* configure.tgt (i[3-7]86-*-solaris2*, i[3-7]86-*-solaris*): Correct
[binutils.git] / bfd / elf32-xtensa.c
blob542b3a485750fd9392c584480b903e86be72f1e2
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
24 #include <stdarg.h>
25 #include <strings.h>
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean add_extra_plt_sections (bfd *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 /* Miscellaneous utility functions. */
97 static asection *elf_xtensa_get_plt_section (bfd *, int);
98 static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_littable_section (asection *);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern char *xtensa_get_property_section_name (asection *, const char *);
110 static flagword xtensa_get_property_predef_flags (asection *);
112 /* Other functions called directly by the linker. */
114 typedef void (*deps_callback_t)
115 (asection *, bfd_vma, asection *, bfd_vma, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
125 int elf32xtensa_size_opt;
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
132 typedef struct xtensa_relax_info_struct xtensa_relax_info;
135 /* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
139 needed. It is OK if this count is an overestimate, e.g., some
140 relocations may be removed by GC. */
142 static int plt_reloc_count = 0;
145 /* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
150 xtensa_isa xtensa_default_isa;
153 /* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
157 static bfd_boolean relaxing_section = FALSE;
159 /* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
162 int elf32xtensa_no_literal_movement = 1;
165 static reloc_howto_type elf_howto_table[] =
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
220 FALSE, 0x00000000, 0x00000000, FALSE),
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
328 #if DEBUG_GEN_RELOC
329 #define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331 #else
332 #define TRACE(str)
333 #endif
335 static reloc_howto_type *
336 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
339 switch (code)
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409 default:
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
426 break;
429 TRACE ("Unknown");
430 return NULL;
434 /* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
437 static void
438 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
449 /* Functions for the Xtensa ELF linker. */
451 /* The name of the dynamic interpreter. This is put in the .interp
452 section. */
454 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
456 /* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
460 #define PLT_ENTRY_SIZE 16
462 /* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
472 #define PLT_ENTRIES_PER_CHUNK 254
474 /* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
479 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
489 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
500 static inline bfd_boolean
501 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
514 static int
515 property_table_compare (const void *ap, const void *bp)
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
520 if (a->address == b->address)
522 if (a->size != b->size)
523 return (a->size - b->size);
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
540 return (a->flags - b->flags);
543 return (a->address - b->address);
547 static int
548 property_table_matches (const void *ap, const void *bp)
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
553 /* Check if one entry overlaps with the other. */
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
558 return (a->address - b->address);
562 /* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
566 static int
567 xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
578 int blk, block_count;
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
581 bfd_vma section_addr;
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
589 *table_p = NULL;
590 return 0;
593 table_section_name = xtensa_get_property_section_name (section, sec_name);
594 table_section = bfd_get_section_by_name (abfd, table_section_name);
595 free (table_section_name);
596 if (table_section)
597 table_size = table_section->size;
599 if (table_size == 0)
601 *table_p = NULL;
602 return 0;
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
610 num_records = table_size / table_entry_size;
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
624 if (internal_relocs && !table_section->reloc_done)
626 unsigned i;
628 for (i = 0; i < table_section->reloc_count; i++)
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
642 BFD_ASSERT (sym_off == 0);
643 blocks[block_count].address =
644 (section_addr + sym_off + rel->r_addend
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
653 block_count++;
657 else
659 /* The file has already been relocated and the addresses are
660 already in the table. */
661 bfd_vma off;
662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
664 for (off = 0; off < table_size; off += table_entry_size)
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
668 if (address >= section_addr
669 && address < section_addr + section_limit)
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
679 block_count++;
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
687 if (block_count > 0)
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
713 *table_p = blocks;
714 return block_count;
718 static property_table_entry *
719 elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
723 property_table_entry entry;
724 property_table_entry *rv;
726 if (property_table_size == 0)
727 return NULL;
729 entry.address = addr;
730 entry.size = 1;
731 entry.flags = 0;
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
739 static bfd_boolean
740 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
745 return TRUE;
747 return FALSE;
751 /* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
754 static bfd_boolean
755 elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
765 if (info->relocatable)
766 return TRUE;
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
785 return FALSE;
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
798 switch (r_type)
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
804 if ((sec->flags & SEC_ALLOC) != 0)
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
811 break;
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
819 if ((sec->flags & SEC_ALLOC) != 0)
821 if (h->plt.refcount <= 0)
823 h->needs_plt = 1;
824 h->plt.refcount = 1;
826 else
827 h->plt.refcount += 1;
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
834 if (elf_hash_table (info)->dynamic_sections_created)
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
841 break;
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
846 bfd_signed_vma *local_got_refcounts;
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
852 bfd_size_type size;
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
862 local_got_refcounts[r_symndx] += 1;
864 break;
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
904 /* Nothing to do for these. */
905 break;
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
911 return FALSE;
912 break;
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
918 return FALSE;
919 break;
921 default:
922 break;
926 return TRUE;
930 static void
931 elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
934 if (info->shared)
936 if (h->plt.refcount > 0)
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
945 else
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
954 static void
955 elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
967 /* Return the section that should be marked against GC for a given
968 relocation. */
970 static asection *
971 elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
977 if (h)
979 switch (ELF32_R_TYPE (rel->r_info))
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
985 default:
986 switch (h->root.type)
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
995 default:
996 break;
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1003 return NULL;
1007 /* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1010 static bfd_boolean
1011 elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1066 default:
1067 break;
1071 return TRUE;
1075 /* Create all the dynamic sections. */
1077 static bfd_boolean
1078 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1080 flagword flags, noalloc_flags;
1081 asection *s;
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1102 /* Create ".rela.got". */
1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1104 if (s == NULL
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1110 if (s == NULL
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
1117 if (s == NULL
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1121 return TRUE;
1125 static bfd_boolean
1126 add_extra_plt_sections (bfd *dynobj, int count)
1128 int chunk;
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
1149 if (s == NULL
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
1156 if (s == NULL
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1161 return TRUE;
1165 /* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1171 static bfd_boolean
1172 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
1178 if (h->u.weakdef)
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1184 return TRUE;
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1191 return TRUE;
1195 static bfd_boolean
1196 elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
1204 elf_xtensa_make_sym_local (info, h);
1206 return TRUE;
1210 static bfd_boolean
1211 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
1213 asection *srelplt = (asection *) arg;
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1218 if (h->plt.refcount > 0)
1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1221 return TRUE;
1225 static bfd_boolean
1226 elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
1228 asection *srelgot = (asection *) arg;
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1233 if (h->got.refcount > 0)
1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1236 return TRUE;
1240 static void
1241 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
1244 bfd *i;
1246 for (i = info->input_bfds; i; i = i->link_next)
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1259 for (j = 0; j < cnt; ++j)
1261 if (local_got_refcounts[j] > 0)
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
1269 /* Set the sizes of the dynamic sections. */
1271 static bfd_boolean
1272 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1288 if (elf_hash_table (info)->dynamic_sections_created)
1290 /* Set the contents of the .interp section to the interpreter. */
1291 if (info->executable)
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
1304 s->size = 4;
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
1309 (void *) info);
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
1318 (void *) srelgot);
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
1332 (void *) srelplt);
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1354 int chunk_entries;
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1367 if (chunk_entries != 0)
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
1374 else
1376 sgotplt->size = 0;
1377 splt->size = 0;
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
1386 sgotloc->size = spltlittbl->size;
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
1396 sgotloc->size += s->size;
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1406 const char *name;
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1415 if (strncmp (name, ".rela", 5) == 0)
1417 if (s->size != 0)
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1441 if (s->size == 0)
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1456 /* Allocate memory for the section contents. */
1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1458 if (s->contents == NULL)
1459 return FALSE;
1463 if (elf_hash_table (info)->dynamic_sections_created)
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492 #define add_dynamic_entry(TAG, VAL) \
1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1495 if (! info->shared)
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1501 if (relplt)
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1510 if (relgot)
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1522 #undef add_dynamic_entry
1524 return TRUE;
1528 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1535 static bfd_boolean
1536 elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1539 struct elf_segment_map **m_p;
1541 m_p = &elf_tdata (abfd)->segment_map;
1542 while (*m_p)
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1549 return TRUE;
1553 /* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1558 #define CALL_SEGMENT_BITS (30)
1559 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1561 static bfd_reloc_status_type
1562 elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
1571 xtensa_format fmt;
1572 xtensa_opcode opcode;
1573 xtensa_isa isa = xtensa_default_isa;
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
1579 uint32 newval;
1581 if (!ibuff)
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1587 input_size = bfd_get_section_limit (abfd, input_section);
1589 switch (howto->type)
1591 case R_XTENSA_NONE:
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
1595 return bfd_reloc_ok;
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
1603 input_size - address, 0);
1604 if (is_windowed_call_opcode (opcode))
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1618 return bfd_reloc_ok;
1620 case R_XTENSA_ASM_SIMPLIFY:
1622 /* Convert the L32R/CALLX to CALL. */
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
1626 if (retval != bfd_reloc_ok)
1627 return bfd_reloc_dangerous;
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1633 break;
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1643 return bfd_reloc_ok;
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
1650 *error_message = "unexpected relocation";
1651 return bfd_reloc_dangerous;
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
1660 *error_message = "cannot decode instruction format";
1661 return bfd_reloc_dangerous;
1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
1669 *error_message = "cannot decode instruction opcode";
1670 return bfd_reloc_dangerous;
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1676 if (opcode == get_l32r_opcode ())
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1691 else if (opcode == get_const16_opcode ())
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1697 else
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1704 else /* Not an "alternate" relocation.... */
1706 if (opcode == get_const16_opcode ())
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1711 else
1713 /* ...normal PC-relative relocation.... */
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1723 if (!howto->pc_relative)
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
1734 newval = relocation;
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1755 else if (opcode == get_l32r_opcode ())
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1768 return bfd_reloc_dangerous;
1771 /* Check for calls across 1GB boundaries. */
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
1780 return bfd_reloc_dangerous;
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
1788 return bfd_reloc_ok;
1792 static char *
1793 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1805 is_append = (origmsg == message);
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1822 /* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1829 static bfd_reloc_status_type
1830 bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1849 /* ELF relocs are against symbols. If we are producing relocatable
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1866 /* Is the address of the relocation really within the section? */
1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1868 return bfd_reloc_outofrange;
1870 /* Work out which section the relocation is targeted at and the
1871 initial relocation command value. */
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1879 reloc_target_output_section = symbol->section->output_section;
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1888 relocation += output_base + symbol->section->output_offset;
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1897 if (!howto->partial_inplace)
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1909 else
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1922 if (flag == bfd_reloc_dangerous)
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
1933 return flag;
1937 /* Set up an entry in the procedure linkage table. */
1939 static bfd_vma
1940 elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1981 return plt_base + code_offset;
1985 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1986 both relocatable and final links. */
1988 static bfd_boolean
1989 elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
2006 char *error_message = NULL;
2007 bfd_size_type input_size;
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2016 srelgot = NULL;
2017 srelplt = NULL;
2018 if (dynobj)
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2024 if (elf_hash_table (info)->dynamic_sections_created)
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
2029 if (ltblsize < 0)
2030 return FALSE;
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
2049 bfd_boolean warned;
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2061 howto = &elf_howto_table[r_type];
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2065 if (info->relocatable)
2067 /* This is a relocatable link.
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2075 if (relaxing_section)
2077 /* Check if this references a section in another input file. */
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
2081 r_type = ELF32_R_TYPE (rel->r_info);
2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2086 char *error_message = NULL;
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2098 r_type = ELF32_R_TYPE (rel->r_info);
2101 /* This is a relocatable link, so we don't have to change
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
2117 to work around problems with DWARF in relocatable links
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2136 rel->r_addend = 0;
2140 /* Done with work for relocatable link; continue with next reloc. */
2141 continue;
2144 /* This is a final link. */
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
2151 warned = FALSE;
2153 if (howto->partial_inplace)
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2163 if (r_symndx < symtab_hdr->sh_info)
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2169 else
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
2179 is_weak_undef = TRUE;
2182 if (relaxing_section)
2184 /* Check if this references a section in another input file. */
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2193 /* Sanity check the address. */
2194 if (rel->r_offset >= input_size
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
2209 if (dynamic_symbol && is_operand_relocation (r_type))
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2235 BFD_ASSERT (srel != NULL);
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2252 outrel.r_offset))
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2262 if (dynamic_symbol)
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2267 if (r_type == R_XTENSA_32)
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2273 else /* r_type == R_XTENSA_PLT */
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
2281 relocation =
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2285 unresolved_reloc = FALSE;
2287 else
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2299 <= srel->size);
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
2308 && h->def_dynamic))
2309 (*_bfd_error_handler)
2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2311 input_bfd,
2312 input_section,
2313 (long) rel->r_offset,
2314 howto->name,
2315 h->root.root.string);
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
2324 if (r != bfd_reloc_ok && !warned)
2326 const char *name;
2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2329 BFD_ASSERT (error_message != NULL);
2331 if (h)
2332 name = h->root.root.string;
2333 else
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2340 if (name)
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
2348 name, (int)rel->r_addend);
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2358 if (lit_table)
2359 free (lit_table);
2361 input_section->reloc_done = TRUE;
2363 return TRUE;
2367 /* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2370 static bfd_boolean
2371 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
2376 if (h->needs_plt
2377 && !h->def_regular)
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2386 || h == elf_hash_table (info)->hgot)
2387 sym->st_shndx = SHN_ABS;
2389 return TRUE;
2393 /* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2401 static int
2402 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
2406 bfd_byte *contents;
2407 property_table_entry *table;
2408 bfd_size_type section_size, sgotloc_size;
2409 bfd_vma offset;
2410 int n, m, num;
2412 section_size = sxtlit->size;
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2416 sgotloc_size = sgotloc->size;
2417 if (sgotloc_size != section_size)
2419 (*_bfd_error_handler)
2420 (_("internal inconsistency in size of .got.loc section"));
2421 return -1;
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
2426 return -1;
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
2430 where it breaks the following call to bfd_malloc_and_get_section. */
2431 sxtlit->flags &= ~SEC_IN_MEMORY;
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2454 for (n = 0; n < num; n++)
2456 bfd_boolean remove = FALSE;
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2467 if (remove)
2469 for (m = n; m < num - 1; m++)
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2475 n--;
2476 num--;
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
2491 memset (&contents[num * 8], 0, section_size - num * 8);
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
2495 return -1;
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2500 free (contents);
2501 free (table);
2502 return num;
2506 /* Finish up the dynamic sections. */
2508 static bfd_boolean
2509 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
2512 bfd *dynobj;
2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2529 BFD_ASSERT (sgot->size == 4);
2530 if (sdyn == NULL)
2531 bfd_put_32 (output_bfd, 0, sgot->contents);
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2539 if (srelplt && srelplt->size != 0)
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2570 int chunk_entries = 0;
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
2621 abort ();
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
2631 spltlittbl->size))
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2637 /* Combine adjacent literal table entries. */
2638 BFD_ASSERT (! info->relocatable);
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
2641 BFD_ASSERT (sxtlit && sgotloc);
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2649 for (; dyncon < dynconend; dyncon++)
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2657 switch (dyn.d_tag)
2659 default:
2660 break;
2662 case DT_XTENSA_GOT_LOC_SZ:
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2666 case DT_XTENSA_GOT_LOC_OFF:
2667 name = ".got.loc";
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
2683 dyn.d_un.d_val = s->size;
2684 break;
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
2695 dyn.d_un.d_val -= s->size;
2696 break;
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2702 return TRUE;
2706 /* Functions for dealing with the e_flags field. */
2708 /* Merge backend specific data from an object file to the output
2709 object file when linking. */
2711 static bfd_boolean
2712 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
2731 if (out_mach != in_mach)
2733 (*_bfd_error_handler)
2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2735 ibfd, out_mach, in_mach);
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2740 if (! elf_flags_init (obfd))
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
2750 return TRUE;
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2759 return TRUE;
2763 static bfd_boolean
2764 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2772 return TRUE;
2776 static bfd_boolean
2777 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2782 fprintf (f, "\nXtensa header:\n");
2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2798 /* Set the right machine number for an Xtensa ELF file. */
2800 static bfd_boolean
2801 elf_xtensa_object_p (bfd *abfd)
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2806 switch (arch)
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2820 /* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2824 static void
2825 elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
2828 int mach;
2829 unsigned long val;
2831 switch (mach = bfd_get_mach (abfd))
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2845 static enum elf_reloc_type_class
2846 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2860 static bfd_boolean
2861 elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2871 section_size = sec->size;
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2886 release_contents (sec, contents);
2887 return FALSE;
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2893 for (offset = 0; offset < section_size; offset += 8)
2895 actual_offset = offset - removed_bytes;
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2938 cookie->rel++;
2942 if (removed_bytes != 0)
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
2962 if (xtensa_is_littable_section (sec))
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
2970 sgotloc->size -= removed_bytes;
2974 else
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2980 return (removed_bytes != 0);
2984 static bfd_boolean
2985 elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2994 if (xtensa_is_property_section (sec))
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
3001 return changed;
3005 static bfd_boolean
3006 elf_xtensa_ignore_discarded_relocs (asection *sec)
3008 return xtensa_is_property_section (sec);
3012 /* Support for core dump NOTE sections. */
3014 static bfd_boolean
3015 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3017 int offset;
3018 unsigned int size;
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3029 /* pr_reg */
3030 offset = 72;
3031 size = note->descsz - offset - 4;
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3035 size, note->descpos + offset);
3039 static bfd_boolean
3040 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3042 switch (note->descsz)
3044 default:
3045 return FALSE;
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3066 return TRUE;
3070 /* Generic Xtensa configurability stuff. */
3072 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3081 static void
3082 init_call_opcodes (void)
3084 if (callx0_op == XTENSA_UNDEFINED)
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3098 static bfd_boolean
3099 is_indirect_call_opcode (xtensa_opcode opcode)
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3109 static bfd_boolean
3110 is_direct_call_opcode (xtensa_opcode opcode)
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3120 static bfd_boolean
3121 is_windowed_call_opcode (xtensa_opcode opcode)
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3133 static xtensa_opcode
3134 get_const16_opcode (void)
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3143 return const16_opcode;
3147 static xtensa_opcode
3148 get_l32r_opcode (void)
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3151 static bfd_boolean done_lookup = FALSE;
3153 if (!done_lookup)
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3156 done_lookup = TRUE;
3158 return l32r_opcode;
3162 static bfd_vma
3163 l32r_offset (bfd_vma addr, bfd_vma pc)
3165 bfd_vma offset;
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3175 static int
3176 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3195 last_immed = opi;
3196 break;
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3214 return last_immed;
3219 get_relocation_slot (int r_type)
3221 switch (r_type)
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3236 return XTENSA_UNDEFINED;
3240 /* Get the opcode for a relocation. */
3242 static xtensa_opcode
3243 get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
3248 static xtensa_insnbuf ibuff = NULL;
3249 static xtensa_insnbuf sbuff = NULL;
3250 xtensa_isa isa = xtensa_default_isa;
3251 xtensa_format fmt;
3252 int slot;
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3258 return XTENSA_UNDEFINED;
3260 if (ibuff == NULL)
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3266 /* Decode the instruction. */
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3278 bfd_boolean
3279 is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
3284 xtensa_opcode opcode;
3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3286 return FALSE;
3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3288 return (opcode == get_l32r_opcode ());
3292 static bfd_size_type
3293 get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
3297 bfd_size_type insnlen, size = 0;
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
3304 size += insnlen;
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
3310 size += insnlen;
3311 return size;
3315 bfd_boolean
3316 is_alt_relocation (int r_type)
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
3323 bfd_boolean
3324 is_operand_relocation (int r_type)
3326 switch (r_type)
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3341 return FALSE;
3345 #define MIN_INSN_LENGTH 2
3347 /* Return 0 if it fails to decode. */
3349 bfd_size_type
3350 insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
3376 /* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
3379 xtensa_opcode
3380 insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
3385 xtensa_isa isa = xtensa_default_isa;
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3390 if (offset + MIN_INSN_LENGTH > content_len)
3391 return XTENSA_UNDEFINED;
3393 if (insnbuf == NULL)
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
3403 return XTENSA_UNDEFINED;
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
3406 return XTENSA_UNDEFINED;
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3413 /* The offset is the offset in the contents.
3414 The address is the address of that offset. */
3416 static bfd_boolean
3417 check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3429 static bfd_boolean
3430 check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode;
3438 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3439 if (opcode == XTENSA_UNDEFINED
3440 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3442 BFD_ASSERT (FALSE);
3443 return FALSE;
3446 loop_len = insn_decode_len (contents, content_length, offset);
3447 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3448 if (loop_len == 0 || insn_len == 0)
3450 BFD_ASSERT (FALSE);
3451 return FALSE;
3454 return check_branch_target_aligned_address (address + loop_len, insn_len);
3458 static bfd_boolean
3459 check_branch_target_aligned_address (bfd_vma addr, int len)
3461 if (len == 8)
3462 return (addr % 8 == 0);
3463 return ((addr >> 2) == ((addr + len - 1) >> 2));
3467 /* Instruction widening and narrowing. */
3469 /* When FLIX is available we need to access certain instructions only
3470 when they are 16-bit or 24-bit instructions. This table caches
3471 information about such instructions by walking through all the
3472 opcodes and finding the smallest single-slot format into which each
3473 can be encoded. */
3475 static xtensa_format *op_single_fmt_table = NULL;
3478 static void
3479 init_op_single_format_table (void)
3481 xtensa_isa isa = xtensa_default_isa;
3482 xtensa_insnbuf ibuf;
3483 xtensa_opcode opcode;
3484 xtensa_format fmt;
3485 int num_opcodes;
3487 if (op_single_fmt_table)
3488 return;
3490 ibuf = xtensa_insnbuf_alloc (isa);
3491 num_opcodes = xtensa_isa_num_opcodes (isa);
3493 op_single_fmt_table = (xtensa_format *)
3494 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3495 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3498 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 if (xtensa_format_num_slots (isa, fmt) == 1
3501 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3504 int fmt_length = xtensa_format_length (isa, fmt);
3505 if (old_fmt == XTENSA_UNDEFINED
3506 || fmt_length < xtensa_format_length (isa, old_fmt))
3507 op_single_fmt_table[opcode] = fmt;
3511 xtensa_insnbuf_free (isa, ibuf);
3515 static xtensa_format
3516 get_single_format (xtensa_opcode opcode)
3518 init_op_single_format_table ();
3519 return op_single_fmt_table[opcode];
3523 /* For the set of narrowable instructions we do NOT include the
3524 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3525 involved during linker relaxation that may require these to
3526 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3527 requires special case code to ensure it only works when op1 == op2. */
3529 struct string_pair
3531 const char *wide;
3532 const char *narrow;
3535 struct string_pair narrowable[] =
3537 { "add", "add.n" },
3538 { "addi", "addi.n" },
3539 { "addmi", "addi.n" },
3540 { "l32i", "l32i.n" },
3541 { "movi", "movi.n" },
3542 { "ret", "ret.n" },
3543 { "retw", "retw.n" },
3544 { "s32i", "s32i.n" },
3545 { "or", "mov.n" } /* special case only when op1 == op2 */
3548 struct string_pair widenable[] =
3550 { "add", "add.n" },
3551 { "addi", "addi.n" },
3552 { "addmi", "addi.n" },
3553 { "beqz", "beqz.n" },
3554 { "bnez", "bnez.n" },
3555 { "l32i", "l32i.n" },
3556 { "movi", "movi.n" },
3557 { "ret", "ret.n" },
3558 { "retw", "retw.n" },
3559 { "s32i", "s32i.n" },
3560 { "or", "mov.n" } /* special case only when op1 == op2 */
3564 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3565 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3566 return the instruction buffer holding the narrow instruction. Otherwise,
3567 return 0. The set of valid narrowing are specified by a string table
3568 but require some special case operand checks in some cases. */
3570 static xtensa_insnbuf
3571 can_narrow_instruction (xtensa_insnbuf slotbuf,
3572 xtensa_format fmt,
3573 xtensa_opcode opcode)
3575 xtensa_isa isa = xtensa_default_isa;
3576 xtensa_format o_fmt;
3577 unsigned opi;
3579 static xtensa_insnbuf o_insnbuf = NULL;
3580 static xtensa_insnbuf o_slotbuf = NULL;
3582 if (o_insnbuf == NULL)
3584 o_insnbuf = xtensa_insnbuf_alloc (isa);
3585 o_slotbuf = xtensa_insnbuf_alloc (isa);
3588 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3590 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3592 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3594 uint32 value, newval;
3595 int i, operand_count, o_operand_count;
3596 xtensa_opcode o_opcode;
3598 /* Address does not matter in this case. We might need to
3599 fix it to handle branches/jumps. */
3600 bfd_vma self_address = 0;
3602 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3603 if (o_opcode == XTENSA_UNDEFINED)
3604 return 0;
3605 o_fmt = get_single_format (o_opcode);
3606 if (o_fmt == XTENSA_UNDEFINED)
3607 return 0;
3609 if (xtensa_format_length (isa, fmt) != 3
3610 || xtensa_format_length (isa, o_fmt) != 2)
3611 return 0;
3613 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3614 operand_count = xtensa_opcode_num_operands (isa, opcode);
3615 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3617 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3618 return 0;
3620 if (!is_or)
3622 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3623 return 0;
3625 else
3627 uint32 rawval0, rawval1, rawval2;
3629 if (o_operand_count + 1 != operand_count
3630 || xtensa_operand_get_field (isa, opcode, 0,
3631 fmt, 0, slotbuf, &rawval0) != 0
3632 || xtensa_operand_get_field (isa, opcode, 1,
3633 fmt, 0, slotbuf, &rawval1) != 0
3634 || xtensa_operand_get_field (isa, opcode, 2,
3635 fmt, 0, slotbuf, &rawval2) != 0
3636 || rawval1 != rawval2
3637 || rawval0 == rawval1 /* it is a nop */)
3638 return 0;
3641 for (i = 0; i < o_operand_count; ++i)
3643 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3644 slotbuf, &value)
3645 || xtensa_operand_decode (isa, opcode, i, &value))
3646 return 0;
3648 /* PC-relative branches need adjustment, but
3649 the PC-rel operand will always have a relocation. */
3650 newval = value;
3651 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3652 self_address)
3653 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3654 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3655 o_slotbuf, newval))
3656 return 0;
3659 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3660 return 0;
3662 return o_insnbuf;
3665 return 0;
3669 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3670 the action in-place directly into the contents and return TRUE. Otherwise,
3671 the return value is FALSE and the contents are not modified. */
3673 static bfd_boolean
3674 narrow_instruction (bfd_byte *contents,
3675 bfd_size_type content_length,
3676 bfd_size_type offset)
3678 xtensa_opcode opcode;
3679 bfd_size_type insn_len;
3680 xtensa_isa isa = xtensa_default_isa;
3681 xtensa_format fmt;
3682 xtensa_insnbuf o_insnbuf;
3684 static xtensa_insnbuf insnbuf = NULL;
3685 static xtensa_insnbuf slotbuf = NULL;
3687 if (insnbuf == NULL)
3689 insnbuf = xtensa_insnbuf_alloc (isa);
3690 slotbuf = xtensa_insnbuf_alloc (isa);
3693 BFD_ASSERT (offset < content_length);
3695 if (content_length < 2)
3696 return FALSE;
3698 /* We will hand-code a few of these for a little while.
