1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
50 #include "incremental.h"
56 // Layout_task_runner methods.
58 // Lay out the sections. This is called after all the input objects
62 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
64 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
69 // Now we know the final size of the output file and we know where
70 // each piece of information goes.
72 if (this->mapfile_
!= NULL
)
74 this->mapfile_
->print_discarded_sections(this->input_objects_
);
75 this->layout_
->print_to_mapfile(this->mapfile_
);
78 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
79 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
80 of
->set_is_temporary();
83 // Queue up the final set of tasks.
84 gold::queue_final_tasks(this->options_
, this->input_objects_
,
85 this->symtab_
, this->layout_
, workqueue
, of
);
90 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
91 : number_of_input_files_(number_of_input_files
),
92 script_options_(script_options
),
100 unattached_section_list_(),
101 special_output_list_(),
102 section_headers_(NULL
),
104 relro_segment_(NULL
),
105 symtab_section_(NULL
),
106 symtab_xindex_(NULL
),
107 dynsym_section_(NULL
),
108 dynsym_xindex_(NULL
),
109 dynamic_section_(NULL
),
111 eh_frame_section_(NULL
),
112 eh_frame_data_(NULL
),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL
),
115 build_id_note_(NULL
),
119 output_file_size_(-1),
120 sections_are_attached_(false),
121 input_requires_executable_stack_(false),
122 input_with_gnu_stack_note_(false),
123 input_without_gnu_stack_note_(false),
124 has_static_tls_(false),
125 any_postprocessing_sections_(false),
126 resized_signatures_(false),
127 incremental_inputs_(NULL
)
129 // Make space for more than enough segments for a typical file.
130 // This is just for efficiency--it's OK if we wind up needing more.
131 this->segment_list_
.reserve(12);
133 // We expect two unattached Output_data objects: the file header and
134 // the segment headers.
135 this->special_output_list_
.reserve(2);
137 // Initialize structure needed for an incremental build.
138 if (parameters
->options().incremental())
139 this->incremental_inputs_
= new Incremental_inputs
;
142 // Hash a key we use to look up an output section mapping.
145 Layout::Hash_key::operator()(const Layout::Key
& k
) const
147 return k
.first
+ k
.second
.first
+ k
.second
.second
;
150 // Returns whether the given section is in the list of
151 // debug-sections-used-by-some-version-of-gdb. Currently,
152 // we've checked versions of gdb up to and including 6.7.1.
154 static const char* gdb_sections
[] =
156 // ".debug_aranges", // not used by gdb as of 6.7.1
162 // ".debug_pubnames", // not used by gdb as of 6.7.1
167 static const char* lines_only_debug_sections
[] =
169 // ".debug_aranges", // not used by gdb as of 6.7.1
175 // ".debug_pubnames", // not used by gdb as of 6.7.1
181 is_gdb_debug_section(const char* str
)
183 // We can do this faster: binary search or a hashtable. But why bother?
184 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
185 if (strcmp(str
, gdb_sections
[i
]) == 0)
191 is_lines_only_debug_section(const char* str
)
193 // We can do this faster: binary search or a hashtable. But why bother?
195 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
197 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
202 // Whether to include this section in the link.
204 template<int size
, bool big_endian
>
206 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
207 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
209 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
212 switch (shdr
.get_sh_type())
214 case elfcpp::SHT_NULL
:
215 case elfcpp::SHT_SYMTAB
:
216 case elfcpp::SHT_DYNSYM
:
217 case elfcpp::SHT_HASH
:
218 case elfcpp::SHT_DYNAMIC
:
219 case elfcpp::SHT_SYMTAB_SHNDX
:
222 case elfcpp::SHT_STRTAB
:
223 // Discard the sections which have special meanings in the ELF
224 // ABI. Keep others (e.g., .stabstr). We could also do this by
225 // checking the sh_link fields of the appropriate sections.
226 return (strcmp(name
, ".dynstr") != 0
227 && strcmp(name
, ".strtab") != 0
228 && strcmp(name
, ".shstrtab") != 0);
230 case elfcpp::SHT_RELA
:
231 case elfcpp::SHT_REL
:
232 case elfcpp::SHT_GROUP
:
233 // If we are emitting relocations these should be handled
235 gold_assert(!parameters
->options().relocatable()
236 && !parameters
->options().emit_relocs());
239 case elfcpp::SHT_PROGBITS
:
240 if (parameters
->options().strip_debug()
241 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
243 if (is_debug_info_section(name
))
246 if (parameters
->options().strip_debug_non_line()
247 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
249 // Debugging sections can only be recognized by name.
250 if (is_prefix_of(".debug", name
)
251 && !is_lines_only_debug_section(name
))
254 if (parameters
->options().strip_debug_gdb()
255 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
257 // Debugging sections can only be recognized by name.
258 if (is_prefix_of(".debug", name
)
259 && !is_gdb_debug_section(name
))
262 if (parameters
->options().strip_lto_sections()
263 && !parameters
->options().relocatable()
264 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
266 // Ignore LTO sections containing intermediate code.
267 if (is_prefix_of(".gnu.lto_", name
))
277 // Return an output section named NAME, or NULL if there is none.
280 Layout::find_output_section(const char* name
) const
282 for (Section_list::const_iterator p
= this->section_list_
.begin();
283 p
!= this->section_list_
.end();
285 if (strcmp((*p
)->name(), name
) == 0)
290 // Return an output segment of type TYPE, with segment flags SET set
291 // and segment flags CLEAR clear. Return NULL if there is none.
294 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
295 elfcpp::Elf_Word clear
) const
297 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
298 p
!= this->segment_list_
.end();
300 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
301 && ((*p
)->flags() & set
) == set
302 && ((*p
)->flags() & clear
) == 0)
307 // Return the output section to use for section NAME with type TYPE
308 // and section flags FLAGS. NAME must be canonicalized in the string
309 // pool, and NAME_KEY is the key.
312 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
313 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
315 elfcpp::Elf_Xword lookup_flags
= flags
;
317 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
318 // read-write with read-only sections. Some other ELF linkers do
319 // not do this. FIXME: Perhaps there should be an option
321 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
323 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
324 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
325 std::pair
<Section_name_map::iterator
, bool> ins(
326 this->section_name_map_
.insert(v
));
329 return ins
.first
->second
;
332 // This is the first time we've seen this name/type/flags
333 // combination. For compatibility with the GNU linker, we
334 // combine sections with contents and zero flags with sections
335 // with non-zero flags. This is a workaround for cases where
336 // assembler code forgets to set section flags. FIXME: Perhaps
337 // there should be an option to control this.
338 Output_section
* os
= NULL
;
340 if (type
== elfcpp::SHT_PROGBITS
)
344 Output_section
* same_name
= this->find_output_section(name
);
345 if (same_name
!= NULL
346 && same_name
->type() == elfcpp::SHT_PROGBITS
347 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
350 else if ((flags
& elfcpp::SHF_TLS
) == 0)
352 elfcpp::Elf_Xword zero_flags
= 0;
353 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
354 Section_name_map::iterator p
=
355 this->section_name_map_
.find(zero_key
);
356 if (p
!= this->section_name_map_
.end())
362 os
= this->make_output_section(name
, type
, flags
);
363 ins
.first
->second
= os
;
368 // Pick the output section to use for section NAME, in input file
369 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
370 // linker created section. IS_INPUT_SECTION is true if we are
371 // choosing an output section for an input section found in a input
372 // file. This will return NULL if the input section should be
376 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
377 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
378 bool is_input_section
)
380 // We should not see any input sections after we have attached
381 // sections to segments.
382 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
384 // Some flags in the input section should not be automatically
385 // copied to the output section.
386 flags
&= ~ (elfcpp::SHF_INFO_LINK
387 | elfcpp::SHF_LINK_ORDER
390 | elfcpp::SHF_STRINGS
);
392 if (this->script_options_
->saw_sections_clause())
394 // We are using a SECTIONS clause, so the output section is
395 // chosen based only on the name.
397 Script_sections
* ss
= this->script_options_
->script_sections();
398 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
399 Output_section
** output_section_slot
;
400 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
403 // The SECTIONS clause says to discard this input section.
407 // If this is an orphan section--one not mentioned in the linker
408 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
409 // default processing below.
411 if (output_section_slot
!= NULL
)
413 if (*output_section_slot
!= NULL
)
414 return *output_section_slot
;
416 // We don't put sections found in the linker script into
417 // SECTION_NAME_MAP_. That keeps us from getting confused
418 // if an orphan section is mapped to a section with the same
419 // name as one in the linker script.
421 name
= this->namepool_
.add(name
, false, NULL
);
423 Output_section
* os
= this->make_output_section(name
, type
, flags
);
424 os
->set_found_in_sections_clause();
425 *output_section_slot
= os
;
430 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
432 // Turn NAME from the name of the input section into the name of the
435 size_t len
= strlen(name
);
437 && !this->script_options_
->saw_sections_clause()
438 && !parameters
->options().relocatable())
439 name
= Layout::output_section_name(name
, &len
);
441 Stringpool::Key name_key
;
442 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
444 // Find or make the output section. The output section is selected
445 // based on the section name, type, and flags.
446 return this->get_output_section(name
, name_key
, type
, flags
);
449 // Return the output section to use for input section SHNDX, with name
450 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
451 // index of a relocation section which applies to this section, or 0
452 // if none, or -1U if more than one. RELOC_TYPE is the type of the
453 // relocation section if there is one. Set *OFF to the offset of this
454 // input section without the output section. Return NULL if the
455 // section should be discarded. Set *OFF to -1 if the section
456 // contents should not be written directly to the output file, but
457 // will instead receive special handling.
459 template<int size
, bool big_endian
>
461 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
462 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
463 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
467 if (!this->include_section(object
, name
, shdr
))
472 // In a relocatable link a grouped section must not be combined with
473 // any other sections.
474 if (parameters
->options().relocatable()
475 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
477 name
= this->namepool_
.add(name
, true, NULL
);
478 os
= this->make_output_section(name
, shdr
.get_sh_type(),
479 shdr
.get_sh_flags());
483 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
484 shdr
.get_sh_flags(), true);
489 // By default the GNU linker sorts input sections whose names match
490 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
491 // are sorted by name. This is used to implement constructor
492 // priority ordering. We are compatible.
493 if (!this->script_options_
->saw_sections_clause()
494 && (is_prefix_of(".ctors.", name
)
495 || is_prefix_of(".dtors.", name
)
496 || is_prefix_of(".init_array.", name
)
497 || is_prefix_of(".fini_array.", name
)))
498 os
->set_must_sort_attached_input_sections();
500 // FIXME: Handle SHF_LINK_ORDER somewhere.
