1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 #include "bfd_stdint.h"
33 #include "libiberty.h"
35 #include "elf/x86-64.h"
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
43 #define MINUS_ONE (~ (bfd_vma) 0)
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48 since they are the same. */
50 #define ABI_64_P(abfd) \
51 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53 /* The relocation "howto" table. Order of fields:
54 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
56 static reloc_howto_type x86_64_elf_howto_table
[] =
58 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
59 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
61 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
62 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
64 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
65 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
67 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
68 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
70 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
71 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
74 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
76 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
77 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
79 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
80 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
82 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
83 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
85 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
86 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
88 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
89 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
91 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
92 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
94 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
95 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
96 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
97 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
98 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
99 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
100 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
101 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
102 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
103 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
105 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
106 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
108 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
109 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
111 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
112 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
114 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
115 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
117 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
118 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
120 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
121 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
123 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
124 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
126 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
127 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
129 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
130 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
131 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
132 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
133 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
134 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
135 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
136 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
138 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
139 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
141 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
142 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
143 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
144 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
145 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
147 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
148 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
152 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
153 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
154 "R_X86_64_GOTPC32_TLSDESC",
155 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
156 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
157 complain_overflow_dont
, bfd_elf_generic_reloc
,
158 "R_X86_64_TLSDESC_CALL",
160 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
161 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
163 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
164 HOWTO(R_X86_64_IRELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
165 bfd_elf_generic_reloc
, "R_X86_64_IRELATIVE", FALSE
, MINUS_ONE
,
167 HOWTO(R_X86_64_RELATIVE64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
168 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE64", FALSE
, MINUS_ONE
,
171 /* We have a gap in the reloc numbers here.
172 R_X86_64_standard counts the number up to this point, and
173 R_X86_64_vt_offset is the value to subtract from a reloc type of
174 R_X86_64_GNU_VT* to form an index into this table. */
175 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
176 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178 /* GNU extension to record C++ vtable hierarchy. */
179 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
180 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
182 /* GNU extension to record C++ vtable member usage. */
183 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
184 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
187 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
188 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
189 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
193 #define IS_X86_64_PCREL_TYPE(TYPE) \
194 ( ((TYPE) == R_X86_64_PC8) \
195 || ((TYPE) == R_X86_64_PC16) \
196 || ((TYPE) == R_X86_64_PC32) \
197 || ((TYPE) == R_X86_64_PC64))
199 /* Map BFD relocs to the x86_64 elf relocs. */
202 bfd_reloc_code_real_type bfd_reloc_val
;
203 unsigned char elf_reloc_val
;
206 static const struct elf_reloc_map x86_64_reloc_map
[] =
208 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
209 { BFD_RELOC_64
, R_X86_64_64
, },
210 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
211 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
212 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
213 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
214 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
215 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
216 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
217 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
218 { BFD_RELOC_32
, R_X86_64_32
, },
219 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
220 { BFD_RELOC_16
, R_X86_64_16
, },
221 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
222 { BFD_RELOC_8
, R_X86_64_8
, },
223 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
224 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
225 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
226 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
227 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
228 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
229 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
230 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
231 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
232 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
233 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
234 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
235 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
236 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
237 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
238 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
239 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
240 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
241 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
242 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
243 { BFD_RELOC_X86_64_IRELATIVE
, R_X86_64_IRELATIVE
, },
244 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
245 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
248 static reloc_howto_type
*
249 elf_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
253 if (r_type
== (unsigned int) R_X86_64_32
)
258 i
= ARRAY_SIZE (x86_64_elf_howto_table
) - 1;
260 else if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
261 || r_type
>= (unsigned int) R_X86_64_max
)
263 if (r_type
>= (unsigned int) R_X86_64_standard
)
265 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
267 r_type
= R_X86_64_NONE
;
272 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
273 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
274 return &x86_64_elf_howto_table
[i
];
277 /* Given a BFD reloc type, return a HOWTO structure. */
278 static reloc_howto_type
*
279 elf_x86_64_reloc_type_lookup (bfd
*abfd
,
280 bfd_reloc_code_real_type code
)
284 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
287 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
288 return elf_x86_64_rtype_to_howto (abfd
,
289 x86_64_reloc_map
[i
].elf_reloc_val
);
294 static reloc_howto_type
*
295 elf_x86_64_reloc_name_lookup (bfd
*abfd
,
300 if (!ABI_64_P (abfd
) && strcasecmp (r_name
, "R_X86_64_32") == 0)
302 /* Get x32 R_X86_64_32. */
303 reloc_howto_type
*reloc
304 = &x86_64_elf_howto_table
[ARRAY_SIZE (x86_64_elf_howto_table
) - 1];
305 BFD_ASSERT (reloc
->type
== (unsigned int) R_X86_64_32
);
309 for (i
= 0; i
< ARRAY_SIZE (x86_64_elf_howto_table
); i
++)
310 if (x86_64_elf_howto_table
[i
].name
!= NULL
311 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
312 return &x86_64_elf_howto_table
[i
];
317 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
320 elf_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
321 Elf_Internal_Rela
*dst
)
325 r_type
= ELF32_R_TYPE (dst
->r_info
);
326 cache_ptr
->howto
= elf_x86_64_rtype_to_howto (abfd
, r_type
);
327 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
330 /* Support for core dump NOTE sections. */
332 elf_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
337 switch (note
->descsz
)
342 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
347 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
355 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 elf_tdata (abfd
)->core_signal
358 = bfd_get_16 (abfd
, note
->descdata
+ 12);
361 elf_tdata (abfd
)->core_lwpid
362 = bfd_get_32 (abfd
, note
->descdata
+ 32);
371 /* Make a ".reg/999" section. */
372 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
373 size
, note
->descpos
+ offset
);
377 elf_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
379 switch (note
->descsz
)
384 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
385 elf_tdata (abfd
)->core_pid
386 = bfd_get_32 (abfd
, note
->descdata
+ 12);
387 elf_tdata (abfd
)->core_program
388 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
389 elf_tdata (abfd
)->core_command
390 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
393 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
394 elf_tdata (abfd
)->core_pid
395 = bfd_get_32 (abfd
, note
->descdata
+ 24);
396 elf_tdata (abfd
)->core_program
397 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
398 elf_tdata (abfd
)->core_command
399 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
402 /* Note that for some reason, a spurious space is tacked
403 onto the end of the args in some (at least one anyway)
404 implementations, so strip it off if it exists. */
407 char *command
= elf_tdata (abfd
)->core_command
;
408 int n
= strlen (command
);
410 if (0 < n
&& command
[n
- 1] == ' ')
411 command
[n
- 1] = '\0';
419 elf_x86_64_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
,
422 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
424 const char *fname
, *psargs
;
435 va_start (ap
, note_type
);
436 fname
= va_arg (ap
, const char *);
437 psargs
= va_arg (ap
, const char *);
440 if (bed
->s
->elfclass
== ELFCLASS32
)
443 memset (&data
, 0, sizeof (data
));
444 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
445 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
446 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE", note_type
,
447 &data
, sizeof (data
));
452 memset (&data
, 0, sizeof (data
));
453 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
454 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
455 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE", note_type
,
456 &data
, sizeof (data
));
461 va_start (ap
, note_type
);
462 pid
= va_arg (ap
, long);
463 cursig
= va_arg (ap
, int);
464 gregs
= va_arg (ap
, const void *);
467 if (bed
->s
->elfclass
== ELFCLASS32
)
469 if (bed
->elf_machine_code
== EM_X86_64
)
471 prstatusx32_t prstat
;
472 memset (&prstat
, 0, sizeof (prstat
));
474 prstat
.pr_cursig
= cursig
;
475 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
476 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE", note_type
,
477 &prstat
, sizeof (prstat
));
482 memset (&prstat
, 0, sizeof (prstat
));
484 prstat
.pr_cursig
= cursig
;
485 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
486 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE", note_type
,
487 &prstat
, sizeof (prstat
));
493 memset (&prstat
, 0, sizeof (prstat
));
495 prstat
.pr_cursig
= cursig
;
496 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
497 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE", note_type
,
498 &prstat
, sizeof (prstat
));
505 /* Functions for the x86-64 ELF linker. */
507 /* The name of the dynamic interpreter. This is put in the .interp
510 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
511 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
514 copying dynamic variables from a shared lib into an app's dynbss
515 section, and instead use a dynamic relocation to point into the
517 #define ELIMINATE_COPY_RELOCS 1
519 /* The size in bytes of an entry in the global offset table. */
521 #define GOT_ENTRY_SIZE 8
523 /* The size in bytes of an entry in the procedure linkage table. */
525 #define PLT_ENTRY_SIZE 16
527 /* The first entry in a procedure linkage table looks like this. See the
528 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530 static const bfd_byte elf_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
532 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
533 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
534 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
537 /* Subsequent entries in a procedure linkage table look like this. */
539 static const bfd_byte elf_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
541 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
542 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
543 0x68, /* pushq immediate */
544 0, 0, 0, 0, /* replaced with index into relocation table. */
545 0xe9, /* jmp relative */
546 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
549 /* .eh_frame covering the .plt section. */
551 static const bfd_byte elf_x86_64_eh_frame_plt
[] =
553 #define PLT_CIE_LENGTH 20
554 #define PLT_FDE_LENGTH 36
555 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
556 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
557 PLT_CIE_LENGTH
, 0, 0, 0, /* CIE length */
558 0, 0, 0, 0, /* CIE ID */
560 'z', 'R', 0, /* Augmentation string */
561 1, /* Code alignment factor */
562 0x78, /* Data alignment factor */
563 16, /* Return address column */
564 1, /* Augmentation size */
565 DW_EH_PE_pcrel
| DW_EH_PE_sdata4
, /* FDE encoding */
566 DW_CFA_def_cfa
, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
567 DW_CFA_offset
+ 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
568 DW_CFA_nop
, DW_CFA_nop
,
570 PLT_FDE_LENGTH
, 0, 0, 0, /* FDE length */
571 PLT_CIE_LENGTH
+ 8, 0, 0, 0, /* CIE pointer */
572 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
573 0, 0, 0, 0, /* .plt size goes here */
574 0, /* Augmentation size */
575 DW_CFA_def_cfa_offset
, 16, /* DW_CFA_def_cfa_offset: 16 */
576 DW_CFA_advance_loc
+ 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
577 DW_CFA_def_cfa_offset
, 24, /* DW_CFA_def_cfa_offset: 24 */
578 DW_CFA_advance_loc
+ 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
579 DW_CFA_def_cfa_expression
, /* DW_CFA_def_cfa_expression */
580 11, /* Block length */
581 DW_OP_breg7
, 8, /* DW_OP_breg7 (rsp): 8 */
582 DW_OP_breg16
, 0, /* DW_OP_breg16 (rip): 0 */
583 DW_OP_lit15
, DW_OP_and
, DW_OP_lit11
, DW_OP_ge
,
584 DW_OP_lit3
, DW_OP_shl
, DW_OP_plus
,
585 DW_CFA_nop
, DW_CFA_nop
, DW_CFA_nop
, DW_CFA_nop
588 /* x86-64 ELF linker hash entry. */
590 struct elf_x86_64_link_hash_entry
592 struct elf_link_hash_entry elf
;
594 /* Track dynamic relocs copied for this symbol. */
595 struct elf_dyn_relocs
*dyn_relocs
;
597 #define GOT_UNKNOWN 0
601 #define GOT_TLS_GDESC 4
602 #define GOT_TLS_GD_BOTH_P(type) \
603 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
604 #define GOT_TLS_GD_P(type) \
605 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
606 #define GOT_TLS_GDESC_P(type) \
607 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
608 #define GOT_TLS_GD_ANY_P(type) \
609 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
610 unsigned char tls_type
;
612 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
613 starting at the end of the jump table. */
