1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
49 // Initialize fields in Symbol. This initializes everything except u_
53 Symbol::init_fields(const char* name
, const char* version
,
54 elfcpp::STT type
, elfcpp::STB binding
,
55 elfcpp::STV visibility
, unsigned char nonvis
)
58 this->version_
= version
;
59 this->symtab_index_
= 0;
60 this->dynsym_index_
= 0;
61 this->got_offsets_
.init();
62 this->plt_offset_
= 0;
64 this->binding_
= binding
;
65 this->visibility_
= visibility
;
66 this->nonvis_
= nonvis
;
67 this->is_target_special_
= false;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_plt_offset_
= false;
75 this->has_warning_
= false;
76 this->is_copied_from_dynobj_
= false;
77 this->is_forced_local_
= false;
78 this->is_ordinary_shndx_
= false;
79 this->in_real_elf_
= false;
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
86 demangle(const char* name
)
88 if (!parameters
->options().do_demangle())
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
94 if (demangled_name
== NULL
)
97 std::string
retval(demangled_name
);
103 Symbol::demangled_name() const
105 return demangle(this->name());
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
110 template<int size
, bool big_endian
>
112 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
113 const elfcpp::Sym
<size
, big_endian
>& sym
,
114 unsigned int st_shndx
, bool is_ordinary
)
116 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
117 sym
.get_st_visibility(), sym
.get_st_nonvis());
118 this->u_
.from_object
.object
= object
;
119 this->u_
.from_object
.shndx
= st_shndx
;
120 this->is_ordinary_shndx_
= is_ordinary
;
121 this->source_
= FROM_OBJECT
;
122 this->in_reg_
= !object
->is_dynamic();
123 this->in_dyn_
= object
->is_dynamic();
124 this->in_real_elf_
= object
->pluginobj() == NULL
;
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
131 Symbol::init_base_output_data(const char* name
, const char* version
,
132 Output_data
* od
, elfcpp::STT type
,
133 elfcpp::STB binding
, elfcpp::STV visibility
,
134 unsigned char nonvis
, bool offset_is_from_end
)
136 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
137 this->u_
.in_output_data
.output_data
= od
;
138 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
139 this->source_
= IN_OUTPUT_DATA
;
140 this->in_reg_
= true;
141 this->in_real_elf_
= true;
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
148 Symbol::init_base_output_segment(const char* name
, const char* version
,
149 Output_segment
* os
, elfcpp::STT type
,
150 elfcpp::STB binding
, elfcpp::STV visibility
,
151 unsigned char nonvis
,
152 Segment_offset_base offset_base
)
154 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
155 this->u_
.in_output_segment
.output_segment
= os
;
156 this->u_
.in_output_segment
.offset_base
= offset_base
;
157 this->source_
= IN_OUTPUT_SEGMENT
;
158 this->in_reg_
= true;
159 this->in_real_elf_
= true;
162 // Initialize the fields in the base class Symbol for a symbol defined
166 Symbol::init_base_constant(const char* name
, const char* version
,
167 elfcpp::STT type
, elfcpp::STB binding
,
168 elfcpp::STV visibility
, unsigned char nonvis
)
170 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
171 this->source_
= IS_CONSTANT
;
172 this->in_reg_
= true;
173 this->in_real_elf_
= true;
176 // Initialize the fields in the base class Symbol for an undefined
180 Symbol::init_base_undefined(const char* name
, const char* version
,
181 elfcpp::STT type
, elfcpp::STB binding
,
182 elfcpp::STV visibility
, unsigned char nonvis
)
184 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
185 this->dynsym_index_
= -1U;
186 this->source_
= IS_UNDEFINED
;
187 this->in_reg_
= true;
188 this->in_real_elf_
= true;
191 // Allocate a common symbol in the base.
194 Symbol::allocate_base_common(Output_data
* od
)
196 gold_assert(this->is_common());
197 this->source_
= IN_OUTPUT_DATA
;
198 this->u_
.in_output_data
.output_data
= od
;
199 this->u_
.in_output_data
.offset_is_from_end
= false;
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
205 template<bool big_endian
>
207 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
209 const elfcpp::Sym
<size
, big_endian
>& sym
,
210 unsigned int st_shndx
, bool is_ordinary
)
212 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
213 this->value_
= sym
.get_st_value();
214 this->symsize_
= sym
.get_st_size();
217 // Initialize the fields in Sized_symbol for a symbol defined in an
222 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
223 Output_data
* od
, Value_type value
,
224 Size_type symsize
, elfcpp::STT type
,
226 elfcpp::STV visibility
,
227 unsigned char nonvis
,
228 bool offset_is_from_end
)
230 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
231 nonvis
, offset_is_from_end
);
232 this->value_
= value
;
233 this->symsize_
= symsize
;
236 // Initialize the fields in Sized_symbol for a symbol defined in an
241 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
242 Output_segment
* os
, Value_type value
,
243 Size_type symsize
, elfcpp::STT type
,
245 elfcpp::STV visibility
,
246 unsigned char nonvis
,
247 Segment_offset_base offset_base
)
249 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
250 nonvis
, offset_base
);
251 this->value_
= value
;
252 this->symsize_
= symsize
;
255 // Initialize the fields in Sized_symbol for a symbol defined as a
260 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
261 Value_type value
, Size_type symsize
,
262 elfcpp::STT type
, elfcpp::STB binding
,
263 elfcpp::STV visibility
, unsigned char nonvis
)
265 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
266 this->value_
= value
;
267 this->symsize_
= symsize
;
270 // Initialize the fields in Sized_symbol for an undefined symbol.
274 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
275 elfcpp::STT type
, elfcpp::STB binding
,
276 elfcpp::STV visibility
, unsigned char nonvis
)
278 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
283 // Allocate a common symbol.
287 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
289 this->allocate_base_common(od
);
290 this->value_
= value
;
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
296 // Return true if this symbol should be added to the dynamic symbol
300 Symbol::should_add_dynsym_entry() const
302 // If the symbol is used by a dynamic relocation, we need to add it.
303 if (this->needs_dynsym_entry())
306 // If this symbol's section is not added, the symbol need not be added.
307 // The section may have been GCed. Note that export_dynamic is being
308 // overridden here. This should not be done for shared objects.
309 if (parameters
->options().gc_sections()
310 && !parameters
->options().shared()
311 && this->source() == Symbol::FROM_OBJECT
312 && !this->object()->is_dynamic())
314 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
316 unsigned int shndx
= this->shndx(&is_ordinary
);
317 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
318 && !relobj
->is_section_included(shndx
))
322 // If the symbol was forced local in a version script, do not add it.
323 if (this->is_forced_local())
326 // If the symbol was forced dynamic in a --dynamic-list file, add it.
327 if (parameters
->options().in_dynamic_list(this->name()))
330 // If dynamic-list-data was specified, add any STT_OBJECT.
331 if (parameters
->options().dynamic_list_data()
332 && !this->is_from_dynobj()
333 && this->type() == elfcpp::STT_OBJECT
)
336 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338 if ((parameters
->options().dynamic_list_cpp_new()
339 || parameters
->options().dynamic_list_cpp_typeinfo())
340 && !this->is_from_dynobj())
342 // TODO(csilvers): We could probably figure out if we're an operator
343 // new/delete or typeinfo without the need to demangle.
344 char* demangled_name
= cplus_demangle(this->name(),
345 DMGL_ANSI
| DMGL_PARAMS
);
346 if (demangled_name
== NULL
)
348 // Not a C++ symbol, so it can't satisfy these flags
350 else if (parameters
->options().dynamic_list_cpp_new()
351 && (strprefix(demangled_name
, "operator new")
352 || strprefix(demangled_name
, "operator delete")))
354 free(demangled_name
);
357 else if (parameters
->options().dynamic_list_cpp_typeinfo()
358 && (strprefix(demangled_name
, "typeinfo name for")
359 || strprefix(demangled_name
, "typeinfo for")))
361 free(demangled_name
);
365 free(demangled_name
);
368 // If exporting all symbols or building a shared library,
369 // and the symbol is defined in a regular object and is
370 // externally visible, we need to add it.
371 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
372 && !this->is_from_dynobj()
373 && this->is_externally_visible())
379 // Return true if the final value of this symbol is known at link
383 Symbol::final_value_is_known() const
385 // If we are not generating an executable, then no final values are
386 // known, since they will change at runtime.
387 if (parameters
->options().shared() || parameters
->options().relocatable())
390 // If the symbol is not from an object file, and is not undefined,
391 // then it is defined, and known.
392 if (this->source_
!= FROM_OBJECT
)
394 if (this->source_
!= IS_UNDEFINED
)
399 // If the symbol is from a dynamic object, then the final value
401 if (this->object()->is_dynamic())
404 // If the symbol is not undefined (it is defined or common),
405 // then the final value is known.
406 if (!this->is_undefined())
410 // If the symbol is undefined, then whether the final value is known
411 // depends on whether we are doing a static link. If we are doing a
412 // dynamic link, then the final value could be filled in at runtime.
413 // This could reasonably be the case for a weak undefined symbol.
414 return parameters
->doing_static_link();
417 // Return the output section where this symbol is defined.