502 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
503 this->script_options_
->saw_sections_clause());
508 // Handle a relocation section when doing a relocatable link.
510 template<int size
, bool big_endian
>
512 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
514 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
515 Output_section
* data_section
,
516 Relocatable_relocs
* rr
)
518 gold_assert(parameters
->options().relocatable()
519 || parameters
->options().emit_relocs());
521 int sh_type
= shdr
.get_sh_type();
524 if (sh_type
== elfcpp::SHT_REL
)
526 else if (sh_type
== elfcpp::SHT_RELA
)
530 name
+= data_section
->name();
532 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
537 os
->set_should_link_to_symtab();
538 os
->set_info_section(data_section
);
540 Output_section_data
* posd
;
541 if (sh_type
== elfcpp::SHT_REL
)
543 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
544 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
548 else if (sh_type
== elfcpp::SHT_RELA
)
550 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
551 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
558 os
->add_output_section_data(posd
);
559 rr
->set_output_data(posd
);
564 // Handle a group section when doing a relocatable link.
566 template<int size
, bool big_endian
>
568 Layout::layout_group(Symbol_table
* symtab
,
569 Sized_relobj
<size
, big_endian
>* object
,
571 const char* group_section_name
,
572 const char* signature
,
573 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
574 elfcpp::Elf_Word flags
,
575 std::vector
<unsigned int>* shndxes
)
577 gold_assert(parameters
->options().relocatable());
578 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
579 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
580 Output_section
* os
= this->make_output_section(group_section_name
,
582 shdr
.get_sh_flags());
584 // We need to find a symbol with the signature in the symbol table.
585 // If we don't find one now, we need to look again later.
586 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
588 os
->set_info_symndx(sym
);
591 // Reserve some space to minimize reallocations.
592 if (this->group_signatures_
.empty())
593 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
595 // We will wind up using a symbol whose name is the signature.
596 // So just put the signature in the symbol name pool to save it.
597 signature
= symtab
->canonicalize_name(signature
);
598 this->group_signatures_
.push_back(Group_signature(os
, signature
));
601 os
->set_should_link_to_symtab();
604 section_size_type entry_count
=
605 convert_to_section_size_type(shdr
.get_sh_size() / 4);
606 Output_section_data
* posd
=
607 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
609 os
->add_output_section_data(posd
);
612 // Special GNU handling of sections name .eh_frame. They will
613 // normally hold exception frame data as defined by the C++ ABI
614 // (http://codesourcery.com/cxx-abi/).
616 template<int size
, bool big_endian
>
618 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
619 const unsigned char* symbols
,
621 const unsigned char* symbol_names
,
622 off_t symbol_names_size
,
624 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
625 unsigned int reloc_shndx
, unsigned int reloc_type
,
628 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
629 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
631 const char* const name
= ".eh_frame";
632 Output_section
* os
= this->choose_output_section(object
,
634 elfcpp::SHT_PROGBITS
,
640 if (this->eh_frame_section_
== NULL
)
642 this->eh_frame_section_
= os
;
643 this->eh_frame_data_
= new Eh_frame();
645 if (parameters
->options().eh_frame_hdr())
647 Output_section
* hdr_os
=
648 this->choose_output_section(NULL
,
650 elfcpp::SHT_PROGBITS
,
656 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
657 this->eh_frame_data_
);
658 hdr_os
->add_output_section_data(hdr_posd
);
660 hdr_os
->set_after_input_sections();
662 if (!this->script_options_
->saw_phdrs_clause())
664 Output_segment
* hdr_oseg
;
665 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
667 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
670 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
675 gold_assert(this->eh_frame_section_
== os
);
677 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
686 os
->update_flags_for_input_section(shdr
.get_sh_flags());
688 // We found a .eh_frame section we are going to optimize, so now
689 // we can add the set of optimized sections to the output
690 // section. We need to postpone adding this until we've found a
691 // section we can optimize so that the .eh_frame section in
692 // crtbegin.o winds up at the start of the output section.
693 if (!this->added_eh_frame_data_
)
695 os
->add_output_section_data(this->eh_frame_data_
);
696 this->added_eh_frame_data_
= true;
702 // We couldn't handle this .eh_frame section for some reason.
703 // Add it as a normal section.
704 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
705 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
706 saw_sections_clause
);
712 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
713 // the output section.
716 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
717 elfcpp::Elf_Xword flags
,
718 Output_section_data
* posd
)
720 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
723 os
->add_output_section_data(posd
);
727 // Map section flags to segment flags.
730 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
732 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
733 if ((flags
& elfcpp::SHF_WRITE
) != 0)
735 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
740 // Sometimes we compress sections. This is typically done for
741 // sections that are not part of normal program execution (such as
742 // .debug_* sections), and where the readers of these sections know
743 // how to deal with compressed sections. (To make it easier for them,
744 // we will rename the ouput section in such cases from .foo to
745 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
746 // doesn't say for certain whether we'll compress -- it depends on
747 // commandline options as well -- just whether this section is a
748 // candidate for compression.
751 is_compressible_debug_section(const char* secname
)
753 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
756 // Make a new Output_section, and attach it to segments as
760 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
761 elfcpp::Elf_Xword flags
)
764 if ((flags
& elfcpp::SHF_ALLOC
) == 0
765 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
766 && is_compressible_debug_section(name
))
767 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
770 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
771 && parameters
->options().strip_debug_non_line()
772 && strcmp(".debug_abbrev", name
) == 0)
774 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
776 if (this->debug_info_
)
777 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
779 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
780 && parameters
->options().strip_debug_non_line()
781 && strcmp(".debug_info", name
) == 0)
783 os
= this->debug_info_
= new Output_reduced_debug_info_section(
785 if (this->debug_abbrev_
)
786 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
789 os
= new Output_section(name
, type
, flags
);
791 this->section_list_
.push_back(os
);
793 // The GNU linker by default sorts some sections by priority, so we
794 // do the same. We need to know that this might happen before we
795 // attach any input sections.
796 if (!this->script_options_
->saw_sections_clause()
797 && (strcmp(name
, ".ctors") == 0
798 || strcmp(name
, ".dtors") == 0
799 || strcmp(name
, ".init_array") == 0
800 || strcmp(name
, ".fini_array") == 0))
801 os
->set_may_sort_attached_input_sections();
803 // With -z relro, we have to recognize the special sections by name.
804 // There is no other way.
805 if (!this->script_options_
->saw_sections_clause()
806 && parameters
->options().relro()
807 && type
== elfcpp::SHT_PROGBITS
808 && (flags
& elfcpp::SHF_ALLOC
) != 0
809 && (flags
& elfcpp::SHF_WRITE
) != 0)
811 if (strcmp(name
, ".data.rel.ro") == 0)
813 else if (strcmp(name
, ".data.rel.ro.local") == 0)
816 os
->set_is_relro_local();
820 // If we have already attached the sections to segments, then we
821 // need to attach this one now. This happens for sections created
822 // directly by the linker.
823 if (this->sections_are_attached_
)
824 this->attach_section_to_segment(os
);
829 // Attach output sections to segments. This is called after we have
830 // seen all the input sections.
833 Layout::attach_sections_to_segments()
835 for (Section_list::iterator p
= this->section_list_
.begin();
836 p
!= this->section_list_
.end();
838 this->attach_section_to_segment(*p
);
840 this->sections_are_attached_
= true;
843 // Attach an output section to a segment.
846 Layout::attach_section_to_segment(Output_section
* os
)
848 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
849 this->unattached_section_list_
.push_back(os
);
851 this->attach_allocated_section_to_segment(os
);
854 // Attach an allocated output section to a segment.
857 Layout::attach_allocated_section_to_segment(Output_section
* os
)
859 elfcpp::Elf_Xword flags
= os
->flags();
860 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
862 if (parameters
->options().relocatable())
865 // If we have a SECTIONS clause, we can't handle the attachment to
866 // segments until after we've seen all the sections.
867 if (this->script_options_
->saw_sections_clause())
870 gold_assert(!this->script_options_
->saw_phdrs_clause());
872 // This output section goes into a PT_LOAD segment.
874 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
876 // In general the only thing we really care about for PT_LOAD
877 // segments is whether or not they are writable, so that is how we
878 // search for them. People who need segments sorted on some other
879 // basis will have to use a linker script.
881 Segment_list::const_iterator p
;
882 for (p
= this->segment_list_
.begin();
883 p
!= this->segment_list_
.end();
886 if ((*p
)->type() == elfcpp::PT_LOAD
887 && (parameters
->options().omagic()
888 || ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
)))
890 // If -Tbss was specified, we need to separate the data
892 if (parameters
->options().user_set_Tbss())
894 if ((os
->type() == elfcpp::SHT_NOBITS
)
895 == (*p
)->has_any_data_sections())
899 (*p
)->add_output_section(os
, seg_flags
);
904 if (p
== this->segment_list_
.end())
906 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
908 oseg
->add_output_section(os
, seg_flags
);
911 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
913 if (os
->type() == elfcpp::SHT_NOTE
)
915 // See if we already have an equivalent PT_NOTE segment.
916 for (p
= this->segment_list_
.begin();
917 p
!= segment_list_
.end();
920 if ((*p
)->type() == elfcpp::PT_NOTE
921 && (((*p
)->flags() & elfcpp::PF_W
)
922 == (seg_flags
& elfcpp::PF_W
)))
924 (*p
)->add_output_section(os
, seg_flags
);
929 if (p
== this->segment_list_
.end())
931 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
933 oseg
->add_output_section(os
, seg_flags
);
937 // If we see a loadable SHF_TLS section, we create a PT_TLS
938 // segment. There can only be one such segment.
939 if ((flags
& elfcpp::SHF_TLS
) != 0)
941 if (this->tls_segment_
== NULL
)
942 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
943 this->tls_segment_
->add_output_section(os
, seg_flags
);
946 // If -z relro is in effect, and we see a relro section, we create a
947 // PT_GNU_RELRO segment. There can only be one such segment.
948 if (os
->is_relro() && parameters
->options().relro())
950 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
951 if (this->relro_segment_
== NULL
)
952 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
953 this->relro_segment_
->add_output_section(os
, seg_flags
);
957 // Make an output section for a script.
960 Layout::make_output_section_for_script(const char* name
)
962 name
= this->namepool_
.add(name
, false, NULL
);
963 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
965 os
->set_found_in_sections_clause();
969 // Return the number of segments we expect to see.
