL
)
6760 goto error_return_verdef
;
6762 if (j
+ 1 < iverdef
->vd_cnt
)
6763 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6765 iverdaux
->vda_nextptr
= NULL
;
6767 if (iverdaux
->vda_next
6768 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6769 goto error_return_verdef
;
6771 everdaux
= ((Elf_External_Verdaux
*)
6772 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6775 if (iverdef
->vd_cnt
)
6776 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6778 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6779 iverdef
->vd_nextdef
= iverdef
+ 1;
6781 iverdef
->vd_nextdef
= NULL
;
6783 everdef
= ((Elf_External_Verdef
*)
6784 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6790 else if (default_imported_symver
)
6797 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6798 sizeof (Elf_Internal_Verdef
));
6799 if (elf_tdata (abfd
)->verdef
== NULL
)
6802 elf_tdata (abfd
)->cverdefs
= freeidx
;
6805 /* Create a default version based on the soname. */
6806 if (default_imported_symver
)
6808 Elf_Internal_Verdef
*iverdef
;
6809 Elf_Internal_Verdaux
*iverdaux
;
6811 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6813 iverdef
->vd_version
= VER_DEF_CURRENT
;
6814 iverdef
->vd_flags
= 0;
6815 iverdef
->vd_ndx
= freeidx
;
6816 iverdef
->vd_cnt
= 1;
6818 iverdef
->vd_bfd
= abfd
;
6820 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6821 if (iverdef
->vd_nodename
== NULL
)
6822 goto error_return_verdef
;
6823 iverdef
->vd_nextdef
= NULL
;
6824 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6825 if (iverdef
->vd_auxptr
== NULL
)
6826 goto error_return_verdef
;
6828 iverdaux
= iverdef
->vd_auxptr
;
6829 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6830 iverdaux
->vda_nextptr
= NULL
;
6836 if (contents
!= NULL
)
6842 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6844 elf_symbol_type
*newsym
;
6845 bfd_size_type amt
= sizeof (elf_symbol_type
);
6847 newsym
= bfd_zalloc (abfd
, amt
);
6852 newsym
->symbol
.the_bfd
= abfd
;
6853 return &newsym
->symbol
;
6858 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6862 bfd_symbol_info (symbol
, ret
);
6865 /* Return whether a symbol name implies a local symbol. Most targets
6866 use this function for the is_local_label_name entry point, but some
6870 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6873 /* Normal local symbols start with ``.L''. */
6874 if (name
[0] == '.' && name
[1] == 'L')
6877 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6878 DWARF debugging symbols starting with ``..''. */
6879 if (name
[0] == '.' && name
[1] == '.')
6882 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6883 emitting DWARF debugging output. I suspect this is actually a
6884 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6885 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6886 underscore to be emitted on some ELF targets). For ease of use,
6887 we treat such symbols as local. */
6888 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6895 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6896 asymbol
*symbol ATTRIBUTE_UNUSED
)
6903 _bfd_elf_set_arch_mach (bfd
*abfd
,
6904 enum bfd_architecture arch
,
6905 unsigned long machine
)
6907 /* If this isn't the right architecture for this backend, and this
6908 isn't the generic backend, fail. */
6909 if (arch
!= get_elf_backend_data (abfd
)->arch
6910 && arch
!= bfd_arch_unknown
6911 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6914 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6917 /* Find the function to a particular section and offset,
6918 for error reporting. */
6921 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6925 const char **filename_ptr
,
6926 const char **functionname_ptr
)
6928 const char *filename
;
6929 asymbol
*func
, *file
;
6932 /* ??? Given multiple file symbols, it is impossible to reliably
6933 choose the right file name for global symbols. File symbols are
6934 local symbols, and thus all file symbols must sort before any
6935 global symbols. The ELF spec may be interpreted to say that a
6936 file symbol must sort before other local symbols, but currently
6937 ld -r doesn't do this. So, for ld -r output, it is possible to
6938 make a better choice of file name for local symbols by ignoring
6939 file symbols appearing after a given local symbol. */
6940 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6946 state
= nothing_seen
;
6948 for (p
= symbols
; *p
!= NULL
; p
++)
6952 q
= (elf_symbol_type
*) *p
;
6954 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6960 if (state
== symbol_seen
)
6961 state
= file_after_symbol_seen
;
6965 if (bfd_get_section (&q
->symbol
) == section
6966 && q
->symbol
.value
>= low_func
6967 && q
->symbol
.value
<= offset
)
6969 func
= (asymbol
*) q
;
6970 low_func
= q
->symbol
.value
;
6973 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6974 || state
!= file_after_symbol_seen
))
6975 filename
= bfd_asymbol_name (file
);
6979 if (state
== nothing_seen
)
6980 state
= symbol_seen
;
6987 *filename_ptr
= filename
;
6988 if (functionname_ptr
)
6989 *functionname_ptr
= bfd_asymbol_name (func
);