617 #define elf_x86_64_hash_entry(ent) \
618 ((struct elf_x86_64_link_hash_entry *)(ent))
620 struct elf_x86_64_obj_tdata
622 struct elf_obj_tdata root
;
624 /* tls_type for each local got entry. */
625 char *local_got_tls_type
;
627 /* GOTPLT entries for TLS descriptors. */
628 bfd_vma
*local_tlsdesc_gotent
;
631 #define elf_x86_64_tdata(abfd) \
632 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
634 #define elf_x86_64_local_got_tls_type(abfd) \
635 (elf_x86_64_tdata (abfd)->local_got_tls_type)
637 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
638 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
640 #define is_x86_64_elf(bfd) \
641 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
642 && elf_tdata (bfd) != NULL \
643 && elf_object_id (bfd) == X86_64_ELF_DATA)
646 elf_x86_64_mkobject (bfd
*abfd
)
648 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_x86_64_obj_tdata
),
652 /* x86-64 ELF linker hash table. */
654 struct elf_x86_64_link_hash_table
656 struct elf_link_hash_table elf
;
658 /* Short-cuts to get to dynamic linker sections. */
661 asection
*plt_eh_frame
;
665 bfd_signed_vma refcount
;
669 /* The amount of space used by the jump slots in the GOT. */
670 bfd_vma sgotplt_jump_table_size
;
672 /* Small local sym cache. */
673 struct sym_cache sym_cache
;
675 bfd_vma (*r_info
) (bfd_vma
, bfd_vma
);
676 bfd_vma (*r_sym
) (bfd_vma
);
677 unsigned int pointer_r_type
;
678 const char *dynamic_interpreter
;
679 int dynamic_interpreter_size
;
681 /* _TLS_MODULE_BASE_ symbol. */
682 struct bfd_link_hash_entry
*tls_module_base
;
684 /* Used by local STT_GNU_IFUNC symbols. */
685 htab_t loc_hash_table
;
686 void * loc_hash_memory
;
688 /* The offset into splt of the PLT entry for the TLS descriptor
689 resolver. Special values are 0, if not necessary (or not found
690 to be necessary yet), and -1 if needed but not determined
693 /* The offset into sgot of the GOT entry used by the PLT entry
697 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
698 bfd_vma next_jump_slot_index
;
699 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
700 bfd_vma next_irelative_index
;
703 /* Get the x86-64 ELF linker hash table from a link_info structure. */
705 #define elf_x86_64_hash_table(p) \
706 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
707 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
709 #define elf_x86_64_compute_jump_table_size(htab) \
710 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
712 /* Create an entry in an x86-64 ELF linker hash table. */
714 static struct bfd_hash_entry
*
715 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
716 struct bfd_hash_table
*table
,
719 /* Allocate the structure if it has not already been allocated by a
723 entry
= (struct bfd_hash_entry
*)
724 bfd_hash_allocate (table
,
725 sizeof (struct elf_x86_64_link_hash_entry
));
730 /* Call the allocation method of the superclass. */
731 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
734 struct elf_x86_64_link_hash_entry
*eh
;
736 eh
= (struct elf_x86_64_link_hash_entry
*) entry
;
737 eh
->dyn_relocs
= NULL
;
738 eh
->tls_type
= GOT_UNKNOWN
;
739 eh
->tlsdesc_got
= (bfd_vma
) -1;
745 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
746 for local symbol so that we can handle local STT_GNU_IFUNC symbols
747 as global symbol. We reuse indx and dynstr_index for local symbol
748 hash since they aren't used by global symbols in this backend. */
751 elf_x86_64_local_htab_hash (const void *ptr
)
753 struct elf_link_hash_entry
*h
754 = (struct elf_link_hash_entry
*) ptr
;
755 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
758 /* Compare local hash entries. */
761 elf_x86_64_local_htab_eq (const void *ptr1
, const void *ptr2
)
763 struct elf_link_hash_entry
*h1
764 = (struct elf_link_hash_entry
*) ptr1
;
765 struct elf_link_hash_entry
*h2
766 = (struct elf_link_hash_entry
*) ptr2
;
768 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
771 /* Find and/or create a hash entry for local symbol. */
773 static struct elf_link_hash_entry
*
774 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table
*htab
,
775 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
778 struct elf_x86_64_link_hash_entry e
, *ret
;
779 asection
*sec
= abfd
->sections
;
780 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
781 htab
->r_sym (rel
->r_info
));
784 e
.elf
.indx
= sec
->id
;
785 e
.elf
.dynstr_index
= htab
->r_sym (rel
->r_info
);
786 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
787 create
? INSERT
: NO_INSERT
);
794 ret
= (struct elf_x86_64_link_hash_entry
*) *slot
;
798 ret
= (struct elf_x86_64_link_hash_entry
*)
799 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
800 sizeof (struct elf_x86_64_link_hash_entry
));
803 memset (ret
, 0, sizeof (*ret
));
804 ret
->elf
.indx
= sec
->id
;
805 ret
->elf
.dynstr_index
= htab
->r_sym (rel
->r_info
);
806 ret
->elf
.dynindx
= -1;
812 /* Create an X86-64 ELF linker hash table. */
814 static struct bfd_link_hash_table
*
815 elf_x86_64_link_hash_table_create (bfd
*abfd
)
817 struct elf_x86_64_link_hash_table
*ret
;
818 bfd_size_type amt
= sizeof (struct elf_x86_64_link_hash_table
);
820 ret
= (struct elf_x86_64_link_hash_table
*) bfd_malloc (amt
);
824 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
825 elf_x86_64_link_hash_newfunc
,
826 sizeof (struct elf_x86_64_link_hash_entry
),
835 ret
->plt_eh_frame
= NULL
;
836 ret
->sym_cache
.abfd
= NULL
;
837 ret
->tlsdesc_plt
= 0;
838 ret
->tlsdesc_got
= 0;
839 ret
->tls_ld_got
.refcount
= 0;
840 ret
->sgotplt_jump_table_size
= 0;
841 ret
->tls_module_base
= NULL
;
842 ret
->next_jump_slot_index
= 0;
843 ret
->next_irelative_index
= 0;
847 ret
->r_info
= elf64_r_info
;
848 ret
->r_sym
= elf64_r_sym
;
849 ret
->pointer_r_type
= R_X86_64_64
;
850 ret
->dynamic_interpreter
= ELF64_DYNAMIC_INTERPRETER
;
851 ret
->dynamic_interpreter_size
= sizeof ELF64_DYNAMIC_INTERPRETER
;
855 ret
->r_info
= elf32_r_info
;
856 ret
->r_sym
= elf32_r_sym
;
857 ret
->pointer_r_type
= R_X86_64_32
;
858 ret
->dynamic_interpreter
= ELF32_DYNAMIC_INTERPRETER
;
859 ret
->dynamic_interpreter_size
= sizeof ELF32_DYNAMIC_INTERPRETER
;
862 ret
->loc_hash_table
= htab_try_create (1024,
863 elf_x86_64_local_htab_hash
,
864 elf_x86_64_local_htab_eq
,
866 ret
->loc_hash_memory
= objalloc_create ();
867 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
873 return &ret
->elf
.root
;
876 /* Destroy an X86-64 ELF linker hash table. */
879 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table
*hash
)
881 struct elf_x86_64_link_hash_table
*htab
882 = (struct elf_x86_64_link_hash_table
*) hash
;
884 if (htab
->loc_hash_table
)
885 htab_delete (htab
->loc_hash_table
);
886 if (htab
->loc_hash_memory
)
887 objalloc_free ((struct objalloc
*) htab
->loc_hash_memory
);
888 _bfd_generic_link_hash_table_free (hash
);
891 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
892 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
896 elf_x86_64_create_dynamic_sections (bfd
*dynobj
,
897 struct bfd_link_info
*info
)
899 struct elf_x86_64_link_hash_table
*htab
;
901 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
904 htab
= elf_x86_64_hash_table (info
);
908 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
910 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
913 || (!info
->shared
&& !htab
->srelbss
))
916 if (!info
->no_ld_generated_unwind_info
917 && bfd_get_section_by_name (dynobj
, ".eh_frame") == NULL
918 && htab
->elf
.splt
!= NULL
)
920 flagword flags
= get_elf_backend_data (dynobj
)->dynamic_sec_flags
;
922 = bfd_make_section_with_flags (dynobj
, ".eh_frame",
923 flags
| SEC_READONLY
);
924 if (htab
->plt_eh_frame
== NULL
925 || !bfd_set_section_alignment (dynobj
, htab
->plt_eh_frame
, 3))
928 htab
->plt_eh_frame
->size
= sizeof (elf_x86_64_eh_frame_plt
);
929 htab
->plt_eh_frame
->contents
930 = bfd_alloc (dynobj
, htab
->plt_eh_frame
->size
);
931 memcpy (htab
->plt_eh_frame
->contents
, elf_x86_64_eh_frame_plt
,
932 sizeof (elf_x86_64_eh_frame_plt
));
937 /* Copy the extra info we tack onto an elf_link_hash_entry. */
940 elf_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
941 struct elf_link_hash_entry
*dir
,
942 struct elf_link_hash_entry
*ind
)
944 struct elf_x86_64_link_hash_entry
*edir
, *eind
;
946 edir
= (struct elf_x86_64_link_hash_entry
*) dir
;
947 eind
= (struct elf_x86_64_link_hash_entry
*) ind
;
949 if (eind
->dyn_relocs
!= NULL
)
951 if (edir
->dyn_relocs
!= NULL
)
953 struct elf_dyn_relocs
**pp
;
954 struct elf_dyn_relocs
*p
;
956 /* Add reloc counts against the indirect sym to the direct sym
957 list. Merge any entries against the same section. */
958 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
960 struct elf_dyn_relocs
*q
;
962 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
963 if (q
->sec
== p
->sec
)
965 q
->pc_count
+= p
->pc_count
;
966 q
->count
+= p
->count
;
973 *pp
= edir
->dyn_relocs
;
976 edir
->dyn_relocs
= eind
->dyn_relocs
;
977 eind
->dyn_relocs
= NULL
;
980 if (ind
->root
.type
== bfd_link_hash_indirect
981 && dir
->got
.refcount
<= 0)
983 edir
->tls_type
= eind
->tls_type
;
984 eind
->tls_type
= GOT_UNKNOWN
;
987 if (ELIMINATE_COPY_RELOCS
988 && ind
->root
.type
!= bfd_link_hash_indirect
989 && dir
->dynamic_adjusted
)
991 /* If called to transfer flags for a weakdef during processing
992 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
993 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
994 dir
->ref_dynamic
|= ind
->ref_dynamic
;
995 dir
->ref_regular
|= ind
->ref_regular
;
996 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
997 dir
->needs_plt
|= ind
->needs_plt
;
998 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1001 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
1005 elf64_x86_64_elf_object_p (bfd
*abfd
)
1007 /* Set the right machine number for an x86-64 elf64 file. */
1008 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
1012 /* Return TRUE if the TLS access code sequence support transition
1016 elf_x86_64_check_tls_transition (bfd
*abfd
,
1017 struct bfd_link_info
*info
,
1020 Elf_Internal_Shdr
*symtab_hdr
,
1021 struct elf_link_hash_entry
**sym_hashes
,
1022 unsigned int r_type
,
1023 const Elf_Internal_Rela
*rel
,
1024 const Elf_Internal_Rela
*relend
)
1027 unsigned long r_symndx
;
1028 struct elf_link_hash_entry
*h
;
1030 struct elf_x86_64_link_hash_table
*htab
;
1032 /* Get the section contents. */
1033 if (contents
== NULL
)
1035 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
1036 contents
= elf_section_data (sec
)->this_hdr
.contents
;
1039 /* FIXME: How to better handle error condition? */
1040 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
1043 /* Cache the section contents for elf_link_input_bfd. */
1044 elf_section_data (sec
)->this_hdr
.contents
= contents
;
1048 htab
= elf_x86_64_hash_table (info
);
1049 offset
= rel
->r_offset
;
1052 case R_X86_64_TLSGD
:
1053 case R_X86_64_TLSLD
:
1054 if ((rel
+ 1) >= relend
)
1057 if (r_type
== R_X86_64_TLSGD
)
1059 /* Check transition from GD access model. For 64bit, only
1060 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1061 .word 0x6666; rex64; call __tls_get_addr
1062 can transit to different access model. For 32bit, only
1063 leaq foo@tlsgd(%rip), %rdi
1064 .word 0x6666; rex64; call __tls_get_addr
1065 can transit to different access model. */
1067 static const unsigned char call
[] = { 0x66, 0x66, 0x48, 0xe8 };
1068 static const unsigned char leaq
[] = { 0x66, 0x48, 0x8d, 0x3d };
1070 if ((offset
+ 12) > sec
->size
1071 || memcmp (contents
+ offset
+ 4, call
, 4) != 0)
1074 if (ABI_64_P (abfd
))
1077 || memcmp (contents
+ offset
- 4, leaq
, 4) != 0)
1083 || memcmp (contents
+ offset
- 3, leaq
+ 1, 3) != 0)
1089 /* Check transition from LD access model. Only
1090 leaq foo@tlsld(%rip), %rdi;
1092 can transit to different access model. */
1094 static const unsigned char lea
[] = { 0x48, 0x8d, 0x3d };
1096 if (offset
< 3 || (offset
+ 9) > sec
->size
)
1099 if (memcmp (contents
+ offset
- 3, lea
, 3) != 0
1100 || 0xe8 != *(contents
+ offset
+ 4))
1104 r_symndx
= htab
->r_sym (rel
[1].r_info
);
1105 if (r_symndx
< symtab_hdr
->sh_info
)
1108 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1109 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1110 may be versioned. */
1112 && h
->root
.root
.string
!= NULL
1113 && (ELF32_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
1114 || ELF32_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
1115 && (strncmp (h
->root
.root
.string
,
1116 "__tls_get_addr", 14) == 0));
1118 case R_X86_64_GOTTPOFF
:
1119 /* Check transition from IE access model:
1120 mov foo@gottpoff(%rip), %reg
1121 add foo@gottpoff(%rip), %reg
1124 /* Check REX prefix first. */
1125 if (offset
>= 3 && (offset
+ 4) <= sec
->size
)
1127 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
1128 if (val
!= 0x48 && val
!= 0x4c)
1130 /* X32 may have 0x44 REX prefix or no REX prefix. */
1131 if (ABI_64_P (abfd
))
1137 /* X32 may not have any REX prefix. */
1138 if (ABI_64_P (abfd
))
1140 if (offset
< 2 || (offset
+ 3) > sec
->size
)
1144 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
1145 if (val
!= 0x8b && val
!= 0x03)
1148 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
1149 return (val
& 0xc7) == 5;
1151 case R_X86_64_GOTPC32_TLSDESC
:
1152 /* Check transition from GDesc access model:
1153 leaq x@tlsdesc(%rip), %rax
1155 Make sure it's a leaq adding rip to a 32-bit offset
1156 into any register, although it's probably almost always
1159 if (offset
< 3 || (offset
+ 4) > sec
->size
)
1162 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
1163 if ((val
& 0xfb) != 0x48)
1166 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
1169 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
1170 return (val
& 0xc7) == 0x05;
1172 case R_X86_64_TLSDESC_CALL
:
1173 /* Check transition from GDesc access model:
1174 call *x@tlsdesc(%rax)
1176 if (offset
+ 2 <= sec
->size
)
1178 /* Make sure that it's a call *x@tlsdesc(%rax). */
1179 static const unsigned char call
[] = { 0xff, 0x10 };
1180 return memcmp (contents
+ offset
, call
, 2) == 0;
1190 /* Return TRUE if the TLS access transition is OK or no transition
1191 will be performed. Update R_TYPE if there is a transition. */
1194 elf_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
1195 asection
*sec
, bfd_byte
*contents
,
1196 Elf_Internal_Shdr
*symtab_hdr
,
1197 struct elf_link_hash_entry
**sym_hashes
,
1198 unsigned int *r_type
, int tls_type
,
1199 const Elf_Internal_Rela
*rel
,
1200 const Elf_Internal_Rela
*relend
,
1201 struct elf_link_hash_entry
*h
,
1202 unsigned long r_symndx
)
1204 unsigned int from_type
= *r_type
;
1205 unsigned int to_type
= from_type
;
1206 bfd_boolean check
= TRUE
;
1208 /* Skip TLS transition for functions. */
1210 && (h
->type
== STT_FUNC
1211 || h
->type
== STT_GNU_IFUNC
))
1216 case R_X86_64_TLSGD
:
1217 case R_X86_64_GOTPC32_TLSDESC
:
1218 case R_X86_64_TLSDESC_CALL
:
1219 case R_X86_64_GOTTPOFF
:
1220 if (info
->executable
)
1223 to_type
= R_X86_64_TPOFF32
;
1225 to_type
= R_X86_64_GOTTPOFF
;
1228 /* When we are called from elf_x86_64_relocate_section,
1229 CONTENTS isn't NULL and there may be additional transitions
1230 based on TLS_TYPE. */
1231 if (contents
!= NULL
)
1233 unsigned int new_to_type
= to_type
;
1235 if (info
->executable
1238 && tls_type
== GOT_TLS_IE
)
1239 new_to_type
= R_X86_64_TPOFF32
;
1241 if (to_type
== R_X86_64_TLSGD
1242 || to_type
== R_X86_64_GOTPC32_TLSDESC
1243 || to_type
== R_X86_64_TLSDESC_CALL
)
1245 if (tls_type
== GOT_TLS_IE
)
1246 new_to_type
= R_X86_64_GOTTPOFF
;
1249 /* We checked the transition before when we were called from
1250 elf_x86_64_check_relocs. We only want to check the new
1251 transition which hasn't been checked before. */
1252 check
= new_to_type
!= to_type
&& from_type
== to_type
;
1253 to_type
= new_to_type
;
1258 case R_X86_64_TLSLD
:
1259 if (info
->executable
)
1260 to_type
= R_X86_64_TPOFF32
;
1267 /* Return TRUE if there is no transition. */
1268 if (from_type
== to_type
)
1271 /* Check if the transition can be performed. */
1273 && ! elf_x86_64_check_tls_transition (abfd
, info
, sec
, contents
,
1274 symtab_hdr
, sym_hashes
,
1275 from_type
, rel
, relend
))
1277 reloc_howto_type
*from
, *to
;
1280 from
= elf_x86_64_rtype_to_howto (abfd
, from_type
);
1281 to
= elf_x86_64_rtype_to_howto (abfd
, to_type
);
1284 name
= h
->root
.root
.string
;
1287 struct elf_x86_64_link_hash_table
*htab
;
1289 htab
= elf_x86_64_hash_table (info
);
1294 Elf_Internal_Sym
*isym
;
1296 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1298 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1302 (*_bfd_error_handler
)
1303 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1304 "in section `%A' failed"),
1305 abfd
, sec
, from
->name
, to
->name
, name
,
1306 (unsigned long) rel
->r_offset
);
1307 bfd_set_error (bfd_error_bad_value
);
1315 /* Look through the relocs for a section during the first phase, and
1316 calculate needed space in the global offset table, procedure
1317 linkage table, and dynamic reloc sections. */
1320 elf_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
1322 const Elf_Internal_Rela
*relocs
)
1324 struct elf_x86_64_link_hash_table
*htab
;
1325 Elf_Internal_Shdr
*symtab_hdr
;
1326 struct elf_link_hash_entry
**sym_hashes
;
1327 const Elf_Internal_Rela
*rel
;
1328 const Elf_Internal_Rela
*rel_end
;
1331 if (info
->relocatable
)
1334 BFD_ASSERT (is_x86_64_elf (abfd
));
1336 htab
= elf_x86_64_hash_table (info
);
1340 symtab_hdr
= &elf_symtab_hdr (abfd
);
1341 sym_hashes
= elf_sym_hashes (abfd
);
1345 rel_end
= relocs
+ sec
->reloc_count
;
1346 for (rel
= relocs
; rel
< rel_end
; rel
++)
1348 unsigned int r_type
;
