1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static struct elf_backend_data elf32_arm_vxworks_bed
;
66 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
67 struct bfd_link_info
*link_info
,
71 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 static reloc_howto_type elf32_arm_howto_table_1
[] =
78 HOWTO (R_ARM_NONE
, /* type */
80 0, /* size (0 = byte, 1 = short, 2 = long) */
82 FALSE
, /* pc_relative */
84 complain_overflow_dont
,/* complain_on_overflow */
85 bfd_elf_generic_reloc
, /* special_function */
86 "R_ARM_NONE", /* name */
87 FALSE
, /* partial_inplace */
90 FALSE
), /* pcrel_offset */
92 HOWTO (R_ARM_PC24
, /* type */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
96 TRUE
, /* pc_relative */
98 complain_overflow_signed
,/* complain_on_overflow */
99 bfd_elf_generic_reloc
, /* special_function */
100 "R_ARM_PC24", /* name */
101 FALSE
, /* partial_inplace */
102 0x00ffffff, /* src_mask */
103 0x00ffffff, /* dst_mask */
104 TRUE
), /* pcrel_offset */
106 /* 32 bit absolute */
107 HOWTO (R_ARM_ABS32
, /* type */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
111 FALSE
, /* pc_relative */
113 complain_overflow_bitfield
,/* complain_on_overflow */
114 bfd_elf_generic_reloc
, /* special_function */
115 "R_ARM_ABS32", /* name */
116 FALSE
, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE
), /* pcrel_offset */
121 /* standard 32bit pc-relative reloc */
122 HOWTO (R_ARM_REL32
, /* type */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
126 TRUE
, /* pc_relative */
128 complain_overflow_bitfield
,/* complain_on_overflow */
129 bfd_elf_generic_reloc
, /* special_function */
130 "R_ARM_REL32", /* name */
131 FALSE
, /* partial_inplace */
132 0xffffffff, /* src_mask */
133 0xffffffff, /* dst_mask */
134 TRUE
), /* pcrel_offset */
136 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
137 HOWTO (R_ARM_LDR_PC_G0
, /* type */
139 0, /* size (0 = byte, 1 = short, 2 = long) */
141 TRUE
, /* pc_relative */
143 complain_overflow_dont
,/* complain_on_overflow */
144 bfd_elf_generic_reloc
, /* special_function */
145 "R_ARM_LDR_PC_G0", /* name */
146 FALSE
, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 TRUE
), /* pcrel_offset */
151 /* 16 bit absolute */
152 HOWTO (R_ARM_ABS16
, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 FALSE
, /* pc_relative */
158 complain_overflow_bitfield
,/* complain_on_overflow */
159 bfd_elf_generic_reloc
, /* special_function */
160 "R_ARM_ABS16", /* name */
161 FALSE
, /* partial_inplace */
162 0x0000ffff, /* src_mask */
163 0x0000ffff, /* dst_mask */
164 FALSE
), /* pcrel_offset */
166 /* 12 bit absolute */
167 HOWTO (R_ARM_ABS12
, /* type */
169 2, /* size (0 = byte, 1 = short, 2 = long) */
171 FALSE
, /* pc_relative */
173 complain_overflow_bitfield
,/* complain_on_overflow */
174 bfd_elf_generic_reloc
, /* special_function */
175 "R_ARM_ABS12", /* name */
176 FALSE
, /* partial_inplace */
177 0x00000fff, /* src_mask */
178 0x00000fff, /* dst_mask */
179 FALSE
), /* pcrel_offset */
181 HOWTO (R_ARM_THM_ABS5
, /* type */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
185 FALSE
, /* pc_relative */
187 complain_overflow_bitfield
,/* complain_on_overflow */
188 bfd_elf_generic_reloc
, /* special_function */
189 "R_ARM_THM_ABS5", /* name */
190 FALSE
, /* partial_inplace */
191 0x000007e0, /* src_mask */
192 0x000007e0, /* dst_mask */
193 FALSE
), /* pcrel_offset */
196 HOWTO (R_ARM_ABS8
, /* type */
198 0, /* size (0 = byte, 1 = short, 2 = long) */
200 FALSE
, /* pc_relative */
202 complain_overflow_bitfield
,/* complain_on_overflow */
203 bfd_elf_generic_reloc
, /* special_function */
204 "R_ARM_ABS8", /* name */
205 FALSE
, /* partial_inplace */
206 0x000000ff, /* src_mask */
207 0x000000ff, /* dst_mask */
208 FALSE
), /* pcrel_offset */
210 HOWTO (R_ARM_SBREL32
, /* type */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
214 FALSE
, /* pc_relative */
216 complain_overflow_dont
,/* complain_on_overflow */
217 bfd_elf_generic_reloc
, /* special_function */
218 "R_ARM_SBREL32", /* name */
219 FALSE
, /* partial_inplace */
220 0xffffffff, /* src_mask */
221 0xffffffff, /* dst_mask */
222 FALSE
), /* pcrel_offset */
224 HOWTO (R_ARM_THM_CALL
, /* type */
226 2, /* size (0 = byte, 1 = short, 2 = long) */
228 TRUE
, /* pc_relative */
230 complain_overflow_signed
,/* complain_on_overflow */
231 bfd_elf_generic_reloc
, /* special_function */
232 "R_ARM_THM_CALL", /* name */
233 FALSE
, /* partial_inplace */
234 0x07ff07ff, /* src_mask */
235 0x07ff07ff, /* dst_mask */
236 TRUE
), /* pcrel_offset */
238 HOWTO (R_ARM_THM_PC8
, /* type */
240 1, /* size (0 = byte, 1 = short, 2 = long) */
242 TRUE
, /* pc_relative */
244 complain_overflow_signed
,/* complain_on_overflow */
245 bfd_elf_generic_reloc
, /* special_function */
246 "R_ARM_THM_PC8", /* name */
247 FALSE
, /* partial_inplace */
248 0x000000ff, /* src_mask */
249 0x000000ff, /* dst_mask */
250 TRUE
), /* pcrel_offset */
252 HOWTO (R_ARM_BREL_ADJ
, /* type */
254 1, /* size (0 = byte, 1 = short, 2 = long) */
256 FALSE
, /* pc_relative */
258 complain_overflow_signed
,/* complain_on_overflow */
259 bfd_elf_generic_reloc
, /* special_function */
260 "R_ARM_BREL_ADJ", /* name */
261 FALSE
, /* partial_inplace */
262 0xffffffff, /* src_mask */
263 0xffffffff, /* dst_mask */
264 FALSE
), /* pcrel_offset */
266 HOWTO (R_ARM_SWI24
, /* type */
268 0, /* size (0 = byte, 1 = short, 2 = long) */
270 FALSE
, /* pc_relative */
272 complain_overflow_signed
,/* complain_on_overflow */
273 bfd_elf_generic_reloc
, /* special_function */
274 "R_ARM_SWI24", /* name */
275 FALSE
, /* partial_inplace */
276 0x00000000, /* src_mask */
277 0x00000000, /* dst_mask */
278 FALSE
), /* pcrel_offset */
280 HOWTO (R_ARM_THM_SWI8
, /* type */
282 0, /* size (0 = byte, 1 = short, 2 = long) */
284 FALSE
, /* pc_relative */
286 complain_overflow_signed
,/* complain_on_overflow */
287 bfd_elf_generic_reloc
, /* special_function */
288 "R_ARM_SWI8", /* name */
289 FALSE
, /* partial_inplace */
290 0x00000000, /* src_mask */
291 0x00000000, /* dst_mask */
292 FALSE
), /* pcrel_offset */
294 /* BLX instruction for the ARM. */
295 HOWTO (R_ARM_XPC25
, /* type */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
299 TRUE
, /* pc_relative */
301 complain_overflow_signed
,/* complain_on_overflow */
302 bfd_elf_generic_reloc
, /* special_function */
303 "R_ARM_XPC25", /* name */
304 FALSE
, /* partial_inplace */
305 0x00ffffff, /* src_mask */
306 0x00ffffff, /* dst_mask */
307 TRUE
), /* pcrel_offset */
309 /* BLX instruction for the Thumb. */
310 HOWTO (R_ARM_THM_XPC22
, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 TRUE
, /* pc_relative */
316 complain_overflow_signed
,/* complain_on_overflow */
317 bfd_elf_generic_reloc
, /* special_function */
318 "R_ARM_THM_XPC22", /* name */
319 FALSE
, /* partial_inplace */
320 0x07ff07ff, /* src_mask */
321 0x07ff07ff, /* dst_mask */
322 TRUE
), /* pcrel_offset */
324 /* Dynamic TLS relocations. */
326 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
330 FALSE
, /* pc_relative */
332 complain_overflow_bitfield
,/* complain_on_overflow */
333 bfd_elf_generic_reloc
, /* special_function */
334 "R_ARM_TLS_DTPMOD32", /* name */
335 TRUE
, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 FALSE
), /* pcrel_offset */
340 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
344 FALSE
, /* pc_relative */
346 complain_overflow_bitfield
,/* complain_on_overflow */
347 bfd_elf_generic_reloc
, /* special_function */
348 "R_ARM_TLS_DTPOFF32", /* name */
349 TRUE
, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 FALSE
), /* pcrel_offset */
354 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
356 2, /* size (0 = byte, 1 = short, 2 = long) */
358 FALSE
, /* pc_relative */
360 complain_overflow_bitfield
,/* complain_on_overflow */
361 bfd_elf_generic_reloc
, /* special_function */
362 "R_ARM_TLS_TPOFF32", /* name */
363 TRUE
, /* partial_inplace */
364 0xffffffff, /* src_mask */
365 0xffffffff, /* dst_mask */
366 FALSE
), /* pcrel_offset */
368 /* Relocs used in ARM Linux */
370 HOWTO (R_ARM_COPY
, /* type */
372 2, /* size (0 = byte, 1 = short, 2 = long) */
374 FALSE
, /* pc_relative */
376 complain_overflow_bitfield
,/* complain_on_overflow */
377 bfd_elf_generic_reloc
, /* special_function */
378 "R_ARM_COPY", /* name */
379 TRUE
, /* partial_inplace */
380 0xffffffff, /* src_mask */
381 0xffffffff, /* dst_mask */
382 FALSE
), /* pcrel_offset */
384 HOWTO (R_ARM_GLOB_DAT
, /* type */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
388 FALSE
, /* pc_relative */
390 complain_overflow_bitfield
,/* complain_on_overflow */
391 bfd_elf_generic_reloc
, /* special_function */
392 "R_ARM_GLOB_DAT", /* name */
393 TRUE
, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 FALSE
), /* pcrel_offset */
398 HOWTO (R_ARM_JUMP_SLOT
, /* type */
400 2, /* size (0 = byte, 1 = short, 2 = long) */
402 FALSE
, /* pc_relative */
404 complain_overflow_bitfield
,/* complain_on_overflow */
405 bfd_elf_generic_reloc
, /* special_function */
406 "R_ARM_JUMP_SLOT", /* name */
407 TRUE
, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 FALSE
), /* pcrel_offset */
412 HOWTO (R_ARM_RELATIVE
, /* type */
414 2, /* size (0 = byte, 1 = short, 2 = long) */
416 FALSE
, /* pc_relative */
418 complain_overflow_bitfield
,/* complain_on_overflow */
419 bfd_elf_generic_reloc
, /* special_function */
420 "R_ARM_RELATIVE", /* name */
421 TRUE
, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 FALSE
), /* pcrel_offset */
426 HOWTO (R_ARM_GOTOFF32
, /* type */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
430 FALSE
, /* pc_relative */
432 complain_overflow_bitfield
,/* complain_on_overflow */
433 bfd_elf_generic_reloc
, /* special_function */
434 "R_ARM_GOTOFF32", /* name */
435 TRUE
, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 FALSE
), /* pcrel_offset */
440 HOWTO (R_ARM_GOTPC
, /* type */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
444 TRUE
, /* pc_relative */
446 complain_overflow_bitfield
,/* complain_on_overflow */
447 bfd_elf_generic_reloc
, /* special_function */
448 "R_ARM_GOTPC", /* name */
449 TRUE
, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 TRUE
), /* pcrel_offset */
454 HOWTO (R_ARM_GOT32
, /* type */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
458 FALSE
, /* pc_relative */
460 complain_overflow_bitfield
,/* complain_on_overflow */
461 bfd_elf_generic_reloc
, /* special_function */
462 "R_ARM_GOT32", /* name */
463 TRUE
, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 FALSE
), /* pcrel_offset */
468 HOWTO (R_ARM_PLT32
, /* type */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
472 TRUE
, /* pc_relative */
474 complain_overflow_bitfield
,/* complain_on_overflow */
475 bfd_elf_generic_reloc
, /* special_function */
476 "R_ARM_PLT32", /* name */
477 FALSE
, /* partial_inplace */
478 0x00ffffff, /* src_mask */
479 0x00ffffff, /* dst_mask */
480 TRUE
), /* pcrel_offset */
482 HOWTO (R_ARM_CALL
, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 TRUE
, /* pc_relative */
488 complain_overflow_signed
,/* complain_on_overflow */
489 bfd_elf_generic_reloc
, /* special_function */
490 "R_ARM_CALL", /* name */
491 FALSE
, /* partial_inplace */
492 0x00ffffff, /* src_mask */
493 0x00ffffff, /* dst_mask */
494 TRUE
), /* pcrel_offset */
496 HOWTO (R_ARM_JUMP24
, /* type */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
500 TRUE
, /* pc_relative */
502 complain_overflow_signed
,/* complain_on_overflow */
503 bfd_elf_generic_reloc
, /* special_function */
504 "R_ARM_JUMP24", /* name */
505 FALSE
, /* partial_inplace */
506 0x00ffffff, /* src_mask */
507 0x00ffffff, /* dst_mask */
508 TRUE
), /* pcrel_offset */
510 HOWTO (R_ARM_THM_JUMP24
, /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 TRUE
, /* pc_relative */
516 complain_overflow_signed
,/* complain_on_overflow */
517 bfd_elf_generic_reloc
, /* special_function */
518 "R_ARM_THM_JUMP24", /* name */
519 FALSE
, /* partial_inplace */
520 0x07ff2fff, /* src_mask */
521 0x07ff2fff, /* dst_mask */
522 TRUE
), /* pcrel_offset */
524 HOWTO (R_ARM_BASE_ABS
, /* type */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE
, /* pc_relative */
530 complain_overflow_dont
,/* complain_on_overflow */
531 bfd_elf_generic_reloc
, /* special_function */
532 "R_ARM_BASE_ABS", /* name */
533 FALSE
, /* partial_inplace */
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
536 FALSE
), /* pcrel_offset */
538 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
542 TRUE
, /* pc_relative */
544 complain_overflow_dont
,/* complain_on_overflow */
545 bfd_elf_generic_reloc
, /* special_function */
546 "R_ARM_ALU_PCREL_7_0", /* name */
547 FALSE
, /* partial_inplace */
548 0x00000fff, /* src_mask */
549 0x00000fff, /* dst_mask */
550 TRUE
), /* pcrel_offset */
552 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
556 TRUE
, /* pc_relative */
558 complain_overflow_dont
,/* complain_on_overflow */
559 bfd_elf_generic_reloc
, /* special_function */
560 "R_ARM_ALU_PCREL_15_8",/* name */
561 FALSE
, /* partial_inplace */
562 0x00000fff, /* src_mask */
563 0x00000fff, /* dst_mask */
564 TRUE
), /* pcrel_offset */
566 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
570 TRUE
, /* pc_relative */
572 complain_overflow_dont
,/* complain_on_overflow */
573 bfd_elf_generic_reloc
, /* special_function */
574 "R_ARM_ALU_PCREL_23_15",/* name */
575 FALSE
, /* partial_inplace */
576 0x00000fff, /* src_mask */
577 0x00000fff, /* dst_mask */
578 TRUE
), /* pcrel_offset */
580 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
584 FALSE
, /* pc_relative */
586 complain_overflow_dont
,/* complain_on_overflow */
587 bfd_elf_generic_reloc
, /* special_function */
588 "R_ARM_LDR_SBREL_11_0",/* name */
589 FALSE
, /* partial_inplace */
590 0x00000fff, /* src_mask */
591 0x00000fff, /* dst_mask */
592 FALSE
), /* pcrel_offset */
594 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
598 FALSE
, /* pc_relative */
600 complain_overflow_dont
,/* complain_on_overflow */
601 bfd_elf_generic_reloc
, /* special_function */
602 "R_ARM_ALU_SBREL_19_12",/* name */
603 FALSE
, /* partial_inplace */
604 0x000ff000, /* src_mask */
605 0x000ff000, /* dst_mask */
606 FALSE
), /* pcrel_offset */
608 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
612 FALSE
, /* pc_relative */
614 complain_overflow_dont
,/* complain_on_overflow */
615 bfd_elf_generic_reloc
, /* special_function */
616 "R_ARM_ALU_SBREL_27_20",/* name */
617 FALSE
, /* partial_inplace */
618 0x0ff00000, /* src_mask */
619 0x0ff00000, /* dst_mask */
620 FALSE
), /* pcrel_offset */
622 HOWTO (R_ARM_TARGET1
, /* type */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
626 FALSE
, /* pc_relative */
628 complain_overflow_dont
,/* complain_on_overflow */
629 bfd_elf_generic_reloc
, /* special_function */
630 "R_ARM_TARGET1", /* name */
631 FALSE
, /* partial_inplace */
632 0xffffffff, /* src_mask */
633 0xffffffff, /* dst_mask */
634 FALSE
), /* pcrel_offset */
636 HOWTO (R_ARM_ROSEGREL32
, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 FALSE
, /* pc_relative */
642 complain_overflow_dont
,/* complain_on_overflow */
643 bfd_elf_generic_reloc
, /* special_function */
644 "R_ARM_ROSEGREL32", /* name */
645 FALSE
, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 FALSE
), /* pcrel_offset */
650 HOWTO (R_ARM_V4BX
, /* type */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
654 FALSE
, /* pc_relative */
656 complain_overflow_dont
,/* complain_on_overflow */
657 bfd_elf_generic_reloc
, /* special_function */
658 "R_ARM_V4BX", /* name */
659 FALSE
, /* partial_inplace */
660 0xffffffff, /* src_mask */
661 0xffffffff, /* dst_mask */
662 FALSE
), /* pcrel_offset */
664 HOWTO (R_ARM_TARGET2
, /* type */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
668 FALSE
, /* pc_relative */
670 complain_overflow_signed
,/* complain_on_overflow */
671 bfd_elf_generic_reloc
, /* special_function */
672 "R_ARM_TARGET2", /* name */
673 FALSE
, /* partial_inplace */
674 0xffffffff, /* src_mask */
675 0xffffffff, /* dst_mask */
676 TRUE
), /* pcrel_offset */
678 HOWTO (R_ARM_PREL31
, /* type */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
682 TRUE
, /* pc_relative */
684 complain_overflow_signed
,/* complain_on_overflow */
685 bfd_elf_generic_reloc
, /* special_function */
686 "R_ARM_PREL31", /* name */
687 FALSE
, /* partial_inplace */
688 0x7fffffff, /* src_mask */
689 0x7fffffff, /* dst_mask */
690 TRUE
), /* pcrel_offset */
692 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
696 FALSE
, /* pc_relative */
698 complain_overflow_dont
,/* complain_on_overflow */
699 bfd_elf_generic_reloc
, /* special_function */
700 "R_ARM_MOVW_ABS_NC", /* name */
701 FALSE
, /* partial_inplace */
702 0x000f0fff, /* src_mask */
703 0x000f0fff, /* dst_mask */
704 FALSE
), /* pcrel_offset */
706 HOWTO (R_ARM_MOVT_ABS
, /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 FALSE
, /* pc_relative */
712 complain_overflow_bitfield
,/* complain_on_overflow */
713 bfd_elf_generic_reloc
, /* special_function */
714 "R_ARM_MOVT_ABS", /* name */
715 FALSE
, /* partial_inplace */
716 0x000f0fff, /* src_mask */
717 0x000f0fff, /* dst_mask */
718 FALSE
), /* pcrel_offset */
720 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
724 TRUE
, /* pc_relative */
726 complain_overflow_dont
,/* complain_on_overflow */
727 bfd_elf_generic_reloc
, /* special_function */
728 "R_ARM_MOVW_PREL_NC", /* name */
729 FALSE
, /* partial_inplace */
730 0x000f0fff, /* src_mask */
731 0x000f0fff, /* dst_mask */
732 TRUE
), /* pcrel_offset */
734 HOWTO (R_ARM_MOVT_PREL
, /* type */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
738 TRUE
, /* pc_relative */
740 complain_overflow_bitfield
,/* complain_on_overflow */
741 bfd_elf_generic_reloc
, /* special_function */
742 "R_ARM_MOVT_PREL", /* name */
743 FALSE
, /* partial_inplace */
744 0x000f0fff, /* src_mask */
745 0x000f0fff, /* dst_mask */
746 TRUE
), /* pcrel_offset */
748 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
752 FALSE
, /* pc_relative */
754 complain_overflow_dont
,/* complain_on_overflow */
755 bfd_elf_generic_reloc
, /* special_function */
756 "R_ARM_THM_MOVW_ABS_NC",/* name */
757 FALSE
, /* partial_inplace */
758 0x040f70ff, /* src_mask */
759 0x040f70ff, /* dst_mask */
760 FALSE
), /* pcrel_offset */
762 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
766 FALSE
, /* pc_relative */
768 complain_overflow_bitfield
,/* complain_on_overflow */
769 bfd_elf_generic_reloc
, /* special_function */
770 "R_ARM_THM_MOVT_ABS", /* name */
771 FALSE
, /* partial_inplace */
772 0x040f70ff, /* src_mask */
773 0x040f70ff, /* dst_mask */
774 FALSE
), /* pcrel_offset */
776 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 TRUE
, /* pc_relative */
782 complain_overflow_dont
,/* complain_on_overflow */
783 bfd_elf_generic_reloc
, /* special_function */
784 "R_ARM_THM_MOVW_PREL_NC",/* name */
785 FALSE
, /* partial_inplace */
786 0x040f70ff, /* src_mask */
787 0x040f70ff, /* dst_mask */
788 TRUE
), /* pcrel_offset */
790 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
794 TRUE
, /* pc_relative */
796 complain_overflow_bitfield
,/* complain_on_overflow */
797 bfd_elf_generic_reloc
, /* special_function */
798 "R_ARM_THM_MOVT_PREL", /* name */
799 FALSE
, /* partial_inplace */
800 0x040f70ff, /* src_mask */
801 0x040f70ff, /* dst_mask */
802 TRUE
), /* pcrel_offset */
804 HOWTO (R_ARM_THM_JUMP19
, /* type */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
808 TRUE
, /* pc_relative */
810 complain_overflow_signed
,/* complain_on_overflow */
811 bfd_elf_generic_reloc
, /* special_function */
812 "R_ARM_THM_JUMP19", /* name */
813 FALSE
, /* partial_inplace */
814 0x043f2fff, /* src_mask */
815 0x043f2fff, /* dst_mask */
816 TRUE
), /* pcrel_offset */
818 HOWTO (R_ARM_THM_JUMP6
, /* type */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
822 TRUE
, /* pc_relative */
824 complain_overflow_unsigned
,/* complain_on_overflow */
825 bfd_elf_generic_reloc
, /* special_function */
826 "R_ARM_THM_JUMP6", /* name */
827 FALSE
, /* partial_inplace */
828 0x02f8, /* src_mask */
829 0x02f8, /* dst_mask */
830 TRUE
), /* pcrel_offset */
832 /* These are declared as 13-bit signed relocations because we can
833 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
837 2, /* size (0 = byte, 1 = short, 2 = long) */
839 TRUE
, /* pc_relative */
841 complain_overflow_dont
,/* complain_on_overflow */
842 bfd_elf_generic_reloc
, /* special_function */
843 "R_ARM_THM_ALU_PREL_11_0",/* name */
844 FALSE
, /* partial_inplace */
845 0xffffffff, /* src_mask */
846 0xffffffff, /* dst_mask */
847 TRUE
), /* pcrel_offset */
849 HOWTO (R_ARM_THM_PC12
, /* type */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
853 TRUE
, /* pc_relative */
855 complain_overflow_dont
,/* complain_on_overflow */
856 bfd_elf_generic_reloc
, /* special_function */
857 "R_ARM_THM_PC12", /* name */
858 FALSE
, /* partial_inplace */
859 0xffffffff, /* src_mask */
860 0xffffffff, /* dst_mask */
861 TRUE
), /* pcrel_offset */
863 HOWTO (R_ARM_ABS32_NOI
, /* type */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
867 FALSE
, /* pc_relative */
869 complain_overflow_dont
,/* complain_on_overflow */
870 bfd_elf_generic_reloc
, /* special_function */
871 "R_ARM_ABS32_NOI", /* name */
872 FALSE
, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 FALSE
), /* pcrel_offset */
877 HOWTO (R_ARM_REL32_NOI
, /* type */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
881 TRUE
, /* pc_relative */
883 complain_overflow_dont
,/* complain_on_overflow */
884 bfd_elf_generic_reloc
, /* special_function */
885 "R_ARM_REL32_NOI", /* name */
886 FALSE
, /* partial_inplace */
887 0xffffffff, /* src_mask */
888 0xffffffff, /* dst_mask */
889 FALSE
), /* pcrel_offset */
891 /* Group relocations. */
893 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
897 TRUE
, /* pc_relative */
899 complain_overflow_dont
,/* complain_on_overflow */
900 bfd_elf_generic_reloc
, /* special_function */
901 "R_ARM_ALU_PC_G0_NC", /* name */
902 FALSE
, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 TRUE
), /* pcrel_offset */
907 HOWTO (R_ARM_ALU_PC_G0
, /* type */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
911 TRUE
, /* pc_relative */
913 complain_overflow_dont
,/* complain_on_overflow */
914 bfd_elf_generic_reloc
, /* special_function */
915 "R_ARM_ALU_PC_G0", /* name */
916 FALSE
, /* partial_inplace */
917 0xffffffff, /* src_mask */
918 0xffffffff, /* dst_mask */
919 TRUE
), /* pcrel_offset */
921 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
925 TRUE
, /* pc_relative */
927 complain_overflow_dont
,/* complain_on_overflow */
928 bfd_elf_generic_reloc
, /* special_function */
929 "R_ARM_ALU_PC_G1_NC", /* name */
930 FALSE
, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 TRUE
), /* pcrel_offset */
935 HOWTO (R_ARM_ALU_PC_G1
, /* type */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
939 TRUE
, /* pc_relative */
941 complain_overflow_dont
,/* complain_on_overflow */
942 bfd_elf_generic_reloc
, /* special_function */
943 "R_ARM_ALU_PC_G1", /* name */
944 FALSE
, /* partial_inplace */
945 0xffffffff, /* src_mask */
946 0xffffffff, /* dst_mask */
947 TRUE
), /* pcrel_offset */
949 HOWTO (R_ARM_ALU_PC_G2
, /* type */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
953 TRUE
, /* pc_relative */
955 complain_overflow_dont
,/* complain_on_overflow */
956 bfd_elf_generic_reloc
, /* special_function */
957 "R_ARM_ALU_PC_G2", /* name */
958 FALSE
, /* partial_inplace */
959 0xffffffff, /* src_mask */
960 0xffffffff, /* dst_mask */
961 TRUE
), /* pcrel_offset */
963 HOWTO (R_ARM_LDR_PC_G1
, /* type */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
967 TRUE
, /* pc_relative */
969 complain_overflow_dont
,/* complain_on_overflow */
970 bfd_elf_generic_reloc
, /* special_function */
971 "R_ARM_LDR_PC_G1", /* name */
972 FALSE
, /* partial_inplace */
973 0xffffffff, /* src_mask */
974 0xffffffff, /* dst_mask */
975 TRUE
), /* pcrel_offset */
977 HOWTO (R_ARM_LDR_PC_G2
, /* type */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
981 TRUE
, /* pc_relative */
983 complain_overflow_dont
,/* complain_on_overflow */
984 bfd_elf_generic_reloc
, /* special_function */
985 "R_ARM_LDR_PC_G2", /* name */
986 FALSE
, /* partial_inplace */
987 0xffffffff, /* src_mask */
988 0xffffffff, /* dst_mask */
989 TRUE
), /* pcrel_offset */
991 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
995 TRUE
, /* pc_relative */
997 complain_overflow_dont
,/* complain_on_overflow */
998 bfd_elf_generic_reloc
, /* special_function */
999 "R_ARM_LDRS_PC_G0", /* name */
1000 FALSE
, /* partial_inplace */
1001 0xffffffff, /* src_mask */
1002 0xffffffff, /* dst_mask */
1003 TRUE
), /* pcrel_offset */
1005 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 TRUE
, /* pc_relative */
1011 complain_overflow_dont
,/* complain_on_overflow */
1012 bfd_elf_generic_reloc
, /* special_function */
1013 "R_ARM_LDRS_PC_G1", /* name */
1014 FALSE
, /* partial_inplace */
1015 0xffffffff, /* src_mask */
1016 0xffffffff, /* dst_mask */
1017 TRUE
), /* pcrel_offset */
1019 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 TRUE
, /* pc_relative */
1025 complain_overflow_dont
,/* complain_on_overflow */
1026 bfd_elf_generic_reloc
, /* special_function */
1027 "R_ARM_LDRS_PC_G2", /* name */
1028 FALSE
, /* partial_inplace */
1029 0xffffffff, /* src_mask */
1030 0xffffffff, /* dst_mask */
1031 TRUE
), /* pcrel_offset */
1033 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1035 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 TRUE
, /* pc_relative */
1039 complain_overflow_dont
,/* complain_on_overflow */
1040 bfd_elf_generic_reloc
, /* special_function */
1041 "R_ARM_LDC_PC_G0", /* name */
1042 FALSE
, /* partial_inplace */
1043 0xffffffff, /* src_mask */
1044 0xffffffff, /* dst_mask */
1045 TRUE
), /* pcrel_offset */
1047 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 TRUE
, /* pc_relative */
1053 complain_overflow_dont
,/* complain_on_overflow */
1054 bfd_elf_generic_reloc
, /* special_function */
1055 "R_ARM_LDC_PC_G1", /* name */
1056 FALSE
, /* partial_inplace */
1057 0xffffffff, /* src_mask */
1058 0xffffffff, /* dst_mask */
1059 TRUE
), /* pcrel_offset */
1061 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 TRUE
, /* pc_relative */
1067 complain_overflow_dont
,/* complain_on_overflow */
1068 bfd_elf_generic_reloc
, /* special_function */
1069 "R_ARM_LDC_PC_G2", /* name */
1070 FALSE
, /* partial_inplace */
1071 0xffffffff, /* src_mask */
1072 0xffffffff, /* dst_mask */
1073 TRUE
), /* pcrel_offset */
1075 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 TRUE
, /* pc_relative */
1081 complain_overflow_dont
,/* complain_on_overflow */
1082 bfd_elf_generic_reloc
, /* special_function */
1083 "R_ARM_ALU_SB_G0_NC", /* name */
1084 FALSE
, /* partial_inplace */
1085 0xffffffff, /* src_mask */
1086 0xffffffff, /* dst_mask */
1087 TRUE
), /* pcrel_offset */
1089 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 TRUE
, /* pc_relative */
1095 complain_overflow_dont
,/* complain_on_overflow */
1096 bfd_elf_generic_reloc
, /* special_function */
1097 "R_ARM_ALU_SB_G0", /* name */
1098 FALSE
, /* partial_inplace */
1099 0xffffffff, /* src_mask */
1100 0xffffffff, /* dst_mask */
1101 TRUE
), /* pcrel_offset */
1103 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 TRUE
, /* pc_relative */
1109 complain_overflow_dont
,/* complain_on_overflow */
1110 bfd_elf_generic_reloc
, /* special_function */
1111 "R_ARM_ALU_SB_G1_NC", /* name */
1112 FALSE
, /* partial_inplace */
1113 0xffffffff, /* src_mask */
1114 0xffffffff, /* dst_mask */
1115 TRUE
), /* pcrel_offset */
1117 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 TRUE
, /* pc_relative */
1123 complain_overflow_dont
,/* complain_on_overflow */
1124 bfd_elf_generic_reloc
, /* special_function */
1125 "R_ARM_ALU_SB_G1", /* name */
1126 FALSE
, /* partial_inplace */
1127 0xffffffff, /* src_mask */
1128 0xffffffff, /* dst_mask */
1129 TRUE
), /* pcrel_offset */
1131 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 TRUE
, /* pc_relative */
1137 complain_overflow_dont
,/* complain_on_overflow */
1138 bfd_elf_generic_reloc
, /* special_function */
1139 "R_ARM_ALU_SB_G2", /* name */
1140 FALSE
, /* partial_inplace */
1141 0xffffffff, /* src_mask */
1142 0xffffffff, /* dst_mask */
1143 TRUE
), /* pcrel_offset */
1145 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1147 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 TRUE
, /* pc_relative */
1151 complain_overflow_dont
,/* complain_on_overflow */
1152 bfd_elf_generic_reloc
, /* special_function */
1153 "R_ARM_LDR_SB_G0", /* name */
1154 FALSE
, /* partial_inplace */
1155 0xffffffff, /* src_mask */
1156 0xffffffff, /* dst_mask */
1157 TRUE
), /* pcrel_offset */
1159 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1161 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 TRUE
, /* pc_relative */
1165 complain_overflow_dont
,/* complain_on_overflow */
1166 bfd_elf_generic_reloc
, /* special_function */
1167 "R_ARM_LDR_SB_G1", /* name */
1168 FALSE
, /* partial_inplace */
1169 0xffffffff, /* src_mask */
1170 0xffffffff, /* dst_mask */
1171 TRUE
), /* pcrel_offset */
1173 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1175 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 TRUE
, /* pc_relative */
1179 complain_overflow_dont
,/* complain_on_overflow */
1180 bfd_elf_generic_reloc
, /* special_function */
1181 "R_ARM_LDR_SB_G2", /* name */
1182 FALSE
, /* partial_inplace */
1183 0xffffffff, /* src_mask */
1184 0xffffffff, /* dst_mask */
1185 TRUE
), /* pcrel_offset */
1187 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 TRUE
, /* pc_relative */
1193 complain_overflow_dont
,/* complain_on_overflow */
1194 bfd_elf_generic_reloc
, /* special_function */
1195 "R_ARM_LDRS_SB_G0", /* name */
1196 FALSE
, /* partial_inplace */
1197 0xffffffff, /* src_mask */
1198 0xffffffff, /* dst_mask */
1199 TRUE
), /* pcrel_offset */
1201 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 TRUE
, /* pc_relative */
1207 complain_overflow_dont
,/* complain_on_overflow */
1208 bfd_elf_generic_reloc
, /* special_function */
1209 "R_ARM_LDRS_SB_G1", /* name */
1210 FALSE
, /* partial_inplace */
1211 0xffffffff, /* src_mask */
1212 0xffffffff, /* dst_mask */
1213 TRUE
), /* pcrel_offset */
1215 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1217 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 TRUE
, /* pc_relative */
1221 complain_overflow_dont
,/* complain_on_overflow */
1222 bfd_elf_generic_reloc
, /* special_function */
1223 "R_ARM_LDRS_SB_G2", /* name */
1224 FALSE
, /* partial_inplace */
1225 0xffffffff, /* src_mask */
1226 0xffffffff, /* dst_mask */
1227 TRUE
), /* pcrel_offset */
1229 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 TRUE
, /* pc_relative */
1235 complain_overflow_dont
,/* complain_on_overflow */
1236 bfd_elf_generic_reloc
, /* special_function */
1237 "R_ARM_LDC_SB_G0", /* name */
1238 FALSE
, /* partial_inplace */
1239 0xffffffff, /* src_mask */
1240 0xffffffff, /* dst_mask */
1241 TRUE
), /* pcrel_offset */
1243 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1245 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 TRUE
, /* pc_relative */
1249 complain_overflow_dont
,/* complain_on_overflow */
1250 bfd_elf_generic_reloc
, /* special_function */
1251 "R_ARM_LDC_SB_G1", /* name */
1252 FALSE
, /* partial_inplace */
1253 0xffffffff, /* src_mask */
1254 0xffffffff, /* dst_mask */
1255 TRUE
), /* pcrel_offset */
1257 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 TRUE
, /* pc_relative */
1263 complain_overflow_dont
,/* complain_on_overflow */
1264 bfd_elf_generic_reloc
, /* special_function */
1265 "R_ARM_LDC_SB_G2", /* name */
1266 FALSE
, /* partial_inplace */
1267 0xffffffff, /* src_mask */
1268 0xffffffff, /* dst_mask */
1269 TRUE
), /* pcrel_offset */
1271 /* End of group relocations. */
1273 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1275 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 FALSE
, /* pc_relative */
1279 complain_overflow_dont
,/* complain_on_overflow */
1280 bfd_elf_generic_reloc
, /* special_function */
1281 "R_ARM_MOVW_BREL_NC", /* name */
1282 FALSE
, /* partial_inplace */
1283 0x0000ffff, /* src_mask */
1284 0x0000ffff, /* dst_mask */
1285 FALSE
), /* pcrel_offset */
1287 HOWTO (R_ARM_MOVT_BREL
, /* type */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 FALSE
, /* pc_relative */
1293 complain_overflow_bitfield
,/* complain_on_overflow */
1294 bfd_elf_generic_reloc
, /* special_function */
1295 "R_ARM_MOVT_BREL", /* name */
1296 FALSE
, /* partial_inplace */
1297 0x0000ffff, /* src_mask */
1298 0x0000ffff, /* dst_mask */
1299 FALSE
), /* pcrel_offset */
1301 HOWTO (R_ARM_MOVW_BREL
, /* type */
1303 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 FALSE
, /* pc_relative */
1307 complain_overflow_dont
,/* complain_on_overflow */
1308 bfd_elf_generic_reloc
, /* special_function */
1309 "R_ARM_MOVW_BREL", /* name */
1310 FALSE
, /* partial_inplace */
1311 0x0000ffff, /* src_mask */
1312 0x0000ffff, /* dst_mask */
1313 FALSE
), /* pcrel_offset */
1315 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1317 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 FALSE
, /* pc_relative */
1321 complain_overflow_dont
,/* complain_on_overflow */
1322 bfd_elf_generic_reloc
, /* special_function */
1323 "R_ARM_THM_MOVW_BREL_NC",/* name */
1324 FALSE
, /* partial_inplace */
1325 0x040f70ff, /* src_mask */
1326 0x040f70ff, /* dst_mask */
1327 FALSE
), /* pcrel_offset */
1329 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 FALSE
, /* pc_relative */
1335 complain_overflow_bitfield
,/* complain_on_overflow */
1336 bfd_elf_generic_reloc
, /* special_function */
1337 "R_ARM_THM_MOVT_BREL", /* name */
1338 FALSE
, /* partial_inplace */
1339 0x040f70ff, /* src_mask */
1340 0x040f70ff, /* dst_mask */
1341 FALSE
), /* pcrel_offset */
1343 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 FALSE
, /* pc_relative */
1349 complain_overflow_dont
,/* complain_on_overflow */
1350 bfd_elf_generic_reloc
, /* special_function */
1351 "R_ARM_THM_MOVW_BREL", /* name */
1352 FALSE
, /* partial_inplace */
1353 0x040f70ff, /* src_mask */
1354 0x040f70ff, /* dst_mask */
1355 FALSE
), /* pcrel_offset */
1357 EMPTY_HOWTO (90), /* Unallocated. */
1362 HOWTO (R_ARM_PLT32_ABS
, /* type */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1366 FALSE
, /* pc_relative */
1368 complain_overflow_dont
,/* complain_on_overflow */
1369 bfd_elf_generic_reloc
, /* special_function */
1370 "R_ARM_PLT32_ABS", /* name */
1371 FALSE
, /* partial_inplace */
1372 0xffffffff, /* src_mask */
1373 0xffffffff, /* dst_mask */
1374 FALSE
), /* pcrel_offset */
1376 HOWTO (R_ARM_GOT_ABS
, /* type */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1380 FALSE
, /* pc_relative */
1382 complain_overflow_dont
,/* complain_on_overflow */
1383 bfd_elf_generic_reloc
, /* special_function */
1384 "R_ARM_GOT_ABS", /* name */
1385 FALSE
, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE
), /* pcrel_offset */
1390 HOWTO (R_ARM_GOT_PREL
, /* type */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1394 TRUE
, /* pc_relative */
1396 complain_overflow_dont
, /* complain_on_overflow */
1397 bfd_elf_generic_reloc
, /* special_function */
1398 "R_ARM_GOT_PREL", /* name */
1399 FALSE
, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 TRUE
), /* pcrel_offset */
1404 HOWTO (R_ARM_GOT_BREL12
, /* type */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1408 FALSE
, /* pc_relative */
1410 complain_overflow_bitfield
,/* complain_on_overflow */
1411 bfd_elf_generic_reloc
, /* special_function */
1412 "R_ARM_GOT_BREL12", /* name */
1413 FALSE
, /* partial_inplace */
1414 0x00000fff, /* src_mask */
1415 0x00000fff, /* dst_mask */
1416 FALSE
), /* pcrel_offset */
1418 HOWTO (R_ARM_GOTOFF12
, /* type */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1422 FALSE
, /* pc_relative */
1424 complain_overflow_bitfield
,/* complain_on_overflow */
1425 bfd_elf_generic_reloc
, /* special_function */
1426 "R_ARM_GOTOFF12", /* name */
1427 FALSE
, /* partial_inplace */
1428 0x00000fff, /* src_mask */
1429 0x00000fff, /* dst_mask */
1430 FALSE
), /* pcrel_offset */
1432 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1434 /* GNU extension to record C++ vtable member usage */
1435 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1437 2, /* size (0 = byte, 1 = short, 2 = long) */
1439 FALSE
, /* pc_relative */
1441 complain_overflow_dont
, /* complain_on_overflow */
1442 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1443 "R_ARM_GNU_VTENTRY", /* name */
1444 FALSE
, /* partial_inplace */
1447 FALSE
), /* pcrel_offset */
1449 /* GNU extension to record C++ vtable hierarchy */
1450 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1454 FALSE
, /* pc_relative */
1456 complain_overflow_dont
, /* complain_on_overflow */
1457 NULL
, /* special_function */
1458 "R_ARM_GNU_VTINHERIT", /* name */
1459 FALSE
, /* partial_inplace */
1462 FALSE
), /* pcrel_offset */
1464 HOWTO (R_ARM_THM_JUMP11
, /* type */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1468 TRUE
, /* pc_relative */
1470 complain_overflow_signed
, /* complain_on_overflow */
1471 bfd_elf_generic_reloc
, /* special_function */
1472 "R_ARM_THM_JUMP11", /* name */
1473 FALSE
, /* partial_inplace */
1474 0x000007ff, /* src_mask */
1475 0x000007ff, /* dst_mask */
1476 TRUE
), /* pcrel_offset */
1478 HOWTO (R_ARM_THM_JUMP8
, /* type */
1480 1, /* size (0 = byte, 1 = short, 2 = long) */
1482 TRUE
, /* pc_relative */
1484 complain_overflow_signed
, /* complain_on_overflow */
1485 bfd_elf_generic_reloc
, /* special_function */
1486 "R_ARM_THM_JUMP8", /* name */
1487 FALSE
, /* partial_inplace */
1488 0x000000ff, /* src_mask */
1489 0x000000ff, /* dst_mask */
1490 TRUE
), /* pcrel_offset */
1492 /* TLS relocations */
1493 HOWTO (R_ARM_TLS_GD32
, /* type */
1495 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 FALSE
, /* pc_relative */
1499 complain_overflow_bitfield
,/* complain_on_overflow */
1500 NULL
, /* special_function */
1501 "R_ARM_TLS_GD32", /* name */
1502 TRUE
, /* partial_inplace */
1503 0xffffffff, /* src_mask */
1504 0xffffffff, /* dst_mask */
1505 FALSE
), /* pcrel_offset */
1507 HOWTO (R_ARM_TLS_LDM32
, /* type */
1509 2, /* size (0 = byte, 1 = short, 2 = long) */
1511 FALSE
, /* pc_relative */
1513 complain_overflow_bitfield
,/* complain_on_overflow */
1514 bfd_elf_generic_reloc
, /* special_function */
1515 "R_ARM_TLS_LDM32", /* name */
1516 TRUE
, /* partial_inplace */
1517 0xffffffff, /* src_mask */
1518 0xffffffff, /* dst_mask */
1519 FALSE
), /* pcrel_offset */
1521 HOWTO (R_ARM_TLS_LDO32
, /* type */
1523 2, /* size (0 = byte, 1 = short, 2 = long) */
1525 FALSE
, /* pc_relative */
1527 complain_overflow_bitfield
,/* complain_on_overflow */
1528 bfd_elf_generic_reloc
, /* special_function */
1529 "R_ARM_TLS_LDO32", /* name */
1530 TRUE
, /* partial_inplace */
1531 0xffffffff, /* src_mask */
1532 0xffffffff, /* dst_mask */
1533 FALSE
), /* pcrel_offset */
1535 HOWTO (R_ARM_TLS_IE32
, /* type */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1539 FALSE
, /* pc_relative */
1541 complain_overflow_bitfield
,/* complain_on_overflow */
1542 NULL
, /* special_function */
1543 "R_ARM_TLS_IE32", /* name */
1544 TRUE
, /* partial_inplace */
1545 0xffffffff, /* src_mask */
1546 0xffffffff, /* dst_mask */
1547 FALSE
), /* pcrel_offset */
1549 HOWTO (R_ARM_TLS_LE32
, /* type */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1553 FALSE
, /* pc_relative */
1555 complain_overflow_bitfield
,/* complain_on_overflow */
1556 bfd_elf_generic_reloc
, /* special_function */
1557 "R_ARM_TLS_LE32", /* name */
1558 TRUE
, /* partial_inplace */
1559 0xffffffff, /* src_mask */
1560 0xffffffff, /* dst_mask */
1561 FALSE
), /* pcrel_offset */
1563 HOWTO (R_ARM_TLS_LDO12
, /* type */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 FALSE
, /* pc_relative */
1569 complain_overflow_bitfield
,/* complain_on_overflow */
1570 bfd_elf_generic_reloc
, /* special_function */
1571 "R_ARM_TLS_LDO12", /* name */
1572 FALSE
, /* partial_inplace */
1573 0x00000fff, /* src_mask */
1574 0x00000fff, /* dst_mask */
1575 FALSE
), /* pcrel_offset */
1577 HOWTO (R_ARM_TLS_LE12
, /* type */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 FALSE
, /* pc_relative */
1583 complain_overflow_bitfield
,/* complain_on_overflow */
1584 bfd_elf_generic_reloc
, /* special_function */
1585 "R_ARM_TLS_LE12", /* name */
1586 FALSE
, /* partial_inplace */
1587 0x00000fff, /* src_mask */
1588 0x00000fff, /* dst_mask */
1589 FALSE
), /* pcrel_offset */
1591 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1595 FALSE
, /* pc_relative */
1597 complain_overflow_bitfield
,/* complain_on_overflow */
1598 bfd_elf_generic_reloc
, /* special_function */
1599 "R_ARM_TLS_IE12GP", /* name */
1600 FALSE
, /* partial_inplace */
1601 0x00000fff, /* src_mask */
1602 0x00000fff, /* dst_mask */
1603 FALSE
), /* pcrel_offset */
1606 /* 112-127 private relocations
1607 128 R_ARM_ME_TOO, obsolete
1608 129-255 unallocated in AAELF.
