1 This is bfd.info, produced by makeinfo version 4.8 from bfd.texinfo.
4 * Bfd: (bfd). The Binary File Descriptor library.
7 This file documents the BFD library.
9 Copyright (C) 1991, 2000, 2001, 2003, 2006, 2007 Free Software
12 Permission is granted to copy, distribute and/or modify this document
13 under the terms of the GNU Free Documentation License, Version 1.1 or
14 any later version published by the Free Software Foundation; with the
15 Invariant Sections being "GNU General Public License" and "Funding Free
16 Software", the Front-Cover texts being (a) (see below), and with the
17 Back-Cover Texts being (b) (see below). A copy of the license is
18 included in the section entitled "GNU Free Documentation License".
20 (a) The FSF's Front-Cover Text is:
24 (b) The FSF's Back-Cover Text is:
26 You have freedom to copy and modify this GNU Manual, like GNU
27 software. Copies published by the Free Software Foundation raise
28 funds for GNU development.
31 File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
33 This file documents the binary file descriptor library libbfd.
37 * Overview:: Overview of BFD
38 * BFD front end:: BFD front end
39 * BFD back ends:: BFD back ends
40 * GNU Free Documentation License:: GNU Free Documentation License
41 * BFD Index:: BFD Index
44 File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
49 BFD is a package which allows applications to use the same routines to
50 operate on object files whatever the object file format. A new object
51 file format can be supported simply by creating a new BFD back end and
52 adding it to the library.
54 BFD is split into two parts: the front end, and the back ends (one
55 for each object file format).
56 * The front end of BFD provides the interface to the user. It manages
57 memory and various canonical data structures. The front end also
58 decides which back end to use and when to call back end routines.
60 * The back ends provide BFD its view of the real world. Each back
61 end provides a set of calls which the BFD front end can use to
62 maintain its canonical form. The back ends also may keep around
63 information for their own use, for greater efficiency.
68 * How It Works:: How It Works
69 * What BFD Version 2 Can Do:: What BFD Version 2 Can Do
72 File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
77 One spur behind BFD was the desire, on the part of the GNU 960 team at
78 Intel Oregon, for interoperability of applications on their COFF and
79 b.out file formats. Cygnus was providing GNU support for the team, and
80 was contracted to provide the required functionality.
82 The name came from a conversation David Wallace was having with
83 Richard Stallman about the library: RMS said that it would be quite
84 hard--David said "BFD". Stallman was right, but the name stuck.
86 At the same time, Ready Systems wanted much the same thing, but for
87 different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
90 BFD was first implemented by members of Cygnus Support; Steve
91 Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
92 Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
96 File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
101 To use the library, include `bfd.h' and link with `libbfd.a'.
103 BFD provides a common interface to the parts of an object file for a
106 When an application successfully opens a target file (object,
107 archive, or whatever), a pointer to an internal structure is returned.
108 This pointer points to a structure called `bfd', described in `bfd.h'.
109 Our convention is to call this pointer a BFD, and instances of it
110 within code `abfd'. All operations on the target object file are
111 applied as methods to the BFD. The mapping is defined within `bfd.h'
112 in a set of macros, all beginning with `bfd_' to reduce namespace
115 For example, this sequence does what you would probably expect:
116 return the number of sections in an object file attached to a BFD
121 unsigned int number_of_sections (abfd)
124 return bfd_count_sections (abfd);
127 The abstraction used within BFD is that an object file has:
131 * a number of sections containing raw data (*note Sections::),
133 * a set of relocations (*note Relocations::), and
135 * some symbol information (*note Symbols::).
136 Also, BFDs opened for archives have the additional attribute of an
137 index and contain subordinate BFDs. This approach is fine for a.out and
138 coff, but loses efficiency when applied to formats such as S-records and
142 File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
144 1.3 What BFD Version 2 Can Do
145 =============================
147 When an object file is opened, BFD subroutines automatically determine
148 the format of the input object file. They then build a descriptor in
149 memory with pointers to routines that will be used to access elements of
150 the object file's data structures.
152 As different information from the object files is required, BFD
153 reads from different sections of the file and processes them. For
154 example, a very common operation for the linker is processing symbol
155 tables. Each BFD back end provides a routine for converting between
156 the object file's representation of symbols and an internal canonical
157 format. When the linker asks for the symbol table of an object file, it
158 calls through a memory pointer to the routine from the relevant BFD
159 back end which reads and converts the table into a canonical form. The
160 linker then operates upon the canonical form. When the link is finished
161 and the linker writes the output file's symbol table, another BFD back
162 end routine is called to take the newly created symbol table and
163 convert it into the chosen output format.
