1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
36 #include "copy-relocs.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
50 // A class to handle the PLT data.
53 class Output_data_plt_x86_64
: public Output_section_data
56 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, false> Reloc_section
;
58 Output_data_plt_x86_64(Layout
* layout
, Output_data_got
<64, false>* got
,
59 Output_data_space
* got_plt
,
60 Output_data_space
* got_irelative
)
61 : Output_section_data(16), layout_(layout
), tlsdesc_rel_(NULL
),
62 irelative_rel_(NULL
), got_(got
), got_plt_(got_plt
),
63 got_irelative_(got_irelative
), count_(0), irelative_count_(0),
64 tlsdesc_got_offset_(-1U), free_list_()
65 { this->init(layout
); }
67 Output_data_plt_x86_64(Layout
* layout
, Output_data_got
<64, false>* got
,
68 Output_data_space
* got_plt
,
69 Output_data_space
* got_irelative
,
70 unsigned int plt_count
)
71 : Output_section_data((plt_count
+ 1) * plt_entry_size
, 16, false),
72 layout_(layout
), tlsdesc_rel_(NULL
), irelative_rel_(NULL
), got_(got
),
73 got_plt_(got_plt
), got_irelative_(got_irelative
), count_(plt_count
),
74 irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
78 // Initialize the free list and reserve the first entry.
79 this->free_list_
.init((plt_count
+ 1) * plt_entry_size
, false);
80 this->free_list_
.remove(0, plt_entry_size
);
83 // Initialize the PLT section.
87 // Add an entry to the PLT.
89 add_entry(Symbol_table
*, Layout
*, Symbol
* gsym
);
91 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
93 add_local_ifunc_entry(Symbol_table
* symtab
, Layout
*,
94 Sized_relobj_file
<size
, false>* relobj
,
95 unsigned int local_sym_index
);
97 // Add the relocation for a PLT entry.
99 add_relocation(Symbol_table
*, Layout
*, Symbol
* gsym
,
100 unsigned int got_offset
);
102 // Add the reserved TLSDESC_PLT entry to the PLT.
104 reserve_tlsdesc_entry(unsigned int got_offset
)
105 { this->tlsdesc_got_offset_
= got_offset
; }
107 // Return true if a TLSDESC_PLT entry has been reserved.
109 has_tlsdesc_entry() const
110 { return this->tlsdesc_got_offset_
!= -1U; }
112 // Return the GOT offset for the reserved TLSDESC_PLT entry.
114 get_tlsdesc_got_offset() const
115 { return this->tlsdesc_got_offset_
; }
117 // Return the offset of the reserved TLSDESC_PLT entry.
119 get_tlsdesc_plt_offset() const
120 { return (this->count_
+ this->irelative_count_
+ 1) * plt_entry_size
; }
122 // Return the .rela.plt section data.
125 { return this->rel_
; }
127 // Return where the TLSDESC relocations should go.
129 rela_tlsdesc(Layout
*);
131 // Return where the IRELATIVE relocations should go in the PLT
134 rela_irelative(Symbol_table
*, Layout
*);
136 // Return whether we created a section for IRELATIVE relocations.
138 has_irelative_section() const
139 { return this->irelative_rel_
!= NULL
; }
141 // Return the number of PLT entries.
144 { return this->count_
+ this->irelative_count_
; }
146 // Return the offset of the first non-reserved PLT entry.
148 first_plt_entry_offset()
149 { return plt_entry_size
; }
151 // Return the size of a PLT entry.
154 { return plt_entry_size
; }
156 // Reserve a slot in the PLT for an existing symbol in an incremental update.
158 reserve_slot(unsigned int plt_index
)
160 this->free_list_
.remove((plt_index
+ 1) * plt_entry_size
,
161 (plt_index
+ 2) * plt_entry_size
);
164 // Return the PLT address to use for a global symbol.
166 address_for_global(const Symbol
*);
168 // Return the PLT address to use for a local symbol.
170 address_for_local(const Relobj
*, unsigned int symndx
);
174 do_adjust_output_section(Output_section
* os
);
176 // Write to a map file.
178 do_print_to_mapfile(Mapfile
* mapfile
) const
179 { mapfile
->print_output_data(this, _("** PLT")); }
182 // The size of an entry in the PLT.
183 static const int plt_entry_size
= 16;
185 // The first entry in the PLT.
186 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
187 // procedure linkage table for both programs and shared objects."
188 static const unsigned char first_plt_entry
[plt_entry_size
];
190 // Other entries in the PLT for an executable.
191 static const unsigned char plt_entry
[plt_entry_size
];
193 // The reserved TLSDESC entry in the PLT for an executable.
194 static const unsigned char tlsdesc_plt_entry
[plt_entry_size
];
196 // The .eh_frame unwind information for the PLT.
197 static const int plt_eh_frame_cie_size
= 16;
198 static const int plt_eh_frame_fde_size
= 32;
199 static const unsigned char plt_eh_frame_cie
[plt_eh_frame_cie_size
];
200 static const unsigned char plt_eh_frame_fde
[plt_eh_frame_fde_size
];
202 // Set the final size.
204 set_final_data_size();
206 // Write out the PLT data.
208 do_write(Output_file
*);
210 // A pointer to the Layout class, so that we can find the .dynamic
211 // section when we write out the GOT PLT section.
213 // The reloc section.
215 // The TLSDESC relocs, if necessary. These must follow the regular
217 Reloc_section
* tlsdesc_rel_
;
218 // The IRELATIVE relocs, if necessary. These must follow the
219 // regular PLT relocations and the TLSDESC relocations.
220 Reloc_section
* irelative_rel_
;
222 Output_data_got
<64, false>* got_
;
223 // The .got.plt section.
224 Output_data_space
* got_plt_
;
225 // The part of the .got.plt section used for IRELATIVE relocs.
226 Output_data_space
* got_irelative_
;
227 // The number of PLT entries.
229 // Number of PLT entries with R_X86_64_IRELATIVE relocs. These
230 // follow the regular PLT entries.
231 unsigned int irelative_count_
;
232 // Offset of the reserved TLSDESC_GOT entry when needed.
233 unsigned int tlsdesc_got_offset_
;
234 // List of available regions within the section, for incremental
236 Free_list free_list_
;
239 // The x86_64 target class.
241 // http://www.x86-64.org/documentation/abi.pdf
242 // TLS info comes from
243 // http://people.redhat.com/drepper/tls.pdf
244 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
247 class Target_x86_64
: public Sized_target
<size
, false>
250 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
251 // uses only Elf64_Rela relocation entries with explicit addends."
252 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, false> Reloc_section
;
255 : Sized_target
<size
, false>(&x86_64_info
),
256 got_(NULL
), plt_(NULL
), got_plt_(NULL
), got_irelative_(NULL
),
257 got_tlsdesc_(NULL
), global_offset_table_(NULL
), rela_dyn_(NULL
),
258 rela_irelative_(NULL
), copy_relocs_(elfcpp::R_X86_64_COPY
),
259 dynbss_(NULL
), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
260 tls_base_symbol_defined_(false)
263 // Hook for a new output section.
265 do_new_output_section(Output_section
*) const;
267 // Scan the relocations to look for symbol adjustments.
269 gc_process_relocs(Symbol_table
* symtab
,
271 Sized_relobj_file
<size
, false>* object
,
272 unsigned int data_shndx
,
273 unsigned int sh_type
,
274 const unsigned char* prelocs
,
276 Output_section
* output_section
,
277 bool needs_special_offset_handling
,
278 size_t local_symbol_count
,
279 const unsigned char* plocal_symbols
);
281 // Scan the relocations to look for symbol adjustments.
283 scan_relocs(Symbol_table
* symtab
,
285 Sized_relobj_file
<size
, false>* object
,
286 unsigned int data_shndx
,
287 unsigned int sh_type
,
288 const unsigned char* prelocs
,
290 Output_section
* output_section
,
291 bool needs_special_offset_handling
,
292 size_t local_symbol_count
,
293 const unsigned char* plocal_symbols
);
295 // Finalize the sections.
297 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
299 // Return the value to use for a dynamic which requires special
302 do_dynsym_value(const Symbol
*) const;
304 // Relocate a section.
306 relocate_section(const Relocate_info
<size
, false>*,
307 unsigned int sh_type
,
308 const unsigned char* prelocs
,
310 Output_section
* output_section
,
311 bool needs_special_offset_handling
,
313 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
314 section_size_type view_size
,
315 const Reloc_symbol_changes
*);
317 // Scan the relocs during a relocatable link.
319 scan_relocatable_relocs(Symbol_table
* symtab
,
321 Sized_relobj_file
<size
, false>* object
,
322 unsigned int data_shndx
,
323 unsigned int sh_type
,
324 const unsigned char* prelocs
,
326 Output_section
* output_section
,
327 bool needs_special_offset_handling
,
328 size_t local_symbol_count
,
329 const unsigned char* plocal_symbols
,
330 Relocatable_relocs
*);
332 // Relocate a section during a relocatable link.
334 relocate_for_relocatable(
335 const Relocate_info
<size
, false>*,
336 unsigned int sh_type
,
337 const unsigned char* prelocs
,
339 Output_section
* output_section
,
340 off_t offset_in_output_section
,
341 const Relocatable_relocs
*,
343 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
344 section_size_type view_size
,
345 unsigned char* reloc_view
,
346 section_size_type reloc_view_size
);
348 // Return a string used to fill a code section with nops.
350 do_code_fill(section_size_type length
) const;
352 // Return whether SYM is defined by the ABI.
354 do_is_defined_by_abi(const Symbol
* sym
) const
355 { return strcmp(sym
->name(), "__tls_get_addr") == 0; }
357 // Return the symbol index to use for a target specific relocation.
358 // The only target specific relocation is R_X86_64_TLSDESC for a
359 // local symbol, which is an absolute reloc.
361 do_reloc_symbol_index(void*, unsigned int r_type
) const
363 gold_assert(r_type
== elfcpp::R_X86_64_TLSDESC
);
367 // Return the addend to use for a target specific relocation.
369 do_reloc_addend(void* arg
, unsigned int r_type
, uint64_t addend
) const;
371 // Return the PLT section.
373 do_plt_address_for_global(const Symbol
* gsym
) const
374 { return this->plt_section()->address_for_global(gsym
); }
377 do_plt_address_for_local(const Relobj
* relobj
, unsigned int symndx
) const
378 { return this->plt_section()->address_for_local(relobj
, symndx
); }
380 // This function should be defined in targets that can use relocation
381 // types to determine (implemented in local_reloc_may_be_function_pointer
382 // and global_reloc_may_be_function_pointer)
383 // if a function's pointer is taken. ICF uses this in safe mode to only
384 // fold those functions whose pointer is defintely not taken. For x86_64
385 // pie binaries, safe ICF cannot be done by looking at relocation types.
387 do_can_check_for_function_pointers() const
388 { return !parameters
->options().pie(); }
390 // Return the base for a DW_EH_PE_datarel encoding.
392 do_ehframe_datarel_base() const;
394 // Adjust -fsplit-stack code which calls non-split-stack code.
396 do_calls_non_split(Relobj
* object
, unsigned int shndx
,
397 section_offset_type fnoffset
, section_size_type fnsize
,
398 unsigned char* view
, section_size_type view_size
,
399 std::string
* from
, std::string
* to
) const;
401 // Return the size of the GOT section.
405 gold_assert(this->got_
!= NULL
);
406 return this->got_
->data_size();
409 // Return the number of entries in the GOT.
411 got_entry_count() const
413 if (this->got_
== NULL
)
415 return this->got_size() / 8;
418 // Return the number of entries in the PLT.
420 plt_entry_count() const;
422 // Return the offset of the first non-reserved PLT entry.
424 first_plt_entry_offset() const;
426 // Return the size of each PLT entry.
428 plt_entry_size() const;
430 // Create the GOT section for an incremental update.
431 Output_data_got_base
*
432 init_got_plt_for_update(Symbol_table
* symtab
,
434 unsigned int got_count
,
435 unsigned int plt_count
);
437 // Reserve a GOT entry for a local symbol, and regenerate any
438 // necessary dynamic relocations.
440 reserve_local_got_entry(unsigned int got_index
,
441 Sized_relobj
<size
, false>* obj
,
443 unsigned int got_type
);
445 // Reserve a GOT entry for a global symbol, and regenerate any
446 // necessary dynamic relocations.
448 reserve_global_got_entry(unsigned int got_index
, Symbol
* gsym
,
449 unsigned int got_type
);
451 // Register an existing PLT entry for a global symbol.
453 register_global_plt_entry(Symbol_table
*, Layout
*, unsigned int plt_index
,
456 // Force a COPY relocation for a given symbol.
458 emit_copy_reloc(Symbol_table
*, Symbol
*, Output_section
*, off_t
);
460 // Apply an incremental relocation.
462 apply_relocation(const Relocate_info
<size
, false>* relinfo
,
463 typename
elfcpp::Elf_types
<size
>::Elf_Addr r_offset
,
465 typename
elfcpp::Elf_types
<size
>::Elf_Swxword r_addend
,
468 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
469 section_size_type view_size
);
471 // Add a new reloc argument, returning the index in the vector.
473 add_tlsdesc_info(Sized_relobj_file
<size
, false>* object
, unsigned int r_sym
)
475 this->tlsdesc_reloc_info_
.push_back(Tlsdesc_info(object
, r_sym
));
476 return this->tlsdesc_reloc_info_
.size() - 1;
480 // The class which scans relocations.
485 : issued_non_pic_error_(false)
489 get_reference_flags(unsigned int r_type
);
492 local(Symbol_table
* symtab
, Layout
* layout
, Target_x86_64
* target
,
493 Sized_relobj_file
<size
, false>* object
,
494 unsigned int data_shndx
,
495 Output_section
* output_section
,
496 const elfcpp::Rela
<size
, false>& reloc
, unsigned int r_type
,
497 const elfcpp::Sym
<size
, false>& lsym
);
500 global(Symbol_table
* symtab
, Layout
* layout
, Target_x86_64
* target
,
501 Sized_relobj_file
<size
, false>* object
,
502 unsigned int data_shndx
,
503 Output_section
* output_section
,
504 const elfcpp::Rela
<size
, false>& reloc
, unsigned int r_type
,
508 local_reloc_may_be_function_pointer(Symbol_table
* symtab
, Layout
* layout
,
509 Target_x86_64
* target
,
510 Sized_relobj_file
<size
, false>* object
,
511 unsigned int data_shndx
,
512 Output_section
* output_section
,
513 const elfcpp::Rela
<size
, false>& reloc
,
515 const elfcpp::Sym
<size
, false>& lsym
);
518 global_reloc_may_be_function_pointer(Symbol_table
* symtab
, Layout
* layout
,
519 Target_x86_64
* target
,
520 Sized_relobj_file
<size
, false>* object
,
521 unsigned int data_shndx
,
522 Output_section
* output_section
,
523 const elfcpp::Rela
<size
, false>& reloc
,
529 unsupported_reloc_local(Sized_relobj_file
<size
, false>*,
530 unsigned int r_type
);
533 unsupported_reloc_global(Sized_relobj_file
<size
, false>*,
534 unsigned int r_type
, Symbol
*);
537 check_non_pic(Relobj
*, unsigned int r_type
, Symbol
*);
540 possible_function_pointer_reloc(unsigned int r_type
);
543 reloc_needs_plt_for_ifunc(Sized_relobj_file
<size
, false>*,
544 unsigned int r_type
);
546 // Whether we have issued an error about a non-PIC compilation.
547 bool issued_non_pic_error_
;
550 // The class which implements relocation.
555 : skip_call_tls_get_addr_(false)
560 if (this->skip_call_tls_get_addr_
)
562 // FIXME: This needs to specify the location somehow.
563 gold_error(_("missing expected TLS relocation"));
567 // Do a relocation. Return false if the caller should not issue
568 // any warnings about this relocation.
570 relocate(const Relocate_info
<size
, false>*, Target_x86_64
*,
572 size_t relnum
, const elfcpp::Rela
<size
, false>&,
573 unsigned int r_type
, const Sized_symbol
<size
>*,
574 const Symbol_value
<size
>*,
575 unsigned char*, typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
579 // Do a TLS relocation.
581 relocate_tls(const Relocate_info
<size
, false>*, Target_x86_64
*,
582 size_t relnum
, const elfcpp::Rela
<size
, false>&,
583 unsigned int r_type
, const Sized_symbol
<size
>*,
584 const Symbol_value
<size
>*,
585 unsigned char*, typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
588 // Do a TLS General-Dynamic to Initial-Exec transition.