972 Layout::expected_segment_count() const
974 size_t ret
= this->segment_list_
.size();
976 // If we didn't see a SECTIONS clause in a linker script, we should
977 // already have the complete list of segments. Otherwise we ask the
978 // SECTIONS clause how many segments it expects, and add in the ones
979 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
981 if (!this->script_options_
->saw_sections_clause())
985 const Script_sections
* ss
= this->script_options_
->script_sections();
986 return ret
+ ss
->expected_segment_count(this);
990 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
991 // is whether we saw a .note.GNU-stack section in the object file.
992 // GNU_STACK_FLAGS is the section flags. The flags give the
993 // protection required for stack memory. We record this in an
994 // executable as a PT_GNU_STACK segment. If an object file does not
995 // have a .note.GNU-stack segment, we must assume that it is an old
996 // object. On some targets that will force an executable stack.
999 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1001 if (!seen_gnu_stack
)
1002 this->input_without_gnu_stack_note_
= true;
1005 this->input_with_gnu_stack_note_
= true;
1006 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1007 this->input_requires_executable_stack_
= true;
1011 // Create the dynamic sections which are needed before we read the
1015 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1017 if (parameters
->doing_static_link())
1020 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1021 elfcpp::SHT_DYNAMIC
,
1023 | elfcpp::SHF_WRITE
),
1025 this->dynamic_section_
->set_is_relro();
1027 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1028 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1029 elfcpp::STV_HIDDEN
, 0, false, false);
1031 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1033 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1036 // For each output section whose name can be represented as C symbol,
1037 // define __start and __stop symbols for the section. This is a GNU
1041 Layout::define_section_symbols(Symbol_table
* symtab
)
1043 for (Section_list::const_iterator p
= this->section_list_
.begin();
1044 p
!= this->section_list_
.end();
1047 const char* const name
= (*p
)->name();
1048 if (name
[strspn(name
,
1050 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1051 "abcdefghijklmnopqrstuvwxyz"
1055 const std::string
name_string(name
);
1056 const std::string
start_name("__start_" + name_string
);
1057 const std::string
stop_name("__stop_" + name_string
);
1059 symtab
->define_in_output_data(start_name
.c_str(),
1066 elfcpp::STV_DEFAULT
,
1068 false, // offset_is_from_end
1069 true); // only_if_ref
1071 symtab
->define_in_output_data(stop_name
.c_str(),
1078 elfcpp::STV_DEFAULT
,
1080 true, // offset_is_from_end
1081 true); // only_if_ref
1086 // Define symbols for group signatures.
1089 Layout::define_group_signatures(Symbol_table
* symtab
)
1091 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1092 p
!= this->group_signatures_
.end();
1095 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1097 p
->section
->set_info_symndx(sym
);
1100 // Force the name of the group section to the group
1101 // signature, and use the group's section symbol as the
1102 // signature symbol.
1103 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1105 const char* name
= this->namepool_
.add(p
->signature
,
1107 p
->section
->set_name(name
);
1109 p
->section
->set_needs_symtab_index();
1110 p
->section
->set_info_section_symndx(p
->section
);
1114 this->group_signatures_
.clear();
1117 // Find the first read-only PT_LOAD segment, creating one if
1121 Layout::find_first_load_seg()
1123 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1124 p
!= this->segment_list_
.end();
1127 if ((*p
)->type() == elfcpp::PT_LOAD
1128 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1129 && (parameters
->options().omagic()
1130 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1134 gold_assert(!this->script_options_
->saw_phdrs_clause());
1136 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1141 // Finalize the layout. When this is called, we have created all the
1142 // output sections and all the output segments which are based on
1143 // input sections. We have several things to do, and we have to do
1144 // them in the right order, so that we get the right results correctly
1147 // 1) Finalize the list of output segments and create the segment
1150 // 2) Finalize the dynamic symbol table and associated sections.
1152 // 3) Determine the final file offset of all the output segments.
1154 // 4) Determine the final file offset of all the SHF_ALLOC output
1157 // 5) Create the symbol table sections and the section name table
1160 // 6) Finalize the symbol table: set symbol values to their final
1161 // value and make a final determination of which symbols are going
1162 // into the output symbol table.
1164 // 7) Create the section table header.
1166 // 8) Determine the final file offset of all the output sections which
1167 // are not SHF_ALLOC, including the section table header.
1169 // 9) Finalize the ELF file header.
1171 // This function returns the size of the output file.
1174 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1175 Target
* target
, const Task
* task
)
1177 target
->finalize_sections(this);
1179 this->count_local_symbols(task
, input_objects
);
1181 this->create_gold_note();
1182 this->create_executable_stack_info(target
);
1183 this->create_build_id();
1185 Output_segment
* phdr_seg
= NULL
;
1186 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1188 // There was a dynamic object in the link. We need to create
1189 // some information for the dynamic linker.
1191 // Create the PT_PHDR segment which will hold the program
1193 if (!this->script_options_
->saw_phdrs_clause())
1194 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1196 // Create the dynamic symbol table, including the hash table.
1197 Output_section
* dynstr
;
1198 std::vector
<Symbol
*> dynamic_symbols
;
1199 unsigned int local_dynamic_count
;
1200 Versions
versions(*this->script_options()->version_script_info(),
1202 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1203 &local_dynamic_count
, &dynamic_symbols
,
1206 // Create the .interp section to hold the name of the
1207 // interpreter, and put it in a PT_INTERP segment.
1208 if (!parameters
->options().shared())
1209 this->create_interp(target
);
1211 // Finish the .dynamic section to hold the dynamic data, and put
1212 // it in a PT_DYNAMIC segment.
1213 this->finish_dynamic_section(input_objects
, symtab
);
1215 // We should have added everything we need to the dynamic string
1217 this->dynpool_
.set_string_offsets();
1219 // Create the version sections. We can't do this until the
1220 // dynamic string table is complete.
1221 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1222 dynamic_symbols
, dynstr
);
1225 if (this->incremental_inputs_
)
1227 this->incremental_inputs_
->finalize();
1228 this->create_incremental_info_sections();
1231 // If there is a SECTIONS clause, put all the input sections into
1232 // the required order.
1233 Output_segment
* load_seg
;
1234 if (this->script_options_
->saw_sections_clause())
1235 load_seg
= this->set_section_addresses_from_script(symtab
);
1236 else if (parameters
->options().relocatable())
1239 load_seg
= this->find_first_load_seg();
1241 if (parameters
->options().oformat_enum()
1242 != General_options::OBJECT_FORMAT_ELF
)
1245 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1247 // Lay out the segment headers.
1248 Output_segment_headers
* segment_headers
;
1249 if (parameters
->options().relocatable())
1250 segment_headers
= NULL
;
1253 segment_headers
= new Output_segment_headers(this->segment_list_
);
1254 if (load_seg
!= NULL
)
1255 load_seg
->add_initial_output_data(segment_headers
);
1256 if (phdr_seg
!= NULL
)
1257 phdr_seg
->add_initial_output_data(segment_headers
);
1260 // Lay out the file header.
1261 Output_file_header
* file_header
;
1262 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1263 parameters
->options().entry());
1264 if (load_seg
!= NULL
)
1265 load_seg
->add_initial_output_data(file_header
);
1267 this->special_output_list_
.push_back(file_header
);
1268 if (segment_headers
!= NULL
)
1269 this->special_output_list_
.push_back(segment_headers
);
1271 if (this->script_options_
->saw_phdrs_clause()
1272 && !parameters
->options().relocatable())
1274 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1275 // clause in a linker script.
1276 Script_sections
* ss
= this->script_options_
->script_sections();
1277 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1280 // We set the output section indexes in set_segment_offsets and
1281 // set_section_indexes.
1282 unsigned int shndx
= 1;
1284 // Set the file offsets of all the segments, and all the sections
1287 if (!parameters
->options().relocatable())
1288 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1290 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1292 // Set the file offsets of all the non-data sections we've seen so
1293 // far which don't have to wait for the input sections. We need
1294 // this in order to finalize local symbols in non-allocated
1296 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1298 // Set the section indexes of all unallocated sections seen so far,
1299 // in case any of them are somehow referenced by a symbol.
1300 shndx
= this->set_section_indexes(shndx
);
1302 // Create the symbol table sections.
1303 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1304 if (!parameters
->doing_static_link())
1305 this->assign_local_dynsym_offsets(input_objects
);
1307 // Process any symbol assignments from a linker script. This must
1308 // be called after the symbol table has been finalized.
1309 this->script_options_
->finalize_symbols(symtab
, this);
1311 // Create the .shstrtab section.
1312 Output_section
* shstrtab_section
= this->create_shstrtab();
1314 // Set the file offsets of the rest of the non-data sections which
1315 // don't have to wait for the input sections.
1316 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1318 // Now that all sections have been created, set the section indexes
1319 // for any sections which haven't been done yet.
1320 shndx
= this->set_section_indexes(shndx
);
1322 // Create the section table header.
1323 this->create_shdrs(shstrtab_section
, &off
);
1325 // If there are no sections which require postprocessing, we can
1326 // handle the section names now, and avoid a resize later.
1327 if (!this->any_postprocessing_sections_
)
1328 off
= this->set_section_offsets(off
,
1329 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1331 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1333 // Now we know exactly where everything goes in the output file
1334 // (except for non-allocated sections which require postprocessing).
1335 Output_data::layout_complete();
1337 this->output_file_size_
= off
;
1342 // Create a note header following the format defined in the ELF ABI.
1343 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1344 // descriptor. ALLOCATE is true if the section should be allocated in
1345 // memory. This returns the new note section. It sets
1346 // *TRAILING_PADDING to the number of trailing zero bytes required.
1349 Layout::create_note(const char* name
, int note_type
,
1350 const char* section_name
, size_t descsz
,
1351 bool allocate
, size_t* trailing_padding
)
1353 // Authorities all agree that the values in a .note field should
1354 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1355 // they differ on what the alignment is for 64-bit binaries.
1356 // The GABI says unambiguously they take 8-byte alignment:
1357 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1358 // Other documentation says alignment should always be 4 bytes:
1359 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1360 // GNU ld and GNU readelf both support the latter (at least as of
1361 // version 2.16.91), and glibc always generates the latter for
1362 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1364 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1365 const int size
= parameters
->target().get_size();
1367 const int size
= 32;
1370 // The contents of the .note section.