167 * BFD information loss:: Information Loss
168 * Canonical format:: The BFD canonical object-file format
171 File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
173 1.3.1 Information Loss
174 ----------------------
176 _Information can be lost during output._ The output formats supported
177 by BFD do not provide identical facilities, and information which can
178 be described in one form has nowhere to go in another format. One
179 example of this is alignment information in `b.out'. There is nowhere
180 in an `a.out' format file to store alignment information on the
181 contained data, so when a file is linked from `b.out' and an `a.out'
182 image is produced, alignment information will not propagate to the
183 output file. (The linker will still use the alignment information
184 internally, so the link is performed correctly).
186 Another example is COFF section names. COFF files may contain an
187 unlimited number of sections, each one with a textual section name. If
188 the target of the link is a format which does not have many sections
189 (e.g., `a.out') or has sections without names (e.g., the Oasys format),
190 the link cannot be done simply. You can circumvent this problem by
191 describing the desired input-to-output section mapping with the linker
194 _Information can be lost during canonicalization._ The BFD internal
195 canonical form of the external formats is not exhaustive; there are
196 structures in input formats for which there is no direct representation
197 internally. This means that the BFD back ends cannot maintain all
198 possible data richness through the transformation between external to
199 internal and back to external formats.
201 This limitation is only a problem when an application reads one
202 format and writes another. Each BFD back end is responsible for
203 maintaining as much data as possible, and the internal BFD canonical
204 form has structures which are opaque to the BFD core, and exported only
205 to the back ends. When a file is read in one format, the canonical form
206 is generated for BFD and the application. At the same time, the back
207 end saves away any information which may otherwise be lost. If the data
208 is then written back in the same format, the back end routine will be
209 able to use the canonical form provided by the BFD core as well as the
210 information it prepared earlier. Since there is a great deal of
211 commonality between back ends, there is no information lost when
212 linking or copying big endian COFF to little endian COFF, or `a.out' to
213 `b.out'. When a mixture of formats is linked, the information is only
214 lost from the files whose format differs from the destination.
217 File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
219 1.3.2 The BFD canonical object-file format
220 ------------------------------------------
222 The greatest potential for loss of information occurs when there is the
223 least overlap between the information provided by the source format,
224 that stored by the canonical format, and that needed by the destination
225 format. A brief description of the canonical form may help you
226 understand which kinds of data you can count on preserving across
230 Information stored on a per-file basis includes target machine
231 architecture, particular implementation format type, a demand
232 pageable bit, and a write protected bit. Information like Unix
233 magic numbers is not stored here--only the magic numbers' meaning,
234 so a `ZMAGIC' file would have both the demand pageable bit and the
235 write protected text bit set. The byte order of the target is
236 stored on a per-file basis, so that big- and little-endian object
237 files may be used with one another.
240 Each section in the input file contains the name of the section,
241 the section's original address in the object file, size and
242 alignment information, various flags, and pointers into other BFD
246 Each symbol contains a pointer to the information for the object
247 file which originally defined it, its name, its value, and various
248 flag bits. When a BFD back end reads in a symbol table, it
249 relocates all symbols to make them relative to the base of the
250 section where they were defined. Doing this ensures that each
251 symbol points to its containing section. Each symbol also has a
252 varying amount of hidden private data for the BFD back end. Since
253 the symbol points to the original file, the private data format
254 for that symbol is accessible. `ld' can operate on a collection
255 of symbols of wildly different formats without problems.
257 Normal global and simple local symbols are maintained on output,
258 so an output file (no matter its format) will retain symbols
259 pointing to functions and to global, static, and common variables.
260 Some symbol information is not worth retaining; in `a.out', type
261 information is stored in the symbol table as long symbol names.
262 This information would be useless to most COFF debuggers; the
263 linker has command line switches to allow users to throw it away.
265 There is one word of type information within the symbol, so if the
266 format supports symbol type information within symbols (for
267 example, COFF, IEEE, Oasys) and the type is simple enough to fit
268 within one word (nearly everything but aggregates), the
269 information will be preserved.
272 Each canonical BFD relocation record contains a pointer to the
273 symbol to relocate to, the offset of the data to relocate, the
274 section the data is in, and a pointer to a relocation type
275 descriptor. Relocation is performed by passing messages through
276 the relocation type descriptor and the symbol pointer. Therefore,
277 relocations can be performed on output data using a relocation
278 method that is only available in one of the input formats. For
279 instance, Oasys provides a byte relocation format. A relocation
280 record requesting this relocation type would point indirectly to a
281 routine to perform this, so the relocation may be performed on a
282 byte being written to a 68k COFF file, even though 68k COFF has no
283 such relocation type.
286 Object formats can contain, for debugging purposes, some form of
287 mapping between symbols, source line numbers, and addresses in the
288 output file. These addresses have to be relocated along with the
289 symbol information. Each symbol with an associated list of line
290 number records points to the first record of the list. The head
291 of a line number list consists of a pointer to the symbol, which
292 allows finding out the address of the function whose line number
293 is being described. The rest of the list is made up of pairs:
294 offsets into the section and line numbers. Any format which can
295 simply derive this information can pass it successfully between
296 formats (COFF, IEEE and Oasys).