1610 249-255 extended, currently unused, relocations: */
1612 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1614 HOWTO (R_ARM_RREL32
, /* type */
1616 0, /* size (0 = byte, 1 = short, 2 = long) */
1618 FALSE
, /* pc_relative */
1620 complain_overflow_dont
,/* complain_on_overflow */
1621 bfd_elf_generic_reloc
, /* special_function */
1622 "R_ARM_RREL32", /* name */
1623 FALSE
, /* partial_inplace */
1626 FALSE
), /* pcrel_offset */
1628 HOWTO (R_ARM_RABS32
, /* type */
1630 0, /* size (0 = byte, 1 = short, 2 = long) */
1632 FALSE
, /* pc_relative */
1634 complain_overflow_dont
,/* complain_on_overflow */
1635 bfd_elf_generic_reloc
, /* special_function */
1636 "R_ARM_RABS32", /* name */
1637 FALSE
, /* partial_inplace */
1640 FALSE
), /* pcrel_offset */
1642 HOWTO (R_ARM_RPC24
, /* type */
1644 0, /* size (0 = byte, 1 = short, 2 = long) */
1646 FALSE
, /* pc_relative */
1648 complain_overflow_dont
,/* complain_on_overflow */
1649 bfd_elf_generic_reloc
, /* special_function */
1650 "R_ARM_RPC24", /* name */
1651 FALSE
, /* partial_inplace */
1654 FALSE
), /* pcrel_offset */
1656 HOWTO (R_ARM_RBASE
, /* type */
1658 0, /* size (0 = byte, 1 = short, 2 = long) */
1660 FALSE
, /* pc_relative */
1662 complain_overflow_dont
,/* complain_on_overflow */
1663 bfd_elf_generic_reloc
, /* special_function */
1664 "R_ARM_RBASE", /* name */
1665 FALSE
, /* partial_inplace */
1668 FALSE
) /* pcrel_offset */
1671 static reloc_howto_type
*
1672 elf32_arm_howto_from_type (unsigned int r_type
)
1674 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1675 return &elf32_arm_howto_table_1
[r_type
];
1677 if (r_type
>= R_ARM_RREL32
1678 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1679 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1685 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1686 Elf_Internal_Rela
* elf_reloc
)
1688 unsigned int r_type
;
1690 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1691 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1694 struct elf32_arm_reloc_map
1696 bfd_reloc_code_real_type bfd_reloc_val
;
1697 unsigned char elf_reloc_val
;
1700 /* All entries in this list must also be present in elf32_arm_howto_table. */
1701 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1703 {BFD_RELOC_NONE
, R_ARM_NONE
},
1704 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1705 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1706 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1707 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1708 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1709 {BFD_RELOC_32
, R_ARM_ABS32
},
1710 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1711 {BFD_RELOC_8
, R_ARM_ABS8
},
1712 {BFD_RELOC_16
, R_ARM_ABS16
},
1713 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1714 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1719 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1720 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1721 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1722 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1723 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1724 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1725 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1726 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1727 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1728 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1729 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1730 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1731 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1732 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1733 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1734 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1735 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1736 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1737 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1738 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1739 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1740 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1741 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1742 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1743 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1744 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1745 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1746 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1747 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1748 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1749 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1750 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1751 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1752 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1753 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1754 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1755 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1756 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1757 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1758 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1759 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1760 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1761 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1762 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1763 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1764 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1765 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1766 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1767 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1768 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1769 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1770 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1771 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1772 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1773 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1774 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1775 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1776 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1777 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1778 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1779 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1780 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1783 static reloc_howto_type
*
1784 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1785 bfd_reloc_code_real_type code
)
1789 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1790 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1791 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1796 static reloc_howto_type
*
1797 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1802 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1803 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1804 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1805 return &elf32_arm_howto_table_1
[i
];
1807 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1808 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1809 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1810 return &elf32_arm_howto_table_2
[i
];
1815 /* Support for core dump NOTE sections. */
1818 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1823 switch (note
->descsz
)
1828 case 148: /* Linux/ARM 32-bit. */
1830 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1833 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1844 size
, note
->descpos
+ offset
);
1848 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1850 switch (note
->descsz
)
1855 case 124: /* Linux/ARM elf_prpsinfo. */
1856 elf_tdata (abfd
)->core_program
1857 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1858 elf_tdata (abfd
)->core_command
1859 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
1866 char *command
= elf_tdata (abfd
)->core_command
;
1867 int n
= strlen (command
);
1869 if (0 < n
&& command
[n
- 1] == ' ')
1870 command
[n
- 1] = '\0';
1876 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877 #define TARGET_LITTLE_NAME "elf32-littlearm"
1878 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879 #define TARGET_BIG_NAME "elf32-bigarm"
1881 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1884 typedef unsigned long int insn32
;
1885 typedef unsigned short int insn16
;
1887 /* In lieu of proper flags, assume all EABIv4 or later objects are
1889 #define INTERWORK_FLAG(abfd) \
1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892 || ((abfd)->flags & BFD_LINKER_CREATED))
1894 /* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
1897 name can be changed. The only requirement is the %s be present. */
1898 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910 #define STUB_ENTRY_NAME "__%s_veneer"
1912 /* The name of the dynamic interpreter. This is put in the .interp
1914 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1916 #ifdef FOUR_WORD_PLT
1918 /* The first entry in a procedure linkage table looks like
1919 this. It is set up so that any shared library function that is
1920 called before the relocation has been set up calls the dynamic
1922 static const bfd_vma elf32_arm_plt0_entry
[] =
1924 0xe52de004, /* str lr, [sp, #-4]! */
1925 0xe59fe010, /* ldr lr, [pc, #16] */
1926 0xe08fe00e, /* add lr, pc, lr */
1927 0xe5bef008, /* ldr pc, [lr, #8]! */
1930 /* Subsequent entries in a procedure linkage table look like
1932 static const bfd_vma elf32_arm_plt_entry
[] =
1934 0xe28fc600, /* add ip, pc, #NN */
1935 0xe28cca00, /* add ip, ip, #NN */
1936 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1937 0x00000000, /* unused */
1942 /* The first entry in a procedure linkage table looks like
1943 this. It is set up so that any shared library function that is
1944 called before the relocation has been set up calls the dynamic
1946 static const bfd_vma elf32_arm_plt0_entry
[] =
1948 0xe52de004, /* str lr, [sp, #-4]! */
1949 0xe59fe004, /* ldr lr, [pc, #4] */
1950 0xe08fe00e, /* add lr, pc, lr */
1951 0xe5bef008, /* ldr pc, [lr, #8]! */
1952 0x00000000, /* &GOT[0] - . */
1955 /* Subsequent entries in a procedure linkage table look like
1957 static const bfd_vma elf32_arm_plt_entry
[] =
1959 0xe28fc600, /* add ip, pc, #0xNN00000 */
1960 0xe28cca00, /* add ip, ip, #0xNN000 */
1961 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1966 /* The format of the first entry in the procedure linkage table
1967 for a VxWorks executable. */
1968 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1970 0xe52dc008, /* str ip,[sp,#-8]! */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf008, /* ldr pc,[ip,#8] */
1973 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1976 /* The format of subsequent entries in a VxWorks executable. */
1977 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe59cf000, /* ldr pc,[ip] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xea000000, /* b _PLT */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 /* The format of entries in a VxWorks shared library. */
1988 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1990 0xe59fc000, /* ldr ip,[pc] */
1991 0xe79cf009, /* ldr pc,[ip,r9] */
1992 0x00000000, /* .long @got */
1993 0xe59fc000, /* ldr ip,[pc] */
1994 0xe599f008, /* ldr pc,[r9,#8] */
1995 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1998 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1999 #define PLT_THUMB_STUB_SIZE 4
2000 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2006 /* The entries in a PLT when using a DLL-based target with multiple
2008 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2010 0xe51ff004, /* ldr pc, [pc, #-4] */
2011 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2014 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2015 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2016 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2017 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2018 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2029 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2031 is inserted in arm_build_one_stub(). */
2032 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2033 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2034 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2035 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2036 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2037 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2042 enum stub_insn_type type
;
2043 unsigned int r_type
;
2047 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2048 to reach the stub if necessary. */
2049 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2051 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2052 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2055 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2057 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2059 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2060 ARM_INSN(0xe12fff1c), /* bx ip */
2061 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2064 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2065 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2067 THUMB16_INSN(0xb401), /* push {r0} */
2068 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2069 THUMB16_INSN(0x4684), /* mov ip, r0 */
2070 THUMB16_INSN(0xbc01), /* pop {r0} */
2071 THUMB16_INSN(0x4760), /* bx ip */
2072 THUMB16_INSN(0xbf00), /* nop */
2073 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2076 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2078 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2083 ARM_INSN(0xe12fff1c), /* bx ip */
2084 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2087 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2089 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2091 THUMB16_INSN(0x4778), /* bx pc */
2092 THUMB16_INSN(0x46c0), /* nop */
2093 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2094 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2097 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2098 one, when the destination is close enough. */
2099 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2101 THUMB16_INSN(0x4778), /* bx pc */
2102 THUMB16_INSN(0x46c0), /* nop */
2103 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2106 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2107 blx to reach the stub if necessary. */
2108 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2110 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2111 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2112 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2115 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2116 blx to reach the stub if necessary. We can not add into pc;
2117 it is not guaranteed to mode switch (different in ARMv6 and
2119 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2121 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2122 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2123 ARM_INSN(0xe12fff1c), /* bx ip */
2124 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2127 /* V4T ARM -> ARM long branch stub, PIC. */
2128 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2130 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2131 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2132 ARM_INSN(0xe12fff1c), /* bx ip */
2133 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2136 /* V4T Thumb -> ARM long branch stub, PIC. */
2137 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2139 THUMB16_INSN(0x4778), /* bx pc */
2140 THUMB16_INSN(0x46c0), /* nop */
2141 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2142 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2143 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2146 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2148 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2150 THUMB16_INSN(0xb401), /* push {r0} */
2151 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2152 THUMB16_INSN(0x46fc), /* mov ip, pc */
2153 THUMB16_INSN(0x4484), /* add ip, r0 */
2154 THUMB16_INSN(0xbc01), /* pop {r0} */
2155 THUMB16_INSN(0x4760), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2159 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2161 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2163 THUMB16_INSN(0x4778), /* bx pc */
2164 THUMB16_INSN(0x46c0), /* nop */
2165 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2166 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2167 ARM_INSN(0xe12fff1c), /* bx ip */
2168 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2171 /* Cortex-A8 erratum-workaround stubs. */
2173 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2174 can't use a conditional branch to reach this stub). */
2176 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2178 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2179 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2180 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2183 /* Stub used for b.w and bl.w instructions. */
2185 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2187 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2190 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2192 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2195 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2196 instruction (which switches to ARM mode) to point to this stub. Jump to the
2197 real destination using an ARM-mode branch. */
2199 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2201 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2204 /* Section name for stubs is the associated section name plus this
2206 #define STUB_SUFFIX ".stub"
2208 /* One entry per long/short branch stub defined above. */
2210 DEF_STUB(long_branch_any_any) \
2211 DEF_STUB(long_branch_v4t_arm_thumb) \
2212 DEF_STUB(long_branch_thumb_only) \
2213 DEF_STUB(long_branch_v4t_thumb_thumb) \
2214 DEF_STUB(long_branch_v4t_thumb_arm) \
2215 DEF_STUB(short_branch_v4t_thumb_arm) \
2216 DEF_STUB(long_branch_any_arm_pic) \
2217 DEF_STUB(long_branch_any_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2220 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2221 DEF_STUB(long_branch_thumb_only_pic) \
2222 DEF_STUB(a8_veneer_b_cond) \
2223 DEF_STUB(a8_veneer_b) \
2224 DEF_STUB(a8_veneer_bl) \
2225 DEF_STUB(a8_veneer_blx)
2227 #define DEF_STUB(x) arm_stub_##x,
2228 enum elf32_arm_stub_type
{
2236 const insn_sequence
* template;
2240 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2241 static const stub_def stub_definitions
[] = {
2246 struct elf32_arm_stub_hash_entry
2248 /* Base hash table entry structure. */
2249 struct bfd_hash_entry root
;
2251 /* The stub section. */
2254 /* Offset within stub_sec of the beginning of this stub. */
2255 bfd_vma stub_offset
;
2257 /* Given the symbol's value and its section we can determine its final
2258 value when building the stubs (so the stub knows where to jump). */
2259 bfd_vma target_value
;
2260 asection
*target_section
;
2262 /* Offset to apply to relocation referencing target_value. */
2263 bfd_vma target_addend
;
2265 /* The instruction which caused this stub to be generated (only valid for
2266 Cortex-A8 erratum workaround stubs at present). */
2267 unsigned long orig_insn
;
2269 /* The stub type. */
2270 enum elf32_arm_stub_type stub_type
;
2271 /* Its encoding size in bytes. */
2274 const insn_sequence
*stub_template
;
2275 /* The size of the template (number of entries). */
2276 int stub_template_size
;
2278 /* The symbol table entry, if any, that this was derived from. */
2279 struct elf32_arm_link_hash_entry
*h
;
2281 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2282 unsigned char st_type
;
2284 /* Where this stub is being called from, or, in the case of combined
2285 stub sections, the first input section in the group. */
2288 /* The name for the local symbol at the start of this stub. The
2289 stub name in the hash table has to be unique; this does not, so
2290 it can be friendlier. */
2294 /* Used to build a map of a section. This is required for mixed-endian
2297 typedef struct elf32_elf_section_map
2302 elf32_arm_section_map
;
2304 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2308 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2309 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2310 VFP11_ERRATUM_ARM_VENEER
,
2311 VFP11_ERRATUM_THUMB_VENEER
2313 elf32_vfp11_erratum_type
;
2315 typedef struct elf32_vfp11_erratum_list
2317 struct elf32_vfp11_erratum_list
*next
;
2323 struct elf32_vfp11_erratum_list
*veneer
;
2324 unsigned int vfp_insn
;
2328 struct elf32_vfp11_erratum_list
*branch
;
2332 elf32_vfp11_erratum_type type
;
2334 elf32_vfp11_erratum_list
;
2339 INSERT_EXIDX_CANTUNWIND_AT_END
2341 arm_unwind_edit_type
;
2343 /* A (sorted) list of edits to apply to an unwind table. */
2344 typedef struct arm_unwind_table_edit
2346 arm_unwind_edit_type type
;
2347 /* Note: we sometimes want to insert an unwind entry corresponding to a
2348 section different from the one we're currently writing out, so record the
2349 (text) section this edit relates to here. */
2350 asection
*linked_section
;
2352 struct arm_unwind_table_edit
*next
;
2354 arm_unwind_table_edit
;
2356 typedef struct _arm_elf_section_data
2358 /* Information about mapping symbols. */
2359 struct bfd_elf_section_data elf
;
2360 unsigned int mapcount
;
2361 unsigned int mapsize
;
2362 elf32_arm_section_map
*map
;
2363 /* Information about CPU errata. */
2364 unsigned int erratumcount
;
2365 elf32_vfp11_erratum_list
*erratumlist
;
2366 /* Information about unwind tables. */
2369 /* Unwind info attached to a text section. */
2372 asection
*arm_exidx_sec
;
2375 /* Unwind info attached to an .ARM.exidx section. */
2378 arm_unwind_table_edit
*unwind_edit_list
;
2379 arm_unwind_table_edit
*unwind_edit_tail
;
2383 _arm_elf_section_data
;
2385 #define elf32_arm_section_data(sec) \
2386 ((_arm_elf_section_data *) elf_section_data (sec))
2388 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2389 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2390 so may be created multiple times: we use an array of these entries whilst
2391 relaxing which we can refresh easily, then create stubs for each potentially
2392 erratum-triggering instruction once we've settled on a solution. */
2394 struct a8_erratum_fix
{
2399 unsigned long orig_insn
;
2401 enum elf32_arm_stub_type stub_type
;
2404 /* A table of relocs applied to branches which might trigger Cortex-A8
2407 struct a8_erratum_reloc
{
2409 bfd_vma destination
;
2410 unsigned int r_type
;
2411 unsigned char st_type
;
2412 const char *sym_name
;
2413 bfd_boolean non_a8_stub
;
2416 /* The size of the thread control block. */
2419 struct elf_arm_obj_tdata
2421 struct elf_obj_tdata root
;
2423 /* tls_type for each local got entry. */
2424 char *local_got_tls_type
;
2426 /* Zero to warn when linking objects with incompatible enum sizes. */
2427 int no_enum_size_warning
;
2429 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2430 int no_wchar_size_warning
;
2433 #define elf_arm_tdata(bfd) \
2434 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2436 #define elf32_arm_local_got_tls_type(bfd) \
2437 (elf_arm_tdata (bfd)->local_got_tls_type)
2439 #define is_arm_elf(bfd) \
2440 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2441 && elf_tdata (bfd) != NULL \
2442 && elf_object_id (bfd) == ARM_ELF_TDATA)
2445 elf32_arm_mkobject (bfd
*abfd
)
2447 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2451 /* The ARM linker needs to keep track of the number of relocs that it
2452 decides to copy in check_relocs for each symbol. This is so that
2453 it can discard PC relative relocs if it doesn't need them when
2454 linking with -Bsymbolic. We store the information in a field
2455 extending the regular ELF linker hash table. */
2457 /* This structure keeps track of the number of relocs we have copied
2458 for a given symbol. */
2459 struct elf32_arm_relocs_copied
2462 struct elf32_arm_relocs_copied
* next
;
2463 /* A section in dynobj. */
2465 /* Number of relocs copied in this section. */
2466 bfd_size_type count
;
2467 /* Number of PC-relative relocs copied in this section. */
2468 bfd_size_type pc_count
;
2471 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2473 /* Arm ELF linker hash entry. */
2474 struct elf32_arm_link_hash_entry
2476 struct elf_link_hash_entry root
;
2478 /* Number of PC relative relocs copied for this symbol. */
2479 struct elf32_arm_relocs_copied
* relocs_copied
;
2481 /* We reference count Thumb references to a PLT entry separately,
2482 so that we can emit the Thumb trampoline only if needed. */
2483 bfd_signed_vma plt_thumb_refcount
;
2485 /* Some references from Thumb code may be eliminated by BL->BLX
2486 conversion, so record them separately. */
2487 bfd_signed_vma plt_maybe_thumb_refcount
;
2489 /* Since PLT entries have variable size if the Thumb prologue is
2490 used, we need to record the index into .got.plt instead of
2491 recomputing it from the PLT offset. */
2492 bfd_signed_vma plt_got_offset
;
2494 #define GOT_UNKNOWN 0
2495 #define GOT_NORMAL 1
2496 #define GOT_TLS_GD 2
2497 #define GOT_TLS_IE 4
2498 unsigned char tls_type
;
2500 /* The symbol marking the real symbol location for exported thumb
2501 symbols with Arm stubs. */
2502 struct elf_link_hash_entry
*export_glue
;
2504 /* A pointer to the most recently used stub hash entry against this
2506 struct elf32_arm_stub_hash_entry
*stub_cache
;
2509 /* Traverse an arm ELF linker hash table. */
2510 #define elf32_arm_link_hash_traverse(table, func, info) \
2511 (elf_link_hash_traverse \
2513 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2516 /* Get the ARM elf linker hash table from a link_info structure. */
2517 #define elf32_arm_hash_table(info) \
2518 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2520 #define arm_stub_hash_lookup(table, string, create, copy) \
2521 ((struct elf32_arm_stub_hash_entry *) \
2522 bfd_hash_lookup ((table), (string), (create), (copy)))
2524 /* ARM ELF linker hash table. */
2525 struct elf32_arm_link_hash_table
2527 /* The main hash table. */
2528 struct elf_link_hash_table root
;
2530 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2531 bfd_size_type thumb_glue_size
;
2533 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2534 bfd_size_type arm_glue_size
;
2536 /* The size in bytes of section containing the ARMv4 BX veneers. */
2537 bfd_size_type bx_glue_size
;
2539 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2540 veneer has been populated. */
2541 bfd_vma bx_glue_offset
[15];
2543 /* The size in bytes of the section containing glue for VFP11 erratum
2545 bfd_size_type vfp11_erratum_glue_size
;
2547 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2548 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2549 elf32_arm_write_section(). */
2550 struct a8_erratum_fix
*a8_erratum_fixes
;
2551 unsigned int num_a8_erratum_fixes
;
2553 /* An arbitrary input BFD chosen to hold the glue sections. */
2554 bfd
* bfd_of_glue_owner
;
2556 /* Nonzero to output a BE8 image. */
2559 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2560 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2563 /* The relocation to use for R_ARM_TARGET2 relocations. */
2566 /* 0 = Ignore R_ARM_V4BX.
2567 1 = Convert BX to MOV PC.
2568 2 = Generate v4 interworing stubs. */
2571 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2574 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2577 /* What sort of code sequences we should look for which may trigger the
2578 VFP11 denorm erratum. */
2579 bfd_arm_vfp11_fix vfp11_fix
;
2581 /* Global counter for the number of fixes we have emitted. */
2582 int num_vfp11_fixes
;
2584 /* Nonzero to force PIC branch veneers. */
2587 /* The number of bytes in the initial entry in the PLT. */
2588 bfd_size_type plt_header_size
;
2590 /* The number of bytes in the subsequent PLT etries. */
2591 bfd_size_type plt_entry_size
;
2593 /* True if the target system is VxWorks. */
2596 /* True if the target system is Symbian OS. */
2599 /* True if the target uses REL relocations. */
2602 /* Short-cuts to get to dynamic linker sections. */
2611 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2614 /* Data for R_ARM_TLS_LDM32 relocations. */
2617 bfd_signed_vma refcount
;
2621 /* Small local sym to section mapping cache. */
2622 struct sym_sec_cache sym_sec
;
2624 /* For convenience in allocate_dynrelocs. */
2627 /* The stub hash table. */
2628 struct bfd_hash_table stub_hash_table
;
2630 /* Linker stub bfd. */
2633 /* Linker call-backs. */
2634 asection
* (*add_stub_section
) (const char *, asection
*);
2635 void (*layout_sections_again
) (void);
2637 /* Array to keep track of which stub sections have been created, and
2638 information on stub grouping. */
2641 /* This is the section to which stubs in the group will be
2644 /* The stub section. */
2648 /* Assorted information used by elf32_arm_size_stubs. */
2649 unsigned int bfd_count
;
2651 asection
**input_list
;
2654 /* Create an entry in an ARM ELF linker hash table. */
2656 static struct bfd_hash_entry
*
2657 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2658 struct bfd_hash_table
* table
,
2659 const char * string
)
2661 struct elf32_arm_link_hash_entry
* ret
=
2662 (struct elf32_arm_link_hash_entry
*) entry
;
2664 /* Allocate the structure if it has not already been allocated by a
2667 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2669 return (struct bfd_hash_entry
*) ret
;
2671 /* Call the allocation method of the superclass. */
2672 ret
= ((struct elf32_arm_link_hash_entry
*)
2673 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2677 ret
->relocs_copied
= NULL
;
2678 ret
->tls_type
= GOT_UNKNOWN
;
2679 ret
->plt_thumb_refcount
= 0;
2680 ret
->plt_maybe_thumb_refcount
= 0;
2681 ret
->plt_got_offset
= -1;
2682 ret
->export_glue
= NULL
;
2684 ret
->stub_cache
= NULL
;
2687 return (struct bfd_hash_entry
*) ret
;
2690 /* Initialize an entry in the stub hash table. */
2692 static struct bfd_hash_entry
*
2693 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2694 struct bfd_hash_table
*table
,
2697 /* Allocate the structure if it has not already been allocated by a
2701 entry
= bfd_hash_allocate (table
,
2702 sizeof (struct elf32_arm_stub_hash_entry
));
2707 /* Call the allocation method of the superclass. */
2708 entry
= bfd_hash_newfunc (entry
, table
, string
);
2711 struct elf32_arm_stub_hash_entry
*eh
;
2713 /* Initialize the local fields. */
2714 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2715 eh
->stub_sec
= NULL
;
2716 eh
->stub_offset
= 0;
2717 eh
->target_value
= 0;
2718 eh
->target_section
= NULL
;
2719 eh
->stub_type
= arm_stub_none
;
2721 eh
->stub_template
= NULL
;
2722 eh
->stub_template_size
= 0;
2730 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2731 shortcuts to them in our hash table. */
2734 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2736 struct elf32_arm_link_hash_table
*htab
;
2738 htab
= elf32_arm_hash_table (info
);
2739 /* BPABI objects never have a GOT, or associated sections. */
2740 if (htab
->symbian_p
)
2743 if (! _bfd_elf_create_got_section (dynobj
, info
))
2746 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2747 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2748 if (!htab
->sgot
|| !htab
->sgotplt
)
2751 htab
->srelgot
= bfd_make_section_with_flags (dynobj
,
2752 RELOC_SECTION (htab
, ".got"),
2753 (SEC_ALLOC
| SEC_LOAD
2756 | SEC_LINKER_CREATED
2758 if (htab
->srelgot
== NULL
2759 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
2764 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2765 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2769 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2771 struct elf32_arm_link_hash_table
*htab
;
2773 htab
= elf32_arm_hash_table (info
);
2774 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2777 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2780 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2781 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2782 RELOC_SECTION (htab
, ".plt"));
2783 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2785 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2786 RELOC_SECTION (htab
, ".bss"));
2788 if (htab
->vxworks_p
)
2790 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2795 htab
->plt_header_size
= 0;
2796 htab
->plt_entry_size
2797 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2801 htab
->plt_header_size
2802 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2803 htab
->plt_entry_size
2804 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2811 || (!info
->shared
&& !htab
->srelbss
))
2817 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2820 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2821 struct elf_link_hash_entry
*dir
,
2822 struct elf_link_hash_entry
*ind
)
2824 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2826 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2827 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2829 if (eind
->relocs_copied
!= NULL
)
2831 if (edir
->relocs_copied
!= NULL
)
2833 struct elf32_arm_relocs_copied
**pp
;
2834 struct elf32_arm_relocs_copied
*p
;
2836 /* Add reloc counts against the indirect sym to the direct sym
2837 list. Merge any entries against the same section. */
2838 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2840 struct elf32_arm_relocs_copied
*q
;
2842 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2843 if (q
->section
== p
->section
)
2845 q
->pc_count
+= p
->pc_count
;
2846 q
->count
+= p
->count
;
2853 *pp
= edir
->relocs_copied
;
2856 edir
->relocs_copied
= eind
->relocs_copied
;
2857 eind
->relocs_copied
= NULL
;
2860 if (ind
->root
.type
== bfd_link_hash_indirect
)
2862 /* Copy over PLT info. */
2863 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2864 eind
->plt_thumb_refcount
= 0;
2865 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2866 eind
->plt_maybe_thumb_refcount
= 0;
2868 if (dir
->got
.refcount
<= 0)
2870 edir
->tls_type
= eind
->tls_type
;
2871 eind
->tls_type
= GOT_UNKNOWN
;
2875 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2878 /* Create an ARM elf linker hash table. */
2880 static struct bfd_link_hash_table
*
2881 elf32_arm_link_hash_table_create (bfd
*abfd
)
2883 struct elf32_arm_link_hash_table
*ret
;
2884 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2886 ret
= bfd_malloc (amt
);
2890 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2891 elf32_arm_link_hash_newfunc
,
2892 sizeof (struct elf32_arm_link_hash_entry
)))
2899 ret
->sgotplt
= NULL
;
2900 ret
->srelgot
= NULL
;
2902 ret
->srelplt
= NULL
;
2903 ret
->sdynbss
= NULL
;
2904 ret
->srelbss
= NULL
;
2905 ret
->srelplt2
= NULL
;
2906 ret
->thumb_glue_size
= 0;
2907 ret
->arm_glue_size
= 0;
2908 ret
->bx_glue_size
= 0;
2909 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2910 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2911 ret
->vfp11_erratum_glue_size
= 0;
2912 ret
->num_vfp11_fixes
= 0;
2913 ret
->fix_cortex_a8
= 0;
2914 ret
->bfd_of_glue_owner
= NULL
;
2915 ret
->byteswap_code
= 0;
2916 ret
->target1_is_rel
= 0;
2917 ret
->target2_reloc
= R_ARM_NONE
;
2918 #ifdef FOUR_WORD_PLT
2919 ret
->plt_header_size
= 16;
2920 ret
->plt_entry_size
= 16;
2922 ret
->plt_header_size
= 20;
2923 ret
->plt_entry_size
= 12;
2930 ret
->sym_sec
.abfd
= NULL
;
2932 ret
->tls_ldm_got
.refcount
= 0;
2933 ret
->stub_bfd
= NULL
;
2934 ret
->add_stub_section
= NULL
;
2935 ret
->layout_sections_again
= NULL
;
2936 ret
->stub_group
= NULL
;
2939 ret
->input_list
= NULL
;
2941 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2942 sizeof (struct elf32_arm_stub_hash_entry
)))
2948 return &ret
->root
.root
;
2951 /* Free the derived linker hash table. */
2954 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2956 struct elf32_arm_link_hash_table
*ret
2957 = (struct elf32_arm_link_hash_table
*) hash
;
2959 bfd_hash_table_free (&ret
->stub_hash_table
);
2960 _bfd_generic_link_hash_table_free (hash
);
2963 /* Determine if we're dealing with a Thumb only architecture. */
2966 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2968 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2972 if (arch
!= TAG_CPU_ARCH_V7
)
2975 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2976 Tag_CPU_arch_profile
);
2978 return profile
== 'M';
2981 /* Determine if we're dealing with a Thumb-2 object. */
2984 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2986 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2988 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2992 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
2996 case arm_stub_long_branch_thumb_only
:
2997 case arm_stub_long_branch_v4t_thumb_arm
:
2998 case arm_stub_short_branch_v4t_thumb_arm
:
2999 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3000 case arm_stub_long_branch_thumb_only_pic
:
3011 /* Determine the type of stub needed, if any, for a call. */
3013 static enum elf32_arm_stub_type
3014 arm_type_of_stub (struct bfd_link_info
*info
,
3015 asection
*input_sec
,
3016 const Elf_Internal_Rela
*rel
,
3017 unsigned char st_type
,
3018 struct elf32_arm_link_hash_entry
*hash
,
3019 bfd_vma destination
,
3025 bfd_signed_vma branch_offset
;
3026 unsigned int r_type
;
3027 struct elf32_arm_link_hash_table
* globals
;
3030 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3033 /* We don't know the actual type of destination in case it is of
3034 type STT_SECTION: give up. */
3035 if (st_type
== STT_SECTION
)
3038 globals
= elf32_arm_hash_table (info
);
3040 thumb_only
= using_thumb_only (globals
);
3042 thumb2
= using_thumb2 (globals
);
3044 /* Determine where the call point is. */
3045 location
= (input_sec
->output_offset
3046 + input_sec
->output_section
->vma
3049 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3051 r_type
= ELF32_R_TYPE (rel
->r_info
);
3053 /* Keep a simpler condition, for the sake of clarity. */
3054 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
3057 /* Note when dealing with PLT entries: the main PLT stub is in
3058 ARM mode, so if the branch is in Thumb mode, another
3059 Thumb->ARM stub will be inserted later just before the ARM
3060 PLT stub. We don't take this extra distance into account
3061 here, because if a long branch stub is needed, we'll add a
3062 Thumb->Arm one and branch directly to the ARM PLT entry
3063 because it avoids spreading offset corrections in several
3067 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
3069 /* Handle cases where:
3070 - this call goes too far (different Thumb/Thumb2 max
3072 - it's a Thumb->Arm call and blx is not available, or it's a
3073 Thumb->Arm branch (not bl). A stub is needed in this case,
3074 but only if this call is not through a PLT entry. Indeed,
3075 PLT stubs handle mode switching already.
3078 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3079 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3081 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3082 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3083 || ((st_type
!= STT_ARM_TFUNC
)
3084 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
3085 || (r_type
== R_ARM_THM_JUMP24
))
3088 if (st_type
== STT_ARM_TFUNC
)
3090 /* Thumb to thumb. */
3093 stub_type
= (info
->shared
| globals
->pic_veneer
)
3095 ? ((globals
->use_blx
3096 && (r_type
==R_ARM_THM_CALL
))
3097 /* V5T and above. Stub starts with ARM code, so
3098 we must be able to switch mode before
3099 reaching it, which is only possible for 'bl'
3100 (ie R_ARM_THM_CALL relocation). */
3101 ? arm_stub_long_branch_any_thumb_pic
3102 /* On V4T, use Thumb code only. */
3103 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3105 /* non-PIC stubs. */
3106 : ((globals
->use_blx
3107 && (r_type
==R_ARM_THM_CALL
))
3108 /* V5T and above. */
3109 ? arm_stub_long_branch_any_any
3111 : arm_stub_long_branch_v4t_thumb_thumb
);
3115 stub_type
= (info
->shared
| globals
->pic_veneer
)
3117 ? arm_stub_long_branch_thumb_only_pic
3119 : arm_stub_long_branch_thumb_only
;
3126 && sym_sec
->owner
!= NULL
3127 && !INTERWORK_FLAG (sym_sec
->owner
))
3129 (*_bfd_error_handler
)
3130 (_("%B(%s): warning: interworking not enabled.\n"
3131 " first occurrence: %B: Thumb call to ARM"),
3132 sym_sec
->owner
, input_bfd
, name
);
3135 stub_type
= (info
->shared
| globals
->pic_veneer
)
3137 ? ((globals
->use_blx
3138 && (r_type
==R_ARM_THM_CALL
))
3139 /* V5T and above. */
3140 ? arm_stub_long_branch_any_arm_pic
3142 : arm_stub_long_branch_v4t_thumb_arm_pic
)
3144 /* non-PIC stubs. */
3145 : ((globals
->use_blx
3146 && (r_type
==R_ARM_THM_CALL
))
3147 /* V5T and above. */
3148 ? arm_stub_long_branch_any_any
3150 : arm_stub_long_branch_v4t_thumb_arm
);
3152 /* Handle v4t short branches. */
3153 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3154 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3155 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3156 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3160 else if (r_type
== R_ARM_CALL
|| r_type
== R_ARM_JUMP24
|| r_type
== R_ARM_PLT32
)
3162 if (st_type
== STT_ARM_TFUNC
)
3167 && sym_sec
->owner
!= NULL
3168 && !INTERWORK_FLAG (sym_sec
->owner
))
3170 (*_bfd_error_handler
)
3171 (_("%B(%s): warning: interworking not enabled.\n"
3172 " first occurrence: %B: ARM call to Thumb"),
3173 sym_sec
->owner
, input_bfd
, name
);
3176 /* We have an extra 2-bytes reach because of
3177 the mode change (bit 24 (H) of BLX encoding). */
3178 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3179 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3180 || ((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
3181 || (r_type
== R_ARM_JUMP24
)
3182 || (r_type
== R_ARM_PLT32
))
3184 stub_type
= (info
->shared
| globals
->pic_veneer
)
3186 ? ((globals
->use_blx
)
3187 /* V5T and above. */
3188 ? arm_stub_long_branch_any_thumb_pic
3190 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3192 /* non-PIC stubs. */
3193 : ((globals
->use_blx
)
3194 /* V5T and above. */
3195 ? arm_stub_long_branch_any_any
3197 : arm_stub_long_branch_v4t_arm_thumb
);
3203 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3204 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3206 stub_type
= (info
->shared
| globals
->pic_veneer
)
3208 ? arm_stub_long_branch_any_arm_pic
3209 /* non-PIC stubs. */
3210 : arm_stub_long_branch_any_any
;
3218 /* Build a name for an entry in the stub hash table. */
3221 elf32_arm_stub_name (const asection
*input_section
,
3222 const asection
*sym_sec
,
3223 const struct elf32_arm_link_hash_entry
*hash
,
3224 const Elf_Internal_Rela
*rel
)
3231 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
3232 stub_name
= bfd_malloc (len
);
3233 if (stub_name
!= NULL
)
3234 sprintf (stub_name
, "%08x_%s+%x",
3235 input_section
->id
& 0xffffffff,
3236 hash
->root
.root
.root
.string
,
3237 (int) rel
->r_addend
& 0xffffffff);
3241 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3242 stub_name
= bfd_malloc (len
);
3243 if (stub_name
!= NULL
)
3244 sprintf (stub_name
, "%08x_%x:%x+%x",
3245 input_section
->id
& 0xffffffff,
3246 sym_sec
->id
& 0xffffffff,
3247 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3248 (int) rel
->r_addend
& 0xffffffff);
3254 /* Look up an entry in the stub hash. Stub entries are cached because
3255 creating the stub name takes a bit of time. */
3257 static struct elf32_arm_stub_hash_entry
*
3258 elf32_arm_get_stub_entry (const asection
*input_section
,
3259 const asection
*sym_sec
,
3260 struct elf_link_hash_entry
*hash
,
3261 const Elf_Internal_Rela
*rel
,
3262 struct elf32_arm_link_hash_table
*htab
)
3264 struct elf32_arm_stub_hash_entry
*stub_entry
;
3265 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3266 const asection
*id_sec
;
3268 if ((input_section
->flags
& SEC_CODE
) == 0)
3271 /* If this input section is part of a group of sections sharing one
3272 stub section, then use the id of the first section in the group.