420 Symbol::output_section() const
422 switch (this->source_
)
426 unsigned int shndx
= this->u_
.from_object
.shndx
;
427 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
429 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
430 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
431 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
432 return relobj
->output_section(shndx
);
438 return this->u_
.in_output_data
.output_data
->output_section();
440 case IN_OUTPUT_SEGMENT
:
450 // Set the symbol's output section. This is used for symbols defined
451 // in scripts. This should only be called after the symbol table has
455 Symbol::set_output_section(Output_section
* os
)
457 switch (this->source_
)
461 gold_assert(this->output_section() == os
);
464 this->source_
= IN_OUTPUT_DATA
;
465 this->u_
.in_output_data
.output_data
= os
;
466 this->u_
.in_output_data
.offset_is_from_end
= false;
468 case IN_OUTPUT_SEGMENT
:
475 // Class Symbol_table.
477 Symbol_table::Symbol_table(unsigned int count
,
478 const Version_script_info
& version_script
)
479 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
480 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481 version_script_(version_script
), gc_(NULL
)
483 namepool_
.reserve(count
);
486 Symbol_table::~Symbol_table()
490 // The hash function. The key values are Stringpool keys.
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
495 return key
.first
^ key
.second
;
498 // The symbol table key equality function. This is called with
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
503 const Symbol_table_key
& k2
) const
505 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
512 Symbol_table::gc_mark_undef_symbols()
514 for (options::String_set::const_iterator p
=
515 parameters
->options().undefined_begin();
516 p
!= parameters
->options().undefined_end();
519 const char* name
= p
->c_str();
520 Symbol
* sym
= this->lookup(name
);
521 gold_assert (sym
!= NULL
);
522 if (sym
->source() == Symbol::FROM_OBJECT
523 && !sym
->object()->is_dynamic())
525 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
527 unsigned int shndx
= sym
->shndx(&is_ordinary
);
530 gold_assert(this->gc_
!= NULL
);
531 this->gc_
->worklist().push(Section_id(obj
, shndx
));
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
540 if (!sym
->is_from_dynobj()
541 && sym
->is_externally_visible())
543 //Add the object and section to the work list.
544 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
546 unsigned int shndx
= sym
->shndx(&is_ordinary
);
547 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
549 gold_assert(this->gc_
!= NULL
);
550 this->gc_
->worklist().push(Section_id(obj
, shndx
));
555 // When doing garbage collection, keep symbols that have been seen in
558 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
560 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
561 && !sym
->object()->is_dynamic())
563 Relobj
*obj
= static_cast<Relobj
*>(sym
->object());
565 unsigned int shndx
= sym
->shndx(&is_ordinary
);
566 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
568 gold_assert(this->gc_
!= NULL
);
569 this->gc_
->worklist().push(Section_id(obj
, shndx
));
574 // Make TO a symbol which forwards to FROM.
577 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
579 gold_assert(from
!= to
);
580 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
581 this->forwarders_
[from
] = to
;
582 from
->set_forwarder();
585 // Resolve the forwards from FROM, returning the real symbol.
588 Symbol_table::resolve_forwards(const Symbol
* from
) const
590 gold_assert(from
->is_forwarder());
591 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
592 this->forwarders_
.find(from
);
593 gold_assert(p
!= this->forwarders_
.end());
597 // Look up a symbol by name.
600 Symbol_table::lookup(const char* name
, const char* version
) const
602 Stringpool::Key name_key
;
603 name
= this->namepool_
.find(name
, &name_key
);
607 Stringpool::Key version_key
= 0;
610 version
= this->namepool_
.find(version
, &version_key
);
615 Symbol_table_key
key(name_key
, version_key
);
616 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
617 if (p
== this->table_
.end())
622 // Resolve a Symbol with another Symbol. This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version. Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
628 template<int size
, bool big_endian
>
630 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
632 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
633 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
634 // We don't bother to set the st_name or the st_shndx field.
635 esym
.put_st_value(from
->value());
636 esym
.put_st_size(from
->symsize());
637 esym
.put_st_info(from
->binding(), from
->type());
638 esym
.put_st_other(from
->visibility(), from
->nonvis());
640 unsigned int shndx
= from
->shndx(&is_ordinary
);
641 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
647 if (parameters
->options().gc_sections())
648 this->gc_mark_dyn_syms(to
);
651 // Record that a symbol is forced to be local by a version script or
655 Symbol_table::force_local(Symbol
* sym
)
657 if (!sym
->is_defined() && !sym
->is_common())
659 if (sym
->is_forced_local())
661 // We already got this one.
664 sym
->set_is_forced_local();
665 this->forced_locals_
.push_back(sym
);
668 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
669 // is only called for undefined symbols, when at least one --wrap
673 Symbol_table::wrap_symbol(Object
* object
, const char* name
,
674 Stringpool::Key
* name_key
)
676 // For some targets, we need to ignore a specific character when
677 // wrapping, and add it back later.
679 if (name
[0] == object
->target()->wrap_char())
685 if (parameters
->options().is_wrap(name
))
687 // Turn NAME into __wrap_NAME.
694 // This will give us both the old and new name in NAMEPOOL_, but
695 // that is OK. Only the versions we need will wind up in the
696 // real string table in the output file.
697 return this->namepool_
.add(s
.c_str(), true, name_key
);
700 const char* const real_prefix
= "__real_";
701 const size_t real_prefix_length
= strlen(real_prefix
);
702 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
703 && parameters
->options().is_wrap(name
+ real_prefix_length
))
705 // Turn __real_NAME into NAME.
709 s
+= name
+ real_prefix_length
;
710 return this->namepool_
.add(s
.c_str(), true, name_key
);
716 // This is called when we see a symbol NAME/VERSION, and the symbol
717 // already exists in the symbol table, and VERSION is marked as being
718 // the default version. SYM is the NAME/VERSION symbol we just added.
719 // DEFAULT_IS_NEW is true if this is the first time we have seen the
720 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
722 template<int size
, bool big_endian
>
724 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
726 Symbol_table_type::iterator pdef
)
730 // This is the first time we have seen NAME/NULL. Make
731 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
734 sym
->set_is_default();
736 else if (pdef
->second
== sym
)
738 // NAME/NULL already points to NAME/VERSION. Don't mark the
739 // symbol as the default if it is not already the default.
743 // This is the unfortunate case where we already have entries
744 // for both NAME/VERSION and NAME/NULL. We now see a symbol
745 // NAME/VERSION where VERSION is the default version. We have
746 // already resolved this new symbol with the existing
747 // NAME/VERSION symbol.
749 // It's possible that NAME/NULL and NAME/VERSION are both
750 // defined in regular objects. This can only happen if one
751 // object file defines foo and another defines foo@@ver. This
752 // is somewhat obscure, but we call it a multiple definition
755 // It's possible that NAME/NULL actually has a version, in which
756 // case it won't be the same as VERSION. This happens with
757 // ver_test_7.so in the testsuite for the symbol t2_2. We see
758 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
759 // then see an unadorned t2_2 in an object file and give it
760 // version VER1 from the version script. This looks like a
761 // default definition for VER1, so it looks like we should merge
762 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
763 // not obvious that this is an error, either. So we just punt.
765 // If one of the symbols has non-default visibility, and the
766 // other is defined in a shared object, then they are different
769 // Otherwise, we just resolve the symbols as though they were
772 if (pdef
->second
->version() != NULL
)
773 gold_assert(pdef
->second
->version() != sym
->version());
774 else if (sym
->visibility() != elfcpp::STV_DEFAULT
775 && pdef
->second
->is_from_dynobj())
777 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
778 && sym
->is_from_dynobj())
782 const Sized_symbol
<size
>* symdef
;
783 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
784 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
785 this->make_forwarder(pdef
->second
, sym
);
787 sym
->set_is_default();
792 // Add one symbol from OBJECT to the symbol table. NAME is symbol
793 // name and VERSION is the version; both are canonicalized. DEF is
794 // whether this is the default version. ST_SHNDX is the symbol's
795 // section index; IS_ORDINARY is whether this is a normal section
796 // rather than a special code.
798 // If DEF is true, then this is the definition of a default version of
799 // a symbol. That means that any lookup of NAME/NULL and any lookup
800 // of NAME/VERSION should always return the same symbol. This is
801 // obvious for references, but in particular we want to do this for
802 // definitions: overriding NAME/NULL should also override
803 // NAME/VERSION. If we don't do that, it would be very hard to
804 // override functions in a shared library which uses versioning.
806 // We implement this by simply making both entries in the hash table
807 // point to the same Symbol structure. That is easy enough if this is
808 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
809 // that we have seen both already, in which case they will both have
810 // independent entries in the symbol table. We can't simply change
811 // the symbol table entry, because we have pointers to the entries
812 // attached to the object files. So we mark the entry attached to the
813 // object file as a forwarder, and record it in the forwarders_ map.
814 // Note that entries in the hash table will never be marked as
817 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
818 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
819 // for a special section code. ST_SHNDX may be modified if the symbol
820 // is defined in a section being discarded.