1371 size_t namesz
= strlen(name
) + 1;
1372 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1373 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1375 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1377 unsigned char* buffer
= new unsigned char[notehdrsz
];
1378 memset(buffer
, 0, notehdrsz
);
1380 bool is_big_endian
= parameters
->target().is_big_endian();
1386 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1387 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1388 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1392 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1393 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1394 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1397 else if (size
== 64)
1401 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1402 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1403 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1407 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1408 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1409 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1415 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1417 const char *note_name
= this->namepool_
.add(section_name
, false, NULL
);
1418 elfcpp::Elf_Xword flags
= 0;
1420 flags
= elfcpp::SHF_ALLOC
;
1421 Output_section
* os
= this->make_output_section(note_name
,
1424 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1427 os
->add_output_section_data(posd
);
1429 *trailing_padding
= aligned_descsz
- descsz
;
1434 // For an executable or shared library, create a note to record the
1435 // version of gold used to create the binary.
1438 Layout::create_gold_note()
1440 if (parameters
->options().relocatable())
1443 std::string desc
= std::string("gold ") + gold::get_version_string();
1445 size_t trailing_padding
;
1446 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1447 ".note.gnu.gold-version", desc
.size(),
1448 false, &trailing_padding
);
1450 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1451 os
->add_output_section_data(posd
);
1453 if (trailing_padding
> 0)
1455 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1456 os
->add_output_section_data(posd
);
1460 // Record whether the stack should be executable. This can be set
1461 // from the command line using the -z execstack or -z noexecstack
1462 // options. Otherwise, if any input file has a .note.GNU-stack
1463 // section with the SHF_EXECINSTR flag set, the stack should be
1464 // executable. Otherwise, if at least one input file a
1465 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1466 // section, we use the target default for whether the stack should be
1467 // executable. Otherwise, we don't generate a stack note. When
1468 // generating a object file, we create a .note.GNU-stack section with
1469 // the appropriate marking. When generating an executable or shared
1470 // library, we create a PT_GNU_STACK segment.
1473 Layout::create_executable_stack_info(const Target
* target
)
1475 bool is_stack_executable
;
1476 if (parameters
->options().is_execstack_set())
1477 is_stack_executable
= parameters
->options().is_stack_executable();
1478 else if (!this->input_with_gnu_stack_note_
)
1482 if (this->input_requires_executable_stack_
)
1483 is_stack_executable
= true;
1484 else if (this->input_without_gnu_stack_note_
)
1485 is_stack_executable
= target
->is_default_stack_executable();
1487 is_stack_executable
= false;
1490 if (parameters
->options().relocatable())
1492 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1493 elfcpp::Elf_Xword flags
= 0;
1494 if (is_stack_executable
)
1495 flags
|= elfcpp::SHF_EXECINSTR
;
1496 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1500 if (this->script_options_
->saw_phdrs_clause())
1502 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1503 if (is_stack_executable
)
1504 flags
|= elfcpp::PF_X
;
1505 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1509 // If --build-id was used, set up the build ID note.
1512 Layout::create_build_id()
1514 if (!parameters
->options().user_set_build_id())
1517 const char* style
= parameters
->options().build_id();
1518 if (strcmp(style
, "none") == 0)
1521 // Set DESCSZ to the size of the note descriptor. When possible,
1522 // set DESC to the note descriptor contents.
1525 if (strcmp(style
, "md5") == 0)
1527 else if (strcmp(style
, "sha1") == 0)
1529 else if (strcmp(style
, "uuid") == 0)
1531 const size_t uuidsz
= 128 / 8;
1533 char buffer
[uuidsz
];
1534 memset(buffer
, 0, uuidsz
);
1536 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1538 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1542 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1543 release_descriptor(descriptor
, true);
1545 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1546 else if (static_cast<size_t>(got
) != uuidsz
)
1547 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1551 desc
.assign(buffer
, uuidsz
);
1554 else if (strncmp(style
, "0x", 2) == 0)
1557 const char* p
= style
+ 2;
1560 if (hex_p(p
[0]) && hex_p(p
[1]))
1562 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1566 else if (*p
== '-' || *p
== ':')
1569 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1572 descsz
= desc
.size();
1575 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1578 size_t trailing_padding
;
1579 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1580 ".note.gnu.build-id", descsz
, true,
1585 // We know the value already, so we fill it in now.
1586 gold_assert(desc
.size() == descsz
);
1588 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1589 os
->add_output_section_data(posd
);
1591 if (trailing_padding
!= 0)
1593 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1594 os
->add_output_section_data(posd
);
1599 // We need to compute a checksum after we have completed the
1601 gold_assert(trailing_padding
== 0);
1602 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1603 os
->add_output_section_data(this->build_id_note_
);
1604 os
->set_after_input_sections();
1608 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1609 // for the next run of incremental linking to check what has changed.
1612 Layout::create_incremental_info_sections()
1614 gold_assert(this->incremental_inputs_
!= NULL
);
1616 // Add the .gnu_incremental_inputs section.
1617 const char *incremental_inputs_name
=
1618 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
1619 Output_section
* inputs_os
=
1620 this->make_output_section(incremental_inputs_name
,
1621 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0);
1622 Output_section_data
* posd
=
1623 this->incremental_inputs_
->create_incremental_inputs_section_data();
1624 inputs_os
->add_output_section_data(posd
);
1626 // Add the .gnu_incremental_strtab section.
1627 const char *incremental_strtab_name
=
1628 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
1629 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
1632 Output_data_strtab
* strtab_data
=
1633 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
1634 strtab_os
->add_output_section_data(strtab_data
);
1636 inputs_os
->set_link_section(strtab_data
);
1639 // Return whether SEG1 should be before SEG2 in the output file. This
1640 // is based entirely on the segment type and flags. When this is
1641 // called the segment addresses has normally not yet been set.
1644 Layout::segment_precedes(const Output_segment
* seg1
,
1645 const Output_segment
* seg2
)
1647 elfcpp::Elf_Word type1
= seg1
->type();
1648 elfcpp::Elf_Word type2
= seg2
->type();
1650 // The single PT_PHDR segment is required to precede any loadable
1651 // segment. We simply make it always first.
1652 if (type1
== elfcpp::PT_PHDR
)
1654 gold_assert(type2
!= elfcpp::PT_PHDR
);
1657 if (type2
== elfcpp::PT_PHDR
)
1660 // The single PT_INTERP segment is required to precede any loadable
1661 // segment. We simply make it always second.
1662 if (type1
== elfcpp::PT_INTERP
)
1664 gold_assert(type2
!= elfcpp::PT_INTERP
);
1667 if (type2
== elfcpp::PT_INTERP
)
1670 // We then put PT_LOAD segments before any other segments.
1671 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1673 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1676 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1677 // segment, because that is where the dynamic linker expects to find
1678 // it (this is just for efficiency; other positions would also work
1680 if (type1
== elfcpp::PT_TLS
1681 && type2
!= elfcpp::PT_TLS
1682 && type2
!= elfcpp::PT_GNU_RELRO
)
1684 if (type2
== elfcpp::PT_TLS
1685 && type1
!= elfcpp::PT_TLS
1686 && type1
!= elfcpp::PT_GNU_RELRO
)
1689 // We put the PT_GNU_RELRO segment last, because that is where the
1690 // dynamic linker expects to find it (as with PT_TLS, this is just
1692 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1694 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1697 const elfcpp::Elf_Word flags1
= seg1
->flags();
1698 const elfcpp::Elf_Word flags2
= seg2
->flags();
1700 // The order of non-PT_LOAD segments is unimportant. We simply sort
1701 // by the numeric segment type and flags values. There should not
1702 // be more than one segment with the same type and flags.
1703 if (type1
!= elfcpp::PT_LOAD
)
1706 return type1
< type2
;
1707 gold_assert(flags1
!= flags2
);
1708 return flags1
< flags2
;
1711 // If the addresses are set already, sort by load address.
1712 if (seg1
->are_addresses_set())
1714 if (!seg2
->are_addresses_set())
1717 unsigned int section_count1
= seg1
->output_section_count();
1718 unsigned int section_count2
= seg2
->output_section_count();
1719 if (section_count1
== 0 && section_count2
> 0)
1721 if (section_count1
> 0 && section_count2
== 0)
1724 uint64_t paddr1
= seg1
->first_section_load_address();
1725 uint64_t paddr2
= seg2
->first_section_load_address();
1726 if (paddr1
!= paddr2
)
1727 return paddr1
< paddr2
;
1729 else if (seg2
->are_addresses_set())
1732 // We sort PT_LOAD segments based on the flags. Readonly segments
1733 // come before writable segments. Then writable segments with data
1734 // come before writable segments without data. Then executable
1735 // segments come before non-executable segments. Then the unlikely
1736 // case of a non-readable segment comes before the normal case of a
1737 // readable segment. If there are multiple segments with the same
1738 // type and flags, we require that the address be set, and we sort
1739 // by virtual address and then physical address.
1740 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1741 return (flags1
& elfcpp::PF_W
) == 0;
1742 if ((flags1
& elfcpp::PF_W
) != 0
1743 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1744 return seg1
->has_any_data_sections();
1745 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1746 return (flags1
& elfcpp::PF_X
) != 0;
1747 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1748 return (flags1
& elfcpp::PF_R
) == 0;
1750 // We shouldn't get here--we shouldn't create segments which we
1751 // can't distinguish.
1755 // Set the file offsets of all the segments, and all the sections they
1756 // contain. They have all been created. LOAD_SEG must be be laid out
1757 // first. Return the offset of the data to follow.
1760 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1761 unsigned int *pshndx
)
1763 // Sort them into the final order.
1764 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1765 Layout::Compare_segments());
1767 // Find the PT_LOAD segments, and set their addresses and offsets
1768 // and their section's addresses and offsets.
1770 if (parameters
->options().user_set_Ttext())
1771 addr
= parameters
->options().Ttext();
1772 else if (parameters
->options().shared())
1775 addr
= target
->default_text_segment_address();
1778 // If LOAD_SEG is NULL, then the file header and segment headers
1779 // will not be loadable. But they still need to be at offset 0 in
1780 // the file. Set their offsets now.
1781 if (load_seg
== NULL
)
1783 for (Data_list::iterator p
= this->special_output_list_
.begin();
1784 p
!= this->special_output_list_
.end();
1787 off
= align_address(off
, (*p
)->addralign());
1788 (*p
)->set_address_and_file_offset(0, off
);
1789 off
+= (*p
)->data_size();
1793 const bool check_sections
= parameters
->options().check_sections();
1794 Output_segment
* last_load_segment
= NULL
;
1796 bool was_readonly
= false;
1797 for (Segment_list::iterator p
= this->segment_list_
.begin();
1798 p
!= this->segment_list_
.end();
1801 if ((*p
)->type() == elfcpp::PT_LOAD
)
1803 if (load_seg
!= NULL
&& load_seg
!= *p
)
1807 bool are_addresses_set
= (*p
)->are_addresses_set();
1808 if (are_addresses_set
)
1810 // When it comes to setting file offsets, we care about
1811 // the physical address.