3273 Stub names need to include a section id, as there may well be
3274 more than one stub used to reach say, printf, and we need to
3275 distinguish between them. */
3276 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3278 if (h
!= NULL
&& h
->stub_cache
!= NULL
3279 && h
->stub_cache
->h
== h
3280 && h
->stub_cache
->id_sec
== id_sec
)
3282 stub_entry
= h
->stub_cache
;
3288 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
3289 if (stub_name
== NULL
)
3292 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3293 stub_name
, FALSE
, FALSE
);
3295 h
->stub_cache
= stub_entry
;
3303 /* Find or create a stub section. Returns a pointer to the stub section, and
3304 the section to which the stub section will be attached (in *LINK_SEC_P).
3305 LINK_SEC_P may be NULL. */
3308 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3309 struct elf32_arm_link_hash_table
*htab
)
3314 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3315 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3316 if (stub_sec
== NULL
)
3318 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3319 if (stub_sec
== NULL
)
3325 namelen
= strlen (link_sec
->name
);
3326 len
= namelen
+ sizeof (STUB_SUFFIX
);
3327 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3331 memcpy (s_name
, link_sec
->name
, namelen
);
3332 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3333 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3334 if (stub_sec
== NULL
)
3336 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3338 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3342 *link_sec_p
= link_sec
;
3347 /* Add a new stub entry to the stub hash. Not all fields of the new
3348 stub entry are initialised. */
3350 static struct elf32_arm_stub_hash_entry
*
3351 elf32_arm_add_stub (const char *stub_name
,
3353 struct elf32_arm_link_hash_table
*htab
)
3357 struct elf32_arm_stub_hash_entry
*stub_entry
;
3359 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3360 if (stub_sec
== NULL
)
3363 /* Enter this entry into the linker stub hash table. */
3364 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3366 if (stub_entry
== NULL
)
3368 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3374 stub_entry
->stub_sec
= stub_sec
;
3375 stub_entry
->stub_offset
= 0;
3376 stub_entry
->id_sec
= link_sec
;
3381 /* Store an Arm insn into an output section not processed by
3382 elf32_arm_write_section. */
3385 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3386 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3388 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3389 bfd_putl32 (val
, ptr
);
3391 bfd_putb32 (val
, ptr
);
3394 /* Store a 16-bit Thumb insn into an output section not processed by
3395 elf32_arm_write_section. */
3398 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3399 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3401 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3402 bfd_putl16 (val
, ptr
);
3404 bfd_putb16 (val
, ptr
);
3407 static bfd_reloc_status_type elf32_arm_final_link_relocate
3408 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3409 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3410 const char *, int, struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3413 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3417 struct elf32_arm_stub_hash_entry
*stub_entry
;
3418 struct bfd_link_info
*info
;
3419 struct elf32_arm_link_hash_table
*htab
;
3427 const insn_sequence
*template;
3429 struct elf32_arm_link_hash_table
* globals
;
3430 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3431 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3434 /* Massage our args to the form they really have. */
3435 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3436 info
= (struct bfd_link_info
*) in_arg
;
3438 globals
= elf32_arm_hash_table (info
);
3440 htab
= elf32_arm_hash_table (info
);
3441 stub_sec
= stub_entry
->stub_sec
;
3443 /* Make a note of the offset within the stubs for this entry. */
3444 stub_entry
->stub_offset
= stub_sec
->size
;
3445 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3447 stub_bfd
= stub_sec
->owner
;
3449 /* This is the address of the start of the stub. */
3450 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3451 + stub_entry
->stub_offset
;
3453 /* This is the address of the stub destination. */
3454 sym_value
= (stub_entry
->target_value
3455 + stub_entry
->target_section
->output_offset
3456 + stub_entry
->target_section
->output_section
->vma
);
3458 template = stub_entry
->stub_template
;
3459 template_size
= stub_entry
->stub_template_size
;
3462 for (i
= 0; i
< template_size
; i
++)
3464 switch (template[i
].type
)
3468 bfd_vma data
= template[i
].data
;
3469 if (template[i
].reloc_addend
!= 0)
3471 /* We've borrowed the reloc_addend field to mean we should
3472 insert a condition code into this (Thumb-1 branch)
3473 instruction. See THUMB16_BCOND_INSN. */
3474 BFD_ASSERT ((data
& 0xff00) == 0xd000);
3475 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
3477 put_thumb_insn (globals
, stub_bfd
, data
, loc
+ size
);
3483 put_thumb_insn (globals
, stub_bfd
, (template[i
].data
>> 16) & 0xffff,
3485 put_thumb_insn (globals
, stub_bfd
, template[i
].data
& 0xffff,
3487 if (template[i
].r_type
!= R_ARM_NONE
)
3489 stub_reloc_idx
[nrelocs
] = i
;
3490 stub_reloc_offset
[nrelocs
++] = size
;
3496 put_arm_insn (globals
, stub_bfd
, template[i
].data
, loc
+ size
);
3497 /* Handle cases where the target is encoded within the
3499 if (template[i
].r_type
== R_ARM_JUMP24
)
3501 stub_reloc_idx
[nrelocs
] = i
;
3502 stub_reloc_offset
[nrelocs
++] = size
;
3508 bfd_put_32 (stub_bfd
, template[i
].data
, loc
+ size
);
3509 stub_reloc_idx
[nrelocs
] = i
;
3510 stub_reloc_offset
[nrelocs
++] = size
;
3520 stub_sec
->size
+= size
;
3522 /* Stub size has already been computed in arm_size_one_stub. Check
3524 BFD_ASSERT (size
== stub_entry
->stub_size
);
3526 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3527 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3530 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3532 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
3534 for (i
= 0; i
< nrelocs
; i
++)
3535 if (template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
3536 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
3537 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
3538 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
3540 Elf_Internal_Rela rel
;
3541 bfd_boolean unresolved_reloc
;
3542 char *error_message
;
3544 = (template[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
)
3545 ? STT_ARM_TFUNC
: 0;
3546 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
3548 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3549 rel
.r_info
= ELF32_R_INFO (0, template[stub_reloc_idx
[i
]].r_type
);
3550 rel
.r_addend
= template[stub_reloc_idx
[i
]].reloc_addend
;
3552 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
3553 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3554 template should refer back to the instruction after the original
3556 points_to
= sym_value
;
3558 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3559 properly. We should probably use this function unconditionally,
3560 rather than only for certain relocations listed in the enclosing
3561 conditional, for the sake of consistency. */
3562 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3563 (template[stub_reloc_idx
[i
]].r_type
),
3564 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3565 points_to
, info
, stub_entry
->target_section
, "", sym_flags
,
3566 (struct elf_link_hash_entry
*) stub_entry
, &unresolved_reloc
,
3571 _bfd_final_link_relocate (elf32_arm_howto_from_type
3572 (template[stub_reloc_idx
[i
]].r_type
), stub_bfd
, stub_sec
,
3573 stub_sec
->contents
, stub_entry
->stub_offset
+ stub_reloc_offset
[i
],
3574 sym_value
+ stub_entry
->target_addend
,
3575 template[stub_reloc_idx
[i
]].reloc_addend
);
3582 /* Calculate the template, template size and instruction size for a stub.
3583 Return value is the instruction size. */
3586 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
3587 const insn_sequence
**stub_template
,
3588 int *stub_template_size
)
3590 const insn_sequence
*template = NULL
;
3591 int template_size
= 0, i
;
3594 template = stub_definitions
[stub_type
].template;
3595 template_size
= stub_definitions
[stub_type
].template_size
;
3598 for (i
= 0; i
< template_size
; i
++)
3600 switch (template[i
].type
)
3619 *stub_template
= template;
3621 if (stub_template_size
)
3622 *stub_template_size
= template_size
;
3627 /* As above, but don't actually build the stub. Just bump offset so
3628 we know stub section sizes. */
3631 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3634 struct elf32_arm_stub_hash_entry
*stub_entry
;
3635 struct elf32_arm_link_hash_table
*htab
;
3636 const insn_sequence
*template;
3637 int template_size
, size
;
3639 /* Massage our args to the form they really have. */
3640 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3641 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3643 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
3644 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
3646 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template,
3649 stub_entry
->stub_size
= size
;
3650 stub_entry
->stub_template
= template;
3651 stub_entry
->stub_template_size
= template_size
;
3653 size
= (size
+ 7) & ~7;
3654 stub_entry
->stub_sec
->size
+= size
;
3659 /* External entry points for sizing and building linker stubs. */
3661 /* Set up various things so that we can make a list of input sections
3662 for each output section included in the link. Returns -1 on error,
3663 0 when no stubs will be needed, and 1 on success. */
3666 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3667 struct bfd_link_info
*info
)
3670 unsigned int bfd_count
;
3671 int top_id
, top_index
;
3673 asection
**input_list
, **list
;
3675 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3677 if (! is_elf_hash_table (htab
))
3680 /* Count the number of input BFDs and find the top input section id. */
3681 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3683 input_bfd
= input_bfd
->link_next
)
3686 for (section
= input_bfd
->sections
;
3688 section
= section
->next
)
3690 if (top_id
< section
->id
)
3691 top_id
= section
->id
;
3694 htab
->bfd_count
= bfd_count
;
3696 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3697 htab
->stub_group
= bfd_zmalloc (amt
);
3698 if (htab
->stub_group
== NULL
)
3701 /* We can't use output_bfd->section_count here to find the top output
3702 section index as some sections may have been removed, and
3703 _bfd_strip_section_from_output doesn't renumber the indices. */
3704 for (section
= output_bfd
->sections
, top_index
= 0;
3706 section
= section
->next
)
3708 if (top_index
< section
->index
)
3709 top_index
= section
->index
;
3712 htab
->top_index
= top_index
;
3713 amt
= sizeof (asection
*) * (top_index
+ 1);
3714 input_list
= bfd_malloc (amt
);
3715 htab
->input_list
= input_list
;
3716 if (input_list
== NULL
)
3719 /* For sections we aren't interested in, mark their entries with a
3720 value we can check later. */
3721 list
= input_list
+ top_index
;
3723 *list
= bfd_abs_section_ptr
;
3724 while (list
-- != input_list
);
3726 for (section
= output_bfd
->sections
;
3728 section
= section
->next
)
3730 if ((section
->flags
& SEC_CODE
) != 0)
3731 input_list
[section
->index
] = NULL
;
3737 /* The linker repeatedly calls this function for each input section,
3738 in the order that input sections are linked into output sections.
3739 Build lists of input sections to determine groupings between which
3740 we may insert linker stubs. */
3743 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3746 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3748 if (isec
->output_section
->index
<= htab
->top_index
)
3750 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3752 if (*list
!= bfd_abs_section_ptr
)
3754 /* Steal the link_sec pointer for our list. */
3755 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3756 /* This happens to make the list in reverse order,
3757 which we reverse later. */
3758 PREV_SEC (isec
) = *list
;
3764 /* See whether we can group stub sections together. Grouping stub
3765 sections may result in fewer stubs. More importantly, we need to
3766 put all .init* and .fini* stubs at the end of the .init or
3767 .fini output sections respectively, because glibc splits the
3768 _init and _fini functions into multiple parts. Putting a stub in
3769 the middle of a function is not a good idea. */
3772 group_sections (struct elf32_arm_link_hash_table
*htab
,
3773 bfd_size_type stub_group_size
,
3774 bfd_boolean stubs_always_after_branch
)
3776 asection
**list
= htab
->input_list
;
3780 asection
*tail
= *list
;
3783 if (tail
== bfd_abs_section_ptr
)
3786 /* Reverse the list: we must avoid placing stubs at the
3787 beginning of the section because the beginning of the text
3788 section may be required for an interrupt vector in bare metal
3790 #define NEXT_SEC PREV_SEC
3792 while (tail
!= NULL
)
3794 /* Pop from tail. */
3795 asection
*item
= tail
;
3796 tail
= PREV_SEC (item
);
3799 NEXT_SEC (item
) = head
;
3803 while (head
!= NULL
)
3807 bfd_vma stub_group_start
= head
->output_offset
;
3808 bfd_vma end_of_next
;
3811 while (NEXT_SEC (curr
) != NULL
)
3813 next
= NEXT_SEC (curr
);
3814 end_of_next
= next
->output_offset
+ next
->size
;
3815 if (end_of_next
- stub_group_start
>= stub_group_size
)
3816 /* End of NEXT is too far from start, so stop. */
3818 /* Add NEXT to the group. */
3822 /* OK, the size from the start to the start of CURR is less
3823 than stub_group_size and thus can be handled by one stub
3824 section. (Or the head section is itself larger than
3825 stub_group_size, in which case we may be toast.)
3826 We should really be keeping track of the total size of
3827 stubs added here, as stubs contribute to the final output
3831 next
= NEXT_SEC (head
);
3832 /* Set up this stub group. */
3833 htab
->stub_group
[head
->id
].link_sec
= curr
;
3835 while (head
!= curr
&& (head
= next
) != NULL
);
3837 /* But wait, there's more! Input sections up to stub_group_size
3838 bytes after the stub section can be handled by it too. */
3839 if (!stubs_always_after_branch
)
3841 stub_group_start
= curr
->output_offset
+ curr
->size
;
3843 while (next
!= NULL
)
3845 end_of_next
= next
->output_offset
+ next
->size
;
3846 if (end_of_next
- stub_group_start
>= stub_group_size
)
3847 /* End of NEXT is too far from stubs, so stop. */
3849 /* Add NEXT to the stub group. */
3851 next
= NEXT_SEC (head
);
3852 htab
->stub_group
[head
->id
].link_sec
= curr
;
3858 while (list
++ != htab
->input_list
+ htab
->top_index
);
3860 free (htab
->input_list
);
3865 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3869 a8_reloc_compare (const void *a
, const void *b
)
3871 const struct a8_erratum_reloc
*ra
= a
, *rb
= b
;
3873 if (ra
->from
< rb
->from
)
3875 else if (ra
->from
> rb
->from
)
3881 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
3882 const char *, char **);
3884 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3885 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3886 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Return 1 if an error occurs, 0
3890 cortex_a8_erratum_scan (bfd
*input_bfd
, struct bfd_link_info
*info
,
3891 struct a8_erratum_fix
**a8_fixes_p
,
3892 unsigned int *num_a8_fixes_p
,
3893 unsigned int *a8_fix_table_size_p
,
3894 struct a8_erratum_reloc
*a8_relocs
,
3895 unsigned int num_a8_relocs
)
3898 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3899 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
3900 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
3901 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
3903 for (section
= input_bfd
->sections
;
3905 section
= section
->next
)
3907 bfd_byte
*contents
= NULL
;
3908 struct _arm_elf_section_data
*sec_data
;
3912 if (elf_section_type (section
) != SHT_PROGBITS
3913 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
3914 || (section
->flags
& SEC_EXCLUDE
) != 0
3915 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3916 || (section
->output_section
== bfd_abs_section_ptr
))
3919 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
3921 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
3922 contents
= elf_section_data (section
)->this_hdr
.contents
;
3923 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
3926 sec_data
= elf32_arm_section_data (section
);
3928 for (span
= 0; span
< sec_data
->mapcount
; span
++)
3930 unsigned int span_start
= sec_data
->map
[span
].vma
;
3931 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
3932 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
3934 char span_type
= sec_data
->map
[span
].type
;
3935 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
3937 if (span_type
!= 't')
3940 /* Span is entirely within a single 4KB region: skip scanning. */
3941 if (((base_vma
+ span_start
) & ~0xfff)
3942 == ((base_vma
+ span_end
) & ~0xfff))
3945 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3947 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3948 * The branch target is in the same 4KB region as the
3949 first half of the branch.
3950 * The instruction before the branch is a 32-bit
3951 length non-branch instruction.
3954 for (i
= span_start
; i
< span_end
;)
3956 unsigned int insn
= bfd_getl16 (&contents
[i
]);
3957 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
3958 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
3960 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
3965 /* Load the rest of the insn (in manual-friendly order). */
3966 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
3968 /* Encoding T4: B<c>.W. */
3969 is_b
= (insn
& 0xf800d000) == 0xf0009000;
3970 /* Encoding T1: BL<c>.W. */
3971 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
3972 /* Encoding T2: BLX<c>.W. */
3973 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
3974 /* Encoding T3: B<c>.W (not permitted in IT block). */
3975 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
3976 && (insn
& 0x07f00000) != 0x03800000;
3979 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
3981 if (((base_vma
+ i
) & 0xfff) == 0xffe && insn_32bit
3982 && is_32bit_branch
&& last_was_32bit
&& !last_was_branch
)
3985 bfd_boolean force_target_arm
= FALSE
;
3986 bfd_boolean force_target_thumb
= FALSE
;
3988 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3989 struct a8_erratum_reloc key
, *found
;
3991 key
.from
= base_vma
+ i
;
3992 found
= bsearch (&key
, a8_relocs
, num_a8_relocs
,
3993 sizeof (struct a8_erratum_reloc
),
3998 char *error_message
= NULL
;
3999 struct elf_link_hash_entry
*entry
;
4001 /* We don't care about the error returned from this
4002 function, only if there is glue or not. */
4003 entry
= find_thumb_glue (info
, found
->sym_name
,
4007 found
->non_a8_stub
= TRUE
;
4009 if (found
->r_type
== R_ARM_THM_CALL
4010 && found
->st_type
!= STT_ARM_TFUNC
)
4011 force_target_arm
= TRUE
;
4012 else if (found
->r_type
== R_ARM_THM_CALL
4013 && found
->st_type
== STT_ARM_TFUNC
)
4014 force_target_thumb
= TRUE
;
4017 /* Check if we have an offending branch instruction. */
4019 if (found
&& found
->non_a8_stub
)
4020 /* We've already made a stub for this instruction, e.g.
4021 it's a long branch or a Thumb->ARM stub. Assume that
4022 stub will suffice to work around the A8 erratum (see
4023 setting of always_after_branch above). */
4027 offset
= (insn
& 0x7ff) << 1;
4028 offset
|= (insn
& 0x3f0000) >> 4;
4029 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4030 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4031 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4032 if (offset
& 0x100000)
4034 stub_type
= arm_stub_a8_veneer_b_cond
;
4036 else if (is_b
|| is_bl
|| is_blx
)
4038 int s
= (insn
& 0x4000000) != 0;
4039 int j1
= (insn
& 0x2000) != 0;
4040 int j2
= (insn
& 0x800) != 0;
4044 offset
= (insn
& 0x7ff) << 1;
4045 offset
|= (insn
& 0x3ff0000) >> 4;
4049 if (offset
& 0x1000000)
4050 offset
|= ~0xffffff;
4055 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4056 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4059 if (stub_type
!= arm_stub_none
)
4061 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4063 /* The original instruction is a BL, but the target is
4064 an ARM instruction. If we were not making a stub,
4065 the BL would have been converted to a BLX. Use the
4066 BLX stub instead in that case. */
4067 if (htab
->use_blx
&& force_target_arm
4068 && stub_type
== arm_stub_a8_veneer_bl
)
4070 stub_type
= arm_stub_a8_veneer_blx
;
4074 /* Conversely, if the original instruction was
4075 BLX but the target is Thumb mode, use the BL
4077 else if (force_target_thumb
4078 && stub_type
== arm_stub_a8_veneer_blx
)
4080 stub_type
= arm_stub_a8_veneer_bl
;
4088 /* If we found a relocation, use the proper destination,
4089 not the offset in the (unrelocated) instruction.
4090 Note this is always done if we switched the stub type
4093 offset
= found
->destination
- pc_for_insn
;
4095 target
= pc_for_insn
+ offset
;
4097 /* The BLX stub is ARM-mode code. Adjust the offset to
4098 take the different PC value (+8 instead of +4) into
4100 if (stub_type
== arm_stub_a8_veneer_blx
)
4103 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4107 if (num_a8_fixes
== a8_fix_table_size
)
4109 a8_fix_table_size
*= 2;
4110 a8_fixes
= bfd_realloc (a8_fixes
,
4111 sizeof (struct a8_erratum_fix
)
4112 * a8_fix_table_size
);
4115 stub_name
= bfd_malloc (8 + 1 + 8 + 1);
4116 if (stub_name
!= NULL
)
4117 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4119 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4120 a8_fixes
[num_a8_fixes
].section
= section
;
4121 a8_fixes
[num_a8_fixes
].offset
= i
;
4122 a8_fixes
[num_a8_fixes
].addend
= offset
;
4123 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4124 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4125 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4132 i
+= insn_32bit
? 4 : 2;
4133 last_was_32bit
= insn_32bit
;
4134 last_was_branch
= is_32bit_branch
;
4138 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4142 *a8_fixes_p
= a8_fixes
;
4143 *num_a8_fixes_p
= num_a8_fixes
;
4144 *a8_fix_table_size_p
= a8_fix_table_size
;
4149 /* Determine and set the size of the stub section for a final link.
4151 The basic idea here is to examine all the relocations looking for
4152 PC-relative calls to a target that is unreachable with a "bl"
4156 elf32_arm_size_stubs (bfd
*output_bfd
,
4158 struct bfd_link_info
*info
,
4159 bfd_signed_vma group_size
,
4160 asection
* (*add_stub_section
) (const char *, asection
*),
4161 void (*layout_sections_again
) (void))
4163 bfd_size_type stub_group_size
;
4164 bfd_boolean stubs_always_after_branch
;
4165 bfd_boolean stub_changed
= 0;
4166 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4167 struct a8_erratum_fix
*a8_fixes
= NULL
;
4168 unsigned int num_a8_fixes
= 0, prev_num_a8_fixes
= 0, a8_fix_table_size
= 10;
4169 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4170 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4172 if (htab
->fix_cortex_a8
)
4174 a8_fixes
= bfd_zmalloc (sizeof (struct a8_erratum_fix
)
4175 * a8_fix_table_size
);
4176 a8_relocs
= bfd_zmalloc (sizeof (struct a8_erratum_reloc
)
4177 * a8_reloc_table_size
);
4180 /* Propagate mach to stub bfd, because it may not have been
4181 finalized when we created stub_bfd. */
4182 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4183 bfd_get_mach (output_bfd
));
4185 /* Stash our params away. */
4186 htab
->stub_bfd
= stub_bfd
;
4187 htab
->add_stub_section
= add_stub_section
;
4188 htab
->layout_sections_again
= layout_sections_again
;
4189 stubs_always_after_branch
= group_size
< 0;
4191 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4192 as the first half of a 32-bit branch straddling two 4K pages. This is a
4193 crude way of enforcing that. */
4194 if (htab
->fix_cortex_a8
)
4195 stubs_always_after_branch
= 1;
4198 stub_group_size
= -group_size
;
4200 stub_group_size
= group_size
;
4202 if (stub_group_size
== 1)
4204 /* Default values. */
4205 /* Thumb branch range is +-4MB has to be used as the default
4206 maximum size (a given section can contain both ARM and Thumb
4207 code, so the worst case has to be taken into account).
4209 This value is 24K less than that, which allows for 2025
4210 12-byte stubs. If we exceed that, then we will fail to link.
4211 The user will have to relink with an explicit group size
4213 stub_group_size
= 4170000;
4216 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4221 unsigned int bfd_indx
;
4226 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4228 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4230 Elf_Internal_Shdr
*symtab_hdr
;
4232 Elf_Internal_Sym
*local_syms
= NULL
;
4236 /* We'll need the symbol table in a second. */
4237 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4238 if (symtab_hdr
->sh_info
== 0)
4241 /* Walk over each section attached to the input bfd. */
4242 for (section
= input_bfd
->sections
;
4244 section
= section
->next
)
4246 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4248 /* If there aren't any relocs, then there's nothing more
4250 if ((section
->flags
& SEC_RELOC
) == 0
4251 || section
->reloc_count
== 0
4252 || (section
->flags
& SEC_CODE
) == 0)
4255 /* If this section is a link-once section that will be
4256 discarded, then don't create any stubs. */
4257 if (section
->output_section
== NULL
4258 || section
->output_section
->owner
!= output_bfd
)
4261 /* Get the relocs. */
4263 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4264 NULL
, info
->keep_memory
);
4265 if (internal_relocs
== NULL
)
4266 goto error_ret_free_local
;
4268 /* Now examine each relocation. */
4269 irela
= internal_relocs
;
4270 irelaend
= irela
+ section
->reloc_count
;
4271 for (; irela
< irelaend
; irela
++)
4273 unsigned int r_type
, r_indx
;
4274 enum elf32_arm_stub_type stub_type
;
4275 struct elf32_arm_stub_hash_entry
*stub_entry
;
4278 bfd_vma destination
;
4279 struct elf32_arm_link_hash_entry
*hash
;
4280 const char *sym_name
;
4282 const asection
*id_sec
;
4283 unsigned char st_type
;
4284 bfd_boolean created_stub
= FALSE
;
4286 r_type
= ELF32_R_TYPE (irela
->r_info
);
4287 r_indx
= ELF32_R_SYM (irela
->r_info
);
4289 if (r_type
>= (unsigned int) R_ARM_max
)
4291 bfd_set_error (bfd_error_bad_value
);
4292 error_ret_free_internal
:
4293 if (elf_section_data (section
)->relocs
== NULL
)
4294 free (internal_relocs
);
4295 goto error_ret_free_local
;
4298 /* Only look for stubs on branch instructions. */
4299 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4300 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4301 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4302 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4303 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4304 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4305 && (r_type
!= (unsigned int) R_ARM_PLT32
))
4308 /* Now determine the call target, its name, value,
4315 if (r_indx
< symtab_hdr
->sh_info
)
4317 /* It's a local symbol. */
4318 Elf_Internal_Sym
*sym
;
4319 Elf_Internal_Shdr
*hdr
;
4321 if (local_syms
== NULL
)
4324 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4325 if (local_syms
== NULL
)
4327 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4328 symtab_hdr
->sh_info
, 0,
4330 if (local_syms
== NULL
)
4331 goto error_ret_free_internal
;
4334 sym
= local_syms
+ r_indx
;
4335 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4336 sym_sec
= hdr
->bfd_section
;
4337 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4338 sym_value
= sym
->st_value
;
4339 destination
= (sym_value
+ irela
->r_addend
4340 + sym_sec
->output_offset
4341 + sym_sec
->output_section
->vma
);
4342 st_type
= ELF_ST_TYPE (sym
->st_info
);
4344 = bfd_elf_string_from_elf_section (input_bfd
,
4345 symtab_hdr
->sh_link
,
4350 /* It's an external symbol. */
4353 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4354 hash
= ((struct elf32_arm_link_hash_entry
*)
4355 elf_sym_hashes (input_bfd
)[e_indx
]);
4357 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4358 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4359 hash
= ((struct elf32_arm_link_hash_entry
*)
4360 hash
->root
.root
.u
.i
.link
);
4362 if (hash
->root
.root
.type
== bfd_link_hash_defined
4363 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4365 sym_sec
= hash
->root
.root
.u
.def
.section
;
4366 sym_value
= hash
->root
.root
.u
.def
.value
;
4367 if (sym_sec
->output_section
!= NULL
)
4368 destination
= (sym_value
+ irela
->r_addend
4369 + sym_sec
->output_offset
4370 + sym_sec
->output_section
->vma
);
4372 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
4373 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
4375 /* For a shared library, use the PLT stub as
4376 target address to decide whether a long
4377 branch stub is needed.
4378 For absolute code, they cannot be handled. */
4379 struct elf32_arm_link_hash_table
*globals
=
4380 elf32_arm_hash_table (info
);
4382 if (globals
->splt
!= NULL
&& hash
!= NULL
4383 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4385 sym_sec
= globals
->splt
;
4386 sym_value
= hash
->root
.plt
.offset
;
4387 if (sym_sec
->output_section
!= NULL
)
4388 destination
= (sym_value
4389 + sym_sec
->output_offset
4390 + sym_sec
->output_section
->vma
);
4397 bfd_set_error (bfd_error_bad_value
);
4398 goto error_ret_free_internal
;
4400 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4401 sym_name
= hash
->root
.root
.root
.string
;
4406 /* Determine what (if any) linker stub is needed. */
4407 stub_type
= arm_type_of_stub (info
, section
, irela
,
4409 destination
, sym_sec
,
4410 input_bfd
, sym_name
);
4411 if (stub_type
== arm_stub_none
)
4414 /* Support for grouping stub sections. */
4415 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4417 /* Get the name of this stub. */
4418 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
4421 goto error_ret_free_internal
;
4423 /* We've either created a stub for this reloc already,
4424 or we are about to. */
4425 created_stub
= TRUE
;
4427 stub_entry
= arm_stub_hash_lookup
4428 (&htab
->stub_hash_table
, stub_name
,
4430 if (stub_entry
!= NULL
)
4432 /* The proper stub has already been created. */
4437 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
4439 if (stub_entry
== NULL
)
4442 goto error_ret_free_internal
;
4445 stub_entry
->target_value
= sym_value
;
4446 stub_entry
->target_section
= sym_sec
;
4447 stub_entry
->stub_type
= stub_type
;
4448 stub_entry
->h
= hash
;
4449 stub_entry
->st_type
= st_type
;
4451 if (sym_name
== NULL
)
4452 sym_name
= "unnamed";
4453 stub_entry
->output_name
4454 = bfd_alloc (htab
->stub_bfd
,
4455 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
4456 + strlen (sym_name
));
4457 if (stub_entry
->output_name
== NULL
)
4460 goto error_ret_free_internal
;
4463 /* For historical reasons, use the existing names for
4464 ARM-to-Thumb and Thumb-to-ARM stubs. */
4465 if ( ((r_type
== (unsigned int) R_ARM_THM_CALL
)
4466 || (r_type
== (unsigned int) R_ARM_THM_JUMP24
))
4467 && st_type
!= STT_ARM_TFUNC
)
4468 sprintf (stub_entry
->output_name
,
4469 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
4470 else if ( ((r_type
== (unsigned int) R_ARM_CALL
)
4471 || (r_type
== (unsigned int) R_ARM_JUMP24
))
4472 && st_type
== STT_ARM_TFUNC
)
4473 sprintf (stub_entry
->output_name
,
4474 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
4476 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
4479 stub_changed
= TRUE
;
4483 /* Look for relocations which might trigger Cortex-A8
4485 if (htab
->fix_cortex_a8
4486 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
4487 || r_type
== (unsigned int) R_ARM_THM_JUMP19
4488 || r_type
== (unsigned int) R_ARM_THM_CALL
4489 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
4491 bfd_vma from
= section
->output_section
->vma
4492 + section
->output_offset
4495 if ((from
& 0xfff) == 0xffe)
4497 /* Found a candidate. Note we haven't checked the
4498 destination is within 4K here: if we do so (and
4499 don't create an entry in a8_relocs) we can't tell
4500 that a branch should have been relocated when
4502 if (num_a8_relocs
== a8_reloc_table_size
)
4504 a8_reloc_table_size
*= 2;
4505 a8_relocs
= bfd_realloc (a8_relocs
,
4506 sizeof (struct a8_erratum_reloc
)
4507 * a8_reloc_table_size
);
4510 a8_relocs
[num_a8_relocs
].from
= from
;
4511 a8_relocs
[num_a8_relocs
].destination
= destination
;
4512 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
4513 a8_relocs
[num_a8_relocs
].st_type
= st_type
;
4514 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
4515 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
4522 /* We're done with the internal relocs, free them. */
4523 if (elf_section_data (section
)->relocs
== NULL
)
4524 free (internal_relocs
);
4527 if (htab
->fix_cortex_a8
)
4529 /* Sort relocs which might apply to Cortex-A8 erratum. */
4530 qsort (a8_relocs
, num_a8_relocs
, sizeof (struct a8_erratum_reloc
),
4533 /* Scan for branches which might trigger Cortex-A8 erratum. */
4534 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
4535 &num_a8_fixes
, &a8_fix_table_size
,
4536 a8_relocs
, num_a8_relocs
) != 0)
4537 goto error_ret_free_local
;
4541 if (htab
->fix_cortex_a8
&& num_a8_fixes
!= prev_num_a8_fixes
)
4542 stub_changed
= TRUE
;
4547 /* OK, we've added some stubs. Find out the new size of the
4549 for (stub_sec
= htab
->stub_bfd
->sections
;
4551 stub_sec
= stub_sec
->next
)
4553 /* Ignore non-stub sections. */
4554 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4560 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
4562 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4563 if (htab
->fix_cortex_a8
)
4564 for (i
= 0; i
< num_a8_fixes
; i
++)
4566 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
4567 a8_fixes
[i
].section
, htab
);
4569 if (stub_sec
== NULL
)
4570 goto error_ret_free_local
;
4573 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
4578 /* Ask the linker to do its stuff. */
4579 (*htab
->layout_sections_again
) ();
4580 stub_changed
= FALSE
;
4581 prev_num_a8_fixes
= num_a8_fixes
;
4584 /* Add stubs for Cortex-A8 erratum fixes now. */
4585 if (htab
->fix_cortex_a8
)
4587 for (i
= 0; i
< num_a8_fixes
; i
++)
4589 struct elf32_arm_stub_hash_entry
*stub_entry
;
4590 char *stub_name
= a8_fixes
[i
].stub_name
;
4591 asection
*section
= a8_fixes
[i
].section
;
4592 unsigned int section_id
= a8_fixes
[i
].section
->id
;
4593 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
4594 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
4595 const insn_sequence
*template;
4596 int template_size
, size
= 0;
4598 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4600 if (stub_entry
== NULL
)
4602 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
4608 stub_entry
->stub_sec
= stub_sec
;
4609 stub_entry
->stub_offset
= 0;
4610 stub_entry
->id_sec
= link_sec
;
4611 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
4612 stub_entry
->target_section
= a8_fixes
[i
].section
;
4613 stub_entry
->target_value
= a8_fixes
[i
].offset
;
4614 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
4615 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
4616 stub_entry
->st_type
= STT_ARM_TFUNC
;
4618 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
, &template,
4621 stub_entry
->stub_size
= size
;
4622 stub_entry
->stub_template
= template;
4623 stub_entry
->stub_template_size
= template_size
;
4626 /* Stash the Cortex-A8 erratum fix array for use later in
4627 elf32_arm_write_section(). */
4628 htab
->a8_erratum_fixes
= a8_fixes
;
4629 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
4633 htab
->a8_erratum_fixes
= NULL
;
4634 htab
->num_a8_erratum_fixes
= 0;
4638 error_ret_free_local
:
4642 /* Build all the stubs associated with the current output file. The
4643 stubs are kept in a hash table attached to the main linker hash
4644 table. We also set up the .plt entries for statically linked PIC
4645 functions here. This function is called via arm_elf_finish in the
4649 elf32_arm_build_stubs (struct bfd_link_info
*info
)
4652 struct bfd_hash_table
*table
;
4653 struct elf32_arm_link_hash_table
*htab
;
4655 htab
= elf32_arm_hash_table (info
);
4657 for (stub_sec
= htab
->stub_bfd
->sections
;
4659 stub_sec
= stub_sec
->next
)
4663 /* Ignore non-stub sections. */
4664 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4667 /* Allocate memory to hold the linker stubs. */
4668 size
= stub_sec
->size
;
4669 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
4670 if (stub_sec
->contents
== NULL
&& size
!= 0)
4675 /* Build the stubs as directed by the stub hash table. */
4676 table
= &htab
->stub_hash_table
;
4677 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4682 /* Locate the Thumb encoded calling stub for NAME. */
4684 static struct elf_link_hash_entry
*
4685 find_thumb_glue (struct bfd_link_info
*link_info
,
4687 char **error_message
)
4690 struct elf_link_hash_entry
*hash
;
4691 struct elf32_arm_link_hash_table
*hash_table
;
4693 /* We need a pointer to the armelf specific hash table. */
4694 hash_table
= elf32_arm_hash_table (link_info
);
4696 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4697 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4699 BFD_ASSERT (tmp_name
);
4701 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4703 hash
= elf_link_hash_lookup
4704 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4707 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
4708 tmp_name
, name
) == -1)
4709 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4716 /* Locate the ARM encoded calling stub for NAME. */
4718 static struct elf_link_hash_entry
*
4719 find_arm_glue (struct bfd_link_info
*link_info
,
4721 char **error_message
)
4724 struct elf_link_hash_entry
*myh
;
4725 struct elf32_arm_link_hash_table
*hash_table
;
4727 /* We need a pointer to the elfarm specific hash table. */
4728 hash_table
= elf32_arm_hash_table (link_info
);
4730 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4731 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4733 BFD_ASSERT (tmp_name
);
4735 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4737 myh
= elf_link_hash_lookup
4738 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4741 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
4742 tmp_name
, name
) == -1)
4743 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4750 /* ARM->Thumb glue (static images):
4754 ldr r12, __func_addr
4757 .word func @ behave as if you saw a ARM_32 reloc.
4764 .word func @ behave as if you saw a ARM_32 reloc.
4766 (relocatable images)
4769 ldr r12, __func_offset
4775 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4776 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
4777 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
4778 static const insn32 a2t3_func_addr_insn
= 0x00000001;
4780 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4781 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
4782 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
4784 #define ARM2THUMB_PIC_GLUE_SIZE 16
4785 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
4786 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
4787 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
4789 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4793 __func_from_thumb: __func_from_thumb:
4795 nop ldr r6, __func_addr
4805 #define THUMB2ARM_GLUE_SIZE 8
4806 static const insn16 t2a1_bx_pc_insn
= 0x4778;
4807 static const insn16 t2a2_noop_insn
= 0x46c0;
4808 static const insn32 t2a3_b_insn
= 0xea000000;
4810 #define VFP11_ERRATUM_VENEER_SIZE 8
4812 #define ARM_BX_VENEER_SIZE 12
4813 static const insn32 armbx1_tst_insn
= 0xe3100001;
4814 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
4815 static const insn32 armbx3_bx_insn
= 0xe12fff10;
4817 #ifndef ELFARM_NABI_C_INCLUDED
4819 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
4822 bfd_byte
* contents
;
4826 /* Do not include empty glue sections in the output. */
4829 s
= bfd_get_section_by_name (abfd
, name
);
4831 s
->flags
|= SEC_EXCLUDE
;
4836 BFD_ASSERT (abfd
!= NULL
);
4838 s
= bfd_get_section_by_name (abfd
, name
);
4839 BFD_ASSERT (s
!= NULL
);
4841 contents
= bfd_alloc (abfd
, size
);
4843 BFD_ASSERT (s
->size
== size
);
4844 s
->contents
= contents
;
4848 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
4850 struct elf32_arm_link_hash_table
* globals
;
4852 globals
= elf32_arm_hash_table (info
);
4853 BFD_ASSERT (globals
!= NULL
);
4855 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4856 globals
->arm_glue_size
,
4857 ARM2THUMB_GLUE_SECTION_NAME
);
4859 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4860 globals
->thumb_glue_size
,
4861 THUMB2ARM_GLUE_SECTION_NAME
);
4863 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4864 globals
->vfp11_erratum_glue_size
,
4865 VFP11_ERRATUM_VENEER_SECTION_NAME
);
4867 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4868 globals
->bx_glue_size
,
4869 ARM_BX_GLUE_SECTION_NAME
);
4874 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4875 returns the symbol identifying the stub. */
4877 static struct elf_link_hash_entry
*
4878 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
4879 struct elf_link_hash_entry
* h
)
4881 const char * name
= h
->root
.root
.string
;
4884 struct elf_link_hash_entry
* myh
;
4885 struct bfd_link_hash_entry
* bh
;
4886 struct elf32_arm_link_hash_table
* globals
;
4890 globals
= elf32_arm_hash_table (link_info
);
4892 BFD_ASSERT (globals
!= NULL
);
4893 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4895 s
= bfd_get_section_by_name
4896 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
4898 BFD_ASSERT (s
!= NULL
);
4900 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4902 BFD_ASSERT (tmp_name
);
4904 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4906 myh
= elf_link_hash_lookup
4907 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4911 /* We've already seen this guy. */
4916 /* The only trick here is using hash_table->arm_glue_size as the value.