1349 unsigned long r_symndx
;
1350 struct elf_link_hash_entry
*h
;
1351 Elf_Internal_Sym
*isym
;
1354 r_symndx
= htab
->r_sym (rel
->r_info
);
1355 r_type
= ELF32_R_TYPE (rel
->r_info
);
1357 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1359 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1364 if (r_symndx
< symtab_hdr
->sh_info
)
1366 /* A local symbol. */
1367 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1372 /* Check relocation against local STT_GNU_IFUNC symbol. */
1373 if (ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
1375 h
= elf_x86_64_get_local_sym_hash (htab
, abfd
, rel
,
1380 /* Fake a STT_GNU_IFUNC symbol. */
1381 h
->type
= STT_GNU_IFUNC
;
1384 h
->forced_local
= 1;
1385 h
->root
.type
= bfd_link_hash_defined
;
1393 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1394 while (h
->root
.type
== bfd_link_hash_indirect
1395 || h
->root
.type
== bfd_link_hash_warning
)
1396 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1399 /* Check invalid x32 relocations. */
1400 if (!ABI_64_P (abfd
))
1406 case R_X86_64_DTPOFF64
:
1407 case R_X86_64_TPOFF64
:
1409 case R_X86_64_GOTOFF64
:
1410 case R_X86_64_GOT64
:
1411 case R_X86_64_GOTPCREL64
:
1412 case R_X86_64_GOTPC64
:
1413 case R_X86_64_GOTPLT64
:
1414 case R_X86_64_PLTOFF64
:
1417 name
= h
->root
.root
.string
;
1419 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1421 (*_bfd_error_handler
)
1422 (_("%B: relocation %s against symbol `%s' isn't "
1423 "supported in x32 mode"), abfd
,
1424 x86_64_elf_howto_table
[r_type
].name
, name
);
1425 bfd_set_error (bfd_error_bad_value
);
1433 /* Create the ifunc sections for static executables. If we
1434 never see an indirect function symbol nor we are building
1435 a static executable, those sections will be empty and
1436 won't appear in output. */
1447 case R_X86_64_PLT32
:
1448 case R_X86_64_GOTPCREL
:
1449 case R_X86_64_GOTPCREL64
:
1450 if (htab
->elf
.dynobj
== NULL
)
1451 htab
->elf
.dynobj
= abfd
;
1452 if (!_bfd_elf_create_ifunc_sections (htab
->elf
.dynobj
, info
))
1457 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1458 it here if it is defined in a non-shared object. */
1459 if (h
->type
== STT_GNU_IFUNC
1462 /* It is referenced by a non-shared object. */
1466 /* STT_GNU_IFUNC symbol must go through PLT. */
1467 h
->plt
.refcount
+= 1;
1469 /* STT_GNU_IFUNC needs dynamic sections. */
1470 if (htab
->elf
.dynobj
== NULL
)
1471 htab
->elf
.dynobj
= abfd
;
1476 if (h
->root
.root
.string
)
1477 name
= h
->root
.root
.string
;
1479 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1481 (*_bfd_error_handler
)
1482 (_("%B: relocation %s against STT_GNU_IFUNC "
1483 "symbol `%s' isn't handled by %s"), abfd
,
1484 x86_64_elf_howto_table
[r_type
].name
,
1485 name
, __FUNCTION__
);
1486 bfd_set_error (bfd_error_bad_value
);
1490 if (ABI_64_P (abfd
))
1494 h
->pointer_equality_needed
= 1;
1497 /* We must copy these reloc types into the output
1498 file. Create a reloc section in dynobj and
1499 make room for this reloc. */
1500 sreloc
= _bfd_elf_create_ifunc_dyn_reloc
1501 (abfd
, info
, sec
, sreloc
,
1502 &((struct elf_x86_64_link_hash_entry
*) h
)->dyn_relocs
);
1513 if (r_type
!= R_X86_64_PC32
1514 && r_type
!= R_X86_64_PC64
)
1515 h
->pointer_equality_needed
= 1;
1518 case R_X86_64_PLT32
:
1521 case R_X86_64_GOTPCREL
:
1522 case R_X86_64_GOTPCREL64
:
1523 h
->got
.refcount
+= 1;
1524 if (htab
->elf
.sgot
== NULL
1525 && !_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1535 if (! elf_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1536 symtab_hdr
, sym_hashes
,
1537 &r_type
, GOT_UNKNOWN
,
1538 rel
, rel_end
, h
, r_symndx
))
1543 case R_X86_64_TLSLD
:
1544 htab
->tls_ld_got
.refcount
+= 1;
1547 case R_X86_64_TPOFF32
:
1548 if (!info
->executable
&& ABI_64_P (abfd
))
1551 name
= h
->root
.root
.string
;
1553 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1555 (*_bfd_error_handler
)
1556 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1558 x86_64_elf_howto_table
[r_type
].name
, name
);
1559 bfd_set_error (bfd_error_bad_value
);
1564 case R_X86_64_GOTTPOFF
:
1565 if (!info
->executable
)
1566 info
->flags
|= DF_STATIC_TLS
;
1569 case R_X86_64_GOT32
:
1570 case R_X86_64_GOTPCREL
:
1571 case R_X86_64_TLSGD
:
1572 case R_X86_64_GOT64
:
1573 case R_X86_64_GOTPCREL64
:
1574 case R_X86_64_GOTPLT64
:
1575 case R_X86_64_GOTPC32_TLSDESC
:
1576 case R_X86_64_TLSDESC_CALL
:
1577 /* This symbol requires a global offset table entry. */
1579 int tls_type
, old_tls_type
;
1583 default: tls_type
= GOT_NORMAL
; break;
1584 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1585 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1586 case R_X86_64_GOTPC32_TLSDESC
:
1587 case R_X86_64_TLSDESC_CALL
:
1588 tls_type
= GOT_TLS_GDESC
; break;
1593 if (r_type
== R_X86_64_GOTPLT64
)
1595 /* This relocation indicates that we also need
1596 a PLT entry, as this is a function. We don't need
1597 a PLT entry for local symbols. */
1599 h
->plt
.refcount
+= 1;
1601 h
->got
.refcount
+= 1;
1602 old_tls_type
= elf_x86_64_hash_entry (h
)->tls_type
;
1606 bfd_signed_vma
*local_got_refcounts
;
1608 /* This is a global offset table entry for a local symbol. */
1609 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1610 if (local_got_refcounts
== NULL
)
1614 size
= symtab_hdr
->sh_info
;
1615 size
*= sizeof (bfd_signed_vma
)
1616 + sizeof (bfd_vma
) + sizeof (char);
1617 local_got_refcounts
= ((bfd_signed_vma
*)
1618 bfd_zalloc (abfd
, size
));
1619 if (local_got_refcounts
== NULL
)
1621 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1622 elf_x86_64_local_tlsdesc_gotent (abfd
)
1623 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1624 elf_x86_64_local_got_tls_type (abfd
)
1625 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1627 local_got_refcounts
[r_symndx
] += 1;
1629 = elf_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1632 /* If a TLS symbol is accessed using IE at least once,
1633 there is no point to use dynamic model for it. */
1634 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1635 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1636 || tls_type
!= GOT_TLS_IE
))
1638 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1639 tls_type
= old_tls_type
;
1640 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1641 && GOT_TLS_GD_ANY_P (tls_type
))
1642 tls_type
|= old_tls_type
;
1646 name
= h
->root
.root
.string
;
1648 name
= bfd_elf_sym_name (abfd
, symtab_hdr
,
1650 (*_bfd_error_handler
)
1651 (_("%B: '%s' accessed both as normal and thread local symbol"),
1657 if (old_tls_type
!= tls_type
)
1660 elf_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1662 elf_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1667 case R_X86_64_GOTOFF64
:
1668 case R_X86_64_GOTPC32
:
1669 case R_X86_64_GOTPC64
:
1671 if (htab
->elf
.sgot
== NULL
)
1673 if (htab
->elf
.dynobj
== NULL
)
1674 htab
->elf
.dynobj
= abfd
;
1675 if (!_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1681 case R_X86_64_PLT32
:
1682 /* This symbol requires a procedure linkage table entry. We
1683 actually build the entry in adjust_dynamic_symbol,
1684 because this might be a case of linking PIC code which is
1685 never referenced by a dynamic object, in which case we
1686 don't need to generate a procedure linkage table entry
1689 /* If this is a local symbol, we resolve it directly without
1690 creating a procedure linkage table entry. */
1695 h
->plt
.refcount
+= 1;
1698 case R_X86_64_PLTOFF64
:
1699 /* This tries to form the 'address' of a function relative
1700 to GOT. For global symbols we need a PLT entry. */
1704 h
->plt
.refcount
+= 1;
1709 if (!ABI_64_P (abfd
))
1714 /* Let's help debug shared library creation. These relocs
1715 cannot be used in shared libs. Don't error out for
1716 sections we don't care about, such as debug sections or
1717 non-constant sections. */
1719 && (sec
->flags
& SEC_ALLOC
) != 0
1720 && (sec
->flags
& SEC_READONLY
) != 0)
1723 name
= h
->root
.root
.string
;
1725 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1726 (*_bfd_error_handler
)
1727 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1728 abfd
, x86_64_elf_howto_table
[r_type
].name
, name
);
1729 bfd_set_error (bfd_error_bad_value
);
1740 if (h
!= NULL
&& info
->executable
)
1742 /* If this reloc is in a read-only section, we might
1743 need a copy reloc. We can't check reliably at this
1744 stage whether the section is read-only, as input
1745 sections have not yet been mapped to output sections.
1746 Tentatively set the flag for now, and correct in
1747 adjust_dynamic_symbol. */
1750 /* We may need a .plt entry if the function this reloc
1751 refers to is in a shared lib. */
1752 h
->plt
.refcount
+= 1;
1753 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1754 h
->pointer_equality_needed
= 1;
1757 /* If we are creating a shared library, and this is a reloc
1758 against a global symbol, or a non PC relative reloc
1759 against a local symbol, then we need to copy the reloc
1760 into the shared library. However, if we are linking with
1761 -Bsymbolic, we do not need to copy a reloc against a
1762 global symbol which is defined in an object we are
1763 including in the link (i.e., DEF_REGULAR is set). At
1764 this point we have not seen all the input files, so it is
1765 possible that DEF_REGULAR is not set now but will be set
1766 later (it is never cleared). In case of a weak definition,
1767 DEF_REGULAR may be cleared later by a strong definition in
1768 a shared library. We account for that possibility below by
1769 storing information in the relocs_copied field of the hash
1770 table entry. A similar situation occurs when creating
1771 shared libraries and symbol visibility changes render the
1774 If on the other hand, we are creating an executable, we
1775 may need to keep relocations for symbols satisfied by a
1776 dynamic library if we manage to avoid copy relocs for the
1779 && (sec
->flags
& SEC_ALLOC
) != 0
1780 && (! IS_X86_64_PCREL_TYPE (r_type
)
1782 && (! SYMBOLIC_BIND (info
, h
)
1783 || h
->root
.type
== bfd_link_hash_defweak
1784 || !h
->def_regular
))))
1785 || (ELIMINATE_COPY_RELOCS
1787 && (sec
->flags
& SEC_ALLOC
) != 0
1789 && (h
->root
.type
== bfd_link_hash_defweak
1790 || !h
->def_regular
)))
1792 struct elf_dyn_relocs
*p
;
1793 struct elf_dyn_relocs
**head
;
1795 /* We must copy these reloc types into the output file.
1796 Create a reloc section in dynobj and make room for
1800 if (htab
->elf
.dynobj
== NULL
)
1801 htab
->elf
.dynobj
= abfd
;
1803 sreloc
= _bfd_elf_make_dynamic_reloc_section
1804 (sec
, htab
->elf
.dynobj
, ABI_64_P (abfd
) ? 3 : 2,
1805 abfd
, /*rela?*/ TRUE
);
1811 /* If this is a global symbol, we count the number of
1812 relocations we need for this symbol. */
1815 head
= &((struct elf_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1819 /* Track dynamic relocs needed for local syms too.
1820 We really need local syms available to do this
1825 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1830 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
1834 /* Beware of type punned pointers vs strict aliasing
1836 vpp
= &(elf_section_data (s
)->local_dynrel
);
1837 head
= (struct elf_dyn_relocs
**)vpp
;
1841 if (p
== NULL
|| p
->sec
!= sec
)
1843 bfd_size_type amt
= sizeof *p
;
1845 p
= ((struct elf_dyn_relocs
*)
1846 bfd_alloc (htab
->elf
.dynobj
, amt
));
1857 if (IS_X86_64_PCREL_TYPE (r_type
))
1862 /* This relocation describes the C++ object vtable hierarchy.
1863 Reconstruct it for later use during GC. */
1864 case R_X86_64_GNU_VTINHERIT
:
1865 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1869 /* This relocation describes which C++ vtable entries are actually
1870 used. Record for later use during GC. */
1871 case R_X86_64_GNU_VTENTRY
:
1872 BFD_ASSERT (h
!= NULL
);
1874 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1886 /* Return the section that should be marked against GC for a given
1890 elf_x86_64_gc_mark_hook (asection
*sec
,
1891 struct bfd_link_info
*info
,
1892 Elf_Internal_Rela
*rel
,
1893 struct elf_link_hash_entry
*h
,
1894 Elf_Internal_Sym
*sym
)
1897 switch (ELF32_R_TYPE (rel
->r_info
))
1899 case R_X86_64_GNU_VTINHERIT
:
1900 case R_X86_64_GNU_VTENTRY
:
1904 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1907 /* Update the got entry reference counts for the section being removed. */
1910 elf_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1912 const Elf_Internal_Rela
*relocs
)
1914 struct elf_x86_64_link_hash_table
*htab
;
1915 Elf_Internal_Shdr
*symtab_hdr
;
1916 struct elf_link_hash_entry
**sym_hashes
;
1917 bfd_signed_vma
*local_got_refcounts
;
1918 const Elf_Internal_Rela
*rel
, *relend
;
1920 if (info
->relocatable
)
1923 htab
= elf_x86_64_hash_table (info
);
1927 elf_section_data (sec
)->local_dynrel
= NULL
;
1929 symtab_hdr
= &elf_symtab_hdr (abfd
);
1930 sym_hashes
= elf_sym_hashes (abfd
);
1931 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1933 htab
= elf_x86_64_hash_table (info
);
1934 relend
= relocs
+ sec
->reloc_count
;
1935 for (rel
= relocs
; rel
< relend
; rel
++)
1937 unsigned long r_symndx
;
1938 unsigned int r_type
;
1939 struct elf_link_hash_entry
*h
= NULL
;
1941 r_symndx
= htab
->r_sym (rel
->r_info
);
1942 if (r_symndx
>= symtab_hdr
->sh_info
)
1944 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1945 while (h
->root
.type
== bfd_link_hash_indirect
1946 || h
->root
.type
== bfd_link_hash_warning
)
1947 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1951 /* A local symbol. */
1952 Elf_Internal_Sym
*isym
;
1954 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1957 /* Check relocation against local STT_GNU_IFUNC symbol. */
1959 && ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
1961 h
= elf_x86_64_get_local_sym_hash (htab
, abfd
, rel
, FALSE
);
1969 struct elf_x86_64_link_hash_entry
*eh
;
1970 struct elf_dyn_relocs
**pp
;
1971 struct elf_dyn_relocs
*p
;
1973 eh
= (struct elf_x86_64_link_hash_entry
*) h
;
1975 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1978 /* Everything must go for SEC. */
1984 r_type
= ELF32_R_TYPE (rel
->r_info
);
1985 if (! elf_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1986 symtab_hdr
, sym_hashes
,
1987 &r_type
, GOT_UNKNOWN
,
1988 rel
, relend
, h
, r_symndx
))
1993 case R_X86_64_TLSLD
:
1994 if (htab
->tls_ld_got
.refcount
> 0)
1995 htab
->tls_ld_got
.refcount
-= 1;
1998 case R_X86_64_TLSGD
:
1999 case R_X86_64_GOTPC32_TLSDESC
:
2000 case R_X86_64_TLSDESC_CALL
:
2001 case R_X86_64_GOTTPOFF
:
2002 case R_X86_64_GOT32
:
2003 case R_X86_64_GOTPCREL
:
2004 case R_X86_64_GOT64
:
2005 case R_X86_64_GOTPCREL64
:
2006 case R_X86_64_GOTPLT64
:
2009 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
2010 h
->plt
.refcount
-= 1;
2011 if (h
->got
.refcount
> 0)
2012 h
->got
.refcount
-= 1;
2013 if (h
->type
== STT_GNU_IFUNC
)
2015 if (h
->plt
.refcount
> 0)
2016 h
->plt
.refcount
-= 1;
2019 else if (local_got_refcounts
!= NULL
)
2021 if (local_got_refcounts
[r_symndx
] > 0)
2022 local_got_refcounts
[r_symndx
] -= 1;
2036 && (h
== NULL
|| h
->type
!= STT_GNU_IFUNC
))
2040 case R_X86_64_PLT32
:
2041 case R_X86_64_PLTOFF64
:
2044 if (h
->plt
.refcount
> 0)
2045 h
->plt
.refcount
-= 1;
2057 /* Adjust a symbol defined by a dynamic object and referenced by a
2058 regular object. The current definition is in some section of the
2059 dynamic object, but we're not including those sections. We have to
2060 change the definition to something the rest of the link can
2064 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
2065 struct elf_link_hash_entry
*h
)
2067 struct elf_x86_64_link_hash_table
*htab
;
2070 /* STT_GNU_IFUNC symbol must go through PLT. */
2071 if (h
->type
== STT_GNU_IFUNC
)
2073 if (h
->plt
.refcount
<= 0)
2075 h
->plt
.offset
= (bfd_vma
) -1;
2081 /* If this is a function, put it in the procedure linkage table. We
2082 will fill in the contents of the procedure linkage table later,
2083 when we know the address of the .got section. */
2084 if (h
->type
== STT_FUNC
2087 if (h
->plt
.refcount
<= 0
2088 || SYMBOL_CALLS_LOCAL (info
, h
)
2089 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2090 && h
->root
.type
== bfd_link_hash_undefweak
))
2092 /* This case can occur if we saw a PLT32 reloc in an input
2093 file, but the symbol was never referred to by a dynamic
2094 object, or if all references were garbage collected. In
2095 such a case, we don't actually need to build a procedure
2096 linkage table, and we can just do a PC32 reloc instead. */
2097 h
->plt
.offset
= (bfd_vma
) -1;
2104 /* It's possible that we incorrectly decided a .plt reloc was
2105 needed for an R_X86_64_PC32 reloc to a non-function sym in
2106 check_relocs. We can't decide accurately between function and
2107 non-function syms in check-relocs; Objects loaded later in
2108 the link may change h->type. So fix it now. */
2109 h
->plt
.offset
= (bfd_vma
) -1;
2111 /* If this is a weak symbol, and there is a real definition, the
2112 processor independent code will have arranged for us to see the
2113 real definition first, and we can just use the same value. */
2114 if (h
->u
.weakdef
!= NULL
)
2116 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
2117 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
2118 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
2119 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
2120 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
2121 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
2125 /* This is a reference to a symbol defined by a dynamic object which
2126 is not a function. */
2128 /* If we are creating a shared library, we must presume that the
2129 only references to the symbol are via the global offset table.