299 File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
307 A BFD has type `bfd'; objects of this type are the cornerstone of any
308 application using BFD. Using BFD consists of making references though
309 the BFD and to data in the BFD.
311 Here is the structure that defines the type `bfd'. It contains the
312 major data about the file and pointers to the rest of the data.
317 /* A unique identifier of the BFD */
320 /* The filename the application opened the BFD with. */
321 const char *filename;
323 /* A pointer to the target jump table. */
324 const struct bfd_target *xvec;
326 /* The IOSTREAM, and corresponding IO vector that provide access
327 to the file backing the BFD. */
329 const struct bfd_iovec *iovec;
331 /* Is the file descriptor being cached? That is, can it be closed as
332 needed, and re-opened when accessed later? */
333 bfd_boolean cacheable;
335 /* Marks whether there was a default target specified when the
336 BFD was opened. This is used to select which matching algorithm
337 to use to choose the back end. */
338 bfd_boolean target_defaulted;
340 /* The caching routines use these to maintain a
341 least-recently-used list of BFDs. */
342 struct bfd *lru_prev, *lru_next;
344 /* When a file is closed by the caching routines, BFD retains
345 state information on the file here... */
348 /* ... and here: (``once'' means at least once). */
349 bfd_boolean opened_once;
351 /* Set if we have a locally maintained mtime value, rather than
352 getting it from the file each time. */
353 bfd_boolean mtime_set;
355 /* File modified time, if mtime_set is TRUE. */
358 /* Reserved for an unimplemented file locking extension. */
361 /* The format which belongs to the BFD. (object, core, etc.) */
364 /* The direction with which the BFD was opened. */
374 /* Format_specific flags. */
377 /* Currently my_archive is tested before adding origin to
378 anything. I believe that this can become always an add of
379 origin, with origin set to 0 for non archive files. */
382 /* Remember when output has begun, to stop strange things
384 bfd_boolean output_has_begun;
386 /* A hash table for section names. */
387 struct bfd_hash_table section_htab;
389 /* Pointer to linked list of sections. */
390 struct bfd_section *sections;
392 /* The last section on the section list. */
393 struct bfd_section *section_last;
395 /* The number of sections. */
396 unsigned int section_count;
398 /* Stuff only useful for object files:
399 The start address. */
400 bfd_vma start_address;
402 /* Used for input and output. */
403 unsigned int symcount;
405 /* Symbol table for output BFD (with symcount entries). */
406 struct bfd_symbol **outsymbols;
408 /* Used for slurped dynamic symbol tables. */
409 unsigned int dynsymcount;
411 /* Pointer to structure which contains architecture information. */
412 const struct bfd_arch_info *arch_info;
414 /* Flag set if symbols from this BFD should not be exported. */
415 bfd_boolean no_export;
417 /* Stuff only useful for archives. */
419 struct bfd *my_archive; /* The containing archive BFD. */
420 struct bfd *archive_next; /* The next BFD in the archive. */
421 struct bfd *archive_head; /* The first BFD in the archive. */
422 bfd_boolean has_armap;
424 /* A chain of BFD structures involved in a link. */
425 struct bfd *link_next;
427 /* A field used by _bfd_generic_link_add_archive_symbols. This will
428 be used only for archive elements. */
431 /* Used by the back end to hold private data. */
434 struct aout_data_struct *aout_data;
435 struct artdata *aout_ar_data;
436 struct _oasys_data *oasys_obj_data;
437 struct _oasys_ar_data *oasys_ar_data;
438 struct coff_tdata *coff_obj_data;
439 struct pe_tdata *pe_obj_data;
440 struct xcoff_tdata *xcoff_obj_data;
441 struct ecoff_tdata *ecoff_obj_data;
442 struct ieee_data_struct *ieee_data;
443 struct ieee_ar_data_struct *ieee_ar_data;
444 struct srec_data_struct *srec_data;
445 struct ihex_data_struct *ihex_data;
446 struct tekhex_data_struct *tekhex_data;
447 struct elf_obj_tdata *elf_obj_data;
448 struct nlm_obj_tdata *nlm_obj_data;
449 struct bout_data_struct *bout_data;
450 struct mmo_data_struct *mmo_data;
451 struct sun_core_struct *sun_core_data;
452 struct sco5_core_struct *sco5_core_data;
453 struct trad_core_struct *trad_core_data;
454 struct som_data_struct *som_data;
455 struct hpux_core_struct *hpux_core_data;
456 struct hppabsd_core_struct *hppabsd_core_data;
457 struct sgi_core_struct *sgi_core_data;
458 struct lynx_core_struct *lynx_core_data;
459 struct osf_core_struct *osf_core_data;
460 struct cisco_core_struct *cisco_core_data;
461 struct versados_data_struct *versados_data;
462 struct netbsd_core_struct *netbsd_core_data;
463 struct mach_o_data_struct *mach_o_data;
464 struct mach_o_fat_data_struct *mach_o_fat_data;
465 struct bfd_pef_data_struct *pef_data;
466 struct bfd_pef_xlib_data_struct *pef_xlib_data;
467 struct bfd_sym_data_struct *sym_data;
472 /* Used by the application to hold private data. */
475 /* Where all the allocated stuff under this BFD goes. This is a
476 struct objalloc *, but we use void * to avoid requiring the inclusion
484 Most BFD functions return nonzero on success (check their individual
485 documentation for precise semantics). On an error, they call
486 `bfd_set_error' to set an error condition that callers can check by
487 calling `bfd_get_error'. If that returns `bfd_error_system_call', then
490 The easiest way to report a BFD error to the user is to use
493 2.2.1 Type `bfd_error_type'
494 ---------------------------
496 The values returned by `bfd_get_error' are defined by the enumerated
497 type `bfd_error_type'.