6994 /* Find the nearest line to a particular section and offset,
6995 for error reporting. */
6998 _bfd_elf_find_nearest_line (bfd
*abfd
,
7002 const char **filename_ptr
,
7003 const char **functionname_ptr
,
7004 unsigned int *line_ptr
)
7008 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7009 filename_ptr
, functionname_ptr
,
7012 if (!*functionname_ptr
)
7013 elf_find_function (abfd
, section
, symbols
, offset
,
7014 *filename_ptr
? NULL
: filename_ptr
,
7020 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7021 filename_ptr
, functionname_ptr
,
7023 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7025 if (!*functionname_ptr
)
7026 elf_find_function (abfd
, section
, symbols
, offset
,
7027 *filename_ptr
? NULL
: filename_ptr
,
7033 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7034 &found
, filename_ptr
,
7035 functionname_ptr
, line_ptr
,
7036 &elf_tdata (abfd
)->line_info
))
7038 if (found
&& (*functionname_ptr
|| *line_ptr
))
7041 if (symbols
== NULL
)
7044 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7045 filename_ptr
, functionname_ptr
))
7052 /* Find the line for a symbol. */
7055 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7056 const char **filename_ptr
, unsigned int *line_ptr
)
7058 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7059 filename_ptr
, line_ptr
, 0,
7060 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7063 /* After a call to bfd_find_nearest_line, successive calls to
7064 bfd_find_inliner_info can be used to get source information about
7065 each level of function inlining that terminated at the address
7066 passed to bfd_find_nearest_line. Currently this is only supported
7067 for DWARF2 with appropriate DWARF3 extensions. */
7070 _bfd_elf_find_inliner_info (bfd
*abfd
,
7071 const char **filename_ptr
,
7072 const char **functionname_ptr
,
7073 unsigned int *line_ptr
)
7076 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7077 functionname_ptr
, line_ptr
,
7078 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7083 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7085 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7086 int ret
= bed
->s
->sizeof_ehdr
;
7088 if (!info
->relocatable
)
7090 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7092 if (phdr_size
== (bfd_size_type
) -1)
7094 struct elf_segment_map
*m
;
7097 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7098 phdr_size
+= bed
->s
->sizeof_phdr
;
7101 phdr_size
= get_program_header_size (abfd
, info
);
7104 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7112 _bfd_elf_set_section_contents (bfd
*abfd
,
7114 const void *location
,
7116 bfd_size_type count
)
7118 Elf_Internal_Shdr
*hdr
;
7121 if (! abfd
->output_has_begun
7122 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7125 hdr
= &elf_section_data (section
)->this_hdr
;
7126 pos
= hdr
->sh_offset
+ offset
;
7127 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7128 || bfd_bwrite (location
, count
, abfd
) != count
)
7135 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7136 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7137 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7142 /* Try to convert a non-ELF reloc into an ELF one. */
7145 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7147 /* Check whether we really have an ELF howto. */
7149 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7151 bfd_reloc_code_real_type code
;
7152 reloc_howto_type
*howto
;
7154 /* Alien reloc: Try to determine its type to replace it with an
7155 equivalent ELF reloc. */
7157 if (areloc
->howto
->pc_relative
)
7159 switch (areloc
->howto
->bitsize
)
7162 code
= BFD_RELOC_8_PCREL
;
7165 code
= BFD_RELOC_12_PCREL
;
7168 code
= BFD_RELOC_16_PCREL
;
7171 code
= BFD_RELOC_24_PCREL
;
7174 code
= BFD_RELOC_32_PCREL
;
7177 code
= BFD_RELOC_64_PCREL
;
7183 howto
= bfd_reloc_type_lookup (abfd
, code
);
7185 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7187 if (howto
->pcrel_offset
)
7188 areloc
->addend
+= areloc
->address
;
7190 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7195 switch (areloc
->howto
->bitsize
)
7201 code
= BFD_RELOC_14
;
7204 code
= BFD_RELOC_16
;
7207 code
= BFD_RELOC_26
;
7210 code
= BFD_RELOC_32
;
7213 code
= BFD_RELOC_64
;
7219 howto
= bfd_reloc_type_lookup (abfd
, code
);
7223 areloc
->howto
= howto
;
7231 (*_bfd_error_handler
)
7232 (_("%B: unsupported relocation type %s"),
7233 abfd
, areloc
->howto
->name
);
7234 bfd_set_error (bfd_error_bad_value
);
7239 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7241 if (bfd_get_format (abfd
) == bfd_object
)
7243 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7244 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7245 _bfd_dwarf2_cleanup_debug_info (abfd
);
7248 return _bfd_generic_close_and_cleanup (abfd
);
7251 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7252 in the relocation's offset. Thus we cannot allow any sort of sanity
7253 range-checking to interfere. There is nothing else to do in processing
7256 bfd_reloc_status_type
7257 _bfd_elf_rel_vtable_reloc_fn