822 template<int size
, bool big_endian
>
824 Symbol_table::add_from_object(Object
* object
,
826 Stringpool::Key name_key
,
828 Stringpool::Key version_key
,
830 const elfcpp::Sym
<size
, big_endian
>& sym
,
831 unsigned int st_shndx
,
833 unsigned int orig_st_shndx
)
835 // Print a message if this symbol is being traced.
836 if (parameters
->options().is_trace_symbol(name
))
838 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
839 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
841 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
844 // For an undefined symbol, we may need to adjust the name using
846 if (orig_st_shndx
== elfcpp::SHN_UNDEF
847 && parameters
->options().any_wrap())
849 const char* wrap_name
= this->wrap_symbol(object
, name
, &name_key
);
850 if (wrap_name
!= name
)
852 // If we see a reference to malloc with version GLIBC_2.0,
853 // and we turn it into a reference to __wrap_malloc, then we
854 // discard the version number. Otherwise the user would be
855 // required to specify the correct version for
863 Symbol
* const snull
= NULL
;
864 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
865 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
868 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
869 std::make_pair(this->table_
.end(), false);
872 const Stringpool::Key vnull_key
= 0;
873 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
878 // ins.first: an iterator, which is a pointer to a pair.
879 // ins.first->first: the key (a pair of name and version).
880 // ins.first->second: the value (Symbol*).
881 // ins.second: true if new entry was inserted, false if not.
883 Sized_symbol
<size
>* ret
;
888 // We already have an entry for NAME/VERSION.
889 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
890 gold_assert(ret
!= NULL
);
892 was_undefined
= ret
->is_undefined();
893 was_common
= ret
->is_common();
895 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
897 if (parameters
->options().gc_sections())
898 this->gc_mark_dyn_syms(ret
);
901 this->define_default_version
<size
, big_endian
>(ret
, insdef
.second
,
906 // This is the first time we have seen NAME/VERSION.
907 gold_assert(ins
.first
->second
== NULL
);
909 if (def
&& !insdef
.second
)
911 // We already have an entry for NAME/NULL. If we override
912 // it, then change it to NAME/VERSION.
913 ret
= this->get_sized_symbol
<size
>(insdef
.first
->second
);
915 was_undefined
= ret
->is_undefined();
916 was_common
= ret
->is_common();
918 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
920 if (parameters
->options().gc_sections())
921 this->gc_mark_dyn_syms(ret
);
922 ins
.first
->second
= ret
;
926 was_undefined
= false;
929 Sized_target
<size
, big_endian
>* target
=
930 object
->sized_target
<size
, big_endian
>();
931 if (!target
->has_make_symbol())
932 ret
= new Sized_symbol
<size
>();
935 ret
= target
->make_symbol();
938 // This means that we don't want a symbol table
941 this->table_
.erase(ins
.first
);
944 this->table_
.erase(insdef
.first
);
945 // Inserting insdef invalidated ins.
946 this->table_
.erase(std::make_pair(name_key
,
953 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
955 ins
.first
->second
= ret
;
958 // This is the first time we have seen NAME/NULL. Point
959 // it at the new entry for NAME/VERSION.
960 gold_assert(insdef
.second
);
961 insdef
.first
->second
= ret
;
966 ret
->set_is_default();
969 // Record every time we see a new undefined symbol, to speed up
971 if (!was_undefined
&& ret
->is_undefined())
972 ++this->saw_undefined_
;
974 // Keep track of common symbols, to speed up common symbol
976 if (!was_common
&& ret
->is_common())
978 if (ret
->type() != elfcpp::STT_TLS
)
979 this->commons_
.push_back(ret
);
981 this->tls_commons_
.push_back(ret
);
984 // If we're not doing a relocatable link, then any symbol with
985 // hidden or internal visibility is local.
986 if ((ret
->visibility() == elfcpp::STV_HIDDEN
987 || ret
->visibility() == elfcpp::STV_INTERNAL
)
988 && (ret
->binding() == elfcpp::STB_GLOBAL
989 || ret
->binding() == elfcpp::STB_WEAK
)
990 && !parameters
->options().relocatable())
991 this->force_local(ret
);
996 // Add all the symbols in a relocatable object to the hash table.
998 template<int size
, bool big_endian
>
1000 Symbol_table::add_from_relobj(
1001 Sized_relobj
<size
, big_endian
>* relobj
,
1002 const unsigned char* syms
,
1004 size_t symndx_offset
,
1005 const char* sym_names
,
1006 size_t sym_name_size
,
1007 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1012 gold_assert(size
== relobj
->target()->get_size());
1013 gold_assert(size
== parameters
->target().get_size());
1015 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1017 const bool just_symbols
= relobj
->just_symbols();
1019 const unsigned char* p
= syms
;
1020 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1022 (*sympointers
)[i
] = NULL
;
1024 elfcpp::Sym
<size
, big_endian
> sym(p
);
1026 unsigned int st_name
= sym
.get_st_name();
1027 if (st_name
>= sym_name_size
)
1029 relobj
->error(_("bad global symbol name offset %u at %zu"),
1034 const char* name
= sym_names
+ st_name
;
1037 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1040 unsigned int orig_st_shndx
= st_shndx
;
1042 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1044 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1047 // A symbol defined in a section which we are not including must
1048 // be treated as an undefined symbol.
1049 if (st_shndx
!= elfcpp::SHN_UNDEF
1051 && !relobj
->is_section_included(st_shndx
))
1052 st_shndx
= elfcpp::SHN_UNDEF
;
1054 // In an object file, an '@' in the name separates the symbol
1055 // name from the version name. If there are two '@' characters,
1056 // this is the default version.
1057 const char* ver
= strchr(name
, '@');
1058 Stringpool::Key ver_key
= 0;
1060 // DEF: is the version default? LOCAL: is the symbol forced local?
1066 // The symbol name is of the form foo@VERSION or foo@@VERSION
1067 namelen
= ver
- name
;
1074 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1076 // We don't want to assign a version to an undefined symbol,
1077 // even if it is listed in the version script. FIXME: What
1078 // about a common symbol?
1081 namelen
= strlen(name
);
1082 if (!this->version_script_
.empty()
1083 && st_shndx
!= elfcpp::SHN_UNDEF
)
1085 // The symbol name did not have a version, but the
1086 // version script may assign a version anyway.
1087 std::string version
;
1088 if (this->version_script_
.get_symbol_version(name
, &version
))
1090 // The version can be empty if the version script is
1091 // only used to force some symbols to be local.
1092 if (!version
.empty())
1094 ver
= this->namepool_
.add_with_length(version
.c_str(),
1101 else if (this->version_script_
.symbol_is_local(name
))
1106 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1107 unsigned char symbuf
[sym_size
];
1108 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1111 memcpy(symbuf
, p
, sym_size
);
1112 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1113 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1115 // Symbol values in object files are section relative.
1116 // This is normally what we want, but since here we are
1117 // converting the symbol to absolute we need to add the
1118 // section address. The section address in an object
1119 // file is normally zero, but people can use a linker
1120 // script to change it.
1121 sw
.put_st_value(sym
.get_st_value()
1122 + relobj
->section_address(orig_st_shndx
));
1124 st_shndx
= elfcpp::SHN_ABS
;
1125 is_ordinary
= false;
1129 // Fix up visibility if object has no-export set.
1130 if (relobj
->no_export())
1132 // We may have copied symbol already above.
1135 memcpy(symbuf
, p
, sym_size
);
1139 elfcpp::STV visibility
= sym2
.get_st_visibility();
1140 if (visibility
== elfcpp::STV_DEFAULT
1141 || visibility
== elfcpp::STV_PROTECTED
)
1143 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1144 unsigned char nonvis
= sym2
.get_st_nonvis();
1145 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1149 Stringpool::Key name_key
;
1150 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1153 Sized_symbol
<size
>* res
;
1154 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1155 def
, *psym
, st_shndx
, is_ordinary
,
1158 // If building a shared library using garbage collection, do not
1159 // treat externally visible symbols as garbage.
1160 if (parameters
->options().gc_sections()
1161 && parameters
->options().shared())
1162 this->gc_mark_symbol_for_shlib(res
);
1165 this->force_local(res
);
1167 (*sympointers
)[i
] = res
;
1171 // Add a symbol from a plugin-claimed file.
1173 template<int size
, bool big_endian
>
1175 Symbol_table::add_from_pluginobj(
1176 Sized_pluginobj
<size
, big_endian
>* obj
,
1179 elfcpp::Sym
<size
, big_endian
>* sym
)
1181 unsigned int st_shndx
= sym
->get_st_shndx();
1183 Stringpool::Key ver_key
= 0;
1189 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1191 // We don't want to assign a version to an undefined symbol,
1192 // even if it is listed in the version script. FIXME: What
1193 // about a common symbol?
1196 if (!this->version_script_
.empty()
1197 && st_shndx
!= elfcpp::SHN_UNDEF
)
1199 // The symbol name did not have a version, but the
1200 // version script may assign a version anyway.
1201 std::string version
;
1202 if (this->version_script_
.get_symbol_version(name
, &version
))
1204 // The version can be empty if the version script is
1205 // only used to force some symbols to be local.