590 tls_gd_to_ie(const Relocate_info
<size
, false>*, size_t relnum
,
591 Output_segment
* tls_segment
,
592 const elfcpp::Rela
<size
, false>&, unsigned int r_type
,
593 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
595 typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
596 section_size_type view_size
);
598 // Do a TLS General-Dynamic to Local-Exec transition.
600 tls_gd_to_le(const Relocate_info
<size
, false>*, size_t relnum
,
601 Output_segment
* tls_segment
,
602 const elfcpp::Rela
<size
, false>&, unsigned int r_type
,
603 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
605 section_size_type view_size
);
607 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
609 tls_desc_gd_to_ie(const Relocate_info
<size
, false>*, size_t relnum
,
610 Output_segment
* tls_segment
,
611 const elfcpp::Rela
<size
, false>&, unsigned int r_type
,
612 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
614 typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
615 section_size_type view_size
);
617 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
619 tls_desc_gd_to_le(const Relocate_info
<size
, false>*, size_t relnum
,
620 Output_segment
* tls_segment
,
621 const elfcpp::Rela
<size
, false>&, unsigned int r_type
,
622 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
624 section_size_type view_size
);
626 // Do a TLS Local-Dynamic to Local-Exec transition.
628 tls_ld_to_le(const Relocate_info
<size
, false>*, size_t relnum
,
629 Output_segment
* tls_segment
,
630 const elfcpp::Rela
<size
, false>&, unsigned int r_type
,
631 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
633 section_size_type view_size
);
635 // Do a TLS Initial-Exec to Local-Exec transition.
637 tls_ie_to_le(const Relocate_info
<size
, false>*, size_t relnum
,
638 Output_segment
* tls_segment
,
639 const elfcpp::Rela
<size
, false>&, unsigned int r_type
,
640 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
642 section_size_type view_size
);
644 // This is set if we should skip the next reloc, which should be a
645 // PLT32 reloc against ___tls_get_addr.
646 bool skip_call_tls_get_addr_
;
649 // A class which returns the size required for a relocation type,
650 // used while scanning relocs during a relocatable link.
651 class Relocatable_size_for_reloc
655 get_size_for_reloc(unsigned int, Relobj
*);
658 // Adjust TLS relocation type based on the options and whether this
659 // is a local symbol.
660 static tls::Tls_optimization
661 optimize_tls_reloc(bool is_final
, int r_type
);
663 // Get the GOT section, creating it if necessary.
664 Output_data_got
<64, false>*
665 got_section(Symbol_table
*, Layout
*);
667 // Get the GOT PLT section.
669 got_plt_section() const
671 gold_assert(this->got_plt_
!= NULL
);
672 return this->got_plt_
;
675 // Get the GOT section for TLSDESC entries.
676 Output_data_got
<64, false>*
677 got_tlsdesc_section() const
679 gold_assert(this->got_tlsdesc_
!= NULL
);
680 return this->got_tlsdesc_
;
683 // Create the PLT section.
685 make_plt_section(Symbol_table
* symtab
, Layout
* layout
);
687 // Create a PLT entry for a global symbol.
689 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
691 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
693 make_local_ifunc_plt_entry(Symbol_table
*, Layout
*,
694 Sized_relobj_file
<size
, false>* relobj
,
695 unsigned int local_sym_index
);
697 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
699 define_tls_base_symbol(Symbol_table
*, Layout
*);
701 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
703 reserve_tlsdesc_entries(Symbol_table
* symtab
, Layout
* layout
);
705 // Create a GOT entry for the TLS module index.
707 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
708 Sized_relobj_file
<size
, false>* object
);
710 // Get the PLT section.
711 Output_data_plt_x86_64
<size
>*
714 gold_assert(this->plt_
!= NULL
);
718 // Get the dynamic reloc section, creating it if necessary.
720 rela_dyn_section(Layout
*);
722 // Get the section to use for TLSDESC relocations.
724 rela_tlsdesc_section(Layout
*) const;
726 // Get the section to use for IRELATIVE relocations.
728 rela_irelative_section(Layout
*);
730 // Add a potential copy relocation.
732 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
733 Sized_relobj_file
<size
, false>* object
,
734 unsigned int shndx
, Output_section
* output_section
,
735 Symbol
* sym
, const elfcpp::Rela
<size
, false>& reloc
)
737 this->copy_relocs_
.copy_reloc(symtab
, layout
,
738 symtab
->get_sized_symbol
<size
>(sym
),
739 object
, shndx
, output_section
,
740 reloc
, this->rela_dyn_section(layout
));
743 // Information about this specific target which we pass to the
744 // general Target structure.
745 static const Target::Target_info x86_64_info
;
747 // The types of GOT entries needed for this platform.
748 // These values are exposed to the ABI in an incremental link.
749 // Do not renumber existing values without changing the version
750 // number of the .gnu_incremental_inputs section.
753 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
754 GOT_TYPE_TLS_OFFSET
= 1, // GOT entry for TLS offset
755 GOT_TYPE_TLS_PAIR
= 2, // GOT entry for TLS module/offset pair
756 GOT_TYPE_TLS_DESC
= 3 // GOT entry for TLS_DESC pair
759 // This type is used as the argument to the target specific
760 // relocation routines. The only target specific reloc is
761 // R_X86_64_TLSDESC against a local symbol.
764 Tlsdesc_info(Sized_relobj_file
<size
, false>* a_object
, unsigned int a_r_sym
)
765 : object(a_object
), r_sym(a_r_sym
)
768 // The object in which the local symbol is defined.
769 Sized_relobj_file
<size
, false>* object
;
770 // The local symbol index in the object.
775 Output_data_got
<64, false>* got_
;
777 Output_data_plt_x86_64
<size
>* plt_
;
778 // The GOT PLT section.
779 Output_data_space
* got_plt_
;
780 // The GOT section for IRELATIVE relocations.
781 Output_data_space
* got_irelative_
;
782 // The GOT section for TLSDESC relocations.
783 Output_data_got
<64, false>* got_tlsdesc_
;
784 // The _GLOBAL_OFFSET_TABLE_ symbol.
785 Symbol
* global_offset_table_
;
786 // The dynamic reloc section.
787 Reloc_section
* rela_dyn_
;
788 // The section to use for IRELATIVE relocs.
789 Reloc_section
* rela_irelative_
;
790 // Relocs saved to avoid a COPY reloc.
791 Copy_relocs
<elfcpp::SHT_RELA
, size
, false> copy_relocs_
;
792 // Space for variables copied with a COPY reloc.
793 Output_data_space
* dynbss_
;
794 // Offset of the GOT entry for the TLS module index.
795 unsigned int got_mod_index_offset_
;
796 // We handle R_X86_64_TLSDESC against a local symbol as a target
797 // specific relocation. Here we store the object and local symbol
798 // index for the relocation.
799 std::vector
<Tlsdesc_info
> tlsdesc_reloc_info_
;
800 // True if the _TLS_MODULE_BASE_ symbol has been defined.
801 bool tls_base_symbol_defined_
;
805 const Target::Target_info Target_x86_64
<64>::x86_64_info
=
808 false, // is_big_endian
809 elfcpp::EM_X86_64
, // machine_code
810 false, // has_make_symbol
811 false, // has_resolve
812 true, // has_code_fill
813 true, // is_default_stack_executable
814 true, // can_icf_inline_merge_sections
816 "/lib/ld64.so.1", // program interpreter
817 0x400000, // default_text_segment_address
818 0x1000, // abi_pagesize (overridable by -z max-page-size)
819 0x1000, // common_pagesize (overridable by -z common-page-size)
820 elfcpp::SHN_UNDEF
, // small_common_shndx
821 elfcpp::SHN_X86_64_LCOMMON
, // large_common_shndx
822 0, // small_common_section_flags
823 elfcpp::SHF_X86_64_LARGE
, // large_common_section_flags
824 NULL
, // attributes_section
825 NULL
// attributes_vendor
829 const Target::Target_info Target_x86_64
<32>::x86_64_info
=
832 false, // is_big_endian
833 elfcpp::EM_X86_64
, // machine_code
834 false, // has_make_symbol
835 false, // has_resolve
836 true, // has_code_fill
837 true, // is_default_stack_executable
838 true, // can_icf_inline_merge_sections
840 "/libx32/ldx32.so.1", // program interpreter
841 0x400000, // default_text_segment_address
842 0x1000, // abi_pagesize (overridable by -z max-page-size)
843 0x1000, // common_pagesize (overridable by -z common-page-size)
844 elfcpp::SHN_UNDEF
, // small_common_shndx
845 elfcpp::SHN_X86_64_LCOMMON
, // large_common_shndx
846 0, // small_common_section_flags
847 elfcpp::SHF_X86_64_LARGE
, // large_common_section_flags
848 NULL
, // attributes_section
849 NULL
// attributes_vendor
852 // This is called when a new output section is created. This is where
853 // we handle the SHF_X86_64_LARGE.
857 Target_x86_64
<size
>::do_new_output_section(Output_section
* os
) const
859 if ((os
->flags() & elfcpp::SHF_X86_64_LARGE
) != 0)
860 os
->set_is_large_section();
863 // Get the GOT section, creating it if necessary.
866 Output_data_got
<64, false>*
867 Target_x86_64
<size
>::got_section(Symbol_table
* symtab
, Layout
* layout
)
869 if (this->got_
== NULL
)
871 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
873 // When using -z now, we can treat .got.plt as a relro section.
874 // Without -z now, it is modified after program startup by lazy
876 bool is_got_plt_relro
= parameters
->options().now();
877 Output_section_order got_order
= (is_got_plt_relro
880 Output_section_order got_plt_order
= (is_got_plt_relro
882 : ORDER_NON_RELRO_FIRST
);
884 this->got_
= new Output_data_got
<64, false>();
886 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
888 | elfcpp::SHF_WRITE
),
889 this->got_
, got_order
, true);
891 this->got_plt_
= new Output_data_space(8, "** GOT PLT");
892 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
894 | elfcpp::SHF_WRITE
),
895 this->got_plt_
, got_plt_order
,
898 // The first three entries are reserved.
899 this->got_plt_
->set_current_data_size(3 * 8);
901 if (!is_got_plt_relro
)
903 // Those bytes can go into the relro segment.
904 layout
->increase_relro(3 * 8);
907 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
908 this->global_offset_table_
=
909 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
910 Symbol_table::PREDEFINED
,
912 0, 0, elfcpp::STT_OBJECT
,
914 elfcpp::STV_HIDDEN
, 0,
917 // If there are any IRELATIVE relocations, they get GOT entries
918 // in .got.plt after the jump slot entries.
919 this->got_irelative_
= new Output_data_space(8, "** GOT IRELATIVE PLT");
920 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
922 | elfcpp::SHF_WRITE
),
923 this->got_irelative_
,
924 got_plt_order
, is_got_plt_relro
);
926 // If there are any TLSDESC relocations, they get GOT entries in
927 // .got.plt after the jump slot and IRELATIVE entries.
928 this->got_tlsdesc_
= new Output_data_got
<64, false>();
929 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
931 | elfcpp::SHF_WRITE
),
933 got_plt_order
, is_got_plt_relro
);
939 // Get the dynamic reloc section, creating it if necessary.
942 typename Target_x86_64
<size
>::Reloc_section
*
943 Target_x86_64
<size
>::rela_dyn_section(Layout
* layout
)
945 if (this->rela_dyn_
== NULL
)
947 gold_assert(layout
!= NULL
);
948 this->rela_dyn_
= new Reloc_section(parameters
->options().combreloc());
949 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
950 elfcpp::SHF_ALLOC
, this->rela_dyn_
,
951 ORDER_DYNAMIC_RELOCS
, false);
953 return this->rela_dyn_
;
956 // Get the section to use for IRELATIVE relocs, creating it if
957 // necessary. These go in .rela.dyn, but only after all other dynamic
958 // relocations. They need to follow the other dynamic relocations so
959 // that they can refer to global variables initialized by those
963 typename Target_x86_64
<size
>::Reloc_section
*
964 Target_x86_64
<size
>::rela_irelative_section(Layout
* layout
)
966 if (this->rela_irelative_
== NULL
)
968 // Make sure we have already created the dynamic reloc section.
969 this->rela_dyn_section(layout
);
970 this->rela_irelative_
= new Reloc_section(false);
971 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
972 elfcpp::SHF_ALLOC
, this->rela_irelative_
,
973 ORDER_DYNAMIC_RELOCS
, false);
974 gold_assert(this->rela_dyn_
->output_section()
975 == this->rela_irelative_
->output_section());
977 return this->rela_irelative_
;
980 // Initialize the PLT section.
984 Output_data_plt_x86_64
<size
>::init(Layout
* layout
)
986 this->rel_
= new Reloc_section(false);
987 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
988 elfcpp::SHF_ALLOC
, this->rel_
,
989 ORDER_DYNAMIC_PLT_RELOCS
, false);
991 // Add unwind information if requested.
992 if (parameters
->options().ld_generated_unwind_info())
993 layout
->add_eh_frame_for_plt(this, plt_eh_frame_cie
, plt_eh_frame_cie_size
,
994 plt_eh_frame_fde
, plt_eh_frame_fde_size
);
999 Output_data_plt_x86_64
<size
>::do_adjust_output_section(Output_section
* os
)
1001 os
->set_entsize(plt_entry_size
);
1004 // Add an entry to the PLT.
1008 Output_data_plt_x86_64
<size
>::add_entry(Symbol_table
* symtab
, Layout
* layout
,
1011 gold_assert(!gsym
->has_plt_offset());
1013 unsigned int plt_index
;
1015 section_offset_type got_offset
;
1017 unsigned int* pcount
;
1018 unsigned int offset
;
1019 unsigned int reserved
;
1020 Output_data_space
* got
;
1021 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
1022 && gsym
->can_use_relative_reloc(false))
1024 pcount
= &this->irelative_count_
;
1027 got
= this->got_irelative_
;
1031 pcount
= &this->count_
;
1034 got
= this->got_plt_
;
1037 if (!this->is_data_size_valid())
1039 // Note that when setting the PLT offset for a non-IRELATIVE
1040 // entry we skip the initial reserved PLT entry.
1041 plt_index
= *pcount
+ offset
;
1042 plt_offset
= plt_index
* plt_entry_size
;
1046 got_offset
= (plt_index
- offset
+ reserved
) * 8;
1047 gold_assert(got_offset
== got
->current_data_size());
1049 // Every PLT entry needs a GOT entry which points back to the PLT
1050 // entry (this will be changed by the dynamic linker, normally
1051 // lazily when the function is called).
1052 got
->set_current_data_size(got_offset
+ 8);
1056 // FIXME: This is probably not correct for IRELATIVE relocs.
1058 // For incremental updates, find an available slot.
1059 plt_offset
= this->free_list_
.allocate(plt_entry_size
, plt_entry_size
, 0);
1060 if (plt_offset
== -1)
1061 gold_fallback(_("out of patch space (PLT);"
1062 " relink with --incremental-full"));
1064 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1065 // can be calculated from the PLT index, adjusting for the three
1066 // reserved entries at the beginning of the GOT.
1067 plt_index
= plt_offset
/ plt_entry_size
- 1;
1068 got_offset
= (plt_index
- offset
+ reserved
) * 8;
1071 gsym
->set_plt_offset(plt_offset
);
1073 // Every PLT entry needs a reloc.
1074 this->add_relocation(symtab
, layout
, gsym
, got_offset
);
1076 // Note that we don't need to save the symbol. The contents of the
1077 // PLT are independent of which symbols are used. The symbols only
1078 // appear in the relocations.
1081 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1086 Output_data_plt_x86_64
<size
>::add_local_ifunc_entry(
1087 Symbol_table
* symtab
,
1089 Sized_relobj_file
<size
, false>* relobj
,
1090 unsigned int local_sym_index
)
1092 unsigned int plt_offset
= this->irelative_count_
* plt_entry_size
;
1093 ++this->irelative_count_
;
1095 section_offset_type got_offset
= this->got_irelative_
->current_data_size();
1097 // Every PLT entry needs a GOT entry which points back to the PLT
1099 this->got_irelative_
->set_current_data_size(got_offset
+ 8);
1101 // Every PLT entry needs a reloc.
1102 Reloc_section
* rela
= this->rela_irelative(symtab
, layout
);
1103 rela
->add_symbolless_local_addend(relobj
, local_sym_index
,
1104 elfcpp::R_X86_64_IRELATIVE
,
1105 this->got_irelative_
, got_offset
, 0);
1110 // Add the relocation for a PLT entry.