3699 These have all been specified in the assembler aleady. */
3700 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3701 content_length - offset);
3702 fmt = xtensa_format_decode (isa, insnbuf);
3703 if (xtensa_format_num_slots (isa, fmt) != 1)
3704 return FALSE;
3706 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3707 return FALSE;
3709 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3710 if (opcode == XTENSA_UNDEFINED)
3711 return FALSE;
3712 insn_len = xtensa_format_length (isa, fmt);
3713 if (insn_len > content_length)
3714 return FALSE;
3716 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3717 if (o_insnbuf)
3719 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3720 content_length - offset);
3721 return TRUE;
3724 return FALSE;
3728 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3729 "density" instruction to a standard 3-byte instruction. If it is valid,
3730 return the instruction buffer holding the wide instruction. Otherwise,
3731 return 0. The set of valid widenings are specified by a string table
3732 but require some special case operand checks in some cases. */
3734 static xtensa_insnbuf
3735 can_widen_instruction (xtensa_insnbuf slotbuf,
3736 xtensa_format fmt,
3737 xtensa_opcode opcode)
3739 xtensa_isa isa = xtensa_default_isa;
3740 xtensa_format o_fmt;
3741 unsigned opi;
3743 static xtensa_insnbuf o_insnbuf = NULL;
3744 static xtensa_insnbuf o_slotbuf = NULL;
3746 if (o_insnbuf == NULL)
3748 o_insnbuf = xtensa_insnbuf_alloc (isa);
3749 o_slotbuf = xtensa_insnbuf_alloc (isa);
3752 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3754 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3755 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3756 || strcmp ("bnez", widenable[opi].wide) == 0);
3758 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3760 uint32 value, newval;
3761 int i, operand_count, o_operand_count, check_operand_count;
3762 xtensa_opcode o_opcode;
3764 /* Address does not matter in this case. We might need to fix it
3765 to handle branches/jumps. */
3766 bfd_vma self_address = 0;
3768 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3769 if (o_opcode == XTENSA_UNDEFINED)
3770 return 0;
3771 o_fmt = get_single_format (o_opcode);
3772 if (o_fmt == XTENSA_UNDEFINED)
3773 return 0;
3775 if (xtensa_format_length (isa, fmt) != 2
3776 || xtensa_format_length (isa, o_fmt) != 3)
3777 return 0;
3779 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3780 operand_count = xtensa_opcode_num_operands (isa, opcode);
3781 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3782 check_operand_count = o_operand_count;
3784 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3785 return 0;
3787 if (!is_or)
3789 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3790 return 0;
3792 else
3794 uint32 rawval0, rawval1;
3796 if (o_operand_count != operand_count + 1
3797 || xtensa_operand_get_field (isa, opcode, 0,
3798 fmt, 0, slotbuf, &rawval0) != 0
3799 || xtensa_operand_get_field (isa, opcode, 1,
3800 fmt, 0, slotbuf, &rawval1) != 0
3801 || rawval0 == rawval1 /* it is a nop */)
3802 return 0;
3804 if (is_branch)
3805 check_operand_count--;
3807 for (i = 0; i < check_operand_count; i++)
3809 int new_i = i;
3810 if (is_or && i == o_operand_count - 1)
3811 new_i = i - 1;
3812 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3813 slotbuf, &value)
3814 || xtensa_operand_decode (isa, opcode, new_i, &value))
3815 return 0;
3817 /* PC-relative branches need adjustment, but
3818 the PC-rel operand will always have a relocation. */
3819 newval = value;
3820 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3821 self_address)
3822 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3823 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3824 o_slotbuf, newval))
3825 return 0;
3828 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3829 return 0;
3831 return o_insnbuf;
3834 return 0;
3838 /* Attempt to widen an instruction. If the widening is valid, perform
3839 the action in-place directly into the contents and return TRUE. Otherwise,
3840 the return value is FALSE and the contents are not modified. */
3842 static bfd_boolean
3843 widen_instruction (bfd_byte *contents,
3844 bfd_size_type content_length,
3845 bfd_size_type offset)
3847 xtensa_opcode opcode;
3848 bfd_size_type insn_len;
3849 xtensa_isa isa = xtensa_default_isa;
3850 xtensa_format fmt;
3851 xtensa_insnbuf o_insnbuf;
3853 static xtensa_insnbuf insnbuf = NULL;
3854 static xtensa_insnbuf slotbuf = NULL;
3856 if (insnbuf == NULL)
3858 insnbuf = xtensa_insnbuf_alloc (isa);
3859 slotbuf = xtensa_insnbuf_alloc (isa);
3862 BFD_ASSERT (offset < content_length);
3864 if (content_length < 2)
3865 return FALSE;
3867 /* We will hand-code a few of these for a little while.
3868 These have all been specified in the assembler aleady. */
3869 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3870 content_length - offset);
3871 fmt = xtensa_format_decode (isa, insnbuf);
3872 if (xtensa_format_num_slots (isa, fmt) != 1)
3873 return FALSE;
3875 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3876 return FALSE;
3878 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3879 if (opcode == XTENSA_UNDEFINED)
3880 return FALSE;
3881 insn_len = xtensa_format_length (isa, fmt);
3882 if (insn_len > content_length)
3883 return FALSE;
3885 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3886 if (o_insnbuf)
3888 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3889 content_length - offset);
3890 return TRUE;
3892 return FALSE;
3896 /* Code for transforming CALLs at link-time. */
3898 static bfd_reloc_status_type
3899 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3900 bfd_vma address,
3901 bfd_vma content_length,
3902 char **error_message)
3904 static xtensa_insnbuf insnbuf = NULL;
3905 static xtensa_insnbuf slotbuf = NULL;
3906 xtensa_format core_format = XTENSA_UNDEFINED;
3907 xtensa_opcode opcode;
3908 xtensa_opcode direct_call_opcode;
3909 xtensa_isa isa = xtensa_default_isa;
3910 bfd_byte *chbuf = contents + address;
3911 int opn;
3913 if (insnbuf == NULL)
3915 insnbuf = xtensa_insnbuf_alloc (isa);
3916 slotbuf = xtensa_insnbuf_alloc (isa);
3919 if (content_length < address)
3921 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3922 return bfd_reloc_other;
3925 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3926 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3927 if (direct_call_opcode == XTENSA_UNDEFINED)
3929 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3930 return bfd_reloc_other;
3933 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3934 core_format = xtensa_format_lookup (isa, "x24");
3935 opcode = xtensa_opcode_lookup (isa, "or");
3936 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3937 for (opn = 0; opn < 3; opn++)
3939 uint32 regno = 1;
3940 xtensa_operand_encode (isa, opcode, opn, &regno);
3941 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3942 slotbuf, regno);
3944 xtensa_format_encode (isa, core_format, insnbuf);
3945 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3946 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3948 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3949 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3950 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3952 xtensa_format_encode (isa, core_format, insnbuf);
3953 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3954 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3955 content_length - address - 3);
3957 return bfd_reloc_ok;
3961 static bfd_reloc_status_type
3962 contract_asm_expansion (bfd_byte *contents,
3963 bfd_vma content_length,
3964 Elf_Internal_Rela *irel,
3965 char **error_message)
3967 bfd_reloc_status_type retval =
3968 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3969 error_message);
3971 if (retval != bfd_reloc_ok)
3972 return bfd_reloc_dangerous;
3974 /* Update the irel->r_offset field so that the right immediate and
3975 the right instruction are modified during the relocation. */
3976 irel->r_offset += 3;
3977 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3978 return bfd_reloc_ok;
3982 static xtensa_opcode
3983 swap_callx_for_call_opcode (xtensa_opcode opcode)
3985 init_call_opcodes ();
3987 if (opcode == callx0_op) return call0_op;
3988 if (opcode == callx4_op) return call4_op;
3989 if (opcode == callx8_op) return call8_op;
3990 if (opcode == callx12_op) return call12_op;
3992 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3993 return XTENSA_UNDEFINED;
3997 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3998 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3999 If not, return XTENSA_UNDEFINED. */
4001 #define L32R_TARGET_REG_OPERAND 0
4002 #define CONST16_TARGET_REG_OPERAND 0
4003 #define CALLN_SOURCE_OPERAND 0
4005 static xtensa_opcode
4006 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4008 static xtensa_insnbuf insnbuf = NULL;
4009 static xtensa_insnbuf slotbuf = NULL;
4010 xtensa_format fmt;
4011 xtensa_opcode opcode;
4012 xtensa_isa isa = xtensa_default_isa;
4013 uint32 regno, const16_regno, call_regno;
4014 int offset = 0;
4016 if (insnbuf == NULL)
4018 insnbuf = xtensa_insnbuf_alloc (isa);
4019 slotbuf = xtensa_insnbuf_alloc (isa);
4022 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4023 fmt = xtensa_format_decode (isa, insnbuf);
4024 if (fmt == XTENSA_UNDEFINED
4025 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4026 return XTENSA_UNDEFINED;
4028 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4029 if (opcode == XTENSA_UNDEFINED)
4030 return XTENSA_UNDEFINED;
4032 if (opcode == get_l32r_opcode ())
4034 if (p_uses_l32r)
4035 *p_uses_l32r = TRUE;
4036 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4037 fmt, 0, slotbuf, &regno)
4038 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4039 &regno))
4040 return XTENSA_UNDEFINED;
4042 else if (opcode == get_const16_opcode ())
4044 if (p_uses_l32r)
4045 *p_uses_l32r = FALSE;
4046 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4047 fmt, 0, slotbuf, &regno)
4048 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4049 &regno))
4050 return XTENSA_UNDEFINED;
4052 /* Check that the next instruction is also CONST16. */
4053 offset += xtensa_format_length (isa, fmt);
4054 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4055 fmt = xtensa_format_decode (isa, insnbuf);
4056 if (fmt == XTENSA_UNDEFINED
4057 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4058 return XTENSA_UNDEFINED;
4059 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4060 if (opcode != get_const16_opcode ())
4061 return XTENSA_UNDEFINED;
4063 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4064 fmt, 0, slotbuf, &const16_regno)
4065 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4066 &const16_regno)
4067 || const16_regno != regno)
4068 return XTENSA_UNDEFINED;
4070 else
4071 return XTENSA_UNDEFINED;
4073 /* Next instruction should be an CALLXn with operand 0 == regno. */
4074 offset += xtensa_format_length (isa, fmt);
4075 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4076 fmt = xtensa_format_decode (isa, insnbuf);
4077 if (fmt == XTENSA_UNDEFINED
4078 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4079 return XTENSA_UNDEFINED;
4080 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4081 if (opcode == XTENSA_UNDEFINED
4082 || !is_indirect_call_opcode (opcode))
4083 return XTENSA_UNDEFINED;
4085 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4086 fmt, 0, slotbuf, &call_regno)
4087 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4088 &call_regno))
4089 return XTENSA_UNDEFINED;
4091 if (call_regno != regno)
4092 return XTENSA_UNDEFINED;
4094 return opcode;
4098 /* Data structures used during relaxation. */
4100 /* r_reloc: relocation values. */
4102 /* Through the relaxation process, we need to keep track of the values
4103 that will result from evaluating relocations. The standard ELF
4104 relocation structure is not sufficient for this purpose because we're
4105 operating on multiple input files at once, so we need to know which
4106 input file a relocation refers to. The r_reloc structure thus
4107 records both the input file (bfd) and ELF relocation.
4109 For efficiency, an r_reloc also contains a "target_offset" field to
4110 cache the target-section-relative offset value that is represented by
4111 the relocation.
4113 The r_reloc also contains a virtual offset that allows multiple
4114 inserted literals to be placed at the same "address" with
4115 different offsets. */
4117 typedef struct r_reloc_struct r_reloc;
4119 struct r_reloc_struct
4121 bfd *abfd;
4122 Elf_Internal_Rela rela;
4123 bfd_vma target_offset;
4124 bfd_vma virtual_offset;
4128 /* The r_reloc structure is included by value in literal_value, but not
4129 every literal_value has an associated relocation -- some are simple
4130 constants. In such cases, we set all the fields in the r_reloc
4131 struct to zero. The r_reloc_is_const function should be used to
4132 detect this case. */
4134 static bfd_boolean
4135 r_reloc_is_const (const r_reloc *r_rel)
4137 return (r_rel->abfd == NULL);
4141 static bfd_vma
4142 r_reloc_get_target_offset (const r_reloc *r_rel)
4144 bfd_vma target_offset;
4145 unsigned long r_symndx;
4147 BFD_ASSERT (!r_reloc_is_const (r_rel));
4148 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4149 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4150 return (target_offset + r_rel->rela.r_addend);
4154 static struct elf_link_hash_entry *
4155 r_reloc_get_hash_entry (const r_reloc *r_rel)
4157 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4158 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4162 static asection *
4163 r_reloc_get_section (const r_reloc *r_rel)
4165 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4166 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4170 static bfd_boolean
4171 r_reloc_is_defined (const r_reloc *r_rel)
4173 asection *sec;
4174 if (r_rel == NULL)
4175 return FALSE;
4177 sec = r_reloc_get_section (r_rel);
4178 if (sec == bfd_abs_section_ptr
4179 || sec == bfd_com_section_ptr
4180 || sec == bfd_und_section_ptr)
4181 return FALSE;
4182 return TRUE;
4186 static void
4187 r_reloc_init (r_reloc *r_rel,
4188 bfd *abfd,
4189 Elf_Internal_Rela *irel,
4190 bfd_byte *contents,
4191 bfd_size_type content_length)
4193 int r_type;
4194 reloc_howto_type *howto;
4196 if (irel)
4198 r_rel->rela = *irel;
4199 r_rel->abfd = abfd;
4200 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4201 r_rel->virtual_offset = 0;
4202 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4203 howto = &elf_howto_table[r_type];
4204 if (howto->partial_inplace)
4206 bfd_vma inplace_val;
4207 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4209 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4210 r_rel->target_offset += inplace_val;
4213 else
4214 memset (r_rel, 0, sizeof (r_reloc));
4218 #if DEBUG
4220 static void
4221 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4223 if (r_reloc_is_defined (r_rel))
4225 asection *sec = r_reloc_get_section (r_rel);
4226 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4228 else if (r_reloc_get_hash_entry (r_rel))
4229 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4230 else
4231 fprintf (fp, " ?? + ");
4233 fprintf_vma (fp, r_rel->target_offset);
4234 if (r_rel->virtual_offset)
4236 fprintf (fp, " + ");
4237 fprintf_vma (fp, r_rel->virtual_offset);
4240 fprintf (fp, ")");
4243 #endif /* DEBUG */
4246 /* source_reloc: relocations that reference literals. */
4248 /* To determine whether literals can be coalesced, we need to first
4249 record all the relocations that reference the literals. The
4250 source_reloc structure below is used for this purpose. The
4251 source_reloc entries are kept in a per-literal-section array, sorted
4252 by offset within the literal section (i.e., target offset).
4254 The source_sec and r_rel.rela.r_offset fields identify the source of
4255 the relocation. The r_rel field records the relocation value, i.e.,
4256 the offset of the literal being referenced. The opnd field is needed
4257 to determine the range of the immediate field to which the relocation
4258 applies, so we can determine whether another literal with the same
4259 value is within range. The is_null field is true when the relocation
4260 is being removed (e.g., when an L32R is being removed due to a CALLX
4261 that is converted to a direct CALL). */
4263 typedef struct source_reloc_struct source_reloc;
4265 struct source_reloc_struct
4267 asection *source_sec;
4268 r_reloc r_rel;
4269 xtensa_opcode opcode;
4270 int opnd;
4271 bfd_boolean is_null;
4272 bfd_boolean is_abs_literal;
4276 static void
4277 init_source_reloc (source_reloc *reloc,
4278 asection *source_sec,
4279 const r_reloc *r_rel,
4280 xtensa_opcode opcode,
4281 int opnd,
4282 bfd_boolean is_abs_literal)
4284 reloc->source_sec = source_sec;
4285 reloc->r_rel = *r_rel;
4286 reloc->opcode = opcode;
4287 reloc->opnd = opnd;
4288 reloc->is_null = FALSE;
4289 reloc->is_abs_literal = is_abs_literal;
4293 /* Find the source_reloc for a particular source offset and relocation
4294 type. Note that the array is sorted by _target_ offset, so this is
4295 just a linear search. */
4297 static source_reloc *
4298 find_source_reloc (source_reloc *src_relocs,
4299 int src_count,
4300 asection *sec,
4301 Elf_Internal_Rela *irel)
4303 int i;
4305 for (i = 0; i < src_count; i++)
4307 if (src_relocs[i].source_sec == sec
4308 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4309 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4310 == ELF32_R_TYPE (irel->r_info)))
4311 return &src_relocs[i];
4314 return NULL;
4318 static int
4319 source_reloc_compare (const void *ap, const void *bp)
4321 const source_reloc *a = (const source_reloc *) ap;
4322 const source_reloc *b = (const source_reloc *) bp;
4324 if (a->r_rel.target_offset != b->r_rel.target_offset)
4325 return (a->r_rel.target_offset - b->r_rel.target_offset);
4327 /* We don't need to sort on these criteria for correctness,
4328 but enforcing a more strict ordering prevents unstable qsort
4329 from behaving differently with different implementations.
4330 Without the code below we get correct but different results
4331 on Solaris 2.7 and 2.8. We would like to always produce the
4332 same results no matter the host. */
4334 if ((!a->is_null) - (!b->is_null))
4335 return ((!a->is_null) - (!b->is_null));
4336 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4340 /* Literal values and value hash tables. */
4342 /* Literals with the same value can be coalesced. The literal_value
4343 structure records the value of a literal: the "r_rel" field holds the
4344 information from the relocation on the literal (if there is one) and
4345 the "value" field holds the contents of the literal word itself.
4347 The value_map structure records a literal value along with the
4348 location of a literal holding that value. The value_map hash table
4349 is indexed by the literal value, so that we can quickly check if a
4350 particular literal value has been seen before and is thus a candidate
4351 for coalescing. */
4353 typedef struct literal_value_struct literal_value;
4354 typedef struct value_map_struct value_map;
4355 typedef struct value_map_hash_table_struct value_map_hash_table;
4357 struct literal_value_struct
4359 r_reloc r_rel;
4360 unsigned long value;
4361 bfd_boolean is_abs_literal;
4364 struct value_map_struct
4366 literal_value val; /* The literal value. */
4367 r_reloc loc; /* Location of the literal. */
4368 value_map *next;
4371 struct value_map_hash_table_struct
4373 unsigned bucket_count;
4374 value_map **buckets;
4375 unsigned count;
4376 bfd_boolean has_last_loc;
4377 r_reloc last_loc;
4381 static void
4382 init_literal_value (literal_value *lit,
4383 const r_reloc *r_rel,
4384 unsigned long value,
4385 bfd_boolean is_abs_literal)
4387 lit->r_rel = *r_rel;
4388 lit->value = value;
4389 lit->is_abs_literal = is_abs_literal;
4393 static bfd_boolean
4394 literal_value_equal (const literal_value *src1,
4395 const literal_value *src2,
4396 bfd_boolean final_static_link)
4398 struct elf_link_hash_entry *h1, *h2;
4400 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4401 return FALSE;
4403 if (r_reloc_is_const (&src1->r_rel))
4404 return (src1->value == src2->value);
4406 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4407 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4408 return FALSE;
4410 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4411 return FALSE;
4413 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4414 return FALSE;
4416 if (src1->value != src2->value)
4417 return FALSE;
4419 /* Now check for the same section (if defined) or the same elf_hash
4420 (if undefined or weak). */
4421 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4422 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4423 if (r_reloc_is_defined (&src1->r_rel)
4424 && (final_static_link
4425 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4426 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4428 if (r_reloc_get_section (&src1->r_rel)
4429 != r_reloc_get_section (&src2->r_rel))
4430 return FALSE;
4432 else
4434 /* Require that the hash entries (i.e., symbols) be identical. */
4435 if (h1 != h2 || h1 == 0)
4436 return FALSE;
4439 if (src1->is_abs_literal != src2->is_abs_literal)
4440 return FALSE;
4442 return TRUE;
4446 /* Must be power of 2. */
4447 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4449 static value_map_hash_table *
4450 value_map_hash_table_init (void)
4452 value_map_hash_table *values;
4454 values = (value_map_hash_table *)
4455 bfd_zmalloc (sizeof (value_map_hash_table));
4456 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4457 values->count = 0;
4458 values->buckets = (value_map **)
4459 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4460 if (values->buckets == NULL)
4462 free (values);
4463 return NULL;
4465 values->has_last_loc = FALSE;
4467 return values;
4471 static void
4472 value_map_hash_table_delete (value_map_hash_table *table)
4474 free (table->buckets);
4475 free (table);
4479 static unsigned
4480 hash_bfd_vma (bfd_vma val)
4482 return (val >> 2) + (val >> 10);
4486 static unsigned
4487 literal_value_hash (const literal_value *src)
4489 unsigned hash_val;
4491 hash_val = hash_bfd_vma (src->value);
4492 if (!r_reloc_is_const (&src->r_rel))
4494 void *sec_or_hash;
4496 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4497 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4498 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4500 /* Now check for the same section and the same elf_hash. */
4501 if (r_reloc_is_defined (&src->r_rel))
4502 sec_or_hash = r_reloc_get_section (&src->r_rel);
4503 else
4504 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4505 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4507 return hash_val;
4511 /* Check if the specified literal_value has been seen before. */
4513 static value_map *
4514 value_map_get_cached_value (value_map_hash_table *map,
4515 const literal_value *val,
4516 bfd_boolean final_static_link)
4518 value_map *map_e;
4519 value_map *bucket;
4520 unsigned idx;
4522 idx = literal_value_hash (val);
4523 idx = idx & (map->bucket_count - 1);
4524 bucket = map->buckets[idx];
4525 for (map_e = bucket; map_e; map_e = map_e->next)
4527 if (literal_value_equal (&map_e->val, val, final_static_link))
4528 return map_e;
4530 return NULL;
4534 /* Record a new literal value. It is illegal to call this if VALUE
4535 already has an entry here. */
4537 static value_map *
4538 add_value_map (value_map_hash_table *map,
4539 const literal_value *val,
4540 const r_reloc *loc,
4541 bfd_boolean final_static_link)
4543 value_map **bucket_p;
4544 unsigned idx;
4546 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4547 if (val_e == NULL)
4549 bfd_set_error (bfd_error_no_memory);
4550 return NULL;
4553 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4554 val_e->val = *val;
4555 val_e->loc = *loc;
4557 idx = literal_value_hash (val);
4558 idx = idx & (map->bucket_count - 1);
4559 bucket_p = &map->buckets[idx];
4561 val_e->next = *bucket_p;
4562 *bucket_p = val_e;
4563 map->count++;
4564 /* FIXME: Consider resizing the hash table if we get too many entries. */
4566 return val_e;
4570 /* Lists of text actions (ta_) for narrowing, widening, longcall
4571 conversion, space fill, code & literal removal, etc. */
4573 /* The following text actions are generated:
4575 "ta_remove_insn" remove an instruction or instructions
4576 "ta_remove_longcall" convert longcall to call
4577 "ta_convert_longcall" convert longcall to nop/call
4578 "ta_narrow_insn" narrow a wide instruction
4579 "ta_widen" widen a narrow instruction
4580 "ta_fill" add fill or remove fill
4581 removed < 0 is a fill; branches to the fill address will be
4582 changed to address + fill size (e.g., address - removed)
4583 removed >= 0 branches to the fill address will stay unchanged
4584 "ta_remove_literal" remove a literal; this action is
4585 indicated when a literal is removed
4586 or replaced.