500 typedef enum bfd_error
502 bfd_error_no_error = 0,
503 bfd_error_system_call,
504 bfd_error_invalid_target,
505 bfd_error_wrong_format,
506 bfd_error_wrong_object_format,
507 bfd_error_invalid_operation,
509 bfd_error_no_symbols,
511 bfd_error_no_more_archived_files,
512 bfd_error_malformed_archive,
513 bfd_error_file_not_recognized,
514 bfd_error_file_ambiguously_recognized,
515 bfd_error_no_contents,
516 bfd_error_nonrepresentable_section,
517 bfd_error_no_debug_section,
519 bfd_error_file_truncated,
520 bfd_error_file_too_big,
522 bfd_error_invalid_error_code
526 2.2.1.1 `bfd_get_error'
527 .......................
530 bfd_error_type bfd_get_error (void);
532 Return the current BFD error condition.
534 2.2.1.2 `bfd_set_error'
535 .......................
538 void bfd_set_error (bfd_error_type error_tag, ...);
540 Set the BFD error condition to be ERROR_TAG. If ERROR_TAG is
541 bfd_error_on_input, then this function takes two more parameters, the
542 input bfd where the error occurred, and the bfd_error_type error.
548 const char *bfd_errmsg (bfd_error_type error_tag);
550 Return a string describing the error ERROR_TAG, or the system error if
551 ERROR_TAG is `bfd_error_system_call'.
557 void bfd_perror (const char *message);
559 Print to the standard error stream a string describing the last BFD
560 error that occurred, or the last system error if the last BFD error was
561 a system call failure. If MESSAGE is non-NULL and non-empty, the error
562 string printed is preceded by MESSAGE, a colon, and a space. It is
563 followed by a newline.
565 2.2.2 BFD error handler
566 -----------------------
568 Some BFD functions want to print messages describing the problem. They
569 call a BFD error handler function. This function may be overridden by
572 The BFD error handler acts like printf.
575 typedef void (*bfd_error_handler_type) (const char *, ...);
577 2.2.2.1 `bfd_set_error_handler'
578 ...............................
581 bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
583 Set the BFD error handler function. Returns the previous function.
585 2.2.2.2 `bfd_set_error_program_name'
586 ....................................
589 void bfd_set_error_program_name (const char *);
591 Set the program name to use when printing a BFD error. This is printed
592 before the error message followed by a colon and space. The string
593 must not be changed after it is passed to this function.
595 2.2.2.3 `bfd_get_error_handler'
596 ...............................
599 bfd_error_handler_type bfd_get_error_handler (void);
601 Return the BFD error handler function.
606 2.3.1 Miscellaneous functions
607 -----------------------------
609 2.3.1.1 `bfd_get_reloc_upper_bound'
610 ...................................
613 long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
615 Return the number of bytes required to store the relocation information
616 associated with section SECT attached to bfd ABFD. If an error occurs,
619 2.3.1.2 `bfd_canonicalize_reloc'
620 ................................
623 long bfd_canonicalize_reloc
624 (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);
626 Call the back end associated with the open BFD ABFD and translate the
627 external form of the relocation information attached to SEC into the
628 internal canonical form. Place the table into memory at LOC, which has
629 been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
630 Returns the number of relocs, or -1 on error.
632 The SYMS table is also needed for horrible internal magic reasons.
634 2.3.1.3 `bfd_set_reloc'
635 .......................
639 (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
641 Set the relocation pointer and count within section SEC to the values
642 REL and COUNT. The argument ABFD is ignored.
644 2.3.1.4 `bfd_set_file_flags'
645 ............................
648 bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
650 Set the flag word in the BFD ABFD to the value FLAGS.
653 * `bfd_error_wrong_format' - The target bfd was not of object format.
655 * `bfd_error_invalid_operation' - The target bfd was open for
658 * `bfd_error_invalid_operation' - The flag word contained a bit
659 which was not applicable to the type of file. E.g., an attempt
660 was made to set the `D_PAGED' bit on a BFD format which does not
661 support demand paging.
663 2.3.1.5 `bfd_get_arch_size'
664 ...........................