1114 Output_data_plt_x86_64
<size
>::add_relocation(Symbol_table
* symtab
,
1117 unsigned int got_offset
)
1119 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
1120 && gsym
->can_use_relative_reloc(false))
1122 Reloc_section
* rela
= this->rela_irelative(symtab
, layout
);
1123 rela
->add_symbolless_global_addend(gsym
, elfcpp::R_X86_64_IRELATIVE
,
1124 this->got_irelative_
, got_offset
, 0);
1128 gsym
->set_needs_dynsym_entry();
1129 this->rel_
->add_global(gsym
, elfcpp::R_X86_64_JUMP_SLOT
, this->got_plt_
,
1134 // Return where the TLSDESC relocations should go, creating it if
1135 // necessary. These follow the JUMP_SLOT relocations.
1138 typename Output_data_plt_x86_64
<size
>::Reloc_section
*
1139 Output_data_plt_x86_64
<size
>::rela_tlsdesc(Layout
* layout
)
1141 if (this->tlsdesc_rel_
== NULL
)
1143 this->tlsdesc_rel_
= new Reloc_section(false);
1144 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
1145 elfcpp::SHF_ALLOC
, this->tlsdesc_rel_
,
1146 ORDER_DYNAMIC_PLT_RELOCS
, false);
1147 gold_assert(this->tlsdesc_rel_
->output_section()
1148 == this->rel_
->output_section());
1150 return this->tlsdesc_rel_
;
1153 // Return where the IRELATIVE relocations should go in the PLT. These
1154 // follow the JUMP_SLOT and the TLSDESC relocations.
1157 typename Output_data_plt_x86_64
<size
>::Reloc_section
*
1158 Output_data_plt_x86_64
<size
>::rela_irelative(Symbol_table
* symtab
,
1161 if (this->irelative_rel_
== NULL
)
1163 // Make sure we have a place for the TLSDESC relocations, in
1164 // case we see any later on.
1165 this->rela_tlsdesc(layout
);
1166 this->irelative_rel_
= new Reloc_section(false);
1167 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
1168 elfcpp::SHF_ALLOC
, this->irelative_rel_
,
1169 ORDER_DYNAMIC_PLT_RELOCS
, false);
1170 gold_assert(this->irelative_rel_
->output_section()
1171 == this->rel_
->output_section());
1173 if (parameters
->doing_static_link())
1175 // A statically linked executable will only have a .rela.plt
1176 // section to hold R_X86_64_IRELATIVE relocs for
1177 // STT_GNU_IFUNC symbols. The library will use these
1178 // symbols to locate the IRELATIVE relocs at program startup
1180 symtab
->define_in_output_data("__rela_iplt_start", NULL
,
1181 Symbol_table::PREDEFINED
,
1182 this->irelative_rel_
, 0, 0,
1183 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
1184 elfcpp::STV_HIDDEN
, 0, false, true);
1185 symtab
->define_in_output_data("__rela_iplt_end", NULL
,
1186 Symbol_table::PREDEFINED
,
1187 this->irelative_rel_
, 0, 0,
1188 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
1189 elfcpp::STV_HIDDEN
, 0, true, true);
1192 return this->irelative_rel_
;
1195 // Return the PLT address to use for a global symbol.
1199 Output_data_plt_x86_64
<size
>::address_for_global(const Symbol
* gsym
)
1201 uint64_t offset
= 0;
1202 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
1203 && gsym
->can_use_relative_reloc(false))
1204 offset
= (this->count_
+ 1) * plt_entry_size
;
1205 return this->address() + offset
;
1208 // Return the PLT address to use for a local symbol. These are always
1209 // IRELATIVE relocs.
1213 Output_data_plt_x86_64
<size
>::address_for_local(const Relobj
*, unsigned int)
1215 return this->address() + (this->count_
+ 1) * plt_entry_size
;
1218 // Set the final size.
1221 Output_data_plt_x86_64
<size
>::set_final_data_size()
1223 unsigned int count
= this->count_
+ this->irelative_count_
;
1224 if (this->has_tlsdesc_entry())
1226 this->set_data_size((count
+ 1) * plt_entry_size
);
1229 // The first entry in the PLT for an executable.
1233 Output_data_plt_x86_64
<size
>::first_plt_entry
[plt_entry_size
] =
1235 // From AMD64 ABI Draft 0.98, page 76
1236 0xff, 0x35, // pushq contents of memory address
1237 0, 0, 0, 0, // replaced with address of .got + 8
1238 0xff, 0x25, // jmp indirect
1239 0, 0, 0, 0, // replaced with address of .got + 16
1240 0x90, 0x90, 0x90, 0x90 // noop (x4)
1243 // Subsequent entries in the PLT for an executable.
1247 Output_data_plt_x86_64
<size
>::plt_entry
[plt_entry_size
] =
1249 // From AMD64 ABI Draft 0.98, page 76
1250 0xff, 0x25, // jmpq indirect
1251 0, 0, 0, 0, // replaced with address of symbol in .got
1252 0x68, // pushq immediate
1253 0, 0, 0, 0, // replaced with offset into relocation table
1254 0xe9, // jmpq relative
1255 0, 0, 0, 0 // replaced with offset to start of .plt
1258 // The reserved TLSDESC entry in the PLT for an executable.
1262 Output_data_plt_x86_64
<size
>::tlsdesc_plt_entry
[plt_entry_size
] =
1264 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1265 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1266 0xff, 0x35, // pushq x(%rip)
1267 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1268 0xff, 0x25, // jmpq *y(%rip)
1269 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
1274 // The .eh_frame unwind information for the PLT.
1278 Output_data_plt_x86_64
<size
>::plt_eh_frame_cie
[plt_eh_frame_cie_size
] =
1281 'z', // Augmentation: augmentation size included.
1282 'R', // Augmentation: FDE encoding included.
1283 '\0', // End of augmentation string.
1284 1, // Code alignment factor.
1285 0x78, // Data alignment factor.
1286 16, // Return address column.
1287 1, // Augmentation size.
1288 (elfcpp::DW_EH_PE_pcrel
// FDE encoding.
1289 | elfcpp::DW_EH_PE_sdata4
),
1290 elfcpp::DW_CFA_def_cfa
, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1291 elfcpp::DW_CFA_offset
+ 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1292 elfcpp::DW_CFA_nop
, // Align to 16 bytes.
1298 Output_data_plt_x86_64
<size
>::plt_eh_frame_fde
[plt_eh_frame_fde_size
] =
1300 0, 0, 0, 0, // Replaced with offset to .plt.
1301 0, 0, 0, 0, // Replaced with size of .plt.
1302 0, // Augmentation size.
1303 elfcpp::DW_CFA_def_cfa_offset
, 16, // DW_CFA_def_cfa_offset: 16.
1304 elfcpp::DW_CFA_advance_loc
+ 6, // Advance 6 to __PLT__ + 6.
1305 elfcpp::DW_CFA_def_cfa_offset
, 24, // DW_CFA_def_cfa_offset: 24.
1306 elfcpp::DW_CFA_advance_loc
+ 10, // Advance 10 to __PLT__ + 16.
1307 elfcpp::DW_CFA_def_cfa_expression
, // DW_CFA_def_cfa_expression.
1308 11, // Block length.
1309 elfcpp::DW_OP_breg7
, 8, // Push %rsp + 8.
1310 elfcpp::DW_OP_breg16
, 0, // Push %rip.
1311 elfcpp::DW_OP_lit15
, // Push 0xf.
1312 elfcpp::DW_OP_and
, // & (%rip & 0xf).
1313 elfcpp::DW_OP_lit11
, // Push 0xb.
1314 elfcpp::DW_OP_ge
, // >= ((%rip & 0xf) >= 0xb)
1315 elfcpp::DW_OP_lit3
, // Push 3.
1316 elfcpp::DW_OP_shl
, // << (((%rip & 0xf) >= 0xb) << 3)
1317 elfcpp::DW_OP_plus
, // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1318 elfcpp::DW_CFA_nop
, // Align to 32 bytes.
1324 // Write out the PLT. This uses the hand-coded instructions above,
1325 // and adjusts them as needed. This is specified by the AMD64 ABI.
1329 Output_data_plt_x86_64
<size
>::do_write(Output_file
* of
)
1331 const off_t offset
= this->offset();
1332 const section_size_type oview_size
=
1333 convert_to_section_size_type(this->data_size());
1334 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1336 const off_t got_file_offset
= this->got_plt_
->offset();
1337 gold_assert(parameters
->incremental_update()
1338 || (got_file_offset
+ this->got_plt_
->data_size()
1339 == this->got_irelative_
->offset()));
1340 const section_size_type got_size
=
1341 convert_to_section_size_type(this->got_plt_
->data_size()
1342 + this->got_irelative_
->data_size());
1343 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
1346 unsigned char* pov
= oview
;
1348 // The base address of the .plt section.
1349 typename
elfcpp::Elf_types
<size
>::Elf_Addr plt_address
= this->address();
1350 // The base address of the .got section.
1351 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_base
= this->got_
->address();
1352 // The base address of the PLT portion of the .got section,
1353 // which is where the GOT pointer will point, and where the
1354 // three reserved GOT entries are located.
1355 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_address
1356 = this->got_plt_
->address();
1358 memcpy(pov
, first_plt_entry
, plt_entry_size
);
1359 // We do a jmp relative to the PC at the end of this instruction.
1360 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 2,
1362 - (plt_address
+ 6)));
1363 elfcpp::Swap
<32, false>::writeval(pov
+ 8,
1365 - (plt_address
+ 12)));
1366 pov
+= plt_entry_size
;
1368 unsigned char* got_pov
= got_view
;
1370 // The first entry in the GOT is the address of the .dynamic section
1371 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1372 // We saved space for them when we created the section in
1373 // Target_x86_64::got_section.
1374 Output_section
* dynamic
= this->layout_
->dynamic_section();
1375 uint32_t dynamic_addr
= dynamic
== NULL
? 0 : dynamic
->address();
1376 elfcpp::Swap
<64, false>::writeval(got_pov
, dynamic_addr
);
1378 memset(got_pov
, 0, 16);
1381 unsigned int plt_offset
= plt_entry_size
;
1382 unsigned int got_offset
= 24;
1383 const unsigned int count
= this->count_
+ this->irelative_count_
;
1384 for (unsigned int plt_index
= 0;
1387 pov
+= plt_entry_size
,
1389 plt_offset
+= plt_entry_size
,
1392 // Set and adjust the PLT entry itself.
1393 memcpy(pov
, plt_entry
, plt_entry_size
);
1394 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 2,
1395 (got_address
+ got_offset
1396 - (plt_address
+ plt_offset
1399 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 7, plt_index
);
1400 elfcpp::Swap
<32, false>::writeval(pov
+ 12,
1401 - (plt_offset
+ plt_entry_size
));
1403 // Set the entry in the GOT.
1404 elfcpp::Swap
<64, false>::writeval(got_pov
, plt_address
+ plt_offset
+ 6);
1407 if (this->has_tlsdesc_entry())
1409 // Set and adjust the reserved TLSDESC PLT entry.
1410 unsigned int tlsdesc_got_offset
= this->get_tlsdesc_got_offset();
1411 memcpy(pov
, tlsdesc_plt_entry
, plt_entry_size
);
1412 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 2,
1414 - (plt_address
+ plt_offset
1416 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 8,
1418 + tlsdesc_got_offset
1419 - (plt_address
+ plt_offset
1421 pov
+= plt_entry_size
;
1424 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
1425 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
1427 of
->write_output_view(offset
, oview_size
, oview
);
1428 of
->write_output_view(got_file_offset
, got_size
, got_view
);
1431 // Create the PLT section.
1435 Target_x86_64
<size
>::make_plt_section(Symbol_table
* symtab
, Layout
* layout
)
1437 if (this->plt_
== NULL
)
1439 // Create the GOT sections first.
1440 this->got_section(symtab
, layout
);
1442 this->plt_
= new Output_data_plt_x86_64
<size
>(layout
, this->got_
,
1444 this->got_irelative_
);
1445 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
1447 | elfcpp::SHF_EXECINSTR
),
1448 this->plt_
, ORDER_PLT
, false);
1450 // Make the sh_info field of .rela.plt point to .plt.
1451 Output_section
* rela_plt_os
= this->plt_
->rela_plt()->output_section();
1452 rela_plt_os
->set_info_section(this->plt_
->output_section());
1456 // Return the section for TLSDESC relocations.
1459 typename Target_x86_64
<size
>::Reloc_section
*
1460 Target_x86_64
<size
>::rela_tlsdesc_section(Layout
* layout
) const
1462 return this->plt_section()->rela_tlsdesc(layout
);
1465 // Create a PLT entry for a global symbol.
1469 Target_x86_64
<size
>::make_plt_entry(Symbol_table
* symtab
, Layout
* layout
,
1472 if (gsym
->has_plt_offset())
1475 if (this->plt_
== NULL
)
1476 this->make_plt_section(symtab
, layout
);
1478 this->plt_
->add_entry(symtab
, layout
, gsym
);
1481 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1485 Target_x86_64
<size
>::make_local_ifunc_plt_entry(
1486 Symbol_table
* symtab
, Layout
* layout
,
1487 Sized_relobj_file
<size
, false>* relobj
,
1488 unsigned int local_sym_index
)
1490 if (relobj
->local_has_plt_offset(local_sym_index
))
1492 if (this->plt_
== NULL
)
1493 this->make_plt_section(symtab
, layout
);
1494 unsigned int plt_offset
= this->plt_
->add_local_ifunc_entry(symtab
, layout
,
1497 relobj
->set_local_plt_offset(local_sym_index
, plt_offset
);
1500 // Return the number of entries in the PLT.
1504 Target_x86_64
<size
>::plt_entry_count() const
1506 if (this->plt_
== NULL
)
1508 return this->plt_
->entry_count();
1511 // Return the offset of the first non-reserved PLT entry.
1515 Target_x86_64
<size
>::first_plt_entry_offset() const
1517 return Output_data_plt_x86_64
<size
>::first_plt_entry_offset();
1520 // Return the size of each PLT entry.
1524 Target_x86_64
<size
>::plt_entry_size() const
1526 return Output_data_plt_x86_64
<size
>::get_plt_entry_size();
1529 // Create the GOT and PLT sections for an incremental update.
1532 Output_data_got_base
*
1533 Target_x86_64
<size
>::init_got_plt_for_update(Symbol_table
* symtab
,
1535 unsigned int got_count
,
1536 unsigned int plt_count
)
1538 gold_assert(this->got_
== NULL
);
1540 this->got_
= new Output_data_got
<64, false>(got_count
* 8);
1541 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
1543 | elfcpp::SHF_WRITE
),
1544 this->got_
, ORDER_RELRO_LAST
,
1547 // Add the three reserved entries.
1548 this->got_plt_
= new Output_data_space((plt_count
+ 3) * 8, 8, "** GOT PLT");
1549 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
1551 | elfcpp::SHF_WRITE
),
1552 this->got_plt_
, ORDER_NON_RELRO_FIRST
,
1555 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1556 this->global_offset_table_
=
1557 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
1558 Symbol_table::PREDEFINED
,
1560 0, 0, elfcpp::STT_OBJECT
,
1562 elfcpp::STV_HIDDEN
, 0,
1565 // If there are any TLSDESC relocations, they get GOT entries in
1566 // .got.plt after the jump slot entries.
1567 // FIXME: Get the count for TLSDESC entries.
1568 this->got_tlsdesc_
= new Output_data_got
<64, false>(0);
1569 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
1570 elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
,
1572 ORDER_NON_RELRO_FIRST
, false);
1574 // If there are any IRELATIVE relocations, they get GOT entries in
1575 // .got.plt after the jump slot and TLSDESC entries.
1576 this->got_irelative_
= new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1577 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
1578 elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
,
1579 this->got_irelative_
,
1580 ORDER_NON_RELRO_FIRST
, false);
1582 // Create the PLT section.
1583 this->plt_
= new Output_data_plt_x86_64
<size
>(layout
, this->got_
,
1585 this->got_irelative_
,
1587 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
1588 elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
,
1589 this->plt_
, ORDER_PLT
, false);
1591 // Make the sh_info field of .rela.plt point to .plt.
1592 Output_section
* rela_plt_os
= this->plt_
->rela_plt()->output_section();
1593 rela_plt_os
->set_info_section(this->plt_
->output_section());
1595 // Create the rela_dyn section.