4587 "ta_add_literal" insert a new literal; this action is
4588 indicated when a literal has been moved.
4589 It may use a virtual_offset because
4590 multiple literals can be placed at the
4591 same location.
4593 For each of these text actions, we also record the number of bytes
4594 removed by performing the text action. In the case of a "ta_widen"
4595 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4597 typedef struct text_action_struct text_action;
4598 typedef struct text_action_list_struct text_action_list;
4599 typedef enum text_action_enum_t text_action_t;
4601 enum text_action_enum_t
4603 ta_none,
4604 ta_remove_insn, /* removed = -size */
4605 ta_remove_longcall, /* removed = -size */
4606 ta_convert_longcall, /* removed = 0 */
4607 ta_narrow_insn, /* removed = -1 */
4608 ta_widen_insn, /* removed = +1 */
4609 ta_fill, /* removed = +size */
4610 ta_remove_literal,
4611 ta_add_literal
4615 /* Structure for a text action record. */
4616 struct text_action_struct
4618 text_action_t action;
4619 asection *sec; /* Optional */
4620 bfd_vma offset;
4621 bfd_vma virtual_offset; /* Zero except for adding literals. */
4622 int removed_bytes;
4623 literal_value value; /* Only valid when adding literals. */
4625 text_action *next;
4629 /* List of all of the actions taken on a text section. */
4630 struct text_action_list_struct
4632 text_action *head;
4636 static text_action *
4637 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4639 text_action **m_p;
4641 /* It is not necessary to fill at the end of a section. */
4642 if (sec->size == offset)
4643 return NULL;
4645 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4647 text_action *t = *m_p;
4648 /* When the action is another fill at the same address,
4649 just increase the size. */
4650 if (t->offset == offset && t->action == ta_fill)
4651 return t;
4653 return NULL;
4657 static int
4658 compute_removed_action_diff (const text_action *ta,
4659 asection *sec,
4660 bfd_vma offset,
4661 int removed,
4662 int removable_space)
4664 int new_removed;
4665 int current_removed = 0;
4667 if (ta)
4668 current_removed = ta->removed_bytes;
4670 BFD_ASSERT (ta == NULL || ta->offset == offset);
4671 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4673 /* It is not necessary to fill at the end of a section. Clean this up. */
4674 if (sec->size == offset)
4675 new_removed = removable_space - 0;
4676 else
4678 int space;
4679 int added = -removed - current_removed;
4680 /* Ignore multiples of the section alignment. */
4681 added = ((1 << sec->alignment_power) - 1) & added;
4682 new_removed = (-added);
4684 /* Modify for removable. */
4685 space = removable_space - new_removed;
4686 new_removed = (removable_space
4687 - (((1 << sec->alignment_power) - 1) & space));
4689 return (new_removed - current_removed);
4693 static void
4694 adjust_fill_action (text_action *ta, int fill_diff)
4696 ta->removed_bytes += fill_diff;
4700 /* Add a modification action to the text. For the case of adding or
4701 removing space, modify any current fill and assume that
4702 "unreachable_space" bytes can be freely contracted. Note that a
4703 negative removed value is a fill. */
4705 static void
4706 text_action_add (text_action_list *l,
4707 text_action_t action,
4708 asection *sec,
4709 bfd_vma offset,
4710 int removed)
4712 text_action **m_p;
4713 text_action *ta;
4715 /* It is not necessary to fill at the end of a section. */
4716 if (action == ta_fill && sec->size == offset)
4717 return;
4719 /* It is not necessary to fill 0 bytes. */
4720 if (action == ta_fill && removed == 0)
4721 return;
4723 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4725 text_action *t = *m_p;
4726 /* When the action is another fill at the same address,
4727 just increase the size. */
4728 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4730 t->removed_bytes += removed;
4731 return;
4735 /* Create a new record and fill it up. */
4736 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4737 ta->action = action;
4738 ta->sec = sec;
4739 ta->offset = offset;
4740 ta->removed_bytes = removed;
4741 ta->next = (*m_p);
4742 *m_p = ta;
4746 static void
4747 text_action_add_literal (text_action_list *l,
4748 text_action_t action,
4749 const r_reloc *loc,
4750 const literal_value *value,
4751 int removed)
4753 text_action **m_p;
4754 text_action *ta;
4755 asection *sec = r_reloc_get_section (loc);
4756 bfd_vma offset = loc->target_offset;
4757 bfd_vma virtual_offset = loc->virtual_offset;
4759 BFD_ASSERT (action == ta_add_literal);
4761 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4763 if ((*m_p)->offset > offset
4764 && ((*m_p)->offset != offset
4765 || (*m_p)->virtual_offset > virtual_offset))
4766 break;
4769 /* Create a new record and fill it up. */
4770 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4771 ta->action = action;
4772 ta->sec = sec;
4773 ta->offset = offset;
4774 ta->virtual_offset = virtual_offset;
4775 ta->value = *value;
4776 ta->removed_bytes = removed;
4777 ta->next = (*m_p);
4778 *m_p = ta;
4782 static bfd_vma
4783 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4785 text_action *r;
4786 int removed = 0;
4788 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4790 if (r->offset < offset
4791 || (r->action == ta_fill && r->removed_bytes < 0))
4792 removed += r->removed_bytes;
4795 return (offset - removed);
4799 static unsigned
4800 action_list_count (text_action_list *action_list)
4802 text_action *r = action_list->head;
4803 unsigned count = 0;
4804 for (r = action_list->head; r != NULL; r = r->next)
4806 count++;
4808 return count;
4812 static bfd_vma
4813 offset_with_removed_text_before_fill (text_action_list *action_list,
4814 bfd_vma offset)
4816 text_action *r;
4817 int removed = 0;
4819 for (r = action_list->head; r && r->offset < offset; r = r->next)
4820 removed += r->removed_bytes;
4822 return (offset - removed);
4826 /* The find_insn_action routine will only find non-fill actions. */
4828 static text_action *
4829 find_insn_action (text_action_list *action_list, bfd_vma offset)
4831 text_action *t;
4832 for (t = action_list->head; t; t = t->next)
4834 if (t->offset == offset)
4836 switch (t->action)
4838 case ta_none:
4839 case ta_fill:
4840 break;
4841 case ta_remove_insn:
4842 case ta_remove_longcall:
4843 case ta_convert_longcall:
4844 case ta_narrow_insn:
4845 case ta_widen_insn:
4846 return t;
4847 case ta_remove_literal:
4848 case ta_add_literal:
4849 BFD_ASSERT (0);
4850 break;
4854 return NULL;
4858 #if DEBUG
4860 static void
4861 print_action_list (FILE *fp, text_action_list *action_list)
4863 text_action *r;
4865 fprintf (fp, "Text Action\n");
4866 for (r = action_list->head; r != NULL; r = r->next)
4868 const char *t = "unknown";
4869 switch (r->action)
4871 case ta_remove_insn:
4872 t = "remove_insn"; break;
4873 case ta_remove_longcall:
4874 t = "remove_longcall"; break;
4875 case ta_convert_longcall:
4876 t = "remove_longcall"; break;
4877 case ta_narrow_insn:
4878 t = "narrow_insn"; break;
4879 case ta_widen_insn:
4880 t = "widen_insn"; break;
4881 case ta_fill:
4882 t = "fill"; break;
4883 case ta_none:
4884 t = "none"; break;
4885 case ta_remove_literal:
4886 t = "remove_literal"; break;
4887 case ta_add_literal:
4888 t = "add_literal"; break;
4891 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4892 r->sec->owner->filename,
4893 r->sec->name, r->offset, t, r->removed_bytes);
4897 #endif /* DEBUG */
4900 /* Lists of literals being coalesced or removed. */
4902 /* In the usual case, the literal identified by "from" is being
4903 coalesced with another literal identified by "to". If the literal is
4904 unused and is being removed altogether, "to.abfd" will be NULL.
4905 The removed_literal entries are kept on a per-section list, sorted
4906 by the "from" offset field. */
4908 typedef struct removed_literal_struct removed_literal;
4909 typedef struct removed_literal_list_struct removed_literal_list;
4911 struct removed_literal_struct
4913 r_reloc from;
4914 r_reloc to;
4915 removed_literal *next;
4918 struct removed_literal_list_struct
4920 removed_literal *head;
4921 removed_literal *tail;
4925 /* Record that the literal at "from" is being removed. If "to" is not
4926 NULL, the "from" literal is being coalesced with the "to" literal. */
4928 static void
4929 add_removed_literal (removed_literal_list *removed_list,
4930 const r_reloc *from,
4931 const r_reloc *to)
4933 removed_literal *r, *new_r, *next_r;
4935 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4937 new_r->from = *from;
4938 if (to)
4939 new_r->to = *to;
4940 else
4941 new_r->to.abfd = NULL;
4942 new_r->next = NULL;
4944 r = removed_list->head;
4945 if (r == NULL)
4947 removed_list->head = new_r;
4948 removed_list->tail = new_r;
4950 /* Special check for common case of append. */
4951 else if (removed_list->tail->from.target_offset < from->target_offset)
4953 removed_list->tail->next = new_r;
4954 removed_list->tail = new_r;
4956 else
4958 while (r->from.target_offset < from->target_offset && r->next)
4960 r = r->next;
4962 next_r = r->next;
4963 r->next = new_r;
4964 new_r->next = next_r;
4965 if (next_r == NULL)
4966 removed_list->tail = new_r;
4971 /* Check if the list of removed literals contains an entry for the
4972 given address. Return the entry if found. */
4974 static removed_literal *
4975 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4977 removed_literal *r = removed_list->head;
4978 while (r && r->from.target_offset < addr)
4979 r = r->next;
4980 if (r && r->from.target_offset == addr)
4981 return r;
4982 return NULL;
4986 #if DEBUG
4988 static void
4989 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4991 removed_literal *r;
4992 r = removed_list->head;
4993 if (r)
4994 fprintf (fp, "Removed Literals\n");
4995 for (; r != NULL; r = r->next)
4997 print_r_reloc (fp, &r->from);
4998 fprintf (fp, " => ");
4999 if (r->to.abfd == NULL)
5000 fprintf (fp, "REMOVED");
5001 else
5002 print_r_reloc (fp, &r->to);
5003 fprintf (fp, "\n");
5007 #endif /* DEBUG */
5010 /* Per-section data for relaxation. */
5012 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5014 struct xtensa_relax_info_struct
5016 bfd_boolean is_relaxable_literal_section;
5017 bfd_boolean is_relaxable_asm_section;
5018 int visited; /* Number of times visited. */
5020 source_reloc *src_relocs; /* Array[src_count]. */
5021 int src_count;
5022 int src_next; /* Next src_relocs entry to assign. */
5024 removed_literal_list removed_list;
5025 text_action_list action_list;
5027 reloc_bfd_fix *fix_list;
5028 reloc_bfd_fix *fix_array;
5029 unsigned fix_array_count;
5031 /* Support for expanding the reloc array that is stored
5032 in the section structure. If the relocations have been
5033 reallocated, the newly allocated relocations will be referenced
5034 here along with the actual size allocated. The relocation
5035 count will always be found in the section structure. */
5036 Elf_Internal_Rela *allocated_relocs;
5037 unsigned relocs_count;
5038 unsigned allocated_relocs_count;
5041 struct elf_xtensa_section_data
5043 struct bfd_elf_section_data elf;
5044 xtensa_relax_info relax_info;
5048 static bfd_boolean
5049 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5051 if (!sec->used_by_bfd)
5053 struct elf_xtensa_section_data *sdata;
5054 bfd_size_type amt = sizeof (*sdata);
5056 sdata = bfd_zalloc (abfd, amt);
5057 if (sdata == NULL)
5058 return FALSE;
5059 sec->used_by_bfd = sdata;
5062 return _bfd_elf_new_section_hook (abfd, sec);
5066 static xtensa_relax_info *
5067 get_xtensa_relax_info (asection *sec)
5069 struct elf_xtensa_section_data *section_data;
5071 /* No info available if no section or if it is an output section. */
5072 if (!sec || sec == sec->output_section)
5073 return NULL;
5075 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5076 return &section_data->relax_info;
5080 static void
5081 init_xtensa_relax_info (asection *sec)
5083 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5085 relax_info->is_relaxable_literal_section = FALSE;
5086 relax_info->is_relaxable_asm_section = FALSE;
5087 relax_info->visited = 0;
5089 relax_info->src_relocs = NULL;
5090 relax_info->src_count = 0;
5091 relax_info->src_next = 0;
5093 relax_info->removed_list.head = NULL;
5094 relax_info->removed_list.tail = NULL;
5096 relax_info->action_list.head = NULL;
5098 relax_info->fix_list = NULL;
5099 relax_info->fix_array = NULL;
5100 relax_info->fix_array_count = 0;
5102 relax_info->allocated_relocs = NULL;
5103 relax_info->relocs_count = 0;
5104 relax_info->allocated_relocs_count = 0;
5108 /* Coalescing literals may require a relocation to refer to a section in
5109 a different input file, but the standard relocation information
5110 cannot express that. Instead, the reloc_bfd_fix structures are used
5111 to "fix" the relocations that refer to sections in other input files.
5112 These structures are kept on per-section lists. The "src_type" field
5113 records the relocation type in case there are multiple relocations on
5114 the same location. FIXME: This is ugly; an alternative might be to
5115 add new symbols with the "owner" field to some other input file. */
5117 struct reloc_bfd_fix_struct
5119 asection *src_sec;
5120 bfd_vma src_offset;
5121 unsigned src_type; /* Relocation type. */
5123 bfd *target_abfd;
5124 asection *target_sec;
5125 bfd_vma target_offset;
5126 bfd_boolean translated;
5128 reloc_bfd_fix *next;
5132 static reloc_bfd_fix *
5133 reloc_bfd_fix_init (asection *src_sec,
5134 bfd_vma src_offset,
5135 unsigned src_type,
5136 bfd *target_abfd,
5137 asection *target_sec,
5138 bfd_vma target_offset,
5139 bfd_boolean translated)
5141 reloc_bfd_fix *fix;
5143 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5144 fix->src_sec = src_sec;
5145 fix->src_offset = src_offset;
5146 fix->src_type = src_type;
5147 fix->target_abfd = target_abfd;
5148 fix->target_sec = target_sec;
5149 fix->target_offset = target_offset;
5150 fix->translated = translated;
5152 return fix;
5156 static void
5157 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5159 xtensa_relax_info *relax_info;
5161 relax_info = get_xtensa_relax_info (src_sec);
5162 fix->next = relax_info->fix_list;
5163 relax_info->fix_list = fix;
5167 static int
5168 fix_compare (const void *ap, const void *bp)
5170 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5171 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5173 if (a->src_offset != b->src_offset)
5174 return (a->src_offset - b->src_offset);
5175 return (a->src_type - b->src_type);
5179 static void
5180 cache_fix_array (asection *sec)
5182 unsigned i, count = 0;
5183 reloc_bfd_fix *r;
5184 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5186 if (relax_info == NULL)
5187 return;
5188 if (relax_info->fix_list == NULL)
5189 return;
5191 for (r = relax_info->fix_list; r != NULL; r = r->next)
5192 count++;
5194 relax_info->fix_array =
5195 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5196 relax_info->fix_array_count = count;
5198 r = relax_info->fix_list;
5199 for (i = 0; i < count; i++, r = r->next)
5201 relax_info->fix_array[count - 1 - i] = *r;
5202 relax_info->fix_array[count - 1 - i].next = NULL;
5205 qsort (relax_info->fix_array, relax_info->fix_array_count,
5206 sizeof (reloc_bfd_fix), fix_compare);
5210 static reloc_bfd_fix *
5211 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5213 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5214 reloc_bfd_fix *rv;
5215 reloc_bfd_fix key;
5217 if (relax_info == NULL)
5218 return NULL;
5219 if (relax_info->fix_list == NULL)
5220 return NULL;
5222 if (relax_info->fix_array == NULL)
5223 cache_fix_array (sec);
5225 key.src_offset = offset;
5226 key.src_type = type;
5227 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5228 sizeof (reloc_bfd_fix), fix_compare);
5229 return rv;
5233 /* Section caching. */
5235 typedef struct section_cache_struct section_cache_t;
5237 struct section_cache_struct
5239 asection *sec;
5241 bfd_byte *contents; /* Cache of the section contents. */
5242 bfd_size_type content_length;
5244 property_table_entry *ptbl; /* Cache of the section property table. */
5245 unsigned pte_count;
5247 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5248 unsigned reloc_count;
5252 static void
5253 init_section_cache (section_cache_t *sec_cache)
5255 memset (sec_cache, 0, sizeof (*sec_cache));
5259 static void
5260 clear_section_cache (section_cache_t *sec_cache)
5262 if (sec_cache->sec)
5264 release_contents (sec_cache->sec, sec_cache->contents);
5265 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5266 if (sec_cache->ptbl)
5267 free (sec_cache->ptbl);
5268 memset (sec_cache, 0, sizeof (sec_cache));
5273 static bfd_boolean
5274 section_cache_section (section_cache_t *sec_cache,
5275 asection *sec,
5276 struct bfd_link_info *link_info)
5278 bfd *abfd;
5279 property_table_entry *prop_table = NULL;
5280 int ptblsize = 0;
5281 bfd_byte *contents = NULL;
5282 Elf_Internal_Rela *internal_relocs = NULL;
5283 bfd_size_type sec_size;
5285 if (sec == NULL)
5286 return FALSE;
5287 if (sec == sec_cache->sec)
5288 return TRUE;
5290 abfd = sec->owner;
5291 sec_size = bfd_get_section_limit (abfd, sec);
5293 /* Get the contents. */
5294 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5295 if (contents == NULL && sec_size != 0)
5296 goto err;
5298 /* Get the relocations. */
5299 internal_relocs = retrieve_internal_relocs (abfd, sec,
5300 link_info->keep_memory);
5302 /* Get the entry table. */
5303 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5304 XTENSA_PROP_SEC_NAME, FALSE);
5305 if (ptblsize < 0)
5306 goto err;
5308 /* Fill in the new section cache. */
5309 clear_section_cache (sec_cache);
5310 memset (sec_cache, 0, sizeof (sec_cache));
5312 sec_cache->sec = sec;
5313 sec_cache->contents = contents;
5314 sec_cache->content_length = sec_size;
5315 sec_cache->relocs = internal_relocs;
5316 sec_cache->reloc_count = sec->reloc_count;
5317 sec_cache->pte_count = ptblsize;
5318 sec_cache->ptbl = prop_table;
5320 return TRUE;
5322 err:
5323 release_contents (sec, contents);
5324 release_internal_relocs (sec, internal_relocs);
5325 if (prop_table)
5326 free (prop_table);
5327 return FALSE;
5331 /* Extended basic blocks. */
5333 /* An ebb_struct represents an Extended Basic Block. Within this
5334 range, we guarantee that all instructions are decodable, the
5335 property table entries are contiguous, and no property table
5336 specifies a segment that cannot have instructions moved. This
5337 structure contains caches of the contents, property table and
5338 relocations for the specified section for easy use. The range is
5339 specified by ranges of indices for the byte offset, property table
5340 offsets and relocation offsets. These must be consistent. */
5342 typedef struct ebb_struct ebb_t;
5344 struct ebb_struct
5346 asection *sec;
5348 bfd_byte *contents; /* Cache of the section contents. */
5349 bfd_size_type content_length;
5351 property_table_entry *ptbl; /* Cache of the section property table. */
5352 unsigned pte_count;
5354 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5355 unsigned reloc_count;
5357 bfd_vma start_offset; /* Offset in section. */
5358 unsigned start_ptbl_idx; /* Offset in the property table. */
5359 unsigned start_reloc_idx; /* Offset in the relocations. */
5361 bfd_vma end_offset;
5362 unsigned end_ptbl_idx;
5363 unsigned end_reloc_idx;
5365 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5367 /* The unreachable property table at the end of this set of blocks;
5368 NULL if the end is not an unreachable block. */
5369 property_table_entry *ends_unreachable;
5373 enum ebb_target_enum
5375 EBB_NO_ALIGN = 0,
5376 EBB_DESIRE_TGT_ALIGN,
5377 EBB_REQUIRE_TGT_ALIGN,
5378 EBB_REQUIRE_LOOP_ALIGN,
5379 EBB_REQUIRE_ALIGN
5383 /* proposed_action_struct is similar to the text_action_struct except
5384 that is represents a potential transformation, not one that will
5385 occur. We build a list of these for an extended basic block
5386 and use them to compute the actual actions desired. We must be
5387 careful that the entire set of actual actions we perform do not
5388 break any relocations that would fit if the actions were not
5389 performed. */
5391 typedef struct proposed_action_struct proposed_action;
5393 struct proposed_action_struct
5395 enum ebb_target_enum align_type; /* for the target alignment */
5396 bfd_vma alignment_pow;
5397 text_action_t action;
5398 bfd_vma offset;
5399 int removed_bytes;
5400 bfd_boolean do_action; /* If false, then we will not perform the action. */
5404 /* The ebb_constraint_struct keeps a set of proposed actions for an
5405 extended basic block. */
5407 typedef struct ebb_constraint_struct ebb_constraint;
5409 struct ebb_constraint_struct
5411 ebb_t ebb;
5412 bfd_boolean start_movable;
5414 /* Bytes of extra space at the beginning if movable. */
5415 int start_extra_space;
5417 enum ebb_target_enum start_align;
5419 bfd_boolean end_movable;
5421 /* Bytes of extra space at the end if movable. */
5422 int end_extra_space;
5424 unsigned action_count;
5425 unsigned action_allocated;
5427 /* Array of proposed actions. */
5428 proposed_action *actions;
5430 /* Action alignments -- one for each proposed action. */
5431 enum ebb_target_enum *action_aligns;
5435 static void
5436 init_ebb_constraint (ebb_constraint *c)
5438 memset (c, 0, sizeof (ebb_constraint));
5442 static void
5443 free_ebb_constraint (ebb_constraint *c)
5445 if (c->actions)
5446 free (c->actions);
5450 static void
5451 init_ebb (ebb_t *ebb,
5452 asection *sec,
5453 bfd_byte *contents,
5454 bfd_size_type content_length,
5455 property_table_entry *prop_table,
5456 unsigned ptblsize,
5457 Elf_Internal_Rela *internal_relocs,
5458 unsigned reloc_count)
5460 memset (ebb, 0, sizeof (ebb_t));
5461 ebb->sec = sec;
5462 ebb->contents = contents;
5463 ebb->content_length = content_length;
5464 ebb->ptbl = prop_table;
5465 ebb->pte_count = ptblsize;
5466 ebb->relocs = internal_relocs;
5467 ebb->reloc_count = reloc_count;
5468 ebb->start_offset = 0;
5469 ebb->end_offset = ebb->content_length - 1;
5470 ebb->start_ptbl_idx = 0;
5471 ebb->end_ptbl_idx = ptblsize;
5472 ebb->start_reloc_idx = 0;
5473 ebb->end_reloc_idx = reloc_count;
5477 /* Extend the ebb to all decodable contiguous sections. The algorithm
5478 for building a basic block around an instruction is to push it
5479 forward until we hit the end of a section, an unreachable block or
5480 a block that cannot be transformed. Then we push it backwards
5481 searching for similar conditions. */
5483 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5484 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5485 static bfd_size_type insn_block_decodable_len
5486 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5488 static bfd_boolean
5489 extend_ebb_bounds (ebb_t *ebb)
5491 if (!extend_ebb_bounds_forward (ebb))
5492 return FALSE;
5493 if (!extend_ebb_bounds_backward (ebb))
5494 return FALSE;
5495 return TRUE;
5499 static bfd_boolean
5500 extend_ebb_bounds_forward (ebb_t *ebb)
5502 property_table_entry *the_entry, *new_entry;
5504 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5506 /* Stop when (1) we cannot decode an instruction, (2) we are at
5507 the end of the property tables, (3) we hit a non-contiguous property
5508 table entry, (4) we hit a NO_TRANSFORM region. */
5510 while (1)
5512 bfd_vma entry_end;
5513 bfd_size_type insn_block_len;
5515 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5516 insn_block_len =
5517 insn_block_decodable_len (ebb->contents, ebb->content_length,
5518 ebb->end_offset,
5519 entry_end - ebb->end_offset);
5520 if (insn_block_len != (entry_end - ebb->end_offset))
5522 (*_bfd_error_handler)
5523 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5524 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5525 return FALSE;
5527 ebb->end_offset += insn_block_len;
5529 if (ebb->end_offset == ebb->sec->size)
5530 ebb->ends_section = TRUE;
5532 /* Update the reloc counter. */
5533 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5534 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5535 < ebb->end_offset))
5537 ebb->end_reloc_idx++;
5540 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5541 return TRUE;
5543 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5544 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5545 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5546 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5547 break;
5549 if (the_entry->address + the_entry->size != new_entry->address)
5550 break;
5552 the_entry = new_entry;
5553 ebb->end_ptbl_idx++;
5556 /* Quick check for an unreachable or end of file just at the end. */
5557 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5559 if (ebb->end_offset == ebb->content_length)
5560 ebb->ends_section = TRUE;
5562 else
5564 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5565 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5566 && the_entry->address + the_entry->size == new_entry->address)
5567 ebb->ends_unreachable = new_entry;
5570 /* Any other ending requires exact alignment. */
5571 return TRUE;
5575 static bfd_boolean
5576 extend_ebb_bounds_backward (ebb_t *ebb)
5578 property_table_entry *the_entry, *new_entry;
5580 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5582 /* Stop when (1) we cannot decode the instructions in the current entry.