1206 if (!version
.empty())
1208 ver
= this->namepool_
.add_with_length(version
.c_str(),
1215 else if (this->version_script_
.symbol_is_local(name
))
1220 Stringpool::Key name_key
;
1221 name
= this->namepool_
.add(name
, true, &name_key
);
1223 Sized_symbol
<size
>* res
;
1224 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1225 def
, *sym
, st_shndx
, true, st_shndx
);
1228 this->force_local(res
);
1233 // Add all the symbols in a dynamic object to the hash table.
1235 template<int size
, bool big_endian
>
1237 Symbol_table::add_from_dynobj(
1238 Sized_dynobj
<size
, big_endian
>* dynobj
,
1239 const unsigned char* syms
,
1241 const char* sym_names
,
1242 size_t sym_name_size
,
1243 const unsigned char* versym
,
1245 const std::vector
<const char*>* version_map
,
1246 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1251 gold_assert(size
== dynobj
->target()->get_size());
1252 gold_assert(size
== parameters
->target().get_size());
1254 if (dynobj
->just_symbols())
1256 gold_error(_("--just-symbols does not make sense with a shared object"));
1260 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1262 dynobj
->error(_("too few symbol versions"));
1266 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1268 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1269 // weak aliases. This is necessary because if the dynamic object
1270 // provides the same variable under two names, one of which is a
1271 // weak definition, and the regular object refers to the weak
1272 // definition, we have to put both the weak definition and the
1273 // strong definition into the dynamic symbol table. Given a weak
1274 // definition, the only way that we can find the corresponding
1275 // strong definition, if any, is to search the symbol table.
1276 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1278 const unsigned char* p
= syms
;
1279 const unsigned char* vs
= versym
;
1280 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1282 elfcpp::Sym
<size
, big_endian
> sym(p
);
1284 if (sympointers
!= NULL
)
1285 (*sympointers
)[i
] = NULL
;
1287 // Ignore symbols with local binding or that have
1288 // internal or hidden visibility.
1289 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1290 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1291 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1294 // A protected symbol in a shared library must be treated as a
1295 // normal symbol when viewed from outside the shared library.
1296 // Implement this by overriding the visibility here.
1297 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1298 unsigned char symbuf
[sym_size
];
1299 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1300 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1302 memcpy(symbuf
, p
, sym_size
);
1303 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1304 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1308 unsigned int st_name
= psym
->get_st_name();
1309 if (st_name
>= sym_name_size
)
1311 dynobj
->error(_("bad symbol name offset %u at %zu"),
1316 const char* name
= sym_names
+ st_name
;
1319 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1322 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1325 Sized_symbol
<size
>* res
;
1329 Stringpool::Key name_key
;
1330 name
= this->namepool_
.add(name
, true, &name_key
);
1331 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1332 false, *psym
, st_shndx
, is_ordinary
,
1337 // Read the version information.
1339 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1341 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1342 v
&= elfcpp::VERSYM_VERSION
;
1344 // The Sun documentation says that V can be VER_NDX_LOCAL,
1345 // or VER_NDX_GLOBAL, or a version index. The meaning of
1346 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1347 // The old GNU linker will happily generate VER_NDX_LOCAL
1348 // for an undefined symbol. I don't know what the Sun
1349 // linker will generate.
1351 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1352 && st_shndx
!= elfcpp::SHN_UNDEF
)
1354 // This symbol should not be visible outside the object.
1358 // At this point we are definitely going to add this symbol.
1359 Stringpool::Key name_key
;
1360 name
= this->namepool_
.add(name
, true, &name_key
);
1362 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1363 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1365 // This symbol does not have a version.
1366 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1367 false, *psym
, st_shndx
, is_ordinary
,
1372 if (v
>= version_map
->size())
1374 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1379 const char* version
= (*version_map
)[v
];
1380 if (version
== NULL
)
1382 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1387 Stringpool::Key version_key
;
1388 version
= this->namepool_
.add(version
, true, &version_key
);
1390 // If this is an absolute symbol, and the version name
1391 // and symbol name are the same, then this is the
1392 // version definition symbol. These symbols exist to
1393 // support using -u to pull in particular versions. We
1394 // do not want to record a version for them.
1395 if (st_shndx
== elfcpp::SHN_ABS
1397 && name_key
== version_key
)
1398 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1399 false, *psym
, st_shndx
, is_ordinary
,
1403 const bool def
= (!hidden
1404 && st_shndx
!= elfcpp::SHN_UNDEF
);
1405 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1406 version_key
, def
, *psym
, st_shndx
,
1407 is_ordinary
, st_shndx
);
1412 // Note that it is possible that RES was overridden by an
1413 // earlier object, in which case it can't be aliased here.
1414 if (st_shndx
!= elfcpp::SHN_UNDEF
1416 && psym
->get_st_type() == elfcpp::STT_OBJECT
1417 && res
->source() == Symbol::FROM_OBJECT
1418 && res
->object() == dynobj
)
1419 object_symbols
.push_back(res
);
1421 if (sympointers
!= NULL
)
1422 (*sympointers
)[i
] = res
;
1425 this->record_weak_aliases(&object_symbols
);
1428 // This is used to sort weak aliases. We sort them first by section
1429 // index, then by offset, then by weak ahead of strong.
1432 class Weak_alias_sorter
1435 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1440 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1441 const Sized_symbol
<size
>* s2
) const
1444 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1445 gold_assert(is_ordinary
);
1446 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1447 gold_assert(is_ordinary
);
1448 if (s1_shndx
!= s2_shndx
)
1449 return s1_shndx
< s2_shndx
;
1451 if (s1
->value() != s2
->value())
1452 return s1
->value() < s2
->value();
1453 if (s1
->binding() != s2
->binding())
1455 if (s1
->binding() == elfcpp::STB_WEAK
)
1457 if (s2
->binding() == elfcpp::STB_WEAK
)
1460 return std::string(s1
->name()) < std::string(s2
->name());
1463 // SYMBOLS is a list of object symbols from a dynamic object. Look
1464 // for any weak aliases, and record them so that if we add the weak
1465 // alias to the dynamic symbol table, we also add the corresponding
1470 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1472 // Sort the vector by section index, then by offset, then by weak
1474 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1476 // Walk through the vector. For each weak definition, record
1478 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1480 p
!= symbols
->end();
1483 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1486 // Build a circular list of weak aliases. Each symbol points to
1487 // the next one in the circular list.
1489 Sized_symbol
<size
>* from_sym
= *p
;
1490 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1491 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1494 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1495 || (*q
)->value() != from_sym
->value())
1498 this->weak_aliases_
[from_sym
] = *q
;
1499 from_sym
->set_has_alias();
1505 this->weak_aliases_
[from_sym
] = *p
;
1506 from_sym
->set_has_alias();
1513 // Create and return a specially defined symbol. If ONLY_IF_REF is
1514 // true, then only create the symbol if there is a reference to it.
1515 // If this does not return NULL, it sets *POLDSYM to the existing
1516 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1517 // resolve the newly created symbol to the old one. This
1518 // canonicalizes *PNAME and *PVERSION.
1520 template<int size
, bool big_endian
>
1522 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1524 Sized_symbol
<size
>** poldsym
,
1525 bool *resolve_oldsym
)
1527 *resolve_oldsym
= false;
1529 // If the caller didn't give us a version, see if we get one from
1530 // the version script.
1532 bool is_default_version
= false;
1533 if (*pversion
== NULL
)
1535 if (this->version_script_
.get_symbol_version(*pname
, &v
))
1538 *pversion
= v
.c_str();
1540 // If we get the version from a version script, then we are
1541 // also the default version.
1542 is_default_version
= true;
1547 Sized_symbol
<size
>* sym
;
1549 bool add_to_table
= false;
1550 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1551 bool add_def_to_table
= false;
1552 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1556 oldsym
= this->lookup(*pname
, *pversion
);
1557 if (oldsym
== NULL
&& is_default_version
)
1558 oldsym
= this->lookup(*pname
, NULL
);
1559 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1562 *pname
= oldsym
->name();
1563 if (!is_default_version
)
1564 *pversion
= oldsym
->version();
1568 // Canonicalize NAME and VERSION.
1569 Stringpool::Key name_key
;
1570 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1572 Stringpool::Key version_key
= 0;
1573 if (*pversion
!= NULL
)
1574 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1576 Symbol
* const snull
= NULL
;
1577 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1578 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1582 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
1583 std::make_pair(this->table_
.end(), false);
1584 if (is_default_version
)
1586 const Stringpool::Key vnull
= 0;
1587 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1594 // We already have a symbol table entry for NAME/VERSION.
1595 oldsym
= ins
.first
->second
;
1596 gold_assert(oldsym
!= NULL
);
1598 if (is_default_version
)
1600 Sized_symbol
<size
>* soldsym
=
1601 this->get_sized_symbol
<size
>(oldsym
);
1602 this->define_default_version
<size
, big_endian
>(soldsym
,
1609 // We haven't seen this symbol before.