7258 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7259 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7260 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7261 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7263 return bfd_reloc_ok
;
7266 /* Elf core file support. Much of this only works on native
7267 toolchains, since we rely on knowing the
7268 machine-dependent procfs structure in order to pick
7269 out details about the corefile. */
7271 #ifdef HAVE_SYS_PROCFS_H
7272 # include <sys/procfs.h>
7275 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7278 elfcore_make_pid (bfd
*abfd
)
7280 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7281 + (elf_tdata (abfd
)->core_pid
));
7284 /* If there isn't a section called NAME, make one, using
7285 data from SECT. Note, this function will generate a
7286 reference to NAME, so you shouldn't deallocate or
7290 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7294 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7297 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7301 sect2
->size
= sect
->size
;
7302 sect2
->filepos
= sect
->filepos
;
7303 sect2
->alignment_power
= sect
->alignment_power
;
7307 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7308 actually creates up to two pseudosections:
7309 - For the single-threaded case, a section named NAME, unless
7310 such a section already exists.
7311 - For the multi-threaded case, a section named "NAME/PID", where
7312 PID is elfcore_make_pid (abfd).
7313 Both pseudosections have identical contents. */
7315 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7321 char *threaded_name
;
7325 /* Build the section name. */
7327 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7328 len
= strlen (buf
) + 1;
7329 threaded_name
= bfd_alloc (abfd
, len
);
7330 if (threaded_name
== NULL
)
7332 memcpy (threaded_name
, buf
, len
);
7334 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7339 sect
->filepos
= filepos
;
7340 sect
->alignment_power
= 2;
7342 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7345 /* prstatus_t exists on:
7347 linux 2.[01] + glibc
7351 #if defined (HAVE_PRSTATUS_T)
7354 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7359 if (note
->descsz
== sizeof (prstatus_t
))
7363 size
= sizeof (prstat
.pr_reg
);
7364 offset
= offsetof (prstatus_t
, pr_reg
);
7365 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7367 /* Do not overwrite the core signal if it
7368 has already been set by another thread. */
7369 if (elf_tdata (abfd
)->core_signal
== 0)
7370 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7371 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7373 /* pr_who exists on:
7376 pr_who doesn't exist on:
7379 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7380 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7383 #if defined (HAVE_PRSTATUS32_T)
7384 else if (note
->descsz
== sizeof (prstatus32_t
))
7386 /* 64-bit host, 32-bit corefile */
7387 prstatus32_t prstat
;
7389 size
= sizeof (prstat
.pr_reg
);
7390 offset
= offsetof (prstatus32_t
, pr_reg
);
7391 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7393 /* Do not overwrite the core signal if it
7394 has already been set by another thread. */
7395 if (elf_tdata (abfd
)->core_signal
== 0)
7396 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7397 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7399 /* pr_who exists on:
7402 pr_who doesn't exist on:
7405 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7406 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7409 #endif /* HAVE_PRSTATUS32_T */
7412 /* Fail - we don't know how to handle any other
7413 note size (ie. data object type). */
7417 /* Make a ".reg/999" section and a ".reg" section. */
7418 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7419 size
, note
->descpos
+ offset
);
7421 #endif /* defined (HAVE_PRSTATUS_T) */
7423 /* Create a pseudosection containing the exact contents of NOTE. */
7425 elfcore_make_note_pseudosection (bfd
*abfd
,
7427 Elf_Internal_Note
*note
)
7429 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7430 note
->descsz
, note
->descpos
);
7433 /* There isn't a consistent prfpregset_t across platforms,
7434 but it doesn't matter, because we don't have to pick this
7435 data structure apart. */
7438 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7440 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7443 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7444 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7448 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7450 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7453 #if defined (HAVE_PRPSINFO_T)
7454 typedef prpsinfo_t elfcore_psinfo_t
;
7455 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7456 typedef prpsinfo32_t elfcore_psinfo32_t
;
7460 #if defined (HAVE_PSINFO_T)
7461 typedef psinfo_t elfcore_psinfo_t
;
7462 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7463 typedef psinfo32_t elfcore_psinfo32_t
;
7467 /* return a malloc'ed copy of a string at START which is at
7468 most MAX bytes long, possibly without a terminating '\0'.