5583 (2) we are at the beginning of the property tables, (3) we hit a
5584 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5586 while (1)
5588 bfd_vma block_begin;
5589 bfd_size_type insn_block_len;
5591 block_begin = the_entry->address - ebb->sec->vma;
5592 insn_block_len =
5593 insn_block_decodable_len (ebb->contents, ebb->content_length,
5594 block_begin,
5595 ebb->start_offset - block_begin);
5596 if (insn_block_len != ebb->start_offset - block_begin)
5598 (*_bfd_error_handler)
5599 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5600 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5601 return FALSE;
5603 ebb->start_offset -= insn_block_len;
5605 /* Update the reloc counter. */
5606 while (ebb->start_reloc_idx > 0
5607 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5608 >= ebb->start_offset))
5610 ebb->start_reloc_idx--;
5613 if (ebb->start_ptbl_idx == 0)
5614 return TRUE;
5616 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5617 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5618 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5619 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5620 return TRUE;
5621 if (new_entry->address + new_entry->size != the_entry->address)
5622 return TRUE;
5624 the_entry = new_entry;
5625 ebb->start_ptbl_idx--;
5627 return TRUE;
5631 static bfd_size_type
5632 insn_block_decodable_len (bfd_byte *contents,
5633 bfd_size_type content_len,
5634 bfd_vma block_offset,
5635 bfd_size_type block_len)
5637 bfd_vma offset = block_offset;
5639 while (offset < block_offset + block_len)
5641 bfd_size_type insn_len = 0;
5643 insn_len = insn_decode_len (contents, content_len, offset);
5644 if (insn_len == 0)
5645 return (offset - block_offset);
5646 offset += insn_len;
5648 return (offset - block_offset);
5652 static void
5653 ebb_propose_action (ebb_constraint *c,
5654 enum ebb_target_enum align_type,
5655 bfd_vma alignment_pow,
5656 text_action_t action,
5657 bfd_vma offset,
5658 int removed_bytes,
5659 bfd_boolean do_action)
5661 proposed_action *act;
5663 if (c->action_allocated <= c->action_count)
5665 unsigned new_allocated, i;
5666 proposed_action *new_actions;
5668 new_allocated = (c->action_count + 2) * 2;
5669 new_actions = (proposed_action *)
5670 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5672 for (i = 0; i < c->action_count; i++)
5673 new_actions[i] = c->actions[i];
5674 if (c->actions)
5675 free (c->actions);
5676 c->actions = new_actions;
5677 c->action_allocated = new_allocated;
5680 act = &c->actions[c->action_count];
5681 act->align_type = align_type;
5682 act->alignment_pow = alignment_pow;
5683 act->action = action;
5684 act->offset = offset;
5685 act->removed_bytes = removed_bytes;
5686 act->do_action = do_action;
5688 c->action_count++;
5692 /* Access to internal relocations, section contents and symbols. */
5694 /* During relaxation, we need to modify relocations, section contents,
5695 and symbol definitions, and we need to keep the original values from
5696 being reloaded from the input files, i.e., we need to "pin" the
5697 modified values in memory. We also want to continue to observe the
5698 setting of the "keep-memory" flag. The following functions wrap the
5699 standard BFD functions to take care of this for us. */
5701 static Elf_Internal_Rela *
5702 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5704 Elf_Internal_Rela *internal_relocs;
5706 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5707 return NULL;
5709 internal_relocs = elf_section_data (sec)->relocs;
5710 if (internal_relocs == NULL)
5711 internal_relocs = (_bfd_elf_link_read_relocs
5712 (abfd, sec, NULL, NULL, keep_memory));
5713 return internal_relocs;
5717 static void
5718 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5720 elf_section_data (sec)->relocs = internal_relocs;
5724 static void
5725 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5727 if (internal_relocs
5728 && elf_section_data (sec)->relocs != internal_relocs)
5729 free (internal_relocs);
5733 static bfd_byte *
5734 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5736 bfd_byte *contents;
5737 bfd_size_type sec_size;
5739 sec_size = bfd_get_section_limit (abfd, sec);
5740 contents = elf_section_data (sec)->this_hdr.contents;
5742 if (contents == NULL && sec_size != 0)
5744 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5746 if (contents)
5747 free (contents);
5748 return NULL;
5750 if (keep_memory)
5751 elf_section_data (sec)->this_hdr.contents = contents;
5753 return contents;
5757 static void
5758 pin_contents (asection *sec, bfd_byte *contents)
5760 elf_section_data (sec)->this_hdr.contents = contents;
5764 static void
5765 release_contents (asection *sec, bfd_byte *contents)
5767 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5768 free (contents);
5772 static Elf_Internal_Sym *
5773 retrieve_local_syms (bfd *input_bfd)
5775 Elf_Internal_Shdr *symtab_hdr;
5776 Elf_Internal_Sym *isymbuf;
5777 size_t locsymcount;
5779 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5780 locsymcount = symtab_hdr->sh_info;
5782 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5783 if (isymbuf == NULL && locsymcount != 0)
5784 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5785 NULL, NULL, NULL);
5787 /* Save the symbols for this input file so they won't be read again. */
5788 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5789 symtab_hdr->contents = (unsigned char *) isymbuf;
5791 return isymbuf;
5795 /* Code for link-time relaxation. */
5797 /* Initialization for relaxation: */
5798 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5799 static bfd_boolean find_relaxable_sections
5800 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5801 static bfd_boolean collect_source_relocs
5802 (bfd *, asection *, struct bfd_link_info *);
5803 static bfd_boolean is_resolvable_asm_expansion
5804 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5805 bfd_boolean *);
5806 static Elf_Internal_Rela *find_associated_l32r_irel
5807 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5808 static bfd_boolean compute_text_actions
5809 (bfd *, asection *, struct bfd_link_info *);
5810 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5811 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5812 static bfd_boolean check_section_ebb_pcrels_fit
5813 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5814 const xtensa_opcode *);
5815 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5816 static void text_action_add_proposed
5817 (text_action_list *, const ebb_constraint *, asection *);
5818 static int compute_fill_extra_space (property_table_entry *);
5820 /* First pass: */
5821 static bfd_boolean compute_removed_literals
5822 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5823 static Elf_Internal_Rela *get_irel_at_offset
5824 (asection *, Elf_Internal_Rela *, bfd_vma);
5825 static bfd_boolean is_removable_literal
5826 (const source_reloc *, int, const source_reloc *, int);
5827 static bfd_boolean remove_dead_literal
5828 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5829 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5830 static bfd_boolean identify_literal_placement
5831 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5832 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5833 source_reloc *, property_table_entry *, int, section_cache_t *,
5834 bfd_boolean);
5835 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5836 static bfd_boolean coalesce_shared_literal
5837 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5838 static bfd_boolean move_shared_literal
5839 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5840 int, const r_reloc *, const literal_value *, section_cache_t *);
5842 /* Second pass: */
5843 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5844 static bfd_boolean translate_section_fixes (asection *);
5845 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5846 static void translate_reloc (const r_reloc *, r_reloc *);
5847 static void shrink_dynamic_reloc_sections
5848 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5849 static bfd_boolean move_literal
5850 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5851 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5852 static bfd_boolean relax_property_section
5853 (bfd *, asection *, struct bfd_link_info *);
5855 /* Third pass: */
5856 static bfd_boolean relax_section_symbols (bfd *, asection *);
5859 static bfd_boolean
5860 elf_xtensa_relax_section (bfd *abfd,
5861 asection *sec,
5862 struct bfd_link_info *link_info,
5863 bfd_boolean *again)
5865 static value_map_hash_table *values = NULL;
5866 static bfd_boolean relocations_analyzed = FALSE;
5867 xtensa_relax_info *relax_info;
5869 if (!relocations_analyzed)
5871 /* Do some overall initialization for relaxation. */
5872 values = value_map_hash_table_init ();
5873 if (values == NULL)
5874 return FALSE;
5875 relaxing_section = TRUE;
5876 if (!analyze_relocations (link_info))
5877 return FALSE;
5878 relocations_analyzed = TRUE;
5880 *again = FALSE;
5882 /* Don't mess with linker-created sections. */
5883 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5884 return TRUE;
5886 relax_info = get_xtensa_relax_info (sec);
5887 BFD_ASSERT (relax_info != NULL);
5889 switch (relax_info->visited)
5891 case 0:
5892 /* Note: It would be nice to fold this pass into
5893 analyze_relocations, but it is important for this step that the
5894 sections be examined in link order. */
5895 if (!compute_removed_literals (abfd, sec, link_info, values))
5896 return FALSE;
5897 *again = TRUE;
5898 break;
5900 case 1:
5901 if (values)
5902 value_map_hash_table_delete (values);
5903 values = NULL;
5904 if (!relax_section (abfd, sec, link_info))
5905 return FALSE;
5906 *again = TRUE;
5907 break;
5909 case 2:
5910 if (!relax_section_symbols (abfd, sec))
5911 return FALSE;
5912 break;
5915 relax_info->visited++;
5916 return TRUE;
5920 /* Initialization for relaxation. */
5922 /* This function is called once at the start of relaxation. It scans
5923 all the input sections and marks the ones that are relaxable (i.e.,
5924 literal sections with L32R relocations against them), and then
5925 collects source_reloc information for all the relocations against
5926 those relaxable sections. During this process, it also detects
5927 longcalls, i.e., calls relaxed by the assembler into indirect
5928 calls, that can be optimized back into direct calls. Within each
5929 extended basic block (ebb) containing an optimized longcall, it
5930 computes a set of "text actions" that can be performed to remove
5931 the L32R associated with the longcall while optionally preserving
5932 branch target alignments. */
5934 static bfd_boolean
5935 analyze_relocations (struct bfd_link_info *link_info)
5937 bfd *abfd;
5938 asection *sec;
5939 bfd_boolean is_relaxable = FALSE;
5941 /* Initialize the per-section relaxation info. */
5942 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5943 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5945 init_xtensa_relax_info (sec);
5948 /* Mark relaxable sections (and count relocations against each one). */
5949 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5952 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5953 return FALSE;
5956 /* Bail out if there are no relaxable sections. */
5957 if (!is_relaxable)
5958 return TRUE;
5960 /* Allocate space for source_relocs. */
5961 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5962 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5964 xtensa_relax_info *relax_info;
5966 relax_info = get_xtensa_relax_info (sec);
5967 if (relax_info->is_relaxable_literal_section
5968 || relax_info->is_relaxable_asm_section)
5970 relax_info->src_relocs = (source_reloc *)
5971 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5975 /* Collect info on relocations against each relaxable section. */
5976 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5977 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5979 if (!collect_source_relocs (abfd, sec, link_info))
5980 return FALSE;
5983 /* Compute the text actions. */
5984 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5985 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5987 if (!compute_text_actions (abfd, sec, link_info))
5988 return FALSE;
5991 return TRUE;
5995 /* Find all the sections that might be relaxed. The motivation for
5996 this pass is that collect_source_relocs() needs to record _all_ the
5997 relocations that target each relaxable section. That is expensive
5998 and unnecessary unless the target section is actually going to be
5999 relaxed. This pass identifies all such sections by checking if
6000 they have L32Rs pointing to them. In the process, the total number
6001 of relocations targeting each section is also counted so that we
6002 know how much space to allocate for source_relocs against each
6003 relaxable literal section. */
6005 static bfd_boolean
6006 find_relaxable_sections (bfd *abfd,
6007 asection *sec,
6008 struct bfd_link_info *link_info,
6009 bfd_boolean *is_relaxable_p)
6011 Elf_Internal_Rela *internal_relocs;
6012 bfd_byte *contents;
6013 bfd_boolean ok = TRUE;
6014 unsigned i;
6015 xtensa_relax_info *source_relax_info;
6017 internal_relocs = retrieve_internal_relocs (abfd, sec,
6018 link_info->keep_memory);
6019 if (internal_relocs == NULL)
6020 return ok;
6022 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6023 if (contents == NULL && sec->size != 0)
6025 ok = FALSE;
6026 goto error_return;
6029 source_relax_info = get_xtensa_relax_info (sec);
6030 for (i = 0; i < sec->reloc_count; i++)
6032 Elf_Internal_Rela *irel = &internal_relocs[i];
6033 r_reloc r_rel;
6034 asection *target_sec;
6035 xtensa_relax_info *target_relax_info;
6037 /* If this section has not already been marked as "relaxable", and
6038 if it contains any ASM_EXPAND relocations (marking expanded
6039 longcalls) that can be optimized into direct calls, then mark
6040 the section as "relaxable". */
6041 if (source_relax_info
6042 && !source_relax_info->is_relaxable_asm_section
6043 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6045 bfd_boolean is_reachable = FALSE;
6046 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6047 link_info, &is_reachable)
6048 && is_reachable)
6050 source_relax_info->is_relaxable_asm_section = TRUE;
6051 *is_relaxable_p = TRUE;
6055 r_reloc_init (&r_rel, abfd, irel, contents,
6056 bfd_get_section_limit (abfd, sec));
6058 target_sec = r_reloc_get_section (&r_rel);
6059 target_relax_info = get_xtensa_relax_info (target_sec);
6060 if (!target_relax_info)
6061 continue;
6063 /* Count PC-relative operand relocations against the target section.
6064 Note: The conditions tested here must match the conditions under
6065 which init_source_reloc is called in collect_source_relocs(). */
6066 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6067 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6068 || is_l32r_relocation (abfd, sec, contents, irel)))
6069 target_relax_info->src_count++;
6071 if (is_l32r_relocation (abfd, sec, contents, irel)
6072 && r_reloc_is_defined (&r_rel))
6074 /* Mark the target section as relaxable. */
6075 target_relax_info->is_relaxable_literal_section = TRUE;
6076 *is_relaxable_p = TRUE;
6080 error_return:
6081 release_contents (sec, contents);
6082 release_internal_relocs (sec, internal_relocs);
6083 return ok;
6087 /* Record _all_ the relocations that point to relaxable sections, and
6088 get rid of ASM_EXPAND relocs by either converting them to
6089 ASM_SIMPLIFY or by removing them. */
6091 static bfd_boolean
6092 collect_source_relocs (bfd *abfd,
6093 asection *sec,
6094 struct bfd_link_info *link_info)
6096 Elf_Internal_Rela *internal_relocs;
6097 bfd_byte *contents;
6098 bfd_boolean ok = TRUE;
6099 unsigned i;
6100 bfd_size_type sec_size;
6102 internal_relocs = retrieve_internal_relocs (abfd, sec,
6103 link_info->keep_memory);
6104 if (internal_relocs == NULL)
6105 return ok;
6107 sec_size = bfd_get_section_limit (abfd, sec);
6108 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6109 if (contents == NULL && sec_size != 0)
6111 ok = FALSE;
6112 goto error_return;
6115 /* Record relocations against relaxable literal sections. */
6116 for (i = 0; i < sec->reloc_count; i++)
6118 Elf_Internal_Rela *irel = &internal_relocs[i];
6119 r_reloc r_rel;
6120 asection *target_sec;
6121 xtensa_relax_info *target_relax_info;
6123 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6125 target_sec = r_reloc_get_section (&r_rel);
6126 target_relax_info = get_xtensa_relax_info (target_sec);
6128 if (target_relax_info
6129 && (target_relax_info->is_relaxable_literal_section
6130 || target_relax_info->is_relaxable_asm_section))
6132 xtensa_opcode opcode = XTENSA_UNDEFINED;
6133 int opnd = -1;
6134 bfd_boolean is_abs_literal = FALSE;
6136 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6138 /* None of the current alternate relocs are PC-relative,
6139 and only PC-relative relocs matter here. However, we
6140 still need to record the opcode for literal
6141 coalescing. */
6142 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6143 if (opcode == get_l32r_opcode ())
6145 is_abs_literal = TRUE;
6146 opnd = 1;
6148 else
6149 opcode = XTENSA_UNDEFINED;
6151 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6153 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6154 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6157 if (opcode != XTENSA_UNDEFINED)
6159 int src_next = target_relax_info->src_next++;
6160 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6162 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6163 is_abs_literal);
6168 /* Now get rid of ASM_EXPAND relocations. At this point, the
6169 src_relocs array for the target literal section may still be
6170 incomplete, but it must at least contain the entries for the L32R
6171 relocations associated with ASM_EXPANDs because they were just
6172 added in the preceding loop over the relocations. */
6174 for (i = 0; i < sec->reloc_count; i++)
6176 Elf_Internal_Rela *irel = &internal_relocs[i];
6177 bfd_boolean is_reachable;
6179 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6180 &is_reachable))
6181 continue;
6183 if (is_reachable)
6185 Elf_Internal_Rela *l32r_irel;
6186 r_reloc r_rel;
6187 asection *target_sec;
6188 xtensa_relax_info *target_relax_info;
6190 /* Mark the source_reloc for the L32R so that it will be
6191 removed in compute_removed_literals(), along with the
6192 associated literal. */
6193 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6194 irel, internal_relocs);
6195 if (l32r_irel == NULL)
6196 continue;
6198 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6200 target_sec = r_reloc_get_section (&r_rel);
6201 target_relax_info = get_xtensa_relax_info (target_sec);
6203 if (target_relax_info
6204 && (target_relax_info->is_relaxable_literal_section
6205 || target_relax_info->is_relaxable_asm_section))
6207 source_reloc *s_reloc;
6209 /* Search the source_relocs for the entry corresponding to
6210 the l32r_irel. Note: The src_relocs array is not yet
6211 sorted, but it wouldn't matter anyway because we're
6212 searching by source offset instead of target offset. */
6213 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6214 target_relax_info->src_next,
6215 sec, l32r_irel);
6216 BFD_ASSERT (s_reloc);
6217 s_reloc->is_null = TRUE;
6220 /* Convert this reloc to ASM_SIMPLIFY. */
6221 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6222 R_XTENSA_ASM_SIMPLIFY);
6223 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6225 pin_internal_relocs (sec, internal_relocs);
6227 else
6229 /* It is resolvable but doesn't reach. We resolve now
6230 by eliminating the relocation -- the call will remain
6231 expanded into L32R/CALLX. */
6232 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6233 pin_internal_relocs (sec, internal_relocs);
6237 error_return:
6238 release_contents (sec, contents);
6239 release_internal_relocs (sec, internal_relocs);
6240 return ok;
6244 /* Return TRUE if the asm expansion can be resolved. Generally it can
6245 be resolved on a final link or when a partial link locates it in the
6246 same section as the target. Set "is_reachable" flag if the target of
6247 the call is within the range of a direct call, given the current VMA
6248 for this section and the target section. */
6250 bfd_boolean
6251 is_resolvable_asm_expansion (bfd *abfd,
6252 asection *sec,
6253 bfd_byte *contents,
6254 Elf_Internal_Rela *irel,
6255 struct bfd_link_info *link_info,
6256 bfd_boolean *is_reachable_p)
6258 asection *target_sec;
6259 bfd_vma target_offset;
6260 r_reloc r_rel;
6261 xtensa_opcode opcode, direct_call_opcode;
6262 bfd_vma self_address;
6263 bfd_vma dest_address;
6264 bfd_boolean uses_l32r;
6265 bfd_size_type sec_size;
6267 *is_reachable_p = FALSE;
6269 if (contents == NULL)
6270 return FALSE;
6272 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6273 return FALSE;
6275 sec_size = bfd_get_section_limit (abfd, sec);
6276 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6277 sec_size - irel->r_offset, &uses_l32r);
6278 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6279 if (!uses_l32r)
6280 return FALSE;
6282 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6283 if (direct_call_opcode == XTENSA_UNDEFINED)
6284 return FALSE;
6286 /* Check and see that the target resolves. */
6287 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6288 if (!r_reloc_is_defined (&r_rel))
6289 return FALSE;
6291 target_sec = r_reloc_get_section (&r_rel);
6292 target_offset = r_rel.target_offset;
6294 /* If the target is in a shared library, then it doesn't reach. This
6295 isn't supposed to come up because the compiler should never generate
6296 non-PIC calls on systems that use shared libraries, but the linker
6297 shouldn't crash regardless. */
6298 if (!target_sec->output_section)
6299 return FALSE;
6301 /* For relocatable sections, we can only simplify when the output
6302 section of the target is the same as the output section of the
6303 source. */
6304 if (link_info->relocatable
6305 && (target_sec->output_section != sec->output_section
6306 || is_reloc_sym_weak (abfd, irel)))
6307 return FALSE;
6309 self_address = (sec->output_section->vma
6310 + sec->output_offset + irel->r_offset + 3);
6311 dest_address = (target_sec->output_section->vma
6312 + target_sec->output_offset + target_offset);
6314 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6315 self_address, dest_address);
6317 if ((self_address >> CALL_SEGMENT_BITS) !=
6318 (dest_address >> CALL_SEGMENT_BITS))
6319 return FALSE;
6321 return TRUE;
6325 static Elf_Internal_Rela *
6326 find_associated_l32r_irel (bfd *abfd,
6327 asection *sec,
6328 bfd_byte *contents,
6329 Elf_Internal_Rela *other_irel,
6330 Elf_Internal_Rela *internal_relocs)
6332 unsigned i;
6334 for (i = 0; i < sec->reloc_count; i++)
6336 Elf_Internal_Rela *irel = &internal_relocs[i];
6338 if (irel == other_irel)
6339 continue;
6340 if (irel->r_offset != other_irel->r_offset)
6341 continue;
6342 if (is_l32r_relocation (abfd, sec, contents, irel))
6343 return irel;
6346 return NULL;
6350 static xtensa_opcode *
6351 build_reloc_opcodes (bfd *abfd,
6352 asection *sec,
6353 bfd_byte *contents,
6354 Elf_Internal_Rela *internal_relocs)
6356 unsigned i;
6357 xtensa_opcode *reloc_opcodes =
6358 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6359 for (i = 0; i < sec->reloc_count; i++)
6361 Elf_Internal_Rela *irel = &internal_relocs[i];
6362 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6364 return reloc_opcodes;
6368 /* The compute_text_actions function will build a list of potential
6369 transformation actions for code in the extended basic block of each
6370 longcall that is optimized to a direct call. From this list we
6371 generate a set of actions to actually perform that optimizes for
6372 space and, if not using size_opt, maintains branch target
6373 alignments.