4917 Even though the section isn't allocated yet, this is where we will be
4918 putting it. The +1 on the value marks that the stub has not been
4919 output yet - not that it is a Thumb function. */
4921 val
= globals
->arm_glue_size
+ 1;
4922 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4923 tmp_name
, BSF_GLOBAL
, s
, val
,
4924 NULL
, TRUE
, FALSE
, &bh
);
4926 myh
= (struct elf_link_hash_entry
*) bh
;
4927 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4928 myh
->forced_local
= 1;
4932 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
4933 || globals
->pic_veneer
)
4934 size
= ARM2THUMB_PIC_GLUE_SIZE
;
4935 else if (globals
->use_blx
)
4936 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
4938 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
4941 globals
->arm_glue_size
+= size
;
4946 /* Allocate space for ARMv4 BX veneers. */
4949 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
4952 struct elf32_arm_link_hash_table
*globals
;
4954 struct elf_link_hash_entry
*myh
;
4955 struct bfd_link_hash_entry
*bh
;
4958 /* BX PC does not need a veneer. */
4962 globals
= elf32_arm_hash_table (link_info
);
4964 BFD_ASSERT (globals
!= NULL
);
4965 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4967 /* Check if this veneer has already been allocated. */
4968 if (globals
->bx_glue_offset
[reg
])
4971 s
= bfd_get_section_by_name
4972 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
4974 BFD_ASSERT (s
!= NULL
);
4976 /* Add symbol for veneer. */
4977 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
4979 BFD_ASSERT (tmp_name
);
4981 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
4983 myh
= elf_link_hash_lookup
4984 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4986 BFD_ASSERT (myh
== NULL
);
4989 val
= globals
->bx_glue_size
;
4990 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4991 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4992 NULL
, TRUE
, FALSE
, &bh
);
4994 myh
= (struct elf_link_hash_entry
*) bh
;
4995 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4996 myh
->forced_local
= 1;
4998 s
->size
+= ARM_BX_VENEER_SIZE
;
4999 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5000 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5004 /* Add an entry to the code/data map for section SEC. */
5007 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5009 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5010 unsigned int newidx
;
5012 if (sec_data
->map
== NULL
)
5014 sec_data
->map
= bfd_malloc (sizeof (elf32_arm_section_map
));
5015 sec_data
->mapcount
= 0;
5016 sec_data
->mapsize
= 1;
5019 newidx
= sec_data
->mapcount
++;
5021 if (sec_data
->mapcount
> sec_data
->mapsize
)
5023 sec_data
->mapsize
*= 2;
5024 sec_data
->map
= bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5025 * sizeof (elf32_arm_section_map
));
5030 sec_data
->map
[newidx
].vma
= vma
;
5031 sec_data
->map
[newidx
].type
= type
;
5036 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5037 veneers are handled for now. */
5040 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5041 elf32_vfp11_erratum_list
*branch
,
5043 asection
*branch_sec
,
5044 unsigned int offset
)
5047 struct elf32_arm_link_hash_table
*hash_table
;
5049 struct elf_link_hash_entry
*myh
;
5050 struct bfd_link_hash_entry
*bh
;
5052 struct _arm_elf_section_data
*sec_data
;
5054 elf32_vfp11_erratum_list
*newerr
;
5056 hash_table
= elf32_arm_hash_table (link_info
);
5058 BFD_ASSERT (hash_table
!= NULL
);
5059 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5061 s
= bfd_get_section_by_name
5062 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5064 sec_data
= elf32_arm_section_data (s
);
5066 BFD_ASSERT (s
!= NULL
);
5068 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
5069 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5071 BFD_ASSERT (tmp_name
);
5073 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5074 hash_table
->num_vfp11_fixes
);
5076 myh
= elf_link_hash_lookup
5077 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5079 BFD_ASSERT (myh
== NULL
);
5082 val
= hash_table
->vfp11_erratum_glue_size
;
5083 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5084 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5085 NULL
, TRUE
, FALSE
, &bh
);
5087 myh
= (struct elf_link_hash_entry
*) bh
;
5088 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5089 myh
->forced_local
= 1;
5091 /* Link veneer back to calling location. */
5092 errcount
= ++(sec_data
->erratumcount
);
5093 newerr
= bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5095 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5097 newerr
->u
.v
.branch
= branch
;
5098 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5099 branch
->u
.b
.veneer
= newerr
;
5101 newerr
->next
= sec_data
->erratumlist
;
5102 sec_data
->erratumlist
= newerr
;
5104 /* A symbol for the return from the veneer. */
5105 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5106 hash_table
->num_vfp11_fixes
);
5108 myh
= elf_link_hash_lookup
5109 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5116 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5117 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5119 myh
= (struct elf_link_hash_entry
*) bh
;
5120 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5121 myh
->forced_local
= 1;
5125 /* Generate a mapping symbol for the veneer section, and explicitly add an
5126 entry for that symbol to the code/data map for the section. */
5127 if (hash_table
->vfp11_erratum_glue_size
== 0)
5130 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5131 ever requires this erratum fix. */
5132 _bfd_generic_link_add_one_symbol (link_info
,
5133 hash_table
->bfd_of_glue_owner
, "$a",
5134 BSF_LOCAL
, s
, 0, NULL
,
5137 myh
= (struct elf_link_hash_entry
*) bh
;
5138 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5139 myh
->forced_local
= 1;
5141 /* The elf32_arm_init_maps function only cares about symbols from input
5142 BFDs. We must make a note of this generated mapping symbol
5143 ourselves so that code byteswapping works properly in
5144 elf32_arm_write_section. */
5145 elf32_arm_section_map_add (s
, 'a', 0);
5148 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5149 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5150 hash_table
->num_vfp11_fixes
++;
5152 /* The offset of the veneer. */
5156 #define ARM_GLUE_SECTION_FLAGS \
5157 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5158 | SEC_READONLY | SEC_LINKER_CREATED)
5160 /* Create a fake section for use by the ARM backend of the linker. */
5163 arm_make_glue_section (bfd
* abfd
, const char * name
)
5167 sec
= bfd_get_section_by_name (abfd
, name
);
5172 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5175 || !bfd_set_section_alignment (abfd
, sec
, 2))
5178 /* Set the gc mark to prevent the section from being removed by garbage
5179 collection, despite the fact that no relocs refer to this section. */
5185 /* Add the glue sections to ABFD. This function is called from the
5186 linker scripts in ld/emultempl/{armelf}.em. */
5189 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5190 struct bfd_link_info
*info
)
5192 /* If we are only performing a partial
5193 link do not bother adding the glue. */
5194 if (info
->relocatable
)
5197 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5198 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5199 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5200 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5203 /* Select a BFD to be used to hold the sections used by the glue code.
5204 This function is called from the linker scripts in ld/emultempl/
5208 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5210 struct elf32_arm_link_hash_table
*globals
;
5212 /* If we are only performing a partial link
5213 do not bother getting a bfd to hold the glue. */
5214 if (info
->relocatable
)
5217 /* Make sure we don't attach the glue sections to a dynamic object. */
5218 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5220 globals
= elf32_arm_hash_table (info
);
5222 BFD_ASSERT (globals
!= NULL
);
5224 if (globals
->bfd_of_glue_owner
!= NULL
)
5227 /* Save the bfd for later use. */
5228 globals
->bfd_of_glue_owner
= abfd
;
5234 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5236 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5238 globals
->use_blx
= 1;
5242 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5243 struct bfd_link_info
*link_info
)
5245 Elf_Internal_Shdr
*symtab_hdr
;
5246 Elf_Internal_Rela
*internal_relocs
= NULL
;
5247 Elf_Internal_Rela
*irel
, *irelend
;
5248 bfd_byte
*contents
= NULL
;
5251 struct elf32_arm_link_hash_table
*globals
;
5253 /* If we are only performing a partial link do not bother
5254 to construct any glue. */
5255 if (link_info
->relocatable
)
5258 /* Here we have a bfd that is to be included on the link. We have a
5259 hook to do reloc rummaging, before section sizes are nailed down. */
5260 globals
= elf32_arm_hash_table (link_info
);
5262 BFD_ASSERT (globals
!= NULL
);
5264 check_use_blx (globals
);
5266 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5268 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5273 /* PR 5398: If we have not decided to include any loadable sections in
5274 the output then we will not have a glue owner bfd. This is OK, it
5275 just means that there is nothing else for us to do here. */
5276 if (globals
->bfd_of_glue_owner
== NULL
)
5279 /* Rummage around all the relocs and map the glue vectors. */
5280 sec
= abfd
->sections
;
5285 for (; sec
!= NULL
; sec
= sec
->next
)
5287 if (sec
->reloc_count
== 0)
5290 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5293 symtab_hdr
= & elf_symtab_hdr (abfd
);
5295 /* Load the relocs. */
5297 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5299 if (internal_relocs
== NULL
)
5302 irelend
= internal_relocs
+ sec
->reloc_count
;
5303 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5306 unsigned long r_index
;
5308 struct elf_link_hash_entry
*h
;
5310 r_type
= ELF32_R_TYPE (irel
->r_info
);
5311 r_index
= ELF32_R_SYM (irel
->r_info
);
5313 /* These are the only relocation types we care about. */
5314 if ( r_type
!= R_ARM_PC24
5315 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
5318 /* Get the section contents if we haven't done so already. */
5319 if (contents
== NULL
)
5321 /* Get cached copy if it exists. */
5322 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5323 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5326 /* Go get them off disk. */
5327 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5332 if (r_type
== R_ARM_V4BX
)
5336 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
5337 record_arm_bx_glue (link_info
, reg
);
5341 /* If the relocation is not against a symbol it cannot concern us. */
5344 /* We don't care about local symbols. */
5345 if (r_index
< symtab_hdr
->sh_info
)
5348 /* This is an external symbol. */
5349 r_index
-= symtab_hdr
->sh_info
;
5350 h
= (struct elf_link_hash_entry
*)
5351 elf_sym_hashes (abfd
)[r_index
];
5353 /* If the relocation is against a static symbol it must be within
5354 the current section and so cannot be a cross ARM/Thumb relocation. */
5358 /* If the call will go through a PLT entry then we do not need
5360 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
5366 /* This one is a call from arm code. We need to look up
5367 the target of the call. If it is a thumb target, we
5369 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
5370 record_arm_to_thumb_glue (link_info
, h
);
5378 if (contents
!= NULL
5379 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5383 if (internal_relocs
!= NULL
5384 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5385 free (internal_relocs
);
5386 internal_relocs
= NULL
;
5392 if (contents
!= NULL
5393 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5395 if (internal_relocs
!= NULL
5396 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5397 free (internal_relocs
);
5404 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5407 bfd_elf32_arm_init_maps (bfd
*abfd
)
5409 Elf_Internal_Sym
*isymbuf
;
5410 Elf_Internal_Shdr
*hdr
;
5411 unsigned int i
, localsyms
;
5413 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5414 if (! is_arm_elf (abfd
))
5417 if ((abfd
->flags
& DYNAMIC
) != 0)
5420 hdr
= & elf_symtab_hdr (abfd
);
5421 localsyms
= hdr
->sh_info
;
5423 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5424 should contain the number of local symbols, which should come before any
5425 global symbols. Mapping symbols are always local. */
5426 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
5429 /* No internal symbols read? Skip this BFD. */
5430 if (isymbuf
== NULL
)
5433 for (i
= 0; i
< localsyms
; i
++)
5435 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
5436 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5440 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
5442 name
= bfd_elf_string_from_elf_section (abfd
,
5443 hdr
->sh_link
, isym
->st_name
);
5445 if (bfd_is_arm_special_symbol_name (name
,
5446 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
5447 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
5453 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5454 say what they wanted. */
5457 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5459 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5460 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5462 if (globals
->fix_cortex_a8
== -1)
5464 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5465 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
5466 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
5467 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
5468 globals
->fix_cortex_a8
= 1;
5470 globals
->fix_cortex_a8
= 0;
5476 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5478 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5479 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5481 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5482 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
5484 switch (globals
->vfp11_fix
)
5486 case BFD_ARM_VFP11_FIX_DEFAULT
:
5487 case BFD_ARM_VFP11_FIX_NONE
:
5488 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5492 /* Give a warning, but do as the user requests anyway. */
5493 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
5494 "workaround is not necessary for target architecture"), obfd
);
5497 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
5498 /* For earlier architectures, we might need the workaround, but do not
5499 enable it by default. If users is running with broken hardware, they
5500 must enable the erratum fix explicitly. */
5501 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5505 enum bfd_arm_vfp11_pipe
5513 /* Return a VFP register number. This is encoded as RX:X for single-precision
5514 registers, or X:RX for double-precision registers, where RX is the group of
5515 four bits in the instruction encoding and X is the single extension bit.
5516 RX and X fields are specified using their lowest (starting) bit. The return
5519 0...31: single-precision registers s0...s31
5520 32...63: double-precision registers d0...d31.
5522 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5523 encounter VFP3 instructions, so we allow the full range for DP registers. */
5526 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
5530 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
5532 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
5535 /* Set bits in *WMASK according to a register number REG as encoded by
5536 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5539 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
5544 *wmask
|= 3 << ((reg
- 32) * 2);
5547 /* Return TRUE if WMASK overwrites anything in REGS. */
5550 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
5554 for (i
= 0; i
< numregs
; i
++)
5556 unsigned int reg
= regs
[i
];
5558 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
5566 if ((wmask
& (3 << (reg
* 2))) != 0)
5573 /* In this function, we're interested in two things: finding input registers
5574 for VFP data-processing instructions, and finding the set of registers which
5575 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5576 hold the written set, so FLDM etc. are easy to deal with (we're only
5577 interested in 32 SP registers or 16 dp registers, due to the VFP version
5578 implemented by the chip in question). DP registers are marked by setting
5579 both SP registers in the write mask). */
5581 static enum bfd_arm_vfp11_pipe
5582 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
5585 enum bfd_arm_vfp11_pipe pipe
= VFP11_BAD
;
5586 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
5588 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5591 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5592 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5594 pqrs
= ((insn
& 0x00800000) >> 20)
5595 | ((insn
& 0x00300000) >> 19)
5596 | ((insn
& 0x00000040) >> 6);
5600 case 0: /* fmac[sd]. */
5601 case 1: /* fnmac[sd]. */
5602 case 2: /* fmsc[sd]. */
5603 case 3: /* fnmsc[sd]. */
5605 bfd_arm_vfp11_write_mask (destmask
, fd
);
5607 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5612 case 4: /* fmul[sd]. */
5613 case 5: /* fnmul[sd]. */
5614 case 6: /* fadd[sd]. */
5615 case 7: /* fsub[sd]. */
5619 case 8: /* fdiv[sd]. */
5622 bfd_arm_vfp11_write_mask (destmask
, fd
);
5623 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5628 case 15: /* extended opcode. */
5630 unsigned int extn
= ((insn
>> 15) & 0x1e)
5631 | ((insn
>> 7) & 1);
5635 case 0: /* fcpy[sd]. */
5636 case 1: /* fabs[sd]. */
5637 case 2: /* fneg[sd]. */
5638 case 8: /* fcmp[sd]. */
5639 case 9: /* fcmpe[sd]. */
5640 case 10: /* fcmpz[sd]. */
5641 case 11: /* fcmpez[sd]. */
5642 case 16: /* fuito[sd]. */
5643 case 17: /* fsito[sd]. */
5644 case 24: /* ftoui[sd]. */
5645 case 25: /* ftouiz[sd]. */
5646 case 26: /* ftosi[sd]. */
5647 case 27: /* ftosiz[sd]. */
5648 /* These instructions will not bounce due to underflow. */
5653 case 3: /* fsqrt[sd]. */
5654 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5655 registers to cause the erratum in previous instructions. */
5656 bfd_arm_vfp11_write_mask (destmask
, fd
);
5660 case 15: /* fcvt{ds,sd}. */
5664 bfd_arm_vfp11_write_mask (destmask
, fd
);
5666 /* Only FCVTSD can underflow. */
5667 if ((insn
& 0x100) != 0)
5686 /* Two-register transfer. */
5687 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
5689 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5691 if ((insn
& 0x100000) == 0)
5694 bfd_arm_vfp11_write_mask (destmask
, fm
);
5697 bfd_arm_vfp11_write_mask (destmask
, fm
);
5698 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
5704 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
5706 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5707 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
5711 case 0: /* Two-reg transfer. We should catch these above. */
5714 case 2: /* fldm[sdx]. */
5718 unsigned int i
, offset
= insn
& 0xff;
5723 for (i
= fd
; i
< fd
+ offset
; i
++)
5724 bfd_arm_vfp11_write_mask (destmask
, i
);
5728 case 4: /* fld[sd]. */
5730 bfd_arm_vfp11_write_mask (destmask
, fd
);
5739 /* Single-register transfer. Note L==0. */
5740 else if ((insn
& 0x0f100e10) == 0x0e000a10)
5742 unsigned int opcode
= (insn
>> 21) & 7;
5743 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
5747 case 0: /* fmsr/fmdlr. */
5748 case 1: /* fmdhr. */
5749 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5750 destination register. I don't know if this is exactly right,
5751 but it is the conservative choice. */
5752 bfd_arm_vfp11_write_mask (destmask
, fn
);
5766 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
5769 /* Look for potentially-troublesome code sequences which might trigger the
5770 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5771 (available from ARM) for details of the erratum. A short version is
5772 described in ld.texinfo. */
5775 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
5778 bfd_byte
*contents
= NULL
;
5780 int regs
[3], numregs
= 0;
5781 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5782 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
5784 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5785 The states transition as follows:
5787 0 -> 1 (vector) or 0 -> 2 (scalar)
5788 A VFP FMAC-pipeline instruction has been seen. Fill
5789 regs[0]..regs[numregs-1] with its input operands. Remember this
5790 instruction in 'first_fmac'.
5793 Any instruction, except for a VFP instruction which overwrites
5798 A VFP instruction has been seen which overwrites any of regs[*].
5799 We must make a veneer! Reset state to 0 before examining next
5803 If we fail to match anything in state 2, reset to state 0 and reset
5804 the instruction pointer to the instruction after 'first_fmac'.
5806 If the VFP11 vector mode is in use, there must be at least two unrelated
5807 instructions between anti-dependent VFP11 instructions to properly avoid
5808 triggering the erratum, hence the use of the extra state 1. */
5810 /* If we are only performing a partial link do not bother
5811 to construct any glue. */
5812 if (link_info
->relocatable
)
5815 /* Skip if this bfd does not correspond to an ELF image. */
5816 if (! is_arm_elf (abfd
))
5819 /* We should have chosen a fix type by the time we get here. */
5820 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
5822 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5825 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5826 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
5829 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5831 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5832 struct _arm_elf_section_data
*sec_data
;
5834 /* If we don't have executable progbits, we're not interested in this
5835 section. Also skip if section is to be excluded. */
5836 if (elf_section_type (sec
) != SHT_PROGBITS
5837 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5838 || (sec
->flags
& SEC_EXCLUDE
) != 0
5839 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
5840 || sec
->output_section
== bfd_abs_section_ptr
5841 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5844 sec_data
= elf32_arm_section_data (sec
);
5846 if (sec_data
->mapcount
== 0)
5849 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5850 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5851 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5854 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5855 elf32_arm_compare_mapping
);
5857 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5859 unsigned int span_start
= sec_data
->map
[span
].vma
;
5860 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5861 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5862 char span_type
= sec_data
->map
[span
].type
;
5864 /* FIXME: Only ARM mode is supported at present. We may need to
5865 support Thumb-2 mode also at some point. */
5866 if (span_type
!= 'a')
5869 for (i
= span_start
; i
< span_end
;)
5871 unsigned int next_i
= i
+ 4;
5872 unsigned int insn
= bfd_big_endian (abfd
)
5873 ? (contents
[i
] << 24)
5874 | (contents
[i
+ 1] << 16)
5875 | (contents
[i
+ 2] << 8)
5877 : (contents
[i
+ 3] << 24)
5878 | (contents
[i
+ 2] << 16)
5879 | (contents
[i
+ 1] << 8)
5881 unsigned int writemask
= 0;
5882 enum bfd_arm_vfp11_pipe pipe
;
5887 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
5889 /* I'm assuming the VFP11 erratum can trigger with denorm
5890 operands on either the FMAC or the DS pipeline. This might
5891 lead to slightly overenthusiastic veneer insertion. */
5892 if (pipe
== VFP11_FMAC
|| pipe
== VFP11_DS
)
5894 state
= use_vector
? 1 : 2;
5896 veneer_of_insn
= insn
;
5902 int other_regs
[3], other_numregs
;
5903 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5906 if (pipe
!= VFP11_BAD
5907 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5917 int other_regs
[3], other_numregs
;
5918 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5921 if (pipe
!= VFP11_BAD
5922 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5928 next_i
= first_fmac
+ 4;
5934 abort (); /* Should be unreachable. */
5939 elf32_vfp11_erratum_list
*newerr
5940 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5943 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
5945 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
5950 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
5957 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
5962 newerr
->next
= sec_data
->erratumlist
;
5963 sec_data
->erratumlist
= newerr
;
5972 if (contents
!= NULL
5973 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5981 if (contents
!= NULL
5982 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5988 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5989 after sections have been laid out, using specially-named symbols. */
5992 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
5993 struct bfd_link_info
*link_info
)
5996 struct elf32_arm_link_hash_table
*globals
;
5999 if (link_info
->relocatable
)
6002 /* Skip if this bfd does not correspond to an ELF image. */
6003 if (! is_arm_elf (abfd
))
6006 globals
= elf32_arm_hash_table (link_info
);
6008 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
6009 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6011 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6013 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6014 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6016 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6018 struct elf_link_hash_entry
*myh
;
6021 switch (errnode
->type
)
6023 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6024 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6025 /* Find veneer symbol. */
6026 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6027 errnode
->u
.b
.veneer
->u
.v
.id
);
6029 myh
= elf_link_hash_lookup
6030 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6033 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6034 "`%s'"), abfd
, tmp_name
);
6036 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6037 + myh
->root
.u
.def
.section
->output_offset
6038 + myh
->root
.u
.def
.value
;
6040 errnode
->u
.b
.veneer
->vma
= vma
;
6043 case VFP11_ERRATUM_ARM_VENEER
:
6044 case VFP11_ERRATUM_THUMB_VENEER
:
6045 /* Find return location. */
6046 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6049 myh
= elf_link_hash_lookup
6050 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6053 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6054 "`%s'"), abfd
, tmp_name
);
6056 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6057 + myh
->root
.u
.def
.section
->output_offset
6058 + myh
->root
.u
.def
.value
;
6060 errnode
->u
.v
.branch
->vma
= vma
;
6073 /* Set target relocation values needed during linking. */
6076 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6077 struct bfd_link_info
*link_info
,
6079 char * target2_type
,
6082 bfd_arm_vfp11_fix vfp11_fix
,
6083 int no_enum_warn
, int no_wchar_warn
,
6084 int pic_veneer
, int fix_cortex_a8
)
6086 struct elf32_arm_link_hash_table
*globals
;
6088 globals
= elf32_arm_hash_table (link_info
);
6090 globals
->target1_is_rel
= target1_is_rel
;
6091 if (strcmp (target2_type
, "rel") == 0)
6092 globals
->target2_reloc
= R_ARM_REL32
;
6093 else if (strcmp (target2_type
, "abs") == 0)
6094 globals
->target2_reloc
= R_ARM_ABS32
;
6095 else if (strcmp (target2_type
, "got-rel") == 0)
6096 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6099 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6102 globals
->fix_v4bx
= fix_v4bx
;
6103 globals
->use_blx
|= use_blx
;
6104 globals
->vfp11_fix
= vfp11_fix
;
6105 globals
->pic_veneer
= pic_veneer
;
6106 globals
->fix_cortex_a8
= fix_cortex_a8
;
6108 BFD_ASSERT (is_arm_elf (output_bfd
));
6109 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6110 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6113 /* Replace the target offset of a Thumb bl or b.w instruction. */
6116 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6122 BFD_ASSERT ((offset
& 1) == 0);
6124 upper
= bfd_get_16 (abfd
, insn
);
6125 lower
= bfd_get_16 (abfd
, insn
+ 2);
6126 reloc_sign
= (offset
< 0) ? 1 : 0;
6127 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6128 | ((offset
>> 12) & 0x3ff)
6129 | (reloc_sign
<< 10);
6130 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6131 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6132 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6133 | ((offset
>> 1) & 0x7ff);
6134 bfd_put_16 (abfd
, upper
, insn
);
6135 bfd_put_16 (abfd
, lower
, insn
+ 2);
6138 /* Thumb code calling an ARM function. */
6141 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6145 asection
* input_section
,
6146 bfd_byte
* hit_data
,
6149 bfd_signed_vma addend
,
6151 char **error_message
)
6155 long int ret_offset
;
6156 struct elf_link_hash_entry
* myh
;
6157 struct elf32_arm_link_hash_table
* globals
;
6159 myh
= find_thumb_glue (info
, name
, error_message
);
6163 globals
= elf32_arm_hash_table (info
);
6165 BFD_ASSERT (globals
!= NULL
);
6166 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6168 my_offset
= myh
->root
.u
.def
.value
;
6170 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6171 THUMB2ARM_GLUE_SECTION_NAME
);
6173 BFD_ASSERT (s
!= NULL
);
6174 BFD_ASSERT (s
->contents
!= NULL
);
6175 BFD_ASSERT (s
->output_section
!= NULL
);
6177 if ((my_offset
& 0x01) == 0x01)
6180 && sym_sec
->owner
!= NULL
6181 && !INTERWORK_FLAG (sym_sec
->owner
))
6183 (*_bfd_error_handler
)
6184 (_("%B(%s): warning: interworking not enabled.\n"
6185 " first occurrence: %B: thumb call to arm"),
6186 sym_sec
->owner
, input_bfd
, name
);
6192 myh
->root
.u
.def
.value
= my_offset
;
6194 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6195 s
->contents
+ my_offset
);
6197 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6198 s
->contents
+ my_offset
+ 2);
6201 /* Address of destination of the stub. */
6202 ((bfd_signed_vma
) val
)
6204 /* Offset from the start of the current section
6205 to the start of the stubs. */
6207 /* Offset of the start of this stub from the start of the stubs. */
6209 /* Address of the start of the current section. */
6210 + s
->output_section
->vma
)
6211 /* The branch instruction is 4 bytes into the stub. */
6213 /* ARM branches work from the pc of the instruction + 8. */
6216 put_arm_insn (globals
, output_bfd
,
6217 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6218 s
->contents
+ my_offset
+ 4);
6221 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6223 /* Now go back and fix up the original BL insn to point to here. */
6225 /* Address of where the stub is located. */
6226 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6227 /* Address of where the BL is located. */
6228 - (input_section
->output_section
->vma
+ input_section
->output_offset
6230 /* Addend in the relocation. */
6232 /* Biassing for PC-relative addressing. */
6235 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6240 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6242 static struct elf_link_hash_entry
*
6243 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6250 char ** error_message
)
6253 long int ret_offset
;
6254 struct elf_link_hash_entry
* myh
;
6255 struct elf32_arm_link_hash_table
* globals
;
6257 myh
= find_arm_glue (info
, name
, error_message
);
6261 globals
= elf32_arm_hash_table (info
);
6263 BFD_ASSERT (globals
!= NULL
);
6264 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6266 my_offset
= myh
->root
.u
.def
.value
;
6268 if ((my_offset
& 0x01) == 0x01)
6271 && sym_sec
->owner
!= NULL
6272 && !INTERWORK_FLAG (sym_sec
->owner
))
6274 (*_bfd_error_handler
)
6275 (_("%B(%s): warning: interworking not enabled.\n"
6276 " first occurrence: %B: arm call to thumb"),
6277 sym_sec
->owner
, input_bfd
, name
);
6281 myh
->root
.u
.def
.value
= my_offset
;
6283 if (info
->shared
|| globals
->root
.is_relocatable_executable
6284 || globals
->pic_veneer
)
6286 /* For relocatable objects we can't use absolute addresses,
6287 so construct the address from a relative offset. */
6288 /* TODO: If the offset is small it's probably worth
6289 constructing the address with adds. */
6290 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6291 s
->contents
+ my_offset
);
6292 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6293 s
->contents
+ my_offset
+ 4);
6294 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6295 s
->contents
+ my_offset
+ 8);
6296 /* Adjust the offset by 4 for the position of the add,
6297 and 8 for the pipeline offset. */
6298 ret_offset
= (val
- (s
->output_offset
6299 + s
->output_section
->vma
6302 bfd_put_32 (output_bfd
, ret_offset
,
6303 s
->contents
+ my_offset
+ 12);
6305 else if (globals
->use_blx
)
6307 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
6308 s
->contents
+ my_offset
);
6310 /* It's a thumb address. Add the low order bit. */
6311 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
6312 s
->contents
+ my_offset
+ 4);
6316 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
6317 s
->contents
+ my_offset
);
6319 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
6320 s
->contents
+ my_offset
+ 4);
6322 /* It's a thumb address. Add the low order bit. */
6323 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
6324 s
->contents
+ my_offset
+ 8);
6330 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
6335 /* Arm code calling a Thumb function. */
6338 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
6342 asection
* input_section
,
6343 bfd_byte
* hit_data
,
6346 bfd_signed_vma addend
,
6348 char **error_message
)
6350 unsigned long int tmp
;
6353 long int ret_offset
;
6354 struct elf_link_hash_entry
* myh
;
6355 struct elf32_arm_link_hash_table
* globals
;
6357 globals
= elf32_arm_hash_table (info
);
6359 BFD_ASSERT (globals
!= NULL
);
6360 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6362 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6363 ARM2THUMB_GLUE_SECTION_NAME
);
6364 BFD_ASSERT (s
!= NULL
);
6365 BFD_ASSERT (s
->contents
!= NULL
);
6366 BFD_ASSERT (s
->output_section
!= NULL
);
6368 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
6369 sym_sec
, val
, s
, error_message
);
6373 my_offset
= myh
->root
.u
.def
.value
;
6374 tmp
= bfd_get_32 (input_bfd
, hit_data
);
6375 tmp
= tmp
& 0xFF000000;
6377 /* Somehow these are both 4 too far, so subtract 8. */
6378 ret_offset
= (s
->output_offset
6380 + s
->output_section
->vma
6381 - (input_section
->output_offset
6382 + input_section
->output_section
->vma
6386 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
6388 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
6393 /* Populate Arm stub for an exported Thumb function. */
6396 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
6398 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
6400 struct elf_link_hash_entry
* myh
;
6401 struct elf32_arm_link_hash_entry
*eh
;
6402 struct elf32_arm_link_hash_table
* globals
;
6405 char *error_message
;
6407 eh
= elf32_arm_hash_entry (h
);
6408 /* Allocate stubs for exported Thumb functions on v4t. */
6409 if (eh
->export_glue
== NULL
)
6412 globals
= elf32_arm_hash_table (info
);
6414 BFD_ASSERT (globals
!= NULL
);
6415 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6417 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6418 ARM2THUMB_GLUE_SECTION_NAME
);
6419 BFD_ASSERT (s
!= NULL
);
6420 BFD_ASSERT (s
->contents
!= NULL
);
6421 BFD_ASSERT (s
->output_section
!= NULL
);
6423 sec
= eh
->export_glue
->root
.u
.def
.section
;
6425 BFD_ASSERT (sec
->output_section
!= NULL
);
6427 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
6428 + sec
->output_section
->vma
;
6430 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
6431 h
->root
.u
.def
.section
->owner
,
6432 globals
->obfd
, sec
, val
, s
,
6438 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6441 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
6446 struct elf32_arm_link_hash_table
*globals
;
6448 globals
= elf32_arm_hash_table (info
);
6450 BFD_ASSERT (globals
!= NULL
);
6451 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6453 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6454 ARM_BX_GLUE_SECTION_NAME
);
6455 BFD_ASSERT (s
!= NULL
);
6456 BFD_ASSERT (s
->contents
!= NULL
);
6457 BFD_ASSERT (s
->output_section
!= NULL
);
6459 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
6461 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
6463 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
6465 p
= s
->contents
+ glue_addr
;
6466 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
6467 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
6468 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
6469 globals
->bx_glue_offset
[reg
] |= 1;
6472 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
6475 /* Generate Arm stubs for exported Thumb symbols. */
6477 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
6478 struct bfd_link_info
*link_info
)
6480 struct elf32_arm_link_hash_table
* globals
;
6482 if (link_info
== NULL
)
6483 /* Ignore this if we are not called by the ELF backend linker. */
6486 globals
= elf32_arm_hash_table (link_info
);
6487 /* If blx is available then exported Thumb symbols are OK and there is
6489 if (globals
->use_blx
)
6492 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
6496 /* Some relocations map to different relocations depending on the
6497 target. Return the real relocation. */
6500 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
6506 if (globals
->target1_is_rel
)
6512 return globals
->target2_reloc
;
6519 /* Return the base VMA address which should be subtracted from real addresses
6520 when resolving @dtpoff relocation.
6521 This is PT_TLS segment p_vaddr. */
6524 dtpoff_base (struct bfd_link_info
*info
)
6526 /* If tls_sec is NULL, we should have signalled an error already. */
6527 if (elf_hash_table (info
)->tls_sec
== NULL
)
6529 return elf_hash_table (info
)->tls_sec
->vma
;
6532 /* Return the relocation value for @tpoff relocation
6533 if STT_TLS virtual address is ADDRESS. */
6536 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
6538 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6541 /* If tls_sec is NULL, we should have signalled an error already. */
6542 if (htab
->tls_sec
== NULL
)
6544 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
6545 return address
- htab
->tls_sec
->vma
+ base
;
6548 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6549 VALUE is the relocation value. */
6551 static bfd_reloc_status_type
6552 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
6555 return bfd_reloc_overflow
;
6557 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
6558 bfd_put_32 (abfd
, value
, data
);
6559 return bfd_reloc_ok
;
6562 /* For a given value of n, calculate the value of G_n as required to
6563 deal with group relocations. We return it in the form of an
6564 encoded constant-and-rotation, together with the final residual. If n is
6565 specified as less than zero, then final_residual is filled with the
6566 input value and no further action is performed. */
6569 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
6573 bfd_vma encoded_g_n
= 0;
6574 bfd_vma residual
= value
; /* Also known as Y_n. */
6576 for (current_n
= 0; current_n
<= n
; current_n
++)
6580 /* Calculate which part of the value to mask. */
6587 /* Determine the most significant bit in the residual and
6588 align the resulting value to a 2-bit boundary. */
6589 for (msb
= 30; msb
>= 0; msb
-= 2)
6590 if (residual
& (3 << msb
))
6593 /* The desired shift is now (msb - 6), or zero, whichever
6600 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6601 g_n
= residual
& (0xff << shift
);
6602 encoded_g_n
= (g_n
>> shift
)
6603 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
6605 /* Calculate the residual for the next time around. */
6609 *final_residual
= residual
;
6614 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6615 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6618 identify_add_or_sub (bfd_vma insn
)
6620 int opcode
= insn
& 0x1e00000;
6622 if (opcode
== 1 << 23) /* ADD */
6625 if (opcode
== 1 << 22) /* SUB */
6631 /* Perform a relocation as part of a final link. */
6633 static bfd_reloc_status_type
6634 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
6637 asection
* input_section
,
6638 bfd_byte
* contents
,
6639 Elf_Internal_Rela
* rel
,
6641 struct bfd_link_info
* info
,
6643 const char * sym_name
,
6645 struct elf_link_hash_entry
* h
,
6646 bfd_boolean
* unresolved_reloc_p
,
6647 char ** error_message
)
6649 unsigned long r_type
= howto
->type
;
6650 unsigned long r_symndx
;
6651 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
6652 bfd
* dynobj
= NULL
;
6653 Elf_Internal_Shdr
* symtab_hdr
;
6654 struct elf_link_hash_entry
** sym_hashes
;
6655 bfd_vma
* local_got_offsets
;
6656 asection
* sgot
= NULL
;
6657 asection
* splt
= NULL
;
6658 asection
* sreloc
= NULL
;
6660 bfd_signed_vma signed_addend
;
6661 struct elf32_arm_link_hash_table
* globals
;
6663 globals
= elf32_arm_hash_table (info
);
6665 BFD_ASSERT (is_arm_elf (input_bfd
));
6667 /* Some relocation types map to different relocations depending on the
6668 target. We pick the right one here. */
6669 r_type
= arm_real_reloc_type (globals
, r_type
);
6670 if (r_type
!= howto
->type
)
6671 howto
= elf32_arm_howto_from_type (r_type
);
6673 /* If the start address has been set, then set the EF_ARM_HASENTRY
6674 flag. Setting this more than once is redundant, but the cost is
6675 not too high, and it keeps the code simple.
6677 The test is done here, rather than somewhere else, because the
6678 start address is only set just before the final link commences.
6680 Note - if the user deliberately sets a start address of 0, the
6681 flag will not be set. */
6682 if (bfd_get_start_address (output_bfd
) != 0)
6683 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
6685 dynobj
= elf_hash_table (info
)->dynobj
;
6688 sgot
= bfd_get_section_by_name (dynobj
, ".got");
6689 splt
= bfd_get_section_by_name (dynobj
, ".plt");
6691 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
6692 sym_hashes
= elf_sym_hashes (input_bfd
);
6693 local_got_offsets
= elf_local_got_offsets (input_bfd
);
6694 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6696 if (globals
->use_rel
)
6698 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
6700 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6703 signed_addend
&= ~ howto
->src_mask
;
6704 signed_addend
|= addend
;
6707 signed_addend
= addend
;
6710 addend
= signed_addend
= rel
->r_addend
;
6715 /* We don't need to find a value for this symbol. It's just a
6717 *unresolved_reloc_p
= FALSE
;
6718 return bfd_reloc_ok
;
6721 if (!globals
->vxworks_p
)
6722 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6726 case R_ARM_ABS32_NOI
:
6728 case R_ARM_REL32_NOI
:
6734 /* Handle relocations which should use the PLT entry. ABS32/REL32
6735 will use the symbol's value, which may point to a PLT entry, but we
6736 don't need to handle that here. If we created a PLT entry, all
6737 branches in this object should go to it, except if the PLT is too
6738 far away, in which case a long branch stub should be inserted. */
6739 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
6740 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
6741 && r_type
!= R_ARM_CALL
6742 && r_type
!= R_ARM_JUMP24
6743 && r_type
!= R_ARM_PLT32
)
6746 && h
->plt
.offset
!= (bfd_vma
) -1)
6748 /* If we've created a .plt section, and assigned a PLT entry to
6749 this function, it should not be known to bind locally. If
6750 it were, we would have cleared the PLT entry. */
6751 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
6753 value
= (splt
->output_section
->vma
6754 + splt
->output_offset
6756 *unresolved_reloc_p
= FALSE
;
6757 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6758 contents
, rel
->r_offset
, value
,
6762 /* When generating a shared object or relocatable executable, these
6763 relocations are copied into the output file to be resolved at
6765 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
6766 && (input_section
->flags
& SEC_ALLOC
)
6767 && !(elf32_arm_hash_table (info
)->vxworks_p
6768 && strcmp (input_section
->output_section
->name
,
6770 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
6771 || !SYMBOL_CALLS_LOCAL (info
, h
))
6773 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6774 || h
->root
.type
!= bfd_link_hash_undefweak
)
6775 && r_type
!= R_ARM_PC24
6776 && r_type
!= R_ARM_CALL
6777 && r_type
!= R_ARM_JUMP24
6778 && r_type
!= R_ARM_PREL31
6779 && r_type
!= R_ARM_PLT32
)
6781 Elf_Internal_Rela outrel
;
6783 bfd_boolean skip
, relocate
;
6785 *unresolved_reloc_p
= FALSE
;
6789 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
6790 ! globals
->use_rel
);
6793 return bfd_reloc_notsupported
;
6799 outrel
.r_addend
= addend
;
6801 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
6803 if (outrel
.r_offset
== (bfd_vma
) -1)
6805 else if (outrel
.r_offset
== (bfd_vma
) -2)
6806 skip
= TRUE
, relocate
= TRUE
;
6807 outrel
.r_offset
+= (input_section
->output_section
->vma
6808 + input_section
->output_offset
);
6811 memset (&outrel
, 0, sizeof outrel
);
6816 || !h
->def_regular
))
6817 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
6822 /* This symbol is local, or marked to become local. */
6823 if (sym_flags
== STT_ARM_TFUNC
)
6825 if (globals
->symbian_p
)
6829 /* On Symbian OS, the data segment and text segement
6830 can be relocated independently. Therefore, we
6831 must indicate the segment to which this
6832 relocation is relative. The BPABI allows us to
6833 use any symbol in the right segment; we just use
6834 the section symbol as it is convenient. (We
6835 cannot use the symbol given by "h" directly as it
6836 will not appear in the dynamic symbol table.)