1812 addr
= (*p
)->paddr();
1814 else if (parameters
->options().user_set_Tdata()
1815 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1816 && (!parameters
->options().user_set_Tbss()
1817 || (*p
)->has_any_data_sections()))
1819 addr
= parameters
->options().Tdata();
1820 are_addresses_set
= true;
1822 else if (parameters
->options().user_set_Tbss()
1823 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1824 && !(*p
)->has_any_data_sections())
1826 addr
= parameters
->options().Tbss();
1827 are_addresses_set
= true;
1830 uint64_t orig_addr
= addr
;
1831 uint64_t orig_off
= off
;
1833 uint64_t aligned_addr
= 0;
1834 uint64_t abi_pagesize
= target
->abi_pagesize();
1835 uint64_t common_pagesize
= target
->common_pagesize();
1837 if (!parameters
->options().nmagic()
1838 && !parameters
->options().omagic())
1839 (*p
)->set_minimum_p_align(common_pagesize
);
1841 if (are_addresses_set
)
1843 if (!parameters
->options().nmagic()
1844 && !parameters
->options().omagic())
1846 // Adjust the file offset to the same address modulo
1848 uint64_t unsigned_off
= off
;
1849 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1850 | (addr
& (abi_pagesize
- 1)));
1851 if (aligned_off
< unsigned_off
)
1852 aligned_off
+= abi_pagesize
;
1858 // If the last segment was readonly, and this one is
1859 // not, then skip the address forward one page,
1860 // maintaining the same position within the page. This
1861 // lets us store both segments overlapping on a single
1862 // page in the file, but the loader will put them on
1863 // different pages in memory.
1865 addr
= align_address(addr
, (*p
)->maximum_alignment());
1866 aligned_addr
= addr
;
1868 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1870 if ((addr
& (abi_pagesize
- 1)) != 0)
1871 addr
= addr
+ abi_pagesize
;
1874 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1877 unsigned int shndx_hold
= *pshndx
;
1878 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1881 // Now that we know the size of this segment, we may be able
1882 // to save a page in memory, at the cost of wasting some
1883 // file space, by instead aligning to the start of a new
1884 // page. Here we use the real machine page size rather than
1885 // the ABI mandated page size.
1887 if (!are_addresses_set
&& aligned_addr
!= addr
)
1889 uint64_t first_off
= (common_pagesize
1891 & (common_pagesize
- 1)));
1892 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1895 && ((aligned_addr
& ~ (common_pagesize
- 1))
1896 != (new_addr
& ~ (common_pagesize
- 1)))
1897 && first_off
+ last_off
<= common_pagesize
)
1899 *pshndx
= shndx_hold
;
1900 addr
= align_address(aligned_addr
, common_pagesize
);
1901 addr
= align_address(addr
, (*p
)->maximum_alignment());
1902 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1903 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1910 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1911 was_readonly
= true;
1913 // Implement --check-sections. We know that the segments
1914 // are sorted by LMA.
1915 if (check_sections
&& last_load_segment
!= NULL
)
1917 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
1918 if (last_load_segment
->paddr() + last_load_segment
->memsz()
1921 unsigned long long lb1
= last_load_segment
->paddr();
1922 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
1923 unsigned long long lb2
= (*p
)->paddr();
1924 unsigned long long le2
= lb2
+ (*p
)->memsz();
1925 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1926 "[0x%llx -> 0x%llx]"),
1927 lb1
, le1
, lb2
, le2
);
1930 last_load_segment
= *p
;
1934 // Handle the non-PT_LOAD segments, setting their offsets from their
1935 // section's offsets.
1936 for (Segment_list::iterator p
= this->segment_list_
.begin();
1937 p
!= this->segment_list_
.end();
1940 if ((*p
)->type() != elfcpp::PT_LOAD
)
1944 // Set the TLS offsets for each section in the PT_TLS segment.
1945 if (this->tls_segment_
!= NULL
)
1946 this->tls_segment_
->set_tls_offsets();
1951 // Set the offsets of all the allocated sections when doing a
1952 // relocatable link. This does the same jobs as set_segment_offsets,
1953 // only for a relocatable link.
1956 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1957 unsigned int *pshndx
)
1961 file_header
->set_address_and_file_offset(0, 0);
1962 off
+= file_header
->data_size();
1964 for (Section_list::iterator p
= this->section_list_
.begin();
1965 p
!= this->section_list_
.end();
1968 // We skip unallocated sections here, except that group sections
1969 // have to come first.
1970 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1971 && (*p
)->type() != elfcpp::SHT_GROUP
)
1974 off
= align_address(off
, (*p
)->addralign());
1976 // The linker script might have set the address.
1977 if (!(*p
)->is_address_valid())
1978 (*p
)->set_address(0);
1979 (*p
)->set_file_offset(off
);
1980 (*p
)->finalize_data_size();
1981 off
+= (*p
)->data_size();
1983 (*p
)->set_out_shndx(*pshndx
);
1990 // Set the file offset of all the sections not associated with a
1994 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1996 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1997 p
!= this->unattached_section_list_
.end();
2000 // The symtab section is handled in create_symtab_sections.
2001 if (*p
== this->symtab_section_
)
2004 // If we've already set the data size, don't set it again.
2005 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2008 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2009 && (*p
)->requires_postprocessing())
2011 (*p
)->create_postprocessing_buffer();
2012 this->any_postprocessing_sections_
= true;
2015 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2016 && (*p
)->after_input_sections())
2018 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2019 && (!(*p
)->after_input_sections()
2020 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2022 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2023 && (!(*p
)->after_input_sections()
2024 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2027 off
= align_address(off
, (*p
)->addralign());
2028 (*p
)->set_file_offset(off
);
2029 (*p
)->finalize_data_size();
2030 off
+= (*p
)->data_size();
2032 // At this point the name must be set.
2033 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2034 this->namepool_
.add((*p
)->name(), false, NULL
);
2039 // Set the section indexes of all the sections not associated with a
2043 Layout::set_section_indexes(unsigned int shndx
)
2045 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2046 p
!= this->unattached_section_list_
.end();
2049 if (!(*p
)->has_out_shndx())
2051 (*p
)->set_out_shndx(shndx
);
2058 // Set the section addresses according to the linker script. This is
2059 // only called when we see a SECTIONS clause. This returns the
2060 // program segment which should hold the file header and segment
2061 // headers, if any. It will return NULL if they should not be in a
2065 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2067 Script_sections
* ss
= this->script_options_
->script_sections();
2068 gold_assert(ss
->saw_sections_clause());
2070 // Place each orphaned output section in the script.
2071 for (Section_list::iterator p
= this->section_list_
.begin();
2072 p
!= this->section_list_
.end();
2075 if (!(*p
)->found_in_sections_clause())
2076 ss
->place_orphan(*p
);
2079 return this->script_options_
->set_section_addresses(symtab
, this);
2082 // Count the local symbols in the regular symbol table and the dynamic
2083 // symbol table, and build the respective string pools.
2086 Layout::count_local_symbols(const Task
* task
,
2087 const Input_objects
* input_objects
)
2089 // First, figure out an upper bound on the number of symbols we'll
2090 // be inserting into each pool. This helps us create the pools with
2091 // the right size, to avoid unnecessary hashtable resizing.
2092 unsigned int symbol_count
= 0;
2093 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2094 p
!= input_objects
->relobj_end();
2096 symbol_count
+= (*p
)->local_symbol_count();
2098 // Go from "upper bound" to "estimate." We overcount for two
2099 // reasons: we double-count symbols that occur in more than one
2100 // object file, and we count symbols that are dropped from the
2101 // output. Add it all together and assume we overcount by 100%.
2104 // We assume all symbols will go into both the sympool and dynpool.
2105 this->sympool_
.reserve(symbol_count
);
2106 this->dynpool_
.reserve(symbol_count
);
2108 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2109 p
!= input_objects
->relobj_end();
2112 Task_lock_obj
<Object
> tlo(task
, *p
);
2113 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2117 // Create the symbol table sections. Here we also set the final
2118 // values of the symbols. At this point all the loadable sections are
2119 // fully laid out. SHNUM is the number of sections so far.
2122 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2123 Symbol_table
* symtab
,
2129 if (parameters
->target().get_size() == 32)
2131 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2134 else if (parameters
->target().get_size() == 64)
2136 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2143 off
= align_address(off
, align
);
2144 off_t startoff
= off
;
2146 // Save space for the dummy symbol at the start of the section. We
2147 // never bother to write this out--it will just be left as zero.
2149 unsigned int local_symbol_index
= 1;
2151 // Add STT_SECTION symbols for each Output section which needs one.
2152 for (Section_list::iterator p
= this->section_list_
.begin();
2153 p
!= this->section_list_
.end();
2156 if (!(*p
)->needs_symtab_index())
2157 (*p
)->set_symtab_index(-1U);
2160 (*p
)->set_symtab_index(local_symbol_index
);
2161 ++local_symbol_index
;
2166 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2167 p
!= input_objects
->relobj_end();
2170 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2172 off
+= (index
- local_symbol_index
) * symsize
;
2173 local_symbol_index
= index
;
2176 unsigned int local_symcount
= local_symbol_index
;
2177 gold_assert(local_symcount
* symsize
== off
- startoff
);
2180 size_t dyn_global_index
;
2182 if (this->dynsym_section_
== NULL
)
2185 dyn_global_index
= 0;
2190 dyn_global_index
= this->dynsym_section_
->info();
2191 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2192 dynoff
= this->dynsym_section_
->offset() + locsize
;
2193 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2194 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2195 == this->dynsym_section_
->data_size() - locsize
);
2198 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2199 &this->sympool_
, &local_symcount
);
2201 if (!parameters
->options().strip_all())
2203 this->sympool_
.set_string_offsets();
2205 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2206 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2209 this->symtab_section_
= osymtab
;
2211 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2214 osymtab
->add_output_section_data(pos
);
2216 // We generate a .symtab_shndx section if we have more than
2217 // SHN_LORESERVE sections. Technically it is possible that we
2218 // don't need one, because it is possible that there are no
2219 // symbols in any of sections with indexes larger than
2220 // SHN_LORESERVE. That is probably unusual, though, and it is
2221 // easier to always create one than to compute section indexes
2222 // twice (once here, once when writing out the symbols).