1610 gold_assert(ins
.first
->second
== NULL
);
1612 add_to_table
= true;
1613 add_loc
= ins
.first
;
1615 if (is_default_version
&& !insdef
.second
)
1617 // We are adding NAME/VERSION, and it is the default
1618 // version. We already have an entry for NAME/NULL.
1619 oldsym
= insdef
.first
->second
;
1620 *resolve_oldsym
= true;
1626 if (is_default_version
)
1628 add_def_to_table
= true;
1629 add_def_loc
= insdef
.first
;
1635 const Target
& target
= parameters
->target();
1636 if (!target
.has_make_symbol())
1637 sym
= new Sized_symbol
<size
>();
1640 gold_assert(target
.get_size() == size
);
1641 gold_assert(target
.is_big_endian() ? big_endian
: !big_endian
);
1642 typedef Sized_target
<size
, big_endian
> My_target
;
1643 const My_target
* sized_target
=
1644 static_cast<const My_target
*>(&target
);
1645 sym
= sized_target
->make_symbol();
1651 add_loc
->second
= sym
;
1653 gold_assert(oldsym
!= NULL
);
1655 if (add_def_to_table
)
1656 add_def_loc
->second
= sym
;
1658 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1663 // Define a symbol based on an Output_data.
1666 Symbol_table::define_in_output_data(const char* name
,
1667 const char* version
,
1672 elfcpp::STB binding
,
1673 elfcpp::STV visibility
,
1674 unsigned char nonvis
,
1675 bool offset_is_from_end
,
1678 if (parameters
->target().get_size() == 32)
1680 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1681 return this->do_define_in_output_data
<32>(name
, version
, od
,
1682 value
, symsize
, type
, binding
,
1690 else if (parameters
->target().get_size() == 64)
1692 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1693 return this->do_define_in_output_data
<64>(name
, version
, od
,
1694 value
, symsize
, type
, binding
,
1706 // Define a symbol in an Output_data, sized version.
1710 Symbol_table::do_define_in_output_data(
1712 const char* version
,
1714 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1715 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1717 elfcpp::STB binding
,
1718 elfcpp::STV visibility
,
1719 unsigned char nonvis
,
1720 bool offset_is_from_end
,
1723 Sized_symbol
<size
>* sym
;
1724 Sized_symbol
<size
>* oldsym
;
1725 bool resolve_oldsym
;
1727 if (parameters
->target().is_big_endian())
1729 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1730 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1731 only_if_ref
, &oldsym
,
1739 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1740 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1741 only_if_ref
, &oldsym
,
1751 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1752 visibility
, nonvis
, offset_is_from_end
);
1756 if (binding
== elfcpp::STB_LOCAL
1757 || this->version_script_
.symbol_is_local(name
))
1758 this->force_local(sym
);
1759 else if (version
!= NULL
)
1760 sym
->set_is_default();
1764 if (Symbol_table::should_override_with_special(oldsym
))
1765 this->override_with_special(oldsym
, sym
);
1776 // Define a symbol based on an Output_segment.
1779 Symbol_table::define_in_output_segment(const char* name
,
1780 const char* version
, Output_segment
* os
,
1784 elfcpp::STB binding
,
1785 elfcpp::STV visibility
,
1786 unsigned char nonvis
,
1787 Symbol::Segment_offset_base offset_base
,
1790 if (parameters
->target().get_size() == 32)
1792 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1793 return this->do_define_in_output_segment
<32>(name
, version
, os
,
1794 value
, symsize
, type
,
1795 binding
, visibility
, nonvis
,
1796 offset_base
, only_if_ref
);
1801 else if (parameters
->target().get_size() == 64)
1803 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1804 return this->do_define_in_output_segment
<64>(name
, version
, os
,
1805 value
, symsize
, type
,
1806 binding
, visibility
, nonvis
,
1807 offset_base
, only_if_ref
);
1816 // Define a symbol in an Output_segment, sized version.
1820 Symbol_table::do_define_in_output_segment(
1822 const char* version
,
1824 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1825 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1827 elfcpp::STB binding
,
1828 elfcpp::STV visibility
,
1829 unsigned char nonvis
,
1830 Symbol::Segment_offset_base offset_base
,
1833 Sized_symbol
<size
>* sym
;
1834 Sized_symbol
<size
>* oldsym
;
1835 bool resolve_oldsym
;
1837 if (parameters
->target().is_big_endian())
1839 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1840 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1841 only_if_ref
, &oldsym
,
1849 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1850 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1851 only_if_ref
, &oldsym
,
1861 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1862 visibility
, nonvis
, offset_base
);
1866 if (binding
== elfcpp::STB_LOCAL
1867 || this->version_script_
.symbol_is_local(name
))
1868 this->force_local(sym
);
1869 else if (version
!= NULL
)
1870 sym
->set_is_default();
1874 if (Symbol_table::should_override_with_special(oldsym
))
1875 this->override_with_special(oldsym
, sym
);
1886 // Define a special symbol with a constant value. It is a multiple
1887 // definition error if this symbol is already defined.
1890 Symbol_table::define_as_constant(const char* name
,
1891 const char* version
,
1895 elfcpp::STB binding
,
1896 elfcpp::STV visibility
,
1897 unsigned char nonvis
,
1899 bool force_override
)
1901 if (parameters
->target().get_size() == 32)
1903 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1904 return this->do_define_as_constant
<32>(name
, version
, value
,
1905 symsize
, type
, binding
,
1906 visibility
, nonvis
, only_if_ref
,
1912 else if (parameters
->target().get_size() == 64)
1914 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1915 return this->do_define_as_constant
<64>(name
, version
, value
,
1916 symsize
, type
, binding
,
1917 visibility
, nonvis
, only_if_ref
,
1927 // Define a symbol as a constant, sized version.
1931 Symbol_table::do_define_as_constant(
1933 const char* version
,
1934 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1935 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1937 elfcpp::STB binding
,
1938 elfcpp::STV visibility
,
1939 unsigned char nonvis
,
1941 bool force_override
)
1943 Sized_symbol
<size
>* sym
;
1944 Sized_symbol
<size
>* oldsym
;
1945 bool resolve_oldsym
;
1947 if (parameters
->target().is_big_endian())
1949 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1950 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1951 only_if_ref
, &oldsym
,
1959 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1960 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1961 only_if_ref
, &oldsym
,
1971 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
1976 // Version symbols are absolute symbols with name == version.
1977 // We don't want to force them to be local.
1978 if ((version
== NULL
1981 && (binding
== elfcpp::STB_LOCAL
1982 || this->version_script_
.symbol_is_local(name
)))
1983 this->force_local(sym
);
1984 else if (version
!= NULL
1985 && (name
!= version
|| value
!= 0))
1986 sym
->set_is_default();
1990 if (force_override
|| Symbol_table::should_override_with_special(oldsym
))
1991 this->override_with_special(oldsym
, sym
);
2002 // Define a set of symbols in output sections.
2005 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2006 const Define_symbol_in_section
* p
,
2009 for (int i
= 0; i
< count
; ++i
, ++p
)
2011 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2013 this->define_in_output_data(p
->name
, NULL
, os
, p
->value
,
2014 p
->size
, p
->type
, p
->binding
,
2015 p
->visibility
, p
->nonvis
,
2016 p
->offset_is_from_end
,
2017 only_if_ref
|| p
->only_if_ref
);
2019 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2020 p
->binding
, p
->visibility
, p
->nonvis
,
2021 only_if_ref
|| p
->only_if_ref
,
2026 // Define a set of symbols in output segments.
2029 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2030 const Define_symbol_in_segment
* p
,
2033 for (int i
= 0; i
< count
; ++i
, ++p
)
2035 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2036 p
->segment_flags_set
,
2037 p
->segment_flags_clear
);
2039 this->define_in_output_segment(p
->name
, NULL
, os
, p
->value
,
2040 p
->size
, p
->type
, p
->binding
,
2041 p
->visibility
, p
->nonvis
,
2043 only_if_ref
|| p
->only_if_ref
);
2045 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2046 p
->binding
, p
->visibility
, p
->nonvis
,
2047 only_if_ref
|| p
->only_if_ref
,
2052 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2053 // symbol should be defined--typically a .dyn.bss section. VALUE is
2054 // the offset within POSD.
2058 Symbol_table::define_with_copy_reloc(
2059 Sized_symbol
<size
>* csym
,
2061 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2063 gold_assert(csym
->is_from_dynobj());
2064 gold_assert(!csym
->is_copied_from_dynobj());
2065 Object
* object
= csym
->object();
2066 gold_assert(object
->is_dynamic());
2067 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2069 // Our copied variable has to override any variable in a shared
2071 elfcpp::STB binding
= csym
->binding();
2072 if (binding
== elfcpp::STB_WEAK
)
2073 binding
= elfcpp::STB_GLOBAL
;
2075 this->define_in_output_data(csym
->name(), csym
->version(),
2076 posd
, value
, csym
->symsize(),
2077 csym
->type(), binding
,
2078 csym
->visibility(), csym
->nonvis(),
2081 csym
->set_is_copied_from_dynobj();
2082 csym
->set_needs_dynsym_entry();
2084 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2086 // We have now defined all aliases, but we have not entered them all
2087 // in the copied_symbol_dynobjs_ map.