1596 this->rela_dyn_section(layout
);
1601 // Reserve a GOT entry for a local symbol, and regenerate any
1602 // necessary dynamic relocations.
1606 Target_x86_64
<size
>::reserve_local_got_entry(
1607 unsigned int got_index
,
1608 Sized_relobj
<size
, false>* obj
,
1610 unsigned int got_type
)
1612 unsigned int got_offset
= got_index
* 8;
1613 Reloc_section
* rela_dyn
= this->rela_dyn_section(NULL
);
1615 this->got_
->reserve_local(got_index
, obj
, r_sym
, got_type
);
1618 case GOT_TYPE_STANDARD
:
1619 if (parameters
->options().output_is_position_independent())
1620 rela_dyn
->add_local_relative(obj
, r_sym
, elfcpp::R_X86_64_RELATIVE
,
1621 this->got_
, got_offset
, 0, false);
1623 case GOT_TYPE_TLS_OFFSET
:
1624 rela_dyn
->add_local(obj
, r_sym
, elfcpp::R_X86_64_TPOFF64
,
1625 this->got_
, got_offset
, 0);
1627 case GOT_TYPE_TLS_PAIR
:
1628 this->got_
->reserve_slot(got_index
+ 1);
1629 rela_dyn
->add_local(obj
, r_sym
, elfcpp::R_X86_64_DTPMOD64
,
1630 this->got_
, got_offset
, 0);
1632 case GOT_TYPE_TLS_DESC
:
1633 gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1634 // this->got_->reserve_slot(got_index + 1);
1635 // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1636 // this->got_, got_offset, 0);
1643 // Reserve a GOT entry for a global symbol, and regenerate any
1644 // necessary dynamic relocations.
1648 Target_x86_64
<size
>::reserve_global_got_entry(unsigned int got_index
,
1650 unsigned int got_type
)
1652 unsigned int got_offset
= got_index
* 8;
1653 Reloc_section
* rela_dyn
= this->rela_dyn_section(NULL
);
1655 this->got_
->reserve_global(got_index
, gsym
, got_type
);
1658 case GOT_TYPE_STANDARD
:
1659 if (!gsym
->final_value_is_known())
1661 if (gsym
->is_from_dynobj()
1662 || gsym
->is_undefined()
1663 || gsym
->is_preemptible()
1664 || gsym
->type() == elfcpp::STT_GNU_IFUNC
)
1665 rela_dyn
->add_global(gsym
, elfcpp::R_X86_64_GLOB_DAT
,
1666 this->got_
, got_offset
, 0);
1668 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_RELATIVE
,
1669 this->got_
, got_offset
, 0);
1672 case GOT_TYPE_TLS_OFFSET
:
1673 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_TPOFF64
,
1674 this->got_
, got_offset
, 0);
1676 case GOT_TYPE_TLS_PAIR
:
1677 this->got_
->reserve_slot(got_index
+ 1);
1678 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_DTPMOD64
,
1679 this->got_
, got_offset
, 0);
1680 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_DTPOFF64
,
1681 this->got_
, got_offset
+ 8, 0);
1683 case GOT_TYPE_TLS_DESC
:
1684 this->got_
->reserve_slot(got_index
+ 1);
1685 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_TLSDESC
,
1686 this->got_
, got_offset
, 0);
1693 // Register an existing PLT entry for a global symbol.
1697 Target_x86_64
<size
>::register_global_plt_entry(Symbol_table
* symtab
,
1699 unsigned int plt_index
,
1702 gold_assert(this->plt_
!= NULL
);
1703 gold_assert(!gsym
->has_plt_offset());
1705 this->plt_
->reserve_slot(plt_index
);
1707 gsym
->set_plt_offset((plt_index
+ 1) * this->plt_entry_size());
1709 unsigned int got_offset
= (plt_index
+ 3) * 8;
1710 this->plt_
->add_relocation(symtab
, layout
, gsym
, got_offset
);
1713 // Force a COPY relocation for a given symbol.
1717 Target_x86_64
<size
>::emit_copy_reloc(
1718 Symbol_table
* symtab
, Symbol
* sym
, Output_section
* os
, off_t offset
)
1720 this->copy_relocs_
.emit_copy_reloc(symtab
,
1721 symtab
->get_sized_symbol
<size
>(sym
),
1724 this->rela_dyn_section(NULL
));
1727 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1731 Target_x86_64
<size
>::define_tls_base_symbol(Symbol_table
* symtab
,
1734 if (this->tls_base_symbol_defined_
)
1737 Output_segment
* tls_segment
= layout
->tls_segment();
1738 if (tls_segment
!= NULL
)
1740 bool is_exec
= parameters
->options().output_is_executable();
1741 symtab
->define_in_output_segment("_TLS_MODULE_BASE_", NULL
,
1742 Symbol_table::PREDEFINED
,
1746 elfcpp::STV_HIDDEN
, 0,
1748 ? Symbol::SEGMENT_END
1749 : Symbol::SEGMENT_START
),
1752 this->tls_base_symbol_defined_
= true;
1755 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1759 Target_x86_64
<size
>::reserve_tlsdesc_entries(Symbol_table
* symtab
,
1762 if (this->plt_
== NULL
)
1763 this->make_plt_section(symtab
, layout
);
1765 if (!this->plt_
->has_tlsdesc_entry())
1767 // Allocate the TLSDESC_GOT entry.
1768 Output_data_got
<64, false>* got
= this->got_section(symtab
, layout
);
1769 unsigned int got_offset
= got
->add_constant(0);
1771 // Allocate the TLSDESC_PLT entry.
1772 this->plt_
->reserve_tlsdesc_entry(got_offset
);
1776 // Create a GOT entry for the TLS module index.
1780 Target_x86_64
<size
>::got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
1781 Sized_relobj_file
<size
, false>* object
)
1783 if (this->got_mod_index_offset_
== -1U)
1785 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
1786 Reloc_section
* rela_dyn
= this->rela_dyn_section(layout
);
1787 Output_data_got
<64, false>* got
= this->got_section(symtab
, layout
);
1788 unsigned int got_offset
= got
->add_constant(0);
1789 rela_dyn
->add_local(object
, 0, elfcpp::R_X86_64_DTPMOD64
, got
,
1791 got
->add_constant(0);
1792 this->got_mod_index_offset_
= got_offset
;
1794 return this->got_mod_index_offset_
;
1797 // Optimize the TLS relocation type based on what we know about the
1798 // symbol. IS_FINAL is true if the final address of this symbol is
1799 // known at link time.
1802 tls::Tls_optimization
1803 Target_x86_64
<size
>::optimize_tls_reloc(bool is_final
, int r_type
)
1805 // If we are generating a shared library, then we can't do anything
1807 if (parameters
->options().shared())
1808 return tls::TLSOPT_NONE
;
1812 case elfcpp::R_X86_64_TLSGD
:
1813 case elfcpp::R_X86_64_GOTPC32_TLSDESC
:
1814 case elfcpp::R_X86_64_TLSDESC_CALL
:
1815 // These are General-Dynamic which permits fully general TLS
1816 // access. Since we know that we are generating an executable,
1817 // we can convert this to Initial-Exec. If we also know that
1818 // this is a local symbol, we can further switch to Local-Exec.
1820 return tls::TLSOPT_TO_LE
;
1821 return tls::TLSOPT_TO_IE
;
1823 case elfcpp::R_X86_64_TLSLD
:
1824 // This is Local-Dynamic, which refers to a local symbol in the
1825 // dynamic TLS block. Since we know that we generating an
1826 // executable, we can switch to Local-Exec.
1827 return tls::TLSOPT_TO_LE
;
1829 case elfcpp::R_X86_64_DTPOFF32
:
1830 case elfcpp::R_X86_64_DTPOFF64
:
1831 // Another Local-Dynamic reloc.
1832 return tls::TLSOPT_TO_LE
;
1834 case elfcpp::R_X86_64_GOTTPOFF
:
1835 // These are Initial-Exec relocs which get the thread offset
1836 // from the GOT. If we know that we are linking against the
1837 // local symbol, we can switch to Local-Exec, which links the
1838 // thread offset into the instruction.
1840 return tls::TLSOPT_TO_LE
;
1841 return tls::TLSOPT_NONE
;
1843 case elfcpp::R_X86_64_TPOFF32
:
1844 // When we already have Local-Exec, there is nothing further we
1846 return tls::TLSOPT_NONE
;
1853 // Get the Reference_flags for a particular relocation.
1857 Target_x86_64
<size
>::Scan::get_reference_flags(unsigned int r_type
)
1861 case elfcpp::R_X86_64_NONE
:
1862 case elfcpp::R_X86_64_GNU_VTINHERIT
:
1863 case elfcpp::R_X86_64_GNU_VTENTRY
:
1864 case elfcpp::R_X86_64_GOTPC32
:
1865 case elfcpp::R_X86_64_GOTPC64
:
1866 // No symbol reference.
1869 case elfcpp::R_X86_64_64
:
1870 case elfcpp::R_X86_64_32
:
1871 case elfcpp::R_X86_64_32S
:
1872 case elfcpp::R_X86_64_16
:
1873 case elfcpp::R_X86_64_8
:
1874 return Symbol::ABSOLUTE_REF
;
1876 case elfcpp::R_X86_64_PC64
:
1877 case elfcpp::R_X86_64_PC32
:
1878 case elfcpp::R_X86_64_PC16
:
1879 case elfcpp::R_X86_64_PC8
:
1880 case elfcpp::R_X86_64_GOTOFF64
:
1881 return Symbol::RELATIVE_REF
;
1883 case elfcpp::R_X86_64_PLT32
:
1884 case elfcpp::R_X86_64_PLTOFF64
:
1885 return Symbol::FUNCTION_CALL
| Symbol::RELATIVE_REF
;
1887 case elfcpp::R_X86_64_GOT64
:
1888 case elfcpp::R_X86_64_GOT32
:
1889 case elfcpp::R_X86_64_GOTPCREL64
:
1890 case elfcpp::R_X86_64_GOTPCREL
:
1891 case elfcpp::R_X86_64_GOTPLT64
:
1893 return Symbol::ABSOLUTE_REF
;
1895 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
1896 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
1897 case elfcpp::R_X86_64_TLSDESC_CALL
:
1898 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
1899 case elfcpp::R_X86_64_DTPOFF32
:
1900 case elfcpp::R_X86_64_DTPOFF64
:
1901 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
1902 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
1903 return Symbol::TLS_REF
;
1905 case elfcpp::R_X86_64_COPY
:
1906 case elfcpp::R_X86_64_GLOB_DAT
:
1907 case elfcpp::R_X86_64_JUMP_SLOT
:
1908 case elfcpp::R_X86_64_RELATIVE
:
1909 case elfcpp::R_X86_64_IRELATIVE
:
1910 case elfcpp::R_X86_64_TPOFF64
:
1911 case elfcpp::R_X86_64_DTPMOD64
:
1912 case elfcpp::R_X86_64_TLSDESC
:
1913 case elfcpp::R_X86_64_SIZE32
:
1914 case elfcpp::R_X86_64_SIZE64
:
1916 // Not expected. We will give an error later.
1921 // Report an unsupported relocation against a local symbol.
1925 Target_x86_64
<size
>::Scan::unsupported_reloc_local(
1926 Sized_relobj_file
<size
, false>* object
,
1927 unsigned int r_type
)
1929 gold_error(_("%s: unsupported reloc %u against local symbol"),
1930 object
->name().c_str(), r_type
);
1933 // We are about to emit a dynamic relocation of type R_TYPE. If the
1934 // dynamic linker does not support it, issue an error. The GNU linker
1935 // only issues a non-PIC error for an allocated read-only section.
1936 // Here we know the section is allocated, but we don't know that it is
1937 // read-only. But we check for all the relocation types which the
1938 // glibc dynamic linker supports, so it seems appropriate to issue an
1939 // error even if the section is not read-only. If GSYM is not NULL,
1940 // it is the symbol the relocation is against; if it is NULL, the
1941 // relocation is against a local symbol.
1945 Target_x86_64
<size
>::Scan::check_non_pic(Relobj
* object
, unsigned int r_type
,
1950 // These are the relocation types supported by glibc for x86_64
1951 // which should always work.
1952 case elfcpp::R_X86_64_RELATIVE
:
1953 case elfcpp::R_X86_64_IRELATIVE
:
1954 case elfcpp::R_X86_64_GLOB_DAT
:
1955 case elfcpp::R_X86_64_JUMP_SLOT
:
1956 case elfcpp::R_X86_64_DTPMOD64
:
1957 case elfcpp::R_X86_64_DTPOFF64
:
1958 case elfcpp::R_X86_64_TPOFF64
:
1959 case elfcpp::R_X86_64_64
:
1960 case elfcpp::R_X86_64_COPY
:
1963 // glibc supports these reloc types, but they can overflow.
1964 case elfcpp::R_X86_64_PC32
:
1965 // A PC relative reference is OK against a local symbol or if
1966 // the symbol is defined locally.
1968 || (!gsym
->is_from_dynobj()
1969 && !gsym
->is_undefined()
1970 && !gsym
->is_preemptible()))
1973 case elfcpp::R_X86_64_32
:
1974 // R_X86_64_32 is OK for x32.
1975 if (size
== 32 && r_type
== elfcpp::R_X86_64_32
)
1977 if (this->issued_non_pic_error_
)
1979 gold_assert(parameters
->options().output_is_position_independent());
1981 object
->error(_("requires dynamic R_X86_64_32 reloc which may "
1982 "overflow at runtime; recompile with -fPIC"));
1984 object
->error(_("requires dynamic %s reloc against '%s' which may "
1985 "overflow at runtime; recompile with -fPIC"),
1986 (r_type
== elfcpp::R_X86_64_32
1990 this->issued_non_pic_error_
= true;
1994 // This prevents us from issuing more than one error per reloc
1995 // section. But we can still wind up issuing more than one
1996 // error per object file.
1997 if (this->issued_non_pic_error_
)
1999 gold_assert(parameters
->options().output_is_position_independent());
2000 object
->error(_("requires unsupported dynamic reloc %u; "
2001 "recompile with -fPIC"),
2003 this->issued_non_pic_error_
= true;
2006 case elfcpp::R_X86_64_NONE
:
2011 // Return whether we need to make a PLT entry for a relocation of the
2012 // given type against a STT_GNU_IFUNC symbol.
2016 Target_x86_64
<size
>::Scan::reloc_needs_plt_for_ifunc(
2017 Sized_relobj_file
<size
, false>* object
,
2018 unsigned int r_type
)
2020 int flags
= Scan::get_reference_flags(r_type
);
2021 if (flags
& Symbol::TLS_REF
)
2022 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2023 object
->name().c_str(), r_type
);
2027 // Scan a relocation for a local symbol.
2031 Target_x86_64
<size
>::Scan::local(Symbol_table
* symtab
,
2033 Target_x86_64
<size
>* target
,
2034 Sized_relobj_file
<size
, false>* object
,
2035 unsigned int data_shndx
,
2036 Output_section
* output_section
,
2037 const elfcpp::Rela
<size
, false>& reloc
,
2038 unsigned int r_type
,
2039 const elfcpp::Sym
<size
, false>& lsym
)
2041 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2042 bool is_ifunc
= lsym
.get_st_type() == elfcpp::STT_GNU_IFUNC
;
2043 if (is_ifunc
&& this->reloc_needs_plt_for_ifunc(object
, r_type
))
2045 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2046 target
->make_local_ifunc_plt_entry(symtab
, layout
, object
, r_sym
);
2051 case elfcpp::R_X86_64_NONE
:
2052 case elfcpp::R_X86_64_GNU_VTINHERIT
:
2053 case elfcpp::R_X86_64_GNU_VTENTRY
:
2056 case elfcpp::R_X86_64_64
:
2057 // If building a shared library (or a position-independent
2058 // executable), we need to create a dynamic relocation for this
2059 // location. The relocation applied at link time will apply the
2060 // link-time value, so we flag the location with an
2061 // R_X86_64_RELATIVE relocation so the dynamic loader can
2062 // relocate it easily.
2063 if (parameters
->options().output_is_position_independent())
2065 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2066 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2067 rela_dyn
->add_local_relative(object
, r_sym
,
2068 elfcpp::R_X86_64_RELATIVE
,
2069 output_section
, data_shndx
,
2070 reloc
.get_r_offset(),
2071 reloc
.get_r_addend(), is_ifunc
);
2075 case elfcpp::R_X86_64_32
:
2076 case elfcpp::R_X86_64_32S
:
2077 case elfcpp::R_X86_64_16
:
2078 case elfcpp::R_X86_64_8
:
2079 // If building a shared library (or a position-independent
2080 // executable), we need to create a dynamic relocation for this
2081 // location. We can't use an R_X86_64_RELATIVE relocation
2082 // because that is always a 64-bit relocation.