2223 if (shnum
>= elfcpp::SHN_LORESERVE
)
2225 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2227 Output_section
* osymtab_xindex
=
2228 this->make_output_section(symtab_xindex_name
,
2229 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2231 size_t symcount
= (off
- startoff
) / symsize
;
2232 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2234 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2236 osymtab_xindex
->set_link_section(osymtab
);
2237 osymtab_xindex
->set_addralign(4);
2238 osymtab_xindex
->set_entsize(4);
2240 osymtab_xindex
->set_after_input_sections();
2242 // This tells the driver code to wait until the symbol table
2243 // has written out before writing out the postprocessing
2244 // sections, including the .symtab_shndx section.
2245 this->any_postprocessing_sections_
= true;
2248 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2249 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2253 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2254 ostrtab
->add_output_section_data(pstr
);
2256 osymtab
->set_file_offset(startoff
);
2257 osymtab
->finalize_data_size();
2258 osymtab
->set_link_section(ostrtab
);
2259 osymtab
->set_info(local_symcount
);
2260 osymtab
->set_entsize(symsize
);
2266 // Create the .shstrtab section, which holds the names of the
2267 // sections. At the time this is called, we have created all the
2268 // output sections except .shstrtab itself.
2271 Layout::create_shstrtab()
2273 // FIXME: We don't need to create a .shstrtab section if we are
2274 // stripping everything.
2276 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2278 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2280 // We can't write out this section until we've set all the section
2281 // names, and we don't set the names of compressed output sections
2282 // until relocations are complete.
2283 os
->set_after_input_sections();
2285 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2286 os
->add_output_section_data(posd
);
2291 // Create the section headers. SIZE is 32 or 64. OFF is the file
2295 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2297 Output_section_headers
* oshdrs
;
2298 oshdrs
= new Output_section_headers(this,
2299 &this->segment_list_
,
2300 &this->section_list_
,
2301 &this->unattached_section_list_
,
2304 off_t off
= align_address(*poff
, oshdrs
->addralign());
2305 oshdrs
->set_address_and_file_offset(0, off
);
2306 off
+= oshdrs
->data_size();
2308 this->section_headers_
= oshdrs
;
2311 // Count the allocated sections.
2314 Layout::allocated_output_section_count() const
2316 size_t section_count
= 0;
2317 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2318 p
!= this->segment_list_
.end();
2320 section_count
+= (*p
)->output_section_count();
2321 return section_count
;
2324 // Create the dynamic symbol table.
2327 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2328 Symbol_table
* symtab
,
2329 Output_section
**pdynstr
,
2330 unsigned int* plocal_dynamic_count
,
2331 std::vector
<Symbol
*>* pdynamic_symbols
,
2332 Versions
* pversions
)
2334 // Count all the symbols in the dynamic symbol table, and set the
2335 // dynamic symbol indexes.
2337 // Skip symbol 0, which is always all zeroes.
2338 unsigned int index
= 1;
2340 // Add STT_SECTION symbols for each Output section which needs one.
2341 for (Section_list::iterator p
= this->section_list_
.begin();
2342 p
!= this->section_list_
.end();
2345 if (!(*p
)->needs_dynsym_index())
2346 (*p
)->set_dynsym_index(-1U);
2349 (*p
)->set_dynsym_index(index
);
2354 // Count the local symbols that need to go in the dynamic symbol table,
2355 // and set the dynamic symbol indexes.
2356 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2357 p
!= input_objects
->relobj_end();
2360 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2364 unsigned int local_symcount
= index
;
2365 *plocal_dynamic_count
= local_symcount
;
2367 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2368 &this->dynpool_
, pversions
);
2372 const int size
= parameters
->target().get_size();
2375 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2378 else if (size
== 64)
2380 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2386 // Create the dynamic symbol table section.
2388 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2393 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2396 dynsym
->add_output_section_data(odata
);
2398 dynsym
->set_info(local_symcount
);
2399 dynsym
->set_entsize(symsize
);
2400 dynsym
->set_addralign(align
);
2402 this->dynsym_section_
= dynsym
;
2404 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2405 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2406 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2408 // If there are more than SHN_LORESERVE allocated sections, we
2409 // create a .dynsym_shndx section. It is possible that we don't
2410 // need one, because it is possible that there are no dynamic
2411 // symbols in any of the sections with indexes larger than
2412 // SHN_LORESERVE. This is probably unusual, though, and at this
2413 // time we don't know the actual section indexes so it is
2414 // inconvenient to check.
2415 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2417 Output_section
* dynsym_xindex
=
2418 this->choose_output_section(NULL
, ".dynsym_shndx",
2419 elfcpp::SHT_SYMTAB_SHNDX
,
2423 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2425 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2427 dynsym_xindex
->set_link_section(dynsym
);
2428 dynsym_xindex
->set_addralign(4);
2429 dynsym_xindex
->set_entsize(4);
2431 dynsym_xindex
->set_after_input_sections();
2433 // This tells the driver code to wait until the symbol table has
2434 // written out before writing out the postprocessing sections,
2435 // including the .dynsym_shndx section.
2436 this->any_postprocessing_sections_
= true;
2439 // Create the dynamic string table section.
2441 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2446 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2447 dynstr
->add_output_section_data(strdata
);
2449 dynsym
->set_link_section(dynstr
);
2450 this->dynamic_section_
->set_link_section(dynstr
);
2452 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2453 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2457 // Create the hash tables.
2459 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2460 || strcmp(parameters
->options().hash_style(), "both") == 0)
2462 unsigned char* phash
;
2463 unsigned int hashlen
;
2464 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2467 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2472 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2476 hashsec
->add_output_section_data(hashdata
);
2478 hashsec
->set_link_section(dynsym
);
2479 hashsec
->set_entsize(4);
2481 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2484 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2485 || strcmp(parameters
->options().hash_style(), "both") == 0)
2487 unsigned char* phash
;
2488 unsigned int hashlen
;
2489 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2492 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2493 elfcpp::SHT_GNU_HASH
,
2497 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2501 hashsec
->add_output_section_data(hashdata
);
2503 hashsec
->set_link_section(dynsym
);
2504 hashsec
->set_entsize(4);
2506 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2510 // Assign offsets to each local portion of the dynamic symbol table.
2513 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2515 Output_section
* dynsym
= this->dynsym_section_
;
2516 gold_assert(dynsym
!= NULL
);
2518 off_t off
= dynsym
->offset();
2520 // Skip the dummy symbol at the start of the section.
2521 off
+= dynsym
->entsize();
2523 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2524 p
!= input_objects
->relobj_end();
2527 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2528 off
+= count
* dynsym
->entsize();
2532 // Create the version sections.
2535 Layout::create_version_sections(const Versions
* versions
,
2536 const Symbol_table
* symtab
,
2537 unsigned int local_symcount
,
2538 const std::vector
<Symbol
*>& dynamic_symbols
,
2539 const Output_section
* dynstr
)
2541 if (!versions
->any_defs() && !versions
->any_needs())
2544 switch (parameters
->size_and_endianness())
2546 #ifdef HAVE_TARGET_32_LITTLE
2547 case Parameters::TARGET_32_LITTLE
:
2548 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2550 dynamic_symbols
, dynstr
);
2553 #ifdef HAVE_TARGET_32_BIG
2554 case Parameters::TARGET_32_BIG
:
2555 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2557 dynamic_symbols
, dynstr
);
2560 #ifdef HAVE_TARGET_64_LITTLE
2561 case Parameters::TARGET_64_LITTLE
:
2562 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2564 dynamic_symbols
, dynstr
);
2567 #ifdef HAVE_TARGET_64_BIG
2568 case Parameters::TARGET_64_BIG
:
2569 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2571 dynamic_symbols
, dynstr
);
2579 // Create the version sections, sized version.
2581 template<int size
, bool big_endian
>
2583 Layout::sized_create_version_sections(
2584 const Versions
* versions
,
2585 const Symbol_table
* symtab
,
2586 unsigned int local_symcount
,
2587 const std::vector
<Symbol
*>& dynamic_symbols
,
2588 const Output_section
* dynstr
)
2590 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2591 elfcpp::SHT_GNU_versym
,
2595 unsigned char* vbuf
;
2597 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2602 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2605 vsec
->add_output_section_data(vdata
);
2606 vsec
->set_entsize(2);
2607 vsec
->set_link_section(this->dynsym_section_
);
2609 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2610 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2612 if (versions
->any_defs())
2614 Output_section
* vdsec
;
2615 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2616 elfcpp::SHT_GNU_verdef
,
2620 unsigned char* vdbuf
;
2621 unsigned int vdsize
;
2622 unsigned int vdentries
;
2623 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2624 &vdsize
, &vdentries
);
2626 Output_section_data
* vddata
=
2627 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2629 vdsec
->add_output_section_data(vddata
);
2630 vdsec
->set_link_section(dynstr
);
2631 vdsec
->set_info(vdentries
);
2633 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2634 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2637 if (versions
->any_needs())
2639 Output_section
* vnsec
;
2640 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2641 elfcpp::SHT_GNU_verneed
,
2645 unsigned char* vnbuf
;
2646 unsigned int vnsize
;
2647 unsigned int vnentries
;
2648 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2652 Output_section_data
* vndata
=
2653 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2655 vnsec
->add_output_section_data(vndata
);
2656 vnsec
->set_link_section(dynstr
);
2657 vnsec
->set_info(vnentries
);
2659 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2660 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2664 // Create the .interp section and PT_INTERP segment.
2667 Layout::create_interp(const Target
* target
)
2669 const char* interp
= parameters
->options().dynamic_linker();
2672 interp
= target
->dynamic_linker();
2673 gold_assert(interp
!= NULL
);
2676 size_t len
= strlen(interp
) + 1;
2678 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2680 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2681 elfcpp::SHT_PROGBITS
,
2684 osec
->add_output_section_data(odata
);
2686 if (!this->script_options_
->saw_phdrs_clause())
2688 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2690 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2694 // Finish the .dynamic section and PT_DYNAMIC segment.
2697 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2698 const Symbol_table
* symtab
)
2700 if (!this->script_options_
->saw_phdrs_clause())
2702 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2705 oseg
->add_output_section(this->dynamic_section_
,
2706 elfcpp::PF_R
| elfcpp::PF_W
);
2709 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2711 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2712 p
!= input_objects
->dynobj_end();
2715 // FIXME: Handle --as-needed.
2716 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2719 if (parameters
->options().shared())
2721 const char* soname
= parameters
->options().soname();
2723 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2726 // FIXME: Support --init and --fini.
2727 Symbol
* sym
= symtab
->lookup("_init");
2728 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2729 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2731 sym
= symtab
->lookup("_fini");
2732 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2733 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2735 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2737 // Add a DT_RPATH entry if needed.