2130 For such cases we need not do anything here; the relocations will
2131 be handled correctly by relocate_section. */
2135 /* If there are no references to this symbol that do not use the
2136 GOT, we don't need to generate a copy reloc. */
2137 if (!h
->non_got_ref
)
2140 /* If -z nocopyreloc was given, we won't generate them either. */
2141 if (info
->nocopyreloc
)
2147 if (ELIMINATE_COPY_RELOCS
)
2149 struct elf_x86_64_link_hash_entry
* eh
;
2150 struct elf_dyn_relocs
*p
;
2152 eh
= (struct elf_x86_64_link_hash_entry
*) h
;
2153 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2155 s
= p
->sec
->output_section
;
2156 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2160 /* If we didn't find any dynamic relocs in read-only sections, then
2161 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2171 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
2172 h
->root
.root
.string
);
2176 /* We must allocate the symbol in our .dynbss section, which will
2177 become part of the .bss section of the executable. There will be
2178 an entry for this symbol in the .dynsym section. The dynamic
2179 object will contain position independent code, so all references
2180 from the dynamic object to this symbol will go through the global
2181 offset table. The dynamic linker will use the .dynsym entry to
2182 determine the address it must put in the global offset table, so
2183 both the dynamic object and the regular object will refer to the
2184 same memory location for the variable. */
2186 htab
= elf_x86_64_hash_table (info
);
2190 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2191 to copy the initial value out of the dynamic object and into the
2192 runtime process image. */
2193 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
2195 const struct elf_backend_data
*bed
;
2196 bed
= get_elf_backend_data (info
->output_bfd
);
2197 htab
->srelbss
->size
+= bed
->s
->sizeof_rela
;
2203 return _bfd_elf_adjust_dynamic_copy (h
, s
);
2206 /* Allocate space in .plt, .got and associated reloc sections for
2210 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
2212 struct bfd_link_info
*info
;
2213 struct elf_x86_64_link_hash_table
*htab
;
2214 struct elf_x86_64_link_hash_entry
*eh
;
2215 struct elf_dyn_relocs
*p
;
2216 const struct elf_backend_data
*bed
;
2218 if (h
->root
.type
== bfd_link_hash_indirect
)
2221 eh
= (struct elf_x86_64_link_hash_entry
*) h
;
2223 info
= (struct bfd_link_info
*) inf
;
2224 htab
= elf_x86_64_hash_table (info
);
2227 bed
= get_elf_backend_data (info
->output_bfd
);
2229 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2230 here if it is defined and referenced in a non-shared object. */
2231 if (h
->type
== STT_GNU_IFUNC
2233 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
2237 else if (htab
->elf
.dynamic_sections_created
2238 && h
->plt
.refcount
> 0)
2240 /* Make sure this symbol is output as a dynamic symbol.
2241 Undefined weak syms won't yet be marked as dynamic. */
2242 if (h
->dynindx
== -1
2243 && !h
->forced_local
)
2245 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
2250 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
2252 asection
*s
= htab
->elf
.splt
;
2254 /* If this is the first .plt entry, make room for the special
2257 s
->size
+= PLT_ENTRY_SIZE
;
2259 h
->plt
.offset
= s
->size
;
2261 /* If this symbol is not defined in a regular file, and we are
2262 not generating a shared library, then set the symbol to this
2263 location in the .plt. This is required to make function
2264 pointers compare as equal between the normal executable and
2265 the shared library. */
2269 h
->root
.u
.def
.section
= s
;
2270 h
->root
.u
.def
.value
= h
->plt
.offset
;
2273 /* Make room for this entry. */
2274 s
->size
+= PLT_ENTRY_SIZE
;
2276 /* We also need to make an entry in the .got.plt section, which
2277 will be placed in the .got section by the linker script. */
2278 htab
->elf
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
2280 /* We also need to make an entry in the .rela.plt section. */
2281 htab
->elf
.srelplt
->size
+= bed
->s
->sizeof_rela
;
2282 htab
->elf
.srelplt
->reloc_count
++;
2286 h
->plt
.offset
= (bfd_vma
) -1;
2292 h
->plt
.offset
= (bfd_vma
) -1;
2296 eh
->tlsdesc_got
= (bfd_vma
) -1;
2298 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2299 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2300 if (h
->got
.refcount
> 0
2303 && elf_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
2305 h
->got
.offset
= (bfd_vma
) -1;
2307 else if (h
->got
.refcount
> 0)
2311 int tls_type
= elf_x86_64_hash_entry (h
)->tls_type
;
2313 /* Make sure this symbol is output as a dynamic symbol.
2314 Undefined weak syms won't yet be marked as dynamic. */
2315 if (h
->dynindx
== -1
2316 && !h
->forced_local
)
2318 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
2322 if (GOT_TLS_GDESC_P (tls_type
))
2324 eh
->tlsdesc_got
= htab
->elf
.sgotplt
->size
2325 - elf_x86_64_compute_jump_table_size (htab
);
2326 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2327 h
->got
.offset
= (bfd_vma
) -2;
2329 if (! GOT_TLS_GDESC_P (tls_type
)
2330 || GOT_TLS_GD_P (tls_type
))
2333 h
->got
.offset
= s
->size
;
2334 s
->size
+= GOT_ENTRY_SIZE
;
2335 if (GOT_TLS_GD_P (tls_type
))
2336 s
->size
+= GOT_ENTRY_SIZE
;
2338 dyn
= htab
->elf
.dynamic_sections_created
;
2339 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2341 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2342 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
2343 || tls_type
== GOT_TLS_IE
)
2344 htab
->elf
.srelgot
->size
+= bed
->s
->sizeof_rela
;
2345 else if (GOT_TLS_GD_P (tls_type
))
2346 htab
->elf
.srelgot
->size
+= 2 * bed
->s
->sizeof_rela
;
2347 else if (! GOT_TLS_GDESC_P (tls_type
)
2348 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2349 || h
->root
.type
!= bfd_link_hash_undefweak
)
2351 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
2352 htab
->elf
.srelgot
->size
+= bed
->s
->sizeof_rela
;
2353 if (GOT_TLS_GDESC_P (tls_type
))
2355 htab
->elf
.srelplt
->size
+= bed
->s
->sizeof_rela
;
2356 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2360 h
->got
.offset
= (bfd_vma
) -1;
2362 if (eh
->dyn_relocs
== NULL
)
2365 /* In the shared -Bsymbolic case, discard space allocated for
2366 dynamic pc-relative relocs against symbols which turn out to be
2367 defined in regular objects. For the normal shared case, discard
2368 space for pc-relative relocs that have become local due to symbol
2369 visibility changes. */
2373 /* Relocs that use pc_count are those that appear on a call
2374 insn, or certain REL relocs that can generated via assembly.
2375 We want calls to protected symbols to resolve directly to the
2376 function rather than going via the plt. If people want
2377 function pointer comparisons to work as expected then they
2378 should avoid writing weird assembly. */
2379 if (SYMBOL_CALLS_LOCAL (info
, h
))
2381 struct elf_dyn_relocs
**pp
;
2383 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
2385 p
->count
-= p
->pc_count
;
2394 /* Also discard relocs on undefined weak syms with non-default
2396 if (eh
->dyn_relocs
!= NULL
2397 && h
->root
.type
== bfd_link_hash_undefweak
)
2399 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2400 eh
->dyn_relocs
= NULL
;
2402 /* Make sure undefined weak symbols are output as a dynamic
2404 else if (h
->dynindx
== -1
2405 && ! h
->forced_local
2406 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2411 else if (ELIMINATE_COPY_RELOCS
)
2413 /* For the non-shared case, discard space for relocs against
2414 symbols which turn out to need copy relocs or are not
2420 || (htab
->elf
.dynamic_sections_created
2421 && (h
->root
.type
== bfd_link_hash_undefweak
2422 || h
->root
.type
== bfd_link_hash_undefined
))))
2424 /* Make sure this symbol is output as a dynamic symbol.
2425 Undefined weak syms won't yet be marked as dynamic. */
2426 if (h
->dynindx
== -1
2427 && ! h
->forced_local
2428 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2431 /* If that succeeded, we know we'll be keeping all the
2433 if (h
->dynindx
!= -1)
2437 eh
->dyn_relocs
= NULL
;
2442 /* Finally, allocate space. */
2443 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2447 sreloc
= elf_section_data (p
->sec
)->sreloc
;
2449 BFD_ASSERT (sreloc
!= NULL
);
2451 sreloc
->size
+= p
->count
* bed
->s
->sizeof_rela
;
2457 /* Allocate space in .plt, .got and associated reloc sections for
2458 local dynamic relocs. */
2461 elf_x86_64_allocate_local_dynrelocs (void **slot
, void *inf
)
2463 struct elf_link_hash_entry
*h
2464 = (struct elf_link_hash_entry
*) *slot
;
2466 if (h
->type
!= STT_GNU_IFUNC
2470 || h
->root
.type
!= bfd_link_hash_defined
)
2473 return elf_x86_64_allocate_dynrelocs (h
, inf
);
2476 /* Find any dynamic relocs that apply to read-only sections. */
2479 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry
*h
,
2482 struct elf_x86_64_link_hash_entry
*eh
;
2483 struct elf_dyn_relocs
*p
;
2485 /* Skip local IFUNC symbols. */
2486 if (h
->forced_local
&& h
->type
== STT_GNU_IFUNC
)
2489 eh
= (struct elf_x86_64_link_hash_entry
*) h
;
2490 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2492 asection
*s
= p
->sec
->output_section
;
2494 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2496 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
2498 info
->flags
|= DF_TEXTREL
;
2500 if (info
->warn_shared_textrel
&& info
->shared
)
2501 info
->callbacks
->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2502 p
->sec
->owner
, h
->root
.root
.string
,
2505 /* Not an error, just cut short the traversal. */
2512 /* Set the sizes of the dynamic sections. */
2515 elf_x86_64_size_dynamic_sections (bfd
*output_bfd
,
2516 struct bfd_link_info
*info
)
2518 struct elf_x86_64_link_hash_table
*htab
;
2523 const struct elf_backend_data
*bed
;
2525 htab
= elf_x86_64_hash_table (info
);
2528 bed
= get_elf_backend_data (output_bfd
);
2530 dynobj
= htab
->elf
.dynobj
;
2534 if (htab
->elf
.dynamic_sections_created
)
2536 /* Set the contents of the .interp section to the interpreter. */
2537 if (info
->executable
)
2539 s
= bfd_get_section_by_name (dynobj
, ".interp");
2542 s
->size
= htab
->dynamic_interpreter_size
;
2543 s
->contents
= (unsigned char *) htab
->dynamic_interpreter
;
2547 /* Set up .got offsets for local syms, and space for local dynamic
2549 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2551 bfd_signed_vma
*local_got
;
2552 bfd_signed_vma
*end_local_got
;
2553 char *local_tls_type
;
2554 bfd_vma
*local_tlsdesc_gotent
;
2555 bfd_size_type locsymcount
;
2556 Elf_Internal_Shdr
*symtab_hdr
;
2559 if (! is_x86_64_elf (ibfd
))
2562 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2564 struct elf_dyn_relocs
*p
;
2566 for (p
= (struct elf_dyn_relocs
*)
2567 (elf_section_data (s
)->local_dynrel
);
2571 if (!bfd_is_abs_section (p
->sec
)
2572 && bfd_is_abs_section (p
->sec
->output_section
))
2574 /* Input section has been discarded, either because
2575 it is a copy of a linkonce section or due to
2576 linker script /DISCARD/, so we'll be discarding
2579 else if (p
->count
!= 0)
2581 srel
= elf_section_data (p
->sec
)->sreloc
;
2582 srel
->size
+= p
->count
* bed
->s
->sizeof_rela
;
2583 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0
2584 && (info
->flags
& DF_TEXTREL
) == 0)
2586 info
->flags
|= DF_TEXTREL
;
2587 if (info
->warn_shared_textrel
&& info
->shared
)
2588 info
->callbacks
->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2589 p
->sec
->owner
, p
->sec
);
2595 local_got
= elf_local_got_refcounts (ibfd
);
2599 symtab_hdr
= &elf_symtab_hdr (ibfd
);
2600 locsymcount
= symtab_hdr
->sh_info
;
2601 end_local_got
= local_got
+ locsymcount
;
2602 local_tls_type
= elf_x86_64_local_got_tls_type (ibfd
);
2603 local_tlsdesc_gotent
= elf_x86_64_local_tlsdesc_gotent (ibfd
);
2605 srel
= htab
->elf
.srelgot
;
2606 for (; local_got
< end_local_got
;
2607 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2609 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2612 if (GOT_TLS_GDESC_P (*local_tls_type
))
2614 *local_tlsdesc_gotent
= htab
->elf
.sgotplt
->size
2615 - elf_x86_64_compute_jump_table_size (htab
);
2616 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2617 *local_got
= (bfd_vma
) -2;
2619 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2620 || GOT_TLS_GD_P (*local_tls_type
))
2622 *local_got
= s
->size
;
2623 s
->size
+= GOT_ENTRY_SIZE
;
2624 if (GOT_TLS_GD_P (*local_tls_type
))
2625 s
->size
+= GOT_ENTRY_SIZE
;
2628 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2629 || *local_tls_type
== GOT_TLS_IE
)
2631 if (GOT_TLS_GDESC_P (*local_tls_type
))
2633 htab
->elf
.srelplt
->size
2634 += bed
->s
->sizeof_rela
;
2635 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2637 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2638 || GOT_TLS_GD_P (*local_tls_type
))
2639 srel
->size
+= bed
->s
->sizeof_rela
;
2643 *local_got
= (bfd_vma
) -1;
2647 if (htab
->tls_ld_got
.refcount
> 0)
2649 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2651 htab
->tls_ld_got
.offset
= htab
->elf
.sgot
->size
;
2652 htab
->elf
.sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2653 htab
->elf
.srelgot
->size
+= bed
->s
->sizeof_rela
;
2656 htab
->tls_ld_got
.offset
= -1;
2658 /* Allocate global sym .plt and .got entries, and space for global
2659 sym dynamic relocs. */
2660 elf_link_hash_traverse (&htab
->elf
, elf_x86_64_allocate_dynrelocs
,
2663 /* Allocate .plt and .got entries, and space for local symbols. */
2664 htab_traverse (htab
->loc_hash_table
,
2665 elf_x86_64_allocate_local_dynrelocs
,
2668 /* For every jump slot reserved in the sgotplt, reloc_count is
2669 incremented. However, when we reserve space for TLS descriptors,
2670 it's not incremented, so in order to compute the space reserved
2671 for them, it suffices to multiply the reloc count by the jump
2674 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2675 so that R_X86_64_IRELATIVE entries come last. */
2676 if (htab
->elf
.srelplt
)
2678 htab
->sgotplt_jump_table_size
2679 = elf_x86_64_compute_jump_table_size (htab
);
2680 htab
->next_irelative_index
= htab
->elf
.srelplt
->reloc_count
- 1;
2682 else if (htab
->elf
.irelplt
)
2683 htab
->next_irelative_index
= htab
->elf
.irelplt
->reloc_count
- 1;
2685 if (htab
->tlsdesc_plt
)
2687 /* If we're not using lazy TLS relocations, don't generate the
2688 PLT and GOT entries they require. */
2689 if ((info
->flags
& DF_BIND_NOW
))
2690 htab
->tlsdesc_plt
= 0;
2693 htab
->tlsdesc_got
= htab
->elf
.sgot
->size
;
2694 htab
->elf
.sgot
->size
+= GOT_ENTRY_SIZE
;
2695 /* Reserve room for the initial entry.