667 int bfd_get_arch_size (bfd *abfd);
669 Returns the architecture address size, in bits, as determined by the
670 object file's format. For ELF, this information is included in the
674 Returns the arch size in bits if known, `-1' otherwise.
676 2.3.1.6 `bfd_get_sign_extend_vma'
677 .................................
680 int bfd_get_sign_extend_vma (bfd *abfd);
682 Indicates if the target architecture "naturally" sign extends an
683 address. Some architectures implicitly sign extend address values when
684 they are converted to types larger than the size of an address. For
685 instance, bfd_get_start_address() will return an address sign extended
686 to fill a bfd_vma when this is the case.
689 Returns `1' if the target architecture is known to sign extend
690 addresses, `0' if the target architecture is known to not sign extend
691 addresses, and `-1' otherwise.
693 2.3.1.7 `bfd_set_start_address'
694 ...............................
697 bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
699 Make VMA the entry point of output BFD ABFD.
702 Returns `TRUE' on success, `FALSE' otherwise.
704 2.3.1.8 `bfd_get_gp_size'
705 .........................
708 unsigned int bfd_get_gp_size (bfd *abfd);
710 Return the maximum size of objects to be optimized using the GP
711 register under MIPS ECOFF. This is typically set by the `-G' argument
712 to the compiler, assembler or linker.
714 2.3.1.9 `bfd_set_gp_size'
715 .........................
718 void bfd_set_gp_size (bfd *abfd, unsigned int i);
720 Set the maximum size of objects to be optimized using the GP register
721 under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
722 the compiler, assembler or linker.
724 2.3.1.10 `bfd_scan_vma'
725 .......................
728 bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
730 Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
731 integer, and return that integer. (Though without as many bells and
732 whistles as `strtoul'.) The expression is assumed to be unsigned
733 (i.e., positive). If given a BASE, it is used as the base for
734 conversion. A base of 0 causes the function to interpret the string in
735 hex if a leading "0x" or "0X" is found, otherwise in octal if a leading
736 zero is found, otherwise in decimal.
738 If the value would overflow, the maximum `bfd_vma' value is returned.
740 2.3.1.11 `bfd_copy_private_header_data'
741 .......................................
744 bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);
746 Copy private BFD header information from the BFD IBFD to the the BFD
747 OBFD. This copies information that may require sections to exist, but
748 does not require symbol tables. Return `true' on success, `false' on
749 error. Possible error returns are:
751 * `bfd_error_no_memory' - Not enough memory exists to create private
754 #define bfd_copy_private_header_data(ibfd, obfd) \
755 BFD_SEND (obfd, _bfd_copy_private_header_data, \
758 2.3.1.12 `bfd_copy_private_bfd_data'
759 ....................................
762 bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
764 Copy private BFD information from the BFD IBFD to the the BFD OBFD.
765 Return `TRUE' on success, `FALSE' on error. Possible error returns are:
767 * `bfd_error_no_memory' - Not enough memory exists to create private
770 #define bfd_copy_private_bfd_data(ibfd, obfd) \
771 BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
774 2.3.1.13 `bfd_merge_private_bfd_data'
775 .....................................
778 bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
780 Merge private BFD information from the BFD IBFD to the the output file
781 BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.
782 Possible error returns are:
784 * `bfd_error_no_memory' - Not enough memory exists to create private
787 #define bfd_merge_private_bfd_data(ibfd, obfd) \
788 BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
791 2.3.1.14 `bfd_set_private_flags'
792 ................................
795 bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
797 Set private BFD flag information in the BFD ABFD. Return `TRUE' on
798 success, `FALSE' on error. Possible error returns are:
800 * `bfd_error_no_memory' - Not enough memory exists to create private
803 #define bfd_set_private_flags(abfd, flags) \
804 BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))
806 2.3.1.15 `Other functions'
807 ..........................