2083 if (parameters
->options().output_is_position_independent())
2085 // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2086 if (size
== 32 && r_type
== elfcpp::R_X86_64_32
)
2088 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2089 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2090 rela_dyn
->add_local_relative(object
, r_sym
,
2091 elfcpp::R_X86_64_RELATIVE
,
2092 output_section
, data_shndx
,
2093 reloc
.get_r_offset(),
2094 reloc
.get_r_addend(), is_ifunc
);
2098 this->check_non_pic(object
, r_type
, NULL
);
2100 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2101 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2102 if (lsym
.get_st_type() != elfcpp::STT_SECTION
)
2103 rela_dyn
->add_local(object
, r_sym
, r_type
, output_section
,
2104 data_shndx
, reloc
.get_r_offset(),
2105 reloc
.get_r_addend());
2108 gold_assert(lsym
.get_st_value() == 0);
2109 unsigned int shndx
= lsym
.get_st_shndx();
2111 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
,
2114 object
->error(_("section symbol %u has bad shndx %u"),
2117 rela_dyn
->add_local_section(object
, shndx
,
2118 r_type
, output_section
,
2119 data_shndx
, reloc
.get_r_offset(),
2120 reloc
.get_r_addend());
2125 case elfcpp::R_X86_64_PC64
:
2126 case elfcpp::R_X86_64_PC32
:
2127 case elfcpp::R_X86_64_PC16
:
2128 case elfcpp::R_X86_64_PC8
:
2131 case elfcpp::R_X86_64_PLT32
:
2132 // Since we know this is a local symbol, we can handle this as a
2136 case elfcpp::R_X86_64_GOTPC32
:
2137 case elfcpp::R_X86_64_GOTOFF64
:
2138 case elfcpp::R_X86_64_GOTPC64
:
2139 case elfcpp::R_X86_64_PLTOFF64
:
2140 // We need a GOT section.
2141 target
->got_section(symtab
, layout
);
2142 // For PLTOFF64, we'd normally want a PLT section, but since we
2143 // know this is a local symbol, no PLT is needed.
2146 case elfcpp::R_X86_64_GOT64
:
2147 case elfcpp::R_X86_64_GOT32
:
2148 case elfcpp::R_X86_64_GOTPCREL64
:
2149 case elfcpp::R_X86_64_GOTPCREL
:
2150 case elfcpp::R_X86_64_GOTPLT64
:
2152 // The symbol requires a GOT entry.
2153 Output_data_got
<64, false>* got
= target
->got_section(symtab
, layout
);
2154 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2156 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2157 // lets function pointers compare correctly with shared
2158 // libraries. Otherwise we would need an IRELATIVE reloc.
2161 is_new
= got
->add_local_plt(object
, r_sym
, GOT_TYPE_STANDARD
);
2163 is_new
= got
->add_local(object
, r_sym
, GOT_TYPE_STANDARD
);
2166 // If we are generating a shared object, we need to add a
2167 // dynamic relocation for this symbol's GOT entry.
2168 if (parameters
->options().output_is_position_independent())
2170 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2171 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2172 if (r_type
!= elfcpp::R_X86_64_GOT32
)
2174 unsigned int got_offset
=
2175 object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
);
2176 rela_dyn
->add_local_relative(object
, r_sym
,
2177 elfcpp::R_X86_64_RELATIVE
,
2178 got
, got_offset
, 0, is_ifunc
);
2182 this->check_non_pic(object
, r_type
, NULL
);
2184 gold_assert(lsym
.get_st_type() != elfcpp::STT_SECTION
);
2185 rela_dyn
->add_local(
2186 object
, r_sym
, r_type
, got
,
2187 object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
), 0);
2191 // For GOTPLT64, we'd normally want a PLT section, but since
2192 // we know this is a local symbol, no PLT is needed.
2196 case elfcpp::R_X86_64_COPY
:
2197 case elfcpp::R_X86_64_GLOB_DAT
:
2198 case elfcpp::R_X86_64_JUMP_SLOT
:
2199 case elfcpp::R_X86_64_RELATIVE
:
2200 case elfcpp::R_X86_64_IRELATIVE
:
2201 // These are outstanding tls relocs, which are unexpected when linking
2202 case elfcpp::R_X86_64_TPOFF64
:
2203 case elfcpp::R_X86_64_DTPMOD64
:
2204 case elfcpp::R_X86_64_TLSDESC
:
2205 gold_error(_("%s: unexpected reloc %u in object file"),
2206 object
->name().c_str(), r_type
);
2209 // These are initial tls relocs, which are expected when linking
2210 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
2211 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
2212 case elfcpp::R_X86_64_TLSDESC_CALL
:
2213 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
2214 case elfcpp::R_X86_64_DTPOFF32
:
2215 case elfcpp::R_X86_64_DTPOFF64
:
2216 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
2217 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
2219 bool output_is_shared
= parameters
->options().shared();
2220 const tls::Tls_optimization optimized_type
2221 = Target_x86_64
<size
>::optimize_tls_reloc(!output_is_shared
,
2225 case elfcpp::R_X86_64_TLSGD
: // General-dynamic
2226 if (optimized_type
== tls::TLSOPT_NONE
)
2228 // Create a pair of GOT entries for the module index and
2229 // dtv-relative offset.
2230 Output_data_got
<64, false>* got
2231 = target
->got_section(symtab
, layout
);
2232 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2233 unsigned int shndx
= lsym
.get_st_shndx();
2235 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
, &is_ordinary
);
2237 object
->error(_("local symbol %u has bad shndx %u"),
2240 got
->add_local_pair_with_rel(object
, r_sym
,
2243 target
->rela_dyn_section(layout
),
2244 elfcpp::R_X86_64_DTPMOD64
, 0);
2246 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2247 unsupported_reloc_local(object
, r_type
);
2250 case elfcpp::R_X86_64_GOTPC32_TLSDESC
:
2251 target
->define_tls_base_symbol(symtab
, layout
);
2252 if (optimized_type
== tls::TLSOPT_NONE
)
2254 // Create reserved PLT and GOT entries for the resolver.
2255 target
->reserve_tlsdesc_entries(symtab
, layout
);
2257 // Generate a double GOT entry with an
2258 // R_X86_64_TLSDESC reloc. The R_X86_64_TLSDESC reloc
2259 // is resolved lazily, so the GOT entry needs to be in
2260 // an area in .got.plt, not .got. Call got_section to
2261 // make sure the section has been created.
2262 target
->got_section(symtab
, layout
);
2263 Output_data_got
<64, false>* got
= target
->got_tlsdesc_section();
2264 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2265 if (!object
->local_has_got_offset(r_sym
, GOT_TYPE_TLS_DESC
))
2267 unsigned int got_offset
= got
->add_constant(0);
2268 got
->add_constant(0);
2269 object
->set_local_got_offset(r_sym
, GOT_TYPE_TLS_DESC
,
2271 Reloc_section
* rt
= target
->rela_tlsdesc_section(layout
);
2272 // We store the arguments we need in a vector, and
2273 // use the index into the vector as the parameter
2274 // to pass to the target specific routines.
2275 uintptr_t intarg
= target
->add_tlsdesc_info(object
, r_sym
);
2276 void* arg
= reinterpret_cast<void*>(intarg
);
2277 rt
->add_target_specific(elfcpp::R_X86_64_TLSDESC
, arg
,
2278 got
, got_offset
, 0);
2281 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2282 unsupported_reloc_local(object
, r_type
);
2285 case elfcpp::R_X86_64_TLSDESC_CALL
:
2288 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
2289 if (optimized_type
== tls::TLSOPT_NONE
)
2291 // Create a GOT entry for the module index.
2292 target
->got_mod_index_entry(symtab
, layout
, object
);
2294 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2295 unsupported_reloc_local(object
, r_type
);
2298 case elfcpp::R_X86_64_DTPOFF32
:
2299 case elfcpp::R_X86_64_DTPOFF64
:
2302 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
2303 layout
->set_has_static_tls();
2304 if (optimized_type
== tls::TLSOPT_NONE
)
2306 // Create a GOT entry for the tp-relative offset.
2307 Output_data_got
<64, false>* got
2308 = target
->got_section(symtab
, layout
);
2309 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(reloc
.get_r_info());
2310 got
->add_local_with_rel(object
, r_sym
, GOT_TYPE_TLS_OFFSET
,
2311 target
->rela_dyn_section(layout
),
2312 elfcpp::R_X86_64_TPOFF64
);
2314 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2315 unsupported_reloc_local(object
, r_type
);
2318 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
2319 layout
->set_has_static_tls();
2320 if (output_is_shared
)
2321 unsupported_reloc_local(object
, r_type
);
2330 case elfcpp::R_X86_64_SIZE32
:
2331 case elfcpp::R_X86_64_SIZE64
:
2333 gold_error(_("%s: unsupported reloc %u against local symbol"),
2334 object
->name().c_str(), r_type
);
2340 // Report an unsupported relocation against a global symbol.
2344 Target_x86_64
<size
>::Scan::unsupported_reloc_global(
2345 Sized_relobj_file
<size
, false>* object
,
2346 unsigned int r_type
,
2349 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2350 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
2353 // Returns true if this relocation type could be that of a function pointer.
2356 Target_x86_64
<size
>::Scan::possible_function_pointer_reloc(unsigned int r_type
)
2360 case elfcpp::R_X86_64_64
:
2361 case elfcpp::R_X86_64_32
:
2362 case elfcpp::R_X86_64_32S
:
2363 case elfcpp::R_X86_64_16
:
2364 case elfcpp::R_X86_64_8
:
2365 case elfcpp::R_X86_64_GOT64
:
2366 case elfcpp::R_X86_64_GOT32
:
2367 case elfcpp::R_X86_64_GOTPCREL64
:
2368 case elfcpp::R_X86_64_GOTPCREL
:
2369 case elfcpp::R_X86_64_GOTPLT64
:
2377 // For safe ICF, scan a relocation for a local symbol to check if it
2378 // corresponds to a function pointer being taken. In that case mark
2379 // the function whose pointer was taken as not foldable.
2383 Target_x86_64
<size
>::Scan::local_reloc_may_be_function_pointer(
2386 Target_x86_64
<size
>* ,
2387 Sized_relobj_file
<size
, false>* ,
2390 const elfcpp::Rela
<size
, false>& ,
2391 unsigned int r_type
,
2392 const elfcpp::Sym
<size
, false>&)
2394 // When building a shared library, do not fold any local symbols as it is
2395 // not possible to distinguish pointer taken versus a call by looking at
2396 // the relocation types.
2397 return (parameters
->options().shared()
2398 || possible_function_pointer_reloc(r_type
));
2401 // For safe ICF, scan a relocation for a global symbol to check if it
2402 // corresponds to a function pointer being taken. In that case mark
2403 // the function whose pointer was taken as not foldable.
2407 Target_x86_64
<size
>::Scan::global_reloc_may_be_function_pointer(
2410 Target_x86_64
<size
>* ,
2411 Sized_relobj_file
<size
, false>* ,
2414 const elfcpp::Rela
<size
, false>& ,
2415 unsigned int r_type
,
2418 // When building a shared library, do not fold symbols whose visibility
2419 // is hidden, internal or protected.
2420 return ((parameters
->options().shared()
2421 && (gsym
->visibility() == elfcpp::STV_INTERNAL
2422 || gsym
->visibility() == elfcpp::STV_PROTECTED
2423 || gsym
->visibility() == elfcpp::STV_HIDDEN
))
2424 || possible_function_pointer_reloc(r_type
));
2427 // Scan a relocation for a global symbol.
2431 Target_x86_64
<size
>::Scan::global(Symbol_table
* symtab
,
2433 Target_x86_64
<size
>* target
,
2434 Sized_relobj_file
<size
, false>* object
,
2435 unsigned int data_shndx
,
2436 Output_section
* output_section
,
2437 const elfcpp::Rela
<size
, false>& reloc
,
2438 unsigned int r_type
,
2441 // A STT_GNU_IFUNC symbol may require a PLT entry.
2442 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
2443 && this->reloc_needs_plt_for_ifunc(object
, r_type
))
2444 target
->make_plt_entry(symtab
, layout
, gsym
);
2448 case elfcpp::R_X86_64_NONE
:
2449 case elfcpp::R_X86_64_GNU_VTINHERIT
:
2450 case elfcpp::R_X86_64_GNU_VTENTRY
:
2453 case elfcpp::R_X86_64_64
:
2454 case elfcpp::R_X86_64_32
:
2455 case elfcpp::R_X86_64_32S
:
2456 case elfcpp::R_X86_64_16
:
2457 case elfcpp::R_X86_64_8
:
2459 // Make a PLT entry if necessary.
2460 if (gsym
->needs_plt_entry())
2462 target
->make_plt_entry(symtab
, layout
, gsym
);
2463 // Since this is not a PC-relative relocation, we may be
2464 // taking the address of a function. In that case we need to
2465 // set the entry in the dynamic symbol table to the address of
2467 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
2468 gsym
->set_needs_dynsym_value();
2470 // Make a dynamic relocation if necessary.
2471 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
2473 if (gsym
->may_need_copy_reloc())
2475 target
->copy_reloc(symtab
, layout
, object
,
2476 data_shndx
, output_section
, gsym
, reloc
);
2478 else if (r_type
== elfcpp::R_X86_64_64
2479 && gsym
->type() == elfcpp::STT_GNU_IFUNC
2480 && gsym
->can_use_relative_reloc(false)
2481 && !gsym
->is_from_dynobj()
2482 && !gsym
->is_undefined()
2483 && !gsym
->is_preemptible())
2485 // Use an IRELATIVE reloc for a locally defined
2486 // STT_GNU_IFUNC symbol. This makes a function
2487 // address in a PIE executable match the address in a
2488 // shared library that it links against.
2489 Reloc_section
* rela_dyn
=
2490 target
->rela_irelative_section(layout
);
2491 unsigned int r_type
= elfcpp::R_X86_64_IRELATIVE
;
2492 rela_dyn
->add_symbolless_global_addend(gsym
, r_type
,
2493 output_section
, object
,
2495 reloc
.get_r_offset(),
2496 reloc
.get_r_addend());
2498 else if (r_type
== elfcpp::R_X86_64_64
2499 && gsym
->can_use_relative_reloc(false))
2501 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2502 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_RELATIVE
,
2503 output_section
, object
,
2505 reloc
.get_r_offset(),
2506 reloc
.get_r_addend());
2510 this->check_non_pic(object
, r_type
, gsym
);
2511 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2512 rela_dyn
->add_global(gsym
, r_type
, output_section
, object
,
2513 data_shndx
, reloc
.get_r_offset(),
2514 reloc
.get_r_addend());
2520 case elfcpp::R_X86_64_PC64
:
2521 case elfcpp::R_X86_64_PC32
:
2522 case elfcpp::R_X86_64_PC16
:
2523 case elfcpp::R_X86_64_PC8
:
2525 // Make a PLT entry if necessary.
2526 if (gsym
->needs_plt_entry())
2527 target
->make_plt_entry(symtab
, layout
, gsym
);
2528 // Make a dynamic relocation if necessary.
2529 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
2531 if (gsym
->may_need_copy_reloc())
2533 target
->copy_reloc(symtab
, layout
, object
,
2534 data_shndx
, output_section
, gsym
, reloc
);
2538 this->check_non_pic(object
, r_type
, gsym
);
2539 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2540 rela_dyn
->add_global(gsym
, r_type
, output_section
, object
,
2541 data_shndx
, reloc
.get_r_offset(),
2542 reloc
.get_r_addend());
2548 case elfcpp::R_X86_64_GOT64
:
2549 case elfcpp::R_X86_64_GOT32
:
2550 case elfcpp::R_X86_64_GOTPCREL64
:
2551 case elfcpp::R_X86_64_GOTPCREL
:
2552 case elfcpp::R_X86_64_GOTPLT64
:
2554 // The symbol requires a GOT entry.
2555 Output_data_got
<64, false>* got
= target
->got_section(symtab
, layout
);
2556 if (gsym
->final_value_is_known())
2558 // For a STT_GNU_IFUNC symbol we want the PLT address.
2559 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
2560 got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
2562 got
->add_global(gsym
, GOT_TYPE_STANDARD
);
2566 // If this symbol is not fully resolved, we need to add a
2567 // dynamic relocation for it.