2088 if (csym
->has_alias())
2093 sym
= this->weak_aliases_
[sym
];
2096 gold_assert(sym
->output_data() == posd
);
2098 sym
->set_is_copied_from_dynobj();
2099 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2104 // SYM is defined using a COPY reloc. Return the dynamic object where
2105 // the original definition was found.
2108 Symbol_table::get_copy_source(const Symbol
* sym
) const
2110 gold_assert(sym
->is_copied_from_dynobj());
2111 Copied_symbol_dynobjs::const_iterator p
=
2112 this->copied_symbol_dynobjs_
.find(sym
);
2113 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2117 // Add any undefined symbols named on the command line.
2120 Symbol_table::add_undefined_symbols_from_command_line()
2122 if (parameters
->options().any_undefined())
2124 if (parameters
->target().get_size() == 32)
2126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2127 this->do_add_undefined_symbols_from_command_line
<32>();
2132 else if (parameters
->target().get_size() == 64)
2134 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2135 this->do_add_undefined_symbols_from_command_line
<64>();
2147 Symbol_table::do_add_undefined_symbols_from_command_line()
2149 for (options::String_set::const_iterator p
=
2150 parameters
->options().undefined_begin();
2151 p
!= parameters
->options().undefined_end();
2154 const char* name
= p
->c_str();
2156 if (this->lookup(name
) != NULL
)
2159 const char* version
= NULL
;
2161 Sized_symbol
<size
>* sym
;
2162 Sized_symbol
<size
>* oldsym
;
2163 bool resolve_oldsym
;
2164 if (parameters
->target().is_big_endian())
2166 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2167 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2176 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2177 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2185 gold_assert(oldsym
== NULL
);
2187 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2188 elfcpp::STV_DEFAULT
, 0);
2189 ++this->saw_undefined_
;
2193 // Set the dynamic symbol indexes. INDEX is the index of the first
2194 // global dynamic symbol. Pointers to the symbols are stored into the
2195 // vector SYMS. The names are added to DYNPOOL. This returns an
2196 // updated dynamic symbol index.
2199 Symbol_table::set_dynsym_indexes(unsigned int index
,
2200 std::vector
<Symbol
*>* syms
,
2201 Stringpool
* dynpool
,
2204 for (Symbol_table_type::iterator p
= this->table_
.begin();
2205 p
!= this->table_
.end();
2208 Symbol
* sym
= p
->second
;
2210 // Note that SYM may already have a dynamic symbol index, since
2211 // some symbols appear more than once in the symbol table, with
2212 // and without a version.
2214 if (!sym
->should_add_dynsym_entry())
2215 sym
->set_dynsym_index(-1U);
2216 else if (!sym
->has_dynsym_index())
2218 sym
->set_dynsym_index(index
);
2220 syms
->push_back(sym
);
2221 dynpool
->add(sym
->name(), false, NULL
);
2223 // Record any version information.
2224 if (sym
->version() != NULL
)
2225 versions
->record_version(this, dynpool
, sym
);
2229 // Finish up the versions. In some cases this may add new dynamic
2231 index
= versions
->finalize(this, index
, syms
);
2236 // Set the final values for all the symbols. The index of the first
2237 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2238 // file offset OFF. Add their names to POOL. Return the new file
2239 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2242 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2243 size_t dyncount
, Stringpool
* pool
,
2244 unsigned int *plocal_symcount
)
2248 gold_assert(*plocal_symcount
!= 0);
2249 this->first_global_index_
= *plocal_symcount
;
2251 this->dynamic_offset_
= dynoff
;
2252 this->first_dynamic_global_index_
= dyn_global_index
;
2253 this->dynamic_count_
= dyncount
;
2255 if (parameters
->target().get_size() == 32)
2257 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2258 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2263 else if (parameters
->target().get_size() == 64)
2265 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2266 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2274 // Now that we have the final symbol table, we can reliably note
2275 // which symbols should get warnings.
2276 this->warnings_
.note_warnings(this);
2281 // SYM is going into the symbol table at *PINDEX. Add the name to
2282 // POOL, update *PINDEX and *POFF.
2286 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2287 unsigned int* pindex
, off_t
* poff
)
2289 sym
->set_symtab_index(*pindex
);
2290 pool
->add(sym
->name(), false, NULL
);
2292 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2295 // Set the final value for all the symbols. This is called after
2296 // Layout::finalize, so all the output sections have their final
2301 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2302 unsigned int* plocal_symcount
)
2304 off
= align_address(off
, size
>> 3);
2305 this->offset_
= off
;
2307 unsigned int index
= *plocal_symcount
;
2308 const unsigned int orig_index
= index
;
2310 // First do all the symbols which have been forced to be local, as
2311 // they must appear before all global symbols.
2312 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2313 p
!= this->forced_locals_
.end();
2317 gold_assert(sym
->is_forced_local());
2318 if (this->sized_finalize_symbol
<size
>(sym
))
2320 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2325 // Now do all the remaining symbols.
2326 for (Symbol_table_type::iterator p
= this->table_
.begin();
2327 p
!= this->table_
.end();
2330 Symbol
* sym
= p
->second
;
2331 if (this->sized_finalize_symbol
<size
>(sym
))
2332 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2335 this->output_count_
= index
- orig_index
;
2340 // Finalize the symbol SYM. This returns true if the symbol should be
2341 // added to the symbol table, false otherwise.
2345 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2347 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2349 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2351 // The default version of a symbol may appear twice in the symbol
2352 // table. We only need to finalize it once.
2353 if (sym
->has_symtab_index())
2358 gold_assert(!sym
->has_symtab_index());
2359 sym
->set_symtab_index(-1U);
2360 gold_assert(sym
->dynsym_index() == -1U);
2366 switch (sym
->source())
2368 case Symbol::FROM_OBJECT
:
2371 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2373 // FIXME: We need some target specific support here.
2375 && shndx
!= elfcpp::SHN_ABS
2376 && shndx
!= elfcpp::SHN_COMMON
)
2378 gold_error(_("%s: unsupported symbol section 0x%x"),
2379 sym
->demangled_name().c_str(), shndx
);
2380 shndx
= elfcpp::SHN_UNDEF
;
2383 Object
* symobj
= sym
->object();
2384 if (symobj
->is_dynamic())
2387 shndx
= elfcpp::SHN_UNDEF
;
2389 else if (symobj
->pluginobj() != NULL
)
2392 shndx
= elfcpp::SHN_UNDEF
;
2394 else if (shndx
== elfcpp::SHN_UNDEF
)
2396 else if (!is_ordinary
2397 && (shndx
== elfcpp::SHN_ABS
|| shndx
== elfcpp::SHN_COMMON
))
2398 value
= sym
->value();
2401 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2402 Output_section
* os
= relobj
->output_section(shndx
);
2406 sym
->set_symtab_index(-1U);
2407 bool static_or_reloc
= (parameters
->doing_static_link() ||
2408 parameters
->options().relocatable());
2409 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2414 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2415 if (secoff64
== -1ULL)
2417 // The section needs special handling (e.g., a merge section).
2418 value
= os
->output_address(relobj
, shndx
, sym
->value());
2423 convert_types
<Value_type
, uint64_t>(secoff64
);
2424 if (sym
->type() == elfcpp::STT_TLS
)
2425 value
= sym
->value() + os
->tls_offset() + secoff
;
2427 value
= sym
->value() + os
->address() + secoff
;
2433 case Symbol::IN_OUTPUT_DATA
:
2435 Output_data
* od
= sym
->output_data();
2436 value
= sym
->value();
2437 if (sym
->type() != elfcpp::STT_TLS
)
2438 value
+= od
->address();
2441 Output_section
* os
= od
->output_section();
2442 gold_assert(os
!= NULL
);
2443 value
+= os
->tls_offset() + (od
->address() - os
->address());
2445 if (sym
->offset_is_from_end())
2446 value
+= od
->data_size();
2450 case Symbol::IN_OUTPUT_SEGMENT
:
2452 Output_segment
* os
= sym
->output_segment();
2453 value
= sym
->value();
2454 if (sym
->type() != elfcpp::STT_TLS
)
2455 value
+= os
->vaddr();
2456 switch (sym
->offset_base())
2458 case Symbol::SEGMENT_START
:
2460 case Symbol::SEGMENT_END
:
2461 value
+= os
->memsz();
2463 case Symbol::SEGMENT_BSS
:
2464 value
+= os
->filesz();
2472 case Symbol::IS_CONSTANT
:
2473 value
= sym
->value();
2476 case Symbol::IS_UNDEFINED
:
2484 sym
->set_value(value
);
2486 if (parameters
->options().strip_all())
2488 sym
->set_symtab_index(-1U);
2495 // Write out the global symbols.