810 The following functions exist but have not yet been documented.
811 #define bfd_sizeof_headers(abfd, info) \
812 BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))
814 #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
815 BFD_SEND (abfd, _bfd_find_nearest_line, \
816 (abfd, sec, syms, off, file, func, line))
818 #define bfd_find_line(abfd, syms, sym, file, line) \
819 BFD_SEND (abfd, _bfd_find_line, \
820 (abfd, syms, sym, file, line))
822 #define bfd_find_inliner_info(abfd, file, func, line) \
823 BFD_SEND (abfd, _bfd_find_inliner_info, \
824 (abfd, file, func, line))
826 #define bfd_debug_info_start(abfd) \
827 BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
829 #define bfd_debug_info_end(abfd) \
830 BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
832 #define bfd_debug_info_accumulate(abfd, section) \
833 BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
835 #define bfd_stat_arch_elt(abfd, stat) \
836 BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
838 #define bfd_update_armap_timestamp(abfd) \
839 BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
841 #define bfd_set_arch_mach(abfd, arch, mach)\
842 BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
844 #define bfd_relax_section(abfd, section, link_info, again) \
845 BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
847 #define bfd_gc_sections(abfd, link_info) \
848 BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))
850 #define bfd_merge_sections(abfd, link_info) \
851 BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))
853 #define bfd_is_group_section(abfd, sec) \
854 BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))
856 #define bfd_discard_group(abfd, sec) \
857 BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))
859 #define bfd_link_hash_table_create(abfd) \
860 BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
862 #define bfd_link_hash_table_free(abfd, hash) \
863 BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))
865 #define bfd_link_add_symbols(abfd, info) \
866 BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
868 #define bfd_link_just_syms(abfd, sec, info) \
869 BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))
871 #define bfd_final_link(abfd, info) \
872 BFD_SEND (abfd, _bfd_final_link, (abfd, info))
874 #define bfd_free_cached_info(abfd) \
875 BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
877 #define bfd_get_dynamic_symtab_upper_bound(abfd) \
878 BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
880 #define bfd_print_private_bfd_data(abfd, file)\
881 BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
883 #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
884 BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
886 #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
887 BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
888 dyncount, dynsyms, ret))
890 #define bfd_get_dynamic_reloc_upper_bound(abfd) \
891 BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
893 #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
894 BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
896 extern bfd_byte *bfd_get_relocated_section_contents
897 (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
898 bfd_boolean, asymbol **);
900 2.3.1.16 `bfd_alt_mach_code'
901 ............................
904 bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
906 When more than one machine code number is available for the same
907 machine type, this function can be used to switch between the preferred
908 one (alternative == 0) and any others. Currently, only ELF supports
909 this feature, with up to two alternate machine codes.
916 const struct bfd_arch_info *arch_info;
917 struct bfd_section *sections;
918 struct bfd_section *section_last;
919 unsigned int section_count;
920 struct bfd_hash_table section_htab;
923 2.3.1.17 `bfd_preserve_save'
924 ............................
927 bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);
929 When testing an object for compatibility with a particular target
930 back-end, the back-end object_p function needs to set up certain fields
931 in the bfd on successfully recognizing the object. This typically
932 happens in a piecemeal fashion, with failures possible at many points.
933 On failure, the bfd is supposed to be restored to its initial state,
934 which is virtually impossible. However, restoring a subset of the bfd
935 state works in practice. This function stores the subset and
936 reinitializes the bfd.
938 2.3.1.18 `bfd_preserve_restore'
939 ...............................
942 void bfd_preserve_restore (bfd *, struct bfd_preserve *);
944 This function restores bfd state saved by bfd_preserve_save. If MARKER
945 is non-NULL in struct bfd_preserve then that block and all subsequently
946 bfd_alloc'd memory is freed.
948 2.3.1.19 `bfd_preserve_finish'
949 ..............................
952 void bfd_preserve_finish (bfd *, struct bfd_preserve *);
954 This function should be called when the bfd state saved by
955 bfd_preserve_save is no longer needed. ie. when the back-end object_p
956 function returns with success.
958 2.3.1.20 `bfd_emul_get_maxpagesize'
959 ...................................
962 bfd_vma bfd_emul_get_maxpagesize (const char *);
964 Returns the maximum page size, in bytes, as determined by emulation.
967 Returns the maximum page size in bytes for ELF, abort otherwise.
969 2.3.1.21 `bfd_emul_set_maxpagesize'
970 ...................................
973 void bfd_emul_set_maxpagesize (const char *, bfd_vma);
975 For ELF, set the maximum page size for the emulation. It is a no-op
978 2.3.1.22 `bfd_emul_get_commonpagesize'
979 ......................................
982 bfd_vma bfd_emul_get_commonpagesize (const char *);
984 Returns the common page size, in bytes, as determined by emulation.
987 Returns the common page size in bytes for ELF, abort otherwise.
989 2.3.1.23 `bfd_emul_set_commonpagesize'
990 ......................................
993 void bfd_emul_set_commonpagesize (const char *, bfd_vma);
995 For ELF, set the common page size for the emulation. It is a no-op for
998 2.3.1.24 `bfd_demangle'
999 .......................
1002 char *bfd_demangle (bfd *, const char *, int);
1004 Wrapper around cplus_demangle. Strips leading underscores and other
1005 such chars that would otherwise confuse the demangler. If passed a g++
1006 v3 ABI mangled name, returns a buffer allocated with malloc holding the
1007 demangled name. Returns NULL otherwise and on memory alloc failure.
1009 2.3.1.25 `struct bfd_iovec'
1010 ...........................
1013 The `struct bfd_iovec' contains the internal file I/O class. Each
1014 `BFD' has an instance of this class and all file I/O is routed through
1015 it (it is assumed that the instance implements all methods listed
1019 /* To avoid problems with macros, a "b" rather than "f"
1020 prefix is prepended to each method name. */
1021 /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
1022 bytes starting at PTR. Return the number of bytes actually
1023 transfered (a read past end-of-file returns less than NBYTES),
1024 or -1 (setting `bfd_error') if an error occurs. */
1025 file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
1026 file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
1028 /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error'
1029 if an error occurs. */
1030 file_ptr (*btell) (struct bfd *abfd);
1031 /* For the following, on successful completion a value of 0 is returned.