2568 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
2570 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2572 // 1) The symbol may be defined in some other module.
2574 // 2) We are building a shared library and this is a
2575 // protected symbol; using GLOB_DAT means that the dynamic
2576 // linker can use the address of the PLT in the main
2577 // executable when appropriate so that function address
2578 // comparisons work.
2580 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2581 // code, again so that function address comparisons work.
2582 if (gsym
->is_from_dynobj()
2583 || gsym
->is_undefined()
2584 || gsym
->is_preemptible()
2585 || (gsym
->visibility() == elfcpp::STV_PROTECTED
2586 && parameters
->options().shared())
2587 || (gsym
->type() == elfcpp::STT_GNU_IFUNC
2588 && parameters
->options().output_is_position_independent()))
2589 got
->add_global_with_rel(gsym
, GOT_TYPE_STANDARD
, rela_dyn
,
2590 elfcpp::R_X86_64_GLOB_DAT
);
2593 // For a STT_GNU_IFUNC symbol we want to write the PLT
2594 // offset into the GOT, so that function pointer
2595 // comparisons work correctly.
2597 if (gsym
->type() != elfcpp::STT_GNU_IFUNC
)
2598 is_new
= got
->add_global(gsym
, GOT_TYPE_STANDARD
);
2601 is_new
= got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
2602 // Tell the dynamic linker to use the PLT address
2603 // when resolving relocations.
2604 if (gsym
->is_from_dynobj()
2605 && !parameters
->options().shared())
2606 gsym
->set_needs_dynsym_value();
2610 unsigned int got_off
= gsym
->got_offset(GOT_TYPE_STANDARD
);
2611 rela_dyn
->add_global_relative(gsym
,
2612 elfcpp::R_X86_64_RELATIVE
,
2617 // For GOTPLT64, we also need a PLT entry (but only if the
2618 // symbol is not fully resolved).
2619 if (r_type
== elfcpp::R_X86_64_GOTPLT64
2620 && !gsym
->final_value_is_known())
2621 target
->make_plt_entry(symtab
, layout
, gsym
);
2625 case elfcpp::R_X86_64_PLT32
:
2626 // If the symbol is fully resolved, this is just a PC32 reloc.
2627 // Otherwise we need a PLT entry.
2628 if (gsym
->final_value_is_known())
2630 // If building a shared library, we can also skip the PLT entry
2631 // if the symbol is defined in the output file and is protected
2633 if (gsym
->is_defined()
2634 && !gsym
->is_from_dynobj()
2635 && !gsym
->is_preemptible())
2637 target
->make_plt_entry(symtab
, layout
, gsym
);
2640 case elfcpp::R_X86_64_GOTPC32
:
2641 case elfcpp::R_X86_64_GOTOFF64
:
2642 case elfcpp::R_X86_64_GOTPC64
:
2643 case elfcpp::R_X86_64_PLTOFF64
:
2644 // We need a GOT section.
2645 target
->got_section(symtab
, layout
);
2646 // For PLTOFF64, we also need a PLT entry (but only if the
2647 // symbol is not fully resolved).
2648 if (r_type
== elfcpp::R_X86_64_PLTOFF64
2649 && !gsym
->final_value_is_known())
2650 target
->make_plt_entry(symtab
, layout
, gsym
);
2653 case elfcpp::R_X86_64_COPY
:
2654 case elfcpp::R_X86_64_GLOB_DAT
:
2655 case elfcpp::R_X86_64_JUMP_SLOT
:
2656 case elfcpp::R_X86_64_RELATIVE
:
2657 case elfcpp::R_X86_64_IRELATIVE
:
2658 // These are outstanding tls relocs, which are unexpected when linking
2659 case elfcpp::R_X86_64_TPOFF64
:
2660 case elfcpp::R_X86_64_DTPMOD64
:
2661 case elfcpp::R_X86_64_TLSDESC
:
2662 gold_error(_("%s: unexpected reloc %u in object file"),
2663 object
->name().c_str(), r_type
);
2666 // These are initial tls relocs, which are expected for global()
2667 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
2668 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
2669 case elfcpp::R_X86_64_TLSDESC_CALL
:
2670 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
2671 case elfcpp::R_X86_64_DTPOFF32
:
2672 case elfcpp::R_X86_64_DTPOFF64
:
2673 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
2674 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
2676 const bool is_final
= gsym
->final_value_is_known();
2677 const tls::Tls_optimization optimized_type
2678 = Target_x86_64
<size
>::optimize_tls_reloc(is_final
, r_type
);
2681 case elfcpp::R_X86_64_TLSGD
: // General-dynamic
2682 if (optimized_type
== tls::TLSOPT_NONE
)
2684 // Create a pair of GOT entries for the module index and
2685 // dtv-relative offset.
2686 Output_data_got
<64, false>* got
2687 = target
->got_section(symtab
, layout
);
2688 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_PAIR
,
2689 target
->rela_dyn_section(layout
),
2690 elfcpp::R_X86_64_DTPMOD64
,
2691 elfcpp::R_X86_64_DTPOFF64
);
2693 else if (optimized_type
== tls::TLSOPT_TO_IE
)
2695 // Create a GOT entry for the tp-relative offset.
2696 Output_data_got
<64, false>* got
2697 = target
->got_section(symtab
, layout
);
2698 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
2699 target
->rela_dyn_section(layout
),
2700 elfcpp::R_X86_64_TPOFF64
);
2702 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2703 unsupported_reloc_global(object
, r_type
, gsym
);
2706 case elfcpp::R_X86_64_GOTPC32_TLSDESC
:
2707 target
->define_tls_base_symbol(symtab
, layout
);
2708 if (optimized_type
== tls::TLSOPT_NONE
)
2710 // Create reserved PLT and GOT entries for the resolver.
2711 target
->reserve_tlsdesc_entries(symtab
, layout
);
2713 // Create a double GOT entry with an R_X86_64_TLSDESC
2714 // reloc. The R_X86_64_TLSDESC reloc is resolved
2715 // lazily, so the GOT entry needs to be in an area in
2716 // .got.plt, not .got. Call got_section to make sure
2717 // the section has been created.
2718 target
->got_section(symtab
, layout
);
2719 Output_data_got
<64, false>* got
= target
->got_tlsdesc_section();
2720 Reloc_section
* rt
= target
->rela_tlsdesc_section(layout
);
2721 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_DESC
, rt
,
2722 elfcpp::R_X86_64_TLSDESC
, 0);
2724 else if (optimized_type
== tls::TLSOPT_TO_IE
)
2726 // Create a GOT entry for the tp-relative offset.
2727 Output_data_got
<64, false>* got
2728 = target
->got_section(symtab
, layout
);
2729 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
2730 target
->rela_dyn_section(layout
),
2731 elfcpp::R_X86_64_TPOFF64
);
2733 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2734 unsupported_reloc_global(object
, r_type
, gsym
);
2737 case elfcpp::R_X86_64_TLSDESC_CALL
:
2740 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
2741 if (optimized_type
== tls::TLSOPT_NONE
)
2743 // Create a GOT entry for the module index.
2744 target
->got_mod_index_entry(symtab
, layout
, object
);
2746 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2747 unsupported_reloc_global(object
, r_type
, gsym
);
2750 case elfcpp::R_X86_64_DTPOFF32
:
2751 case elfcpp::R_X86_64_DTPOFF64
:
2754 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
2755 layout
->set_has_static_tls();
2756 if (optimized_type
== tls::TLSOPT_NONE
)
2758 // Create a GOT entry for the tp-relative offset.
2759 Output_data_got
<64, false>* got
2760 = target
->got_section(symtab
, layout
);
2761 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
2762 target
->rela_dyn_section(layout
),
2763 elfcpp::R_X86_64_TPOFF64
);
2765 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
2766 unsupported_reloc_global(object
, r_type
, gsym
);
2769 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
2770 layout
->set_has_static_tls();
2771 if (parameters
->options().shared())
2772 unsupported_reloc_local(object
, r_type
);
2781 case elfcpp::R_X86_64_SIZE32
:
2782 case elfcpp::R_X86_64_SIZE64
:
2784 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2785 object
->name().c_str(), r_type
,
2786 gsym
->demangled_name().c_str());
2793 Target_x86_64
<size
>::gc_process_relocs(Symbol_table
* symtab
,
2795 Sized_relobj_file
<size
, false>* object
,
2796 unsigned int data_shndx
,
2797 unsigned int sh_type
,
2798 const unsigned char* prelocs
,
2800 Output_section
* output_section
,
2801 bool needs_special_offset_handling
,
2802 size_t local_symbol_count
,
2803 const unsigned char* plocal_symbols
)
2806 if (sh_type
== elfcpp::SHT_REL
)
2811 gold::gc_process_relocs
<size
, false, Target_x86_64
<size
>, elfcpp::SHT_RELA
,
2812 typename Target_x86_64
<size
>::Scan
,
2813 typename Target_x86_64
<size
>::Relocatable_size_for_reloc
>(
2822 needs_special_offset_handling
,
2827 // Scan relocations for a section.
2831 Target_x86_64
<size
>::scan_relocs(Symbol_table
* symtab
,
2833 Sized_relobj_file
<size
, false>* object
,
2834 unsigned int data_shndx
,
2835 unsigned int sh_type
,
2836 const unsigned char* prelocs
,
2838 Output_section
* output_section
,
2839 bool needs_special_offset_handling
,
2840 size_t local_symbol_count
,
2841 const unsigned char* plocal_symbols
)
2843 if (sh_type
== elfcpp::SHT_REL
)
2845 gold_error(_("%s: unsupported REL reloc section"),
2846 object
->name().c_str());
2850 gold::scan_relocs
<size
, false, Target_x86_64
<size
>, elfcpp::SHT_RELA
,
2851 typename Target_x86_64
<size
>::Scan
>(
2860 needs_special_offset_handling
,
2865 // Finalize the sections.
2869 Target_x86_64
<size
>::do_finalize_sections(
2871 const Input_objects
*,
2872 Symbol_table
* symtab
)
2874 const Reloc_section
* rel_plt
= (this->plt_
== NULL
2876 : this->plt_
->rela_plt());
2877 layout
->add_target_dynamic_tags(false, this->got_plt_
, rel_plt
,
2878 this->rela_dyn_
, true, false);
2880 // Fill in some more dynamic tags.
2881 Output_data_dynamic
* const odyn
= layout
->dynamic_data();
2884 if (this->plt_
!= NULL
2885 && this->plt_
->output_section() != NULL
2886 && this->plt_
->has_tlsdesc_entry())
2888 unsigned int plt_offset
= this->plt_
->get_tlsdesc_plt_offset();
2889 unsigned int got_offset
= this->plt_
->get_tlsdesc_got_offset();
2890 this->got_
->finalize_data_size();
2891 odyn
->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT
,
2892 this->plt_
, plt_offset
);
2893 odyn
->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT
,
2894 this->got_
, got_offset
);
2898 // Emit any relocs we saved in an attempt to avoid generating COPY
2900 if (this->copy_relocs_
.any_saved_relocs())
2901 this->copy_relocs_
.emit(this->rela_dyn_section(layout
));
2903 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2904 // the .got.plt section.
2905 Symbol
* sym
= this->global_offset_table_
;
2908 uint64_t data_size
= this->got_plt_
->current_data_size();
2909 symtab
->get_sized_symbol
<size
>(sym
)->set_symsize(data_size
);
2912 if (parameters
->doing_static_link()
2913 && (this->plt_
== NULL
|| !this->plt_
->has_irelative_section()))
2915 // If linking statically, make sure that the __rela_iplt symbols
2916 // were defined if necessary, even if we didn't create a PLT.
2917 static const Define_symbol_in_segment syms
[] =
2920 "__rela_iplt_start", // name
2921 elfcpp::PT_LOAD
, // segment_type
2922 elfcpp::PF_W
, // segment_flags_set
2923 elfcpp::PF(0), // segment_flags_clear
2926 elfcpp::STT_NOTYPE
, // type
2927 elfcpp::STB_GLOBAL
, // binding
2928 elfcpp::STV_HIDDEN
, // visibility
2930 Symbol::SEGMENT_START
, // offset_from_base
2934 "__rela_iplt_end", // name
2935 elfcpp::PT_LOAD
, // segment_type
2936 elfcpp::PF_W
, // segment_flags_set
2937 elfcpp::PF(0), // segment_flags_clear
2940 elfcpp::STT_NOTYPE
, // type
2941 elfcpp::STB_GLOBAL
, // binding
2942 elfcpp::STV_HIDDEN
, // visibility
2944 Symbol::SEGMENT_START
, // offset_from_base
2949 symtab
->define_symbols(layout
, 2, syms
,
2950 layout
->script_options()->saw_sections_clause());
2954 // Perform a relocation.
2958 Target_x86_64
<size
>::Relocate::relocate(
2959 const Relocate_info
<size
, false>* relinfo
,
2960 Target_x86_64
<size
>* target
,
2963 const elfcpp::Rela
<size
, false>& rela
,
2964 unsigned int r_type
,
2965 const Sized_symbol
<size
>* gsym
,
2966 const Symbol_value
<size
>* psymval
,
2967 unsigned char* view
,
2968 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
2969 section_size_type view_size
)
2971 if (this->skip_call_tls_get_addr_
)
2973 if ((r_type
!= elfcpp::R_X86_64_PLT32
2974 && r_type
!= elfcpp::R_X86_64_PC32
)
2976 || strcmp(gsym
->name(), "__tls_get_addr") != 0)
2978 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
2979 _("missing expected TLS relocation"));
2983 this->skip_call_tls_get_addr_
= false;
2988 const Sized_relobj_file
<size
, false>* object
= relinfo
->object
;
2990 // Pick the value to use for symbols defined in the PLT.
2991 Symbol_value
<size
> symval
;
2993 && gsym
->use_plt_offset(Scan::get_reference_flags(r_type
)))
2995 symval
.set_output_value(target
->plt_address_for_global(gsym
)
2996 + gsym
->plt_offset());
2999 else if (gsym
== NULL
&& psymval
->is_ifunc_symbol())
3001 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
3002 if (object
->local_has_plt_offset(r_sym
))
3004 symval
.set_output_value(target
->plt_address_for_local(object
, r_sym
)
3005 + object
->local_plt_offset(r_sym
));
3010 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
3012 // Get the GOT offset if needed.
3013 // The GOT pointer points to the end of the GOT section.
3014 // We need to subtract the size of the GOT section to get
3015 // the actual offset to use in the relocation.
3016 bool have_got_offset
= false;
3017 unsigned int got_offset
= 0;
3020 case elfcpp::R_X86_64_GOT32
:
3021 case elfcpp::R_X86_64_GOT64
:
3022 case elfcpp::R_X86_64_GOTPLT64
:
3023 case elfcpp::R_X86_64_GOTPCREL
:
3024 case elfcpp::R_X86_64_GOTPCREL64
:
3027 gold_assert(gsym
->has_got_offset(GOT_TYPE_STANDARD
));
3028 got_offset
= gsym
->got_offset(GOT_TYPE_STANDARD
) - target
->got_size();
3032 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
3033 gold_assert(object
->local_has_got_offset(r_sym
, GOT_TYPE_STANDARD
));
3034 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
)
3035 - target
->got_size());
3037 have_got_offset
= true;
3046 case elfcpp::R_X86_64_NONE
:
3047 case elfcpp::R_X86_64_GNU_VTINHERIT
:
3048 case elfcpp::R_X86_64_GNU_VTENTRY
:
3051 case elfcpp::R_X86_64_64
:
3052 Relocate_functions
<size
, false>::rela64(view
, object
, psymval
, addend
);
3055 case elfcpp::R_X86_64_PC64
:
3056 Relocate_functions
<size
, false>::pcrela64(view
, object
, psymval
, addend
,
3060 case elfcpp::R_X86_64_32
:
3061 // FIXME: we need to verify that value + addend fits into 32 bits:
3062 // uint64_t x = value + addend;
3063 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3064 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3065 Relocate_functions
<size
, false>::rela32(view
, object
, psymval
, addend
);
3068 case elfcpp::R_X86_64_32S
:
3069 // FIXME: we need to verify that value + addend fits into 32 bits:
3070 // int64_t x = value + addend; // note this quantity is signed!