2696 FIXME: we could probably do away with it in this case. */
2697 if (htab
->elf
.splt
->size
== 0)
2698 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2699 htab
->tlsdesc_plt
= htab
->elf
.splt
->size
;
2700 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2704 if (htab
->elf
.sgotplt
)
2706 struct elf_link_hash_entry
*got
;
2707 got
= elf_link_hash_lookup (elf_hash_table (info
),
2708 "_GLOBAL_OFFSET_TABLE_",
2709 FALSE
, FALSE
, FALSE
);
2711 /* Don't allocate .got.plt section if there are no GOT nor PLT
2712 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2714 || !got
->ref_regular_nonweak
)
2715 && (htab
->elf
.sgotplt
->size
2716 == get_elf_backend_data (output_bfd
)->got_header_size
)
2717 && (htab
->elf
.splt
== NULL
2718 || htab
->elf
.splt
->size
== 0)
2719 && (htab
->elf
.sgot
== NULL
2720 || htab
->elf
.sgot
->size
== 0)
2721 && (htab
->elf
.iplt
== NULL
2722 || htab
->elf
.iplt
->size
== 0)
2723 && (htab
->elf
.igotplt
== NULL
2724 || htab
->elf
.igotplt
->size
== 0))
2725 htab
->elf
.sgotplt
->size
= 0;
2728 /* We now have determined the sizes of the various dynamic sections.
2729 Allocate memory for them. */
2731 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2733 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2736 if (s
== htab
->elf
.splt
2737 || s
== htab
->elf
.sgot
2738 || s
== htab
->elf
.sgotplt
2739 || s
== htab
->elf
.iplt
2740 || s
== htab
->elf
.igotplt
2741 || s
== htab
->sdynbss
)
2743 /* Strip this section if we don't need it; see the
2746 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2748 if (s
->size
!= 0 && s
!= htab
->elf
.srelplt
)
2751 /* We use the reloc_count field as a counter if we need
2752 to copy relocs into the output file. */
2753 if (s
!= htab
->elf
.srelplt
)
2758 /* It's not one of our sections, so don't allocate space. */
2764 /* If we don't need this section, strip it from the
2765 output file. This is mostly to handle .rela.bss and
2766 .rela.plt. We must create both sections in
2767 create_dynamic_sections, because they must be created
2768 before the linker maps input sections to output
2769 sections. The linker does that before
2770 adjust_dynamic_symbol is called, and it is that
2771 function which decides whether anything needs to go
2772 into these sections. */
2774 s
->flags
|= SEC_EXCLUDE
;
2778 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2781 /* Allocate memory for the section contents. We use bfd_zalloc
2782 here in case unused entries are not reclaimed before the
2783 section's contents are written out. This should not happen,
2784 but this way if it does, we get a R_X86_64_NONE reloc instead
2786 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2787 if (s
->contents
== NULL
)
2791 if (htab
->plt_eh_frame
!= NULL
2792 && htab
->elf
.splt
!= NULL
2793 && htab
->elf
.splt
->size
!= 0
2794 && (htab
->elf
.splt
->flags
& SEC_EXCLUDE
) == 0)
2795 bfd_put_32 (dynobj
, htab
->elf
.splt
->size
,
2796 htab
->plt_eh_frame
->contents
+ PLT_FDE_LEN_OFFSET
);
2798 if (htab
->elf
.dynamic_sections_created
)
2800 /* Add some entries to the .dynamic section. We fill in the
2801 values later, in elf_x86_64_finish_dynamic_sections, but we
2802 must add the entries now so that we get the correct size for
2803 the .dynamic section. The DT_DEBUG entry is filled in by the
2804 dynamic linker and used by the debugger. */
2805 #define add_dynamic_entry(TAG, VAL) \
2806 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2808 if (info
->executable
)
2810 if (!add_dynamic_entry (DT_DEBUG
, 0))
2814 if (htab
->elf
.splt
->size
!= 0)
2816 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2817 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2818 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2819 || !add_dynamic_entry (DT_JMPREL
, 0))
2822 if (htab
->tlsdesc_plt
2823 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2824 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2830 if (!add_dynamic_entry (DT_RELA
, 0)
2831 || !add_dynamic_entry (DT_RELASZ
, 0)
2832 || !add_dynamic_entry (DT_RELAENT
, bed
->s
->sizeof_rela
))
2835 /* If any dynamic relocs apply to a read-only section,
2836 then we need a DT_TEXTREL entry. */
2837 if ((info
->flags
& DF_TEXTREL
) == 0)
2838 elf_link_hash_traverse (&htab
->elf
,
2839 elf_x86_64_readonly_dynrelocs
,
2842 if ((info
->flags
& DF_TEXTREL
) != 0)
2844 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2849 #undef add_dynamic_entry
2855 elf_x86_64_always_size_sections (bfd
*output_bfd
,
2856 struct bfd_link_info
*info
)
2858 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2862 struct elf_link_hash_entry
*tlsbase
;
2864 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2865 "_TLS_MODULE_BASE_",
2866 FALSE
, FALSE
, FALSE
);
2868 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2870 struct elf_x86_64_link_hash_table
*htab
;
2871 struct bfd_link_hash_entry
*bh
= NULL
;
2872 const struct elf_backend_data
*bed
2873 = get_elf_backend_data (output_bfd
);
2875 htab
= elf_x86_64_hash_table (info
);
2879 if (!(_bfd_generic_link_add_one_symbol
2880 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2881 tls_sec
, 0, NULL
, FALSE
,
2882 bed
->collect
, &bh
)))
2885 htab
->tls_module_base
= bh
;
2887 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2888 tlsbase
->def_regular
= 1;
2889 tlsbase
->other
= STV_HIDDEN
;
2890 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2897 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2898 executables. Rather than setting it to the beginning of the TLS
2899 section, we have to set it to the end. This function may be called
2900 multiple times, it is idempotent. */
2903 elf_x86_64_set_tls_module_base (struct bfd_link_info
*info
)
2905 struct elf_x86_64_link_hash_table
*htab
;
2906 struct bfd_link_hash_entry
*base
;
2908 if (!info
->executable
)
2911 htab
= elf_x86_64_hash_table (info
);
2915 base
= htab
->tls_module_base
;
2919 base
->u
.def
.value
= htab
->elf
.tls_size
;
2922 /* Return the base VMA address which should be subtracted from real addresses
2923 when resolving @dtpoff relocation.
2924 This is PT_TLS segment p_vaddr. */
2927 elf_x86_64_dtpoff_base (struct bfd_link_info
*info
)
2929 /* If tls_sec is NULL, we should have signalled an error already. */
2930 if (elf_hash_table (info
)->tls_sec
== NULL
)
2932 return elf_hash_table (info
)->tls_sec
->vma
;
2935 /* Return the relocation value for @tpoff relocation
2936 if STT_TLS virtual address is ADDRESS. */
2939 elf_x86_64_tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2941 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2942 const struct elf_backend_data
*bed
= get_elf_backend_data (info
->output_bfd
);
2943 bfd_vma static_tls_size
;
2945 /* If tls_segment is NULL, we should have signalled an error already. */
2946 if (htab
->tls_sec
== NULL
)
2949 /* Consider special static TLS alignment requirements. */
2950 static_tls_size
= BFD_ALIGN (htab
->tls_size
, bed
->static_tls_alignment
);
2951 return address
- static_tls_size
- htab
->tls_sec
->vma
;
2954 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2958 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2960 /* Opcode Instruction
2963 0x0f 0x8x conditional jump */
2965 && (contents
[offset
- 1] == 0xe8
2966 || contents
[offset
- 1] == 0xe9))
2968 && contents
[offset
- 2] == 0x0f
2969 && (contents
[offset
- 1] & 0xf0) == 0x80));
2972 /* Relocate an x86_64 ELF section. */
2975 elf_x86_64_relocate_section (bfd
*output_bfd
,
2976 struct bfd_link_info
*info
,
2978 asection
*input_section
,
2980 Elf_Internal_Rela
*relocs
,
2981 Elf_Internal_Sym
*local_syms
,
2982 asection
**local_sections
)
2984 struct elf_x86_64_link_hash_table
*htab
;
2985 Elf_Internal_Shdr
*symtab_hdr
;
2986 struct elf_link_hash_entry
**sym_hashes
;
2987 bfd_vma
*local_got_offsets
;
2988 bfd_vma
*local_tlsdesc_gotents
;
2989 Elf_Internal_Rela
*rel
;
2990 Elf_Internal_Rela
*relend
;
2992 BFD_ASSERT (is_x86_64_elf (input_bfd
));
2994 htab
= elf_x86_64_hash_table (info
);
2997 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
2998 sym_hashes
= elf_sym_hashes (input_bfd
);
2999 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3000 local_tlsdesc_gotents
= elf_x86_64_local_tlsdesc_gotent (input_bfd
);
3002 elf_x86_64_set_tls_module_base (info
);
3005 relend
= relocs
+ input_section
->reloc_count
;
3006 for (; rel
< relend
; rel
++)
3008 unsigned int r_type
;
3009 reloc_howto_type
*howto
;
3010 unsigned long r_symndx
;
3011 struct elf_link_hash_entry
*h
;
3012 Elf_Internal_Sym
*sym
;
3014 bfd_vma off
, offplt
;
3016 bfd_boolean unresolved_reloc
;
3017 bfd_reloc_status_type r
;
3021 r_type
= ELF32_R_TYPE (rel
->r_info
);
3022 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
3023 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
3026 if (r_type
>= R_X86_64_max
)
3028 bfd_set_error (bfd_error_bad_value
);
3032 if (r_type
!= (int) R_X86_64_32
3033 || ABI_64_P (output_bfd
))
3034 howto
= x86_64_elf_howto_table
+ r_type
;
3036 howto
= (x86_64_elf_howto_table
3037 + ARRAY_SIZE (x86_64_elf_howto_table
) - 1);
3038 r_symndx
= htab
->r_sym (rel
->r_info
);
3042 unresolved_reloc
= FALSE
;
3043 if (r_symndx
< symtab_hdr
->sh_info
)
3045 sym
= local_syms
+ r_symndx
;
3046 sec
= local_sections
[r_symndx
];
3048 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
,
3051 /* Relocate against local STT_GNU_IFUNC symbol. */
3052 if (!info
->relocatable
3053 && ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
3055 h
= elf_x86_64_get_local_sym_hash (htab
, input_bfd
,
3060 /* Set STT_GNU_IFUNC symbol value. */
3061 h
->root
.u
.def
.value
= sym
->st_value
;
3062 h
->root
.u
.def
.section
= sec
;
3067 bfd_boolean warned ATTRIBUTE_UNUSED
;
3069 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
3070 r_symndx
, symtab_hdr
, sym_hashes
,
3072 unresolved_reloc
, warned
);
3075 if (sec
!= NULL
&& elf_discarded_section (sec
))
3076 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
3077 rel
, relend
, howto
, contents
);
3079 if (info
->relocatable
)
3082 if (rel
->r_addend
== 0
3083 && r_type
== R_X86_64_64
3084 && !ABI_64_P (output_bfd
))
3086 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3087 it to 64bit if addend is zero. */
3088 r_type
= R_X86_64_32
;
3089 memset (contents
+ rel
->r_offset
+ 4, 0, 4);
3092 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3093 it here if it is defined in a non-shared object. */
3095 && h
->type
== STT_GNU_IFUNC
3102 if ((input_section
->flags
& SEC_ALLOC
) == 0
3103 || h
->plt
.offset
== (bfd_vma
) -1)
3106 /* STT_GNU_IFUNC symbol must go through PLT. */
3107 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
3108 relocation
= (plt
->output_section
->vma
3109 + plt
->output_offset
+ h
->plt
.offset
);
3114 if (h
->root
.root
.string
)
3115 name
= h
->root
.root
.string
;
3117 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
3119 (*_bfd_error_handler
)
3120 (_("%B: relocation %s against STT_GNU_IFUNC "
3121 "symbol `%s' isn't handled by %s"), input_bfd
,
3122 x86_64_elf_howto_table
[r_type
].name
,
3123 name
, __FUNCTION__
);
3124 bfd_set_error (bfd_error_bad_value
);
3133 if (ABI_64_P (output_bfd
))
3137 if (rel
->r_addend
!= 0)
3139 if (h
->root
.root
.string
)
3140 name
= h
->root
.root
.string
;
3142 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
3144 (*_bfd_error_handler
)
3145 (_("%B: relocation %s against STT_GNU_IFUNC "
3146 "symbol `%s' has non-zero addend: %d"),
3147 input_bfd
, x86_64_elf_howto_table
[r_type
].name
,
3148 name
, rel
->r_addend
);
3149 bfd_set_error (bfd_error_bad_value
);
3153 /* Generate dynamic relcoation only when there is a
3154 non-GOT reference in a shared object. */
3155 if (info
->shared
&& h
->non_got_ref
)
3157 Elf_Internal_Rela outrel
;
3159 bfd_boolean relocate
;
3161 /* Need a dynamic relocation to get the real function
3163 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
3167 if (outrel
.r_offset
== (bfd_vma
) -1
3168 || outrel
.r_offset
== (bfd_vma
) -2)
3171 outrel
.r_offset
+= (input_section
->output_section
->vma
3172 + input_section
->output_offset
);
3174 if (h
->dynindx
== -1
3176 || info
->executable
)
3178 /* This symbol is resolved locally. */
3179 outrel
.r_info
= htab
->r_info (0, R_X86_64_RELATIVE
);
3180 outrel
.r_addend
= relocation
;
3185 outrel
.r_info
= htab
->r_info (h
->dynindx
, r_type
);
3186 outrel
.r_addend
= 0;
3190 sreloc
= htab
->elf
.irelifunc
;
3191 elf_append_rela (output_bfd
, sreloc
, &outrel
);
3193 /* If this reloc is against an external symbol, we
3194 do not want to fiddle with the addend. Otherwise,
3195 we need to include the symbol value so that it
3196 becomes an addend for the dynamic reloc. For an
3197 internal symbol, we have updated addend. */
3204 case R_X86_64_PLT32
:
3207 case R_X86_64_GOTPCREL
:
3208 case R_X86_64_GOTPCREL64
:
3209 base_got
= htab
->elf
.sgot
;
3210 off
= h
->got
.offset
;
3212 if (base_got
== NULL
)
3215 if (off
== (bfd_vma
) -1)
3217 /* We can't use h->got.offset here to save state, or
3218 even just remember the offset, as finish_dynamic_symbol
3219 would use that as offset into .got. */
3221 if (htab
->elf
.splt
!= NULL
)
3223 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3224 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3225 base_got
= htab
->elf
.sgotplt
;
3229 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
3230 off
= plt_index
* GOT_ENTRY_SIZE
;
3231 base_got
= htab
->elf
.igotplt
;
3234 if (h
->dynindx
== -1
3238 /* This references the local defitionion. We must
3239 initialize this entry in the global offset table.
3240 Since the offset must always be a multiple of 8,
3241 we use the least significant bit to record
3242 whether we have initialized it already.
3244 When doing a dynamic link, we create a .rela.got
3245 relocation entry to initialize the value. This
3246 is done in the finish_dynamic_symbol routine. */
3251 bfd_put_64 (output_bfd
, relocation
,
3252 base_got
->contents
+ off
);
3253 /* Note that this is harmless for the GOTPLT64
3254 case, as -1 | 1 still is -1. */
3260 relocation
= (base_got
->output_section
->vma
3261 + base_got
->output_offset
+ off
);
3267 /* When generating a shared object, the relocations handled here are
3268 copied into the output file to be resolved at run time. */
3271 case R_X86_64_GOT32
:
3272 case R_X86_64_GOT64
:
3273 /* Relocation is to the entry for this symbol in the global
3275 case R_X86_64_GOTPCREL
:
3276 case R_X86_64_GOTPCREL64
:
3277 /* Use global offset table entry as symbol value. */
3278 case R_X86_64_GOTPLT64
:
3279 /* This is the same as GOT64 for relocation purposes, but
3280 indicates the existence of a PLT entry. The difficulty is,
3281 that we must calculate the GOT slot offset from the PLT
3282 offset, if this symbol got a PLT entry (it was global).