7469 the copy will always have a terminating '\0'. */
7472 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7475 char *end
= memchr (start
, '\0', max
);
7483 dups
= bfd_alloc (abfd
, len
+ 1);
7487 memcpy (dups
, start
, len
);
7493 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7495 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7497 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7499 elfcore_psinfo_t psinfo
;
7501 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7503 elf_tdata (abfd
)->core_program
7504 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7505 sizeof (psinfo
.pr_fname
));
7507 elf_tdata (abfd
)->core_command
7508 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7509 sizeof (psinfo
.pr_psargs
));
7511 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7512 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7514 /* 64-bit host, 32-bit corefile */
7515 elfcore_psinfo32_t psinfo
;
7517 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7519 elf_tdata (abfd
)->core_program
7520 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7521 sizeof (psinfo
.pr_fname
));
7523 elf_tdata (abfd
)->core_command
7524 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7525 sizeof (psinfo
.pr_psargs
));
7531 /* Fail - we don't know how to handle any other
7532 note size (ie. data object type). */
7536 /* Note that for some reason, a spurious space is tacked
7537 onto the end of the args in some (at least one anyway)
7538 implementations, so strip it off if it exists. */
7541 char *command
= elf_tdata (abfd
)->core_command
;
7542 int n
= strlen (command
);
7544 if (0 < n
&& command
[n
- 1] == ' ')
7545 command
[n
- 1] = '\0';
7550 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7552 #if defined (HAVE_PSTATUS_T)
7554 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7556 if (note
->descsz
== sizeof (pstatus_t
)
7557 #if defined (HAVE_PXSTATUS_T)
7558 || note
->descsz
== sizeof (pxstatus_t
)
7564 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7566 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7568 #if defined (HAVE_PSTATUS32_T)
7569 else if (note
->descsz
== sizeof (pstatus32_t
))
7571 /* 64-bit host, 32-bit corefile */
7574 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7576 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7579 /* Could grab some more details from the "representative"
7580 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7581 NT_LWPSTATUS note, presumably. */
7585 #endif /* defined (HAVE_PSTATUS_T) */
7587 #if defined (HAVE_LWPSTATUS_T)
7589 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7591 lwpstatus_t lwpstat
;
7597 if (note
->descsz
!= sizeof (lwpstat
)
7598 #if defined (HAVE_LWPXSTATUS_T)
7599 && note
->descsz
!= sizeof (lwpxstatus_t
)
7604 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7606 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7607 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7609 /* Make a ".reg/999" section. */
7611 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7612 len
= strlen (buf
) + 1;
7613 name
= bfd_alloc (abfd
, len
);
7616 memcpy (name
, buf
, len
);
7618 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7622 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7623 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7624 sect
->filepos
= note
->descpos
7625 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7628 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7629 sect
->size
= sizeof (lwpstat
.pr_reg
);
7630 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7633 sect
->alignment_power
= 2;
7635 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7638 /* Make a ".reg2/999" section */
7640 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7641 len
= strlen (buf
) + 1;
7642 name
= bfd_alloc (abfd
, len
);
7645 memcpy (name
, buf
, len
);
7647 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7651 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7652 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7653 sect
->filepos
= note
->descpos
7654 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7657 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7658 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7659 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7662 sect
->alignment_power
= 2;
7664 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7666 #endif /* defined (HAVE_LWPSTATUS_T) */
7668 #if defined (HAVE_WIN32_PSTATUS_T)
7670 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7676 win32_pstatus_t pstatus
;
7678 if (note
->descsz
< sizeof (pstatus
))
7681 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7683 switch (pstatus
.data_type
)
7685 case NOTE_INFO_PROCESS
:
7686 /* FIXME: need to add ->core_command. */
7687 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7688 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7691 case NOTE_INFO_THREAD
:
7692 /* Make a ".reg/999" section. */
7693 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7695 len
= strlen (buf
) + 1;
7696 name
= bfd_alloc (abfd
, len
);
7700 memcpy (name
, buf
, len
);