3071 // x == static_cast<int64_t>(static_cast<int32_t>(x))
3072 Relocate_functions
<size
, false>::rela32(view
, object
, psymval
, addend
);
3075 case elfcpp::R_X86_64_PC32
:
3076 Relocate_functions
<size
, false>::pcrela32(view
, object
, psymval
, addend
,
3080 case elfcpp::R_X86_64_16
:
3081 Relocate_functions
<size
, false>::rela16(view
, object
, psymval
, addend
);
3084 case elfcpp::R_X86_64_PC16
:
3085 Relocate_functions
<size
, false>::pcrela16(view
, object
, psymval
, addend
,
3089 case elfcpp::R_X86_64_8
:
3090 Relocate_functions
<size
, false>::rela8(view
, object
, psymval
, addend
);
3093 case elfcpp::R_X86_64_PC8
:
3094 Relocate_functions
<size
, false>::pcrela8(view
, object
, psymval
, addend
,
3098 case elfcpp::R_X86_64_PLT32
:
3099 gold_assert(gsym
== NULL
3100 || gsym
->has_plt_offset()
3101 || gsym
->final_value_is_known()
3102 || (gsym
->is_defined()
3103 && !gsym
->is_from_dynobj()
3104 && !gsym
->is_preemptible()));
3105 // Note: while this code looks the same as for R_X86_64_PC32, it
3106 // behaves differently because psymval was set to point to
3107 // the PLT entry, rather than the symbol, in Scan::global().
3108 Relocate_functions
<size
, false>::pcrela32(view
, object
, psymval
, addend
,
3112 case elfcpp::R_X86_64_PLTOFF64
:
3115 gold_assert(gsym
->has_plt_offset()
3116 || gsym
->final_value_is_known());
3117 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_address
;
3118 got_address
= target
->got_section(NULL
, NULL
)->address();
3119 Relocate_functions
<size
, false>::rela64(view
, object
, psymval
,
3120 addend
- got_address
);
3123 case elfcpp::R_X86_64_GOT32
:
3124 gold_assert(have_got_offset
);
3125 Relocate_functions
<size
, false>::rela32(view
, got_offset
, addend
);
3128 case elfcpp::R_X86_64_GOTPC32
:
3131 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
3132 value
= target
->got_plt_section()->address();
3133 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
, address
);
3137 case elfcpp::R_X86_64_GOT64
:
3138 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
3139 // Since we always add a PLT entry, this is equivalent.
3140 case elfcpp::R_X86_64_GOTPLT64
:
3141 gold_assert(have_got_offset
);
3142 Relocate_functions
<size
, false>::rela64(view
, got_offset
, addend
);
3145 case elfcpp::R_X86_64_GOTPC64
:
3148 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
3149 value
= target
->got_plt_section()->address();
3150 Relocate_functions
<size
, false>::pcrela64(view
, value
, addend
, address
);
3154 case elfcpp::R_X86_64_GOTOFF64
:
3156 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
3157 value
= (psymval
->value(object
, 0)
3158 - target
->got_plt_section()->address());
3159 Relocate_functions
<size
, false>::rela64(view
, value
, addend
);
3163 case elfcpp::R_X86_64_GOTPCREL
:
3165 gold_assert(have_got_offset
);
3166 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
3167 value
= target
->got_plt_section()->address() + got_offset
;
3168 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
, address
);
3172 case elfcpp::R_X86_64_GOTPCREL64
:
3174 gold_assert(have_got_offset
);
3175 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
3176 value
= target
->got_plt_section()->address() + got_offset
;
3177 Relocate_functions
<size
, false>::pcrela64(view
, value
, addend
, address
);
3181 case elfcpp::R_X86_64_COPY
:
3182 case elfcpp::R_X86_64_GLOB_DAT
:
3183 case elfcpp::R_X86_64_JUMP_SLOT
:
3184 case elfcpp::R_X86_64_RELATIVE
:
3185 case elfcpp::R_X86_64_IRELATIVE
:
3186 // These are outstanding tls relocs, which are unexpected when linking
3187 case elfcpp::R_X86_64_TPOFF64
:
3188 case elfcpp::R_X86_64_DTPMOD64
:
3189 case elfcpp::R_X86_64_TLSDESC
:
3190 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
3191 _("unexpected reloc %u in object file"),
3195 // These are initial tls relocs, which are expected when linking
3196 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
3197 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
3198 case elfcpp::R_X86_64_TLSDESC_CALL
:
3199 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
3200 case elfcpp::R_X86_64_DTPOFF32
:
3201 case elfcpp::R_X86_64_DTPOFF64
:
3202 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
3203 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
3204 this->relocate_tls(relinfo
, target
, relnum
, rela
, r_type
, gsym
, psymval
,
3205 view
, address
, view_size
);
3208 case elfcpp::R_X86_64_SIZE32
:
3209 case elfcpp::R_X86_64_SIZE64
:
3211 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
3212 _("unsupported reloc %u"),
3220 // Perform a TLS relocation.
3224 Target_x86_64
<size
>::Relocate::relocate_tls(
3225 const Relocate_info
<size
, false>* relinfo
,
3226 Target_x86_64
<size
>* target
,
3228 const elfcpp::Rela
<size
, false>& rela
,
3229 unsigned int r_type
,
3230 const Sized_symbol
<size
>* gsym
,
3231 const Symbol_value
<size
>* psymval
,
3232 unsigned char* view
,
3233 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
3234 section_size_type view_size
)
3236 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
3238 const Sized_relobj_file
<size
, false>* object
= relinfo
->object
;
3239 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
3240 elfcpp::Shdr
<size
, false> data_shdr(relinfo
->data_shdr
);
3241 bool is_executable
= (data_shdr
.get_sh_flags() & elfcpp::SHF_EXECINSTR
) != 0;
3243 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
= psymval
->value(relinfo
->object
, 0);
3245 const bool is_final
= (gsym
== NULL
3246 ? !parameters
->options().shared()
3247 : gsym
->final_value_is_known());
3248 tls::Tls_optimization optimized_type
3249 = Target_x86_64
<size
>::optimize_tls_reloc(is_final
, r_type
);
3252 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
3253 if (!is_executable
&& optimized_type
== tls::TLSOPT_TO_LE
)
3255 // If this code sequence is used in a non-executable section,
3256 // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3257 // on the assumption that it's being used by itself in a debug
3258 // section. Therefore, in the unlikely event that the code
3259 // sequence appears in a non-executable section, we simply
3260 // leave it unoptimized.
3261 optimized_type
= tls::TLSOPT_NONE
;
3263 if (optimized_type
== tls::TLSOPT_TO_LE
)
3265 if (tls_segment
== NULL
)
3267 gold_assert(parameters
->errors()->error_count() > 0
3268 || issue_undefined_symbol_error(gsym
));
3271 this->tls_gd_to_le(relinfo
, relnum
, tls_segment
,
3272 rela
, r_type
, value
, view
,
3278 unsigned int got_type
= (optimized_type
== tls::TLSOPT_TO_IE
3279 ? GOT_TYPE_TLS_OFFSET
3280 : GOT_TYPE_TLS_PAIR
);
3281 unsigned int got_offset
;
3284 gold_assert(gsym
->has_got_offset(got_type
));
3285 got_offset
= gsym
->got_offset(got_type
) - target
->got_size();
3289 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
3290 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
3291 got_offset
= (object
->local_got_offset(r_sym
, got_type
)
3292 - target
->got_size());
3294 if (optimized_type
== tls::TLSOPT_TO_IE
)
3296 value
= target
->got_plt_section()->address() + got_offset
;
3297 this->tls_gd_to_ie(relinfo
, relnum
, tls_segment
, rela
, r_type
,
3298 value
, view
, address
, view_size
);
3301 else if (optimized_type
== tls::TLSOPT_NONE
)
3303 // Relocate the field with the offset of the pair of GOT
3305 value
= target
->got_plt_section()->address() + got_offset
;
3306 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
,
3311 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
3312 _("unsupported reloc %u"), r_type
);
3315 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
3316 case elfcpp::R_X86_64_TLSDESC_CALL
:
3317 if (!is_executable
&& optimized_type
== tls::TLSOPT_TO_LE
)
3319 // See above comment for R_X86_64_TLSGD.
3320 optimized_type
= tls::TLSOPT_NONE
;
3322 if (optimized_type
== tls::TLSOPT_TO_LE
)
3324 if (tls_segment
== NULL
)
3326 gold_assert(parameters
->errors()->error_count() > 0
3327 || issue_undefined_symbol_error(gsym
));
3330 this->tls_desc_gd_to_le(relinfo
, relnum
, tls_segment
,
3331 rela
, r_type
, value
, view
,
3337 unsigned int got_type
= (optimized_type
== tls::TLSOPT_TO_IE
3338 ? GOT_TYPE_TLS_OFFSET
3339 : GOT_TYPE_TLS_DESC
);
3340 unsigned int got_offset
= 0;
3341 if (r_type
== elfcpp::R_X86_64_GOTPC32_TLSDESC
3342 && optimized_type
== tls::TLSOPT_NONE
)
3344 // We created GOT entries in the .got.tlsdesc portion of
3345 // the .got.plt section, but the offset stored in the
3346 // symbol is the offset within .got.tlsdesc.
3347 got_offset
= (target
->got_size()
3348 + target
->got_plt_section()->data_size());
3352 gold_assert(gsym
->has_got_offset(got_type
));
3353 got_offset
+= gsym
->got_offset(got_type
) - target
->got_size();
3357 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
3358 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
3359 got_offset
+= (object
->local_got_offset(r_sym
, got_type
)
3360 - target
->got_size());
3362 if (optimized_type
== tls::TLSOPT_TO_IE
)
3364 if (tls_segment
== NULL
)
3366 gold_assert(parameters
->errors()->error_count() > 0
3367 || issue_undefined_symbol_error(gsym
));
3370 value
= target
->got_plt_section()->address() + got_offset
;
3371 this->tls_desc_gd_to_ie(relinfo
, relnum
, tls_segment
,
3372 rela
, r_type
, value
, view
, address
,
3376 else if (optimized_type
== tls::TLSOPT_NONE
)
3378 if (r_type
== elfcpp::R_X86_64_GOTPC32_TLSDESC
)
3380 // Relocate the field with the offset of the pair of GOT
3382 value
= target
->got_plt_section()->address() + got_offset
;
3383 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
,
3389 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
3390 _("unsupported reloc %u"), r_type
);
3393 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
3394 if (!is_executable
&& optimized_type
== tls::TLSOPT_TO_LE
)
3396 // See above comment for R_X86_64_TLSGD.
3397 optimized_type
= tls::TLSOPT_NONE
;
3399 if (optimized_type
== tls::TLSOPT_TO_LE
)
3401 if (tls_segment
== NULL
)
3403 gold_assert(parameters
->errors()->error_count() > 0
3404 || issue_undefined_symbol_error(gsym
));
3407 this->tls_ld_to_le(relinfo
, relnum
, tls_segment
, rela
, r_type
,
3408 value
, view
, view_size
);
3411 else if (optimized_type
== tls::TLSOPT_NONE
)
3413 // Relocate the field with the offset of the GOT entry for
3414 // the module index.
3415 unsigned int got_offset
;
3416 got_offset
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
)
3417 - target
->got_size());
3418 value
= target
->got_plt_section()->address() + got_offset
;
3419 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
,
3423 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
3424 _("unsupported reloc %u"), r_type
);
3427 case elfcpp::R_X86_64_DTPOFF32
:
3428 // This relocation type is used in debugging information.
3429 // In that case we need to not optimize the value. If the
3430 // section is not executable, then we assume we should not
3431 // optimize this reloc. See comments above for R_X86_64_TLSGD,
3432 // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3434 if (optimized_type
== tls::TLSOPT_TO_LE
&& is_executable
)
3436 if (tls_segment
== NULL
)
3438 gold_assert(parameters
->errors()->error_count() > 0
3439 || issue_undefined_symbol_error(gsym
));
3442 value
-= tls_segment
->memsz();
3444 Relocate_functions
<size
, false>::rela32(view
, value
, addend
);
3447 case elfcpp::R_X86_64_DTPOFF64
:
3448 // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3449 if (optimized_type
== tls::TLSOPT_TO_LE
&& is_executable
)
3451 if (tls_segment
== NULL
)
3453 gold_assert(parameters
->errors()->error_count() > 0
3454 || issue_undefined_symbol_error(gsym
));
3457 value
-= tls_segment
->memsz();
3459 Relocate_functions
<size
, false>::rela64(view
, value
, addend
);
3462 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
3463 if (optimized_type
== tls::TLSOPT_TO_LE
)
3465 if (tls_segment
== NULL
)
3467 gold_assert(parameters
->errors()->error_count() > 0
3468 || issue_undefined_symbol_error(gsym
));
3471 Target_x86_64
<size
>::Relocate::tls_ie_to_le(relinfo
, relnum
,
3473 r_type
, value
, view
,
3477 else if (optimized_type
== tls::TLSOPT_NONE
)
3479 // Relocate the field with the offset of the GOT entry for
3480 // the tp-relative offset of the symbol.
3481 unsigned int got_offset
;
3484 gold_assert(gsym
->has_got_offset(GOT_TYPE_TLS_OFFSET
));
3485 got_offset
= (gsym
->got_offset(GOT_TYPE_TLS_OFFSET
)
3486 - target
->got_size());
3490 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
3491 gold_assert(object
->local_has_got_offset(r_sym
,
3492 GOT_TYPE_TLS_OFFSET
));
3493 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_TLS_OFFSET
)
3494 - target
->got_size());
3496 value
= target
->got_plt_section()->address() + got_offset
;
3497 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
,
3501 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
3502 _("unsupported reloc type %u"),
3506 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
3507 if (tls_segment
== NULL
)
3509 gold_assert(parameters
->errors()->error_count() > 0
3510 || issue_undefined_symbol_error(gsym
));
3513 value
-= tls_segment
->memsz();
3514 Relocate_functions
<size
, false>::rela32(view
, value
, addend
);
3519 // Do a relocation in which we convert a TLS General-Dynamic to an
3524 Target_x86_64
<size
>::Relocate::tls_gd_to_ie(
3525 const Relocate_info
<size
, false>* relinfo
,
3528 const elfcpp::Rela
<size
, false>& rela
,
3530 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3531 unsigned char* view
,
3532 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
3533 section_size_type view_size
)
3535 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3536 // .word 0x6666; rex64; call __tls_get_addr
3537 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3539 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -4);
3540 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 12);
3542 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3543 (memcmp(view
- 4, "\x66\x48\x8d\x3d", 4) == 0));
3544 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3545 (memcmp(view
+ 4, "\x66\x66\x48\xe8", 4) == 0));
3547 memcpy(view
- 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
3549 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
3550 Relocate_functions
<size
, false>::pcrela32(view
+ 8, value
, addend
- 8,
3553 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3555 this->skip_call_tls_get_addr_
= true;
3558 // Do a relocation in which we convert a TLS General-Dynamic to a
3563 Target_x86_64
<size
>::Relocate::tls_gd_to_le(
3564 const Relocate_info
<size
, false>* relinfo
,
3566 Output_segment
* tls_segment
,
3567 const elfcpp::Rela
<size
, false>& rela
,
3569 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3570 unsigned char* view
,
3571 section_size_type view_size
)
3573 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3574 // .word 0x6666; rex64; call __tls_get_addr
3575 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3577 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -4);
3578 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 12);
3580 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3581 (memcmp(view
- 4, "\x66\x48\x8d\x3d", 4) == 0));
3582 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3583 (memcmp(view
+ 4, "\x66\x66\x48\xe8", 4) == 0));
3585 memcpy(view
- 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
3587 value
-= tls_segment
->memsz();
3588 Relocate_functions
<size
, false>::rela32(view
+ 8, value
, 0);
3590 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3592 this->skip_call_tls_get_addr_
= true;
3595 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3599 Target_x86_64
<size
>::Relocate::tls_desc_gd_to_ie(
3600 const Relocate_info
<size
, false>* relinfo
,
3603 const elfcpp::Rela
<size
, false>& rela
,
3604 unsigned int r_type
,
3605 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3606 unsigned char* view
,
3607 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
3608 section_size_type view_size
)
3610 if (r_type
== elfcpp::R_X86_64_GOTPC32_TLSDESC
)
3612 // leaq foo@tlsdesc(%rip), %rax
3613 // ==> movq foo@gottpoff(%rip), %rax
3614 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -3);
3615 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 4);
3616 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3617 view
[-3] == 0x48 && view
[-2] == 0x8d && view
[-1] == 0x05);
3619 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
3620 Relocate_functions
<size
, false>::pcrela32(view
, value
, addend
, address
);
3624 // call *foo@tlscall(%rax)
3626 gold_assert(r_type
== elfcpp::R_X86_64_TLSDESC_CALL
);
3627 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 2);
3628 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3629 view
[0] == 0xff && view
[1] == 0x10);
3635 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3639 Target_x86_64
<size
>::Relocate::tls_desc_gd_to_le(
3640 const Relocate_info
<size
, false>* relinfo
,
3642 Output_segment
* tls_segment
,
3643 const elfcpp::Rela
<size
, false>& rela
,
3644 unsigned int r_type
,
3645 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3646 unsigned char* view
,
3647 section_size_type view_size
)
3649 if (r_type
== elfcpp::R_X86_64_GOTPC32_TLSDESC
)
3651 // leaq foo@tlsdesc(%rip), %rax
3652 // ==> movq foo@tpoff, %rax
3653 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -3);
3654 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 4);
3655 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3656 view
[-3] == 0x48 && view
[-2] == 0x8d && view
[-1] == 0x05);
3659 value
-= tls_segment
->memsz();
3660 Relocate_functions
<size
, false>::rela32(view
, value
, 0);
3664 // call *foo@tlscall(%rax)
3666 gold_assert(r_type
== elfcpp::R_X86_64_TLSDESC_CALL
);
3667 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 2);
3668 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3669 view
[0] == 0xff && view
[1] == 0x10);
3677 Target_x86_64
<size
>::Relocate::tls_ld_to_le(
3678 const Relocate_info
<size
, false>* relinfo
,
3681 const elfcpp::Rela
<size
, false>& rela
,
3683 typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
3684 unsigned char* view
,
3685 section_size_type view_size
)
3687 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3688 // ... leq foo@dtpoff(%rax),%reg
3689 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3691 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -3);
3692 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 9);
3694 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
3695 view
[-3] == 0x48 && view
[-2] == 0x8d && view
[-1] == 0x3d);
3697 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(), view
[4] == 0xe8);
3699 memcpy(view
- 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3701 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3703 this->skip_call_tls_get_addr_
= true;
3706 // Do a relocation in which we convert a TLS Initial-Exec to a
3711 Target_x86_64
<size
>::Relocate::tls_ie_to_le(
3712 const Relocate_info
<size
, false>* relinfo
,
3714 Output_segment
* tls_segment
,
3715 const elfcpp::Rela
<size
, false>& rela
,
3717 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3718 unsigned char* view
,
3719 section_size_type view_size
)
3721 // We need to examine the opcodes to figure out which instruction we
3724 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
3725 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
3727 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -3);
3728 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 4);
3730 unsigned char op1
= view
[-3];
3731 unsigned char op2
= view
[-2];
3732 unsigned char op3
= view
[-1];
3733 unsigned char reg
= op3
>> 3;
3741 view
[-1] = 0xc0 | reg
;
3745 // Special handling for %rsp.