3283 Additionally if it's computed from the PLT entry, then that
3284 GOT offset is relative to .got.plt, not to .got. */
3285 base_got
= htab
->elf
.sgot
;
3287 if (htab
->elf
.sgot
== NULL
)
3294 off
= h
->got
.offset
;
3296 && h
->plt
.offset
!= (bfd_vma
)-1
3297 && off
== (bfd_vma
)-1)
3299 /* We can't use h->got.offset here to save
3300 state, or even just remember the offset, as
3301 finish_dynamic_symbol would use that as offset into
3303 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3304 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3305 base_got
= htab
->elf
.sgotplt
;
3308 dyn
= htab
->elf
.dynamic_sections_created
;
3310 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
3312 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3313 || (ELF_ST_VISIBILITY (h
->other
)
3314 && h
->root
.type
== bfd_link_hash_undefweak
))
3316 /* This is actually a static link, or it is a -Bsymbolic
3317 link and the symbol is defined locally, or the symbol
3318 was forced to be local because of a version file. We
3319 must initialize this entry in the global offset table.
3320 Since the offset must always be a multiple of 8, we
3321 use the least significant bit to record whether we
3322 have initialized it already.
3324 When doing a dynamic link, we create a .rela.got
3325 relocation entry to initialize the value. This is
3326 done in the finish_dynamic_symbol routine. */
3331 bfd_put_64 (output_bfd
, relocation
,
3332 base_got
->contents
+ off
);
3333 /* Note that this is harmless for the GOTPLT64 case,
3334 as -1 | 1 still is -1. */
3339 unresolved_reloc
= FALSE
;
3343 if (local_got_offsets
== NULL
)
3346 off
= local_got_offsets
[r_symndx
];
3348 /* The offset must always be a multiple of 8. We use
3349 the least significant bit to record whether we have
3350 already generated the necessary reloc. */
3355 bfd_put_64 (output_bfd
, relocation
,
3356 base_got
->contents
+ off
);
3361 Elf_Internal_Rela outrel
;
3363 /* We need to generate a R_X86_64_RELATIVE reloc
3364 for the dynamic linker. */
3365 s
= htab
->elf
.srelgot
;
3369 outrel
.r_offset
= (base_got
->output_section
->vma
3370 + base_got
->output_offset
3372 outrel
.r_info
= htab
->r_info (0, R_X86_64_RELATIVE
);
3373 outrel
.r_addend
= relocation
;
3374 elf_append_rela (output_bfd
, s
, &outrel
);
3377 local_got_offsets
[r_symndx
] |= 1;
3381 if (off
>= (bfd_vma
) -2)
3384 relocation
= base_got
->output_section
->vma
3385 + base_got
->output_offset
+ off
;
3386 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
3387 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3388 - htab
->elf
.sgotplt
->output_offset
;
3392 case R_X86_64_GOTOFF64
:
3393 /* Relocation is relative to the start of the global offset
3396 /* Check to make sure it isn't a protected function symbol
3397 for shared library since it may not be local when used
3398 as function address. */
3402 && h
->type
== STT_FUNC
3403 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
3405 (*_bfd_error_handler
)
3406 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3407 input_bfd
, h
->root
.root
.string
);
3408 bfd_set_error (bfd_error_bad_value
);
3412 /* Note that sgot is not involved in this
3413 calculation. We always want the start of .got.plt. If we
3414 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3415 permitted by the ABI, we might have to change this
3417 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3418 + htab
->elf
.sgotplt
->output_offset
;
3421 case R_X86_64_GOTPC32
:
3422 case R_X86_64_GOTPC64
:
3423 /* Use global offset table as symbol value. */
3424 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3425 + htab
->elf
.sgotplt
->output_offset
;
3426 unresolved_reloc
= FALSE
;
3429 case R_X86_64_PLTOFF64
:
3430 /* Relocation is PLT entry relative to GOT. For local
3431 symbols it's the symbol itself relative to GOT. */
3433 /* See PLT32 handling. */
3434 && h
->plt
.offset
!= (bfd_vma
) -1
3435 && htab
->elf
.splt
!= NULL
)
3437 relocation
= (htab
->elf
.splt
->output_section
->vma
3438 + htab
->elf
.splt
->output_offset
3440 unresolved_reloc
= FALSE
;
3443 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3444 + htab
->elf
.sgotplt
->output_offset
;
3447 case R_X86_64_PLT32
:
3448 /* Relocation is to the entry for this symbol in the
3449 procedure linkage table. */
3451 /* Resolve a PLT32 reloc against a local symbol directly,
3452 without using the procedure linkage table. */
3456 if (h
->plt
.offset
== (bfd_vma
) -1
3457 || htab
->elf
.splt
== NULL
)
3459 /* We didn't make a PLT entry for this symbol. This
3460 happens when statically linking PIC code, or when
3461 using -Bsymbolic. */
3465 relocation
= (htab
->elf
.splt
->output_section
->vma
3466 + htab
->elf
.splt
->output_offset
3468 unresolved_reloc
= FALSE
;
3475 && ABI_64_P (output_bfd
)
3476 && (input_section
->flags
& SEC_ALLOC
) != 0
3477 && (input_section
->flags
& SEC_READONLY
) != 0
3480 bfd_boolean fail
= FALSE
;
3482 = (r_type
== R_X86_64_PC32
3483 && is_32bit_relative_branch (contents
, rel
->r_offset
));
3485 if (SYMBOL_REFERENCES_LOCAL (info
, h
))
3487 /* Symbol is referenced locally. Make sure it is
3488 defined locally or for a branch. */
3489 fail
= !h
->def_regular
&& !branch
;
3493 /* Symbol isn't referenced locally. We only allow
3494 branch to symbol with non-default visibility. */
3496 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
);
3503 const char *pic
= "";
3505 switch (ELF_ST_VISIBILITY (h
->other
))
3508 v
= _("hidden symbol");
3511 v
= _("internal symbol");
3514 v
= _("protected symbol");
3518 pic
= _("; recompile with -fPIC");
3523 fmt
= _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3525 fmt
= _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3527 (*_bfd_error_handler
) (fmt
, input_bfd
,
3528 x86_64_elf_howto_table
[r_type
].name
,
3529 v
, h
->root
.root
.string
, pic
);
3530 bfd_set_error (bfd_error_bad_value
);
3541 /* FIXME: The ABI says the linker should make sure the value is
3542 the same when it's zeroextended to 64 bit. */
3544 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3549 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3550 || h
->root
.type
!= bfd_link_hash_undefweak
)
3551 && (! IS_X86_64_PCREL_TYPE (r_type
)
3552 || ! SYMBOL_CALLS_LOCAL (info
, h
)))
3553 || (ELIMINATE_COPY_RELOCS
3560 || h
->root
.type
== bfd_link_hash_undefweak
3561 || h
->root
.type
== bfd_link_hash_undefined
)))
3563 Elf_Internal_Rela outrel
;
3564 bfd_boolean skip
, relocate
;
3567 /* When generating a shared object, these relocations
3568 are copied into the output file to be resolved at run
3574 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3576 if (outrel
.r_offset
== (bfd_vma
) -1)
3578 else if (outrel
.r_offset
== (bfd_vma
) -2)
3579 skip
= TRUE
, relocate
= TRUE
;
3581 outrel
.r_offset
+= (input_section
->output_section
->vma
3582 + input_section
->output_offset
);
3585 memset (&outrel
, 0, sizeof outrel
);
3587 /* h->dynindx may be -1 if this symbol was marked to
3591 && (IS_X86_64_PCREL_TYPE (r_type
)
3593 || ! SYMBOLIC_BIND (info
, h
)
3594 || ! h
->def_regular
))
3596 outrel
.r_info
= htab
->r_info (h
->dynindx
, r_type
);
3597 outrel
.r_addend
= rel
->r_addend
;
3601 /* This symbol is local, or marked to become local. */
3602 if (r_type
== htab
->pointer_r_type
)
3605 outrel
.r_info
= htab
->r_info (0, R_X86_64_RELATIVE
);
3606 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3608 else if (r_type
== R_X86_64_64
3609 && !ABI_64_P (output_bfd
))
3612 outrel
.r_info
= htab
->r_info (0,
3613 R_X86_64_RELATIVE64
);
3614 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3620 if (bfd_is_abs_section (sec
))
3622 else if (sec
== NULL
|| sec
->owner
== NULL
)
3624 bfd_set_error (bfd_error_bad_value
);
3631 /* We are turning this relocation into one
3632 against a section symbol. It would be
3633 proper to subtract the symbol's value,
3634 osec->vma, from the emitted reloc addend,
3635 but ld.so expects buggy relocs. */
3636 osec
= sec
->output_section
;
3637 sindx
= elf_section_data (osec
)->dynindx
;
3640 asection
*oi
= htab
->elf
.text_index_section
;
3641 sindx
= elf_section_data (oi
)->dynindx
;
3643 BFD_ASSERT (sindx
!= 0);
3646 outrel
.r_info
= htab
->r_info (sindx
, r_type
);
3647 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3651 sreloc
= elf_section_data (input_section
)->sreloc
;
3653 if (sreloc
== NULL
|| sreloc
->contents
== NULL
)
3655 r
= bfd_reloc_notsupported
;
3656 goto check_relocation_error
;
3659 elf_append_rela (output_bfd
, sreloc
, &outrel
);
3661 /* If this reloc is against an external symbol, we do
3662 not want to fiddle with the addend. Otherwise, we
3663 need to include the symbol value so that it becomes
3664 an addend for the dynamic reloc. */
3671 case R_X86_64_TLSGD
:
3672 case R_X86_64_GOTPC32_TLSDESC
:
3673 case R_X86_64_TLSDESC_CALL
:
3674 case R_X86_64_GOTTPOFF
:
3675 tls_type
= GOT_UNKNOWN
;
3676 if (h
== NULL
&& local_got_offsets
)
3677 tls_type
= elf_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
3679 tls_type
= elf_x86_64_hash_entry (h
)->tls_type
;
3681 if (! elf_x86_64_tls_transition (info
, input_bfd
,
3682 input_section
, contents
,
3683 symtab_hdr
, sym_hashes
,
3684 &r_type
, tls_type
, rel
,
3685 relend
, h
, r_symndx
))
3688 if (r_type
== R_X86_64_TPOFF32
)
3690 bfd_vma roff
= rel
->r_offset
;
3692 BFD_ASSERT (! unresolved_reloc
);
3694 if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3696 /* GD->LE transition. For 64bit, change
3697 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3698 .word 0x6666; rex64; call __tls_get_addr
3701 leaq foo@tpoff(%rax), %rax
3703 leaq foo@tlsgd(%rip), %rdi
3704 .word 0x6666; rex64; call __tls_get_addr
3707 leaq foo@tpoff(%rax), %rax */
3708 if (ABI_64_P (output_bfd
))
3709 memcpy (contents
+ roff
- 4,
3710 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3713 memcpy (contents
+ roff
- 3,
3714 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3716 bfd_put_32 (output_bfd
,
3717 elf_x86_64_tpoff (info
, relocation
),
3718 contents
+ roff
+ 8);
3719 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3723 else if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3725 /* GDesc -> LE transition.
3726 It's originally something like:
3727 leaq x@tlsdesc(%rip), %rax
3730 movl $x@tpoff, %rax. */
3732 unsigned int val
, type
;
3734 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3735 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3736 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
3737 contents
+ roff
- 3);
3738 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
3739 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
3740 contents
+ roff
- 1);
3741 bfd_put_32 (output_bfd
,
3742 elf_x86_64_tpoff (info
, relocation
),
3746 else if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3748 /* GDesc -> LE transition.
3753 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3754 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3757 else if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
3759 /* IE->LE transition:
3760 Originally it can be one of:
3761 movq foo@gottpoff(%rip), %reg
3762 addq foo@gottpoff(%rip), %reg
3765 leaq foo(%reg), %reg
3768 unsigned int val
, type
, reg
;
3770 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3771 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3772 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3778 bfd_put_8 (output_bfd
, 0x49,
3779 contents
+ roff
- 3);
3780 else if (!ABI_64_P (output_bfd
) && val
== 0x44)
3781 bfd_put_8 (output_bfd
, 0x41,
3782 contents
+ roff
- 3);
3783 bfd_put_8 (output_bfd
, 0xc7,
3784 contents
+ roff
- 2);
3785 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3786 contents
+ roff
- 1);
3790 /* addq -> addq - addressing with %rsp/%r12 is
3793 bfd_put_8 (output_bfd
, 0x49,
3794 contents
+ roff
- 3);
3795 else if (!ABI_64_P (output_bfd
) && val
== 0x44)
3796 bfd_put_8 (output_bfd
, 0x41,
3797 contents
+ roff
- 3);
3798 bfd_put_8 (output_bfd
, 0x81,
3799 contents
+ roff
- 2);
3800 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3801 contents
+ roff
- 1);
3807 bfd_put_8 (output_bfd
, 0x4d,
3808 contents
+ roff
- 3);
3809 else if (!ABI_64_P (output_bfd
) && val
== 0x44)
3810 bfd_put_8 (output_bfd
, 0x45,
3811 contents
+ roff
- 3);
3812 bfd_put_8 (output_bfd
, 0x8d,
3813 contents
+ roff
- 2);
3814 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
3815 contents
+ roff
- 1);
3817 bfd_put_32 (output_bfd
,
3818 elf_x86_64_tpoff (info
, relocation
),
3826 if (htab
->elf
.sgot
== NULL
)
3831 off
= h
->got
.offset
;
3832 offplt
= elf_x86_64_hash_entry (h
)->tlsdesc_got
;
3836 if (local_got_offsets
== NULL
)
3839 off
= local_got_offsets
[r_symndx
];
3840 offplt
= local_tlsdesc_gotents
[r_symndx
];
3847 Elf_Internal_Rela outrel
;
3851 if (htab
->elf
.srelgot
== NULL
)
3854 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
3856 if (GOT_TLS_GDESC_P (tls_type
))
3858 outrel
.r_info
= htab
->r_info (indx
, R_X86_64_TLSDESC
);
3859 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
3860 + 2 * GOT_ENTRY_SIZE
<= htab
->elf
.sgotplt
->size
);
3861 outrel
.r_offset
= (htab
->elf
.sgotplt
->output_section
->vma
3862 + htab
->elf
.sgotplt
->output_offset
3864 + htab
->sgotplt_jump_table_size
);
3865 sreloc
= htab
->elf
.srelplt
;
3867 outrel
.r_addend
= relocation
- elf_x86_64_dtpoff_base (info
);
3869 outrel
.r_addend
= 0;
3870 elf_append_rela (output_bfd
, sreloc
, &outrel
);
3873 sreloc
= htab
->elf
.srelgot
;
3875 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3876 + htab
->elf
.sgot
->output_offset
+ off
);
3878 if (GOT_TLS_GD_P (tls_type
))
3879 dr_type
= R_X86_64_DTPMOD64
;
3880 else if (GOT_TLS_GDESC_P (tls_type
))
3883 dr_type
= R_X86_64_TPOFF64
;
3885 bfd_put_64 (output_bfd
, 0, htab
->elf
.sgot
->contents
+ off
);
3886 outrel
.r_addend
= 0;
3887 if ((dr_type
== R_X86_64_TPOFF64
3888 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
3889 outrel
.r_addend
= relocation
- elf_x86_64_dtpoff_base (info
);
3890 outrel
.r_info
= htab
->r_info (indx
, dr_type
);
3892 elf_append_rela (output_bfd
, sreloc
, &outrel
);
3894 if (GOT_TLS_GD_P (tls_type
))
3898 BFD_ASSERT (! unresolved_reloc
);
3899 bfd_put_64 (output_bfd
,
3900 relocation
- elf_x86_64_dtpoff_base (info
),
3901 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3905 bfd_put_64 (output_bfd
, 0,
3906 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3907 outrel
.r_info
= htab
->r_info (indx
,
3909 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
3910 elf_append_rela (output_bfd
, sreloc
,
3919 local_got_offsets
[r_symndx
] |= 1;
3922 if (off
>= (bfd_vma
) -2
3923 && ! GOT_TLS_GDESC_P (tls_type
))
3925 if (r_type
== ELF32_R_TYPE (rel
->r_info
))
3927 if (r_type
== R_X86_64_GOTPC32_TLSDESC
3928 || r_type
== R_X86_64_TLSDESC_CALL
)
3929 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3930 + htab
->elf
.sgotplt
->output_offset
3931 + offplt
+ htab
->sgotplt_jump_table_size
;
3933 relocation
= htab
->elf
.sgot
->output_section
->vma
3934 + htab
->elf
.sgot
->output_offset
+ off
;
3935 unresolved_reloc
= FALSE
;
3939 bfd_vma roff
= rel
->r_offset
;
3941 if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3943 /* GD->IE transition. For 64bit, change
3944 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3945 .word 0x6666; rex64; call __tls_get_addr@plt
3948 addq foo@gottpoff(%rip), %rax
3950 leaq foo@tlsgd(%rip), %rdi
3951 .word 0x6666; rex64; call __tls_get_addr@plt
3954 addq foo@gottpoff(%rip), %rax */
3955 if (ABI_64_P (output_bfd
))
3956 memcpy (contents
+ roff
- 4,
3957 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3960 memcpy (contents
+ roff
- 3,
3961 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3964 relocation
= (htab
->elf
.sgot
->output_section
->vma
3965 + htab
->elf
.sgot
->output_offset
+ off
3967 - input_section
->output_section
->vma
3968 - input_section
->output_offset
3970 bfd_put_32 (output_bfd
, relocation
,
3971 contents
+ roff
+ 8);
3972 /* Skip R_X86_64_PLT32. */
3976 else if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3978 /* GDesc -> IE transition.