6838 Note that the dynamic linker ignores the section
6839 symbol value, so we don't subtract osec->vma
6840 from the emitted reloc addend. */
6842 osec
= sym_sec
->output_section
;
6844 osec
= input_section
->output_section
;
6845 symbol
= elf_section_data (osec
)->dynindx
;
6848 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6850 if ((osec
->flags
& SEC_READONLY
) == 0
6851 && htab
->data_index_section
!= NULL
)
6852 osec
= htab
->data_index_section
;
6854 osec
= htab
->text_index_section
;
6855 symbol
= elf_section_data (osec
)->dynindx
;
6857 BFD_ASSERT (symbol
!= 0);
6860 /* On SVR4-ish systems, the dynamic loader cannot
6861 relocate the text and data segments independently,
6862 so the symbol does not matter. */
6864 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6865 if (globals
->use_rel
)
6868 outrel
.r_addend
+= value
;
6871 loc
= sreloc
->contents
;
6872 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6873 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6875 /* If this reloc is against an external symbol, we do not want to
6876 fiddle with the addend. Otherwise, we need to include the symbol
6877 value so that it becomes an addend for the dynamic reloc. */
6879 return bfd_reloc_ok
;
6881 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6882 contents
, rel
->r_offset
, value
,
6885 else switch (r_type
)
6888 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6890 case R_ARM_XPC25
: /* Arm BLX instruction. */
6893 case R_ARM_PC24
: /* Arm B/BL instruction. */
6897 bfd_signed_vma branch_offset
;
6898 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6900 if (r_type
== R_ARM_XPC25
)
6902 /* Check for Arm calling Arm function. */
6903 /* FIXME: Should we translate the instruction into a BL
6904 instruction instead ? */
6905 if (sym_flags
!= STT_ARM_TFUNC
)
6906 (*_bfd_error_handler
)
6907 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6909 h
? h
->root
.root
.string
: "(local)");
6911 else if (r_type
== R_ARM_PC24
)
6913 /* Check for Arm calling Thumb function. */
6914 if (sym_flags
== STT_ARM_TFUNC
)
6916 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
6917 output_bfd
, input_section
,
6918 hit_data
, sym_sec
, rel
->r_offset
,
6919 signed_addend
, value
,
6921 return bfd_reloc_ok
;
6923 return bfd_reloc_dangerous
;
6927 /* Check if a stub has to be inserted because the
6928 destination is too far or we are changing mode. */
6929 if ( r_type
== R_ARM_CALL
6930 || r_type
== R_ARM_JUMP24
6931 || r_type
== R_ARM_PLT32
)
6933 /* If the call goes through a PLT entry, make sure to
6934 check distance to the right destination address. */
6935 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6937 value
= (splt
->output_section
->vma
6938 + splt
->output_offset
6940 *unresolved_reloc_p
= FALSE
;
6943 from
= (input_section
->output_section
->vma
6944 + input_section
->output_offset
6946 branch_offset
= (bfd_signed_vma
)(value
- from
);
6948 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
6949 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
6950 || ((sym_flags
== STT_ARM_TFUNC
)
6951 && (((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
6952 || (r_type
== R_ARM_JUMP24
)
6953 || (r_type
== R_ARM_PLT32
) ))
6956 /* The target is out of reach, so redirect the
6957 branch to the local stub for this function. */
6959 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6962 if (stub_entry
!= NULL
)
6963 value
= (stub_entry
->stub_offset
6964 + stub_entry
->stub_sec
->output_offset
6965 + stub_entry
->stub_sec
->output_section
->vma
);
6969 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6971 S is the address of the symbol in the relocation.
6972 P is address of the instruction being relocated.
6973 A is the addend (extracted from the instruction) in bytes.
6975 S is held in 'value'.
6976 P is the base address of the section containing the
6977 instruction plus the offset of the reloc into that
6979 (input_section->output_section->vma +
6980 input_section->output_offset +
6982 A is the addend, converted into bytes, ie:
6985 Note: None of these operations have knowledge of the pipeline
6986 size of the processor, thus it is up to the assembler to
6987 encode this information into the addend. */
6988 value
-= (input_section
->output_section
->vma
6989 + input_section
->output_offset
);
6990 value
-= rel
->r_offset
;
6991 if (globals
->use_rel
)
6992 value
+= (signed_addend
<< howto
->size
);
6994 /* RELA addends do not have to be adjusted by howto->size. */
6995 value
+= signed_addend
;
6997 signed_addend
= value
;
6998 signed_addend
>>= howto
->rightshift
;
7000 /* A branch to an undefined weak symbol is turned into a jump to
7001 the next instruction unless a PLT entry will be created. */
7002 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7003 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7005 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000)
7010 /* Perform a signed range check. */
7011 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
7012 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
7013 return bfd_reloc_overflow
;
7015 addend
= (value
& 2);
7017 value
= (signed_addend
& howto
->dst_mask
)
7018 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7020 if (r_type
== R_ARM_CALL
)
7022 /* Set the H bit in the BLX instruction. */
7023 if (sym_flags
== STT_ARM_TFUNC
)
7028 value
&= ~(bfd_vma
)(1 << 24);
7031 /* Select the correct instruction (BL or BLX). */
7032 /* Only if we are not handling a BL to a stub. In this
7033 case, mode switching is performed by the stub. */
7034 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
7038 value
&= ~(bfd_vma
)(1 << 28);
7048 if (sym_flags
== STT_ARM_TFUNC
)
7052 case R_ARM_ABS32_NOI
:
7058 if (sym_flags
== STT_ARM_TFUNC
)
7060 value
-= (input_section
->output_section
->vma
7061 + input_section
->output_offset
+ rel
->r_offset
);
7064 case R_ARM_REL32_NOI
:
7066 value
-= (input_section
->output_section
->vma
7067 + input_section
->output_offset
+ rel
->r_offset
);
7071 value
-= (input_section
->output_section
->vma
7072 + input_section
->output_offset
+ rel
->r_offset
);
7073 value
+= signed_addend
;
7074 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
7076 /* Check for overflow. */
7077 if ((value
^ (value
>> 1)) & (1 << 30))
7078 return bfd_reloc_overflow
;
7080 value
&= 0x7fffffff;
7081 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
7082 if (sym_flags
== STT_ARM_TFUNC
)
7087 bfd_put_32 (input_bfd
, value
, hit_data
);
7088 return bfd_reloc_ok
;
7092 if ((long) value
> 0x7f || (long) value
< -0x80)
7093 return bfd_reloc_overflow
;
7095 bfd_put_8 (input_bfd
, value
, hit_data
);
7096 return bfd_reloc_ok
;
7101 if ((long) value
> 0x7fff || (long) value
< -0x8000)
7102 return bfd_reloc_overflow
;
7104 bfd_put_16 (input_bfd
, value
, hit_data
);
7105 return bfd_reloc_ok
;
7107 case R_ARM_THM_ABS5
:
7108 /* Support ldr and str instructions for the thumb. */
7109 if (globals
->use_rel
)
7111 /* Need to refetch addend. */
7112 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7113 /* ??? Need to determine shift amount from operand size. */
7114 addend
>>= howto
->rightshift
;
7118 /* ??? Isn't value unsigned? */
7119 if ((long) value
> 0x1f || (long) value
< -0x10)
7120 return bfd_reloc_overflow
;
7122 /* ??? Value needs to be properly shifted into place first. */
7123 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
7124 bfd_put_16 (input_bfd
, value
, hit_data
);
7125 return bfd_reloc_ok
;
7127 case R_ARM_THM_ALU_PREL_11_0
:
7128 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7131 bfd_signed_vma relocation
;
7133 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7134 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7136 if (globals
->use_rel
)
7138 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
7139 | ((insn
& (1 << 26)) >> 15);
7140 if (insn
& 0xf00000)
7141 signed_addend
= -signed_addend
;
7144 relocation
= value
+ signed_addend
;
7145 relocation
-= (input_section
->output_section
->vma
7146 + input_section
->output_offset
7149 value
= abs (relocation
);
7151 if (value
>= 0x1000)
7152 return bfd_reloc_overflow
;
7154 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
7155 | ((value
& 0x700) << 4)
7156 | ((value
& 0x800) << 15);
7160 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7161 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7163 return bfd_reloc_ok
;
7166 case R_ARM_THM_PC12
:
7167 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7170 bfd_signed_vma relocation
;
7172 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7173 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7175 if (globals
->use_rel
)
7177 signed_addend
= insn
& 0xfff;
7178 if (!(insn
& (1 << 23)))
7179 signed_addend
= -signed_addend
;
7182 relocation
= value
+ signed_addend
;
7183 relocation
-= (input_section
->output_section
->vma
7184 + input_section
->output_offset
7187 value
= abs (relocation
);
7189 if (value
>= 0x1000)
7190 return bfd_reloc_overflow
;
7192 insn
= (insn
& 0xff7ff000) | value
;
7193 if (relocation
>= 0)
7196 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7197 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7199 return bfd_reloc_ok
;
7202 case R_ARM_THM_XPC22
:
7203 case R_ARM_THM_CALL
:
7204 case R_ARM_THM_JUMP24
:
7205 /* Thumb BL (branch long instruction). */
7209 bfd_boolean overflow
= FALSE
;
7210 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7211 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7212 bfd_signed_vma reloc_signed_max
;
7213 bfd_signed_vma reloc_signed_min
;
7215 bfd_signed_vma signed_check
;
7217 int thumb2
= using_thumb2 (globals
);
7219 /* A branch to an undefined weak symbol is turned into a jump to
7220 the next instruction unless a PLT entry will be created. */
7221 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7222 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7224 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
7225 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
7226 return bfd_reloc_ok
;
7229 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7230 with Thumb-1) involving the J1 and J2 bits. */
7231 if (globals
->use_rel
)
7233 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
7234 bfd_vma upper
= upper_insn
& 0x3ff;
7235 bfd_vma lower
= lower_insn
& 0x7ff;
7236 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
7237 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
7238 bfd_vma i1
= j1
^ s
? 0 : 1;
7239 bfd_vma i2
= j2
^ s
? 0 : 1;
7241 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
7243 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
7245 signed_addend
= addend
;
7248 if (r_type
== R_ARM_THM_XPC22
)
7250 /* Check for Thumb to Thumb call. */
7251 /* FIXME: Should we translate the instruction into a BL
7252 instruction instead ? */
7253 if (sym_flags
== STT_ARM_TFUNC
)
7254 (*_bfd_error_handler
)
7255 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7257 h
? h
->root
.root
.string
: "(local)");
7261 /* If it is not a call to Thumb, assume call to Arm.
7262 If it is a call relative to a section name, then it is not a
7263 function call at all, but rather a long jump. Calls through
7264 the PLT do not require stubs. */
7265 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
7266 && (h
== NULL
|| splt
== NULL
7267 || h
->plt
.offset
== (bfd_vma
) -1))
7269 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7271 /* Convert BL to BLX. */
7272 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7274 else if (( r_type
!= R_ARM_THM_CALL
)
7275 && (r_type
!= R_ARM_THM_JUMP24
))
7277 if (elf32_thumb_to_arm_stub
7278 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
7279 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
7281 return bfd_reloc_ok
;
7283 return bfd_reloc_dangerous
;
7286 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
7287 && r_type
== R_ARM_THM_CALL
)
7289 /* Make sure this is a BL. */
7290 lower_insn
|= 0x1800;
7294 /* Handle calls via the PLT. */
7295 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7297 value
= (splt
->output_section
->vma
7298 + splt
->output_offset
7300 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7302 /* If the Thumb BLX instruction is available, convert the
7303 BL to a BLX instruction to call the ARM-mode PLT entry. */
7304 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7307 /* Target the Thumb stub before the ARM PLT entry. */
7308 value
-= PLT_THUMB_STUB_SIZE
;
7309 *unresolved_reloc_p
= FALSE
;
7312 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
7314 /* Check if a stub has to be inserted because the destination
7317 bfd_signed_vma branch_offset
;
7318 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7320 from
= (input_section
->output_section
->vma
7321 + input_section
->output_offset
7323 branch_offset
= (bfd_signed_vma
)(value
- from
);
7326 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
7327 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
7330 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
7331 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
7332 || ((sym_flags
!= STT_ARM_TFUNC
)
7333 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
7334 || r_type
== R_ARM_THM_JUMP24
)))
7336 /* The target is out of reach or we are changing modes, so
7337 redirect the branch to the local stub for this
7339 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7342 if (stub_entry
!= NULL
)
7343 value
= (stub_entry
->stub_offset
7344 + stub_entry
->stub_sec
->output_offset
7345 + stub_entry
->stub_sec
->output_section
->vma
);
7347 /* If this call becomes a call to Arm, force BLX. */
7348 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
7351 && !arm_stub_is_thumb (stub_entry
->stub_type
))
7352 || (sym_flags
!= STT_ARM_TFUNC
))
7353 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7358 relocation
= value
+ signed_addend
;
7360 relocation
-= (input_section
->output_section
->vma
7361 + input_section
->output_offset
7364 check
= relocation
>> howto
->rightshift
;
7366 /* If this is a signed value, the rightshift just dropped
7367 leading 1 bits (assuming twos complement). */
7368 if ((bfd_signed_vma
) relocation
>= 0)
7369 signed_check
= check
;
7371 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
7373 /* Calculate the permissable maximum and minimum values for
7374 this relocation according to whether we're relocating for
7376 bitsize
= howto
->bitsize
;
7379 reloc_signed_max
= ((1 << (bitsize
- 1)) - 1) >> howto
->rightshift
;
7380 reloc_signed_min
= ~reloc_signed_max
;
7382 /* Assumes two's complement. */
7383 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7386 if ((lower_insn
& 0x5000) == 0x4000)
7387 /* For a BLX instruction, make sure that the relocation is rounded up
7388 to a word boundary. This follows the semantics of the instruction
7389 which specifies that bit 1 of the target address will come from bit
7390 1 of the base address. */
7391 relocation
= (relocation
+ 2) & ~ 3;
7393 /* Put RELOCATION back into the insn. Assumes two's complement.
7394 We use the Thumb-2 encoding, which is safe even if dealing with
7395 a Thumb-1 instruction by virtue of our overflow check above. */
7396 reloc_sign
= (signed_check
< 0) ? 1 : 0;
7397 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
7398 | ((relocation
>> 12) & 0x3ff)
7399 | (reloc_sign
<< 10);
7400 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
7401 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
7402 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
7403 | ((relocation
>> 1) & 0x7ff);
7405 /* Put the relocated value back in the object file: */
7406 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7407 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7409 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7413 case R_ARM_THM_JUMP19
:
7414 /* Thumb32 conditional branch instruction. */
7417 bfd_boolean overflow
= FALSE
;
7418 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7419 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7420 bfd_signed_vma reloc_signed_max
= 0xffffe;
7421 bfd_signed_vma reloc_signed_min
= -0x100000;
7422 bfd_signed_vma signed_check
;
7424 /* Need to refetch the addend, reconstruct the top three bits,
7425 and squish the two 11 bit pieces together. */
7426 if (globals
->use_rel
)
7428 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
7429 bfd_vma upper
= (upper_insn
& 0x003f);
7430 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
7431 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
7432 bfd_vma lower
= (lower_insn
& 0x07ff);
7437 upper
-= 0x0100; /* Sign extend. */
7439 addend
= (upper
<< 12) | (lower
<< 1);
7440 signed_addend
= addend
;
7443 /* Handle calls via the PLT. */
7444 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7446 value
= (splt
->output_section
->vma
7447 + splt
->output_offset
7449 /* Target the Thumb stub before the ARM PLT entry. */
7450 value
-= PLT_THUMB_STUB_SIZE
;
7451 *unresolved_reloc_p
= FALSE
;
7454 /* ??? Should handle interworking? GCC might someday try to
7455 use this for tail calls. */
7457 relocation
= value
+ signed_addend
;
7458 relocation
-= (input_section
->output_section
->vma
7459 + input_section
->output_offset
7461 signed_check
= (bfd_signed_vma
) relocation
;
7463 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7466 /* Put RELOCATION back into the insn. */
7468 bfd_vma S
= (relocation
& 0x00100000) >> 20;
7469 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
7470 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
7471 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
7472 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
7474 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
7475 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
7478 /* Put the relocated value back in the object file: */
7479 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7480 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7482 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7485 case R_ARM_THM_JUMP11
:
7486 case R_ARM_THM_JUMP8
:
7487 case R_ARM_THM_JUMP6
:
7488 /* Thumb B (branch) instruction). */
7490 bfd_signed_vma relocation
;
7491 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
7492 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
7493 bfd_signed_vma signed_check
;
7495 /* CZB cannot jump backward. */
7496 if (r_type
== R_ARM_THM_JUMP6
)
7497 reloc_signed_min
= 0;
7499 if (globals
->use_rel
)
7501 /* Need to refetch addend. */
7502 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7503 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7506 signed_addend
&= ~ howto
->src_mask
;
7507 signed_addend
|= addend
;
7510 signed_addend
= addend
;
7511 /* The value in the insn has been right shifted. We need to
7512 undo this, so that we can perform the address calculation
7513 in terms of bytes. */
7514 signed_addend
<<= howto
->rightshift
;
7516 relocation
= value
+ signed_addend
;
7518 relocation
-= (input_section
->output_section
->vma
7519 + input_section
->output_offset
7522 relocation
>>= howto
->rightshift
;
7523 signed_check
= relocation
;
7525 if (r_type
== R_ARM_THM_JUMP6
)
7526 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
7528 relocation
&= howto
->dst_mask
;
7529 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7531 bfd_put_16 (input_bfd
, relocation
, hit_data
);
7533 /* Assumes two's complement. */
7534 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7535 return bfd_reloc_overflow
;
7537 return bfd_reloc_ok
;
7540 case R_ARM_ALU_PCREL7_0
:
7541 case R_ARM_ALU_PCREL15_8
:
7542 case R_ARM_ALU_PCREL23_15
:
7547 insn
= bfd_get_32 (input_bfd
, hit_data
);
7548 if (globals
->use_rel
)
7550 /* Extract the addend. */
7551 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
7552 signed_addend
= addend
;
7554 relocation
= value
+ signed_addend
;
7556 relocation
-= (input_section
->output_section
->vma
7557 + input_section
->output_offset
7559 insn
= (insn
& ~0xfff)
7560 | ((howto
->bitpos
<< 7) & 0xf00)
7561 | ((relocation
>> howto
->bitpos
) & 0xff);
7562 bfd_put_32 (input_bfd
, value
, hit_data
);
7564 return bfd_reloc_ok
;
7566 case R_ARM_GNU_VTINHERIT
:
7567 case R_ARM_GNU_VTENTRY
:
7568 return bfd_reloc_ok
;
7570 case R_ARM_GOTOFF32
:
7571 /* Relocation is relative to the start of the
7572 global offset table. */
7574 BFD_ASSERT (sgot
!= NULL
);
7576 return bfd_reloc_notsupported
;
7578 /* If we are addressing a Thumb function, we need to adjust the
7579 address by one, so that attempts to call the function pointer will
7580 correctly interpret it as Thumb code. */
7581 if (sym_flags
== STT_ARM_TFUNC
)
7584 /* Note that sgot->output_offset is not involved in this
7585 calculation. We always want the start of .got. If we
7586 define _GLOBAL_OFFSET_TABLE in a different way, as is
7587 permitted by the ABI, we might have to change this
7589 value
-= sgot
->output_section
->vma
;
7590 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7591 contents
, rel
->r_offset
, value
,
7595 /* Use global offset table as symbol value. */
7596 BFD_ASSERT (sgot
!= NULL
);
7599 return bfd_reloc_notsupported
;
7601 *unresolved_reloc_p
= FALSE
;
7602 value
= sgot
->output_section
->vma
;
7603 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7604 contents
, rel
->r_offset
, value
,
7608 case R_ARM_GOT_PREL
:
7609 /* Relocation is to the entry for this symbol in the
7610 global offset table. */
7612 return bfd_reloc_notsupported
;
7619 off
= h
->got
.offset
;
7620 BFD_ASSERT (off
!= (bfd_vma
) -1);
7621 dyn
= globals
->root
.dynamic_sections_created
;
7623 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7625 && SYMBOL_REFERENCES_LOCAL (info
, h
))
7626 || (ELF_ST_VISIBILITY (h
->other
)
7627 && h
->root
.type
== bfd_link_hash_undefweak
))
7629 /* This is actually a static link, or it is a -Bsymbolic link
7630 and the symbol is defined locally. We must initialize this
7631 entry in the global offset table. Since the offset must
7632 always be a multiple of 4, we use the least significant bit
7633 to record whether we have initialized it already.
7635 When doing a dynamic link, we create a .rel(a).got relocation
7636 entry to initialize the value. This is done in the
7637 finish_dynamic_symbol routine. */
7642 /* If we are addressing a Thumb function, we need to
7643 adjust the address by one, so that attempts to
7644 call the function pointer will correctly
7645 interpret it as Thumb code. */
7646 if (sym_flags
== STT_ARM_TFUNC
)
7649 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7654 *unresolved_reloc_p
= FALSE
;
7656 value
= sgot
->output_offset
+ off
;
7662 BFD_ASSERT (local_got_offsets
!= NULL
&&
7663 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
7665 off
= local_got_offsets
[r_symndx
];
7667 /* The offset must always be a multiple of 4. We use the
7668 least significant bit to record whether we have already
7669 generated the necessary reloc. */
7674 /* If we are addressing a Thumb function, we need to
7675 adjust the address by one, so that attempts to
7676 call the function pointer will correctly
7677 interpret it as Thumb code. */
7678 if (sym_flags
== STT_ARM_TFUNC
)
7681 if (globals
->use_rel
)
7682 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7687 Elf_Internal_Rela outrel
;
7690 srelgot
= (bfd_get_section_by_name
7691 (dynobj
, RELOC_SECTION (globals
, ".got")));
7692 BFD_ASSERT (srelgot
!= NULL
);
7694 outrel
.r_addend
= addend
+ value
;
7695 outrel
.r_offset
= (sgot
->output_section
->vma
7696 + sgot
->output_offset
7698 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
7699 loc
= srelgot
->contents
;
7700 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7701 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7704 local_got_offsets
[r_symndx
] |= 1;
7707 value
= sgot
->output_offset
+ off
;
7709 if (r_type
!= R_ARM_GOT32
)
7710 value
+= sgot
->output_section
->vma
;
7712 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7713 contents
, rel
->r_offset
, value
,
7716 case R_ARM_TLS_LDO32
:
7717 value
= value
- dtpoff_base (info
);
7719 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7720 contents
, rel
->r_offset
, value
,
7723 case R_ARM_TLS_LDM32
:
7727 if (globals
->sgot
== NULL
)
7730 off
= globals
->tls_ldm_got
.offset
;
7736 /* If we don't know the module number, create a relocation
7740 Elf_Internal_Rela outrel
;
7743 if (globals
->srelgot
== NULL
)
7746 outrel
.r_addend
= 0;
7747 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7748 + globals
->sgot
->output_offset
+ off
);
7749 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
7751 if (globals
->use_rel
)
7752 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7753 globals
->sgot
->contents
+ off
);
7755 loc
= globals
->srelgot
->contents
;
7756 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7757 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7760 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
7762 globals
->tls_ldm_got
.offset
|= 1;
7765 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7766 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7768 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7769 contents
, rel
->r_offset
, value
,
7773 case R_ARM_TLS_GD32
:
7774 case R_ARM_TLS_IE32
:
7780 if (globals
->sgot
== NULL
)
7787 dyn
= globals
->root
.dynamic_sections_created
;
7788 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7790 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
7792 *unresolved_reloc_p
= FALSE
;
7795 off
= h
->got
.offset
;
7796 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
7800 if (local_got_offsets
== NULL
)
7802 off
= local_got_offsets
[r_symndx
];
7803 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
7806 if (tls_type
== GOT_UNKNOWN
)
7813 bfd_boolean need_relocs
= FALSE
;
7814 Elf_Internal_Rela outrel
;
7815 bfd_byte
*loc
= NULL
;
7818 /* The GOT entries have not been initialized yet. Do it
7819 now, and emit any relocations. If both an IE GOT and a
7820 GD GOT are necessary, we emit the GD first. */
7822 if ((info
->shared
|| indx
!= 0)
7824 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7825 || h
->root
.type
!= bfd_link_hash_undefweak
))
7828 if (globals
->srelgot
== NULL
)
7830 loc
= globals
->srelgot
->contents
;
7831 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
7834 if (tls_type
& GOT_TLS_GD
)
7838 outrel
.r_addend
= 0;
7839 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7840 + globals
->sgot
->output_offset
7842 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
7844 if (globals
->use_rel
)
7845 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7846 globals
->sgot
->contents
+ cur_off
);
7848 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7849 globals
->srelgot
->reloc_count
++;
7850 loc
+= RELOC_SIZE (globals
);
7853 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7854 globals
->sgot
->contents
+ cur_off
+ 4);
7857 outrel
.r_addend
= 0;
7858 outrel
.r_info
= ELF32_R_INFO (indx
,
7859 R_ARM_TLS_DTPOFF32
);
7860 outrel
.r_offset
+= 4;
7862 if (globals
->use_rel
)
7863 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7864 globals
->sgot
->contents
+ cur_off
+ 4);
7867 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7868 globals
->srelgot
->reloc_count
++;
7869 loc
+= RELOC_SIZE (globals
);
7874 /* If we are not emitting relocations for a
7875 general dynamic reference, then we must be in a
7876 static link or an executable link with the
7877 symbol binding locally. Mark it as belonging
7878 to module 1, the executable. */
7879 bfd_put_32 (output_bfd
, 1,
7880 globals
->sgot
->contents
+ cur_off
);
7881 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7882 globals
->sgot
->contents
+ cur_off
+ 4);
7888 if (tls_type
& GOT_TLS_IE
)
7893 outrel
.r_addend
= value
- dtpoff_base (info
);
7895 outrel
.r_addend
= 0;
7896 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7897 + globals
->sgot
->output_offset
7899 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
7901 if (globals
->use_rel
)
7902 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7903 globals
->sgot
->contents
+ cur_off
);
7905 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7906 globals
->srelgot
->reloc_count
++;
7907 loc
+= RELOC_SIZE (globals
);
7910 bfd_put_32 (output_bfd
, tpoff (info
, value
),
7911 globals
->sgot
->contents
+ cur_off
);
7918 local_got_offsets
[r_symndx
] |= 1;
7921 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
7923 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7924 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7926 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7927 contents
, rel
->r_offset
, value
,
7931 case R_ARM_TLS_LE32
:
7934 (*_bfd_error_handler
)
7935 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7936 input_bfd
, input_section
,
7937 (long) rel
->r_offset
, howto
->name
);
7941 value
= tpoff (info
, value
);
7943 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7944 contents
, rel
->r_offset
, value
,
7948 if (globals
->fix_v4bx
)
7950 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7952 /* Ensure that we have a BX instruction. */
7953 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
7955 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
7957 /* Branch to veneer. */
7959 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
7960 glue_addr
-= input_section
->output_section
->vma
7961 + input_section
->output_offset
7962 + rel
->r_offset
+ 8;
7963 insn
= (insn
& 0xf0000000) | 0x0a000000
7964 | ((glue_addr
>> 2) & 0x00ffffff);
7968 /* Preserve Rm (lowest four bits) and the condition code
7969 (highest four bits). Other bits encode MOV PC,Rm. */
7970 insn
= (insn
& 0xf000000f) | 0x01a0f000;
7973 bfd_put_32 (input_bfd
, insn
, hit_data
);
7975 return bfd_reloc_ok
;
7977 case R_ARM_MOVW_ABS_NC
:
7978 case R_ARM_MOVT_ABS
:
7979 case R_ARM_MOVW_PREL_NC
:
7980 case R_ARM_MOVT_PREL
:
7981 /* Until we properly support segment-base-relative addressing then
7982 we assume the segment base to be zero, as for the group relocations.
7983 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7984 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7985 case R_ARM_MOVW_BREL_NC
:
7986 case R_ARM_MOVW_BREL
:
7987 case R_ARM_MOVT_BREL
:
7989 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7991 if (globals
->use_rel
)
7993 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
7994 signed_addend
= (addend
^ 0x8000) - 0x8000;
7997 value
+= signed_addend
;
7999 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
8000 value
-= (input_section
->output_section
->vma
8001 + input_section
->output_offset
+ rel
->r_offset
);
8003 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
8004 return bfd_reloc_overflow
;
8006 if (sym_flags
== STT_ARM_TFUNC
)
8009 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
8010 || r_type
== R_ARM_MOVT_BREL
)
8014 insn
|= value
& 0xfff;
8015 insn
|= (value
& 0xf000) << 4;
8016 bfd_put_32 (input_bfd
, insn
, hit_data
);
8018 return bfd_reloc_ok
;
8020 case R_ARM_THM_MOVW_ABS_NC
:
8021 case R_ARM_THM_MOVT_ABS
:
8022 case R_ARM_THM_MOVW_PREL_NC
:
8023 case R_ARM_THM_MOVT_PREL
:
8024 /* Until we properly support segment-base-relative addressing then
8025 we assume the segment base to be zero, as for the above relocations.
8026 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8027 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8028 as R_ARM_THM_MOVT_ABS. */
8029 case R_ARM_THM_MOVW_BREL_NC
:
8030 case R_ARM_THM_MOVW_BREL
:
8031 case R_ARM_THM_MOVT_BREL
:
8035 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
8036 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
8038 if (globals
->use_rel
)
8040 addend
= ((insn
>> 4) & 0xf000)
8041 | ((insn
>> 15) & 0x0800)
8042 | ((insn
>> 4) & 0x0700)
8044 signed_addend
= (addend
^ 0x8000) - 0x8000;
8047 value
+= signed_addend
;
8049 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
8050 value
-= (input_section
->output_section
->vma
8051 + input_section
->output_offset
+ rel
->r_offset
);
8053 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
8054 return bfd_reloc_overflow
;
8056 if (sym_flags
== STT_ARM_TFUNC
)
8059 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
8060 || r_type
== R_ARM_THM_MOVT_BREL
)
8064 insn
|= (value
& 0xf000) << 4;
8065 insn
|= (value
& 0x0800) << 15;
8066 insn
|= (value
& 0x0700) << 4;
8067 insn
|= (value
& 0x00ff);
8069 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8070 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8072 return bfd_reloc_ok
;
8074 case R_ARM_ALU_PC_G0_NC
:
8075 case R_ARM_ALU_PC_G1_NC
:
8076 case R_ARM_ALU_PC_G0
:
8077 case R_ARM_ALU_PC_G1
:
8078 case R_ARM_ALU_PC_G2
:
8079 case R_ARM_ALU_SB_G0_NC
:
8080 case R_ARM_ALU_SB_G1_NC
:
8081 case R_ARM_ALU_SB_G0
:
8082 case R_ARM_ALU_SB_G1
:
8083 case R_ARM_ALU_SB_G2
:
8085 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8086 bfd_vma pc
= input_section
->output_section
->vma
8087 + input_section
->output_offset
+ rel
->r_offset
;
8088 /* sb should be the origin of the *segment* containing the symbol.
8089 It is not clear how to obtain this OS-dependent value, so we
8090 make an arbitrary choice of zero. */
8094 bfd_signed_vma signed_value
;
8097 /* Determine which group of bits to select. */
8100 case R_ARM_ALU_PC_G0_NC
:
8101 case R_ARM_ALU_PC_G0
:
8102 case R_ARM_ALU_SB_G0_NC
:
8103 case R_ARM_ALU_SB_G0
:
8107 case R_ARM_ALU_PC_G1_NC
:
8108 case R_ARM_ALU_PC_G1
:
8109 case R_ARM_ALU_SB_G1_NC
:
8110 case R_ARM_ALU_SB_G1
:
8114 case R_ARM_ALU_PC_G2
:
8115 case R_ARM_ALU_SB_G2
:
8123 /* If REL, extract the addend from the insn. If RELA, it will
8124 have already been fetched for us. */
8125 if (globals
->use_rel
)
8128 bfd_vma constant
= insn
& 0xff;
8129 bfd_vma rotation
= (insn
& 0xf00) >> 8;
8132 signed_addend
= constant
;
8135 /* Compensate for the fact that in the instruction, the
8136 rotation is stored in multiples of 2 bits. */
8139 /* Rotate "constant" right by "rotation" bits. */
8140 signed_addend
= (constant
>> rotation
) |
8141 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
8144 /* Determine if the instruction is an ADD or a SUB.
8145 (For REL, this determines the sign of the addend.) */
8146 negative
= identify_add_or_sub (insn
);
8149 (*_bfd_error_handler
)
8150 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8151 input_bfd
, input_section
,
8152 (long) rel
->r_offset
, howto
->name
);
8153 return bfd_reloc_overflow
;
8156 signed_addend
*= negative
;
8159 /* Compute the value (X) to go in the place. */
8160 if (r_type
== R_ARM_ALU_PC_G0_NC
8161 || r_type
== R_ARM_ALU_PC_G1_NC
8162 || r_type
== R_ARM_ALU_PC_G0
8163 || r_type
== R_ARM_ALU_PC_G1
8164 || r_type
== R_ARM_ALU_PC_G2
)
8166 signed_value
= value
- pc
+ signed_addend
;
8168 /* Section base relative. */
8169 signed_value
= value
- sb
+ signed_addend
;
8171 /* If the target symbol is a Thumb function, then set the
8172 Thumb bit in the address. */
8173 if (sym_flags
== STT_ARM_TFUNC
)
8176 /* Calculate the value of the relevant G_n, in encoded
8177 constant-with-rotation format. */
8178 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
8181 /* Check for overflow if required. */
8182 if ((r_type
== R_ARM_ALU_PC_G0
8183 || r_type
== R_ARM_ALU_PC_G1
8184 || r_type
== R_ARM_ALU_PC_G2
8185 || r_type
== R_ARM_ALU_SB_G0
8186 || r_type
== R_ARM_ALU_SB_G1
8187 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
8189 (*_bfd_error_handler
)
8190 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8191 input_bfd
, input_section
,
8192 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8193 return bfd_reloc_overflow
;
8196 /* Mask out the value and the ADD/SUB part of the opcode; take care
8197 not to destroy the S bit. */
8200 /* Set the opcode according to whether the value to go in the
8201 place is negative. */
8202 if (signed_value
< 0)
8207 /* Encode the offset. */
8210 bfd_put_32 (input_bfd
, insn
, hit_data
);
8212 return bfd_reloc_ok
;
8214 case R_ARM_LDR_PC_G0
:
8215 case R_ARM_LDR_PC_G1
:
8216 case R_ARM_LDR_PC_G2
:
8217 case R_ARM_LDR_SB_G0
:
8218 case R_ARM_LDR_SB_G1
:
8219 case R_ARM_LDR_SB_G2
:
8221 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8222 bfd_vma pc
= input_section
->output_section
->vma
8223 + input_section
->output_offset
+ rel
->r_offset
;
8224 bfd_vma sb
= 0; /* See note above. */
8226 bfd_signed_vma signed_value
;
8229 /* Determine which groups of bits to calculate. */
8232 case R_ARM_LDR_PC_G0
:
8233 case R_ARM_LDR_SB_G0
:
8237 case R_ARM_LDR_PC_G1
:
8238 case R_ARM_LDR_SB_G1
:
8242 case R_ARM_LDR_PC_G2
:
8243 case R_ARM_LDR_SB_G2
:
8251 /* If REL, extract the addend from the insn. If RELA, it will
8252 have already been fetched for us. */
8253 if (globals
->use_rel
)
8255 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8256 signed_addend
= negative
* (insn
& 0xfff);
8259 /* Compute the value (X) to go in the place. */
8260 if (r_type
== R_ARM_LDR_PC_G0
8261 || r_type
== R_ARM_LDR_PC_G1
8262 || r_type
== R_ARM_LDR_PC_G2
)
8264 signed_value
= value
- pc
+ signed_addend
;
8266 /* Section base relative. */
8267 signed_value
= value
- sb
+ signed_addend
;
8269 /* Calculate the value of the relevant G_{n-1} to obtain
8270 the residual at that stage. */
8271 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8273 /* Check for overflow. */
8274 if (residual
>= 0x1000)
8276 (*_bfd_error_handler
)
8277 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8278 input_bfd
, input_section
,
8279 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8280 return bfd_reloc_overflow
;
8283 /* Mask out the value and U bit. */
8286 /* Set the U bit if the value to go in the place is non-negative. */
8287 if (signed_value
>= 0)
8290 /* Encode the offset. */
8293 bfd_put_32 (input_bfd
, insn
, hit_data
);
8295 return bfd_reloc_ok
;
8297 case R_ARM_LDRS_PC_G0
:
8298 case R_ARM_LDRS_PC_G1
:
8299 case R_ARM_LDRS_PC_G2
:
8300 case R_ARM_LDRS_SB_G0
:
8301 case R_ARM_LDRS_SB_G1
:
8302 case R_ARM_LDRS_SB_G2
:
8304 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8305 bfd_vma pc
= input_section
->output_section
->vma
8306 + input_section
->output_offset
+ rel
->r_offset
;
8307 bfd_vma sb
= 0; /* See note above. */
8309 bfd_signed_vma signed_value
;
8312 /* Determine which groups of bits to calculate. */
8315 case R_ARM_LDRS_PC_G0
:
8316 case R_ARM_LDRS_SB_G0
:
8320 case R_ARM_LDRS_PC_G1
:
8321 case R_ARM_LDRS_SB_G1
:
8325 case R_ARM_LDRS_PC_G2
:
8326 case R_ARM_LDRS_SB_G2
:
8334 /* If REL, extract the addend from the insn. If RELA, it will
8335 have already been fetched for us. */
8336 if (globals
->use_rel
)
8338 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8339 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
8342 /* Compute the value (X) to go in the place. */
8343 if (r_type
== R_ARM_LDRS_PC_G0
8344 || r_type
== R_ARM_LDRS_PC_G1
8345 || r_type
== R_ARM_LDRS_PC_G2
)
8347 signed_value
= value
- pc
+ signed_addend
;
8349 /* Section base relative. */
8350 signed_value
= value
- sb
+ signed_addend
;
8352 /* Calculate the value of the relevant G_{n-1} to obtain
8353 the residual at that stage. */
8354 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8356 /* Check for overflow. */
8357 if (residual
>= 0x100)
8359 (*_bfd_error_handler
)
8360 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8361 input_bfd
, input_section
,
8362 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8363 return bfd_reloc_overflow
;
8366 /* Mask out the value and U bit. */
8369 /* Set the U bit if the value to go in the place is non-negative. */
8370 if (signed_value
>= 0)
8373 /* Encode the offset. */
8374 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
8376 bfd_put_32 (input_bfd
, insn
, hit_data
);
8378 return bfd_reloc_ok
;
8380 case R_ARM_LDC_PC_G0
:
8381 case R_ARM_LDC_PC_G1
:
8382 case R_ARM_LDC_PC_G2
:
8383 case R_ARM_LDC_SB_G0
:
8384 case R_ARM_LDC_SB_G1
:
8385 case R_ARM_LDC_SB_G2
:
8387 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8388 bfd_vma pc
= input_section
->output_section
->vma
8389 + input_section
->output_offset
+ rel
->r_offset
;
8390 bfd_vma sb
= 0; /* See note above. */
8392 bfd_signed_vma signed_value
;
8395 /* Determine which groups of bits to calculate. */
8398 case R_ARM_LDC_PC_G0
:
8399 case R_ARM_LDC_SB_G0
:
8403 case R_ARM_LDC_PC_G1
:
8404 case R_ARM_LDC_SB_G1
:
8408 case R_ARM_LDC_PC_G2
:
8409 case R_ARM_LDC_SB_G2
:
8417 /* If REL, extract the addend from the insn. If RELA, it will
8418 have already been fetched for us. */
8419 if (globals
->use_rel
)
8421 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8422 signed_addend
= negative
* ((insn
& 0xff) << 2);
8425 /* Compute the value (X) to go in the place. */
8426 if (r_type
== R_ARM_LDC_PC_G0
8427 || r_type
== R_ARM_LDC_PC_G1
8428 || r_type
== R_ARM_LDC_PC_G2
)
8430 signed_value
= value
- pc
+ signed_addend
;
8432 /* Section base relative. */
8433 signed_value
= value
- sb
+ signed_addend
;
8435 /* Calculate the value of the relevant G_{n-1} to obtain
8436 the residual at that stage. */
8437 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8439 /* Check for overflow. (The absolute value to go in the place must be
8440 divisible by four and, after having been divided by four, must
8441 fit in eight bits.) */
8442 if ((residual
& 0x3) != 0 || residual
>= 0x400)
8444 (*_bfd_error_handler
)
8445 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8446 input_bfd
, input_section
,
8447 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8448 return bfd_reloc_overflow
;
8451 /* Mask out the value and U bit. */
8454 /* Set the U bit if the value to go in the place is non-negative. */
8455 if (signed_value
>= 0)
8458 /* Encode the offset. */
8459 insn
|= residual
>> 2;
8461 bfd_put_32 (input_bfd
, insn
, hit_data
);
8463 return bfd_reloc_ok
;
8466 return bfd_reloc_notsupported
;
8470 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8472 arm_add_to_rel (bfd
* abfd
,
8474 reloc_howto_type
* howto
,
8475 bfd_signed_vma increment
)
8477 bfd_signed_vma addend
;
8479 if (howto
->type
== R_ARM_THM_CALL
8480 || howto
->type
== R_ARM_THM_JUMP24
)
8482 int upper_insn
, lower_insn
;
8485 upper_insn
= bfd_get_16 (abfd
, address
);
8486 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
8487 upper
= upper_insn
& 0x7ff;
8488 lower
= lower_insn
& 0x7ff;
8490 addend
= (upper
<< 12) | (lower
<< 1);
8491 addend
+= increment
;
8494 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
8495 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
8497 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
8498 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
8504 contents
= bfd_get_32 (abfd
, address
);
8506 /* Get the (signed) value from the instruction. */
8507 addend
= contents
& howto
->src_mask
;
8508 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8510 bfd_signed_vma mask
;
8513 mask
&= ~ howto
->src_mask
;
8517 /* Add in the increment, (which is a byte value). */
8518 switch (howto
->type
)
8521 addend
+= increment
;
8528 addend
<<= howto
->size
;
8529 addend
+= increment
;
8531 /* Should we check for overflow here ? */
8533 /* Drop any undesired bits. */
8534 addend
>>= howto
->rightshift
;
8538 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
8540 bfd_put_32 (abfd
, contents
, address
);
8544 #define IS_ARM_TLS_RELOC(R_TYPE) \
8545 ((R_TYPE) == R_ARM_TLS_GD32 \
8546 || (R_TYPE) == R_ARM_TLS_LDO32 \
8547 || (R_TYPE) == R_ARM_TLS_LDM32 \
8548 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8549 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8550 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8551 || (R_TYPE) == R_ARM_TLS_LE32 \
8552 || (R_TYPE) == R_ARM_TLS_IE32)
8554 /* Relocate an ARM ELF section. */
8557 elf32_arm_relocate_section (bfd
* output_bfd
,
8558 struct bfd_link_info
* info
,
8560 asection
* input_section
,
8561 bfd_byte
* contents
,
8562 Elf_Internal_Rela
* relocs
,
8563 Elf_Internal_Sym
* local_syms
,
8564 asection
** local_sections
)
8566 Elf_Internal_Shdr
*symtab_hdr
;
8567 struct elf_link_hash_entry
**sym_hashes
;
8568 Elf_Internal_Rela
*rel
;
8569 Elf_Internal_Rela
*relend
;
8571 struct elf32_arm_link_hash_table
* globals
;
8573 globals
= elf32_arm_hash_table (info
);
8575 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
8576 sym_hashes
= elf_sym_hashes (input_bfd
);
8579 relend
= relocs
+ input_section
->reloc_count
;
8580 for (; rel
< relend
; rel
++)
8583 reloc_howto_type
* howto
;
8584 unsigned long r_symndx
;
8585 Elf_Internal_Sym
* sym
;
8587 struct elf_link_hash_entry
* h
;
8589 bfd_reloc_status_type r
;
8592 bfd_boolean unresolved_reloc
= FALSE
;
8593 char *error_message
= NULL
;
8595 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8596 r_type
= ELF32_R_TYPE (rel
->r_info
);
8597 r_type
= arm_real_reloc_type (globals
, r_type
);
8599 if ( r_type
== R_ARM_GNU_VTENTRY
8600 || r_type
== R_ARM_GNU_VTINHERIT
)
8603 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
8604 howto
= bfd_reloc
.howto
;
8610 if (r_symndx
< symtab_hdr
->sh_info
)
8612 sym
= local_syms
+ r_symndx
;
8613 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
8614 sec
= local_sections
[r_symndx
];
8615 if (globals
->use_rel
)
8617 relocation
= (sec
->output_section
->vma
8618 + sec
->output_offset
8620 if (!info
->relocatable
8621 && (sec
->flags
& SEC_MERGE
)
8622 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8625 bfd_vma addend
, value
;
8629 case R_ARM_MOVW_ABS_NC
:
8630 case R_ARM_MOVT_ABS
:
8631 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8632 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
8633 addend
= (addend
^ 0x8000) - 0x8000;
8636 case R_ARM_THM_MOVW_ABS_NC
:
8637 case R_ARM_THM_MOVT_ABS
:
8638 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
8640 value
|= bfd_get_16 (input_bfd
,
8641 contents
+ rel
->r_offset
+ 2);
8642 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
8643 | ((value
& 0x04000000) >> 15);
8644 addend
= (addend
^ 0x8000) - 0x8000;
8648 if (howto
->rightshift
8649 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
8651 (*_bfd_error_handler
)
8652 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8653 input_bfd
, input_section
,
8654 (long) rel
->r_offset
, howto
->name
);
8658 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8660 /* Get the (signed) value from the instruction. */
8661 addend
= value
& howto
->src_mask
;
8662 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8664 bfd_signed_vma mask
;
8667 mask
&= ~ howto
->src_mask
;
8675 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
8677 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
8679 /* Cases here must match those in the preceeding
8680 switch statement. */
8683 case R_ARM_MOVW_ABS_NC
:
8684 case R_ARM_MOVT_ABS
:
8685 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
8687 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8690 case R_ARM_THM_MOVW_ABS_NC
:
8691 case R_ARM_THM_MOVT_ABS
:
8692 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
8693 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
8694 bfd_put_16 (input_bfd
, value
>> 16,
8695 contents
+ rel
->r_offset
);
8696 bfd_put_16 (input_bfd
, value
,
8697 contents
+ rel
->r_offset
+ 2);
8701 value
= (value
& ~ howto
->dst_mask
)
8702 | (addend
& howto
->dst_mask
);
8703 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8709 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8715 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
8716 r_symndx
, symtab_hdr
, sym_hashes
,
8718 unresolved_reloc
, warned
);
8723 if (sec
!= NULL
&& elf_discarded_section (sec
))
8725 /* For relocs against symbols from removed linkonce sections,
8726 or sections discarded by a linker script, we just want the
8727 section contents zeroed. Avoid any special processing. */
8728 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8734 if (info
->relocatable
)
8736 /* This is a relocatable link. We don't have to change
8737 anything, unless the reloc is against a section symbol,
8738 in which case we have to adjust according to where the
8739 section symbol winds up in the output section. */
8740 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8742 if (globals
->use_rel
)
8743 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
8744 howto
, (bfd_signed_vma
) sec
->output_offset
);
8746 rel
->r_addend
+= sec
->output_offset
;
8752 name
= h
->root
.root
.string
;
8755 name
= (bfd_elf_string_from_elf_section
8756 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
8757 if (name
== NULL
|| *name
== '\0')
8758 name
= bfd_section_name (input_bfd
, sec
);
8762 && r_type
!= R_ARM_NONE
8764 || h
->root
.type
== bfd_link_hash_defined
8765 || h
->root
.type
== bfd_link_hash_defweak
)
8766 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
8768 (*_bfd_error_handler
)
8769 ((sym_type
== STT_TLS
8770 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8771 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8774 (long) rel
->r_offset
,
8779 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
8780 input_section
, contents
, rel
,
8781 relocation
, info
, sec
, name
,
8782 (h
? ELF_ST_TYPE (h
->type
) :
8783 ELF_ST_TYPE (sym
->st_info
)), h
,
8784 &unresolved_reloc
, &error_message
);
8786 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8787 because such sections are not SEC_ALLOC and thus ld.so will
8788 not process them. */
8789 if (unresolved_reloc
8790 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
8793 (*_bfd_error_handler
)
8794 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8797 (long) rel
->r_offset
,
8799 h
->root
.root
.string
);
8803 if (r
!= bfd_reloc_ok
)
8807 case bfd_reloc_overflow
:
8808 /* If the overflowing reloc was to an undefined symbol,
8809 we have already printed one error message and there
8810 is no point complaining again. */
8812 h
->root
.type
!= bfd_link_hash_undefined
)
8813 && (!((*info
->callbacks
->reloc_overflow
)
8814 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
8815 (bfd_vma
) 0, input_bfd
, input_section
,
8820 case bfd_reloc_undefined
:
8821 if (!((*info
->callbacks
->undefined_symbol
)
8822 (info
, name
, input_bfd
, input_section
,
8823 rel
->r_offset
, TRUE
)))
8827 case bfd_reloc_outofrange
:
8828 error_message
= _("out of range");
8831 case bfd_reloc_notsupported
:
8832 error_message
= _("unsupported relocation");
8835 case bfd_reloc_dangerous
:
8836 /* error_message should already be set. */
8840 error_message
= _("unknown error");
8844 BFD_ASSERT (error_message
!= NULL
);
8845 if (!((*info
->callbacks
->reloc_dangerous
)
8846 (info
, error_message
, input_bfd
, input_section
,
8857 /* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
8858 adds the edit to the start of the list. (The list must be built in order of
8859 ascending INDEX: the function's callers are primarily responsible for
8860 maintaining that condition). */
8863 add_unwind_table_edit (arm_unwind_table_edit
**head
,
8864 arm_unwind_table_edit
**tail
,
8865 arm_unwind_edit_type type
,
8866 asection
*linked_section
,
8869 arm_unwind_table_edit
*new_edit
= xmalloc (sizeof (arm_unwind_table_edit
));
8871 new_edit
->type
= type
;
8872 new_edit
->linked_section
= linked_section
;
8873 new_edit
->index
= index
;
8877 new_edit
->next
= NULL
;
8880 (*tail
)->next
= new_edit
;
8889 new_edit
->next
= *head
;
8898 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
8900 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
8902 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
8906 if (!exidx_sec
->rawsize
)
8907 exidx_sec
->rawsize
= exidx_sec
->size
;
8909 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
8910 out_sec
= exidx_sec
->output_section
;
8911 /* Adjust size of output section. */
8912 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
8915 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
8917 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
8919 struct _arm_elf_section_data
*exidx_arm_data
;
8921 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
8922 add_unwind_table_edit (
8923 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
8924 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
8925 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
8927 adjust_exidx_size(exidx_sec
, 8);
8930 /* Scan .ARM.exidx tables, and create a list describing edits which should be
8931 made to those tables, such that:
8933 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
8934 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
8935 codes which have been inlined into the index).