2738 const General_options::Dir_list
& rpath(parameters
->options().rpath());
2741 std::string rpath_val
;
2742 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2746 if (rpath_val
.empty())
2747 rpath_val
= p
->name();
2750 // Eliminate duplicates.
2751 General_options::Dir_list::const_iterator q
;
2752 for (q
= rpath
.begin(); q
!= p
; ++q
)
2753 if (q
->name() == p
->name())
2758 rpath_val
+= p
->name();
2763 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2764 if (parameters
->options().enable_new_dtags())
2765 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2768 // Look for text segments that have dynamic relocations.
2769 bool have_textrel
= false;
2770 if (!this->script_options_
->saw_sections_clause())
2772 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2773 p
!= this->segment_list_
.end();
2776 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2777 && (*p
)->dynamic_reloc_count() > 0)
2779 have_textrel
= true;
2786 // We don't know the section -> segment mapping, so we are
2787 // conservative and just look for readonly sections with
2788 // relocations. If those sections wind up in writable segments,
2789 // then we have created an unnecessary DT_TEXTREL entry.
2790 for (Section_list::const_iterator p
= this->section_list_
.begin();
2791 p
!= this->section_list_
.end();
2794 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2795 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2796 && ((*p
)->dynamic_reloc_count() > 0))
2798 have_textrel
= true;
2804 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2805 // post-link tools can easily modify these flags if desired.
2806 unsigned int flags
= 0;
2809 // Add a DT_TEXTREL for compatibility with older loaders.
2810 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2811 flags
|= elfcpp::DF_TEXTREL
;
2813 if (parameters
->options().shared() && this->has_static_tls())
2814 flags
|= elfcpp::DF_STATIC_TLS
;
2815 if (parameters
->options().origin())
2816 flags
|= elfcpp::DF_ORIGIN
;
2817 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2820 if (parameters
->options().initfirst())
2821 flags
|= elfcpp::DF_1_INITFIRST
;
2822 if (parameters
->options().interpose())
2823 flags
|= elfcpp::DF_1_INTERPOSE
;
2824 if (parameters
->options().loadfltr())
2825 flags
|= elfcpp::DF_1_LOADFLTR
;
2826 if (parameters
->options().nodefaultlib())
2827 flags
|= elfcpp::DF_1_NODEFLIB
;
2828 if (parameters
->options().nodelete())
2829 flags
|= elfcpp::DF_1_NODELETE
;
2830 if (parameters
->options().nodlopen())
2831 flags
|= elfcpp::DF_1_NOOPEN
;
2832 if (parameters
->options().nodump())
2833 flags
|= elfcpp::DF_1_NODUMP
;
2834 if (!parameters
->options().shared())
2835 flags
&= ~(elfcpp::DF_1_INITFIRST
2836 | elfcpp::DF_1_NODELETE
2837 | elfcpp::DF_1_NOOPEN
);
2838 if (parameters
->options().origin())
2839 flags
|= elfcpp::DF_1_ORIGIN
;
2841 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2844 // The mapping of input section name prefixes to output section names.
2845 // In some cases one prefix is itself a prefix of another prefix; in
2846 // such a case the longer prefix must come first. These prefixes are
2847 // based on the GNU linker default ELF linker script.
2849 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2850 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
2852 MAPPING_INIT(".text.", ".text"),
2853 MAPPING_INIT(".ctors.", ".ctors"),
2854 MAPPING_INIT(".dtors.", ".dtors"),
2855 MAPPING_INIT(".rodata.", ".rodata"),
2856 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2857 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2858 MAPPING_INIT(".data.", ".data"),
2859 MAPPING_INIT(".bss.", ".bss"),
2860 MAPPING_INIT(".tdata.", ".tdata"),
2861 MAPPING_INIT(".tbss.", ".tbss"),
2862 MAPPING_INIT(".init_array.", ".init_array"),
2863 MAPPING_INIT(".fini_array.", ".fini_array"),
2864 MAPPING_INIT(".sdata.", ".sdata"),
2865 MAPPING_INIT(".sbss.", ".sbss"),
2866 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2867 // differently depending on whether it is creating a shared library.
2868 MAPPING_INIT(".sdata2.", ".sdata"),
2869 MAPPING_INIT(".sbss2.", ".sbss"),
2870 MAPPING_INIT(".lrodata.", ".lrodata"),
2871 MAPPING_INIT(".ldata.", ".ldata"),
2872 MAPPING_INIT(".lbss.", ".lbss"),
2873 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2874 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2875 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2876 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2877 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2878 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2879 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2880 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2881 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2882 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2883 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2884 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2885 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2886 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2887 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2888 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2889 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2890 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2891 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2892 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2893 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2897 const int Layout::section_name_mapping_count
=
2898 (sizeof(Layout::section_name_mapping
)
2899 / sizeof(Layout::section_name_mapping
[0]));
2901 // Choose the output section name to use given an input section name.
2902 // Set *PLEN to the length of the name. *PLEN is initialized to the
2906 Layout::output_section_name(const char* name
, size_t* plen
)
2908 // gcc 4.3 generates the following sorts of section names when it
2909 // needs a section name specific to a function:
2915 // .data.rel.local.FN
2917 // .data.rel.ro.local.FN
2924 // The GNU linker maps all of those to the part before the .FN,
2925 // except that .data.rel.local.FN is mapped to .data, and
2926 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2927 // beginning with .data.rel.ro.local are grouped together.
2929 // For an anonymous namespace, the string FN can contain a '.'.
2931 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2932 // GNU linker maps to .rodata.
2934 // The .data.rel.ro sections are used with -z relro. The sections
2935 // are recognized by name. We use the same names that the GNU
2936 // linker does for these sections.
2938 // It is hard to handle this in a principled way, so we don't even
2939 // try. We use a table of mappings. If the input section name is
2940 // not found in the table, we simply use it as the output section
2943 const Section_name_mapping
* psnm
= section_name_mapping
;
2944 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
2946 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
2948 *plen
= psnm
->tolen
;
2956 // Check if a comdat group or .gnu.linkonce section with the given
2957 // NAME is selected for the link. If there is already a section,
2958 // *KEPT_SECTION is set to point to the signature and the function
2959 // returns false. Otherwise, the CANDIDATE signature is recorded for
2960 // this NAME in the layout object, *KEPT_SECTION is set to the
2961 // internal copy and the function return false. In some cases, with
2962 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2966 Layout::find_or_add_kept_section(const std::string
& name
,
2967 Kept_section
* candidate
,
2968 Kept_section
** kept_section
)
2970 // It's normal to see a couple of entries here, for the x86 thunk
2971 // sections. If we see more than a few, we're linking a C++
2972 // program, and we resize to get more space to minimize rehashing.
2973 if (this->signatures_
.size() > 4
2974 && !this->resized_signatures_
)
2976 reserve_unordered_map(&this->signatures_
,
2977 this->number_of_input_files_
* 64);
2978 this->resized_signatures_
= true;
2981 std::pair
<Signatures::iterator
, bool> ins(
2982 this->signatures_
.insert(std::make_pair(name
, *candidate
)));
2985 *kept_section
= &ins
.first
->second
;
2988 // This is the first time we've seen this signature.
2992 if (ins
.first
->second
.is_group
)
2994 // We've already seen a real section group with this signature.
2995 // If the kept group is from a plugin object, and we're in
2996 // the replacement phase, accept the new one as a replacement.
2997 if (ins
.first
->second
.object
== NULL
2998 && parameters
->options().plugins()->in_replacement_phase())
3000 ins
.first
->second
= *candidate
;
3005 else if (candidate
->is_group
)
3007 // This is a real section group, and we've already seen a
3008 // linkonce section with this signature. Record that we've seen
3009 // a section group, and don't include this section group.
3010 ins
.first
->second
.is_group
= true;
3015 // We've already seen a linkonce section and this is a linkonce
3016 // section. These don't block each other--this may be the same
3017 // symbol name with different section types.
3018 *kept_section
= candidate
;
3023 // Find the given comdat signature, and return the object and section
3024 // index of the kept group.
3026 Layout::find_kept_object(const std::string
& signature
,
3027 unsigned int* pshndx
) const
3029 Signatures::const_iterator p
= this->signatures_
.find(signature
);
3030 if (p
== this->signatures_
.end())
3033 *pshndx
= p
->second
.shndx
;
3034 return p
->second
.object
;
3037 // Store the allocated sections into the section list.
3040 Layout::get_allocated_sections(Section_list
* section_list
) const
3042 for (Section_list::const_iterator p
= this->section_list_
.begin();
3043 p
!= this->section_list_
.end();
3045 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3046 section_list
->push_back(*p
);
3049 // Create an output segment.
3052 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3054 gold_assert(!parameters
->options().relocatable());
3055 Output_segment
* oseg
= new Output_segment(type
, flags
);
3056 this->segment_list_
.push_back(oseg
);
3058 if (type
== elfcpp::PT_TLS
)
3059 this->tls_segment_
= oseg
;
3060 else if (type
== elfcpp::PT_GNU_RELRO
)
3061 this->relro_segment_
= oseg
;
3066 // Write out the Output_sections. Most won't have anything to write,
3067 // since most of the data will come from input sections which are
3068 // handled elsewhere. But some Output_sections do have Output_data.
3071 Layout::write_output_sections(Output_file
* of
) const
3073 for (Section_list::const_iterator p
= this->section_list_
.begin();
3074 p
!= this->section_list_
.end();
3077 if (!(*p
)->after_input_sections())
3082 // Write out data not associated with a section or the symbol table.
3085 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3087 if (!parameters
->options().strip_all())
3089 const Output_section
* symtab_section
= this->symtab_section_
;
3090 for (Section_list::const_iterator p
= this->section_list_
.begin();
3091 p
!= this->section_list_
.end();
3094 if ((*p
)->needs_symtab_index())
3096 gold_assert(symtab_section
!= NULL
);
3097 unsigned int index
= (*p
)->symtab_index();
3098 gold_assert(index
> 0 && index
!= -1U);
3099 off_t off
= (symtab_section
->offset()
3100 + index
* symtab_section
->entsize());
3101 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3106 const Output_section
* dynsym_section
= this->dynsym_section_
;
3107 for (Section_list::const_iterator p
= this->section_list_
.begin();
3108 p
!= this->section_list_
.end();
3111 if ((*p
)->needs_dynsym_index())
3113 gold_assert(dynsym_section
!= NULL
);
3114 unsigned int index
= (*p
)->dynsym_index();
3115 gold_assert(index
> 0 && index
!= -1U);
3116 off_t off
= (dynsym_section
->offset()
3117 + index
* dynsym_section
->entsize());
3118 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3122 // Write out the Output_data which are not in an Output_section.