3749 view
[-1] = 0xc0 | reg
;
3757 view
[-1] = 0x80 | reg
| (reg
<< 3);
3760 value
-= tls_segment
->memsz();
3761 Relocate_functions
<size
, false>::rela32(view
, value
, 0);
3764 // Relocate section data.
3768 Target_x86_64
<size
>::relocate_section(
3769 const Relocate_info
<size
, false>* relinfo
,
3770 unsigned int sh_type
,
3771 const unsigned char* prelocs
,
3773 Output_section
* output_section
,
3774 bool needs_special_offset_handling
,
3775 unsigned char* view
,
3776 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
3777 section_size_type view_size
,
3778 const Reloc_symbol_changes
* reloc_symbol_changes
)
3780 gold_assert(sh_type
== elfcpp::SHT_RELA
);
3782 gold::relocate_section
<size
, false, Target_x86_64
<size
>, elfcpp::SHT_RELA
,
3783 typename Target_x86_64
<size
>::Relocate
>(
3789 needs_special_offset_handling
,
3793 reloc_symbol_changes
);
3796 // Apply an incremental relocation. Incremental relocations always refer
3797 // to global symbols.
3801 Target_x86_64
<size
>::apply_relocation(
3802 const Relocate_info
<size
, false>* relinfo
,
3803 typename
elfcpp::Elf_types
<size
>::Elf_Addr r_offset
,
3804 unsigned int r_type
,
3805 typename
elfcpp::Elf_types
<size
>::Elf_Swxword r_addend
,
3807 unsigned char* view
,
3808 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
3809 section_size_type view_size
)
3811 gold::apply_relocation
<size
, false, Target_x86_64
<size
>,
3812 typename Target_x86_64
<size
>::Relocate
>(
3824 // Return the size of a relocation while scanning during a relocatable
3829 Target_x86_64
<size
>::Relocatable_size_for_reloc::get_size_for_reloc(
3830 unsigned int r_type
,
3835 case elfcpp::R_X86_64_NONE
:
3836 case elfcpp::R_X86_64_GNU_VTINHERIT
:
3837 case elfcpp::R_X86_64_GNU_VTENTRY
:
3838 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
3839 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
3840 case elfcpp::R_X86_64_TLSDESC_CALL
:
3841 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
3842 case elfcpp::R_X86_64_DTPOFF32
:
3843 case elfcpp::R_X86_64_DTPOFF64
:
3844 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
3845 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
3848 case elfcpp::R_X86_64_64
:
3849 case elfcpp::R_X86_64_PC64
:
3850 case elfcpp::R_X86_64_GOTOFF64
:
3851 case elfcpp::R_X86_64_GOTPC64
:
3852 case elfcpp::R_X86_64_PLTOFF64
:
3853 case elfcpp::R_X86_64_GOT64
:
3854 case elfcpp::R_X86_64_GOTPCREL64
:
3855 case elfcpp::R_X86_64_GOTPCREL
:
3856 case elfcpp::R_X86_64_GOTPLT64
:
3859 case elfcpp::R_X86_64_32
:
3860 case elfcpp::R_X86_64_32S
:
3861 case elfcpp::R_X86_64_PC32
:
3862 case elfcpp::R_X86_64_PLT32
:
3863 case elfcpp::R_X86_64_GOTPC32
:
3864 case elfcpp::R_X86_64_GOT32
:
3867 case elfcpp::R_X86_64_16
:
3868 case elfcpp::R_X86_64_PC16
:
3871 case elfcpp::R_X86_64_8
:
3872 case elfcpp::R_X86_64_PC8
:
3875 case elfcpp::R_X86_64_COPY
:
3876 case elfcpp::R_X86_64_GLOB_DAT
:
3877 case elfcpp::R_X86_64_JUMP_SLOT
:
3878 case elfcpp::R_X86_64_RELATIVE
:
3879 case elfcpp::R_X86_64_IRELATIVE
:
3880 // These are outstanding tls relocs, which are unexpected when linking
3881 case elfcpp::R_X86_64_TPOFF64
:
3882 case elfcpp::R_X86_64_DTPMOD64
:
3883 case elfcpp::R_X86_64_TLSDESC
:
3884 object
->error(_("unexpected reloc %u in object file"), r_type
);
3887 case elfcpp::R_X86_64_SIZE32
:
3888 case elfcpp::R_X86_64_SIZE64
:
3890 object
->error(_("unsupported reloc %u against local symbol"), r_type
);
3895 // Scan the relocs during a relocatable link.
3899 Target_x86_64
<size
>::scan_relocatable_relocs(
3900 Symbol_table
* symtab
,
3902 Sized_relobj_file
<size
, false>* object
,
3903 unsigned int data_shndx
,
3904 unsigned int sh_type
,
3905 const unsigned char* prelocs
,
3907 Output_section
* output_section
,
3908 bool needs_special_offset_handling
,
3909 size_t local_symbol_count
,
3910 const unsigned char* plocal_symbols
,
3911 Relocatable_relocs
* rr
)
3913 gold_assert(sh_type
== elfcpp::SHT_RELA
);
3915 typedef gold::Default_scan_relocatable_relocs
<elfcpp::SHT_RELA
,
3916 Relocatable_size_for_reloc
> Scan_relocatable_relocs
;
3918 gold::scan_relocatable_relocs
<size
, false, elfcpp::SHT_RELA
,
3919 Scan_relocatable_relocs
>(
3927 needs_special_offset_handling
,
3933 // Relocate a section during a relocatable link.
3937 Target_x86_64
<size
>::relocate_for_relocatable(
3938 const Relocate_info
<size
, false>* relinfo
,
3939 unsigned int sh_type
,
3940 const unsigned char* prelocs
,
3942 Output_section
* output_section
,
3943 off_t offset_in_output_section
,
3944 const Relocatable_relocs
* rr
,
3945 unsigned char* view
,
3946 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
3947 section_size_type view_size
,
3948 unsigned char* reloc_view
,
3949 section_size_type reloc_view_size
)
3951 gold_assert(sh_type
== elfcpp::SHT_RELA
);
3953 gold::relocate_for_relocatable
<size
, false, elfcpp::SHT_RELA
>(
3958 offset_in_output_section
,
3967 // Return the value to use for a dynamic which requires special
3968 // treatment. This is how we support equality comparisons of function
3969 // pointers across shared library boundaries, as described in the
3970 // processor specific ABI supplement.
3974 Target_x86_64
<size
>::do_dynsym_value(const Symbol
* gsym
) const
3976 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
3977 return this->plt_address_for_global(gsym
) + gsym
->plt_offset();
3980 // Return a string used to fill a code section with nops to take up
3981 // the specified length.
3985 Target_x86_64
<size
>::do_code_fill(section_size_type length
) const
3989 // Build a jmpq instruction to skip over the bytes.
3990 unsigned char jmp
[5];
3992 elfcpp::Swap_unaligned
<32, false>::writeval(jmp
+ 1, length
- 5);
3993 return (std::string(reinterpret_cast<char*>(&jmp
[0]), 5)
3994 + std::string(length
- 5, '\0'));
3997 // Nop sequences of various lengths.
3998 const char nop1
[1] = { '\x90' }; // nop
3999 const char nop2
[2] = { '\x66', '\x90' }; // xchg %ax %ax
4000 const char nop3
[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4001 const char nop4
[4] = { '\x0f', '\x1f', '\x40', // nop 0(%rax)
4003 const char nop5
[5] = { '\x0f', '\x1f', '\x44', // nop 0(%rax,%rax,1)
4005 const char nop6
[6] = { '\x66', '\x0f', '\x1f', // nopw 0(%rax,%rax,1)
4006 '\x44', '\x00', '\x00' };
4007 const char nop7
[7] = { '\x0f', '\x1f', '\x80', // nopl 0L(%rax)
4008 '\x00', '\x00', '\x00',
4010 const char nop8
[8] = { '\x0f', '\x1f', '\x84', // nopl 0L(%rax,%rax,1)
4011 '\x00', '\x00', '\x00',
4013 const char nop9
[9] = { '\x66', '\x0f', '\x1f', // nopw 0L(%rax,%rax,1)
4014 '\x84', '\x00', '\x00',
4015 '\x00', '\x00', '\x00' };
4016 const char nop10
[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4017 '\x1f', '\x84', '\x00',
4018 '\x00', '\x00', '\x00',
4020 const char nop11
[11] = { '\x66', '\x66', '\x2e', // data16
4021 '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4022 '\x00', '\x00', '\x00',
4024 const char nop12
[12] = { '\x66', '\x66', '\x66', // data16; data16
4025 '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4026 '\x84', '\x00', '\x00',
4027 '\x00', '\x00', '\x00' };
4028 const char nop13
[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4029 '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4030 '\x1f', '\x84', '\x00',
4031 '\x00', '\x00', '\x00',
4033 const char nop14
[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4034 '\x66', '\x66', '\x2e', // data16
4035 '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4036 '\x00', '\x00', '\x00',
4038 const char nop15
[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4039 '\x66', '\x66', '\x66', // data16; data16
4040 '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4041 '\x84', '\x00', '\x00',
4042 '\x00', '\x00', '\x00' };
4044 const char* nops
[16] = {
4046 nop1
, nop2
, nop3
, nop4
, nop5
, nop6
, nop7
,
4047 nop8
, nop9
, nop10
, nop11
, nop12
, nop13
, nop14
, nop15
4050 return std::string(nops
[length
], length
);
4053 // Return the addend to use for a target specific relocation. The
4054 // only target specific relocation is R_X86_64_TLSDESC for a local
4055 // symbol. We want to set the addend is the offset of the local
4056 // symbol in the TLS segment.
4060 Target_x86_64
<size
>::do_reloc_addend(void* arg
, unsigned int r_type
,
4063 gold_assert(r_type
== elfcpp::R_X86_64_TLSDESC
);
4064 uintptr_t intarg
= reinterpret_cast<uintptr_t>(arg
);
4065 gold_assert(intarg
< this->tlsdesc_reloc_info_
.size());
4066 const Tlsdesc_info
& ti(this->tlsdesc_reloc_info_
[intarg
]);
4067 const Symbol_value
<size
>* psymval
= ti
.object
->local_symbol(ti
.r_sym
);
4068 gold_assert(psymval
->is_tls_symbol());
4069 // The value of a TLS symbol is the offset in the TLS segment.
4070 return psymval
->value(ti
.object
, 0);
4073 // Return the value to use for the base of a DW_EH_PE_datarel offset
4074 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
4075 // assembler can not write out the difference between two labels in
4076 // different sections, so instead of using a pc-relative value they
4077 // use an offset from the GOT.
4081 Target_x86_64
<size
>::do_ehframe_datarel_base() const
4083 gold_assert(this->global_offset_table_
!= NULL
);
4084 Symbol
* sym
= this->global_offset_table_
;
4085 Sized_symbol
<size
>* ssym
= static_cast<Sized_symbol
<size
>*>(sym
);
4086 return ssym
->value();
4089 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4090 // compiled with -fsplit-stack. The function calls non-split-stack
4091 // code. We have to change the function so that it always ensures
4092 // that it has enough stack space to run some random function.
4096 Target_x86_64
<size
>::do_calls_non_split(Relobj
* object
, unsigned int shndx
,
4097 section_offset_type fnoffset
,
4098 section_size_type fnsize
,
4099 unsigned char* view
,
4100 section_size_type view_size
,
4102 std::string
* to
) const
4104 // The function starts with a comparison of the stack pointer and a
4105 // field in the TCB. This is followed by a jump.
4108 if (this->match_view(view
, view_size
, fnoffset
, "\x64\x48\x3b\x24\x25", 5)
4111 // We will call __morestack if the carry flag is set after this
4112 // comparison. We turn the comparison into an stc instruction
4114 view
[fnoffset
] = '\xf9';
4115 this->set_view_to_nop(view
, view_size
, fnoffset
+ 1, 8);
4117 // lea NN(%rsp),%r10
4118 // lea NN(%rsp),%r11
4119 else if ((this->match_view(view
, view_size
, fnoffset
,
4120 "\x4c\x8d\x94\x24", 4)
4121 || this->match_view(view
, view_size
, fnoffset
,
4122 "\x4c\x8d\x9c\x24", 4))
4125 // This is loading an offset from the stack pointer for a
4126 // comparison. The offset is negative, so we decrease the
4127 // offset by the amount of space we need for the stack. This
4128 // means we will avoid calling __morestack if there happens to
4129 // be plenty of space on the stack already.
4130 unsigned char* pval
= view
+ fnoffset
+ 4;
4131 uint32_t val
= elfcpp::Swap_unaligned
<32, false>::readval(pval
);
4132 val
-= parameters
->options().split_stack_adjust_size();
4133 elfcpp::Swap_unaligned
<32, false>::writeval(pval
, val
);
4137 if (!object
->has_no_split_stack())
4138 object
->error(_("failed to match split-stack sequence at "
4139 "section %u offset %0zx"),
4140 shndx
, static_cast<size_t>(fnoffset
));
4144 // We have to change the function so that it calls
4145 // __morestack_non_split instead of __morestack. The former will
4146 // allocate additional stack space.
4147 *from
= "__morestack";
4148 *to
= "__morestack_non_split";
4151 // The selector for x86_64 object files.
4154 class Target_selector_x86_64
: public Target_selector_freebsd
4157 Target_selector_x86_64()
4158 : Target_selector_freebsd(elfcpp::EM_X86_64
, size
, false,
4160 ? "elf64-x86-64" : "elf32-x86-64"),
4162 ? "elf64-x86-64-freebsd"
4163 : "elf32-x86-64-freebsd"),
4164 (size
== 64 ? "elf_x86_64" : "elf32_x86_64"))
4168 do_instantiate_target()
4169 { return new Target_x86_64
<size
>(); }
4173 Target_selector_x86_64
<64> target_selector_x86_64
;
4174 Target_selector_x86_64
<32> target_selector_x32
;
4176 } // End anonymous namespace.