8937 The edits are applied when the tables are written
8938 (in elf32_arm_write_section).
8942 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
8943 unsigned int num_text_sections
,
8944 struct bfd_link_info
*info
)
8947 unsigned int last_second_word
= 0, i
;
8948 asection
*last_exidx_sec
= NULL
;
8949 asection
*last_text_sec
= NULL
;
8950 int last_unwind_type
= -1;
8952 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
8954 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
8958 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
8960 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
8961 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
8963 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
8966 if (elf_sec
->linked_to
)
8968 Elf_Internal_Shdr
*linked_hdr
8969 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
8970 struct _arm_elf_section_data
*linked_sec_arm_data
8971 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
8973 if (linked_sec_arm_data
== NULL
)
8976 /* Link this .ARM.exidx section back from the text section it
8978 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
8983 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
8984 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
8985 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
8988 for (i
= 0; i
< num_text_sections
; i
++)
8990 asection
*sec
= text_section_order
[i
];
8991 asection
*exidx_sec
;
8992 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
8993 struct _arm_elf_section_data
*exidx_arm_data
;
8994 bfd_byte
*contents
= NULL
;
8995 int deleted_exidx_bytes
= 0;
8997 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
8998 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
8999 Elf_Internal_Shdr
*hdr
;
9002 if (arm_data
== NULL
)
9005 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
9006 if (exidx_sec
== NULL
)
9008 /* Section has no unwind data. */
9009 if (last_unwind_type
== 0 || !last_exidx_sec
)
9012 /* Ignore zero sized sections. */
9016 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9017 last_unwind_type
= 0;
9021 /* Skip /DISCARD/ sections. */
9022 if (bfd_is_abs_section (exidx_sec
->output_section
))
9025 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
9026 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
9029 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9030 if (exidx_arm_data
== NULL
)
9033 ibfd
= exidx_sec
->owner
;
9035 if (hdr
->contents
!= NULL
)
9036 contents
= hdr
->contents
;
9037 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
9041 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
9043 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
9047 /* An EXIDX_CANTUNWIND entry. */
9048 if (second_word
== 1)
9050 if (last_unwind_type
== 0)
9054 /* Inlined unwinding data. Merge if equal to previous. */
9055 else if ((second_word
& 0x80000000) != 0)
9057 if (last_second_word
== second_word
&& last_unwind_type
== 1)
9060 last_second_word
= second_word
;
9062 /* Normal table entry. In theory we could merge these too,
9063 but duplicate entries are likely to be much less common. */
9069 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
9070 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
9072 deleted_exidx_bytes
+= 8;
9075 last_unwind_type
= unwind_type
;
9078 /* Free contents if we allocated it ourselves. */
9079 if (contents
!= hdr
->contents
)
9082 /* Record edits to be applied later (in elf32_arm_write_section). */
9083 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
9084 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
9086 if (deleted_exidx_bytes
> 0)
9087 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
9089 last_exidx_sec
= exidx_sec
;
9090 last_text_sec
= sec
;
9093 /* Add terminating CANTUNWIND entry. */
9094 if (last_exidx_sec
&& last_unwind_type
!= 0)
9095 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9101 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
9102 bfd
*ibfd
, const char *name
)
9104 asection
*sec
, *osec
;
9106 sec
= bfd_get_section_by_name (ibfd
, name
);
9107 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
9110 osec
= sec
->output_section
;
9111 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
9114 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
9115 sec
->output_offset
, sec
->size
))
9122 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9124 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
9126 /* Invoke the regular ELF backend linker to do all the work. */
9127 if (!bfd_elf_final_link (abfd
, info
))
9130 /* Write out any glue sections now that we have created all the
9132 if (globals
->bfd_of_glue_owner
!= NULL
)
9134 if (! elf32_arm_output_glue_section (info
, abfd
,
9135 globals
->bfd_of_glue_owner
,
9136 ARM2THUMB_GLUE_SECTION_NAME
))
9139 if (! elf32_arm_output_glue_section (info
, abfd
,
9140 globals
->bfd_of_glue_owner
,
9141 THUMB2ARM_GLUE_SECTION_NAME
))
9144 if (! elf32_arm_output_glue_section (info
, abfd
,
9145 globals
->bfd_of_glue_owner
,
9146 VFP11_ERRATUM_VENEER_SECTION_NAME
))
9149 if (! elf32_arm_output_glue_section (info
, abfd
,
9150 globals
->bfd_of_glue_owner
,
9151 ARM_BX_GLUE_SECTION_NAME
))
9158 /* Set the right machine number. */
9161 elf32_arm_object_p (bfd
*abfd
)
9165 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
9167 if (mach
!= bfd_mach_arm_unknown
)
9168 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9170 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
9171 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
9174 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9179 /* Function to keep ARM specific flags in the ELF header. */
9182 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
9184 if (elf_flags_init (abfd
)
9185 && elf_elfheader (abfd
)->e_flags
!= flags
)
9187 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
9189 if (flags
& EF_ARM_INTERWORK
)
9190 (*_bfd_error_handler
)
9191 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9195 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9201 elf_elfheader (abfd
)->e_flags
= flags
;
9202 elf_flags_init (abfd
) = TRUE
;
9208 /* Copy backend specific data from one object module to another. */
9211 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9216 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
9219 in_flags
= elf_elfheader (ibfd
)->e_flags
;
9220 out_flags
= elf_elfheader (obfd
)->e_flags
;
9222 if (elf_flags_init (obfd
)
9223 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
9224 && in_flags
!= out_flags
)
9226 /* Cannot mix APCS26 and APCS32 code. */
9227 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
9230 /* Cannot mix float APCS and non-float APCS code. */
9231 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
9234 /* If the src and dest have different interworking flags
9235 then turn off the interworking bit. */
9236 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
9238 if (out_flags
& EF_ARM_INTERWORK
)
9240 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9243 in_flags
&= ~EF_ARM_INTERWORK
;
9246 /* Likewise for PIC, though don't warn for this case. */
9247 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
9248 in_flags
&= ~EF_ARM_PIC
;
9251 elf_elfheader (obfd
)->e_flags
= in_flags
;
9252 elf_flags_init (obfd
) = TRUE
;
9254 /* Also copy the EI_OSABI field. */
9255 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
9256 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
9258 /* Copy object attributes. */
9259 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9264 /* Values for Tag_ABI_PCS_R9_use. */
9273 /* Values for Tag_ABI_PCS_RW_data. */
9276 AEABI_PCS_RW_data_absolute
,
9277 AEABI_PCS_RW_data_PCrel
,
9278 AEABI_PCS_RW_data_SBrel
,
9279 AEABI_PCS_RW_data_unused
9282 /* Values for Tag_ABI_enum_size. */
9288 AEABI_enum_forced_wide
9291 /* Determine whether an object attribute tag takes an integer, a
9295 elf32_arm_obj_attrs_arg_type (int tag
)
9297 if (tag
== Tag_compatibility
)
9298 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
9299 else if (tag
== Tag_nodefaults
)
9300 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
9301 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
9302 return ATTR_TYPE_FLAG_STR_VAL
;
9304 return ATTR_TYPE_FLAG_INT_VAL
;
9306 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
9309 /* The ABI defines that Tag_conformance should be emitted first, and that
9310 Tag_nodefaults should be second (if either is defined). This sets those
9311 two positions, and bumps up the position of all the remaining tags to
9314 elf32_arm_obj_attrs_order (int num
)
9317 return Tag_conformance
;
9319 return Tag_nodefaults
;
9320 if ((num
- 2) < Tag_nodefaults
)
9322 if ((num
- 1) < Tag_conformance
)
9327 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9328 Returns -1 if no architecture could be read. */
9331 get_secondary_compatible_arch (bfd
*abfd
)
9333 obj_attribute
*attr
=
9334 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9336 /* Note: the tag and its argument below are uleb128 values, though
9337 currently-defined values fit in one byte for each. */
9339 && attr
->s
[0] == Tag_CPU_arch
9340 && (attr
->s
[1] & 128) != 128
9344 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9348 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9349 The tag is removed if ARCH is -1. */
9352 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
9354 obj_attribute
*attr
=
9355 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9363 /* Note: the tag and its argument below are uleb128 values, though
9364 currently-defined values fit in one byte for each. */
9366 attr
->s
= bfd_alloc (abfd
, 3);
9367 attr
->s
[0] = Tag_CPU_arch
;
9372 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9376 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
9377 int newtag
, int secondary_compat
)
9379 #define T(X) TAG_CPU_ARCH_##X
9380 int tagl
, tagh
, result
;
9383 T(V6T2
), /* PRE_V4. */
9387 T(V6T2
), /* V5TE. */
9388 T(V6T2
), /* V5TEJ. */
9395 T(V6K
), /* PRE_V4. */
9400 T(V6K
), /* V5TEJ. */
9402 T(V6KZ
), /* V6KZ. */
9408 T(V7
), /* PRE_V4. */
9427 T(V6K
), /* V5TEJ. */
9429 T(V6KZ
), /* V6KZ. */
9442 T(V6K
), /* V5TEJ. */
9444 T(V6KZ
), /* V6KZ. */
9448 T(V6S_M
), /* V6_M. */
9449 T(V6S_M
) /* V6S_M. */
9451 const int v4t_plus_v6_m
[] =
9457 T(V5TE
), /* V5TE. */
9458 T(V5TEJ
), /* V5TEJ. */
9460 T(V6KZ
), /* V6KZ. */
9461 T(V6T2
), /* V6T2. */
9464 T(V6_M
), /* V6_M. */
9465 T(V6S_M
), /* V6S_M. */
9466 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
9475 /* Pseudo-architecture. */
9479 /* Check we've not got a higher architecture than we know about. */
9481 if (oldtag
>= MAX_TAG_CPU_ARCH
|| newtag
>= MAX_TAG_CPU_ARCH
)
9483 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
9487 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9489 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
9490 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
9491 oldtag
= T(V4T_PLUS_V6_M
);
9493 /* And override the new tag if we have a Tag_also_compatible_with on the
9496 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
9497 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
9498 newtag
= T(V4T_PLUS_V6_M
);
9500 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
9501 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
9503 /* Architectures before V6KZ add features monotonically. */
9504 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
9507 result
= comb
[tagh
- T(V6T2
)][tagl
];
9509 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9510 as the canonical version. */
9511 if (result
== T(V4T_PLUS_V6_M
))
9514 *secondary_compat_out
= T(V6_M
);
9517 *secondary_compat_out
= -1;
9521 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9522 ibfd
, oldtag
, newtag
);
9530 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9531 are conflicting attributes. */
9534 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
9536 obj_attribute
*in_attr
;
9537 obj_attribute
*out_attr
;
9538 obj_attribute_list
*in_list
;
9539 obj_attribute_list
*out_list
;
9540 obj_attribute_list
**out_listp
;
9541 /* Some tags have 0 = don't care, 1 = strong requirement,
9542 2 = weak requirement. */
9543 static const int order_021
[3] = {0, 2, 1};
9544 /* For use with Tag_VFP_arch. */
9545 static const int order_01243
[5] = {0, 1, 2, 4, 3};
9547 bfd_boolean result
= TRUE
;
9549 /* Skip the linker stubs file. This preserves previous behavior
9550 of accepting unknown attributes in the first input file - but
9552 if (ibfd
->flags
& BFD_LINKER_CREATED
)
9555 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
9557 /* This is the first object. Copy the attributes. */
9558 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9560 /* Use the Tag_null value to indicate the attributes have been
9562 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
9567 in_attr
= elf_known_obj_attributes_proc (ibfd
);
9568 out_attr
= elf_known_obj_attributes_proc (obfd
);
9569 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9570 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
9572 /* Ignore mismatches if the object doesn't use floating point. */
9573 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
9574 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
9575 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
9578 (_("error: %B uses VFP register arguments, %B does not"),
9584 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
9586 /* Merge this attribute with existing attributes. */
9589 case Tag_CPU_raw_name
:
9591 /* These are merged after Tag_CPU_arch. */
9594 case Tag_ABI_optimization_goals
:
9595 case Tag_ABI_FP_optimization_goals
:
9596 /* Use the first value seen. */
9601 int secondary_compat
= -1, secondary_compat_out
= -1;
9602 unsigned int saved_out_attr
= out_attr
[i
].i
;
9603 static const char *name_table
[] = {
9604 /* These aren't real CPU names, but we can't guess
9605 that from the architecture version alone. */
9621 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9622 secondary_compat
= get_secondary_compatible_arch (ibfd
);
9623 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
9624 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
9625 &secondary_compat_out
,
9628 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
9630 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9631 if (out_attr
[i
].i
== saved_out_attr
)
9632 ; /* Leave the names alone. */
9633 else if (out_attr
[i
].i
== in_attr
[i
].i
)
9635 /* The output architecture has been changed to match the
9636 input architecture. Use the input names. */
9637 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
9638 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
9640 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
9641 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
9646 out_attr
[Tag_CPU_name
].s
= NULL
;
9647 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
9650 /* If we still don't have a value for Tag_CPU_name,
9651 make one up now. Tag_CPU_raw_name remains blank. */
9652 if (out_attr
[Tag_CPU_name
].s
== NULL
9653 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
9654 out_attr
[Tag_CPU_name
].s
=
9655 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
9659 case Tag_ARM_ISA_use
:
9660 case Tag_THUMB_ISA_use
:
9662 case Tag_Advanced_SIMD_arch
:
9663 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
9664 case Tag_ABI_FP_rounding
:
9665 case Tag_ABI_FP_exceptions
:
9666 case Tag_ABI_FP_user_exceptions
:
9667 case Tag_ABI_FP_number_model
:
9668 case Tag_VFP_HP_extension
:
9669 case Tag_CPU_unaligned_access
:
9671 case Tag_Virtualization_use
:
9672 case Tag_MPextension_use
:
9673 /* Use the largest value specified. */
9674 if (in_attr
[i
].i
> out_attr
[i
].i
)
9675 out_attr
[i
].i
= in_attr
[i
].i
;
9678 case Tag_ABI_align8_preserved
:
9679 case Tag_ABI_PCS_RO_data
:
9680 /* Use the smallest value specified. */
9681 if (in_attr
[i
].i
< out_attr
[i
].i
)
9682 out_attr
[i
].i
= in_attr
[i
].i
;
9685 case Tag_ABI_align8_needed
:
9686 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
9687 && (in_attr
[Tag_ABI_align8_preserved
].i
== 0
9688 || out_attr
[Tag_ABI_align8_preserved
].i
== 0))
9690 /* This error message should be enabled once all non-conformant
9691 binaries in the toolchain have had the attributes set
9694 (_("error: %B: 8-byte data alignment conflicts with %B"),
9699 case Tag_ABI_FP_denormal
:
9700 case Tag_ABI_PCS_GOT_use
:
9701 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9702 value if greater than 2 (for future-proofing). */
9703 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
9704 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
9705 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
9706 out_attr
[i
].i
= in_attr
[i
].i
;
9710 case Tag_CPU_arch_profile
:
9711 if (out_attr
[i
].i
!= in_attr
[i
].i
)
9713 /* 0 will merge with anything.
9714 'A' and 'S' merge to 'A'.
9715 'R' and 'S' merge to 'R'.
9716 'M' and 'A|R|S' is an error. */
9717 if (out_attr
[i
].i
== 0
9718 || (out_attr
[i
].i
== 'S'
9719 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
9720 out_attr
[i
].i
= in_attr
[i
].i
;
9721 else if (in_attr
[i
].i
== 0
9722 || (in_attr
[i
].i
== 'S'
9723 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
9728 (_("error: %B: Conflicting architecture profiles %c/%c"),
9730 in_attr
[i
].i
? in_attr
[i
].i
: '0',
9731 out_attr
[i
].i
? out_attr
[i
].i
: '0');
9737 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9738 largest value if greater than 4 (for future-proofing). */
9739 if ((in_attr
[i
].i
> 4 && in_attr
[i
].i
> out_attr
[i
].i
)
9740 || (in_attr
[i
].i
<= 4 && out_attr
[i
].i
<= 4
9741 && order_01243
[in_attr
[i
].i
] > order_01243
[out_attr
[i
].i
]))
9742 out_attr
[i
].i
= in_attr
[i
].i
;
9744 case Tag_PCS_config
:
9745 if (out_attr
[i
].i
== 0)
9746 out_attr
[i
].i
= in_attr
[i
].i
;
9747 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9749 /* It's sometimes ok to mix different configs, so this is only
9752 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
9755 case Tag_ABI_PCS_R9_use
:
9756 if (in_attr
[i
].i
!= out_attr
[i
].i
9757 && out_attr
[i
].i
!= AEABI_R9_unused
9758 && in_attr
[i
].i
!= AEABI_R9_unused
)
9761 (_("error: %B: Conflicting use of R9"), ibfd
);
9764 if (out_attr
[i
].i
== AEABI_R9_unused
)
9765 out_attr
[i
].i
= in_attr
[i
].i
;
9767 case Tag_ABI_PCS_RW_data
:
9768 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
9769 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
9770 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
9773 (_("error: %B: SB relative addressing conflicts with use of R9"),
9777 /* Use the smallest value specified. */
9778 if (in_attr
[i
].i
< out_attr
[i
].i
)
9779 out_attr
[i
].i
= in_attr
[i
].i
;
9781 case Tag_ABI_PCS_wchar_t
:
9782 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
9783 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
9786 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9787 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
9789 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
9790 out_attr
[i
].i
= in_attr
[i
].i
;
9792 case Tag_ABI_enum_size
:
9793 if (in_attr
[i
].i
!= AEABI_enum_unused
)
9795 if (out_attr
[i
].i
== AEABI_enum_unused
9796 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
9798 /* The existing object is compatible with anything.
9799 Use whatever requirements the new object has. */
9800 out_attr
[i
].i
= in_attr
[i
].i
;
9802 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
9803 && out_attr
[i
].i
!= in_attr
[i
].i
9804 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
9806 static const char *aeabi_enum_names
[] =
9807 { "", "variable-size", "32-bit", "" };
9808 const char *in_name
=
9809 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
9810 ? aeabi_enum_names
[in_attr
[i
].i
]
9812 const char *out_name
=
9813 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
9814 ? aeabi_enum_names
[out_attr
[i
].i
]
9817 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
9818 ibfd
, in_name
, out_name
);
9822 case Tag_ABI_VFP_args
:
9825 case Tag_ABI_WMMX_args
:
9826 if (in_attr
[i
].i
!= out_attr
[i
].i
)
9829 (_("error: %B uses iWMMXt register arguments, %B does not"),
9834 case Tag_compatibility
:
9835 /* Merged in target-independent code. */
9837 case Tag_ABI_HardFP_use
:
9838 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
9839 if ((in_attr
[i
].i
== 1 && out_attr
[i
].i
== 2)
9840 || (in_attr
[i
].i
== 2 && out_attr
[i
].i
== 1))
9842 else if (in_attr
[i
].i
> out_attr
[i
].i
)
9843 out_attr
[i
].i
= in_attr
[i
].i
;
9845 case Tag_ABI_FP_16bit_format
:
9846 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9848 if (in_attr
[i
].i
!= out_attr
[i
].i
)
9851 (_("error: fp16 format mismatch between %B and %B"),
9856 if (in_attr
[i
].i
!= 0)
9857 out_attr
[i
].i
= in_attr
[i
].i
;
9860 case Tag_nodefaults
:
9861 /* This tag is set if it exists, but the value is unused (and is
9862 typically zero). We don't actually need to do anything here -
9863 the merge happens automatically when the type flags are merged
9866 case Tag_also_compatible_with
:
9867 /* Already done in Tag_CPU_arch. */
9869 case Tag_conformance
:
9870 /* Keep the attribute if it matches. Throw it away otherwise.
9871 No attribute means no claim to conform. */
9872 if (!in_attr
[i
].s
|| !out_attr
[i
].s
9873 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
9874 out_attr
[i
].s
= NULL
;
9879 bfd
*err_bfd
= NULL
;
9881 /* The "known_obj_attributes" table does contain some undefined
9882 attributes. Ensure that there are unused. */
9883 if (out_attr
[i
].i
!= 0 || out_attr
[i
].s
!= NULL
)
9885 else if (in_attr
[i
].i
!= 0 || in_attr
[i
].s
!= NULL
)
9888 if (err_bfd
!= NULL
)
9890 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9894 (_("%B: Unknown mandatory EABI object attribute %d"),
9896 bfd_set_error (bfd_error_bad_value
);
9902 (_("Warning: %B: Unknown EABI object attribute %d"),
9907 /* Only pass on attributes that match in both inputs. */
9908 if (in_attr
[i
].i
!= out_attr
[i
].i
9909 || in_attr
[i
].s
!= out_attr
[i
].s
9910 || (in_attr
[i
].s
!= NULL
&& out_attr
[i
].s
!= NULL
9911 && strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0))
9914 out_attr
[i
].s
= NULL
;
9919 /* If out_attr was copied from in_attr then it won't have a type yet. */
9920 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
9921 out_attr
[i
].type
= in_attr
[i
].type
;
9924 /* Merge Tag_compatibility attributes and any common GNU ones. */
9925 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
9927 /* Check for any attributes not known on ARM. */
9928 in_list
= elf_other_obj_attributes_proc (ibfd
);
9929 out_listp
= &elf_other_obj_attributes_proc (obfd
);
9930 out_list
= *out_listp
;
9932 for (; in_list
|| out_list
; )
9934 bfd
*err_bfd
= NULL
;
9937 /* The tags for each list are in numerical order. */
9938 /* If the tags are equal, then merge. */
9939 if (out_list
&& (!in_list
|| in_list
->tag
> out_list
->tag
))
9941 /* This attribute only exists in obfd. We can't merge, and we don't
9942 know what the tag means, so delete it. */
9944 err_tag
= out_list
->tag
;
9945 *out_listp
= out_list
->next
;
9946 out_list
= *out_listp
;
9948 else if (in_list
&& (!out_list
|| in_list
->tag
< out_list
->tag
))
9950 /* This attribute only exists in ibfd. We can't merge, and we don't
9951 know what the tag means, so ignore it. */
9953 err_tag
= in_list
->tag
;
9954 in_list
= in_list
->next
;
9956 else /* The tags are equal. */
9958 /* As present, all attributes in the list are unknown, and
9959 therefore can't be merged meaningfully. */
9961 err_tag
= out_list
->tag
;
9963 /* Only pass on attributes that match in both inputs. */
9964 if (in_list
->attr
.i
!= out_list
->attr
.i
9965 || in_list
->attr
.s
!= out_list
->attr
.s
9966 || (in_list
->attr
.s
&& out_list
->attr
.s
9967 && strcmp (in_list
->attr
.s
, out_list
->attr
.s
) != 0))
9969 /* No match. Delete the attribute. */
9970 *out_listp
= out_list
->next
;
9971 out_list
= *out_listp
;
9975 /* Matched. Keep the attribute and move to the next. */
9976 out_list
= out_list
->next
;
9977 in_list
= in_list
->next
;
9983 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9984 if ((err_tag
& 127) < 64)
9987 (_("%B: Unknown mandatory EABI object attribute %d"),
9989 bfd_set_error (bfd_error_bad_value
);
9995 (_("Warning: %B: Unknown EABI object attribute %d"),
10004 /* Return TRUE if the two EABI versions are incompatible. */
10007 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
10009 /* v4 and v5 are the same spec before and after it was released,
10010 so allow mixing them. */
10011 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
10012 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
10015 return (iver
== over
);
10018 /* Merge backend specific data from an object file to the output
10019 object file when linking. */
10022 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
10024 flagword out_flags
;
10026 bfd_boolean flags_compatible
= TRUE
;
10029 /* Check if we have the same endianess. */
10030 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
10033 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10036 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
10039 /* The input BFD must have had its flags initialised. */
10040 /* The following seems bogus to me -- The flags are initialized in
10041 the assembler but I don't think an elf_flags_init field is
10042 written into the object. */
10043 /* BFD_ASSERT (elf_flags_init (ibfd)); */
10045 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10046 out_flags
= elf_elfheader (obfd
)->e_flags
;
10048 /* In theory there is no reason why we couldn't handle this. However
10049 in practice it isn't even close to working and there is no real
10050 reason to want it. */
10051 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
10052 && !(ibfd
->flags
& DYNAMIC
)
10053 && (in_flags
& EF_ARM_BE8
))
10055 _bfd_error_handler (_("error: %B is already in final BE8 format"),
10060 if (!elf_flags_init (obfd
))
10062 /* If the input is the default architecture and had the default
10063 flags then do not bother setting the flags for the output
10064 architecture, instead allow future merges to do this. If no
10065 future merges ever set these flags then they will retain their
10066 uninitialised values, which surprise surprise, correspond
10067 to the default values. */
10068 if (bfd_get_arch_info (ibfd
)->the_default
10069 && elf_elfheader (ibfd
)->e_flags
== 0)
10072 elf_flags_init (obfd
) = TRUE
;
10073 elf_elfheader (obfd
)->e_flags
= in_flags
;
10075 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
10076 && bfd_get_arch_info (obfd
)->the_default
)
10077 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
10082 /* Determine what should happen if the input ARM architecture
10083 does not match the output ARM architecture. */
10084 if (! bfd_arm_merge_machines (ibfd
, obfd
))
10087 /* Identical flags must be compatible. */
10088 if (in_flags
== out_flags
)
10091 /* Check to see if the input BFD actually contains any sections. If
10092 not, its flags may not have been initialised either, but it
10093 cannot actually cause any incompatiblity. Do not short-circuit
10094 dynamic objects; their section list may be emptied by
10095 elf_link_add_object_symbols.