7702 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7706 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7707 sect
->filepos
= (note
->descpos
7708 + offsetof (struct win32_pstatus
,
7709 data
.thread_info
.thread_context
));
7710 sect
->alignment_power
= 2;
7712 if (pstatus
.data
.thread_info
.is_active_thread
)
7713 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7717 case NOTE_INFO_MODULE
:
7718 /* Make a ".module/xxxxxxxx" section. */
7719 sprintf (buf
, ".module/%08lx",
7720 (long) pstatus
.data
.module_info
.base_address
);
7722 len
= strlen (buf
) + 1;
7723 name
= bfd_alloc (abfd
, len
);
7727 memcpy (name
, buf
, len
);
7729 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7734 sect
->size
= note
->descsz
;
7735 sect
->filepos
= note
->descpos
;
7736 sect
->alignment_power
= 2;
7745 #endif /* HAVE_WIN32_PSTATUS_T */
7748 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7750 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7758 if (bed
->elf_backend_grok_prstatus
)
7759 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7761 #if defined (HAVE_PRSTATUS_T)
7762 return elfcore_grok_prstatus (abfd
, note
);
7767 #if defined (HAVE_PSTATUS_T)
7769 return elfcore_grok_pstatus (abfd
, note
);
7772 #if defined (HAVE_LWPSTATUS_T)
7774 return elfcore_grok_lwpstatus (abfd
, note
);
7777 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7778 return elfcore_grok_prfpreg (abfd
, note
);
7780 #if defined (HAVE_WIN32_PSTATUS_T)
7781 case NT_WIN32PSTATUS
:
7782 return elfcore_grok_win32pstatus (abfd
, note
);
7785 case NT_PRXFPREG
: /* Linux SSE extension */
7786 if (note
->namesz
== 6
7787 && strcmp (note
->namedata
, "LINUX") == 0)
7788 return elfcore_grok_prxfpreg (abfd
, note
);
7794 if (bed
->elf_backend_grok_psinfo
)
7795 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7797 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7798 return elfcore_grok_psinfo (abfd
, note
);
7805 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7810 sect
->size
= note
->descsz
;
7811 sect
->filepos
= note
->descpos
;
7812 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7820 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7824 cp
= strchr (note
->namedata
, '@');
7827 *lwpidp
= atoi(cp
+ 1);
7834 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7837 /* Signal number at offset 0x08. */
7838 elf_tdata (abfd
)->core_signal
7839 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7841 /* Process ID at offset 0x50. */
7842 elf_tdata (abfd
)->core_pid
7843 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7845 /* Command name at 0x7c (max 32 bytes, including nul). */
7846 elf_tdata (abfd
)->core_command
7847 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7849 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7854 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7858 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7859 elf_tdata (abfd
)->core_lwpid
= lwp
;
7861 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7863 /* NetBSD-specific core "procinfo". Note that we expect to
7864 find this note before any of the others, which is fine,
7865 since the kernel writes this note out first when it
7866 creates a core file. */
7868 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7871 /* As of Jan 2002 there are no other machine-independent notes
7872 defined for NetBSD core files. If the note type is less
7873 than the start of the machine-dependent note types, we don't
7876 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7880 switch (bfd_get_arch (abfd
))
7882 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7883 PT_GETFPREGS == mach+2. */
7885 case bfd_arch_alpha
:
7886 case bfd_arch_sparc
:
7889 case NT_NETBSDCORE_FIRSTMACH
+0:
7890 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7892 case NT_NETBSDCORE_FIRSTMACH
+2:
7893 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7899 /* On all other arch's, PT_GETREGS == mach+1 and
7900 PT_GETFPREGS == mach+3. */
7905 case NT_NETBSDCORE_FIRSTMACH
+1:
7906 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7908 case NT_NETBSDCORE_FIRSTMACH
+3:
7909 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7919 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
7921 void *ddata
= note
->descdata
;
7928 /* nto_procfs_status 'pid' field is at offset 0. */
7929 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7931 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7932 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7934 /* nto_procfs_status 'flags' field is at offset 8. */
7935 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7937 /* nto_procfs_status 'what' field is at offset 14. */
7938 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7940 elf_tdata (abfd
)->core_signal
= sig
;
7941 elf_tdata (abfd
)->core_lwpid
= *tid
;
7944 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7945 do not come from signals so we make sure we set the current
7946 thread just in case. */
7947 if (flags
& 0x00000080)
7948 elf_tdata (abfd
)->core_lwpid
= *tid
;
7950 /* Make a ".qnx_core_status/%d" section. */
7951 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