2498 Symbol_table::write_globals(const Stringpool
* sympool
,
2499 const Stringpool
* dynpool
,
2500 Output_symtab_xindex
* symtab_xindex
,
2501 Output_symtab_xindex
* dynsym_xindex
,
2502 Output_file
* of
) const
2504 switch (parameters
->size_and_endianness())
2506 #ifdef HAVE_TARGET_32_LITTLE
2507 case Parameters::TARGET_32_LITTLE
:
2508 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2512 #ifdef HAVE_TARGET_32_BIG
2513 case Parameters::TARGET_32_BIG
:
2514 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2518 #ifdef HAVE_TARGET_64_LITTLE
2519 case Parameters::TARGET_64_LITTLE
:
2520 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2524 #ifdef HAVE_TARGET_64_BIG
2525 case Parameters::TARGET_64_BIG
:
2526 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2535 // Write out the global symbols.
2537 template<int size
, bool big_endian
>
2539 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2540 const Stringpool
* dynpool
,
2541 Output_symtab_xindex
* symtab_xindex
,
2542 Output_symtab_xindex
* dynsym_xindex
,
2543 Output_file
* of
) const
2545 const Target
& target
= parameters
->target();
2547 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2549 const unsigned int output_count
= this->output_count_
;
2550 const section_size_type oview_size
= output_count
* sym_size
;
2551 const unsigned int first_global_index
= this->first_global_index_
;
2552 unsigned char* psyms
;
2553 if (this->offset_
== 0 || output_count
== 0)
2556 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2558 const unsigned int dynamic_count
= this->dynamic_count_
;
2559 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2560 const unsigned int first_dynamic_global_index
=
2561 this->first_dynamic_global_index_
;
2562 unsigned char* dynamic_view
;
2563 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2564 dynamic_view
= NULL
;
2566 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2568 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2569 p
!= this->table_
.end();
2572 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2574 // Possibly warn about unresolved symbols in shared libraries.
2575 this->warn_about_undefined_dynobj_symbol(sym
);
2577 unsigned int sym_index
= sym
->symtab_index();
2578 unsigned int dynsym_index
;
2579 if (dynamic_view
== NULL
)
2582 dynsym_index
= sym
->dynsym_index();
2584 if (sym_index
== -1U && dynsym_index
== -1U)
2586 // This symbol is not included in the output file.
2591 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2592 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2593 switch (sym
->source())
2595 case Symbol::FROM_OBJECT
:
2598 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2600 // FIXME: We need some target specific support here.
2602 && in_shndx
!= elfcpp::SHN_ABS
2603 && in_shndx
!= elfcpp::SHN_COMMON
)
2605 gold_error(_("%s: unsupported symbol section 0x%x"),
2606 sym
->demangled_name().c_str(), in_shndx
);
2611 Object
* symobj
= sym
->object();
2612 if (symobj
->is_dynamic())
2614 if (sym
->needs_dynsym_value())
2615 dynsym_value
= target
.dynsym_value(sym
);
2616 shndx
= elfcpp::SHN_UNDEF
;
2618 else if (symobj
->pluginobj() != NULL
)
2619 shndx
= elfcpp::SHN_UNDEF
;
2620 else if (in_shndx
== elfcpp::SHN_UNDEF
2622 && (in_shndx
== elfcpp::SHN_ABS
2623 || in_shndx
== elfcpp::SHN_COMMON
)))
2627 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2628 Output_section
* os
= relobj
->output_section(in_shndx
);
2629 gold_assert(os
!= NULL
);
2630 shndx
= os
->out_shndx();
2632 if (shndx
>= elfcpp::SHN_LORESERVE
)
2634 if (sym_index
!= -1U)
2635 symtab_xindex
->add(sym_index
, shndx
);
2636 if (dynsym_index
!= -1U)
2637 dynsym_xindex
->add(dynsym_index
, shndx
);
2638 shndx
= elfcpp::SHN_XINDEX
;
2641 // In object files symbol values are section
2643 if (parameters
->options().relocatable())
2644 sym_value
-= os
->address();
2650 case Symbol::IN_OUTPUT_DATA
:
2651 shndx
= sym
->output_data()->out_shndx();
2652 if (shndx
>= elfcpp::SHN_LORESERVE
)
2654 if (sym_index
!= -1U)
2655 symtab_xindex
->add(sym_index
, shndx
);
2656 if (dynsym_index
!= -1U)
2657 dynsym_xindex
->add(dynsym_index
, shndx
);
2658 shndx
= elfcpp::SHN_XINDEX
;
2662 case Symbol::IN_OUTPUT_SEGMENT
:
2663 shndx
= elfcpp::SHN_ABS
;
2666 case Symbol::IS_CONSTANT
:
2667 shndx
= elfcpp::SHN_ABS
;
2670 case Symbol::IS_UNDEFINED
:
2671 shndx
= elfcpp::SHN_UNDEF
;
2678 if (sym_index
!= -1U)
2680 sym_index
-= first_global_index
;
2681 gold_assert(sym_index
< output_count
);
2682 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2683 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2687 if (dynsym_index
!= -1U)
2689 dynsym_index
-= first_dynamic_global_index
;
2690 gold_assert(dynsym_index
< dynamic_count
);
2691 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2692 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2697 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2698 if (dynamic_view
!= NULL
)
2699 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2702 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2703 // strtab holding the name.
2705 template<int size
, bool big_endian
>
2707 Symbol_table::sized_write_symbol(
2708 Sized_symbol
<size
>* sym
,
2709 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2711 const Stringpool
* pool
,
2712 unsigned char* p
) const
2714 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2715 osym
.put_st_name(pool
->get_offset(sym
->name()));
2716 osym
.put_st_value(value
);
2717 // Use a symbol size of zero for undefined symbols from shared libraries.
2718 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2719 osym
.put_st_size(0);
2721 osym
.put_st_size(sym
->symsize());
2722 // A version script may have overridden the default binding.
2723 if (sym
->is_forced_local())
2724 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, sym
->type()));
2726 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
2727 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2728 osym
.put_st_shndx(shndx
);
2731 // Check for unresolved symbols in shared libraries. This is
2732 // controlled by the --allow-shlib-undefined option.
2734 // We only warn about libraries for which we have seen all the
2735 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2736 // which were not seen in this link. If we didn't see a DT_NEEDED
2737 // entry, we aren't going to be able to reliably report whether the
2738 // symbol is undefined.
2740 // We also don't warn about libraries found in a system library
2741 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2742 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2743 // can have undefined references satisfied by ld-linux.so.
2746 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2749 if (sym
->source() == Symbol::FROM_OBJECT
2750 && sym
->object()->is_dynamic()
2751 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2752 && sym
->binding() != elfcpp::STB_WEAK
2753 && !parameters
->options().allow_shlib_undefined()
2754 && !parameters
->target().is_defined_by_abi(sym
)
2755 && !sym
->object()->is_in_system_directory())
2757 // A very ugly cast.
2758 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2759 if (!dynobj
->has_unknown_needed_entries())
2760 gold_undefined_symbol(sym
);
2764 // Write out a section symbol. Return the update offset.
2767 Symbol_table::write_section_symbol(const Output_section
*os
,
2768 Output_symtab_xindex
* symtab_xindex
,
2772 switch (parameters
->size_and_endianness())
2774 #ifdef HAVE_TARGET_32_LITTLE
2775 case Parameters::TARGET_32_LITTLE
:
2776 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2780 #ifdef HAVE_TARGET_32_BIG
2781 case Parameters::TARGET_32_BIG
:
2782 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2786 #ifdef HAVE_TARGET_64_LITTLE
2787 case Parameters::TARGET_64_LITTLE
:
2788 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2792 #ifdef HAVE_TARGET_64_BIG
2793 case Parameters::TARGET_64_BIG
:
2794 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2803 // Write out a section symbol, specialized for size and endianness.
2805 template<int size
, bool big_endian
>
2807 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2808 Output_symtab_xindex
* symtab_xindex
,
2812 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2814 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2816 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2817 osym
.put_st_name(0);
2818 if (parameters
->options().relocatable())
2819 osym
.put_st_value(0);
2821 osym
.put_st_value(os
->address());
2822 osym
.put_st_size(0);
2823 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2824 elfcpp::STT_SECTION
));
2825 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2827 unsigned int shndx
= os
->out_shndx();
2828 if (shndx
>= elfcpp::SHN_LORESERVE
)
2830 symtab_xindex
->add(os
->symtab_index(), shndx
);
2831 shndx
= elfcpp::SHN_XINDEX
;
2833 osym
.put_st_shndx(shndx
);
2835 of
->write_output_view(offset
, sym_size
, pov
);
2838 // Print statistical information to stderr. This is used for --stats.
2841 Symbol_table::print_stats() const
2843 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2844 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2845 program_name
, this->table_
.size(), this->table_
.bucket_count());
2847 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2848 program_name
, this->table_
.size());
2850 this->namepool_
.print_stats("symbol table stringpool");
2853 // We check for ODR violations by looking for symbols with the same
2854 // name for which the debugging information reports that they were
2855 // defined in different source locations. When comparing the source
2856 // location, we consider instances with the same base filename and
2857 // line number to be the same. This is because different object
2858 // files/shared libraries can include the same header file using
2859 // different paths, and we don't want to report an ODR violation in
2862 // This struct is used to compare line information, as returned by
2863 // Dwarf_line_info::one_addr2line. It implements a < comparison
2864 // operator used with std::set.