10097 Also check to see if there are no code sections in the input.
10098 In this case there is no need to check for code specific flags.
10099 XXX - do we need to worry about floating-point format compatability
10100 in data sections ? */
10101 if (!(ibfd
->flags
& DYNAMIC
))
10103 bfd_boolean null_input_bfd
= TRUE
;
10104 bfd_boolean only_data_sections
= TRUE
;
10106 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
10108 /* Ignore synthetic glue sections. */
10109 if (strcmp (sec
->name
, ".glue_7")
10110 && strcmp (sec
->name
, ".glue_7t"))
10112 if ((bfd_get_section_flags (ibfd
, sec
)
10113 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
10114 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
10115 only_data_sections
= FALSE
;
10117 null_input_bfd
= FALSE
;
10122 if (null_input_bfd
|| only_data_sections
)
10126 /* Complain about various flag mismatches. */
10127 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
10128 EF_ARM_EABI_VERSION (out_flags
)))
10131 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
10133 (in_flags
& EF_ARM_EABIMASK
) >> 24,
10134 (out_flags
& EF_ARM_EABIMASK
) >> 24);
10138 /* Not sure what needs to be checked for EABI versions >= 1. */
10139 /* VxWorks libraries do not use these flags. */
10140 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
10141 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
10142 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
10144 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10147 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
10149 in_flags
& EF_ARM_APCS_26
? 26 : 32,
10150 out_flags
& EF_ARM_APCS_26
? 26 : 32);
10151 flags_compatible
= FALSE
;
10154 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10156 if (in_flags
& EF_ARM_APCS_FLOAT
)
10158 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
10162 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
10165 flags_compatible
= FALSE
;
10168 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
10170 if (in_flags
& EF_ARM_VFP_FLOAT
)
10172 (_("error: %B uses VFP instructions, whereas %B does not"),
10176 (_("error: %B uses FPA instructions, whereas %B does not"),
10179 flags_compatible
= FALSE
;
10182 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
10184 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
10186 (_("error: %B uses Maverick instructions, whereas %B does not"),
10190 (_("error: %B does not use Maverick instructions, whereas %B does"),
10193 flags_compatible
= FALSE
;
10196 #ifdef EF_ARM_SOFT_FLOAT
10197 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
10199 /* We can allow interworking between code that is VFP format
10200 layout, and uses either soft float or integer regs for
10201 passing floating point arguments and results. We already
10202 know that the APCS_FLOAT flags match; similarly for VFP
10204 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
10205 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
10207 if (in_flags
& EF_ARM_SOFT_FLOAT
)
10209 (_("error: %B uses software FP, whereas %B uses hardware FP"),
10213 (_("error: %B uses hardware FP, whereas %B uses software FP"),
10216 flags_compatible
= FALSE
;
10221 /* Interworking mismatch is only a warning. */
10222 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10224 if (in_flags
& EF_ARM_INTERWORK
)
10227 (_("Warning: %B supports interworking, whereas %B does not"),
10233 (_("Warning: %B does not support interworking, whereas %B does"),
10239 return flags_compatible
;
10242 /* Display the flags field. */
10245 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
10247 FILE * file
= (FILE *) ptr
;
10248 unsigned long flags
;
10250 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
10252 /* Print normal ELF private data. */
10253 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
10255 flags
= elf_elfheader (abfd
)->e_flags
;
10256 /* Ignore init flag - it may not be set, despite the flags field
10257 containing valid data. */
10259 /* xgettext:c-format */
10260 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
10262 switch (EF_ARM_EABI_VERSION (flags
))
10264 case EF_ARM_EABI_UNKNOWN
:
10265 /* The following flag bits are GNU extensions and not part of the
10266 official ARM ELF extended ABI. Hence they are only decoded if
10267 the EABI version is not set. */
10268 if (flags
& EF_ARM_INTERWORK
)
10269 fprintf (file
, _(" [interworking enabled]"));
10271 if (flags
& EF_ARM_APCS_26
)
10272 fprintf (file
, " [APCS-26]");
10274 fprintf (file
, " [APCS-32]");
10276 if (flags
& EF_ARM_VFP_FLOAT
)
10277 fprintf (file
, _(" [VFP float format]"));
10278 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
10279 fprintf (file
, _(" [Maverick float format]"));
10281 fprintf (file
, _(" [FPA float format]"));
10283 if (flags
& EF_ARM_APCS_FLOAT
)
10284 fprintf (file
, _(" [floats passed in float registers]"));
10286 if (flags
& EF_ARM_PIC
)
10287 fprintf (file
, _(" [position independent]"));
10289 if (flags
& EF_ARM_NEW_ABI
)
10290 fprintf (file
, _(" [new ABI]"));
10292 if (flags
& EF_ARM_OLD_ABI
)
10293 fprintf (file
, _(" [old ABI]"));
10295 if (flags
& EF_ARM_SOFT_FLOAT
)
10296 fprintf (file
, _(" [software FP]"));
10298 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
10299 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
10300 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
10301 | EF_ARM_MAVERICK_FLOAT
);
10304 case EF_ARM_EABI_VER1
:
10305 fprintf (file
, _(" [Version1 EABI]"));
10307 if (flags
& EF_ARM_SYMSARESORTED
)
10308 fprintf (file
, _(" [sorted symbol table]"));
10310 fprintf (file
, _(" [unsorted symbol table]"));
10312 flags
&= ~ EF_ARM_SYMSARESORTED
;
10315 case EF_ARM_EABI_VER2
:
10316 fprintf (file
, _(" [Version2 EABI]"));
10318 if (flags
& EF_ARM_SYMSARESORTED
)
10319 fprintf (file
, _(" [sorted symbol table]"));
10321 fprintf (file
, _(" [unsorted symbol table]"));
10323 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
10324 fprintf (file
, _(" [dynamic symbols use segment index]"));
10326 if (flags
& EF_ARM_MAPSYMSFIRST
)
10327 fprintf (file
, _(" [mapping symbols precede others]"));
10329 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
10330 | EF_ARM_MAPSYMSFIRST
);
10333 case EF_ARM_EABI_VER3
:
10334 fprintf (file
, _(" [Version3 EABI]"));
10337 case EF_ARM_EABI_VER4
:
10338 fprintf (file
, _(" [Version4 EABI]"));
10341 case EF_ARM_EABI_VER5
:
10342 fprintf (file
, _(" [Version5 EABI]"));
10344 if (flags
& EF_ARM_BE8
)
10345 fprintf (file
, _(" [BE8]"));
10347 if (flags
& EF_ARM_LE8
)
10348 fprintf (file
, _(" [LE8]"));
10350 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
10354 fprintf (file
, _(" <EABI version unrecognised>"));
10358 flags
&= ~ EF_ARM_EABIMASK
;
10360 if (flags
& EF_ARM_RELEXEC
)
10361 fprintf (file
, _(" [relocatable executable]"));
10363 if (flags
& EF_ARM_HASENTRY
)
10364 fprintf (file
, _(" [has entry point]"));
10366 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
10369 fprintf (file
, _("<Unrecognised flag bits set>"));
10371 fputc ('\n', file
);
10377 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
10379 switch (ELF_ST_TYPE (elf_sym
->st_info
))
10381 case STT_ARM_TFUNC
:
10382 return ELF_ST_TYPE (elf_sym
->st_info
);
10384 case STT_ARM_16BIT
:
10385 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10386 This allows us to distinguish between data used by Thumb instructions
10387 and non-data (which is probably code) inside Thumb regions of an
10389 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
10390 return ELF_ST_TYPE (elf_sym
->st_info
);
10401 elf32_arm_gc_mark_hook (asection
*sec
,
10402 struct bfd_link_info
*info
,
10403 Elf_Internal_Rela
*rel
,
10404 struct elf_link_hash_entry
*h
,
10405 Elf_Internal_Sym
*sym
)
10408 switch (ELF32_R_TYPE (rel
->r_info
))
10410 case R_ARM_GNU_VTINHERIT
:
10411 case R_ARM_GNU_VTENTRY
:
10415 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10418 /* Update the got entry reference counts for the section being removed. */
10421 elf32_arm_gc_sweep_hook (bfd
* abfd
,
10422 struct bfd_link_info
* info
,
10424 const Elf_Internal_Rela
* relocs
)
10426 Elf_Internal_Shdr
*symtab_hdr
;
10427 struct elf_link_hash_entry
**sym_hashes
;
10428 bfd_signed_vma
*local_got_refcounts
;
10429 const Elf_Internal_Rela
*rel
, *relend
;
10430 struct elf32_arm_link_hash_table
* globals
;
10432 if (info
->relocatable
)
10435 globals
= elf32_arm_hash_table (info
);
10437 elf_section_data (sec
)->local_dynrel
= NULL
;
10439 symtab_hdr
= & elf_symtab_hdr (abfd
);
10440 sym_hashes
= elf_sym_hashes (abfd
);
10441 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10443 check_use_blx (globals
);
10445 relend
= relocs
+ sec
->reloc_count
;
10446 for (rel
= relocs
; rel
< relend
; rel
++)
10448 unsigned long r_symndx
;
10449 struct elf_link_hash_entry
*h
= NULL
;
10452 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10453 if (r_symndx
>= symtab_hdr
->sh_info
)
10455 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10456 while (h
->root
.type
== bfd_link_hash_indirect
10457 || h
->root
.type
== bfd_link_hash_warning
)
10458 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10461 r_type
= ELF32_R_TYPE (rel
->r_info
);
10462 r_type
= arm_real_reloc_type (globals
, r_type
);
10466 case R_ARM_GOT_PREL
:
10467 case R_ARM_TLS_GD32
:
10468 case R_ARM_TLS_IE32
:
10471 if (h
->got
.refcount
> 0)
10472 h
->got
.refcount
-= 1;
10474 else if (local_got_refcounts
!= NULL
)
10476 if (local_got_refcounts
[r_symndx
] > 0)
10477 local_got_refcounts
[r_symndx
] -= 1;
10481 case R_ARM_TLS_LDM32
:
10482 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
10486 case R_ARM_ABS32_NOI
:
10488 case R_ARM_REL32_NOI
:
10494 case R_ARM_THM_CALL
:
10495 case R_ARM_THM_JUMP24
:
10496 case R_ARM_THM_JUMP19
:
10497 case R_ARM_MOVW_ABS_NC
:
10498 case R_ARM_MOVT_ABS
:
10499 case R_ARM_MOVW_PREL_NC
:
10500 case R_ARM_MOVT_PREL
:
10501 case R_ARM_THM_MOVW_ABS_NC
:
10502 case R_ARM_THM_MOVT_ABS
:
10503 case R_ARM_THM_MOVW_PREL_NC
:
10504 case R_ARM_THM_MOVT_PREL
:
10505 /* Should the interworking branches be here also? */
10509 struct elf32_arm_link_hash_entry
*eh
;
10510 struct elf32_arm_relocs_copied
**pp
;
10511 struct elf32_arm_relocs_copied
*p
;
10513 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10515 if (h
->plt
.refcount
> 0)
10517 h
->plt
.refcount
-= 1;
10518 if (r_type
== R_ARM_THM_CALL
)
10519 eh
->plt_maybe_thumb_refcount
--;
10521 if (r_type
== R_ARM_THM_JUMP24
10522 || r_type
== R_ARM_THM_JUMP19
)
10523 eh
->plt_thumb_refcount
--;
10526 if (r_type
== R_ARM_ABS32
10527 || r_type
== R_ARM_REL32
10528 || r_type
== R_ARM_ABS32_NOI
10529 || r_type
== R_ARM_REL32_NOI
)
10531 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
10533 if (p
->section
== sec
)
10536 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
10537 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
10555 /* Look through the relocs for a section during the first phase. */
10558 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
10559 asection
*sec
, const Elf_Internal_Rela
*relocs
)
10561 Elf_Internal_Shdr
*symtab_hdr
;
10562 struct elf_link_hash_entry
**sym_hashes
;
10563 const Elf_Internal_Rela
*rel
;
10564 const Elf_Internal_Rela
*rel_end
;
10567 bfd_vma
*local_got_offsets
;
10568 struct elf32_arm_link_hash_table
*htab
;
10569 bfd_boolean needs_plt
;
10570 unsigned long nsyms
;
10572 if (info
->relocatable
)
10575 BFD_ASSERT (is_arm_elf (abfd
));
10577 htab
= elf32_arm_hash_table (info
);
10580 /* Create dynamic sections for relocatable executables so that we can
10581 copy relocations. */
10582 if (htab
->root
.is_relocatable_executable
10583 && ! htab
->root
.dynamic_sections_created
)
10585 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
10589 dynobj
= elf_hash_table (info
)->dynobj
;
10590 local_got_offsets
= elf_local_got_offsets (abfd
);
10592 symtab_hdr
= & elf_symtab_hdr (abfd
);
10593 sym_hashes
= elf_sym_hashes (abfd
);
10594 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
10596 rel_end
= relocs
+ sec
->reloc_count
;
10597 for (rel
= relocs
; rel
< rel_end
; rel
++)
10599 struct elf_link_hash_entry
*h
;
10600 struct elf32_arm_link_hash_entry
*eh
;
10601 unsigned long r_symndx
;
10604 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10605 r_type
= ELF32_R_TYPE (rel
->r_info
);
10606 r_type
= arm_real_reloc_type (htab
, r_type
);
10608 if (r_symndx
>= nsyms
10609 /* PR 9934: It is possible to have relocations that do not
10610 refer to symbols, thus it is also possible to have an
10611 object file containing relocations but no symbol table. */
10612 && (r_symndx
> 0 || nsyms
> 0))
10614 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
10619 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
10623 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10624 while (h
->root
.type
== bfd_link_hash_indirect
10625 || h
->root
.type
== bfd_link_hash_warning
)
10626 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10629 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10634 case R_ARM_GOT_PREL
:
10635 case R_ARM_TLS_GD32
:
10636 case R_ARM_TLS_IE32
:
10637 /* This symbol requires a global offset table entry. */
10639 int tls_type
, old_tls_type
;
10643 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
10644 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
10645 default: tls_type
= GOT_NORMAL
; break;
10651 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
10655 bfd_signed_vma
*local_got_refcounts
;
10657 /* This is a global offset table entry for a local symbol. */
10658 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10659 if (local_got_refcounts
== NULL
)
10661 bfd_size_type size
;
10663 size
= symtab_hdr
->sh_info
;
10664 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
10665 local_got_refcounts
= bfd_zalloc (abfd
, size
);
10666 if (local_got_refcounts
== NULL
)
10668 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
10669 elf32_arm_local_got_tls_type (abfd
)
10670 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
10672 local_got_refcounts
[r_symndx
] += 1;
10673 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
10676 /* We will already have issued an error message if there is a
10677 TLS / non-TLS mismatch, based on the symbol type. We don't
10678 support any linker relaxations. So just combine any TLS
10680 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
10681 && tls_type
!= GOT_NORMAL
)
10682 tls_type
|= old_tls_type
;
10684 if (old_tls_type
!= tls_type
)
10687 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
10689 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
10692 /* Fall through. */
10694 case R_ARM_TLS_LDM32
:
10695 if (r_type
== R_ARM_TLS_LDM32
)
10696 htab
->tls_ldm_got
.refcount
++;
10697 /* Fall through. */
10699 case R_ARM_GOTOFF32
:
10701 if (htab
->sgot
== NULL
)
10703 if (htab
->root
.dynobj
== NULL
)
10704 htab
->root
.dynobj
= abfd
;
10705 if (!create_got_section (htab
->root
.dynobj
, info
))
10711 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10712 ldr __GOTT_INDEX__ offsets. */
10713 if (!htab
->vxworks_p
)
10715 /* Fall through. */
10722 case R_ARM_THM_CALL
:
10723 case R_ARM_THM_JUMP24
:
10724 case R_ARM_THM_JUMP19
:
10728 case R_ARM_MOVW_ABS_NC
:
10729 case R_ARM_MOVT_ABS
:
10730 case R_ARM_THM_MOVW_ABS_NC
:
10731 case R_ARM_THM_MOVT_ABS
:
10734 (*_bfd_error_handler
)
10735 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10736 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
10737 (h
) ? h
->root
.root
.string
: "a local symbol");
10738 bfd_set_error (bfd_error_bad_value
);
10742 /* Fall through. */
10744 case R_ARM_ABS32_NOI
:
10746 case R_ARM_REL32_NOI
:
10747 case R_ARM_MOVW_PREL_NC
:
10748 case R_ARM_MOVT_PREL
:
10749 case R_ARM_THM_MOVW_PREL_NC
:
10750 case R_ARM_THM_MOVT_PREL
:
10754 /* Should the interworking branches be listed here? */
10757 /* If this reloc is in a read-only section, we might
10758 need a copy reloc. We can't check reliably at this
10759 stage whether the section is read-only, as input
10760 sections have not yet been mapped to output sections.
10761 Tentatively set the flag for now, and correct in
10762 adjust_dynamic_symbol. */
10764 h
->non_got_ref
= 1;
10766 /* We may need a .plt entry if the function this reloc
10767 refers to is in a different object. We can't tell for
10768 sure yet, because something later might force the
10773 /* If we create a PLT entry, this relocation will reference
10774 it, even if it's an ABS32 relocation. */
10775 h
->plt
.refcount
+= 1;
10777 /* It's too early to use htab->use_blx here, so we have to
10778 record possible blx references separately from
10779 relocs that definitely need a thumb stub. */
10781 if (r_type
== R_ARM_THM_CALL
)
10782 eh
->plt_maybe_thumb_refcount
+= 1;
10784 if (r_type
== R_ARM_THM_JUMP24
10785 || r_type
== R_ARM_THM_JUMP19
)
10786 eh
->plt_thumb_refcount
+= 1;
10789 /* If we are creating a shared library or relocatable executable,
10790 and this is a reloc against a global symbol, or a non PC
10791 relative reloc against a local symbol, then we need to copy
10792 the reloc into the shared library. However, if we are linking
10793 with -Bsymbolic, we do not need to copy a reloc against a
10794 global symbol which is defined in an object we are
10795 including in the link (i.e., DEF_REGULAR is set). At
10796 this point we have not seen all the input files, so it is
10797 possible that DEF_REGULAR is not set now but will be set
10798 later (it is never cleared). We account for that
10799 possibility below by storing information in the
10800 relocs_copied field of the hash table entry. */
10801 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
10802 && (sec
->flags
& SEC_ALLOC
) != 0
10803 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
10804 || (h
!= NULL
&& ! h
->needs_plt
10805 && (! info
->symbolic
|| ! h
->def_regular
))))
10807 struct elf32_arm_relocs_copied
*p
, **head
;
10809 /* When creating a shared object, we must copy these
10810 reloc types into the output file. We create a reloc
10811 section in dynobj and make room for this reloc. */
10812 if (sreloc
== NULL
)
10814 sreloc
= _bfd_elf_make_dynamic_reloc_section
10815 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
10817 if (sreloc
== NULL
)
10820 /* BPABI objects never have dynamic relocations mapped. */
10821 if (htab
->symbian_p
)
10825 flags
= bfd_get_section_flags (dynobj
, sreloc
);
10826 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
10827 bfd_set_section_flags (dynobj
, sreloc
, flags
);
10831 /* If this is a global symbol, we count the number of
10832 relocations we need for this symbol. */
10835 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
10839 /* Track dynamic relocs needed for local syms too.
10840 We really need local syms available to do this
10841 easily. Oh well. */
10846 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
10851 vpp
= &elf_section_data (s
)->local_dynrel
;
10852 head
= (struct elf32_arm_relocs_copied
**) vpp
;
10856 if (p
== NULL
|| p
->section
!= sec
)
10858 bfd_size_type amt
= sizeof *p
;
10860 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
10870 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
10876 /* This relocation describes the C++ object vtable hierarchy.
10877 Reconstruct it for later use during GC. */
10878 case R_ARM_GNU_VTINHERIT
:
10879 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
10883 /* This relocation describes which C++ vtable entries are actually
10884 used. Record for later use during GC. */
10885 case R_ARM_GNU_VTENTRY
:
10886 BFD_ASSERT (h
!= NULL
);
10888 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
10897 /* Unwinding tables are not referenced directly. This pass marks them as
10898 required if the corresponding code section is marked. */
10901 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
10902 elf_gc_mark_hook_fn gc_mark_hook
)
10905 Elf_Internal_Shdr
**elf_shdrp
;
10908 /* Marking EH data may cause additional code sections to be marked,
10909 requiring multiple passes. */
10914 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10918 if (! is_arm_elf (sub
))
10921 elf_shdrp
= elf_elfsections (sub
);
10922 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
10924 Elf_Internal_Shdr
*hdr
;
10926 hdr
= &elf_section_data (o
)->this_hdr
;
10927 if (hdr
->sh_type
== SHT_ARM_EXIDX
10929 && hdr
->sh_link
< elf_numsections (sub
)
10931 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
10934 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
10944 /* Treat mapping symbols as special target symbols. */
10947 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
10949 return bfd_is_arm_special_symbol_name (sym
->name
,
10950 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
10953 /* This is a copy of elf_find_function() from elf.c except that
10954 ARM mapping symbols are ignored when looking for function names
10955 and STT_ARM_TFUNC is considered to a function type. */
10958 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
10959 asection
* section
,
10960 asymbol
** symbols
,
10962 const char ** filename_ptr
,
10963 const char ** functionname_ptr
)
10965 const char * filename
= NULL
;
10966 asymbol
* func
= NULL
;
10967 bfd_vma low_func
= 0;
10970 for (p
= symbols
; *p
!= NULL
; p
++)
10972 elf_symbol_type
*q
;
10974 q
= (elf_symbol_type
*) *p
;
10976 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
10981 filename
= bfd_asymbol_name (&q
->symbol
);
10984 case STT_ARM_TFUNC
:
10986 /* Skip mapping symbols. */
10987 if ((q
->symbol
.flags
& BSF_LOCAL
)
10988 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
10989 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
10991 /* Fall through. */
10992 if (bfd_get_section (&q
->symbol
) == section
10993 && q
->symbol
.value
>= low_func
10994 && q
->symbol
.value
<= offset
)
10996 func
= (asymbol
*) q
;
10997 low_func
= q
->symbol
.value
;
11007 *filename_ptr
= filename
;
11008 if (functionname_ptr
)
11009 *functionname_ptr
= bfd_asymbol_name (func
);
11015 /* Find the nearest line to a particular section and offset, for error
11016 reporting. This code is a duplicate of the code in elf.c, except
11017 that it uses arm_elf_find_function. */
11020 elf32_arm_find_nearest_line (bfd
* abfd
,
11021 asection
* section
,
11022 asymbol
** symbols
,
11024 const char ** filename_ptr
,
11025 const char ** functionname_ptr
,
11026 unsigned int * line_ptr
)
11028 bfd_boolean found
= FALSE
;
11030 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11032 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11033 filename_ptr
, functionname_ptr
,
11035 & elf_tdata (abfd
)->dwarf2_find_line_info
))
11037 if (!*functionname_ptr
)
11038 arm_elf_find_function (abfd
, section
, symbols
, offset
,
11039 *filename_ptr
? NULL
: filename_ptr
,
11045 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
11046 & found
, filename_ptr
,
11047 functionname_ptr
, line_ptr
,
11048 & elf_tdata (abfd
)->line_info
))
11051 if (found
&& (*functionname_ptr
|| *line_ptr
))
11054 if (symbols
== NULL
)
11057 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
11058 filename_ptr
, functionname_ptr
))
11066 elf32_arm_find_inliner_info (bfd
* abfd
,
11067 const char ** filename_ptr
,
11068 const char ** functionname_ptr
,
11069 unsigned int * line_ptr
)
11072 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11073 functionname_ptr
, line_ptr
,
11074 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11078 /* Adjust a symbol defined by a dynamic object and referenced by a
11079 regular object. The current definition is in some section of the
11080 dynamic object, but we're not including those sections. We have to
11081 change the definition to something the rest of the link can
11085 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
11086 struct elf_link_hash_entry
* h
)
11090 struct elf32_arm_link_hash_entry
* eh
;
11091 struct elf32_arm_link_hash_table
*globals
;
11093 globals
= elf32_arm_hash_table (info
);
11094 dynobj
= elf_hash_table (info
)->dynobj
;
11096 /* Make sure we know what is going on here. */
11097 BFD_ASSERT (dynobj
!= NULL
11099 || h
->u
.weakdef
!= NULL
11102 && !h
->def_regular
)));
11104 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11106 /* If this is a function, put it in the procedure linkage table. We
11107 will fill in the contents of the procedure linkage table later,
11108 when we know the address of the .got section. */
11109 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
11112 if (h
->plt
.refcount
<= 0
11113 || SYMBOL_CALLS_LOCAL (info
, h
)
11114 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
11115 && h
->root
.type
== bfd_link_hash_undefweak
))
11117 /* This case can occur if we saw a PLT32 reloc in an input
11118 file, but the symbol was never referred to by a dynamic
11119 object, or if all references were garbage collected. In
11120 such a case, we don't actually need to build a procedure
11121 linkage table, and we can just do a PC24 reloc instead. */
11122 h
->plt
.offset
= (bfd_vma
) -1;
11123 eh
->plt_thumb_refcount
= 0;
11124 eh
->plt_maybe_thumb_refcount
= 0;
11132 /* It's possible that we incorrectly decided a .plt reloc was
11133 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11134 in check_relocs. We can't decide accurately between function
11135 and non-function syms in check-relocs; Objects loaded later in
11136 the link may change h->type. So fix it now. */
11137 h
->plt
.offset
= (bfd_vma
) -1;
11138 eh
->plt_thumb_refcount
= 0;
11139 eh
->plt_maybe_thumb_refcount
= 0;
11142 /* If this is a weak symbol, and there is a real definition, the
11143 processor independent code will have arranged for us to see the
11144 real definition first, and we can just use the same value. */
11145 if (h
->u
.weakdef
!= NULL
)
11147 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
11148 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
11149 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
11150 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
11154 /* If there are no non-GOT references, we do not need a copy
11156 if (!h
->non_got_ref
)
11159 /* This is a reference to a symbol defined by a dynamic object which
11160 is not a function. */
11162 /* If we are creating a shared library, we must presume that the
11163 only references to the symbol are via the global offset table.
11164 For such cases we need not do anything here; the relocations will
11165 be handled correctly by relocate_section. Relocatable executables
11166 can reference data in shared objects directly, so we don't need to
11167 do anything here. */
11168 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
11173 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
11174 h
->root
.root
.string
);
11178 /* We must allocate the symbol in our .dynbss section, which will
11179 become part of the .bss section of the executable. There will be
11180 an entry for this symbol in the .dynsym section. The dynamic
11181 object will contain position independent code, so all references
11182 from the dynamic object to this symbol will go through the global
11183 offset table. The dynamic linker will use the .dynsym entry to
11184 determine the address it must put in the global offset table, so
11185 both the dynamic object and the regular object will refer to the
11186 same memory location for the variable. */
11187 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
11188 BFD_ASSERT (s
!= NULL
);
11190 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11191 copy the initial value out of the dynamic object and into the
11192 runtime process image. We need to remember the offset into the
11193 .rel(a).bss section we are going to use. */
11194 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
11198 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
11199 BFD_ASSERT (srel
!= NULL
);
11200 srel
->size
+= RELOC_SIZE (globals
);
11204 return _bfd_elf_adjust_dynamic_copy (h
, s
);
11207 /* Allocate space in .plt, .got and associated reloc sections for
11211 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
11213 struct bfd_link_info
*info
;
11214 struct elf32_arm_link_hash_table
*htab
;
11215 struct elf32_arm_link_hash_entry
*eh
;
11216 struct elf32_arm_relocs_copied
*p
;
11217 bfd_signed_vma thumb_refs
;
11219 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11221 if (h
->root
.type
== bfd_link_hash_indirect
)
11224 if (h
->root
.type
== bfd_link_hash_warning
)
11225 /* When warning symbols are created, they **replace** the "real"
11226 entry in the hash table, thus we never get to see the real
11227 symbol in a hash traversal. So look at it now. */
11228 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11230 info
= (struct bfd_link_info
*) inf
;
11231 htab
= elf32_arm_hash_table (info
);
11233 if (htab
->root
.dynamic_sections_created
11234 && h
->plt
.refcount
> 0)
11236 /* Make sure this symbol is output as a dynamic symbol.
11237 Undefined weak syms won't yet be marked as dynamic. */
11238 if (h
->dynindx
== -1
11239 && !h
->forced_local
)
11241 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11246 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
11248 asection
*s
= htab
->splt
;
11250 /* If this is the first .plt entry, make room for the special
11253 s
->size
+= htab
->plt_header_size
;
11255 h
->plt
.offset
= s
->size
;
11257 /* If we will insert a Thumb trampoline before this PLT, leave room
11259 thumb_refs
= eh
->plt_thumb_refcount
;
11260 if (!htab
->use_blx
)
11261 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11263 if (thumb_refs
> 0)
11265 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
11266 s
->size
+= PLT_THUMB_STUB_SIZE
;
11269 /* If this symbol is not defined in a regular file, and we are
11270 not generating a shared library, then set the symbol to this
11271 location in the .plt. This is required to make function
11272 pointers compare as equal between the normal executable and
11273 the shared library. */
11275 && !h
->def_regular
)
11277 h
->root
.u
.def
.section
= s
;
11278 h
->root
.u
.def
.value
= h
->plt
.offset
;
11280 /* Make sure the function is not marked as Thumb, in case
11281 it is the target of an ABS32 relocation, which will
11282 point to the PLT entry. */
11283 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
11284 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11287 /* Make room for this entry. */
11288 s
->size
+= htab
->plt_entry_size
;
11290 if (!htab
->symbian_p
)
11292 /* We also need to make an entry in the .got.plt section, which
11293 will be placed in the .got section by the linker script. */
11294 eh
->plt_got_offset
= htab
->sgotplt
->size
;
11295 htab
->sgotplt
->size
+= 4;
11298 /* We also need to make an entry in the .rel(a).plt section. */
11299 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
11301 /* VxWorks executables have a second set of relocations for
11302 each PLT entry. They go in a separate relocation section,
11303 which is processed by the kernel loader. */
11304 if (htab
->vxworks_p
&& !info
->shared
)
11306 /* There is a relocation for the initial PLT entry:
11307 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11308 if (h
->plt
.offset
== htab
->plt_header_size
)
11309 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
11311 /* There are two extra relocations for each subsequent
11312 PLT entry: an R_ARM_32 relocation for the GOT entry,
11313 and an R_ARM_32 relocation for the PLT entry. */
11314 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
11319 h
->plt
.offset
= (bfd_vma
) -1;
11325 h
->plt
.offset
= (bfd_vma
) -1;
11329 if (h
->got
.refcount
> 0)
11333 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
11336 /* Make sure this symbol is output as a dynamic symbol.
11337 Undefined weak syms won't yet be marked as dynamic. */
11338 if (h
->dynindx
== -1
11339 && !h
->forced_local
)
11341 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11345 if (!htab
->symbian_p
)
11348 h
->got
.offset
= s
->size
;
11350 if (tls_type
== GOT_UNKNOWN
)
11353 if (tls_type
== GOT_NORMAL
)
11354 /* Non-TLS symbols need one GOT slot. */
11358 if (tls_type
& GOT_TLS_GD
)
11359 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11361 if (tls_type
& GOT_TLS_IE
)
11362 /* R_ARM_TLS_IE32 needs one GOT slot. */
11366 dyn
= htab
->root
.dynamic_sections_created
;
11369 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
11371 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11374 if (tls_type
!= GOT_NORMAL
11375 && (info
->shared
|| indx
!= 0)
11376 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11377 || h
->root
.type
!= bfd_link_hash_undefweak
))
11379 if (tls_type
& GOT_TLS_IE
)
11380 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11382 if (tls_type
& GOT_TLS_GD
)
11383 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11385 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
11386 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11388 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11389 || h
->root
.type
!= bfd_link_hash_undefweak
)
11391 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
11392 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11396 h
->got
.offset
= (bfd_vma
) -1;
11398 /* Allocate stubs for exported Thumb functions on v4t. */
11399 if (!htab
->use_blx
&& h
->dynindx
!= -1
11401 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
11402 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
11404 struct elf_link_hash_entry
* th
;
11405 struct bfd_link_hash_entry
* bh
;
11406 struct elf_link_hash_entry
* myh
;
11410 /* Create a new symbol to regist the real location of the function. */
11411 s
= h
->root
.u
.def
.section
;
11412 sprintf (name
, "__real_%s", h
->root
.root
.string
);
11413 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
11414 name
, BSF_GLOBAL
, s
,
11415 h
->root
.u
.def
.value
,
11416 NULL
, TRUE
, FALSE
, &bh
);
11418 myh
= (struct elf_link_hash_entry
*) bh
;
11419 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
11420 myh
->forced_local
= 1;
11421 eh
->export_glue
= myh
;
11422 th
= record_arm_to_thumb_glue (info
, h
);
11423 /* Point the symbol at the stub. */
11424 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11425 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
11426 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
11429 if (eh
->relocs_copied
== NULL
)
11432 /* In the shared -Bsymbolic case, discard space allocated for
11433 dynamic pc-relative relocs against symbols which turn out to be
11434 defined in regular objects. For the normal shared case, discard
11435 space for pc-relative relocs that have become local due to symbol
11436 visibility changes. */
11438 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
11440 /* The only relocs that use pc_count are R_ARM_REL32 and
11441 R_ARM_REL32_NOI, which will appear on something like
11442 ".long foo - .". We want calls to protected symbols to resolve
11443 directly to the function rather than going via the plt. If people
11444 want function pointer comparisons to work as expected then they
11445 should avoid writing assembly like ".long foo - .". */
11446 if (SYMBOL_CALLS_LOCAL (info
, h
))
11448 struct elf32_arm_relocs_copied
**pp
;
11450 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11452 p
->count
-= p
->pc_count
;
11461 if (elf32_arm_hash_table (info
)->vxworks_p
)
11463 struct elf32_arm_relocs_copied
**pp
;
11465 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11467 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
11474 /* Also discard relocs on undefined weak syms with non-default
11476 if (eh
->relocs_copied
!= NULL
11477 && h
->root
.type
== bfd_link_hash_undefweak
)
11479 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
11480 eh
->relocs_copied
= NULL
;
11482 /* Make sure undefined weak symbols are output as a dynamic
11484 else if (h
->dynindx
== -1
11485 && !h
->forced_local
)
11487 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11492 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
11493 && h
->root
.type
== bfd_link_hash_new
)
11495 /* Output absolute symbols so that we can create relocations
11496 against them. For normal symbols we output a relocation
11497 against the section that contains them. */
11498 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11505 /* For the non-shared case, discard space for relocs against
11506 symbols which turn out to need copy relocs or are not
11509 if (!h
->non_got_ref
11510 && ((h
->def_dynamic
11511 && !h
->def_regular
)
11512 || (htab
->root
.dynamic_sections_created
11513 && (h
->root
.type
== bfd_link_hash_undefweak
11514 || h
->root
.type
== bfd_link_hash_undefined
))))
11516 /* Make sure this symbol is output as a dynamic symbol.
11517 Undefined weak syms won't yet be marked as dynamic. */
11518 if (h
->dynindx
== -1
11519 && !h
->forced_local
)
11521 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11525 /* If that succeeded, we know we'll be keeping all the
11527 if (h
->dynindx
!= -1)
11531 eh
->relocs_copied
= NULL
;
11536 /* Finally, allocate space. */
11537 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11539 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
11540 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
11546 /* Find any dynamic relocs that apply to read-only sections. */
11549 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
11551 struct elf32_arm_link_hash_entry
* eh
;
11552 struct elf32_arm_relocs_copied
* p
;
11554 if (h
->root
.type
== bfd_link_hash_warning
)
11555 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11557 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11558 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11560 asection
*s
= p
->section
;
11562 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
11564 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11566 info
->flags
|= DF_TEXTREL
;
11568 /* Not an error, just cut short the traversal. */
11576 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
11579 struct elf32_arm_link_hash_table
*globals
;
11581 globals
= elf32_arm_hash_table (info
);
11582 globals
->byteswap_code
= byteswap_code
;
11585 /* Set the sizes of the dynamic sections. */
11588 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
11589 struct bfd_link_info
* info
)
11594 bfd_boolean relocs
;
11596 struct elf32_arm_link_hash_table
*htab
;
11598 htab
= elf32_arm_hash_table (info
);
11599 dynobj
= elf_hash_table (info
)->dynobj
;
11600 BFD_ASSERT (dynobj
!= NULL
);
11601 check_use_blx (htab
);
11603 if (elf_hash_table (info
)->dynamic_sections_created
)
11605 /* Set the contents of the .interp section to the interpreter. */
11606 if (info
->executable
)
11608 s
= bfd_get_section_by_name (dynobj
, ".interp");
11609 BFD_ASSERT (s
!= NULL
);
11610 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
11611 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
11615 /* Set up .got offsets for local syms, and space for local dynamic
11617 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11619 bfd_signed_vma
*local_got
;
11620 bfd_signed_vma
*end_local_got
;
11621 char *local_tls_type
;
11622 bfd_size_type locsymcount
;
11623 Elf_Internal_Shdr
*symtab_hdr
;
11625 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
11627 if (! is_arm_elf (ibfd
))
11630 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
11632 struct elf32_arm_relocs_copied
*p
;
11634 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
11636 if (!bfd_is_abs_section (p
->section
)
11637 && bfd_is_abs_section (p
->section
->output_section
))
11639 /* Input section has been discarded, either because
11640 it is a copy of a linkonce section or due to
11641 linker script /DISCARD/, so we'll be discarding
11644 else if (is_vxworks
11645 && strcmp (p
->section
->output_section
->name
,
11648 /* Relocations in vxworks .tls_vars sections are
11649 handled specially by the loader. */
11651 else if (p
->count
!= 0)
11653 srel
= elf_section_data (p
->section
)->sreloc
;
11654 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
11655 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
11656 info
->flags
|= DF_TEXTREL
;
11661 local_got
= elf_local_got_refcounts (ibfd
);
11665 symtab_hdr
= & elf_symtab_hdr (ibfd
);
11666 locsymcount
= symtab_hdr
->sh_info
;
11667 end_local_got
= local_got
+ locsymcount
;
11668 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
11670 srel
= htab
->srelgot
;
11671 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
11673 if (*local_got
> 0)
11675 *local_got
= s
->size
;
11676 if (*local_tls_type
& GOT_TLS_GD
)
11677 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11679 if (*local_tls_type
& GOT_TLS_IE
)
11681 if (*local_tls_type
== GOT_NORMAL
)
11684 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
11685 srel
->size
+= RELOC_SIZE (htab
);
11688 *local_got
= (bfd_vma
) -1;
11692 if (htab
->tls_ldm_got
.refcount
> 0)
11694 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11695 for R_ARM_TLS_LDM32 relocations. */
11696 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
11697 htab
->sgot
->size
+= 8;
11699 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11702 htab
->tls_ldm_got
.offset
= -1;
11704 /* Allocate global sym .plt and .got entries, and space for global
11705 sym dynamic relocs. */
11706 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
11708 /* Here we rummage through the found bfds to collect glue information. */
11709 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11711 if (! is_arm_elf (ibfd
))
11714 /* Initialise mapping tables for code/data. */
11715 bfd_elf32_arm_init_maps (ibfd
);
11717 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
11718 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
11719 /* xgettext:c-format */
11720 _bfd_error_handler (_("Errors encountered processing file %s"),
11724 /* Allocate space for the glue sections now that we've sized them. */
11725 bfd_elf32_arm_allocate_interworking_sections (info
);
11727 /* The check_relocs and adjust_dynamic_symbol entry points have
11728 determined the sizes of the various dynamic sections. Allocate
11729 memory for them. */
11732 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
11736 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
11739 /* It's OK to base decisions on the section name, because none
11740 of the dynobj section names depend upon the input files. */
11741 name
= bfd_get_section_name (dynobj
, s
);
11743 if (strcmp (name
, ".plt") == 0)
11745 /* Remember whether there is a PLT. */
11746 plt
= s
->size
!= 0;
11748 else if (CONST_STRNEQ (name
, ".rel"))
11752 /* Remember whether there are any reloc sections other
11753 than .rel(a).plt and .rela.plt.unloaded. */
11754 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
11757 /* We use the reloc_count field as a counter if we need
11758 to copy relocs into the output file. */
11759 s
->reloc_count
= 0;
11762 else if (! CONST_STRNEQ (name
, ".got")
11763 && strcmp (name
, ".dynbss") != 0)
11765 /* It's not one of our sections, so don't allocate space. */
11771 /* If we don't need this section, strip it from the
11772 output file. This is mostly to handle .rel(a).bss and
11773 .rel(a).plt. We must create both sections in
11774 create_dynamic_sections, because they must be created
11775 before the linker maps input sections to output
11776 sections. The linker does that before
11777 adjust_dynamic_symbol is called, and it is that
11778 function which decides whether anything needs to go
11779 into these sections. */
11780 s
->flags
|= SEC_EXCLUDE
;
11784 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
11787 /* Allocate memory for the section contents. */
11788 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
11789 if (s
->contents
== NULL
)
11793 if (elf_hash_table (info
)->dynamic_sections_created
)
11795 /* Add some entries to the .dynamic section. We fill in the
11796 values later, in elf32_arm_finish_dynamic_sections, but we
11797 must add the entries now so that we get the correct size for
11798 the .dynamic section. The DT_DEBUG entry is filled in by the
11799 dynamic linker and used by the debugger. */
11800 #define add_dynamic_entry(TAG, VAL) \
11801 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11803 if (info
->executable
)
11805 if (!add_dynamic_entry (DT_DEBUG
, 0))
11811 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
11812 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
11813 || !add_dynamic_entry (DT_PLTREL
,
11814 htab
->use_rel
? DT_REL
: DT_RELA
)
11815 || !add_dynamic_entry (DT_JMPREL
, 0))
11823 if (!add_dynamic_entry (DT_REL
, 0)
11824 || !add_dynamic_entry (DT_RELSZ
, 0)
11825 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
11830 if (!add_dynamic_entry (DT_RELA
, 0)
11831 || !add_dynamic_entry (DT_RELASZ
, 0)
11832 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
11837 /* If any dynamic relocs apply to a read-only section,
11838 then we need a DT_TEXTREL entry. */
11839 if ((info
->flags
& DF_TEXTREL
) == 0)
11840 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
11843 if ((info
->flags
& DF_TEXTREL
) != 0)
11845 if (!add_dynamic_entry (DT_TEXTREL
, 0))
11848 if (htab
->vxworks_p
11849 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
11852 #undef add_dynamic_entry
11857 /* Finish up dynamic symbol handling. We set the contents of various
11858 dynamic sections here. */
11861 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
11862 struct bfd_link_info
* info
,
11863 struct elf_link_hash_entry
* h
,
11864 Elf_Internal_Sym
* sym
)
11867 struct elf32_arm_link_hash_table
*htab
;
11868 struct elf32_arm_link_hash_entry
*eh
;
11870 dynobj
= elf_hash_table (info
)->dynobj
;
11871 htab
= elf32_arm_hash_table (info
);
11872 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11874 if (h
->plt
.offset
!= (bfd_vma
) -1)
11880 Elf_Internal_Rela rel
;
11882 /* This symbol has an entry in the procedure linkage table. Set
11885 BFD_ASSERT (h
->dynindx
!= -1);
11887 splt
= bfd_get_section_by_name (dynobj
, ".plt");
11888 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
11889 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
11891 /* Fill in the entry in the procedure linkage table. */
11892 if (htab
->symbian_p
)
11894 put_arm_insn (htab
, output_bfd
,
11895 elf32_arm_symbian_plt_entry
[0],
11896 splt
->contents
+ h
->plt
.offset
);
11897 bfd_put_32 (output_bfd
,
11898 elf32_arm_symbian_plt_entry
[1],
11899 splt
->contents
+ h
->plt
.offset
+ 4);
11901 /* Fill in the entry in the .rel.plt section. */
11902 rel
.r_offset
= (splt
->output_section
->vma
11903 + splt
->output_offset
11904 + h
->plt
.offset
+ 4);
11905 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
11907 /* Get the index in the procedure linkage table which
11908 corresponds to this symbol. This is the index of this symbol
11909 in all the symbols for which we are making plt entries. The
11910 first entry in the procedure linkage table is reserved. */
11911 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
11912 / htab
->plt_entry_size
);
11916 bfd_vma got_offset
, got_address
, plt_address
;
11917 bfd_vma got_displacement
;
11921 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
11922 BFD_ASSERT (sgot
!= NULL
);
11924 /* Get the offset into the .got.plt table of the entry that
11925 corresponds to this function. */
11926 got_offset
= eh
->plt_got_offset
;
11928 /* Get the index in the procedure linkage table which
11929 corresponds to this symbol. This is the index of this symbol
11930 in all the symbols for which we are making plt entries. The
11931 first three entries in .got.plt are reserved; after that
11932 symbols appear in the same order as in .plt. */
11933 plt_index
= (got_offset
- 12) / 4;
11935 /* Calculate the address of the GOT entry. */
11936 got_address
= (sgot
->output_section
->vma
11937 + sgot
->output_offset
11940 /* ...and the address of the PLT entry. */
11941 plt_address
= (splt
->output_section
->vma
11942 + splt
->output_offset
11945 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
11946 if (htab
->vxworks_p
&& info
->shared
)
11951 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
11953 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
11955 val
|= got_address
- sgot
->output_section
->vma
;
11957 val
|= plt_index
* RELOC_SIZE (htab
);
11958 if (i
== 2 || i
== 5)
11959 bfd_put_32 (output_bfd
, val
, ptr
);
11961 put_arm_insn (htab
, output_bfd
, val
, ptr
);
11964 else if (htab
->vxworks_p
)
11969 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
11971 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
11973 val
|= got_address
;
11975 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
11977 val
|= plt_index
* RELOC_SIZE (htab
);
11978 if (i
== 2 || i
== 5)
11979 bfd_put_32 (output_bfd
, val
, ptr
);
11981 put_arm_insn (htab
, output_bfd
, val
, ptr
);
11984 loc
= (htab
->srelplt2
->contents
11985 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
11987 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11988 referencing the GOT for this PLT entry. */
11989 rel
.r_offset
= plt_address
+ 8;
11990 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
11991 rel
.r_addend
= got_offset
;
11992 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
11993 loc
+= RELOC_SIZE (htab
);
11995 /* Create the R_ARM_ABS32 relocation referencing the
11996 beginning of the PLT for this GOT entry. */
11997 rel
.r_offset
= got_address
;
11998 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12000 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12004 bfd_signed_vma thumb_refs
;
12005 /* Calculate the displacement between the PLT slot and the
12006 entry in the GOT. The eight-byte offset accounts for the
12007 value produced by adding to pc in the first instruction
12008 of the PLT stub. */
12009 got_displacement
= got_address
- (plt_address
+ 8);
12011 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
12013 thumb_refs
= eh
->plt_thumb_refcount
;
12014 if (!htab
->use_blx
)
12015 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12017 if (thumb_refs
> 0)
12019 put_thumb_insn (htab
, output_bfd
,
12020 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
12021 put_thumb_insn (htab
, output_bfd
,
12022 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
12025 put_arm_insn (htab
, output_bfd
,
12026 elf32_arm_plt_entry
[0]
12027 | ((got_displacement
& 0x0ff00000) >> 20),
12029 put_arm_insn (htab
, output_bfd
,
12030 elf32_arm_plt_entry
[1]
12031 | ((got_displacement
& 0x000ff000) >> 12),
12033 put_arm_insn (htab
, output_bfd
,
12034 elf32_arm_plt_entry
[2]
12035 | (got_displacement
& 0x00000fff),
12037 #ifdef FOUR_WORD_PLT
12038 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
12042 /* Fill in the entry in the global offset table. */
12043 bfd_put_32 (output_bfd
,
12044 (splt
->output_section
->vma
12045 + splt
->output_offset
),
12046 sgot
->contents
+ got_offset
);
12048 /* Fill in the entry in the .rel(a).plt section. */
12050 rel
.r_offset
= got_address
;
12051 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
12054 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
12055 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12057 if (!h
->def_regular
)
12059 /* Mark the symbol as undefined, rather than as defined in
12060 the .plt section. Leave the value alone. */
12061 sym
->st_shndx
= SHN_UNDEF
;
12062 /* If the symbol is weak, we do need to clear the value.
12063 Otherwise, the PLT entry would provide a definition for
12064 the symbol even if the symbol wasn't defined anywhere,
12065 and so the symbol would never be NULL. */
12066 if (!h
->ref_regular_nonweak
)
12071 if (h
->got
.offset
!= (bfd_vma
) -1
12072 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
12073 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
12077 Elf_Internal_Rela rel
;
12081 /* This symbol has an entry in the global offset table. Set it
12083 sgot
= bfd_get_section_by_name (dynobj
, ".got");
12084 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
12085 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
12087 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
12089 rel
.r_offset
= (sgot
->output_section
->vma
12090 + sgot
->output_offset
12093 /* If this is a static link, or it is a -Bsymbolic link and the
12094 symbol is defined locally or was forced to be local because
12095 of a version file, we just want to emit a RELATIVE reloc.