6375 These actions to be performed are placed on a per-section list.
6376 The actual changes are performed by relax_section() in the second
6377 pass. */
6379 bfd_boolean
6380 compute_text_actions (bfd *abfd,
6381 asection *sec,
6382 struct bfd_link_info *link_info)
6384 xtensa_opcode *reloc_opcodes = NULL;
6385 xtensa_relax_info *relax_info;
6386 bfd_byte *contents;
6387 Elf_Internal_Rela *internal_relocs;
6388 bfd_boolean ok = TRUE;
6389 unsigned i;
6390 property_table_entry *prop_table = 0;
6391 int ptblsize = 0;
6392 bfd_size_type sec_size;
6393 static bfd_boolean no_insn_move = FALSE;
6395 if (no_insn_move)
6396 return ok;
6398 /* Do nothing if the section contains no optimized longcalls. */
6399 relax_info = get_xtensa_relax_info (sec);
6400 BFD_ASSERT (relax_info);
6401 if (!relax_info->is_relaxable_asm_section)
6402 return ok;
6404 internal_relocs = retrieve_internal_relocs (abfd, sec,
6405 link_info->keep_memory);
6407 if (internal_relocs)
6408 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6409 internal_reloc_compare);
6411 sec_size = bfd_get_section_limit (abfd, sec);
6412 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6413 if (contents == NULL && sec_size != 0)
6415 ok = FALSE;
6416 goto error_return;
6419 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6420 XTENSA_PROP_SEC_NAME, FALSE);
6421 if (ptblsize < 0)
6423 ok = FALSE;
6424 goto error_return;
6427 for (i = 0; i < sec->reloc_count; i++)
6429 Elf_Internal_Rela *irel = &internal_relocs[i];
6430 bfd_vma r_offset;
6431 property_table_entry *the_entry;
6432 int ptbl_idx;
6433 ebb_t *ebb;
6434 ebb_constraint ebb_table;
6435 bfd_size_type simplify_size;
6437 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6438 continue;
6439 r_offset = irel->r_offset;
6441 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6442 if (simplify_size == 0)
6444 (*_bfd_error_handler)
6445 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6446 sec->owner, sec, r_offset);
6447 continue;
6450 /* If the instruction table is not around, then don't do this
6451 relaxation. */
6452 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6453 sec->vma + irel->r_offset);
6454 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6456 text_action_add (&relax_info->action_list,
6457 ta_convert_longcall, sec, r_offset,
6459 continue;
6462 /* If the next longcall happens to be at the same address as an
6463 unreachable section of size 0, then skip forward. */
6464 ptbl_idx = the_entry - prop_table;
6465 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6466 && the_entry->size == 0
6467 && ptbl_idx + 1 < ptblsize
6468 && (prop_table[ptbl_idx + 1].address
6469 == prop_table[ptbl_idx].address))
6471 ptbl_idx++;
6472 the_entry++;
6475 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6476 /* NO_REORDER is OK */
6477 continue;
6479 init_ebb_constraint (&ebb_table);
6480 ebb = &ebb_table.ebb;
6481 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6482 internal_relocs, sec->reloc_count);
6483 ebb->start_offset = r_offset + simplify_size;
6484 ebb->end_offset = r_offset + simplify_size;
6485 ebb->start_ptbl_idx = ptbl_idx;
6486 ebb->end_ptbl_idx = ptbl_idx;
6487 ebb->start_reloc_idx = i;
6488 ebb->end_reloc_idx = i;
6490 /* Precompute the opcode for each relocation. */
6491 if (reloc_opcodes == NULL)
6492 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6493 internal_relocs);
6495 if (!extend_ebb_bounds (ebb)
6496 || !compute_ebb_proposed_actions (&ebb_table)
6497 || !compute_ebb_actions (&ebb_table)
6498 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6499 internal_relocs, &ebb_table,
6500 reloc_opcodes)
6501 || !check_section_ebb_reduces (&ebb_table))
6503 /* If anything goes wrong or we get unlucky and something does
6504 not fit, with our plan because of expansion between
6505 critical branches, just convert to a NOP. */
6507 text_action_add (&relax_info->action_list,
6508 ta_convert_longcall, sec, r_offset, 0);
6509 i = ebb_table.ebb.end_reloc_idx;
6510 free_ebb_constraint (&ebb_table);
6511 continue;
6514 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6516 /* Update the index so we do not go looking at the relocations
6517 we have already processed. */
6518 i = ebb_table.ebb.end_reloc_idx;
6519 free_ebb_constraint (&ebb_table);
6522 #if DEBUG
6523 if (relax_info->action_list.head)
6524 print_action_list (stderr, &relax_info->action_list);
6525 #endif
6527 error_return:
6528 release_contents (sec, contents);
6529 release_internal_relocs (sec, internal_relocs);
6530 if (prop_table)
6531 free (prop_table);
6532 if (reloc_opcodes)
6533 free (reloc_opcodes);
6535 return ok;
6539 /* Do not widen an instruction if it is preceeded by a
6540 loop opcode. It might cause misalignment. */
6542 static bfd_boolean
6543 prev_instr_is_a_loop (bfd_byte *contents,
6544 bfd_size_type content_length,
6545 bfd_size_type offset)
6547 xtensa_opcode prev_opcode;
6549 if (offset < 3)
6550 return FALSE;
6551 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6552 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6556 /* Find all of the possible actions for an extended basic block. */
6558 bfd_boolean
6559 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6561 const ebb_t *ebb = &ebb_table->ebb;
6562 unsigned rel_idx = ebb->start_reloc_idx;
6563 property_table_entry *entry, *start_entry, *end_entry;
6564 bfd_vma offset = 0;
6565 xtensa_isa isa = xtensa_default_isa;
6566 xtensa_format fmt;
6567 static xtensa_insnbuf insnbuf = NULL;
6568 static xtensa_insnbuf slotbuf = NULL;
6570 if (insnbuf == NULL)
6572 insnbuf = xtensa_insnbuf_alloc (isa);
6573 slotbuf = xtensa_insnbuf_alloc (isa);
6576 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6577 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6579 for (entry = start_entry; entry <= end_entry; entry++)
6581 bfd_vma start_offset, end_offset;
6582 bfd_size_type insn_len;
6584 start_offset = entry->address - ebb->sec->vma;
6585 end_offset = entry->address + entry->size - ebb->sec->vma;
6587 if (entry == start_entry)
6588 start_offset = ebb->start_offset;
6589 if (entry == end_entry)
6590 end_offset = ebb->end_offset;
6591 offset = start_offset;
6593 if (offset == entry->address - ebb->sec->vma
6594 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6596 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6597 BFD_ASSERT (offset != end_offset);
6598 if (offset == end_offset)
6599 return FALSE;
6601 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6602 offset);
6603 if (insn_len == 0)
6604 goto decode_error;
6606 if (check_branch_target_aligned_address (offset, insn_len))
6607 align_type = EBB_REQUIRE_TGT_ALIGN;
6609 ebb_propose_action (ebb_table, align_type, 0,
6610 ta_none, offset, 0, TRUE);
6613 while (offset != end_offset)
6615 Elf_Internal_Rela *irel;
6616 xtensa_opcode opcode;
6618 while (rel_idx < ebb->end_reloc_idx
6619 && (ebb->relocs[rel_idx].r_offset < offset
6620 || (ebb->relocs[rel_idx].r_offset == offset
6621 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6622 != R_XTENSA_ASM_SIMPLIFY))))
6623 rel_idx++;
6625 /* Check for longcall. */
6626 irel = &ebb->relocs[rel_idx];
6627 if (irel->r_offset == offset
6628 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6630 bfd_size_type simplify_size;
6632 simplify_size = get_asm_simplify_size (ebb->contents,
6633 ebb->content_length,
6634 irel->r_offset);
6635 if (simplify_size == 0)
6636 goto decode_error;
6638 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6639 ta_convert_longcall, offset, 0, TRUE);
6641 offset += simplify_size;
6642 continue;
6645 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6646 goto decode_error;
6647 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6648 ebb->content_length - offset);
6649 fmt = xtensa_format_decode (isa, insnbuf);
6650 if (fmt == XTENSA_UNDEFINED)
6651 goto decode_error;
6652 insn_len = xtensa_format_length (isa, fmt);
6653 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6654 goto decode_error;
6656 if (xtensa_format_num_slots (isa, fmt) != 1)
6658 offset += insn_len;
6659 continue;
6662 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6663 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6664 if (opcode == XTENSA_UNDEFINED)
6665 goto decode_error;
6667 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6668 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6669 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6671 /* Add an instruction narrow action. */
6672 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6673 ta_narrow_insn, offset, 0, FALSE);
6675 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6676 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6677 && ! prev_instr_is_a_loop (ebb->contents,
6678 ebb->content_length, offset))
6680 /* Add an instruction widen action. */
6681 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6682 ta_widen_insn, offset, 0, FALSE);
6684 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6686 /* Check for branch targets. */
6687 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6688 ta_none, offset, 0, TRUE);
6691 offset += insn_len;
6695 if (ebb->ends_unreachable)
6697 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6698 ta_fill, ebb->end_offset, 0, TRUE);
6701 return TRUE;
6703 decode_error:
6704 (*_bfd_error_handler)
6705 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6706 ebb->sec->owner, ebb->sec, offset);
6707 return FALSE;
6711 /* After all of the information has collected about the
6712 transformations possible in an EBB, compute the appropriate actions
6713 here in compute_ebb_actions. We still must check later to make
6714 sure that the actions do not break any relocations. The algorithm
6715 used here is pretty greedy. Basically, it removes as many no-ops
6716 as possible so that the end of the EBB has the same alignment
6717 characteristics as the original. First, it uses narrowing, then
6718 fill space at the end of the EBB, and finally widenings. If that
6719 does not work, it tries again with one fewer no-op removed. The
6720 optimization will only be performed if all of the branch targets
6721 that were aligned before transformation are also aligned after the
6722 transformation.
6724 When the size_opt flag is set, ignore the branch target alignments,
6725 narrow all wide instructions, and remove all no-ops unless the end
6726 of the EBB prevents it. */
6728 bfd_boolean
6729 compute_ebb_actions (ebb_constraint *ebb_table)
6731 unsigned i = 0;
6732 unsigned j;
6733 int removed_bytes = 0;
6734 ebb_t *ebb = &ebb_table->ebb;
6735 unsigned seg_idx_start = 0;
6736 unsigned seg_idx_end = 0;
6738 /* We perform this like the assembler relaxation algorithm: Start by
6739 assuming all instructions are narrow and all no-ops removed; then
6740 walk through.... */
6742 /* For each segment of this that has a solid constraint, check to
6743 see if there are any combinations that will keep the constraint.
6744 If so, use it. */
6745 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6747 bfd_boolean requires_text_end_align = FALSE;
6748 unsigned longcall_count = 0;
6749 unsigned longcall_convert_count = 0;
6750 unsigned narrowable_count = 0;
6751 unsigned narrowable_convert_count = 0;
6752 unsigned widenable_count = 0;
6753 unsigned widenable_convert_count = 0;
6755 proposed_action *action = NULL;
6756 int align = (1 << ebb_table->ebb.sec->alignment_power);
6758 seg_idx_start = seg_idx_end;
6760 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6762 action = &ebb_table->actions[i];
6763 if (action->action == ta_convert_longcall)
6764 longcall_count++;
6765 if (action->action == ta_narrow_insn)
6766 narrowable_count++;
6767 if (action->action == ta_widen_insn)
6768 widenable_count++;
6769 if (action->action == ta_fill)
6770 break;
6771 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6772 break;
6773 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6774 && !elf32xtensa_size_opt)
6775 break;
6777 seg_idx_end = i;
6779 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6780 requires_text_end_align = TRUE;
6782 if (elf32xtensa_size_opt && !requires_text_end_align
6783 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6784 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6786 longcall_convert_count = longcall_count;
6787 narrowable_convert_count = narrowable_count;
6788 widenable_convert_count = 0;
6790 else
6792 /* There is a constraint. Convert the max number of longcalls. */
6793 narrowable_convert_count = 0;
6794 longcall_convert_count = 0;
6795 widenable_convert_count = 0;
6797 for (j = 0; j < longcall_count; j++)
6799 int removed = (longcall_count - j) * 3 & (align - 1);
6800 unsigned desire_narrow = (align - removed) & (align - 1);
6801 unsigned desire_widen = removed;
6802 if (desire_narrow <= narrowable_count)
6804 narrowable_convert_count = desire_narrow;
6805 narrowable_convert_count +=
6806 (align * ((narrowable_count - narrowable_convert_count)
6807 / align));
6808 longcall_convert_count = (longcall_count - j);
6809 widenable_convert_count = 0;
6810 break;
6812 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6814 narrowable_convert_count = 0;
6815 longcall_convert_count = longcall_count - j;
6816 widenable_convert_count = desire_widen;
6817 break;
6822 /* Now the number of conversions are saved. Do them. */
6823 for (i = seg_idx_start; i < seg_idx_end; i++)
6825 action = &ebb_table->actions[i];
6826 switch (action->action)
6828 case ta_convert_longcall:
6829 if (longcall_convert_count != 0)
6831 action->action = ta_remove_longcall;
6832 action->do_action = TRUE;
6833 action->removed_bytes += 3;
6834 longcall_convert_count--;
6836 break;
6837 case ta_narrow_insn:
6838 if (narrowable_convert_count != 0)
6840 action->do_action = TRUE;
6841 action->removed_bytes += 1;
6842 narrowable_convert_count--;
6844 break;
6845 case ta_widen_insn:
6846 if (widenable_convert_count != 0)
6848 action->do_action = TRUE;
6849 action->removed_bytes -= 1;
6850 widenable_convert_count--;
6852 break;
6853 default:
6854 break;
6859 /* Now we move on to some local opts. Try to remove each of the
6860 remaining longcalls. */
6862 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6864 removed_bytes = 0;
6865 for (i = 0; i < ebb_table->action_count; i++)
6867 int old_removed_bytes = removed_bytes;
6868 proposed_action *action = &ebb_table->actions[i];
6870 if (action->do_action && action->action == ta_convert_longcall)
6872 bfd_boolean bad_alignment = FALSE;
6873 removed_bytes += 3;
6874 for (j = i + 1; j < ebb_table->action_count; j++)
6876 proposed_action *new_action = &ebb_table->actions[j];
6877 bfd_vma offset = new_action->offset;
6878 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6880 if (!check_branch_target_aligned
6881 (ebb_table->ebb.contents,
6882 ebb_table->ebb.content_length,
6883 offset, offset - removed_bytes))
6885 bad_alignment = TRUE;
6886 break;
6889 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6891 if (!check_loop_aligned (ebb_table->ebb.contents,
6892 ebb_table->ebb.content_length,
6893 offset,
6894 offset - removed_bytes))
6896 bad_alignment = TRUE;
6897 break;
6900 if (new_action->action == ta_narrow_insn
6901 && !new_action->do_action
6902 && ebb_table->ebb.sec->alignment_power == 2)
6904 /* Narrow an instruction and we are done. */
6905 new_action->do_action = TRUE;
6906 new_action->removed_bytes += 1;
6907 bad_alignment = FALSE;
6908 break;
6910 if (new_action->action == ta_widen_insn
6911 && new_action->do_action
6912 && ebb_table->ebb.sec->alignment_power == 2)
6914 /* Narrow an instruction and we are done. */
6915 new_action->do_action = FALSE;
6916 new_action->removed_bytes += 1;
6917 bad_alignment = FALSE;
6918 break;
6921 if (!bad_alignment)
6923 action->removed_bytes += 3;
6924 action->action = ta_remove_longcall;
6925 action->do_action = TRUE;
6928 removed_bytes = old_removed_bytes;
6929 if (action->do_action)
6930 removed_bytes += action->removed_bytes;
6934 removed_bytes = 0;
6935 for (i = 0; i < ebb_table->action_count; ++i)
6937 proposed_action *action = &ebb_table->actions[i];
6938 if (action->do_action)
6939 removed_bytes += action->removed_bytes;
6942 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6943 && ebb->ends_unreachable)
6945 proposed_action *action;
6946 int br;
6947 int extra_space;
6949 BFD_ASSERT (ebb_table->action_count != 0);
6950 action = &ebb_table->actions[ebb_table->action_count - 1];
6951 BFD_ASSERT (action->action == ta_fill);
6952 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6954 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6955 br = action->removed_bytes + removed_bytes + extra_space;
6956 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6958 action->removed_bytes = extra_space - br;
6960 return TRUE;
6964 /* The xlate_map is a sorted array of address mappings designed to
6965 answer the offset_with_removed_text() query with a binary search instead
6966 of a linear search through the section's action_list. */
6968 typedef struct xlate_map_entry xlate_map_entry_t;
6969 typedef struct xlate_map xlate_map_t;
6971 struct xlate_map_entry
6973 unsigned orig_address;
6974 unsigned new_address;
6975 unsigned size;
6978 struct xlate_map
6980 unsigned entry_count;
6981 xlate_map_entry_t *entry;
6985 static int
6986 xlate_compare (const void *a_v, const void *b_v)
6988 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6989 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6990 if (a->orig_address < b->orig_address)
6991 return -1;
6992 if (a->orig_address > (b->orig_address + b->size - 1))
6993 return 1;
6994 return 0;
6998 static bfd_vma
6999 xlate_offset_with_removed_text (const xlate_map_t *map,
7000 text_action_list *action_list,
7001 bfd_vma offset)
7003 xlate_map_entry_t tmp;
7004 void *r;
7005 xlate_map_entry_t *e;
7007 if (map == NULL)
7008 return offset_with_removed_text (action_list, offset);
7010 if (map->entry_count == 0)
7011 return offset;
7013 tmp.orig_address = offset;
7014 tmp.new_address = offset;
7015 tmp.size = 1;
7017 r = bsearch (&offset, map->entry, map->entry_count,
7018 sizeof (xlate_map_entry_t), &xlate_compare);
7019 e = (xlate_map_entry_t *) r;
7021 BFD_ASSERT (e != NULL);
7022 if (e == NULL)
7023 return offset;
7024 return e->new_address - e->orig_address + offset;
7028 /* Build a binary searchable offset translation map from a section's
7029 action list. */
7031 static xlate_map_t *
7032 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7034 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7035 text_action_list *action_list = &relax_info->action_list;
7036 unsigned num_actions = 0;
7037 text_action *r;
7038 int removed;
7039 xlate_map_entry_t *current_entry;
7041 if (map == NULL)
7042 return NULL;
7044 num_actions = action_list_count (action_list);
7045 map->entry = (xlate_map_entry_t *)
7046 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7047 if (map->entry == NULL)
7049 free (map);
7050 return NULL;
7052 map->entry_count = 0;
7054 removed = 0;
7055 current_entry = &map->entry[0];
7057 current_entry->orig_address = 0;
7058 current_entry->new_address = 0;
7059 current_entry->size = 0;
7061 for (r = action_list->head; r != NULL; r = r->next)
7063 unsigned orig_size = 0;
7064 switch (r->action)
7066 case ta_none:
7067 case ta_remove_insn:
7068 case ta_convert_longcall:
7069 case ta_remove_literal:
7070 case ta_add_literal:
7071 break;
7072 case ta_remove_longcall:
7073 orig_size = 6;
7074 break;
7075 case ta_narrow_insn:
7076 orig_size = 3;
7077 break;
7078 case ta_widen_insn:
7079 orig_size = 2;
7080 break;
7081 case ta_fill:
7082 break;
7084 current_entry->size =
7085 r->offset + orig_size - current_entry->orig_address;
7086 if (current_entry->size != 0)
7088 current_entry++;
7089 map->entry_count++;
7091 current_entry->orig_address = r->offset + orig_size;
7092 removed += r->removed_bytes;
7093 current_entry->new_address = r->offset + orig_size - removed;
7094 current_entry->size = 0;
7097 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7098 - current_entry->orig_address);
7099 if (current_entry->size != 0)
7100 map->entry_count++;
7102 return map;
7106 /* Free an offset translation map. */
7108 static void
7109 free_xlate_map (xlate_map_t *map)
7111 if (map && map->entry)
7112 free (map->entry);
7113 if (map)
7114 free (map);
7118 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7119 relocations in a section will fit if a proposed set of actions
7120 are performed. */
7122 static bfd_boolean
7123 check_section_ebb_pcrels_fit (bfd *abfd,
7124 asection *sec,
7125 bfd_byte *contents,
7126 Elf_Internal_Rela *internal_relocs,
7127 const ebb_constraint *constraint,
7128 const xtensa_opcode *reloc_opcodes)
7130 unsigned i, j;
7131 Elf_Internal_Rela *irel;
7132 xlate_map_t *xmap = NULL;
7133 bfd_boolean ok = TRUE;
7134 xtensa_relax_info *relax_info;
7136 relax_info = get_xtensa_relax_info (sec);
7138 if (relax_info && sec->reloc_count > 100)
7140 xmap = build_xlate_map (sec, relax_info);
7141 /* NULL indicates out of memory, but the slow version
7142 can still be used. */
7145 for (i = 0; i < sec->reloc_count; i++)
7147 r_reloc r_rel;
7148 bfd_vma orig_self_offset, orig_target_offset;
7149 bfd_vma self_offset, target_offset;
7150 int r_type;
7151 reloc_howto_type *howto;
7152 int self_removed_bytes, target_removed_bytes;
7154 irel = &internal_relocs[i];
7155 r_type = ELF32_R_TYPE (irel->r_info);
7157 howto = &elf_howto_table[r_type];
7158 /* We maintain the required invariant: PC-relative relocations
7159 that fit before linking must fit after linking. Thus we only
7160 need to deal with relocations to the same section that are
7161 PC-relative. */
7162 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7163 || !howto->pc_relative)
7164 continue;
7166 r_reloc_init (&r_rel, abfd, irel, contents,
7167 bfd_get_section_limit (abfd, sec));
7169 if (r_reloc_get_section (&r_rel) != sec)
7170 continue;
7172 orig_self_offset = irel->r_offset;
7173 orig_target_offset = r_rel.target_offset;
7175 self_offset = orig_self_offset;
7176 target_offset = orig_target_offset;
7178 if (relax_info)
7180 self_offset =
7181 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7182 orig_self_offset);
7183 target_offset =
7184 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7185 orig_target_offset);
7188 self_removed_bytes = 0;
7189 target_removed_bytes = 0;
7191 for (j = 0; j < constraint->action_count; ++j)
7193 proposed_action *action = &constraint->actions[j];
7194 bfd_vma offset = action->offset;
7195 int removed_bytes = action->removed_bytes;
7196 if (offset < orig_self_offset
7197 || (offset == orig_self_offset && action->action == ta_fill
7198 && action->removed_bytes < 0))
7199 self_removed_bytes += removed_bytes;
7200 if (offset < orig_target_offset
7201 || (offset == orig_target_offset && action->action == ta_fill
7202 && action->removed_bytes < 0))
7203 target_removed_bytes += removed_bytes;
7205 self_offset -= self_removed_bytes;
7206 target_offset -= target_removed_bytes;
7208 /* Try to encode it. Get the operand and check. */
7209 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7211 /* None of the current alternate relocs are PC-relative,
7212 and only PC-relative relocs matter here. */
7214 else
7216 xtensa_opcode opcode;
7217 int opnum;
7219 if (reloc_opcodes)
7220 opcode = reloc_opcodes[i];
7221 else
7222 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7223 if (opcode == XTENSA_UNDEFINED)
7225 ok = FALSE;
7226 break;
7229 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7230 if (opnum == XTENSA_UNDEFINED)