7953 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7958 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7962 sect
->size
= note
->descsz
;
7963 sect
->filepos
= note
->descpos
;
7964 sect
->alignment_power
= 2;
7966 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7970 elfcore_grok_nto_regs (bfd
*abfd
,
7971 Elf_Internal_Note
*note
,
7979 /* Make a "(base)/%d" section. */
7980 sprintf (buf
, "%s/%ld", base
, tid
);
7982 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7987 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7991 sect
->size
= note
->descsz
;
7992 sect
->filepos
= note
->descpos
;
7993 sect
->alignment_power
= 2;
7995 /* This is the current thread. */
7996 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7997 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8002 #define BFD_QNT_CORE_INFO 7
8003 #define BFD_QNT_CORE_STATUS 8
8004 #define BFD_QNT_CORE_GREG 9
8005 #define BFD_QNT_CORE_FPREG 10
8008 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8010 /* Every GREG section has a STATUS section before it. Store the
8011 tid from the previous call to pass down to the next gregs
8013 static long tid
= 1;
8017 case BFD_QNT_CORE_INFO
:
8018 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8019 case BFD_QNT_CORE_STATUS
:
8020 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8021 case BFD_QNT_CORE_GREG
:
8022 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8023 case BFD_QNT_CORE_FPREG
:
8024 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8030 /* Function: elfcore_write_note
8037 size of data for note
8040 End of buffer containing note. */
8043 elfcore_write_note (bfd
*abfd
,
8051 Elf_External_Note
*xnp
;
8061 const struct elf_backend_data
*bed
;
8063 namesz
= strlen (name
) + 1;
8064 bed
= get_elf_backend_data (abfd
);
8065 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
8068 newspace
= 12 + namesz
+ pad
+ size
;
8070 p
= realloc (buf
, *bufsiz
+ newspace
);
8072 *bufsiz
+= newspace
;
8073 xnp
= (Elf_External_Note
*) dest
;
8074 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8075 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8076 H_PUT_32 (abfd
, type
, xnp
->type
);
8080 memcpy (dest
, name
, namesz
);
8088 memcpy (dest
, input
, size
);
8092 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8094 elfcore_write_prpsinfo (bfd
*abfd
,
8101 char *note_name
= "CORE";
8103 #if defined (HAVE_PSINFO_T)
8105 note_type
= NT_PSINFO
;
8108 note_type
= NT_PRPSINFO
;
8111 memset (&data
, 0, sizeof (data
));
8112 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8113 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8114 return elfcore_write_note (abfd
, buf
, bufsiz
,
8115 note_name
, note_type
, &data
, sizeof (data
));
8117 #endif /* PSINFO_T or PRPSINFO_T */
8119 #if defined (HAVE_PRSTATUS_T)
8121 elfcore_write_prstatus (bfd
*abfd
,
8129 char *note_name
= "CORE";
8131 memset (&prstat
, 0, sizeof (prstat
));
8132 prstat
.pr_pid
= pid
;
8133 prstat
.pr_cursig
= cursig
;
8134 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8135 return elfcore_write_note (abfd
, buf
, bufsiz
,
8136 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8138 #endif /* HAVE_PRSTATUS_T */
8140 #if defined (HAVE_LWPSTATUS_T)
8142 elfcore_write_lwpstatus (bfd
*abfd
,
8149 lwpstatus_t lwpstat
;
8150 char *note_name
= "CORE";
8152 memset (&lwpstat
, 0, sizeof (lwpstat
));
8153 lwpstat
.pr_lwpid
= pid
>> 16;
8154 lwpstat
.pr_cursig
= cursig
;
8155 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8156 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8157 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8159 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8160 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8162 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8163 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8166 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8167 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8169 #endif /* HAVE_LWPSTATUS_T */
8171 #if defined (HAVE_PSTATUS_T)
8173 elfcore_write_pstatus (bfd
*abfd
,
8177 int cursig ATTRIBUTE_UNUSED
,
8178 const void *gregs ATTRIBUTE_UNUSED
)
8181 char *note_name
= "CORE";
8183 memset (&pstat
, 0, sizeof (pstat
));
8184 pstat
.pr_pid
= pid
& 0xffff;
8185 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8186 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8189 #endif /* HAVE_PSTATUS_T */
8192 elfcore_write_prfpreg (bfd
*abfd
,
8198 char *note_name
= "CORE";
8199 return elfcore_write_note (abfd
, buf
, bufsiz
,
8200 note_name
, NT_FPREGSET
, fpregs
, size
);
8204 elfcore_write_prxfpreg (bfd
*abfd
,
8207 const void *xfpregs
,
8210 char *note_name
= "LINUX";
8211 return elfcore_write_note (abfd
, buf
, bufsiz
,
8212 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8216 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8224 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8227 buf
= bfd_malloc (size
);
8231 if (bfd_bread (buf
, size
, abfd
) != size
)
8239 while (p
< buf
+ size
)
8241 /* FIXME: bad alignment assumption. */
8242 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8243 Elf_Internal_Note in
;
8245 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8247 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8248 in