3979 It's originally something like:
3980 leaq x@tlsdesc(%rip), %rax
3983 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3985 /* Now modify the instruction as appropriate. To
3986 turn a leaq into a movq in the form we use it, it
3987 suffices to change the second byte from 0x8d to
3989 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3991 bfd_put_32 (output_bfd
,
3992 htab
->elf
.sgot
->output_section
->vma
3993 + htab
->elf
.sgot
->output_offset
+ off
3995 - input_section
->output_section
->vma
3996 - input_section
->output_offset
4001 else if (ELF32_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
4003 /* GDesc -> IE transition.
4010 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
4011 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
4019 case R_X86_64_TLSLD
:
4020 if (! elf_x86_64_tls_transition (info
, input_bfd
,
4021 input_section
, contents
,
4022 symtab_hdr
, sym_hashes
,
4023 &r_type
, GOT_UNKNOWN
,
4024 rel
, relend
, h
, r_symndx
))
4027 if (r_type
!= R_X86_64_TLSLD
)
4029 /* LD->LE transition:
4030 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4031 For 64bit, we change it into:
4032 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4033 For 32bit, we change it into:
4034 nopl 0x0(%rax); movl %fs:0, %eax. */
4036 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
4037 if (ABI_64_P (output_bfd
))
4038 memcpy (contents
+ rel
->r_offset
- 3,
4039 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4041 memcpy (contents
+ rel
->r_offset
- 3,
4042 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4043 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4048 if (htab
->elf
.sgot
== NULL
)
4051 off
= htab
->tls_ld_got
.offset
;
4056 Elf_Internal_Rela outrel
;
4058 if (htab
->elf
.srelgot
== NULL
)
4061 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
4062 + htab
->elf
.sgot
->output_offset
+ off
);
4064 bfd_put_64 (output_bfd
, 0,
4065 htab
->elf
.sgot
->contents
+ off
);
4066 bfd_put_64 (output_bfd
, 0,
4067 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
4068 outrel
.r_info
= htab
->r_info (0, R_X86_64_DTPMOD64
);
4069 outrel
.r_addend
= 0;
4070 elf_append_rela (output_bfd
, htab
->elf
.srelgot
,
4072 htab
->tls_ld_got
.offset
|= 1;
4074 relocation
= htab
->elf
.sgot
->output_section
->vma
4075 + htab
->elf
.sgot
->output_offset
+ off
;
4076 unresolved_reloc
= FALSE
;
4079 case R_X86_64_DTPOFF32
:
4080 if (!info
->executable
|| (input_section
->flags
& SEC_CODE
) == 0)
4081 relocation
-= elf_x86_64_dtpoff_base (info
);
4083 relocation
= elf_x86_64_tpoff (info
, relocation
);
4086 case R_X86_64_TPOFF32
:
4087 case R_X86_64_TPOFF64
:
4088 BFD_ASSERT (info
->executable
);
4089 relocation
= elf_x86_64_tpoff (info
, relocation
);
4096 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4097 because such sections are not SEC_ALLOC and thus ld.so will
4098 not process them. */
4099 if (unresolved_reloc
4100 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
4102 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
4103 rel
->r_offset
) != (bfd_vma
) -1)
4104 (*_bfd_error_handler
)
4105 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4108 (long) rel
->r_offset
,
4110 h
->root
.root
.string
);
4113 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
4114 contents
, rel
->r_offset
,
4115 relocation
, rel
->r_addend
);
4117 check_relocation_error
:
4118 if (r
!= bfd_reloc_ok
)
4123 name
= h
->root
.root
.string
;
4126 name
= bfd_elf_string_from_elf_section (input_bfd
,
4127 symtab_hdr
->sh_link
,
4132 name
= bfd_section_name (input_bfd
, sec
);
4135 if (r
== bfd_reloc_overflow
)
4137 if (! ((*info
->callbacks
->reloc_overflow
)
4138 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
4139 (bfd_vma
) 0, input_bfd
, input_section
,
4145 (*_bfd_error_handler
)
4146 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4147 input_bfd
, input_section
,
4148 (long) rel
->r_offset
, name
, (int) r
);
4157 /* Finish up dynamic symbol handling. We set the contents of various
4158 dynamic sections here. */
4161 elf_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
4162 struct bfd_link_info
*info
,
4163 struct elf_link_hash_entry
*h
,
4164 Elf_Internal_Sym
*sym
)
4166 struct elf_x86_64_link_hash_table
*htab
;
4168 htab
= elf_x86_64_hash_table (info
);
4172 if (h
->plt
.offset
!= (bfd_vma
) -1)
4176 Elf_Internal_Rela rela
;
4178 asection
*plt
, *gotplt
, *relplt
;
4179 const struct elf_backend_data
*bed
;
4181 /* When building a static executable, use .iplt, .igot.plt and
4182 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4183 if (htab
->elf
.splt
!= NULL
)
4185 plt
= htab
->elf
.splt
;
4186 gotplt
= htab
->elf
.sgotplt
;
4187 relplt
= htab
->elf
.srelplt
;
4191 plt
= htab
->elf
.iplt
;
4192 gotplt
= htab
->elf
.igotplt
;
4193 relplt
= htab
->elf
.irelplt
;
4196 /* This symbol has an entry in the procedure linkage table. Set
4198 if ((h
->dynindx
== -1
4199 && !((h
->forced_local
|| info
->executable
)
4201 && h
->type
== STT_GNU_IFUNC
))
4207 /* Get the index in the procedure linkage table which
4208 corresponds to this symbol. This is the index of this symbol
4209 in all the symbols for which we are making plt entries. The
4210 first entry in the procedure linkage table is reserved.
4212 Get the offset into the .got table of the entry that
4213 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4214 bytes. The first three are reserved for the dynamic linker.
4216 For static executables, we don't reserve anything. */
4218 if (plt
== htab
->elf
.splt
)
4220 got_offset
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
4221 got_offset
= (got_offset
+ 3) * GOT_ENTRY_SIZE
;
4225 got_offset
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
4226 got_offset
= got_offset
* GOT_ENTRY_SIZE
;
4229 /* Fill in the entry in the procedure linkage table. */
4230 memcpy (plt
->contents
+ h
->plt
.offset
, elf_x86_64_plt_entry
,
4233 /* Insert the relocation positions of the plt section. The magic
4234 numbers at the end of the statements are the positions of the
4235 relocations in the plt section. */
4236 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4237 instruction uses 6 bytes, subtract this value. */
4238 bfd_put_32 (output_bfd
,
4239 (gotplt
->output_section
->vma
4240 + gotplt
->output_offset
4242 - plt
->output_section
->vma
4243 - plt
->output_offset
4246 plt
->contents
+ h
->plt
.offset
+ 2);
4248 /* Fill in the entry in the global offset table, initially this
4249 points to the pushq instruction in the PLT which is at offset 6. */
4250 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
4251 + plt
->output_offset
4252 + h
->plt
.offset
+ 6),
4253 gotplt
->contents
+ got_offset
);
4255 /* Fill in the entry in the .rela.plt section. */
4256 rela
.r_offset
= (gotplt
->output_section
->vma
4257 + gotplt
->output_offset
4259 if (h
->dynindx
== -1
4260 || ((info
->executable
4261 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
4263 && h
->type
== STT_GNU_IFUNC
))
4265 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4266 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4267 rela
.r_info
= htab
->r_info (0, R_X86_64_IRELATIVE
);
4268 rela
.r_addend
= (h
->root
.u
.def
.value
4269 + h
->root
.u
.def
.section
->output_section
->vma
4270 + h
->root
.u
.def
.section
->output_offset
);
4271 /* R_X86_64_IRELATIVE comes last. */
4272 plt_index
= htab
->next_irelative_index
--;
4276 rela
.r_info
= htab
->r_info (h
->dynindx
, R_X86_64_JUMP_SLOT
);
4278 plt_index
= htab
->next_jump_slot_index
++;
4281 /* Don't fill PLT entry for static executables. */
4282 if (plt
== htab
->elf
.splt
)
4284 /* Put relocation index. */
4285 bfd_put_32 (output_bfd
, plt_index
,
4286 plt
->contents
+ h
->plt
.offset
+ 7);
4287 /* Put offset for jmp .PLT0. */
4288 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
4289 plt
->contents
+ h
->plt
.offset
+ 12);
4292 bed
= get_elf_backend_data (output_bfd
);
4293 loc
= relplt
->contents
+ plt_index
* bed
->s
->sizeof_rela
;
4294 bed
->s
->swap_reloca_out (output_bfd
, &rela
, loc
);
4296 if (!h
->def_regular
)
4298 /* Mark the symbol as undefined, rather than as defined in
4299 the .plt section. Leave the value if there were any
4300 relocations where pointer equality matters (this is a clue
4301 for the dynamic linker, to make function pointer
4302 comparisons work between an application and shared
4303 library), otherwise set it to zero. If a function is only
4304 called from a binary, there is no need to slow down
4305 shared libraries because of that. */
4306 sym
->st_shndx
= SHN_UNDEF
;
4307 if (!h
->pointer_equality_needed
)
4312 if (h
->got
.offset
!= (bfd_vma
) -1
4313 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h
)->tls_type
)
4314 && elf_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
4316 Elf_Internal_Rela rela
;
4318 /* This symbol has an entry in the global offset table. Set it
4320 if (htab
->elf
.sgot
== NULL
|| htab
->elf
.srelgot
== NULL
)
4323 rela
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
4324 + htab
->elf
.sgot
->output_offset
4325 + (h
->got
.offset
&~ (bfd_vma
) 1));
4327 /* If this is a static link, or it is a -Bsymbolic link and the
4328 symbol is defined locally or was forced to be local because
4329 of a version file, we just want to emit a RELATIVE reloc.
4330 The entry in the global offset table will already have been
4331 initialized in the relocate_section function. */
4333 && h
->type
== STT_GNU_IFUNC
)
4337 /* Generate R_X86_64_GLOB_DAT. */
4344 if (!h
->pointer_equality_needed
)
4347 /* For non-shared object, we can't use .got.plt, which
4348 contains the real function addres if we need pointer
4349 equality. We load the GOT entry with the PLT entry. */
4350 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
4351 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
4352 + plt
->output_offset
4354 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
4358 else if (info
->shared
4359 && SYMBOL_REFERENCES_LOCAL (info
, h
))
4361 if (!h
->def_regular
)
4363 BFD_ASSERT((h
->got
.offset
& 1) != 0);
4364 rela
.r_info
= htab
->r_info (0, R_X86_64_RELATIVE
);
4365 rela
.r_addend
= (h
->root
.u
.def
.value
4366 + h
->root
.u
.def
.section
->output_section
->vma
4367 + h
->root
.u
.def
.section
->output_offset
);
4371 BFD_ASSERT((h
->got
.offset
& 1) == 0);
4373 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4374 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
4375 rela
.r_info
= htab
->r_info (h
->dynindx
, R_X86_64_GLOB_DAT
);
4379 elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &rela
);
4384 Elf_Internal_Rela rela
;
4386 /* This symbol needs a copy reloc. Set it up. */
4388 if (h
->dynindx
== -1
4389 || (h
->root
.type
!= bfd_link_hash_defined
4390 && h
->root
.type
!= bfd_link_hash_defweak
)
4391 || htab
->srelbss
== NULL
)
4394 rela
.r_offset
= (h
->root
.u
.def
.value
4395 + h
->root
.u
.def
.section
->output_section
->vma
4396 + h
->root
.u
.def
.section
->output_offset
);
4397 rela
.r_info
= htab
->r_info (h
->dynindx
, R_X86_64_COPY
);
4399 elf_append_rela (output_bfd
, htab
->srelbss
, &rela
);
4402 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4403 be NULL for local symbols. */
4405 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
4406 || h
== htab
->elf
.hgot
))
4407 sym
->st_shndx
= SHN_ABS
;
4412 /* Finish up local dynamic symbol handling. We set the contents of
4413 various dynamic sections here. */
4416 elf_x86_64_finish_local_dynamic_symbol (void **slot
, void *inf
)
4418 struct elf_link_hash_entry
*h
4419 = (struct elf_link_hash_entry
*) *slot
;
4420 struct bfd_link_info
*info
4421 = (struct bfd_link_info
*) inf
;
4423 return elf_x86_64_finish_dynamic_symbol (info
->output_bfd
,
4427 /* Used to decide how to sort relocs in an optimal manner for the
4428 dynamic linker, before writing them out. */
4430 static enum elf_reloc_type_class
4431 elf_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
4433 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4435 case R_X86_64_RELATIVE
:
4436 return reloc_class_relative
;
4437 case R_X86_64_JUMP_SLOT
:
4438 return reloc_class_plt
;
4440 return reloc_class_copy
;
4442 return reloc_class_normal
;
4446 /* Finish up the dynamic sections. */
4449 elf_x86_64_finish_dynamic_sections (bfd
*output_bfd
,
4450 struct bfd_link_info
*info
)
4452 struct elf_x86_64_link_hash_table
*htab
;
4456 htab
= elf_x86_64_hash_table (info
);
4460 dynobj
= htab
->elf
.dynobj
;
4461 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4463 if (htab
->elf
.dynamic_sections_created
)
4465 bfd_byte
*dyncon
, *dynconend
;
4466 const struct elf_backend_data
*bed
;
4467 bfd_size_type sizeof_dyn
;
4469 if (sdyn
== NULL
|| htab
->elf
.sgot
== NULL
)
4472 bed
= get_elf_backend_data (dynobj
);
4473 sizeof_dyn
= bed
->s
->sizeof_dyn
;
4474 dyncon
= sdyn
->contents
;
4475 dynconend
= sdyn
->contents
+ sdyn
->size
;
4476 for (; dyncon
< dynconend
; dyncon
+= sizeof_dyn
)
4478 Elf_Internal_Dyn dyn
;
4481 (*bed
->s
->swap_dyn_in
) (dynobj
, dyncon
, &dyn
);
4489 s
= htab
->elf
.sgotplt
;
4490 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4494 dyn
.d_un
.d_ptr
= htab
->elf
.srelplt
->output_section
->vma
;
4498 s
= htab
->elf
.srelplt
->output_section
;
4499 dyn
.d_un
.d_val
= s
->size
;
4503 /* The procedure linkage table relocs (DT_JMPREL) should
4504 not be included in the overall relocs (DT_RELA).