7232 ok = FALSE;
7233 break;
7236 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7238 ok = FALSE;
7239 break;
7244 if (xmap)
7245 free_xlate_map (xmap);
7247 return ok;
7251 static bfd_boolean
7252 check_section_ebb_reduces (const ebb_constraint *constraint)
7254 int removed = 0;
7255 unsigned i;
7257 for (i = 0; i < constraint->action_count; i++)
7259 const proposed_action *action = &constraint->actions[i];
7260 if (action->do_action)
7261 removed += action->removed_bytes;
7263 if (removed < 0)
7264 return FALSE;
7266 return TRUE;
7270 void
7271 text_action_add_proposed (text_action_list *l,
7272 const ebb_constraint *ebb_table,
7273 asection *sec)
7275 unsigned i;
7277 for (i = 0; i < ebb_table->action_count; i++)
7279 proposed_action *action = &ebb_table->actions[i];
7281 if (!action->do_action)
7282 continue;
7283 switch (action->action)
7285 case ta_remove_insn:
7286 case ta_remove_longcall:
7287 case ta_convert_longcall:
7288 case ta_narrow_insn:
7289 case ta_widen_insn:
7290 case ta_fill:
7291 case ta_remove_literal:
7292 text_action_add (l, action->action, sec, action->offset,
7293 action->removed_bytes);
7294 break;
7295 case ta_none:
7296 break;
7297 default:
7298 BFD_ASSERT (0);
7299 break;
7306 compute_fill_extra_space (property_table_entry *entry)
7308 int fill_extra_space;
7310 if (!entry)
7311 return 0;
7313 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7314 return 0;
7316 fill_extra_space = entry->size;
7317 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7319 /* Fill bytes for alignment:
7320 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7321 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7322 int nsm = (1 << pow) - 1;
7323 bfd_vma addr = entry->address + entry->size;
7324 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7325 fill_extra_space += align_fill;
7327 return fill_extra_space;
7331 /* First relaxation pass. */
7333 /* If the section contains relaxable literals, check each literal to
7334 see if it has the same value as another literal that has already
7335 been seen, either in the current section or a previous one. If so,
7336 add an entry to the per-section list of removed literals. The
7337 actual changes are deferred until the next pass. */
7339 static bfd_boolean
7340 compute_removed_literals (bfd *abfd,
7341 asection *sec,
7342 struct bfd_link_info *link_info,
7343 value_map_hash_table *values)
7345 xtensa_relax_info *relax_info;
7346 bfd_byte *contents;
7347 Elf_Internal_Rela *internal_relocs;
7348 source_reloc *src_relocs, *rel;
7349 bfd_boolean ok = TRUE;
7350 property_table_entry *prop_table = NULL;
7351 int ptblsize;
7352 int i, prev_i;
7353 bfd_boolean last_loc_is_prev = FALSE;
7354 bfd_vma last_target_offset = 0;
7355 section_cache_t target_sec_cache;
7356 bfd_size_type sec_size;
7358 init_section_cache (&target_sec_cache);
7360 /* Do nothing if it is not a relaxable literal section. */
7361 relax_info = get_xtensa_relax_info (sec);
7362 BFD_ASSERT (relax_info);
7363 if (!relax_info->is_relaxable_literal_section)
7364 return ok;
7366 internal_relocs = retrieve_internal_relocs (abfd, sec,
7367 link_info->keep_memory);
7369 sec_size = bfd_get_section_limit (abfd, sec);
7370 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7371 if (contents == NULL && sec_size != 0)
7373 ok = FALSE;
7374 goto error_return;
7377 /* Sort the source_relocs by target offset. */
7378 src_relocs = relax_info->src_relocs;
7379 qsort (src_relocs, relax_info->src_count,
7380 sizeof (source_reloc), source_reloc_compare);
7381 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7382 internal_reloc_compare);
7384 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7385 XTENSA_PROP_SEC_NAME, FALSE);
7386 if (ptblsize < 0)
7388 ok = FALSE;
7389 goto error_return;
7392 prev_i = -1;
7393 for (i = 0; i < relax_info->src_count; i++)
7395 Elf_Internal_Rela *irel = NULL;
7397 rel = &src_relocs[i];
7398 if (get_l32r_opcode () != rel->opcode)
7399 continue;
7400 irel = get_irel_at_offset (sec, internal_relocs,
7401 rel->r_rel.target_offset);
7403 /* If the relocation on this is not a simple R_XTENSA_32 or
7404 R_XTENSA_PLT then do not consider it. This may happen when
7405 the difference of two symbols is used in a literal. */
7406 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7407 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7408 continue;
7410 /* If the target_offset for this relocation is the same as the
7411 previous relocation, then we've already considered whether the
7412 literal can be coalesced. Skip to the next one.... */
7413 if (i != 0 && prev_i != -1
7414 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7415 continue;
7416 prev_i = i;
7418 if (last_loc_is_prev &&
7419 last_target_offset + 4 != rel->r_rel.target_offset)
7420 last_loc_is_prev = FALSE;
7422 /* Check if the relocation was from an L32R that is being removed
7423 because a CALLX was converted to a direct CALL, and check if
7424 there are no other relocations to the literal. */
7425 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7427 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7428 irel, rel, prop_table, ptblsize))
7430 ok = FALSE;
7431 goto error_return;
7433 last_target_offset = rel->r_rel.target_offset;
7434 continue;
7437 if (!identify_literal_placement (abfd, sec, contents, link_info,
7438 values,
7439 &last_loc_is_prev, irel,
7440 relax_info->src_count - i, rel,
7441 prop_table, ptblsize,
7442 &target_sec_cache, rel->is_abs_literal))
7444 ok = FALSE;
7445 goto error_return;
7447 last_target_offset = rel->r_rel.target_offset;
7450 #if DEBUG
7451 print_removed_literals (stderr, &relax_info->removed_list);
7452 print_action_list (stderr, &relax_info->action_list);
7453 #endif /* DEBUG */
7455 error_return:
7456 if (prop_table) free (prop_table);
7457 clear_section_cache (&target_sec_cache);
7459 release_contents (sec, contents);
7460 release_internal_relocs (sec, internal_relocs);
7461 return ok;
7465 static Elf_Internal_Rela *
7466 get_irel_at_offset (asection *sec,
7467 Elf_Internal_Rela *internal_relocs,
7468 bfd_vma offset)
7470 unsigned i;
7471 Elf_Internal_Rela *irel;
7472 unsigned r_type;
7473 Elf_Internal_Rela key;
7475 if (!internal_relocs)
7476 return NULL;
7478 key.r_offset = offset;
7479 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7480 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7481 if (!irel)
7482 return NULL;
7484 /* bsearch does not guarantee which will be returned if there are
7485 multiple matches. We need the first that is not an alignment. */
7486 i = irel - internal_relocs;
7487 while (i > 0)
7489 if (internal_relocs[i-1].r_offset != offset)
7490 break;
7491 i--;
7493 for ( ; i < sec->reloc_count; i++)
7495 irel = &internal_relocs[i];
7496 r_type = ELF32_R_TYPE (irel->r_info);
7497 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7498 return irel;
7501 return NULL;
7505 bfd_boolean
7506 is_removable_literal (const source_reloc *rel,
7507 int i,
7508 const source_reloc *src_relocs,
7509 int src_count)
7511 const source_reloc *curr_rel;
7512 if (!rel->is_null)
7513 return FALSE;
7515 for (++i; i < src_count; ++i)
7517 curr_rel = &src_relocs[i];
7518 /* If all others have the same target offset.... */
7519 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7520 return TRUE;
7522 if (!curr_rel->is_null
7523 && !xtensa_is_property_section (curr_rel->source_sec)
7524 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7525 return FALSE;
7527 return TRUE;
7531 bfd_boolean
7532 remove_dead_literal (bfd *abfd,
7533 asection *sec,
7534 struct bfd_link_info *link_info,
7535 Elf_Internal_Rela *internal_relocs,
7536 Elf_Internal_Rela *irel,
7537 source_reloc *rel,
7538 property_table_entry *prop_table,
7539 int ptblsize)
7541 property_table_entry *entry;
7542 xtensa_relax_info *relax_info;
7544 relax_info = get_xtensa_relax_info (sec);
7545 if (!relax_info)
7546 return FALSE;
7548 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7549 sec->vma + rel->r_rel.target_offset);
7551 /* Mark the unused literal so that it will be removed. */
7552 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7554 text_action_add (&relax_info->action_list,
7555 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7557 /* If the section is 4-byte aligned, do not add fill. */
7558 if (sec->alignment_power > 2)
7560 int fill_extra_space;
7561 bfd_vma entry_sec_offset;
7562 text_action *fa;
7563 property_table_entry *the_add_entry;
7564 int removed_diff;
7566 if (entry)
7567 entry_sec_offset = entry->address - sec->vma + entry->size;
7568 else
7569 entry_sec_offset = rel->r_rel.target_offset + 4;
7571 /* If the literal range is at the end of the section,
7572 do not add fill. */
7573 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7574 entry_sec_offset);
7575 fill_extra_space = compute_fill_extra_space (the_add_entry);
7577 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7578 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7579 -4, fill_extra_space);
7580 if (fa)
7581 adjust_fill_action (fa, removed_diff);
7582 else
7583 text_action_add (&relax_info->action_list,
7584 ta_fill, sec, entry_sec_offset, removed_diff);
7587 /* Zero out the relocation on this literal location. */
7588 if (irel)
7590 if (elf_hash_table (link_info)->dynamic_sections_created)
7591 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7593 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7594 pin_internal_relocs (sec, internal_relocs);
7597 /* Do not modify "last_loc_is_prev". */
7598 return TRUE;
7602 bfd_boolean
7603 identify_literal_placement (bfd *abfd,
7604 asection *sec,
7605 bfd_byte *contents,
7606 struct bfd_link_info *link_info,
7607 value_map_hash_table *values,
7608 bfd_boolean *last_loc_is_prev_p,
7609 Elf_Internal_Rela *irel,
7610 int remaining_src_rels,
7611 source_reloc *rel,
7612 property_table_entry *prop_table,
7613 int ptblsize,
7614 section_cache_t *target_sec_cache,
7615 bfd_boolean is_abs_literal)
7617 literal_value val;
7618 value_map *val_map;
7619 xtensa_relax_info *relax_info;
7620 bfd_boolean literal_placed = FALSE;
7621 r_reloc r_rel;
7622 unsigned long value;
7623 bfd_boolean final_static_link;
7624 bfd_size_type sec_size;
7626 relax_info = get_xtensa_relax_info (sec);
7627 if (!relax_info)
7628 return FALSE;
7630 sec_size = bfd_get_section_limit (abfd, sec);
7632 final_static_link =
7633 (!link_info->relocatable
7634 && !elf_hash_table (link_info)->dynamic_sections_created);
7636 /* The placement algorithm first checks to see if the literal is
7637 already in the value map. If so and the value map is reachable
7638 from all uses, then the literal is moved to that location. If
7639 not, then we identify the last location where a fresh literal was
7640 placed. If the literal can be safely moved there, then we do so.
7641 If not, then we assume that the literal is not to move and leave
7642 the literal where it is, marking it as the last literal
7643 location. */
7645 /* Find the literal value. */
7646 value = 0;
7647 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7648 if (!irel)
7650 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7651 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7653 init_literal_value (&val, &r_rel, value, is_abs_literal);
7655 /* Check if we've seen another literal with the same value that
7656 is in the same output section. */
7657 val_map = value_map_get_cached_value (values, &val, final_static_link);
7659 if (val_map
7660 && (r_reloc_get_section (&val_map->loc)->output_section
7661 == sec->output_section)
7662 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7663 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7665 /* No change to last_loc_is_prev. */
7666 literal_placed = TRUE;
7669 /* For relocatable links, do not try to move literals. To do it
7670 correctly might increase the number of relocations in an input
7671 section making the default relocatable linking fail. */
7672 if (!link_info->relocatable && !literal_placed
7673 && values->has_last_loc && !(*last_loc_is_prev_p))
7675 asection *target_sec = r_reloc_get_section (&values->last_loc);
7676 if (target_sec && target_sec->output_section == sec->output_section)
7678 /* Increment the virtual offset. */
7679 r_reloc try_loc = values->last_loc;
7680 try_loc.virtual_offset += 4;
7682 /* There is a last loc that was in the same output section. */
7683 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7684 && move_shared_literal (sec, link_info, rel,
7685 prop_table, ptblsize,
7686 &try_loc, &val, target_sec_cache))
7688 values->last_loc.virtual_offset += 4;
7689 literal_placed = TRUE;
7690 if (!val_map)
7691 val_map = add_value_map (values, &val, &try_loc,
7692 final_static_link);
7693 else
7694 val_map->loc = try_loc;
7699 if (!literal_placed)
7701 /* Nothing worked, leave the literal alone but update the last loc. */
7702 values->has_last_loc = TRUE;
7703 values->last_loc = rel->r_rel;
7704 if (!val_map)
7705 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7706 else
7707 val_map->loc = rel->r_rel;
7708 *last_loc_is_prev_p = TRUE;
7711 return TRUE;
7715 /* Check if the original relocations (presumably on L32R instructions)
7716 identified by reloc[0..N] can be changed to reference the literal
7717 identified by r_rel. If r_rel is out of range for any of the
7718 original relocations, then we don't want to coalesce the original
7719 literal with the one at r_rel. We only check reloc[0..N], where the
7720 offsets are all the same as for reloc[0] (i.e., they're all
7721 referencing the same literal) and where N is also bounded by the
7722 number of remaining entries in the "reloc" array. The "reloc" array
7723 is sorted by target offset so we know all the entries for the same
7724 literal will be contiguous. */
7726 static bfd_boolean
7727 relocations_reach (source_reloc *reloc,
7728 int remaining_relocs,
7729 const r_reloc *r_rel)
7731 bfd_vma from_offset, source_address, dest_address;
7732 asection *sec;
7733 int i;
7735 if (!r_reloc_is_defined (r_rel))
7736 return FALSE;
7738 sec = r_reloc_get_section (r_rel);
7739 from_offset = reloc[0].r_rel.target_offset;
7741 for (i = 0; i < remaining_relocs; i++)
7743 if (reloc[i].r_rel.target_offset != from_offset)
7744 break;
7746 /* Ignore relocations that have been removed. */
7747 if (reloc[i].is_null)
7748 continue;
7750 /* The original and new output section for these must be the same
7751 in order to coalesce. */
7752 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7753 != sec->output_section)
7754 return FALSE;
7756 /* Absolute literals in the same output section can always be
7757 combined. */
7758 if (reloc[i].is_abs_literal)
7759 continue;
7761 /* A literal with no PC-relative relocations can be moved anywhere. */
7762 if (reloc[i].opnd != -1)
7764 /* Otherwise, check to see that it fits. */
7765 source_address = (reloc[i].source_sec->output_section->vma
7766 + reloc[i].source_sec->output_offset
7767 + reloc[i].r_rel.rela.r_offset);
7768 dest_address = (sec->output_section->vma
7769 + sec->output_offset
7770 + r_rel->target_offset);
7772 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7773 source_address, dest_address))
7774 return FALSE;
7778 return TRUE;
7782 /* Move a literal to another literal location because it is
7783 the same as the other literal value. */
7785 static bfd_boolean
7786 coalesce_shared_literal (asection *sec,
7787 source_reloc *rel,
7788 property_table_entry *prop_table,
7789 int ptblsize,
7790 value_map *val_map)
7792 property_table_entry *entry;
7793 text_action *fa;
7794 property_table_entry *the_add_entry;
7795 int removed_diff;
7796 xtensa_relax_info *relax_info;
7798 relax_info = get_xtensa_relax_info (sec);
7799 if (!relax_info)
7800 return FALSE;
7802 entry = elf_xtensa_find_property_entry
7803 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7804 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7805 return TRUE;
7807 /* Mark that the literal will be coalesced. */
7808 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7810 text_action_add (&relax_info->action_list,
7811 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7813 /* If the section is 4-byte aligned, do not add fill. */
7814 if (sec->alignment_power > 2)
7816 int fill_extra_space;
7817 bfd_vma entry_sec_offset;
7819 if (entry)
7820 entry_sec_offset = entry->address - sec->vma + entry->size;
7821 else
7822 entry_sec_offset = rel->r_rel.target_offset + 4;
7824 /* If the literal range is at the end of the section,
7825 do not add fill. */
7826 fill_extra_space = 0;
7827 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7828 entry_sec_offset);
7829 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7830 fill_extra_space = the_add_entry->size;
7832 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7833 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7834 -4, fill_extra_space);
7835 if (fa)
7836 adjust_fill_action (fa, removed_diff);
7837 else
7838 text_action_add (&relax_info->action_list,
7839 ta_fill, sec, entry_sec_offset, removed_diff);
7842 return TRUE;
7846 /* Move a literal to another location. This may actually increase the
7847 total amount of space used because of alignments so we need to do
7848 this carefully. Also, it may make a branch go out of range. */
7850 static bfd_boolean
7851 move_shared_literal (asection *sec,
7852 struct bfd_link_info *link_info,
7853 source_reloc *rel,
7854 property_table_entry *prop_table,
7855 int ptblsize,
7856 const r_reloc *target_loc,
7857 const literal_value *lit_value,
7858 section_cache_t *target_sec_cache)
7860 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7861 text_action *fa, *target_fa;
7862 int removed_diff;
7863 xtensa_relax_info *relax_info, *target_relax_info;
7864 asection *target_sec;
7865 ebb_t *ebb;
7866 ebb_constraint ebb_table;
7867 bfd_boolean relocs_fit;
7869 /* If this routine always returns FALSE, the literals that cannot be
7870 coalesced will not be moved. */
7871 if (elf32xtensa_no_literal_movement)
7872 return FALSE;
7874 relax_info = get_xtensa_relax_info (sec);
7875 if (!relax_info)
7876 return FALSE;
7878 target_sec = r_reloc_get_section (target_loc);
7879 target_relax_info = get_xtensa_relax_info (target_sec);
7881 /* Literals to undefined sections may not be moved because they
7882 must report an error. */
7883 if (bfd_is_und_section (target_sec))
7884 return FALSE;
7886 src_entry = elf_xtensa_find_property_entry
7887 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7889 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7890 return FALSE;
7892 target_entry = elf_xtensa_find_property_entry
7893 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7894 target_sec->vma + target_loc->target_offset);
7896 if (!target_entry)
7897 return FALSE;
7899 /* Make sure that we have not broken any branches. */
7900 relocs_fit = FALSE;
7902 init_ebb_constraint (&ebb_table);
7903 ebb = &ebb_table.ebb;
7904 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7905 target_sec_cache->content_length,
7906 target_sec_cache->ptbl, target_sec_cache->pte_count,
7907 target_sec_cache->relocs, target_sec_cache->reloc_count);
7909 /* Propose to add 4 bytes + worst-case alignment size increase to
7910 destination. */
7911 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7912 ta_fill, target_loc->target_offset,
7913 -4 - (1 << target_sec->alignment_power), TRUE);
7915 /* Check all of the PC-relative relocations to make sure they still fit. */
7916 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7917 target_sec_cache->contents,
7918 target_sec_cache->relocs,
7919 &ebb_table, NULL);
7921 if (!relocs_fit)
7922 return FALSE;
7924 text_action_add_literal (&target_relax_info->action_list,
7925 ta_add_literal, target_loc, lit_value, -4);
7927 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7929 /* May need to add or remove some fill to maintain alignment. */
7930 int fill_extra_space;
7931 bfd_vma entry_sec_offset;
7933 entry_sec_offset =
7934 target_entry->address - target_sec->vma + target_entry->size;
7936 /* If the literal range is at the end of the section,
7937 do not add fill. */
7938 fill_extra_space = 0;
7939 the_add_entry =
7940 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7941 target_sec_cache->pte_count,
7942 entry_sec_offset);
7943 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7944 fill_extra_space = the_add_entry->size;
7946 target_fa = find_fill_action (&target_relax_info->action_list,
7947 target_sec, entry_sec_offset);
7948 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7949 entry_sec_offset, 4,
7950 fill_extra_space);
7951 if (target_fa)
7952 adjust_fill_action (target_fa, removed_diff);
7953 else
7954 text_action_add (&target_relax_info->action_list,
7955 ta_fill, target_sec, entry_sec_offset, removed_diff);
7958 /* Mark that the literal will be moved to the new location. */
7959 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7961 /* Remove the literal. */
7962 text_action_add (&relax_info->action_list,
7963 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7965 /* If the section is 4-byte aligned, do not add fill. */
7966 if (sec->alignment_power > 2 && target_entry != src_entry)
7968 int fill_extra_space;
7969 bfd_vma entry_sec_offset;
7971 if (src_entry)
7972 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7973 else
7974 entry_sec_offset = rel->r_rel.target_offset+4;
7976 /* If the literal range is at the end of the section,
7977 do not add fill. */
7978 fill_extra_space = 0;
7979 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7980 entry_sec_offset);
7981 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7982 fill_extra_space = the_add_entry->size;
7984 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7985 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7986 -4, fill_extra_space);
7987 if (fa)
7988 adjust_fill_action (fa, removed_diff);
7989 else
7990 text_action_add (&relax_info->action_list,
7991 ta_fill, sec, entry_sec_offset, removed_diff);
7994 return TRUE;
7998 /* Second relaxation pass. */
8000 /* Modify all of the relocations to point to the right spot, and if this
8001 is a relaxable section, delete the unwanted literals and fix the
8002 section size. */
8004 bfd_boolean
8005 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8007 Elf_Internal_Rela *internal_relocs;
8008 xtensa_relax_info *relax_info;
8009 bfd_byte *contents;
8010 bfd_boolean ok = TRUE;
8011 unsigned i;
8012 bfd_boolean rv = FALSE;
8013 bfd_boolean virtual_action;
8014 bfd_size_type sec_size;
8016 sec_size = bfd_get_section_limit (abfd, sec);
8017 relax_info = get_xtensa_relax_info (sec);
8018 BFD_ASSERT (relax_info);
8020 /* First translate any of the fixes that have been added already. */
8021 translate_section_fixes (sec);
8023 /* Handle property sections (e.g., literal tables) specially. */
8024 if (xtensa_is_property_section (sec))
8026 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8027 return relax_property_section (abfd, sec, link_info);
8030 internal_relocs = retrieve_internal_relocs (abfd, sec,
8031 link_info->keep_memory);
8032 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8033 if (contents == NULL && sec_size != 0)
8035 ok = FALSE;
8036 goto error_return;
8039 if (internal_relocs)
8041 for (i = 0; i < sec->reloc_count; i++)
8043 Elf_Internal_Rela *irel;
8044 xtensa_relax_info *target_relax_info;
8045 bfd_vma source_offset, old_source_offset;
8046 r_reloc r_rel;
8047 unsigned r_type;
8048 asection *target_sec;
8050 /* Locally change the source address.