.namedata
= xnp
->name
;
8250 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8251 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8252 in
.descpos
= offset
+ (in
.descdata
- buf
);
8254 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
8256 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8259 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
8261 if (! elfcore_grok_nto_note (abfd
, &in
))
8266 if (! elfcore_grok_note (abfd
, &in
))
8270 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8277 /* Providing external access to the ELF program header table. */
8279 /* Return an upper bound on the number of bytes required to store a
8280 copy of ABFD's program header table entries. Return -1 if an error
8281 occurs; bfd_get_error will return an appropriate code. */
8284 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8286 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8288 bfd_set_error (bfd_error_wrong_format
);
8292 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8295 /* Copy ABFD's program header table entries to *PHDRS. The entries
8296 will be stored as an array of Elf_Internal_Phdr structures, as
8297 defined in include/elf/internal.h. To find out how large the
8298 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8300 Return the number of program header table entries read, or -1 if an
8301 error occurs; bfd_get_error will return an appropriate code. */
8304 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8308 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8310 bfd_set_error (bfd_error_wrong_format
);
8314 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8315 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8316 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8322 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8325 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8327 i_ehdrp
= elf_elfheader (abfd
);
8328 if (i_ehdrp
== NULL
)
8329 sprintf_vma (buf
, value
);
8332 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8334 #if BFD_HOST_64BIT_LONG
8335 sprintf (buf
, "%016lx", value
);
8337 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8338 _bfd_int64_low (value
));
8342 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8345 sprintf_vma (buf
, value
);
8350 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8353 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8355 i_ehdrp
= elf_elfheader (abfd
);
8356 if (i_ehdrp
== NULL
)
8357 fprintf_vma ((FILE *) stream
, value
);
8360 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8362 #if BFD_HOST_64BIT_LONG
8363 fprintf ((FILE *) stream
, "%016lx", value
);
8365 fprintf ((FILE *) stream
, "%08lx%08lx",
8366 _bfd_int64_high (value
), _bfd_int64_low (value
));
8370 fprintf ((FILE *) stream
, "%08lx",
8371 (unsigned long) (value
& 0xffffffff));
8374 fprintf_vma ((FILE *) stream
, value
);
8378 enum elf_reloc_type_class
8379 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8381 return reloc_class_normal
;
8384 /* For RELA architectures, return the relocation value for a
8385 relocation against a local symbol. */
8388 _bfd_elf_rela_local_sym (bfd
*abfd
,
8389 Elf_Internal_Sym
*sym
,
8391 Elf_Internal_Rela
*rel
)
8393 asection
*sec
= *psec
;
8396 relocation
= (sec
->output_section
->vma
8397 + sec
->output_offset
8399 if ((sec
->flags
& SEC_MERGE
)
8400 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8401 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8404 _bfd_merged_section_offset (abfd
, psec
,
8405 elf_section_data (sec
)->sec_info
,
8406 sym
->st_value
+ rel
->r_addend
);
8409 /* If we have changed the section, and our original section is
8410 marked with SEC_EXCLUDE, it means that the original
8411 SEC_MERGE section has been completely subsumed in some
8412 other SEC_MERGE section. In this case, we need to leave
8413 some info around for --emit-relocs. */
8414 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8415 sec
->kept_section
= *psec
;
8418 rel
->r_addend
-= relocation
;
8419 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8425 _bfd_elf_rel_local_sym (bfd
*abfd
,
8426 Elf_Internal_Sym
*sym
,
8430 asection
*sec
= *psec
;
8432 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8433 return sym
->st_value
+ addend
;
8435 return _bfd_merged_section_offset (abfd
, psec
,
8436 elf_section_data (sec
)->sec_info
,
8437 sym
->st_value
+ addend
);
8441 _bfd_elf_section_offset (bfd
*abfd
,
8442 struct bfd_link_info
*info
,
8446 switch (sec
->sec_info_type
)
8448 case ELF_INFO_TYPE_STABS
:
8449 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8451 case ELF_INFO_TYPE_EH_FRAME
:
8452 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8458 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8459 reconstruct an ELF file by reading the segments out of remote memory
8460 based on the ELF file header at EHDR_VMA and the ELF program headers it
8461 points to. If not null, *LOADBASEP is filled in with the difference
8462 between the VMAs from which the segments were read, and the VMAs the
8463 file headers (and hence BFD's idea of each section's VMA) put them at.