12096 The entry in the global offset table will already have been
12097 initialized in the relocate_section function. */
12099 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12101 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
12102 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12103 if (!htab
->use_rel
)
12105 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
12106 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12111 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
12112 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12113 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12116 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
12117 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12123 Elf_Internal_Rela rel
;
12126 /* This symbol needs a copy reloc. Set it up. */
12127 BFD_ASSERT (h
->dynindx
!= -1
12128 && (h
->root
.type
== bfd_link_hash_defined
12129 || h
->root
.type
== bfd_link_hash_defweak
));
12131 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
12132 RELOC_SECTION (htab
, ".bss"));
12133 BFD_ASSERT (s
!= NULL
);
12136 rel
.r_offset
= (h
->root
.u
.def
.value
12137 + h
->root
.u
.def
.section
->output_section
->vma
12138 + h
->root
.u
.def
.section
->output_offset
);
12139 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
12140 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
12141 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12144 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12145 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12146 to the ".got" section. */
12147 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
12148 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
12149 sym
->st_shndx
= SHN_ABS
;
12154 /* Finish up the dynamic sections. */
12157 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
12163 dynobj
= elf_hash_table (info
)->dynobj
;
12165 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12166 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
12167 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
12169 if (elf_hash_table (info
)->dynamic_sections_created
)
12172 Elf32_External_Dyn
*dyncon
, *dynconend
;
12173 struct elf32_arm_link_hash_table
*htab
;
12175 htab
= elf32_arm_hash_table (info
);
12176 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12177 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
12179 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
12180 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
12182 for (; dyncon
< dynconend
; dyncon
++)
12184 Elf_Internal_Dyn dyn
;
12188 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
12195 if (htab
->vxworks_p
12196 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12197 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12202 goto get_vma_if_bpabi
;
12205 goto get_vma_if_bpabi
;
12208 goto get_vma_if_bpabi
;
12210 name
= ".gnu.version";
12211 goto get_vma_if_bpabi
;
12213 name
= ".gnu.version_d";
12214 goto get_vma_if_bpabi
;
12216 name
= ".gnu.version_r";
12217 goto get_vma_if_bpabi
;
12223 name
= RELOC_SECTION (htab
, ".plt");
12225 s
= bfd_get_section_by_name (output_bfd
, name
);
12226 BFD_ASSERT (s
!= NULL
);
12227 if (!htab
->symbian_p
)
12228 dyn
.d_un
.d_ptr
= s
->vma
;
12230 /* In the BPABI, tags in the PT_DYNAMIC section point
12231 at the file offset, not the memory address, for the
12232 convenience of the post linker. */
12233 dyn
.d_un
.d_ptr
= s
->filepos
;
12234 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12238 if (htab
->symbian_p
)
12243 s
= bfd_get_section_by_name (output_bfd
,
12244 RELOC_SECTION (htab
, ".plt"));
12245 BFD_ASSERT (s
!= NULL
);
12246 dyn
.d_un
.d_val
= s
->size
;
12247 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12252 if (!htab
->symbian_p
)
12254 /* My reading of the SVR4 ABI indicates that the
12255 procedure linkage table relocs (DT_JMPREL) should be
12256 included in the overall relocs (DT_REL). This is
12257 what Solaris does. However, UnixWare can not handle
12258 that case. Therefore, we override the DT_RELSZ entry
12259 here to make it not include the JMPREL relocs. Since
12260 the linker script arranges for .rel(a).plt to follow all
12261 other relocation sections, we don't have to worry
12262 about changing the DT_REL entry. */
12263 s
= bfd_get_section_by_name (output_bfd
,
12264 RELOC_SECTION (htab
, ".plt"));
12266 dyn
.d_un
.d_val
-= s
->size
;
12267 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12270 /* Fall through. */
12274 /* In the BPABI, the DT_REL tag must point at the file
12275 offset, not the VMA, of the first relocation
12276 section. So, we use code similar to that in
12277 elflink.c, but do not check for SHF_ALLOC on the
12278 relcoation section, since relocations sections are
12279 never allocated under the BPABI. The comments above
12280 about Unixware notwithstanding, we include all of the
12281 relocations here. */
12282 if (htab
->symbian_p
)
12285 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12286 ? SHT_REL
: SHT_RELA
);
12287 dyn
.d_un
.d_val
= 0;
12288 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
12290 Elf_Internal_Shdr
*hdr
12291 = elf_elfsections (output_bfd
)[i
];
12292 if (hdr
->sh_type
== type
)
12294 if (dyn
.d_tag
== DT_RELSZ
12295 || dyn
.d_tag
== DT_RELASZ
)
12296 dyn
.d_un
.d_val
+= hdr
->sh_size
;
12297 else if ((ufile_ptr
) hdr
->sh_offset
12298 <= dyn
.d_un
.d_val
- 1)
12299 dyn
.d_un
.d_val
= hdr
->sh_offset
;
12302 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12306 /* Set the bottom bit of DT_INIT/FINI if the
12307 corresponding function is Thumb. */
12309 name
= info
->init_function
;
12312 name
= info
->fini_function
;
12314 /* If it wasn't set by elf_bfd_final_link
12315 then there is nothing to adjust. */
12316 if (dyn
.d_un
.d_val
!= 0)
12318 struct elf_link_hash_entry
* eh
;
12320 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
12321 FALSE
, FALSE
, TRUE
);
12323 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
12325 dyn
.d_un
.d_val
|= 1;
12326 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12333 /* Fill in the first entry in the procedure linkage table. */
12334 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
12336 const bfd_vma
*plt0_entry
;
12337 bfd_vma got_address
, plt_address
, got_displacement
;
12339 /* Calculate the addresses of the GOT and PLT. */
12340 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
12341 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
12343 if (htab
->vxworks_p
)
12345 /* The VxWorks GOT is relocated by the dynamic linker.
12346 Therefore, we must emit relocations rather than simply
12347 computing the values now. */
12348 Elf_Internal_Rela rel
;
12350 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
12351 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12352 splt
->contents
+ 0);
12353 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12354 splt
->contents
+ 4);
12355 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12356 splt
->contents
+ 8);
12357 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
12359 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12360 rel
.r_offset
= plt_address
+ 12;
12361 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12363 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
12364 htab
->srelplt2
->contents
);
12368 got_displacement
= got_address
- (plt_address
+ 16);
12370 plt0_entry
= elf32_arm_plt0_entry
;
12371 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12372 splt
->contents
+ 0);
12373 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12374 splt
->contents
+ 4);
12375 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12376 splt
->contents
+ 8);
12377 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
12378 splt
->contents
+ 12);
12380 #ifdef FOUR_WORD_PLT
12381 /* The displacement value goes in the otherwise-unused
12382 last word of the second entry. */
12383 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
12385 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
12390 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12391 really seem like the right value. */
12392 if (splt
->output_section
->owner
== output_bfd
)
12393 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
12395 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
12397 /* Correct the .rel(a).plt.unloaded relocations. They will have
12398 incorrect symbol indexes. */
12402 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
12403 / htab
->plt_entry_size
);
12404 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
12406 for (; num_plts
; num_plts
--)
12408 Elf_Internal_Rela rel
;
12410 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12411 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12412 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12413 p
+= RELOC_SIZE (htab
);
12415 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12416 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12417 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12418 p
+= RELOC_SIZE (htab
);
12423 /* Fill in the first three entries in the global offset table. */
12426 if (sgot
->size
> 0)
12429 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12431 bfd_put_32 (output_bfd
,
12432 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
12434 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
12435 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
12438 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
12445 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
12447 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
12448 struct elf32_arm_link_hash_table
*globals
;
12450 i_ehdrp
= elf_elfheader (abfd
);
12452 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
12453 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
12455 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
12456 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
12460 globals
= elf32_arm_hash_table (link_info
);
12461 if (globals
->byteswap_code
)
12462 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
12466 static enum elf_reloc_type_class
12467 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
12469 switch ((int) ELF32_R_TYPE (rela
->r_info
))
12471 case R_ARM_RELATIVE
:
12472 return reloc_class_relative
;
12473 case R_ARM_JUMP_SLOT
:
12474 return reloc_class_plt
;
12476 return reloc_class_copy
;
12478 return reloc_class_normal
;
12482 /* Set the right machine number for an Arm ELF file. */
12485 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
12487 if (hdr
->sh_type
== SHT_NOTE
)
12488 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
12494 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
12496 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
12499 /* Return TRUE if this is an unwinding table entry. */
12502 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
12504 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
12505 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
12509 /* Set the type and flags for an ARM section. We do this by
12510 the section name, which is a hack, but ought to work. */
12513 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
12517 name
= bfd_get_section_name (abfd
, sec
);
12519 if (is_arm_elf_unwind_section_name (abfd
, name
))
12521 hdr
->sh_type
= SHT_ARM_EXIDX
;
12522 hdr
->sh_flags
|= SHF_LINK_ORDER
;
12527 /* Handle an ARM specific section when reading an object file. This is
12528 called when bfd_section_from_shdr finds a section with an unknown
12532 elf32_arm_section_from_shdr (bfd
*abfd
,
12533 Elf_Internal_Shdr
* hdr
,
12537 /* There ought to be a place to keep ELF backend specific flags, but
12538 at the moment there isn't one. We just keep track of the
12539 sections by their name, instead. Fortunately, the ABI gives
12540 names for all the ARM specific sections, so we will probably get
12542 switch (hdr
->sh_type
)
12544 case SHT_ARM_EXIDX
:
12545 case SHT_ARM_PREEMPTMAP
:
12546 case SHT_ARM_ATTRIBUTES
:
12553 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
12559 /* A structure used to record a list of sections, independently
12560 of the next and prev fields in the asection structure. */
12561 typedef struct section_list
12564 struct section_list
* next
;
12565 struct section_list
* prev
;
12569 /* Unfortunately we need to keep a list of sections for which
12570 an _arm_elf_section_data structure has been allocated. This
12571 is because it is possible for functions like elf32_arm_write_section
12572 to be called on a section which has had an elf_data_structure
12573 allocated for it (and so the used_by_bfd field is valid) but
12574 for which the ARM extended version of this structure - the
12575 _arm_elf_section_data structure - has not been allocated. */
12576 static section_list
* sections_with_arm_elf_section_data
= NULL
;
12579 record_section_with_arm_elf_section_data (asection
* sec
)
12581 struct section_list
* entry
;
12583 entry
= bfd_malloc (sizeof (* entry
));
12587 entry
->next
= sections_with_arm_elf_section_data
;
12588 entry
->prev
= NULL
;
12589 if (entry
->next
!= NULL
)
12590 entry
->next
->prev
= entry
;
12591 sections_with_arm_elf_section_data
= entry
;
12594 static struct section_list
*
12595 find_arm_elf_section_entry (asection
* sec
)
12597 struct section_list
* entry
;
12598 static struct section_list
* last_entry
= NULL
;
12600 /* This is a short cut for the typical case where the sections are added
12601 to the sections_with_arm_elf_section_data list in forward order and
12602 then looked up here in backwards order. This makes a real difference
12603 to the ld-srec/sec64k.exp linker test. */
12604 entry
= sections_with_arm_elf_section_data
;
12605 if (last_entry
!= NULL
)
12607 if (last_entry
->sec
== sec
)
12608 entry
= last_entry
;
12609 else if (last_entry
->next
!= NULL
12610 && last_entry
->next
->sec
== sec
)
12611 entry
= last_entry
->next
;
12614 for (; entry
; entry
= entry
->next
)
12615 if (entry
->sec
== sec
)
12619 /* Record the entry prior to this one - it is the entry we are most
12620 likely to want to locate next time. Also this way if we have been
12621 called from unrecord_section_with_arm_elf_section_data() we will not
12622 be caching a pointer that is about to be freed. */
12623 last_entry
= entry
->prev
;
12628 static _arm_elf_section_data
*
12629 get_arm_elf_section_data (asection
* sec
)
12631 struct section_list
* entry
;
12633 entry
= find_arm_elf_section_entry (sec
);
12636 return elf32_arm_section_data (entry
->sec
);
12642 unrecord_section_with_arm_elf_section_data (asection
* sec
)
12644 struct section_list
* entry
;
12646 entry
= find_arm_elf_section_entry (sec
);
12650 if (entry
->prev
!= NULL
)
12651 entry
->prev
->next
= entry
->next
;
12652 if (entry
->next
!= NULL
)
12653 entry
->next
->prev
= entry
->prev
;
12654 if (entry
== sections_with_arm_elf_section_data
)
12655 sections_with_arm_elf_section_data
= entry
->next
;
12664 struct bfd_link_info
*info
;
12667 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
12668 asection
*, struct elf_link_hash_entry
*);
12669 } output_arch_syminfo
;
12671 enum map_symbol_type
12679 /* Output a single mapping symbol. */
12682 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
12683 enum map_symbol_type type
,
12686 static const char *names
[3] = {"$a", "$t", "$d"};
12687 struct elf32_arm_link_hash_table
*htab
;
12688 Elf_Internal_Sym sym
;
12690 htab
= elf32_arm_hash_table (osi
->info
);
12691 sym
.st_value
= osi
->sec
->output_section
->vma
12692 + osi
->sec
->output_offset
12696 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
12697 sym
.st_shndx
= osi
->sec_shndx
;
12698 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
12702 /* Output mapping symbols for PLT entries associated with H. */
12705 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
12707 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
12708 struct elf32_arm_link_hash_table
*htab
;
12709 struct elf32_arm_link_hash_entry
*eh
;
12712 htab
= elf32_arm_hash_table (osi
->info
);
12714 if (h
->root
.type
== bfd_link_hash_indirect
)
12717 if (h
->root
.type
== bfd_link_hash_warning
)
12718 /* When warning symbols are created, they **replace** the "real"
12719 entry in the hash table, thus we never get to see the real
12720 symbol in a hash traversal. So look at it now. */
12721 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12723 if (h
->plt
.offset
== (bfd_vma
) -1)
12726 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12727 addr
= h
->plt
.offset
;
12728 if (htab
->symbian_p
)
12730 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12732 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
12735 else if (htab
->vxworks_p
)
12737 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12739 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
12741 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
12743 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
12748 bfd_signed_vma thumb_refs
;
12750 thumb_refs
= eh
->plt_thumb_refcount
;
12751 if (!htab
->use_blx
)
12752 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12754 if (thumb_refs
> 0)
12756 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
12759 #ifdef FOUR_WORD_PLT
12760 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12762 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
12765 /* A three-word PLT with no Thumb thunk contains only Arm code,
12766 so only need to output a mapping symbol for the first PLT entry and
12767 entries with thumb thunks. */
12768 if (thumb_refs
> 0 || addr
== 20)
12770 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12779 /* Output a single local symbol for a generated stub. */
12782 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
12783 bfd_vma offset
, bfd_vma size
)
12785 struct elf32_arm_link_hash_table
*htab
;
12786 Elf_Internal_Sym sym
;
12788 htab
= elf32_arm_hash_table (osi
->info
);
12789 sym
.st_value
= osi
->sec
->output_section
->vma
12790 + osi
->sec
->output_offset
12792 sym
.st_size
= size
;
12794 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
12795 sym
.st_shndx
= osi
->sec_shndx
;
12796 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
12800 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
12803 struct elf32_arm_stub_hash_entry
*stub_entry
;
12804 struct bfd_link_info
*info
;
12805 struct elf32_arm_link_hash_table
*htab
;
12806 asection
*stub_sec
;
12809 output_arch_syminfo
*osi
;
12810 const insn_sequence
*template;
12811 enum stub_insn_type prev_type
;
12814 enum map_symbol_type sym_type
;
12816 /* Massage our args to the form they really have. */
12817 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
12818 osi
= (output_arch_syminfo
*) in_arg
;
12822 htab
= elf32_arm_hash_table (info
);
12823 stub_sec
= stub_entry
->stub_sec
;
12825 /* Ensure this stub is attached to the current section being
12827 if (stub_sec
!= osi
->sec
)
12830 addr
= (bfd_vma
) stub_entry
->stub_offset
;
12831 stub_name
= stub_entry
->output_name
;
12833 template = stub_entry
->stub_template
;
12834 switch (template[0].type
)
12837 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
12842 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
12843 stub_entry
->stub_size
))
12851 prev_type
= DATA_TYPE
;
12853 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
12855 switch (template[i
].type
)
12858 sym_type
= ARM_MAP_ARM
;
12863 sym_type
= ARM_MAP_THUMB
;
12867 sym_type
= ARM_MAP_DATA
;
12875 if (template[i
].type
!= prev_type
)
12877 prev_type
= template[i
].type
;
12878 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
12882 switch (template[i
].type
)
12906 /* Output mapping symbols for linker generated sections. */
12909 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
12910 struct bfd_link_info
*info
,
12912 int (*func
) (void *, const char *,
12913 Elf_Internal_Sym
*,
12915 struct elf_link_hash_entry
*))
12917 output_arch_syminfo osi
;
12918 struct elf32_arm_link_hash_table
*htab
;
12920 bfd_size_type size
;
12922 htab
= elf32_arm_hash_table (info
);
12923 check_use_blx (htab
);
12929 /* ARM->Thumb glue. */
12930 if (htab
->arm_glue_size
> 0)
12932 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12933 ARM2THUMB_GLUE_SECTION_NAME
);
12935 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12936 (output_bfd
, osi
.sec
->output_section
);
12937 if (info
->shared
|| htab
->root
.is_relocatable_executable
12938 || htab
->pic_veneer
)
12939 size
= ARM2THUMB_PIC_GLUE_SIZE
;
12940 else if (htab
->use_blx
)
12941 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
12943 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
12945 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
12947 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
12948 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
12952 /* Thumb->ARM glue. */
12953 if (htab
->thumb_glue_size
> 0)
12955 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12956 THUMB2ARM_GLUE_SECTION_NAME
);
12958 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12959 (output_bfd
, osi
.sec
->output_section
);
12960 size
= THUMB2ARM_GLUE_SIZE
;
12962 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
12964 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
12965 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
12969 /* ARMv4 BX veneers. */
12970 if (htab
->bx_glue_size
> 0)
12972 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12973 ARM_BX_GLUE_SECTION_NAME
);
12975 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12976 (output_bfd
, osi
.sec
->output_section
);
12978 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
12981 /* Long calls stubs. */
12982 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
12984 asection
* stub_sec
;
12986 for (stub_sec
= htab
->stub_bfd
->sections
;
12988 stub_sec
= stub_sec
->next
)
12990 /* Ignore non-stub sections. */
12991 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
12994 osi
.sec
= stub_sec
;
12996 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12997 (output_bfd
, osi
.sec
->output_section
);
12999 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
13003 /* Finally, output mapping symbols for the PLT. */
13004 if (!htab
->splt
|| htab
->splt
->size
== 0)
13007 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
13008 htab
->splt
->output_section
);
13009 osi
.sec
= htab
->splt
;
13010 /* Output mapping symbols for the plt header. SymbianOS does not have a
13012 if (htab
->vxworks_p
)
13014 /* VxWorks shared libraries have no PLT header. */
13017 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13019 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
13023 else if (!htab
->symbian_p
)
13025 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13027 #ifndef FOUR_WORD_PLT
13028 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
13033 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
13037 /* Allocate target specific section data. */
13040 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
13042 if (!sec
->used_by_bfd
)
13044 _arm_elf_section_data
*sdata
;
13045 bfd_size_type amt
= sizeof (*sdata
);
13047 sdata
= bfd_zalloc (abfd
, amt
);
13050 sec
->used_by_bfd
= sdata
;
13053 record_section_with_arm_elf_section_data (sec
);
13055 return _bfd_elf_new_section_hook (abfd
, sec
);
13059 /* Used to order a list of mapping symbols by address. */
13062 elf32_arm_compare_mapping (const void * a
, const void * b
)
13064 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
13065 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
13067 if (amap
->vma
> bmap
->vma
)
13069 else if (amap
->vma
< bmap
->vma
)
13071 else if (amap
->type
> bmap
->type
)
13072 /* Ensure results do not depend on the host qsort for objects with
13073 multiple mapping symbols at the same address by sorting on type
13076 else if (amap
->type
< bmap
->type
)
13082 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13084 static unsigned long
13085 offset_prel31 (unsigned long addr
, bfd_vma offset
)
13087 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
13090 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13094 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
13096 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
13097 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
13099 /* High bit of first word is supposed to be zero. */
13100 if ((first_word
& 0x80000000ul
) == 0)
13101 first_word
= offset_prel31 (first_word
, offset
);
13103 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13104 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13105 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
13106 second_word
= offset_prel31 (second_word
, offset
);
13108 bfd_put_32 (output_bfd
, first_word
, to
);
13109 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
13112 /* Data for make_branch_to_a8_stub(). */
13114 struct a8_branch_to_stub_data
{
13115 asection
*writing_section
;
13116 bfd_byte
*contents
;
13120 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13121 places for a particular section. */
13124 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
13127 struct elf32_arm_stub_hash_entry
*stub_entry
;
13128 struct a8_branch_to_stub_data
*data
;
13129 bfd_byte
*contents
;
13130 unsigned long branch_insn
;
13131 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
13132 bfd_signed_vma branch_offset
;
13134 unsigned int index
;
13136 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13137 data
= (struct a8_branch_to_stub_data
*) in_arg
;
13139 if (stub_entry
->target_section
!= data
->writing_section
13140 || stub_entry
->stub_type
< arm_stub_a8_veneer_b_cond
)
13143 contents
= data
->contents
;
13145 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
13146 + stub_entry
->target_section
->output_offset
13147 + stub_entry
->target_value
;
13149 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
13150 + stub_entry
->stub_sec
->output_offset
13151 + stub_entry
->stub_offset
;
13153 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
13154 veneered_insn_loc
&= ~3u;
13156 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
13158 abfd
= stub_entry
->target_section
->owner
;
13159 index
= stub_entry
->target_value
;
13161 /* We attempt to avoid this condition by setting stubs_always_after_branch
13162 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13163 This check is just to be on the safe side... */
13164 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
13166 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
13167 "allocated in unsafe location"), abfd
);
13171 switch (stub_entry
->stub_type
)
13173 case arm_stub_a8_veneer_b
:
13174 case arm_stub_a8_veneer_b_cond
:
13175 branch_insn
= 0xf0009000;
13178 case arm_stub_a8_veneer_blx
:
13179 branch_insn
= 0xf000e800;
13182 case arm_stub_a8_veneer_bl
:
13184 unsigned int i1
, j1
, i2
, j2
, s
;
13186 branch_insn
= 0xf000d000;
13189 if (branch_offset
< -16777216 || branch_offset
> 16777214)
13191 /* There's not much we can do apart from complain if this
13193 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
13194 "of range (input file too large)"), abfd
);
13198 /* i1 = not(j1 eor s), so:
13200 j1 = (not i1) eor s. */
13202 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
13203 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
13204 i2
= (branch_offset
>> 22) & 1;
13205 i1
= (branch_offset
>> 23) & 1;
13206 s
= (branch_offset
>> 24) & 1;
13209 branch_insn
|= j2
<< 11;
13210 branch_insn
|= j1
<< 13;
13211 branch_insn
|= s
<< 26;
13220 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[index
]);
13221 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[index
+ 2]);
13226 /* Do code byteswapping. Return FALSE afterwards so that the section is
13227 written out as normal. */
13230 elf32_arm_write_section (bfd
*output_bfd
,
13231 struct bfd_link_info
*link_info
,
13233 bfd_byte
*contents
)
13235 unsigned int mapcount
, errcount
;
13236 _arm_elf_section_data
*arm_data
;
13237 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
13238 elf32_arm_section_map
*map
;
13239 elf32_vfp11_erratum_list
*errnode
;
13242 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
13246 /* If this section has not been allocated an _arm_elf_section_data
13247 structure then we cannot record anything. */
13248 arm_data
= get_arm_elf_section_data (sec
);
13249 if (arm_data
== NULL
)
13252 mapcount
= arm_data
->mapcount
;
13253 map
= arm_data
->map
;
13254 errcount
= arm_data
->erratumcount
;
13258 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
13260 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
13261 errnode
= errnode
->next
)
13263 bfd_vma index
= errnode
->vma
- offset
;
13265 switch (errnode
->type
)
13267 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
13269 bfd_vma branch_to_veneer
;
13270 /* Original condition code of instruction, plus bit mask for
13271 ARM B instruction. */
13272 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
13275 /* The instruction is before the label. */
13278 /* Above offset included in -4 below. */
13279 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
13280 - errnode
->vma
- 4;
13282 if ((signed) branch_to_veneer
< -(1 << 25)
13283 || (signed) branch_to_veneer
>= (1 << 25))
13284 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13285 "range"), output_bfd
);
13287 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
13288 contents
[endianflip
^ index
] = insn
& 0xff;
13289 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
13290 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
13291 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
13295 case VFP11_ERRATUM_ARM_VENEER
:
13297 bfd_vma branch_from_veneer
;
13300 /* Take size of veneer into account. */
13301 branch_from_veneer
= errnode
->u
.v
.branch
->vma
13302 - errnode
->vma
- 12;
13304 if ((signed) branch_from_veneer
< -(1 << 25)
13305 || (signed) branch_from_veneer
>= (1 << 25))
13306 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13307 "range"), output_bfd
);
13309 /* Original instruction. */
13310 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
13311 contents
[endianflip
^ index
] = insn
& 0xff;
13312 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
13313 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
13314 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
13316 /* Branch back to insn after original insn. */
13317 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
13318 contents
[endianflip
^ (index
+ 4)] = insn
& 0xff;
13319 contents
[endianflip
^ (index
+ 5)] = (insn
>> 8) & 0xff;
13320 contents
[endianflip
^ (index
+ 6)] = (insn
>> 16) & 0xff;
13321 contents
[endianflip
^ (index
+ 7)] = (insn
>> 24) & 0xff;
13331 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
13333 arm_unwind_table_edit
*edit_node
13334 = arm_data
->u
.exidx
.unwind_edit_list
;
13335 /* Now, sec->size is the size of the section we will write. The original
13336 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13337 markers) was sec->rawsize. (This isn't the case if we perform no
13338 edits, then rawsize will be zero and we should use size). */
13339 bfd_byte
*edited_contents
= bfd_malloc (sec
->size
);
13340 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
13341 unsigned int in_index
, out_index
;
13342 bfd_vma add_to_offsets
= 0;
13344 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
13348 unsigned int edit_index
= edit_node
->index
;
13350 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
13352 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13353 contents
+ in_index
* 8, add_to_offsets
);
13357 else if (in_index
== edit_index
13358 || (in_index
* 8 >= input_size
13359 && edit_index
== UINT_MAX
))
13361 switch (edit_node
->type
)
13363 case DELETE_EXIDX_ENTRY
:
13365 add_to_offsets
+= 8;
13368 case INSERT_EXIDX_CANTUNWIND_AT_END
:
13370 asection
*text_sec
= edit_node
->linked_section
;
13371 bfd_vma text_offset
= text_sec
->output_section
->vma
13372 + text_sec
->output_offset
13374 bfd_vma exidx_offset
= offset
+ out_index
* 8;
13375 unsigned long prel31_offset
;
13377 /* Note: this is meant to be equivalent to an
13378 R_ARM_PREL31 relocation. These synthetic
13379 EXIDX_CANTUNWIND markers are not relocated by the
13380 usual BFD method. */
13381 prel31_offset
= (text_offset
- exidx_offset
)
13384 /* First address we can't unwind. */
13385 bfd_put_32 (output_bfd
, prel31_offset
,
13386 &edited_contents
[out_index
* 8]);
13388 /* Code for EXIDX_CANTUNWIND. */
13389 bfd_put_32 (output_bfd
, 0x1,
13390 &edited_contents
[out_index
* 8 + 4]);
13393 add_to_offsets
-= 8;
13398 edit_node
= edit_node
->next
;
13403 /* No more edits, copy remaining entries verbatim. */
13404 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13405 contents
+ in_index
* 8, add_to_offsets
);
13411 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
13412 bfd_set_section_contents (output_bfd
, sec
->output_section
,
13414 (file_ptr
) sec
->output_offset
, sec
->size
);
13419 /* Fix code to point to Cortex-A8 erratum stubs. */
13420 if (globals
->fix_cortex_a8
)
13422 struct a8_branch_to_stub_data data
;
13424 data
.writing_section
= sec
;
13425 data
.contents
= contents
;
13427 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
13434 if (globals
->byteswap_code
)
13436 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
13439 for (i
= 0; i
< mapcount
; i
++)
13441 if (i
== mapcount
- 1)
13444 end
= map
[i
+ 1].vma
;
13446 switch (map
[i
].type
)
13449 /* Byte swap code words. */
13450 while (ptr
+ 3 < end
)
13452 tmp
= contents
[ptr
];
13453 contents
[ptr
] = contents
[ptr
+ 3];
13454 contents
[ptr
+ 3] = tmp
;
13455 tmp
= contents
[ptr
+ 1];
13456 contents
[ptr
+ 1] = contents
[ptr
+ 2];
13457 contents
[ptr
+ 2] = tmp
;
13463 /* Byte swap code halfwords. */
13464 while (ptr
+ 1 < end
)
13466 tmp
= contents
[ptr
];
13467 contents
[ptr
] = contents
[ptr
+ 1];
13468 contents
[ptr
+ 1] = tmp
;
13474 /* Leave data alone. */
13482 arm_data
->mapcount
= 0;
13483 arm_data
->mapsize
= 0;
13484 arm_data
->map
= NULL
;
13485 unrecord_section_with_arm_elf_section_data (sec
);
13491 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
13493 void * ignore ATTRIBUTE_UNUSED
)
13495 unrecord_section_with_arm_elf_section_data (sec
);
13499 elf32_arm_close_and_cleanup (bfd
* abfd
)
13501 if (abfd
->sections
)
13502 bfd_map_over_sections (abfd
,
13503 unrecord_section_via_map_over_sections
,
13506 return _bfd_elf_close_and_cleanup (abfd
);
13510 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
13512 if (abfd
->sections
)
13513 bfd_map_over_sections (abfd
,
13514 unrecord_section_via_map_over_sections
,
13517 return _bfd_free_cached_info (abfd
);
13520 /* Display STT_ARM_TFUNC symbols as functions. */
13523 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
13526 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
13528 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
13529 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
13533 /* Mangle thumb function symbols as we read them in. */
13536 elf32_arm_swap_symbol_in (bfd
* abfd
,
13539 Elf_Internal_Sym
*dst
)
13541 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
13544 /* New EABI objects mark thumb function symbols by setting the low bit of
13545 the address. Turn these into STT_ARM_TFUNC. */
13546 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
13547 && (dst
->st_value
& 1))
13549 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
13550 dst
->st_value
&= ~(bfd_vma
) 1;
13556 /* Mangle thumb function symbols as we write them out. */
13559 elf32_arm_swap_symbol_out (bfd
*abfd
,
13560 const Elf_Internal_Sym
*src
,
13564 Elf_Internal_Sym newsym
;
13566 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13567 of the address set, as per the new EABI. We do this unconditionally
13568 because objcopy does not set the elf header flags until after
13569 it writes out the symbol table. */
13570 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
13573 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
13574 if (newsym
.st_shndx
!= SHN_UNDEF
)
13576 /* Do this only for defined symbols. At link type, the static
13577 linker will simulate the work of dynamic linker of resolving
13578 symbols and will carry over the thumbness of found symbols to
13579 the output symbol table. It's not clear how it happens, but
13580 the thumbness of undefined symbols can well be different at
13581 runtime, and writing '1' for them will be confusing for users
13582 and possibly for dynamic linker itself.
13584 newsym
.st_value
|= 1;
13589 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
13592 /* Add the PT_ARM_EXIDX program header. */
13595 elf32_arm_modify_segment_map (bfd
*abfd
,
13596 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13598 struct elf_segment_map
*m
;
13601 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13602 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13604 /* If there is already a PT_ARM_EXIDX header, then we do not
13605 want to add another one. This situation arises when running
13606 "strip"; the input binary already has the header. */
13607 m
= elf_tdata (abfd
)->segment_map
;
13608 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
13612 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
13615 m
->p_type
= PT_ARM_EXIDX
;
13617 m
->sections
[0] = sec
;
13619 m
->next
= elf_tdata (abfd
)->segment_map
;
13620 elf_tdata (abfd
)->segment_map
= m
;
13627 /* We may add a PT_ARM_EXIDX program header. */
13630 elf32_arm_additional_program_headers (bfd
*abfd
,
13631 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13635 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13636 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13642 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13645 elf32_arm_is_function_type (unsigned int type
)
13647 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
13650 /* We use this to override swap_symbol_in and swap_symbol_out. */
13651 const struct elf_size_info elf32_arm_size_info
=
13653 sizeof (Elf32_External_Ehdr
),
13654 sizeof (Elf32_External_Phdr
),
13655 sizeof (Elf32_External_Shdr
),
13656 sizeof (Elf32_External_Rel
),
13657 sizeof (Elf32_External_Rela
),
13658 sizeof (Elf32_External_Sym
),
13659 sizeof (Elf32_External_Dyn
),
13660 sizeof (Elf_External_Note
),
13664 ELFCLASS32
, EV_CURRENT
,
13665 bfd_elf32_write_out_phdrs
,
13666 bfd_elf32_write_shdrs_and_ehdr
,
13667 bfd_elf32_checksum_contents
,
13668 bfd_elf32_write_relocs
,
13669 elf32_arm_swap_symbol_in
,
13670 elf32_arm_swap_symbol_out
,
13671 bfd_elf32_slurp_reloc_table
,
13672 bfd_elf32_slurp_symbol_table
,
13673 bfd_elf32_swap_dyn_in
,
13674 bfd_elf32_swap_dyn_out
,
13675 bfd_elf32_swap_reloc_in
,
13676 bfd_elf32_swap_reloc_out
,
13677 bfd_elf32_swap_reloca_in
,
13678 bfd_elf32_swap_reloca_out
13681 #define ELF_ARCH bfd_arch_arm
13682 #define ELF_MACHINE_CODE EM_ARM
13683 #ifdef __QNXTARGET__
13684 #define ELF_MAXPAGESIZE 0x1000
13686 #define ELF_MAXPAGESIZE 0x8000
13688 #define ELF_MINPAGESIZE 0x1000
13689 #define ELF_COMMONPAGESIZE 0x1000
13691 #define bfd_elf32_mkobject elf32_arm_mkobject
13693 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13694 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13695 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13696 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13697 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13698 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13699 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13700 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13701 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13702 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13703 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13704 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13705 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
13706 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
13707 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13709 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13710 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13711 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13712 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13713 #define elf_backend_check_relocs elf32_arm_check_relocs
13714 #define elf_backend_relocate_section elf32_arm_relocate_section
13715 #define elf_backend_write_section elf32_arm_write_section
13716 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13717 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13718 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13719 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13720 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13721 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13722 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13723 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13724 #define elf_backend_object_p elf32_arm_object_p
13725 #define elf_backend_section_flags elf32_arm_section_flags
13726 #define elf_backend_fake_sections elf32_arm_fake_sections
13727 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13728 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13729 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13730 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13731 #define elf_backend_size_info elf32_arm_size_info
13732 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13733 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13734 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13735 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13736 #define elf_backend_is_function_type elf32_arm_is_function_type
13738 #define elf_backend_can_refcount 1
13739 #define elf_backend_can_gc_sections 1
13740 #define elf_backend_plt_readonly 1
13741 #define elf_backend_want_got_plt 1
13742 #define elf_backend_want_plt_sym 0
13743 #define elf_backend_may_use_rel_p 1
13744 #define elf_backend_may_use_rela_p 0
13745 #define elf_backend_default_use_rela_p 0
13747 #define elf_backend_got_header_size 12
13749 #undef elf_backend_obj_attrs_vendor
13750 #define elf_backend_obj_attrs_vendor "aeabi"
13751 #undef elf_backend_obj_attrs_section
13752 #define elf_backend_obj_attrs_section ".ARM.attributes"
13753 #undef elf_backend_obj_attrs_arg_type
13754 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13755 #undef elf_backend_obj_attrs_section_type
13756 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13757 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13759 #include "elf32-target.h"
13761 /* VxWorks Targets. */
13763 #undef TARGET_LITTLE_SYM
13764 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13765 #undef TARGET_LITTLE_NAME
13766 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13767 #undef TARGET_BIG_SYM
13768 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13769 #undef TARGET_BIG_NAME
13770 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13772 /* Like elf32_arm_link_hash_table_create -- but overrides
13773 appropriately for VxWorks. */
13775 static struct bfd_link_hash_table
*
13776 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
13778 struct bfd_link_hash_table
*ret
;
13780 ret
= elf32_arm_link_hash_table_create (abfd
);
13783 struct elf32_arm_link_hash_table
*htab
13784 = (struct elf32_arm_link_hash_table
*) ret
;
13786 htab
->vxworks_p
= 1;
13792 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
13794 elf32_arm_final_write_processing (abfd
, linker
);
13795 elf_vxworks_final_write_processing (abfd
, linker
);
13799 #define elf32_bed elf32_arm_vxworks_bed
13801 #undef bfd_elf32_bfd_link_hash_table_create
13802 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13803 #undef elf_backend_add_symbol_hook
13804 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13805 #undef elf_backend_final_write_processing
13806 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13807 #undef elf_backend_emit_relocs
13808 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13810 #undef elf_backend_may_use_rel_p
13811 #define elf_backend_may_use_rel_p 0
13812 #undef elf_backend_may_use_rela_p
13813 #define elf_backend_may_use_rela_p 1
13814 #undef elf_backend_default_use_rela_p
13815 #define elf_backend_default_use_rela_p 1
13816 #undef elf_backend_want_plt_sym
13817 #define elf_backend_want_plt_sym 1
13818 #undef ELF_MAXPAGESIZE
13819 #define ELF_MAXPAGESIZE 0x1000
13821 #include "elf32-target.h"
13824 /* Symbian OS Targets. */
13826 #undef TARGET_LITTLE_SYM
13827 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
13828 #undef TARGET_LITTLE_NAME
13829 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
13830 #undef TARGET_BIG_SYM
13831 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
13832 #undef TARGET_BIG_NAME
13833 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
13835 /* Like elf32_arm_link_hash_table_create -- but overrides
13836 appropriately for Symbian OS. */
13838 static struct bfd_link_hash_table
*
13839 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
13841 struct bfd_link_hash_table
*ret
;
13843 ret
= elf32_arm_link_hash_table_create (abfd
);
13846 struct elf32_arm_link_hash_table
*htab
13847 = (struct elf32_arm_link_hash_table
*)ret
;
13848 /* There is no PLT header for Symbian OS. */
13849 htab
->plt_header_size
= 0;
13850 /* The PLT entries are each one instruction and one word. */
13851 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
13852 htab
->symbian_p
= 1;
13853 /* Symbian uses armv5t or above, so use_blx is always true. */
13855 htab
->root
.is_relocatable_executable
= 1;
13860 static const struct bfd_elf_special_section
13861 elf32_arm_symbian_special_sections
[] =
13863 /* In a BPABI executable, the dynamic linking sections do not go in
13864 the loadable read-only segment. The post-linker may wish to
13865 refer to these sections, but they are not part of the final
13867 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
13868 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
13869 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
13870 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
13871 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
13872 /* These sections do not need to be writable as the SymbianOS
13873 postlinker will arrange things so that no dynamic relocation is
13875 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
13876 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
13877 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
13878 { NULL
, 0, 0, 0, 0 }
13882 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
13883 struct bfd_link_info
*link_info
)
13885 /* BPABI objects are never loaded directly by an OS kernel; they are
13886 processed by a postlinker first, into an OS-specific format. If
13887 the D_PAGED bit is set on the file, BFD will align segments on
13888 page boundaries, so that an OS can directly map the file. With
13889 BPABI objects, that just results in wasted space. In addition,
13890 because we clear the D_PAGED bit, map_sections_to_segments will
13891 recognize that the program headers should not be mapped into any
13892 loadable segment. */
13893 abfd
->flags
&= ~D_PAGED
;
13894 elf32_arm_begin_write_processing (abfd
, link_info
);
13898 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
13899 struct bfd_link_info
*info
)
13901 struct elf_segment_map
*m
;
13904 /* BPABI shared libraries and executables should have a PT_DYNAMIC
13905 segment. However, because the .dynamic section is not marked
13906 with SEC_LOAD, the generic ELF code will not create such a
13908 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
13911 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
13912 if (m
->p_type
== PT_DYNAMIC
)
13917 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
13918 m
->next
= elf_tdata (abfd
)->segment_map
;
13919 elf_tdata (abfd
)->segment_map
= m
;
13923 /* Also call the generic arm routine. */
13924 return elf32_arm_modify_segment_map (abfd
, info
);
13927 /* Return address for Ith PLT stub in section PLT, for relocation REL
13928 or (bfd_vma) -1 if it should not be included. */
13931 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
13932 const arelent
*rel ATTRIBUTE_UNUSED
)
13934 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
13939 #define elf32_bed elf32_arm_symbian_bed
13941 /* The dynamic sections are not allocated on SymbianOS; the postlinker
13942 will process them and then discard them. */
13943 #undef ELF_DYNAMIC_SEC_FLAGS
13944 #define ELF_DYNAMIC_SEC_FLAGS \
13945 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
13947 #undef elf_backend_add_symbol_hook
13948 #undef elf_backend_emit_relocs
13950 #undef bfd_elf32_bfd_link_hash_table_create
13951 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
13952 #undef elf_backend_special_sections
13953 #define elf_backend_special_sections elf32_arm_symbian_special_sections
13954 #undef elf_backend_begin_write_processing
13955 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
13956 #undef elf_backend_final_write_processing
13957 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13959 #undef elf_backend_modify_segment_map
13960 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
13962 /* There is no .got section for BPABI objects, and hence no header. */
13963 #undef elf_backend_got_header_size
13964 #define elf_backend_got_header_size 0
13966 /* Similarly, there is no .got.plt section. */
13967 #undef elf_backend_want_got_plt
13968 #define elf_backend_want_got_plt 0
13970 #undef elf_backend_plt_sym_val
13971 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
13973 #undef elf_backend_may_use_rel_p
13974 #define elf_backend_may_use_rel_p 1
13975 #undef elf_backend_may_use_rela_p
13976 #define elf_backend_may_use_rela_p 0
13977 #undef elf_backend_default_use_rela_p
13978 #define elf_backend_default_use_rela_p 0
13979 #undef elf_backend_want_plt_sym
13980 #define elf_backend_want_plt_sym 0
13981 #undef ELF_MAXPAGESIZE
13982 #define ELF_MAXPAGESIZE 0x8000
13984 #include "elf32-target.h"