3123 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3124 p
!= this->special_output_list_
.end();
3129 // Write out the Output_sections which can only be written after the
3130 // input sections are complete.
3133 Layout::write_sections_after_input_sections(Output_file
* of
)
3135 // Determine the final section offsets, and thus the final output
3136 // file size. Note we finalize the .shstrab last, to allow the
3137 // after_input_section sections to modify their section-names before
3139 if (this->any_postprocessing_sections_
)
3141 off_t off
= this->output_file_size_
;
3142 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3144 // Now that we've finalized the names, we can finalize the shstrab.
3146 this->set_section_offsets(off
,
3147 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3149 if (off
> this->output_file_size_
)
3152 this->output_file_size_
= off
;
3156 for (Section_list::const_iterator p
= this->section_list_
.begin();
3157 p
!= this->section_list_
.end();
3160 if ((*p
)->after_input_sections())
3164 this->section_headers_
->write(of
);
3167 // If the build ID requires computing a checksum, do so here, and
3168 // write it out. We compute a checksum over the entire file because
3169 // that is simplest.
3172 Layout::write_build_id(Output_file
* of
) const
3174 if (this->build_id_note_
== NULL
)
3177 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3179 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3180 this->build_id_note_
->data_size());
3182 const char* style
= parameters
->options().build_id();
3183 if (strcmp(style
, "sha1") == 0)
3186 sha1_init_ctx(&ctx
);
3187 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3188 sha1_finish_ctx(&ctx
, ov
);
3190 else if (strcmp(style
, "md5") == 0)
3194 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3195 md5_finish_ctx(&ctx
, ov
);
3200 of
->write_output_view(this->build_id_note_
->offset(),
3201 this->build_id_note_
->data_size(),
3204 of
->free_input_view(0, this->output_file_size_
, iv
);
3207 // Write out a binary file. This is called after the link is
3208 // complete. IN is the temporary output file we used to generate the
3209 // ELF code. We simply walk through the segments, read them from
3210 // their file offset in IN, and write them to their load address in
3211 // the output file. FIXME: with a bit more work, we could support
3212 // S-records and/or Intel hex format here.
3215 Layout::write_binary(Output_file
* in
) const
3217 gold_assert(parameters
->options().oformat_enum()
3218 == General_options::OBJECT_FORMAT_BINARY
);
3220 // Get the size of the binary file.
3221 uint64_t max_load_address
= 0;
3222 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3223 p
!= this->segment_list_
.end();
3226 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3228 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3229 if (max_paddr
> max_load_address
)
3230 max_load_address
= max_paddr
;
3234 Output_file
out(parameters
->options().output_file_name());
3235 out
.open(max_load_address
);
3237 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3238 p
!= this->segment_list_
.end();
3241 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3243 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3245 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3247 memcpy(vout
, vin
, (*p
)->filesz());
3248 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3249 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3256 // Print the output sections to the map file.
3259 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3261 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3262 p
!= this->segment_list_
.end();
3264 (*p
)->print_sections_to_mapfile(mapfile
);
3267 // Print statistical information to stderr. This is used for --stats.
3270 Layout::print_stats() const
3272 this->namepool_
.print_stats("section name pool");
3273 this->sympool_
.print_stats("output symbol name pool");
3274 this->dynpool_
.print_stats("dynamic name pool");
3276 for (Section_list::const_iterator p
= this->section_list_
.begin();
3277 p
!= this->section_list_
.end();
3279 (*p
)->print_merge_stats();
3282 // Write_sections_task methods.
3284 // We can always run this task.
3287 Write_sections_task::is_runnable()
3292 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3296 Write_sections_task::locks(Task_locker
* tl
)
3298 tl
->add(this, this->output_sections_blocker_
);
3299 tl
->add(this, this->final_blocker_
);
3302 // Run the task--write out the data.
3305 Write_sections_task::run(Workqueue
*)
3307 this->layout_
->write_output_sections(this->of_
);
3310 // Write_data_task methods.
3312 // We can always run this task.
3315 Write_data_task::is_runnable()
3320 // We need to unlock FINAL_BLOCKER when finished.
3323 Write_data_task::locks(Task_locker
* tl
)
3325 tl
->add(this, this->final_blocker_
);
3328 // Run the task--write out the data.
3331 Write_data_task::run(Workqueue
*)
3333 this->layout_
->write_data(this->symtab_
, this->of_
);
3336 // Write_symbols_task methods.
3338 // We can always run this task.
3341 Write_symbols_task::is_runnable()
3346 // We need to unlock FINAL_BLOCKER when finished.
3349 Write_symbols_task::locks(Task_locker
* tl
)
3351 tl
->add(this, this->final_blocker_
);
3354 // Run the task--write out the symbols.
3357 Write_symbols_task::run(Workqueue
*)
3359 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
3360 this->layout_
->symtab_xindex(),
3361 this->layout_
->dynsym_xindex(), this->of_
);
3364 // Write_after_input_sections_task methods.
3366 // We can only run this task after the input sections have completed.
3369 Write_after_input_sections_task::is_runnable()
3371 if (this->input_sections_blocker_
->is_blocked())
3372 return this->input_sections_blocker_
;
3376 // We need to unlock FINAL_BLOCKER when finished.
3379 Write_after_input_sections_task::locks(Task_locker
* tl
)
3381 tl
->add(this, this->final_blocker_
);
3387 Write_after_input_sections_task::run(Workqueue
*)
3389 this->layout_
->write_sections_after_input_sections(this->of_
);
3392 // Close_task_runner methods.
3394 // Run the task--close the file.
3397 Close_task_runner::run(Workqueue
*, const Task
*)
3399 // If we need to compute a checksum for the BUILD if, we do so here.
3400 this->layout_
->write_build_id(this->of_
);
3402 // If we've been asked to create a binary file, we do so here.
3403 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3404 this->layout_
->write_binary(this->of_
);
3409 // Instantiate the templates we need. We could use the configure
3410 // script to restrict this to only the ones for implemented targets.
3412 #ifdef HAVE_TARGET_32_LITTLE
3415 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3417 const elfcpp::Shdr
<32, false>& shdr
,
3418 unsigned int, unsigned int, off_t
*);
3421 #ifdef HAVE_TARGET_32_BIG
3424 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3426 const elfcpp::Shdr
<32, true>& shdr
,
3427 unsigned int, unsigned int, off_t
*);
3430 #ifdef HAVE_TARGET_64_LITTLE
3433 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3435 const elfcpp::Shdr
<64, false>& shdr
,
3436 unsigned int, unsigned int, off_t
*);
3439 #ifdef HAVE_TARGET_64_BIG
3442 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3444 const elfcpp::Shdr
<64, true>& shdr
,
3445 unsigned int, unsigned int, off_t
*);
3448 #ifdef HAVE_TARGET_32_LITTLE
3451 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3452 unsigned int reloc_shndx
,
3453 const elfcpp::Shdr
<32, false>& shdr
,
3454 Output_section
* data_section
,
3455 Relocatable_relocs
* rr
);
3458 #ifdef HAVE_TARGET_32_BIG
3461 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3462 unsigned int reloc_shndx
,
3463 const elfcpp::Shdr
<32, true>& shdr
,
3464 Output_section
* data_section
,
3465 Relocatable_relocs
* rr
);
3468 #ifdef HAVE_TARGET_64_LITTLE
3471 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3472 unsigned int reloc_shndx
,
3473 const elfcpp::Shdr
<64, false>& shdr
,
3474 Output_section
* data_section
,
3475 Relocatable_relocs
* rr
);
3478 #ifdef HAVE_TARGET_64_BIG
3481 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3482 unsigned int reloc_shndx
,
3483 const elfcpp::Shdr
<64, true>& shdr
,
3484 Output_section
* data_section
,
3485 Relocatable_relocs
* rr
);
3488 #ifdef HAVE_TARGET_32_LITTLE
3491 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3492 Sized_relobj
<32, false>* object
,
3494 const char* group_section_name
,
3495 const char* signature
,
3496 const elfcpp::Shdr
<32, false>& shdr
,
3497 elfcpp::Elf_Word flags
,
3498 std::vector
<unsigned int>* shndxes
);
3501 #ifdef HAVE_TARGET_32_BIG
3504 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3505 Sized_relobj
<32, true>* object
,
3507 const char* group_section_name
,
3508 const char* signature
,
3509 const elfcpp::Shdr
<32, true>& shdr
,
3510 elfcpp::Elf_Word flags
,
3511 std::vector
<unsigned int>* shndxes
);
3514 #ifdef HAVE_TARGET_64_LITTLE
3517 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3518 Sized_relobj
<64, false>* object
,
3520 const char* group_section_name
,
3521 const char* signature
,
3522 const elfcpp::Shdr
<64, false>& shdr
,
3523 elfcpp::Elf_Word flags
,
3524 std::vector
<unsigned int>* shndxes
);
3527 #ifdef HAVE_TARGET_64_BIG
3530 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3531 Sized_relobj
<64, true>* object
,
3533 const char* group_section_name
,
3534 const char* signature
,
3535 const elfcpp::Shdr
<64, true>& shdr
,
3536 elfcpp::Elf_Word flags
,
3537 std::vector
<unsigned int>* shndxes
);
3540 #ifdef HAVE_TARGET_32_LITTLE
3543 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3544 const unsigned char* symbols
,
3546 const unsigned char* symbol_names
,
3547 off_t symbol_names_size
,
3549 const elfcpp::Shdr
<32, false>& shdr
,
3550 unsigned int reloc_shndx
,
3551 unsigned int reloc_type
,
3555 #ifdef HAVE_TARGET_32_BIG
3558 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3559 const unsigned char* symbols
,
3561 const unsigned char* symbol_names
,
3562 off_t symbol_names_size
,
3564 const elfcpp::Shdr
<32, true>& shdr
,
3565 unsigned int reloc_shndx
,
3566 unsigned int reloc_type
,
3570 #ifdef HAVE_TARGET_64_LITTLE
3573 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3574 const unsigned char* symbols
,
3576 const unsigned char* symbol_names
,
3577 off_t symbol_names_size
,
3579 const elfcpp::Shdr
<64, false>& shdr
,
3580 unsigned int reloc_shndx
,
3581 unsigned int reloc_type
,
3585 #ifdef HAVE_TARGET_64_BIG
3588 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3589 const unsigned char* symbols
,
3591 const unsigned char* symbol_names
,
3592 off_t symbol_names_size
,
3594 const elfcpp::Shdr
<64, true>& shdr
,
3595 unsigned int reloc_shndx
,
3596 unsigned int reloc_type
,
3600 } // End namespace gold.