8465 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8466 remote memory at target address VMA into the local buffer at MYADDR; it
8467 should return zero on success or an `errno' code on failure. TEMPL must
8468 be a BFD for an ELF target with the word size and byte order found in
8469 the remote memory. */
8472 bfd_elf_bfd_from_remote_memory
8476 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8478 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8479 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8483 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8484 long symcount ATTRIBUTE_UNUSED
,
8485 asymbol
**syms ATTRIBUTE_UNUSED
,
8490 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8493 const char *relplt_name
;
8494 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8498 Elf_Internal_Shdr
*hdr
;
8504 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8507 if (dynsymcount
<= 0)
8510 if (!bed
->plt_sym_val
)
8513 relplt_name
= bed
->relplt_name
;
8514 if (relplt_name
== NULL
)
8515 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8516 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8520 hdr
= &elf_section_data (relplt
)->this_hdr
;
8521 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8522 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8525 plt
= bfd_get_section_by_name (abfd
, ".plt");
8529 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8530 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8533 count
= relplt
->size
/ hdr
->sh_entsize
;
8534 size
= count
* sizeof (asymbol
);
8535 p
= relplt
->relocation
;
8536 for (i
= 0; i
< count
; i
++, s
++, p
++)
8537 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8539 s
= *ret
= bfd_malloc (size
);
8543 names
= (char *) (s
+ count
);
8544 p
= relplt
->relocation
;
8546 for (i
= 0; i
< count
; i
++, s
++, p
++)
8551 addr
= bed
->plt_sym_val (i
, plt
, p
);
8552 if (addr
== (bfd_vma
) -1)
8555 *s
= **p
->sym_ptr_ptr
;
8556 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8557 we are defining a symbol, ensure one of them is set. */
8558 if ((s
->flags
& BSF_LOCAL
) == 0)
8559 s
->flags
|= BSF_GLOBAL
;
8561 s
->value
= addr
- plt
->vma
;
8563 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8564 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8566 memcpy (names
, "@plt", sizeof ("@plt"));
8567 names
+= sizeof ("@plt");
8574 /* Sort symbol by binding and section. We want to put definitions
8575 sorted by section at the beginning. */
8578 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8580 const Elf_Internal_Sym
*s1
;
8581 const Elf_Internal_Sym
*s2
;
8584 /* Make sure that undefined symbols are at the end. */
8585 s1
= (const Elf_Internal_Sym
*) arg1
;
8586 if (s1
->st_shndx
== SHN_UNDEF
)
8588 s2
= (const Elf_Internal_Sym
*) arg2
;
8589 if (s2
->st_shndx
== SHN_UNDEF
)
8592 /* Sorted by section index. */
8593 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8597 /* Sorted by binding. */
8598 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8603 Elf_Internal_Sym
*sym
;
8608 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8610 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8611 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8612 return strcmp (s1
->name
, s2
->name
);
8615 /* Check if 2 sections define the same set of local and global
8619 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8622 const struct elf_backend_data
*bed1
, *bed2
;
8623 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8624 bfd_size_type symcount1
, symcount2
;
8625 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8626 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8627 Elf_Internal_Sym
*isymend
;
8628 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8629 bfd_size_type count1
, count2
, i
;
8636 /* If both are .gnu.linkonce sections, they have to have the same
8638 if (strncmp (sec1
->name
, ".gnu.linkonce",
8639 sizeof ".gnu.linkonce" - 1) == 0
8640 && strncmp (sec2
->name
, ".gnu.linkonce",
8641 sizeof ".gnu.linkonce" - 1) == 0)
8642 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8643 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8645 /* Both sections have to be in ELF. */
8646 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8647 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8650 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8653 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8654 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8656 /* If both are members of section groups, they have to have the
8658 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8662 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8663 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8664 if (shndx1
== -1 || shndx2
== -1)
8667 bed1
= get_elf_backend_data (bfd1
);
8668 bed2
= get_elf_backend_data (bfd2
);
8669 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8670 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8671 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8672 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8674 if (symcount1
== 0 || symcount2
== 0)
8677 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8679 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8683 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8686 /* Sort symbols by binding and section. Global definitions are at
8688 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8689 elf_sort_elf_symbol
);
8690 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8691 elf_sort_elf_symbol
);
8693 /* Count definitions in the section. */
8695 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8696 isym
< isymend
; isym
++)
8698 if (isym
->st_shndx
== (unsigned int) shndx1
)
8705 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8710 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8711 isym
< isymend
; isym
++)
8713 if (isym
->st_shndx
== (unsigned int) shndx2
)
8720 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8724 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8727 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8728 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8730 if (symtable1
== NULL
|| symtable2
== NULL
)
8734 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8735 isym
< isymend
; isym
++)
8738 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8745 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8746 isym
< isymend
; isym
++)
8749 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8755 /* Sort symbol by name. */
8756 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8757 elf_sym_name_compare
);
8758 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8759 elf_sym_name_compare
);
8761 for (i
= 0; i
< count1
; i
++)
8762 /* Two symbols must have the same binding, type and name. */
8763 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8764 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8765 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8783 /* It is only used by x86-64 so far. */
8784 asection _bfd_elf_large_com_section
8785 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8786 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8788 /* Return TRUE if 2 section types are compatible. */
8791 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8792 bfd
*bbfd
, const asection
*bsec
)
8796 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8797 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8800 return elf_section_type (asec
) == elf_section_type (bsec
);