1032 Otherwise, a value of -1 is returned (and `bfd_error' is set). */
1033 int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
1034 int (*bclose) (struct bfd *abfd);
1035 int (*bflush) (struct bfd *abfd);
1036 int (*bstat) (struct bfd *abfd, struct stat *sb);
1039 2.3.1.26 `bfd_get_mtime'
1040 ........................
1043 long bfd_get_mtime (bfd *abfd);
1045 Return the file modification time (as read from the file system, or
1046 from the archive header for archive members).
1048 2.3.1.27 `bfd_get_size'
1049 .......................
1052 file_ptr bfd_get_size (bfd *abfd);
1054 Return the file size (as read from file system) for the file associated
1057 The initial motivation for, and use of, this routine is not so we
1058 can get the exact size of the object the BFD applies to, since that
1059 might not be generally possible (archive members for example). It
1060 would be ideal if someone could eventually modify it so that such
1061 results were guaranteed.
1063 Instead, we want to ask questions like "is this NNN byte sized
1064 object I'm about to try read from file offset YYY reasonable?" As as
1065 example of where we might do this, some object formats use string
1066 tables for which the first `sizeof (long)' bytes of the table contain
1067 the size of the table itself, including the size bytes. If an
1068 application tries to read what it thinks is one of these string tables,
1069 without some way to validate the size, and for some reason the size is
1070 wrong (byte swapping error, wrong location for the string table, etc.),
1071 the only clue is likely to be a read error when it tries to read the
1072 table, or a "virtual memory exhausted" error when it tries to allocate
1073 15 bazillon bytes of space for the 15 bazillon byte table it is about
1074 to read. This function at least allows us to answer the question, "is
1075 the size reasonable?".
1089 * Opening and Closing::
1092 * Linker Functions::
1096 File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
1101 BFD keeps all of its internal structures in obstacks. There is one
1102 obstack per open BFD file, into which the current state is stored. When
1103 a BFD is closed, the obstack is deleted, and so everything which has
1104 been allocated by BFD for the closing file is thrown away.
1106 BFD does not free anything created by an application, but pointers
1107 into `bfd' structures become invalid on a `bfd_close'; for example,
1108 after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
1109 still around, since it has been allocated by the application, but the
1110 data that it pointed to are lost.
1112 The general rule is to not close a BFD until all operations dependent
1113 upon data from the BFD have been completed, or all the data from within
1114 the file has been copied. To help with the management of memory, there
1115 is a function (`bfd_alloc_size') which returns the number of bytes in
1116 obstacks associated with the supplied BFD. This could be used to select
1117 the greediest open BFD, close it to reclaim the memory, perform some
1118 operation and reopen the BFD again, to get a fresh copy of the data
1122 File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
1127 2.5.1 Initialization functions
1128 ------------------------------
1130 These are the functions that handle initializing a BFD.
1136 void bfd_init (void);
1138 This routine must be called before any other BFD function to initialize
1139 magical internal data structures.
1142 File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
1147 The raw data contained within a BFD is maintained through the section
1148 abstraction. A single BFD may have any number of sections. It keeps
1149 hold of them by pointing to the first; each one points to the next in
1152 Sections are supported in BFD in `section.c'.
1158 * typedef asection::
1159 * section prototypes::
1162 File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
1167 When a BFD is opened for reading, the section structures are created
1168 and attached to the BFD.
1170 Each section has a name which describes the section in the outside
1171 world--for example, `a.out' would contain at least three sections,
1172 called `.text', `.data' and `.bss'.
1174 Names need not be unique; for example a COFF file may have several
1175 sections named `.data'.
1177 Sometimes a BFD will contain more than the "natural" number of
1178 sections. A back end may attach other sections containing constructor
1179 data, or an application may add a section (using `bfd_make_section') to
1180 the sections attached to an already open BFD. For example, the linker
1181 creates an extra section `COMMON' for each input file's BFD to hold
1182 information about common storage.
1184 The raw data is not necessarily read in when the section descriptor
1185 is created. Some targets may leave the data in place until a
1186 `bfd_get_section_contents' call is made. Other back ends may read in
1187 all the data at once. For example, an S-record file has to be read
1188 once to determine the size of the data. An IEEE-695 file doesn't
1189 contain raw data in sections, but data and relocation expressions
1190 intermixed, so the data area has to be parsed to get out the data and
1194 File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
1196 2.6.2 Section output
1197 --------------------
1199 To write a new object style BFD, the various sections to be written
1200 have to be created. They are attached to the BFD in the same way as
1201 input sections; data is written to the sections using
1202 `bfd_set_section_contents'.