8051 Translate the target to the new target address.
8052 If it points to this section and has been removed,
8053 NULLify it.
8054 Write it back. */
8056 irel = &internal_relocs[i];
8057 source_offset = irel->r_offset;
8058 old_source_offset = source_offset;
8060 r_type = ELF32_R_TYPE (irel->r_info);
8061 r_reloc_init (&r_rel, abfd, irel, contents,
8062 bfd_get_section_limit (abfd, sec));
8064 /* If this section could have changed then we may need to
8065 change the relocation's offset. */
8067 if (relax_info->is_relaxable_literal_section
8068 || relax_info->is_relaxable_asm_section)
8070 if (r_type != R_XTENSA_NONE
8071 && find_removed_literal (&relax_info->removed_list,
8072 irel->r_offset))
8074 /* Remove this relocation. */
8075 if (elf_hash_table (link_info)->dynamic_sections_created)
8076 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8077 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8078 irel->r_offset = offset_with_removed_text
8079 (&relax_info->action_list, irel->r_offset);
8080 pin_internal_relocs (sec, internal_relocs);
8081 continue;
8084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8086 text_action *action =
8087 find_insn_action (&relax_info->action_list,
8088 irel->r_offset);
8089 if (action && (action->action == ta_convert_longcall
8090 || action->action == ta_remove_longcall))
8092 bfd_reloc_status_type retval;
8093 char *error_message = NULL;
8095 retval = contract_asm_expansion (contents, sec_size,
8096 irel, &error_message);
8097 if (retval != bfd_reloc_ok)
8099 (*link_info->callbacks->reloc_dangerous)
8100 (link_info, error_message, abfd, sec,
8101 irel->r_offset);
8102 goto error_return;
8104 /* Update the action so that the code that moves
8105 the contents will do the right thing. */
8106 if (action->action == ta_remove_longcall)
8107 action->action = ta_remove_insn;
8108 else
8109 action->action = ta_none;
8110 /* Refresh the info in the r_rel. */
8111 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8112 r_type = ELF32_R_TYPE (irel->r_info);
8116 source_offset = offset_with_removed_text
8117 (&relax_info->action_list, irel->r_offset);
8118 irel->r_offset = source_offset;
8121 /* If the target section could have changed then
8122 we may need to change the relocation's target offset. */
8124 target_sec = r_reloc_get_section (&r_rel);
8125 target_relax_info = get_xtensa_relax_info (target_sec);
8127 if (target_relax_info
8128 && (target_relax_info->is_relaxable_literal_section
8129 || target_relax_info->is_relaxable_asm_section))
8131 r_reloc new_reloc;
8132 reloc_bfd_fix *fix;
8133 bfd_vma addend_displacement;
8135 translate_reloc (&r_rel, &new_reloc);
8137 if (r_type == R_XTENSA_DIFF8
8138 || r_type == R_XTENSA_DIFF16
8139 || r_type == R_XTENSA_DIFF32)
8141 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8143 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8145 (*link_info->callbacks->reloc_dangerous)
8146 (link_info, _("invalid relocation address"),
8147 abfd, sec, old_source_offset);
8148 goto error_return;
8151 switch (r_type)
8153 case R_XTENSA_DIFF8:
8154 diff_value =
8155 bfd_get_8 (abfd, &contents[old_source_offset]);
8156 break;
8157 case R_XTENSA_DIFF16:
8158 diff_value =
8159 bfd_get_16 (abfd, &contents[old_source_offset]);
8160 break;
8161 case R_XTENSA_DIFF32:
8162 diff_value =
8163 bfd_get_32 (abfd, &contents[old_source_offset]);
8164 break;
8167 new_end_offset = offset_with_removed_text
8168 (&target_relax_info->action_list,
8169 r_rel.target_offset + diff_value);
8170 diff_value = new_end_offset - new_reloc.target_offset;
8172 switch (r_type)
8174 case R_XTENSA_DIFF8:
8175 diff_mask = 0xff;
8176 bfd_put_8 (abfd, diff_value,
8177 &contents[old_source_offset]);
8178 break;
8179 case R_XTENSA_DIFF16:
8180 diff_mask = 0xffff;
8181 bfd_put_16 (abfd, diff_value,
8182 &contents[old_source_offset]);
8183 break;
8184 case R_XTENSA_DIFF32:
8185 diff_mask = 0xffffffff;
8186 bfd_put_32 (abfd, diff_value,
8187 &contents[old_source_offset]);
8188 break;
8191 /* Check for overflow. */
8192 if ((diff_value & ~diff_mask) != 0)
8194 (*link_info->callbacks->reloc_dangerous)
8195 (link_info, _("overflow after relaxation"),
8196 abfd, sec, old_source_offset);
8197 goto error_return;
8200 pin_contents (sec, contents);
8203 /* FIXME: If the relocation still references a section in
8204 the same input file, the relocation should be modified
8205 directly instead of adding a "fix" record. */
8207 addend_displacement =
8208 new_reloc.target_offset + new_reloc.virtual_offset;
8210 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8211 r_reloc_get_section (&new_reloc),
8212 addend_displacement, TRUE);
8213 add_fix (sec, fix);
8216 pin_internal_relocs (sec, internal_relocs);
8220 if ((relax_info->is_relaxable_literal_section
8221 || relax_info->is_relaxable_asm_section)
8222 && relax_info->action_list.head)
8224 /* Walk through the planned actions and build up a table
8225 of move, copy and fill records. Use the move, copy and
8226 fill records to perform the actions once. */
8228 bfd_size_type size = sec->size;
8229 int removed = 0;
8230 bfd_size_type final_size, copy_size, orig_insn_size;
8231 bfd_byte *scratch = NULL;
8232 bfd_byte *dup_contents = NULL;
8233 bfd_size_type orig_size = size;
8234 bfd_vma orig_dot = 0;
8235 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8236 orig dot in physical memory. */
8237 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8238 bfd_vma dup_dot = 0;
8240 text_action *action = relax_info->action_list.head;
8242 final_size = sec->size;
8243 for (action = relax_info->action_list.head; action;
8244 action = action->next)
8246 final_size -= action->removed_bytes;
8249 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8250 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8252 /* The dot is the current fill location. */
8253 #if DEBUG
8254 print_action_list (stderr, &relax_info->action_list);
8255 #endif
8257 for (action = relax_info->action_list.head; action;
8258 action = action->next)
8260 virtual_action = FALSE;
8261 if (action->offset > orig_dot)
8263 orig_dot += orig_dot_copied;
8264 orig_dot_copied = 0;
8265 orig_dot_vo = 0;
8266 /* Out of the virtual world. */
8269 if (action->offset > orig_dot)
8271 copy_size = action->offset - orig_dot;
8272 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8273 orig_dot += copy_size;
8274 dup_dot += copy_size;
8275 BFD_ASSERT (action->offset == orig_dot);
8277 else if (action->offset < orig_dot)
8279 if (action->action == ta_fill
8280 && action->offset - action->removed_bytes == orig_dot)
8282 /* This is OK because the fill only effects the dup_dot. */
8284 else if (action->action == ta_add_literal)
8286 /* TBD. Might need to handle this. */
8289 if (action->offset == orig_dot)
8291 if (action->virtual_offset > orig_dot_vo)
8293 if (orig_dot_vo == 0)
8295 /* Need to copy virtual_offset bytes. Probably four. */
8296 copy_size = action->virtual_offset - orig_dot_vo;
8297 memmove (&dup_contents[dup_dot],
8298 &contents[orig_dot], copy_size);
8299 orig_dot_copied = copy_size;
8300 dup_dot += copy_size;
8302 virtual_action = TRUE;
8304 else
8305 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8307 switch (action->action)
8309 case ta_remove_literal:
8310 case ta_remove_insn:
8311 BFD_ASSERT (action->removed_bytes >= 0);
8312 orig_dot += action->removed_bytes;
8313 break;
8315 case ta_narrow_insn:
8316 orig_insn_size = 3;
8317 copy_size = 2;
8318 memmove (scratch, &contents[orig_dot], orig_insn_size);
8319 BFD_ASSERT (action->removed_bytes == 1);
8320 rv = narrow_instruction (scratch, final_size, 0);
8321 BFD_ASSERT (rv);
8322 memmove (&dup_contents[dup_dot], scratch, copy_size);
8323 orig_dot += orig_insn_size;
8324 dup_dot += copy_size;
8325 break;
8327 case ta_fill:
8328 if (action->removed_bytes >= 0)
8329 orig_dot += action->removed_bytes;
8330 else
8332 /* Already zeroed in dup_contents. Just bump the
8333 counters. */
8334 dup_dot += (-action->removed_bytes);
8336 break;
8338 case ta_none:
8339 BFD_ASSERT (action->removed_bytes == 0);
8340 break;
8342 case ta_convert_longcall:
8343 case ta_remove_longcall:
8344 /* These will be removed or converted before we get here. */
8345 BFD_ASSERT (0);
8346 break;
8348 case ta_widen_insn:
8349 orig_insn_size = 2;
8350 copy_size = 3;
8351 memmove (scratch, &contents[orig_dot], orig_insn_size);
8352 BFD_ASSERT (action->removed_bytes == -1);
8353 rv = widen_instruction (scratch, final_size, 0);
8354 BFD_ASSERT (rv);
8355 memmove (&dup_contents[dup_dot], scratch, copy_size);
8356 orig_dot += orig_insn_size;
8357 dup_dot += copy_size;
8358 break;
8360 case ta_add_literal:
8361 orig_insn_size = 0;
8362 copy_size = 4;
8363 BFD_ASSERT (action->removed_bytes == -4);
8364 /* TBD -- place the literal value here and insert
8365 into the table. */
8366 memset (&dup_contents[dup_dot], 0, 4);
8367 pin_internal_relocs (sec, internal_relocs);
8368 pin_contents (sec, contents);
8370 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8371 relax_info, &internal_relocs, &action->value))
8372 goto error_return;
8374 if (virtual_action)
8375 orig_dot_vo += copy_size;
8377 orig_dot += orig_insn_size;
8378 dup_dot += copy_size;
8379 break;
8381 default:
8382 /* Not implemented yet. */
8383 BFD_ASSERT (0);
8384 break;
8387 size -= action->removed_bytes;
8388 removed += action->removed_bytes;
8389 BFD_ASSERT (dup_dot <= final_size);
8390 BFD_ASSERT (orig_dot <= orig_size);
8393 orig_dot += orig_dot_copied;
8394 orig_dot_copied = 0;
8396 if (orig_dot != orig_size)
8398 copy_size = orig_size - orig_dot;
8399 BFD_ASSERT (orig_size > orig_dot);
8400 BFD_ASSERT (dup_dot + copy_size == final_size);
8401 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8402 orig_dot += copy_size;
8403 dup_dot += copy_size;
8405 BFD_ASSERT (orig_size == orig_dot);
8406 BFD_ASSERT (final_size == dup_dot);
8408 /* Move the dup_contents back. */
8409 if (final_size > orig_size)
8411 /* Contents need to be reallocated. Swap the dup_contents into
8412 contents. */
8413 sec->contents = dup_contents;
8414 free (contents);
8415 contents = dup_contents;
8416 pin_contents (sec, contents);
8418 else
8420 BFD_ASSERT (final_size <= orig_size);
8421 memset (contents, 0, orig_size);
8422 memcpy (contents, dup_contents, final_size);
8423 free (dup_contents);
8425 free (scratch);
8426 pin_contents (sec, contents);
8428 sec->size = final_size;
8431 error_return:
8432 release_internal_relocs (sec, internal_relocs);
8433 release_contents (sec, contents);
8434 return ok;
8438 static bfd_boolean
8439 translate_section_fixes (asection *sec)
8441 xtensa_relax_info *relax_info;
8442 reloc_bfd_fix *r;
8444 relax_info = get_xtensa_relax_info (sec);
8445 if (!relax_info)
8446 return TRUE;
8448 for (r = relax_info->fix_list; r != NULL; r = r->next)
8449 if (!translate_reloc_bfd_fix (r))
8450 return FALSE;
8452 return TRUE;
8456 /* Translate a fix given the mapping in the relax info for the target
8457 section. If it has already been translated, no work is required. */
8459 static bfd_boolean
8460 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8462 reloc_bfd_fix new_fix;
8463 asection *sec;
8464 xtensa_relax_info *relax_info;
8465 removed_literal *removed;
8466 bfd_vma new_offset, target_offset;
8468 if (fix->translated)
8469 return TRUE;
8471 sec = fix->target_sec;
8472 target_offset = fix->target_offset;
8474 relax_info = get_xtensa_relax_info (sec);
8475 if (!relax_info)
8477 fix->translated = TRUE;
8478 return TRUE;
8481 new_fix = *fix;
8483 /* The fix does not need to be translated if the section cannot change. */
8484 if (!relax_info->is_relaxable_literal_section
8485 && !relax_info->is_relaxable_asm_section)
8487 fix->translated = TRUE;
8488 return TRUE;
8491 /* If the literal has been moved and this relocation was on an
8492 opcode, then the relocation should move to the new literal
8493 location. Otherwise, the relocation should move within the
8494 section. */
8496 removed = FALSE;
8497 if (is_operand_relocation (fix->src_type))
8499 /* Check if the original relocation is against a literal being
8500 removed. */
8501 removed = find_removed_literal (&relax_info->removed_list,
8502 target_offset);
8505 if (removed)
8507 asection *new_sec;
8509 /* The fact that there is still a relocation to this literal indicates
8510 that the literal is being coalesced, not simply removed. */
8511 BFD_ASSERT (removed->to.abfd != NULL);
8513 /* This was moved to some other address (possibly another section). */
8514 new_sec = r_reloc_get_section (&removed->to);
8515 if (new_sec != sec)
8517 sec = new_sec;
8518 relax_info = get_xtensa_relax_info (sec);
8519 if (!relax_info ||
8520 (!relax_info->is_relaxable_literal_section
8521 && !relax_info->is_relaxable_asm_section))
8523 target_offset = removed->to.target_offset;
8524 new_fix.target_sec = new_sec;
8525 new_fix.target_offset = target_offset;
8526 new_fix.translated = TRUE;
8527 *fix = new_fix;
8528 return TRUE;
8531 target_offset = removed->to.target_offset;
8532 new_fix.target_sec = new_sec;
8535 /* The target address may have been moved within its section. */
8536 new_offset = offset_with_removed_text (&relax_info->action_list,
8537 target_offset);
8539 new_fix.target_offset = new_offset;
8540 new_fix.target_offset = new_offset;
8541 new_fix.translated = TRUE;
8542 *fix = new_fix;
8543 return TRUE;
8547 /* Fix up a relocation to take account of removed literals. */
8549 static void
8550 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8552 asection *sec;
8553 xtensa_relax_info *relax_info;
8554 removed_literal *removed;
8555 bfd_vma new_offset, target_offset, removed_bytes;
8557 *new_rel = *orig_rel;
8559 if (!r_reloc_is_defined (orig_rel))
8560 return;
8561 sec = r_reloc_get_section (orig_rel);
8563 relax_info = get_xtensa_relax_info (sec);
8564 BFD_ASSERT (relax_info);
8566 if (!relax_info->is_relaxable_literal_section
8567 && !relax_info->is_relaxable_asm_section)
8568 return;
8570 target_offset = orig_rel->target_offset;
8572 removed = FALSE;
8573 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8575 /* Check if the original relocation is against a literal being
8576 removed. */
8577 removed = find_removed_literal (&relax_info->removed_list,
8578 target_offset);
8580 if (removed && removed->to.abfd)
8582 asection *new_sec;
8584 /* The fact that there is still a relocation to this literal indicates
8585 that the literal is being coalesced, not simply removed. */
8586 BFD_ASSERT (removed->to.abfd != NULL);
8588 /* This was moved to some other address
8589 (possibly in another section). */
8590 *new_rel = removed->to;
8591 new_sec = r_reloc_get_section (new_rel);
8592 if (new_sec != sec)
8594 sec = new_sec;
8595 relax_info = get_xtensa_relax_info (sec);
8596 if (!relax_info
8597 || (!relax_info->is_relaxable_literal_section
8598 && !relax_info->is_relaxable_asm_section))
8599 return;
8601 target_offset = new_rel->target_offset;
8604 /* ...and the target address may have been moved within its section. */
8605 new_offset = offset_with_removed_text (&relax_info->action_list,
8606 target_offset);
8608 /* Modify the offset and addend. */
8609 removed_bytes = target_offset - new_offset;
8610 new_rel->target_offset = new_offset;
8611 new_rel->rela.r_addend -= removed_bytes;
8615 /* For dynamic links, there may be a dynamic relocation for each
8616 literal. The number of dynamic relocations must be computed in
8617 size_dynamic_sections, which occurs before relaxation. When a
8618 literal is removed, this function checks if there is a corresponding
8619 dynamic relocation and shrinks the size of the appropriate dynamic
8620 relocation section accordingly. At this point, the contents of the
8621 dynamic relocation sections have not yet been filled in, so there's
8622 nothing else that needs to be done. */
8624 static void
8625 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8626 bfd *abfd,
8627 asection *input_section,
8628 Elf_Internal_Rela *rel)
8630 Elf_Internal_Shdr *symtab_hdr;
8631 struct elf_link_hash_entry **sym_hashes;
8632 unsigned long r_symndx;
8633 int r_type;
8634 struct elf_link_hash_entry *h;
8635 bfd_boolean dynamic_symbol;
8637 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8638 sym_hashes = elf_sym_hashes (abfd);
8640 r_type = ELF32_R_TYPE (rel->r_info);
8641 r_symndx = ELF32_R_SYM (rel->r_info);
8643 if (r_symndx < symtab_hdr->sh_info)
8644 h = NULL;
8645 else
8646 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8648 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
8650 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8651 && (input_section->flags & SEC_ALLOC) != 0
8652 && (dynamic_symbol || info->shared))
8654 bfd *dynobj;
8655 const char *srel_name;
8656 asection *srel;
8657 bfd_boolean is_plt = FALSE;
8659 dynobj = elf_hash_table (info)->dynobj;
8660 BFD_ASSERT (dynobj != NULL);
8662 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8664 srel_name = ".rela.plt";
8665 is_plt = TRUE;
8667 else
8668 srel_name = ".rela.got";
8670 /* Reduce size of the .rela.* section by one reloc. */
8671 srel = bfd_get_section_by_name (dynobj, srel_name);
8672 BFD_ASSERT (srel != NULL);
8673 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8674 srel->size -= sizeof (Elf32_External_Rela);
8676 if (is_plt)
8678 asection *splt, *sgotplt, *srelgot;
8679 int reloc_index, chunk;
8681 /* Find the PLT reloc index of the entry being removed. This
8682 is computed from the size of ".rela.plt". It is needed to
8683 figure out which PLT chunk to resize. Usually "last index
8684 = size - 1" since the index starts at zero, but in this
8685 context, the size has just been decremented so there's no
8686 need to subtract one. */
8687 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8689 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8690 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8691 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8692 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8694 /* Check if an entire PLT chunk has just been eliminated. */
8695 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8697 /* The two magic GOT entries for that chunk can go away. */
8698 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8699 BFD_ASSERT (srelgot != NULL);
8700 srelgot->reloc_count -= 2;
8701 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8702 sgotplt->size -= 8;
8704 /* There should be only one entry left (and it will be
8705 removed below). */
8706 BFD_ASSERT (sgotplt->size == 4);
8707 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8710 BFD_ASSERT (sgotplt->size >= 4);
8711 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8713 sgotplt->size -= 4;
8714 splt->size -= PLT_ENTRY_SIZE;
8720 /* Take an r_rel and move it to another section. This usually
8721 requires extending the interal_relocation array and pinning it. If
8722 the original r_rel is from the same BFD, we can complete this here.
8723 Otherwise, we add a fix record to let the final link fix the
8724 appropriate address. Contents and internal relocations for the
8725 section must be pinned after calling this routine. */
8727 static bfd_boolean
8728 move_literal (bfd *abfd,
8729 struct bfd_link_info *link_info,
8730 asection *sec,
8731 bfd_vma offset,
8732 bfd_byte *contents,
8733 xtensa_relax_info *relax_info,
8734 Elf_Internal_Rela **internal_relocs_p,
8735 const literal_value *lit)
8737 Elf_Internal_Rela *new_relocs = NULL;
8738 size_t new_relocs_count = 0;
8739 Elf_Internal_Rela this_rela;
8740 const r_reloc *r_rel;
8742 r_rel = &lit->r_rel;
8743 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8745 if (r_reloc_is_const (r_rel))
8746 bfd_put_32 (abfd, lit->value, contents + offset);
8747 else
8749 int r_type;
8750 unsigned i;
8751 asection *target_sec;
8752 reloc_bfd_fix *fix;
8753 unsigned insert_at;
8755 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8756 target_sec = r_reloc_get_section (r_rel);
8758 /* This is the difficult case. We have to create a fix up. */
8759 this_rela.r_offset = offset;
8760 this_rela.r_info = ELF32_R_INFO (0, r_type);
8761 this_rela.r_addend =
8762 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8763 bfd_put_32 (abfd, lit->value, contents + offset);
8765 /* Currently, we cannot move relocations during a relocatable link. */
8766 BFD_ASSERT (!link_info->relocatable);
8767 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8768 r_reloc_get_section (r_rel),
8769 r_rel->target_offset + r_rel->virtual_offset,
8770 FALSE);
8771 /* We also need to mark that relocations are needed here. */
8772 sec->flags |= SEC_RELOC;
8774 translate_reloc_bfd_fix (fix);
8775 /* This fix has not yet been translated. */
8776 add_fix (sec, fix);
8778 /* Add the relocation. If we have already allocated our own
8779 space for the relocations and we have room for more, then use
8780 it. Otherwise, allocate new space and move the literals. */
8781 insert_at = sec->reloc_count;
8782 for (i = 0; i < sec->reloc_count; ++i)
8784 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8786 insert_at = i;
8787 break;
8791 if (*internal_relocs_p != relax_info->allocated_relocs
8792 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8794 BFD_ASSERT (relax_info->allocated_relocs == NULL
8795 || sec->reloc_count == relax_info->relocs_count);
8797 if (relax_info->allocated_relocs_count == 0)
8798 new_relocs_count = (sec->reloc_count + 2) * 2;
8799 else
8800 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8802 new_relocs = (Elf_Internal_Rela *)
8803 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8804 if (!new_relocs)
8805 return FALSE;
8807 /* We could handle this more quickly by finding the split point. */
8808 if (insert_at != 0)
8809 memcpy (new_relocs, *internal_relocs_p,
8810 insert_at * sizeof (Elf_Internal_Rela));
8812 new_relocs[insert_at] = this_rela;
8814 if (insert_at != sec->reloc_count)
8815 memcpy (new_relocs + insert_at + 1,
8816 (*internal_relocs_p) + insert_at,
8817 (sec->reloc_count - insert_at)
8818 * sizeof (Elf_Internal_Rela));
8820 if (*internal_relocs_p != relax_info->allocated_relocs)
8822 /* The first time we re-allocate, we can only free the
8823 old relocs if they were allocated with bfd_malloc.
8824 This is not true when keep_memory is in effect. */
8825 if (!link_info->keep_memory)
8826 free (*internal_relocs_p);
8828 else
8829 free (*internal_relocs_p);
8830 relax_info->allocated_relocs = new_relocs;
8831 relax_info->allocated_relocs_count = new_relocs_count;
8832 elf_section_data (sec)->relocs = new_relocs;
8833 sec->reloc_count++;
8834 relax_info->relocs_count = sec->reloc_count;
8835 *internal_relocs_p = new_relocs;
8837 else
8839 if (insert_at != sec->reloc_count)
8841 unsigned idx;
8842 for (idx = sec->reloc_count; idx > insert_at; idx--)
8843 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8845 (*internal_relocs_p)[insert_at] = this_rela;
8846 sec->reloc_count++;
8847 if (relax_info->allocated_relocs)
8848 relax_info->relocs_count = sec->reloc_count;
8851 return TRUE;
8855 /* This is similar to relax_section except that when a target is moved,
8856 we shift addresses up. We also need to modify the size. This
8857 algorithm does NOT allow for relocations into the middle of the
8858 property sections. */
8860 static bfd_boolean
8861 relax_property_section (bfd *abfd,
8862 asection *sec,
8863 struct bfd_link_info *link_info)
8865 Elf_Internal_Rela *internal_relocs;
8866 bfd_byte *contents;
8867 unsigned i, nexti;
8868 bfd_boolean ok = TRUE;
8869 bfd_boolean is_full_prop_section;
8870 size_t last_zfill_target_offset = 0;
8871 asection *last_zfill_target_sec = NULL;
8872 bfd_size_type sec_size;
8874 sec_size = bfd_get_section_limit (abfd, sec);
8875 internal_relocs = retrieve_internal_relocs (abfd, sec,
8876 link_info->keep_memory);
8877 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8878 if (contents == NULL && sec_size != 0)
8880 ok = FALSE;
8881 goto error_return;
8884 is_full_prop_section =
8885 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8886 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8887 sizeof ".gnu.linkonce.prop." - 1) == 0));
8889 if (internal_relocs)
8891 for (i = 0; i < sec->reloc_count; i++)
8893 Elf_Internal_Rela *irel;
8894 xtensa_relax_info *target_relax_info;
8895 unsigned r_type;
8896 asection *target_sec;
8897 literal_value val;
8898 bfd_byte *size_p, *flags_p;
8900 /* Locally change the source address.