4505 Therefore, we override the DT_RELASZ entry here to
4506 make it not include the JMPREL relocs. Since the
4507 linker script arranges for .rela.plt to follow all
4508 other relocation sections, we don't have to worry
4509 about changing the DT_RELA entry. */
4510 if (htab
->elf
.srelplt
!= NULL
)
4512 s
= htab
->elf
.srelplt
->output_section
;
4513 dyn
.d_un
.d_val
-= s
->size
;
4517 case DT_TLSDESC_PLT
:
4519 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4520 + htab
->tlsdesc_plt
;
4523 case DT_TLSDESC_GOT
:
4525 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4526 + htab
->tlsdesc_got
;
4530 (*bed
->s
->swap_dyn_out
) (output_bfd
, &dyn
, dyncon
);
4533 /* Fill in the special first entry in the procedure linkage table. */
4534 if (htab
->elf
.splt
&& htab
->elf
.splt
->size
> 0)
4536 /* Fill in the first entry in the procedure linkage table. */
4537 memcpy (htab
->elf
.splt
->contents
, elf_x86_64_plt0_entry
,
4539 /* Add offset for pushq GOT+8(%rip), since the instruction
4540 uses 6 bytes subtract this value. */
4541 bfd_put_32 (output_bfd
,
4542 (htab
->elf
.sgotplt
->output_section
->vma
4543 + htab
->elf
.sgotplt
->output_offset
4545 - htab
->elf
.splt
->output_section
->vma
4546 - htab
->elf
.splt
->output_offset
4548 htab
->elf
.splt
->contents
+ 2);
4549 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4550 the end of the instruction. */
4551 bfd_put_32 (output_bfd
,
4552 (htab
->elf
.sgotplt
->output_section
->vma
4553 + htab
->elf
.sgotplt
->output_offset
4555 - htab
->elf
.splt
->output_section
->vma
4556 - htab
->elf
.splt
->output_offset
4558 htab
->elf
.splt
->contents
+ 8);
4560 elf_section_data (htab
->elf
.splt
->output_section
)->this_hdr
.sh_entsize
=
4563 if (htab
->tlsdesc_plt
)
4565 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4566 htab
->elf
.sgot
->contents
+ htab
->tlsdesc_got
);
4568 memcpy (htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
,
4569 elf_x86_64_plt0_entry
,
4572 /* Add offset for pushq GOT+8(%rip), since the
4573 instruction uses 6 bytes subtract this value. */
4574 bfd_put_32 (output_bfd
,
4575 (htab
->elf
.sgotplt
->output_section
->vma
4576 + htab
->elf
.sgotplt
->output_offset
4578 - htab
->elf
.splt
->output_section
->vma
4579 - htab
->elf
.splt
->output_offset
4582 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 2);
4583 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4584 htab->tlsdesc_got. The 12 is the offset to the end of
4586 bfd_put_32 (output_bfd
,
4587 (htab
->elf
.sgot
->output_section
->vma
4588 + htab
->elf
.sgot
->output_offset
4590 - htab
->elf
.splt
->output_section
->vma
4591 - htab
->elf
.splt
->output_offset
4594 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 8);
4599 if (htab
->elf
.sgotplt
)
4601 if (bfd_is_abs_section (htab
->elf
.sgotplt
->output_section
))
4603 (*_bfd_error_handler
)
4604 (_("discarded output section: `%A'"), htab
->elf
.sgotplt
);
4608 /* Fill in the first three entries in the global offset table. */
4609 if (htab
->elf
.sgotplt
->size
> 0)
4611 /* Set the first entry in the global offset table to the address of
4612 the dynamic section. */
4614 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
);
4616 bfd_put_64 (output_bfd
,
4617 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
4618 htab
->elf
.sgotplt
->contents
);
4619 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4620 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
4621 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
4624 elf_section_data (htab
->elf
.sgotplt
->output_section
)->this_hdr
.sh_entsize
=
4628 /* Adjust .eh_frame for .plt section. */
4629 if (htab
->plt_eh_frame
!= NULL
)
4631 if (htab
->elf
.splt
!= NULL
4632 && htab
->elf
.splt
->size
!= 0
4633 && (htab
->elf
.splt
->flags
& SEC_EXCLUDE
) == 0
4634 && htab
->elf
.splt
->output_section
!= NULL
4635 && htab
->plt_eh_frame
->output_section
!= NULL
)
4637 bfd_vma plt_start
= htab
->elf
.splt
->output_section
->vma
;
4638 bfd_vma eh_frame_start
= htab
->plt_eh_frame
->output_section
->vma
4639 + htab
->plt_eh_frame
->output_offset
4640 + PLT_FDE_START_OFFSET
;
4641 bfd_put_signed_32 (dynobj
, plt_start
- eh_frame_start
,
4642 htab
->plt_eh_frame
->contents
4643 + PLT_FDE_START_OFFSET
);
4645 if (htab
->plt_eh_frame
->sec_info_type
4646 == ELF_INFO_TYPE_EH_FRAME
)
4648 if (! _bfd_elf_write_section_eh_frame (output_bfd
, info
,
4650 htab
->plt_eh_frame
->contents
))
4655 if (htab
->elf
.sgot
&& htab
->elf
.sgot
->size
> 0)
4656 elf_section_data (htab
->elf
.sgot
->output_section
)->this_hdr
.sh_entsize
4659 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4660 htab_traverse (htab
->loc_hash_table
,
4661 elf_x86_64_finish_local_dynamic_symbol
,
4667 /* Return address for Ith PLT stub in section PLT, for relocation REL
4668 or (bfd_vma) -1 if it should not be included. */
4671 elf_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
4672 const arelent
*rel ATTRIBUTE_UNUSED
)
4674 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
4677 /* Handle an x86-64 specific section when reading an object file. This
4678 is called when elfcode.h finds a section with an unknown type. */
4681 elf_x86_64_section_from_shdr (bfd
*abfd
,
4682 Elf_Internal_Shdr
*hdr
,
4686 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
4689 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
4695 /* Hook called by the linker routine which adds symbols from an object
4696 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4700 elf_x86_64_add_symbol_hook (bfd
*abfd
,
4701 struct bfd_link_info
*info
,
4702 Elf_Internal_Sym
*sym
,
4703 const char **namep ATTRIBUTE_UNUSED
,
4704 flagword
*flagsp ATTRIBUTE_UNUSED
,
4710 switch (sym
->st_shndx
)
4712 case SHN_X86_64_LCOMMON
:
4713 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
4716 lcomm
= bfd_make_section_with_flags (abfd
,
4720 | SEC_LINKER_CREATED
));
4723 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
4726 *valp
= sym
->st_size
;
4730 if ((abfd
->flags
& DYNAMIC
) == 0
4731 && (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
4732 || ELF_ST_BIND (sym
->st_info
) == STB_GNU_UNIQUE
))
4733 elf_tdata (info
->output_bfd
)->has_gnu_symbols
= TRUE
;
4739 /* Given a BFD section, try to locate the corresponding ELF section
4743 elf_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
4744 asection
*sec
, int *index_return
)
4746 if (sec
== &_bfd_elf_large_com_section
)
4748 *index_return
= SHN_X86_64_LCOMMON
;
4754 /* Process a symbol. */
4757 elf_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
4760 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
4762 switch (elfsym
->internal_elf_sym
.st_shndx
)
4764 case SHN_X86_64_LCOMMON
:
4765 asym
->section
= &_bfd_elf_large_com_section
;
4766 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4767 /* Common symbol doesn't set BSF_GLOBAL. */
4768 asym
->flags
&= ~BSF_GLOBAL
;
4774 elf_x86_64_common_definition (Elf_Internal_Sym
*sym
)
4776 return (sym
->st_shndx
== SHN_COMMON
4777 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
4781 elf_x86_64_common_section_index (asection
*sec
)
4783 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4786 return SHN_X86_64_LCOMMON
;
4790 elf_x86_64_common_section (asection
*sec
)
4792 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4793 return bfd_com_section_ptr
;
4795 return &_bfd_elf_large_com_section
;
4799 elf_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
4800 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
4801 struct elf_link_hash_entry
*h
,
4802 Elf_Internal_Sym
*sym
,
4804 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
4805 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
4806 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
4807 bfd_boolean
*override ATTRIBUTE_UNUSED
,
4808 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
4809 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
4810 bfd_boolean
*newdyn ATTRIBUTE_UNUSED
,
4811 bfd_boolean
*newdef
,
4812 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
4813 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
4814 bfd
*abfd ATTRIBUTE_UNUSED
,
4816 bfd_boolean
*olddyn ATTRIBUTE_UNUSED
,
4817 bfd_boolean
*olddef
,
4818 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
4819 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
4823 /* A normal common symbol and a large common symbol result in a
4824 normal common symbol. We turn the large common symbol into a
4827 && h
->root
.type
== bfd_link_hash_common
4829 && bfd_is_com_section (*sec
)
4832 if (sym
->st_shndx
== SHN_COMMON
4833 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
4835 h
->root
.u
.c
.p
->section
4836 = bfd_make_section_old_way (oldbfd
, "COMMON");
4837 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
4839 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
4840 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
4841 *psec
= *sec
= bfd_com_section_ptr
;
4848 elf_x86_64_additional_program_headers (bfd
*abfd
,
4849 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4854 /* Check to see if we need a large readonly segment. */
4855 s
= bfd_get_section_by_name (abfd
, ".lrodata");
4856 if (s
&& (s
->flags
& SEC_LOAD
))
4859 /* Check to see if we need a large data segment. Since .lbss sections
4860 is placed right after the .bss section, there should be no need for
4861 a large data segment just because of .lbss. */
4862 s
= bfd_get_section_by_name (abfd
, ".ldata");
4863 if (s
&& (s
->flags
& SEC_LOAD
))
4869 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4872 elf_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
4874 if (h
->plt
.offset
!= (bfd_vma
) -1
4876 && !h
->pointer_equality_needed
)
4879 return _bfd_elf_hash_symbol (h
);
4882 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4885 elf_x86_64_relocs_compatible (const bfd_target
*input
,
4886 const bfd_target
*output
)
4888 return ((xvec_get_elf_backend_data (input
)->s
->elfclass
4889 == xvec_get_elf_backend_data (output
)->s
->elfclass
)
4890 && _bfd_elf_relocs_compatible (input
, output
));
4893 static const struct bfd_elf_special_section
4894 elf_x86_64_special_sections
[]=
4896 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4897 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4898 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
4899 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4900 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4901 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4902 { NULL
, 0, 0, 0, 0 }
4905 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4906 #define TARGET_LITTLE_NAME "elf64-x86-64"
4907 #define ELF_ARCH bfd_arch_i386
4908 #define ELF_TARGET_ID X86_64_ELF_DATA
4909 #define ELF_MACHINE_CODE EM_X86_64
4910 #define ELF_MAXPAGESIZE 0x200000
4911 #define ELF_MINPAGESIZE 0x1000
4912 #define ELF_COMMONPAGESIZE 0x1000
4914 #define elf_backend_can_gc_sections 1
4915 #define elf_backend_can_refcount 1
4916 #define elf_backend_want_got_plt 1
4917 #define elf_backend_plt_readonly 1
4918 #define elf_backend_want_plt_sym 0
4919 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4920 #define elf_backend_rela_normal 1
4921 #define elf_backend_plt_alignment 4
4923 #define elf_info_to_howto elf_x86_64_info_to_howto
4925 #define bfd_elf64_bfd_link_hash_table_create \
4926 elf_x86_64_link_hash_table_create
4927 #define bfd_elf64_bfd_link_hash_table_free \
4928 elf_x86_64_link_hash_table_free
4929 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4930 #define bfd_elf64_bfd_reloc_name_lookup \
4931 elf_x86_64_reloc_name_lookup
4933 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4934 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4935 #define elf_backend_check_relocs elf_x86_64_check_relocs
4936 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4937 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4938 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4939 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4940 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4941 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4942 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4943 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4945 #define elf_backend_write_core_note elf_x86_64_write_core_note
4947 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4948 #define elf_backend_relocate_section elf_x86_64_relocate_section
4949 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4950 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4951 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4952 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4953 #define elf_backend_object_p elf64_x86_64_elf_object_p
4954 #define bfd_elf64_mkobject elf_x86_64_mkobject
4956 #define elf_backend_section_from_shdr \
4957 elf_x86_64_section_from_shdr
4959 #define elf_backend_section_from_bfd_section \
4960 elf_x86_64_elf_section_from_bfd_section
4961 #define elf_backend_add_symbol_hook \
4962 elf_x86_64_add_symbol_hook
4963 #define elf_backend_symbol_processing \
4964 elf_x86_64_symbol_processing
4965 #define elf_backend_common_section_index \
4966 elf_x86_64_common_section_index
4967 #define elf_backend_common_section \
4968 elf_x86_64_common_section
4969 #define elf_backend_common_definition \
4970 elf_x86_64_common_definition
4971 #define elf_backend_merge_symbol \
4972 elf_x86_64_merge_symbol
4973 #define elf_backend_special_sections \
4974 elf_x86_64_special_sections
4975 #define elf_backend_additional_program_headers \
4976 elf_x86_64_additional_program_headers
4977 #define elf_backend_hash_symbol \
4978 elf_x86_64_hash_symbol
4980 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4982 #include "elf64-target.h"
4984 /* FreeBSD support. */
4986 #undef TARGET_LITTLE_SYM
4987 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4988 #undef TARGET_LITTLE_NAME
4989 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4992 #define ELF_OSABI ELFOSABI_FREEBSD
4995 #define elf64_bed elf64_x86_64_fbsd_bed
4997 #include "elf64-target.h"
4999 /* Solaris 2 support. */
5001 #undef TARGET_LITTLE_SYM
5002 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5003 #undef TARGET_LITTLE_NAME
5004 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5006 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5007 objects won't be recognized. */
5011 #define elf64_bed elf64_x86_64_sol2_bed
5013 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5015 #undef elf_backend_static_tls_alignment
5016 #define elf_backend_static_tls_alignment 16
5018 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5020 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5022 #undef elf_backend_want_plt_sym
5023 #define elf_backend_want_plt_sym 1
5025 #include "elf64-target.h"
5027 /* Intel L1OM support. */
5030 elf64_l1om_elf_object_p (bfd
*abfd
)
5032 /* Set the right machine number for an L1OM elf64 file. */
5033 bfd_default_set_arch_mach (abfd
, bfd_arch_l1om
, bfd_mach_l1om
);
5037 #undef TARGET_LITTLE_SYM
5038 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5039 #undef TARGET_LITTLE_NAME
5040 #define TARGET_LITTLE_NAME "elf64-l1om"
5042 #define ELF_ARCH bfd_arch_l1om
5044 #undef ELF_MACHINE_CODE
5045 #define ELF_MACHINE_CODE EM_L1OM
5050 #define elf64_bed elf64_l1om_bed
5052 #undef elf_backend_object_p
5053 #define elf_backend_object_p elf64_l1om_elf_object_p
5055 #undef elf_backend_static_tls_alignment
5057 #undef elf_backend_want_plt_sym
5058 #define elf_backend_want_plt_sym 0
5060 #include "elf64-target.h"
5062 /* FreeBSD L1OM support. */
5064 #undef TARGET_LITTLE_SYM
5065 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5066 #undef TARGET_LITTLE_NAME
5067 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5070 #define ELF_OSABI ELFOSABI_FREEBSD
5073 #define elf64_bed elf64_l1om_fbsd_bed
5075 #include "elf64-target.h"
5077 /* Intel K1OM support. */
5080 elf64_k1om_elf_object_p (bfd
*abfd
)
5082 /* Set the right machine number for an K1OM elf64 file. */
5083 bfd_default_set_arch_mach (abfd
, bfd_arch_k1om
, bfd_mach_k1om
);
5087 #undef TARGET_LITTLE_SYM
5088 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5089 #undef TARGET_LITTLE_NAME
5090 #define TARGET_LITTLE_NAME "elf64-k1om"
5092 #define ELF_ARCH bfd_arch_k1om
5094 #undef ELF_MACHINE_CODE
5095 #define ELF_MACHINE_CODE EM_K1OM
5100 #define elf64_bed elf64_k1om_bed
5102 #undef elf_backend_object_p
5103 #define elf_backend_object_p elf64_k1om_elf_object_p
5105 #undef elf_backend_static_tls_alignment
5107 #undef elf_backend_want_plt_sym
5108 #define elf_backend_want_plt_sym 0
5110 #include "elf64-target.h"
5112 /* FreeBSD K1OM support. */
5114 #undef TARGET_LITTLE_SYM
5115 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5116 #undef TARGET_LITTLE_NAME
5117 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5120 #define ELF_OSABI ELFOSABI_FREEBSD
5123 #define elf64_bed elf64_k1om_fbsd_bed
5125 #include "elf64-target.h"
5127 /* 32bit x86-64 support. */
5130 elf32_x86_64_elf_object_p (bfd
*abfd
)
5132 /* Set the right machine number for an x86-64 elf32 file. */
5133 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x64_32
);
5137 #undef TARGET_LITTLE_SYM
5138 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5139 #undef TARGET_LITTLE_NAME
5140 #define TARGET_LITTLE_NAME "elf32-x86-64"
5143 #define ELF_ARCH bfd_arch_i386
5145 #undef ELF_MACHINE_CODE
5146 #define ELF_MACHINE_CODE EM_X86_64
5148 #define bfd_elf32_bfd_link_hash_table_create \
5149 elf_x86_64_link_hash_table_create
5150 #define bfd_elf32_bfd_link_hash_table_free \
5151 elf_x86_64_link_hash_table_free
5152 #define bfd_elf32_bfd_reloc_type_lookup \
5153 elf_x86_64_reloc_type_lookup
5154 #define bfd_elf32_bfd_reloc_name_lookup \
5155 elf_x86_64_reloc_name_lookup
5156 #define bfd_elf32_mkobject \
5161 #undef elf_backend_object_p
5162 #define elf_backend_object_p \
5163 elf32_x86_64_elf_object_p
5165 #undef elf_backend_bfd_from_remote_memory
5166 #define elf_backend_bfd_from_remote_memory \
5167 _bfd_elf32_bfd_from_remote_memory
5169 #undef elf_backend_size_info
5170 #define elf_backend_size_info \
5171 _bfd_elf32_size_info
5173 #include "elf32-target.h"