2866 struct Odr_violation_compare
2869 operator()(const std::string
& s1
, const std::string
& s2
) const
2871 std::string::size_type pos1
= s1
.rfind('/');
2872 std::string::size_type pos2
= s2
.rfind('/');
2873 if (pos1
== std::string::npos
2874 || pos2
== std::string::npos
)
2876 return s1
.compare(pos1
, std::string::npos
,
2877 s2
, pos2
, std::string::npos
) < 0;
2881 // Check candidate_odr_violations_ to find symbols with the same name
2882 // but apparently different definitions (different source-file/line-no).
2885 Symbol_table::detect_odr_violations(const Task
* task
,
2886 const char* output_file_name
) const
2888 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
2889 it
!= candidate_odr_violations_
.end();
2892 const char* symbol_name
= it
->first
;
2893 // We use a sorted set so the output is deterministic.
2894 std::set
<std::string
, Odr_violation_compare
> line_nums
;
2896 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
2897 locs
= it
->second
.begin();
2898 locs
!= it
->second
.end();
2901 // We need to lock the object in order to read it. This
2902 // means that we have to run in a singleton Task. If we
2903 // want to run this in a general Task for better
2904 // performance, we will need one Task for object, plus
2905 // appropriate locking to ensure that we don't conflict with
2906 // other uses of the object. Also note, one_addr2line is not
2907 // currently thread-safe.
2908 Task_lock_obj
<Object
> tl(task
, locs
->object
);
2909 // 16 is the size of the object-cache that one_addr2line should use.
2910 std::string lineno
= Dwarf_line_info::one_addr2line(
2911 locs
->object
, locs
->shndx
, locs
->offset
, 16);
2912 if (!lineno
.empty())
2913 line_nums
.insert(lineno
);
2916 if (line_nums
.size() > 1)
2918 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2919 "places (possible ODR violation):"),
2920 output_file_name
, demangle(symbol_name
).c_str());
2921 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
2922 it2
!= line_nums
.end();
2924 fprintf(stderr
, " %s\n", it2
->c_str());
2927 // We only call one_addr2line() in this function, so we can clear its cache.
2928 Dwarf_line_info::clear_addr2line_cache();
2931 // Warnings functions.
2933 // Add a new warning.
2936 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
2937 const std::string
& warning
)
2939 name
= symtab
->canonicalize_name(name
);
2940 this->warnings_
[name
].set(obj
, warning
);
2943 // Look through the warnings and mark the symbols for which we should
2944 // warn. This is called during Layout::finalize when we know the
2945 // sources for all the symbols.
2948 Warnings::note_warnings(Symbol_table
* symtab
)
2950 for (Warning_table::iterator p
= this->warnings_
.begin();
2951 p
!= this->warnings_
.end();
2954 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
2956 && sym
->source() == Symbol::FROM_OBJECT
2957 && sym
->object() == p
->second
.object
)
2958 sym
->set_has_warning();
2962 // Issue a warning. This is called when we see a relocation against a
2963 // symbol for which has a warning.
2965 template<int size
, bool big_endian
>
2967 Warnings::issue_warning(const Symbol
* sym
,
2968 const Relocate_info
<size
, big_endian
>* relinfo
,
2969 size_t relnum
, off_t reloffset
) const
2971 gold_assert(sym
->has_warning());
2972 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
2973 gold_assert(p
!= this->warnings_
.end());
2974 gold_warning_at_location(relinfo
, relnum
, reloffset
,
2975 "%s", p
->second
.text
.c_str());
2978 // Instantiate the templates we need. We could use the configure
2979 // script to restrict this to only the ones needed for implemented
2982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2985 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
2988 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2991 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
2994 #ifdef HAVE_TARGET_32_LITTLE
2997 Symbol_table::add_from_relobj
<32, false>(
2998 Sized_relobj
<32, false>* relobj
,
2999 const unsigned char* syms
,
3001 size_t symndx_offset
,
3002 const char* sym_names
,
3003 size_t sym_name_size
,
3004 Sized_relobj
<32, false>::Symbols
* sympointers
,
3008 #ifdef HAVE_TARGET_32_BIG
3011 Symbol_table::add_from_relobj
<32, true>(
3012 Sized_relobj
<32, true>* relobj
,
3013 const unsigned char* syms
,
3015 size_t symndx_offset
,
3016 const char* sym_names
,
3017 size_t sym_name_size
,
3018 Sized_relobj
<32, true>::Symbols
* sympointers
,
3022 #ifdef HAVE_TARGET_64_LITTLE
3025 Symbol_table::add_from_relobj
<64, false>(
3026 Sized_relobj
<64, false>* relobj
,
3027 const unsigned char* syms
,
3029 size_t symndx_offset
,
3030 const char* sym_names
,
3031 size_t sym_name_size
,
3032 Sized_relobj
<64, false>::Symbols
* sympointers
,
3036 #ifdef HAVE_TARGET_64_BIG
3039 Symbol_table::add_from_relobj
<64, true>(
3040 Sized_relobj
<64, true>* relobj
,
3041 const unsigned char* syms
,
3043 size_t symndx_offset
,
3044 const char* sym_names
,
3045 size_t sym_name_size
,
3046 Sized_relobj
<64, true>::Symbols
* sympointers
,
3050 #ifdef HAVE_TARGET_32_LITTLE
3053 Symbol_table::add_from_pluginobj
<32, false>(
3054 Sized_pluginobj
<32, false>* obj
,
3057 elfcpp::Sym
<32, false>* sym
);
3060 #ifdef HAVE_TARGET_32_BIG
3063 Symbol_table::add_from_pluginobj
<32, true>(
3064 Sized_pluginobj
<32, true>* obj
,
3067 elfcpp::Sym
<32, true>* sym
);
3070 #ifdef HAVE_TARGET_64_LITTLE
3073 Symbol_table::add_from_pluginobj
<64, false>(
3074 Sized_pluginobj
<64, false>* obj
,
3077 elfcpp::Sym
<64, false>* sym
);
3080 #ifdef HAVE_TARGET_64_BIG
3083 Symbol_table::add_from_pluginobj
<64, true>(
3084 Sized_pluginobj
<64, true>* obj
,
3087 elfcpp::Sym
<64, true>* sym
);
3090 #ifdef HAVE_TARGET_32_LITTLE
3093 Symbol_table::add_from_dynobj
<32, false>(
3094 Sized_dynobj
<32, false>* dynobj
,
3095 const unsigned char* syms
,
3097 const char* sym_names
,
3098 size_t sym_name_size
,
3099 const unsigned char* versym
,
3101 const std::vector
<const char*>* version_map
,
3102 Sized_relobj
<32, false>::Symbols
* sympointers
,
3106 #ifdef HAVE_TARGET_32_BIG
3109 Symbol_table::add_from_dynobj
<32, true>(
3110 Sized_dynobj
<32, true>* dynobj
,
3111 const unsigned char* syms
,
3113 const char* sym_names
,
3114 size_t sym_name_size
,
3115 const unsigned char* versym
,
3117 const std::vector
<const char*>* version_map
,
3118 Sized_relobj
<32, true>::Symbols
* sympointers
,
3122 #ifdef HAVE_TARGET_64_LITTLE
3125 Symbol_table::add_from_dynobj
<64, false>(
3126 Sized_dynobj
<64, false>* dynobj
,
3127 const unsigned char* syms
,
3129 const char* sym_names
,
3130 size_t sym_name_size
,
3131 const unsigned char* versym
,
3133 const std::vector
<const char*>* version_map
,
3134 Sized_relobj
<64, false>::Symbols
* sympointers
,
3138 #ifdef HAVE_TARGET_64_BIG
3141 Symbol_table::add_from_dynobj
<64, true>(
3142 Sized_dynobj
<64, true>* dynobj
,
3143 const unsigned char* syms
,
3145 const char* sym_names
,
3146 size_t sym_name_size
,
3147 const unsigned char* versym
,
3149 const std::vector
<const char*>* version_map
,
3150 Sized_relobj
<64, true>::Symbols
* sympointers
,
3154 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3157 Symbol_table::define_with_copy_reloc
<32>(
3158 Sized_symbol
<32>* sym
,
3160 elfcpp::Elf_types
<32>::Elf_Addr value
);
3163 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3166 Symbol_table::define_with_copy_reloc
<64>(
3167 Sized_symbol
<64>* sym
,
3169 elfcpp::Elf_types
<64>::Elf_Addr value
);
3172 #ifdef HAVE_TARGET_32_LITTLE
3175 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3176 const Relocate_info
<32, false>* relinfo
,
3177 size_t relnum
, off_t reloffset
) const;
3180 #ifdef HAVE_TARGET_32_BIG
3183 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3184 const Relocate_info
<32, true>* relinfo
,
3185 size_t relnum
, off_t reloffset
) const;
3188 #ifdef HAVE_TARGET_64_LITTLE
3191 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3192 const Relocate_info
<64, false>* relinfo
,
3193 size_t relnum
, off_t reloffset
) const;
3196 #ifdef HAVE_TARGET_64_BIG
3199 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3200 const Relocate_info
<64, true>* relinfo
,
3201 size_t relnum
, off_t reloffset
) const;
3204 } // End namespace gold.