8901 Translate the target to the new target address.
8902 If it points to this section and has been removed, MOVE IT.
8903 Also, don't forget to modify the associated SIZE at
8904 (offset + 4). */
8906 irel = &internal_relocs[i];
8907 r_type = ELF32_R_TYPE (irel->r_info);
8908 if (r_type == R_XTENSA_NONE)
8909 continue;
8911 /* Find the literal value. */
8912 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8913 size_p = &contents[irel->r_offset + 4];
8914 flags_p = NULL;
8915 if (is_full_prop_section)
8917 flags_p = &contents[irel->r_offset + 8];
8918 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8920 else
8921 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
8923 target_sec = r_reloc_get_section (&val.r_rel);
8924 target_relax_info = get_xtensa_relax_info (target_sec);
8926 if (target_relax_info
8927 && (target_relax_info->is_relaxable_literal_section
8928 || target_relax_info->is_relaxable_asm_section ))
8930 /* Translate the relocation's destination. */
8931 bfd_vma new_offset, new_end_offset;
8932 long old_size, new_size;
8934 new_offset = offset_with_removed_text
8935 (&target_relax_info->action_list, val.r_rel.target_offset);
8937 /* Assert that we are not out of bounds. */
8938 old_size = bfd_get_32 (abfd, size_p);
8940 if (old_size == 0)
8942 /* Only the first zero-sized unreachable entry is
8943 allowed to expand. In this case the new offset
8944 should be the offset before the fill and the new
8945 size is the expansion size. For other zero-sized
8946 entries the resulting size should be zero with an
8947 offset before or after the fill address depending
8948 on whether the expanding unreachable entry
8949 preceeds it. */
8950 if (last_zfill_target_sec
8951 && last_zfill_target_sec == target_sec
8952 && last_zfill_target_offset == val.r_rel.target_offset)
8953 new_end_offset = new_offset;
8954 else
8956 new_end_offset = new_offset;
8957 new_offset = offset_with_removed_text_before_fill
8958 (&target_relax_info->action_list,
8959 val.r_rel.target_offset);
8961 /* If it is not unreachable and we have not yet
8962 seen an unreachable at this address, place it
8963 before the fill address. */
8964 if (!flags_p
8965 || (bfd_get_32 (abfd, flags_p)
8966 & XTENSA_PROP_UNREACHABLE) == 0)
8967 new_end_offset = new_offset;
8968 else
8970 last_zfill_target_sec = target_sec;
8971 last_zfill_target_offset = val.r_rel.target_offset;
8975 else
8977 new_end_offset = offset_with_removed_text_before_fill
8978 (&target_relax_info->action_list,
8979 val.r_rel.target_offset + old_size);
8982 new_size = new_end_offset - new_offset;
8984 if (new_size != old_size)
8986 bfd_put_32 (abfd, new_size, size_p);
8987 pin_contents (sec, contents);
8990 if (new_offset != val.r_rel.target_offset)
8992 bfd_vma diff = new_offset - val.r_rel.target_offset;
8993 irel->r_addend += diff;
8994 pin_internal_relocs (sec, internal_relocs);
9000 /* Combine adjacent property table entries. This is also done in
9001 finish_dynamic_sections() but at that point it's too late to
9002 reclaim the space in the output section, so we do this twice. */
9004 if (internal_relocs && (!link_info->relocatable
9005 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
9007 Elf_Internal_Rela *last_irel = NULL;
9008 int removed_bytes = 0;
9009 bfd_vma offset, last_irel_offset;
9010 bfd_vma section_size;
9011 bfd_size_type entry_size;
9012 flagword predef_flags;
9014 if (is_full_prop_section)
9015 entry_size = 12;
9016 else
9017 entry_size = 8;
9019 predef_flags = xtensa_get_property_predef_flags (sec);
9021 /* Walk over memory and irels at the same time.
9022 This REQUIRES that the internal_relocs be sorted by offset. */
9023 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9024 internal_reloc_compare);
9025 nexti = 0; /* Index into internal_relocs. */
9027 pin_internal_relocs (sec, internal_relocs);
9028 pin_contents (sec, contents);
9030 last_irel_offset = (bfd_vma) -1;
9031 section_size = sec->size;
9032 BFD_ASSERT (section_size % entry_size == 0);
9034 for (offset = 0; offset < section_size; offset += entry_size)
9036 Elf_Internal_Rela *irel, *next_irel;
9037 bfd_vma bytes_to_remove, size, actual_offset;
9038 bfd_boolean remove_this_irel;
9039 flagword flags;
9041 irel = NULL;
9042 next_irel = NULL;
9044 /* Find the next two relocations (if there are that many left),
9045 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
9046 the starting reloc index. After these two loops, "i"
9047 is the index of the first non-NONE reloc past that starting
9048 index, and "nexti" is the index for the next non-NONE reloc
9049 after "i". */
9051 for (i = nexti; i < sec->reloc_count; i++)
9053 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
9055 irel = &internal_relocs[i];
9056 break;
9058 internal_relocs[i].r_offset -= removed_bytes;
9061 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
9063 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
9064 != R_XTENSA_NONE)
9066 next_irel = &internal_relocs[nexti];
9067 break;
9069 internal_relocs[nexti].r_offset -= removed_bytes;
9072 remove_this_irel = FALSE;
9073 bytes_to_remove = 0;
9074 actual_offset = offset - removed_bytes;
9075 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9077 if (is_full_prop_section)
9078 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9079 else
9080 flags = predef_flags;
9082 /* Check that the irels are sorted by offset,
9083 with only one per address. */
9084 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9085 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9087 /* Make sure there aren't relocs on the size or flag fields. */
9088 if ((irel && irel->r_offset == offset + 4)
9089 || (is_full_prop_section
9090 && irel && irel->r_offset == offset + 8))
9092 irel->r_offset -= removed_bytes;
9093 last_irel_offset = irel->r_offset;
9095 else if (next_irel && (next_irel->r_offset == offset + 4
9096 || (is_full_prop_section
9097 && next_irel->r_offset == offset + 8)))
9099 nexti += 1;
9100 irel->r_offset -= removed_bytes;
9101 next_irel->r_offset -= removed_bytes;
9102 last_irel_offset = next_irel->r_offset;
9104 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9105 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9107 /* Always remove entries with zero size and no alignment. */
9108 bytes_to_remove = entry_size;
9109 if (irel && irel->r_offset == offset)
9111 remove_this_irel = TRUE;
9113 irel->r_offset -= removed_bytes;
9114 last_irel_offset = irel->r_offset;
9117 else if (irel && irel->r_offset == offset)
9119 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9121 if (last_irel)
9123 flagword old_flags;
9124 bfd_vma old_size =
9125 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9126 bfd_vma old_address =
9127 (last_irel->r_addend
9128 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9129 bfd_vma new_address =
9130 (irel->r_addend
9131 + bfd_get_32 (abfd, &contents[actual_offset]));
9132 if (is_full_prop_section)
9133 old_flags = bfd_get_32
9134 (abfd, &contents[last_irel->r_offset + 8]);
9135 else
9136 old_flags = predef_flags;
9138 if ((ELF32_R_SYM (irel->r_info)
9139 == ELF32_R_SYM (last_irel->r_info))
9140 && old_address + old_size == new_address
9141 && old_flags == flags
9142 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9143 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9145 /* Fix the old size. */
9146 bfd_put_32 (abfd, old_size + size,
9147 &contents[last_irel->r_offset + 4]);
9148 bytes_to_remove = entry_size;
9149 remove_this_irel = TRUE;
9151 else
9152 last_irel = irel;
9154 else
9155 last_irel = irel;
9158 irel->r_offset -= removed_bytes;
9159 last_irel_offset = irel->r_offset;
9162 if (remove_this_irel)
9164 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9165 irel->r_offset -= bytes_to_remove;
9168 if (bytes_to_remove != 0)
9170 removed_bytes += bytes_to_remove;
9171 if (offset + bytes_to_remove < section_size)
9172 memmove (&contents[actual_offset],
9173 &contents[actual_offset + bytes_to_remove],
9174 section_size - offset - bytes_to_remove);
9178 if (removed_bytes)
9180 /* Clear the removed bytes. */
9181 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9183 sec->size = section_size - removed_bytes;
9185 if (xtensa_is_littable_section (sec))
9187 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9188 if (dynobj)
9190 asection *sgotloc =
9191 bfd_get_section_by_name (dynobj, ".got.loc");
9192 if (sgotloc)
9193 sgotloc->size -= removed_bytes;
9199 error_return:
9200 release_internal_relocs (sec, internal_relocs);
9201 release_contents (sec, contents);
9202 return ok;
9206 /* Third relaxation pass. */
9208 /* Change symbol values to account for removed literals. */
9210 bfd_boolean
9211 relax_section_symbols (bfd *abfd, asection *sec)
9213 xtensa_relax_info *relax_info;
9214 unsigned int sec_shndx;
9215 Elf_Internal_Shdr *symtab_hdr;
9216 Elf_Internal_Sym *isymbuf;
9217 unsigned i, num_syms, num_locals;
9219 relax_info = get_xtensa_relax_info (sec);
9220 BFD_ASSERT (relax_info);
9222 if (!relax_info->is_relaxable_literal_section
9223 && !relax_info->is_relaxable_asm_section)
9224 return TRUE;
9226 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9228 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9229 isymbuf = retrieve_local_syms (abfd);
9231 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9232 num_locals = symtab_hdr->sh_info;
9234 /* Adjust the local symbols defined in this section. */
9235 for (i = 0; i < num_locals; i++)
9237 Elf_Internal_Sym *isym = &isymbuf[i];
9239 if (isym->st_shndx == sec_shndx)
9241 bfd_vma new_address = offset_with_removed_text
9242 (&relax_info->action_list, isym->st_value);
9243 bfd_vma new_size = isym->st_size;
9245 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9247 bfd_vma new_end = offset_with_removed_text
9248 (&relax_info->action_list, isym->st_value + isym->st_size);
9249 new_size = new_end - new_address;
9252 isym->st_value = new_address;
9253 isym->st_size = new_size;
9257 /* Now adjust the global symbols defined in this section. */
9258 for (i = 0; i < (num_syms - num_locals); i++)
9260 struct elf_link_hash_entry *sym_hash;
9262 sym_hash = elf_sym_hashes (abfd)[i];
9264 if (sym_hash->root.type == bfd_link_hash_warning)
9265 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9267 if ((sym_hash->root.type == bfd_link_hash_defined
9268 || sym_hash->root.type == bfd_link_hash_defweak)
9269 && sym_hash->root.u.def.section == sec)
9271 bfd_vma new_address = offset_with_removed_text
9272 (&relax_info->action_list, sym_hash->root.u.def.value);
9273 bfd_vma new_size = sym_hash->size;
9275 if (sym_hash->type == STT_FUNC)
9277 bfd_vma new_end = offset_with_removed_text
9278 (&relax_info->action_list,
9279 sym_hash->root.u.def.value + sym_hash->size);
9280 new_size = new_end - new_address;
9283 sym_hash->root.u.def.value = new_address;
9284 sym_hash->size = new_size;
9288 return TRUE;
9292 /* "Fix" handling functions, called while performing relocations. */
9294 static bfd_boolean
9295 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9296 bfd *input_bfd,
9297 asection *input_section,
9298 bfd_byte *contents)
9300 r_reloc r_rel;
9301 asection *sec, *old_sec;
9302 bfd_vma old_offset;
9303 int r_type = ELF32_R_TYPE (rel->r_info);
9304 reloc_bfd_fix *fix;
9306 if (r_type == R_XTENSA_NONE)
9307 return TRUE;
9309 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9310 if (!fix)
9311 return TRUE;
9313 r_reloc_init (&r_rel, input_bfd, rel, contents,
9314 bfd_get_section_limit (input_bfd, input_section));
9315 old_sec = r_reloc_get_section (&r_rel);
9316 old_offset = r_rel.target_offset;
9318 if (!old_sec || !r_reloc_is_defined (&r_rel))
9320 if (r_type != R_XTENSA_ASM_EXPAND)
9322 (*_bfd_error_handler)
9323 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9324 input_bfd, input_section, rel->r_offset,
9325 elf_howto_table[r_type].name);
9326 return FALSE;
9328 /* Leave it be. Resolution will happen in a later stage. */
9330 else
9332 sec = fix->target_sec;
9333 rel->r_addend += ((sec->output_offset + fix->target_offset)
9334 - (old_sec->output_offset + old_offset));
9336 return TRUE;
9340 static void
9341 do_fix_for_final_link (Elf_Internal_Rela *rel,
9342 bfd *input_bfd,
9343 asection *input_section,
9344 bfd_byte *contents,
9345 bfd_vma *relocationp)
9347 asection *sec;
9348 int r_type = ELF32_R_TYPE (rel->r_info);
9349 reloc_bfd_fix *fix;
9350 bfd_vma fixup_diff;
9352 if (r_type == R_XTENSA_NONE)
9353 return;
9355 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9356 if (!fix)
9357 return;
9359 sec = fix->target_sec;
9361 fixup_diff = rel->r_addend;
9362 if (elf_howto_table[fix->src_type].partial_inplace)
9364 bfd_vma inplace_val;
9365 BFD_ASSERT (fix->src_offset
9366 < bfd_get_section_limit (input_bfd, input_section));
9367 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9368 fixup_diff += inplace_val;
9371 *relocationp = (sec->output_section->vma
9372 + sec->output_offset
9373 + fix->target_offset - fixup_diff);
9377 /* Miscellaneous utility functions.... */
9379 static asection *
9380 elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
9382 char plt_name[10];
9384 if (chunk == 0)
9385 return bfd_get_section_by_name (dynobj, ".plt");
9387 sprintf (plt_name, ".plt.%u", chunk);
9388 return bfd_get_section_by_name (dynobj, plt_name);
9392 static asection *
9393 elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
9395 char got_name[14];
9397 if (chunk == 0)
9398 return bfd_get_section_by_name (dynobj, ".got.plt");
9400 sprintf (got_name, ".got.plt.%u", chunk);
9401 return bfd_get_section_by_name (dynobj, got_name);
9405 /* Get the input section for a given symbol index.
9406 If the symbol is:
9407 . a section symbol, return the section;
9408 . a common symbol, return the common section;
9409 . an undefined symbol, return the undefined section;
9410 . an indirect symbol, follow the links;
9411 . an absolute value, return the absolute section. */
9413 static asection *
9414 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9416 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9417 asection *target_sec = NULL;
9418 if (r_symndx < symtab_hdr->sh_info)
9420 Elf_Internal_Sym *isymbuf;
9421 unsigned int section_index;
9423 isymbuf = retrieve_local_syms (abfd);
9424 section_index = isymbuf[r_symndx].st_shndx;
9426 if (section_index == SHN_UNDEF)
9427 target_sec = bfd_und_section_ptr;
9428 else if (section_index > 0 && section_index < SHN_LORESERVE)
9429 target_sec = bfd_section_from_elf_index (abfd, section_index);
9430 else if (section_index == SHN_ABS)
9431 target_sec = bfd_abs_section_ptr;
9432 else if (section_index == SHN_COMMON)
9433 target_sec = bfd_com_section_ptr;
9434 else
9435 /* Who knows? */
9436 target_sec = NULL;
9438 else
9440 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9441 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9443 while (h->root.type == bfd_link_hash_indirect
9444 || h->root.type == bfd_link_hash_warning)
9445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9447 switch (h->root.type)
9449 case bfd_link_hash_defined:
9450 case bfd_link_hash_defweak:
9451 target_sec = h->root.u.def.section;
9452 break;
9453 case bfd_link_hash_common:
9454 target_sec = bfd_com_section_ptr;
9455 break;
9456 case bfd_link_hash_undefined:
9457 case bfd_link_hash_undefweak:
9458 target_sec = bfd_und_section_ptr;
9459 break;
9460 default: /* New indirect warning. */
9461 target_sec = bfd_und_section_ptr;
9462 break;
9465 return target_sec;
9469 static struct elf_link_hash_entry *
9470 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9472 unsigned long indx;
9473 struct elf_link_hash_entry *h;
9474 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9476 if (r_symndx < symtab_hdr->sh_info)
9477 return NULL;
9479 indx = r_symndx - symtab_hdr->sh_info;
9480 h = elf_sym_hashes (abfd)[indx];
9481 while (h->root.type == bfd_link_hash_indirect
9482 || h->root.type == bfd_link_hash_warning)
9483 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9484 return h;
9488 /* Get the section-relative offset for a symbol number. */
9490 static bfd_vma
9491 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9493 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9494 bfd_vma offset = 0;
9496 if (r_symndx < symtab_hdr->sh_info)
9498 Elf_Internal_Sym *isymbuf;
9499 isymbuf = retrieve_local_syms (abfd);
9500 offset = isymbuf[r_symndx].st_value;
9502 else
9504 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9505 struct elf_link_hash_entry *h =
9506 elf_sym_hashes (abfd)[indx];
9508 while (h->root.type == bfd_link_hash_indirect
9509 || h->root.type == bfd_link_hash_warning)
9510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9511 if (h->root.type == bfd_link_hash_defined
9512 || h->root.type == bfd_link_hash_defweak)
9513 offset = h->root.u.def.value;
9515 return offset;
9519 static bfd_boolean
9520 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9522 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9523 struct elf_link_hash_entry *h;
9525 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9526 if (h && h->root.type == bfd_link_hash_defweak)
9527 return TRUE;
9528 return FALSE;
9532 static bfd_boolean
9533 pcrel_reloc_fits (xtensa_opcode opc,
9534 int opnd,
9535 bfd_vma self_address,
9536 bfd_vma dest_address)
9538 xtensa_isa isa = xtensa_default_isa;
9539 uint32 valp = dest_address;
9540 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9541 || xtensa_operand_encode (isa, opc, opnd, &valp))
9542 return FALSE;
9543 return TRUE;
9547 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9548 static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9549 static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
9550 static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
9553 static bfd_boolean
9554 xtensa_is_property_section (asection *sec)
9556 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
9557 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9558 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
9559 return TRUE;
9561 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9562 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9563 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9564 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
9565 return TRUE;
9567 return FALSE;
9571 static bfd_boolean
9572 xtensa_is_littable_section (asection *sec)
9574 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9575 return TRUE;
9577 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9578 && sec->name[linkonce_len] == 'p'
9579 && sec->name[linkonce_len + 1] == '.')
9580 return TRUE;
9582 return FALSE;
9586 static int
9587 internal_reloc_compare (const void *ap, const void *bp)
9589 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9590 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9592 if (a->r_offset != b->r_offset)
9593 return (a->r_offset - b->r_offset);
9595 /* We don't need to sort on these criteria for correctness,
9596 but enforcing a more strict ordering prevents unstable qsort
9597 from behaving differently with different implementations.
9598 Without the code below we get correct but different results
9599 on Solaris 2.7 and 2.8. We would like to always produce the
9600 same results no matter the host. */
9602 if (a->r_info != b->r_info)
9603 return (a->r_info - b->r_info);
9605 return (a->r_addend - b->r_addend);
9609 static int
9610 internal_reloc_matches (const void *ap, const void *bp)
9612 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9613 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9615 /* Check if one entry overlaps with the other; this shouldn't happen
9616 except when searching for a match. */
9617 return (a->r_offset - b->r_offset);
9621 char *
9622 xtensa_get_property_section_name (asection *sec, const char *base_name)
9624 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9626 char *prop_sec_name;
9627 const char *suffix;
9628 char *linkonce_kind = 0;
9630 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9631 linkonce_kind = "x.";
9632 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9633 linkonce_kind = "p.";
9634 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9635 linkonce_kind = "prop.";
9636 else
9637 abort ();
9639 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9640 + strlen (linkonce_kind) + 1);
9641 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9642 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9644 suffix = sec->name + linkonce_len;
9645 /* For backward compatibility, replace "t." instead of inserting
9646 the new linkonce_kind (but not for "prop" sections). */
9647 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9648 suffix += 2;
9649 strcat (prop_sec_name + linkonce_len, suffix);
9651 return prop_sec_name;
9654 return strdup (base_name);
9658 flagword
9659 xtensa_get_property_predef_flags (asection *sec)
9661 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9662 || strncmp (sec->name, ".gnu.linkonce.x.",
9663 sizeof ".gnu.linkonce.x." - 1) == 0)
9664 return (XTENSA_PROP_INSN
9665 | XTENSA_PROP_INSN_NO_TRANSFORM
9666 | XTENSA_PROP_INSN_NO_REORDER);
9668 if (xtensa_is_littable_section (sec))
9669 return (XTENSA_PROP_LITERAL
9670 | XTENSA_PROP_INSN_NO_TRANSFORM
9671 | XTENSA_PROP_INSN_NO_REORDER);
9673 return 0;
9677 /* Other functions called directly by the linker. */
9679 bfd_boolean
9680 xtensa_callback_required_dependence (bfd *abfd,
9681 asection *sec,
9682 struct bfd_link_info *link_info,
9683 deps_callback_t callback,
9684 void *closure)
9686 Elf_Internal_Rela *internal_relocs;
9687 bfd_byte *contents;
9688 unsigned i;
9689 bfd_boolean ok = TRUE;
9690 bfd_size_type sec_size;
9692 sec_size = bfd_get_section_limit (abfd, sec);
9694 /* ".plt*" sections have no explicit relocations but they contain L32R
9695 instructions that reference the corresponding ".got.plt*" sections. */
9696 if ((sec->flags & SEC_LINKER_CREATED) != 0
9697 && strncmp (sec->name, ".plt", 4) == 0)
9699 asection *sgotplt;
9701 /* Find the corresponding ".got.plt*" section. */
9702 if (sec->name[4] == '\0')
9703 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9704 else
9706 char got_name[14];
9707 int chunk = 0;
9709 BFD_ASSERT (sec->name[4] == '.');
9710 chunk = strtol (&sec->name[5], NULL, 10);
9712 sprintf (got_name, ".got.plt.%u", chunk);
9713 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9715 BFD_ASSERT (sgotplt);
9717 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9718 section referencing a literal at the very beginning of
9719 ".got.plt". This is very close to the real dependence, anyway. */
9720 (*callback) (sec, sec_size, sgotplt, 0, closure);
9723 internal_relocs = retrieve_internal_relocs (abfd, sec,
9724 link_info->keep_memory);
9725 if (internal_relocs == NULL
9726 || sec->reloc_count == 0)
9727 return ok;
9729 /* Cache the contents for the duration of this scan. */
9730 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9731 if (contents == NULL && sec_size != 0)
9733 ok = FALSE;
9734 goto error_return;
9737 if (!xtensa_default_isa)
9738 xtensa_default_isa = xtensa_isa_init (0, 0);
9740 for (i = 0; i < sec->reloc_count; i++)
9742 Elf_Internal_Rela *irel = &internal_relocs[i];
9743 if (is_l32r_relocation (abfd, sec, contents, irel))
9745 r_reloc l32r_rel;
9746 asection *target_sec;
9747 bfd_vma target_offset;
9749 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9750 target_sec = NULL;
9751 target_offset = 0;
9752 /* L32Rs must be local to the input file. */
9753 if (r_reloc_is_defined (&l32r_rel))
9755 target_sec = r_reloc_get_section (&l32r_rel);
9756 target_offset = l32r_rel.target_offset;
9758 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9759 closure);
9763 error_return:
9764 release_internal_relocs (sec, internal_relocs);
9765 release_contents (sec, contents);
9766 return ok;
9769 /* The default literal sections should always be marked as "code" (i.e.,
9770 SHF_EXECINSTR). This is particularly important for the Linux kernel
9771 module loader so that the literals are not placed after the text. */
9772 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9774 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9775 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9776 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9777 { NULL, 0, 0, 0, 0 }
9780 #ifndef ELF_ARCH
9781 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9782 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9783 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9784 #define TARGET_BIG_NAME "elf32-xtensa-be"
9785 #define ELF_ARCH bfd_arch_xtensa
9787 #define ELF_MACHINE_CODE EM_XTENSA
9788 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9790 #if XCHAL_HAVE_MMU
9791 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9792 #else /* !XCHAL_HAVE_MMU */
9793 #define ELF_MAXPAGESIZE 1
9794 #endif /* !XCHAL_HAVE_MMU */
9795 #endif /* ELF_ARCH */
9797 #define elf_backend_can_gc_sections 1
9798 #define elf_backend_can_refcount 1
9799 #define elf_backend_plt_readonly 1
9800 #define elf_backend_got_header_size 4
9801 #define elf_backend_want_dynbss 0
9802 #define elf_backend_want_got_plt 1
9804 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9806 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9807 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9808 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9809 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9810 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9811 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9813 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9814 #define elf_backend_check_relocs elf_xtensa_check_relocs
9815 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9816 #define elf_backend_discard_info elf_xtensa_discard_info
9817 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9818 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9819 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9820 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9821 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9822 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9823 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9824 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9825 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9826 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9827 #define elf_backend_object_p elf_xtensa_object_p
9828 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9829 #define elf_backend_relocate_section elf_xtensa_relocate_section
9830 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9831 #define elf_backend_special_sections elf_xtensa_special_sections
9833 #include "elf32-target.h"