1204 Any program that creates or combines sections (e.g., the assembler
1205 and linker) must use the `asection' fields `output_section' and
1206 `output_offset' to indicate the file sections to which each section
1207 must be written. (If the section is being created from scratch,
1208 `output_section' should probably point to the section itself and
1209 `output_offset' should probably be zero.)
1211 The data to be written comes from input sections attached (via
1212 `output_section' pointers) to the output sections. The output section
1213 structure can be considered a filter for the input section: the output
1214 section determines the vma of the output data and the name, but the
1215 input section determines the offset into the output section of the data
1218 E.g., to create a section "O", starting at 0x100, 0x123 long,
1219 containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
1220 "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
1226 output_section -----------> section name "O"
1228 section name "B" | size 0x123
1229 output_offset 0x20 |
1231 output_section --------|
1236 The data within a section is stored in a "link_order". These are much
1237 like the fixups in `gas'. The link_order abstraction allows a section
1238 to grow and shrink within itself.
1240 A link_order knows how big it is, and which is the next link_order
1241 and where the raw data for it is; it also points to a list of
1242 relocations which apply to it.
1244 The link_order is used by the linker to perform relaxing on final
1245 code. The compiler creates code which is as big as necessary to make
1246 it work without relaxing, and the user can select whether to relax.
1247 Sometimes relaxing takes a lot of time. The linker runs around the
1248 relocations to see if any are attached to data which can be shrunk, if
1249 so it does it on a link_order by link_order basis.
1252 File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections
1254 2.6.4 typedef asection
1255 ----------------------
1257 Here is the section structure:
1260 typedef struct bfd_section
1262 /* The name of the section; the name isn't a copy, the pointer is
1263 the same as that passed to bfd_make_section. */
1266 /* A unique sequence number. */
1269 /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
1272 /* The next section in the list belonging to the BFD, or NULL. */
1273 struct bfd_section *next;
1275 /* The previous section in the list belonging to the BFD, or NULL. */
1276 struct bfd_section *prev;
1278 /* The field flags contains attributes of the section. Some
1279 flags are read in from the object file, and some are
1280 synthesized from other information. */
1283 #define SEC_NO_FLAGS 0x000
1285 /* Tells the OS to allocate space for this section when loading.
1286 This is clear for a section containing debug information only. */
1287 #define SEC_ALLOC 0x001
1289 /* Tells the OS to load the section from the file when loading.
1290 This is clear for a .bss section. */
1291 #define SEC_LOAD 0x002
1293 /* The section contains data still to be relocated, so there is
1294 some relocation information too. */
1295 #define SEC_RELOC 0x004
1297 /* A signal to the OS that the section contains read only data. */
1298 #define SEC_READONLY 0x008
1300 /* The section contains code only. */
1301 #define SEC_CODE 0x010
1303 /* The section contains data only. */
1304 #define SEC_DATA 0x020
1306 /* The section will reside in ROM. */
1307 #define SEC_ROM 0x040
1309 /* The section contains constructor information. This section
1310 type is used by the linker to create lists of constructors and
1311 destructors used by `g++'. When a back end sees a symbol
1312 which should be used in a constructor list, it creates a new
1313 section for the type of name (e.g., `__CTOR_LIST__'), attaches
1314 the symbol to it, and builds a relocation. To build the lists
1315 of constructors, all the linker has to do is catenate all the
1316 sections called `__CTOR_LIST__' and relocate the data
1317 contained within - exactly the operations it would peform on
1319 #define SEC_CONSTRUCTOR 0x080
1321 /* The section has contents - a data section could be
1322 `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be
1323 `SEC_HAS_CONTENTS' */
1324 #define SEC_HAS_CONTENTS 0x100
1326 /* An instruction to the linker to not output the section
1327 even if it has information which would normally be written. */
1328 #define SEC_NEVER_LOAD 0x200
1330 /* The section contains thread local data. */
1331 #define SEC_THREAD_LOCAL 0x400
1333 /* The section has GOT references. This flag is only for the
1334 linker, and is currently only used by the elf32-hppa back end.
1335 It will be set if global offset table references were detected
1336 in this section, which indicate to the linker that the section
1337 contains PIC code, and must be handled specially when doing a
1339 #define SEC_HAS_GOT_REF 0x800
1341 /* The section contains common symbols (symbols may be defined
1342 multiple times, the value of a symbol is the amount of
1343 space it requires, and the largest symbol value is the one
1344 used). Most targets have exactly one of these (which we
1345 translate to bfd_com_section_ptr), but ECOFF has two. */
1346 #define SEC_IS_COMMON 0x1000
1348 /* The section contains only debugging information. For
1349 example, this is set for ELF .debug and .stab sections.
1350 strip tests this flag to see if a section can be
1352 #define SEC_DEBUGGING 0x2000
1354 /* The contents of this section are held in memory pointed to
1355 by the contents field. This is checked by bfd_get_section_contents,
1356 and the data is retrieved from memory if appropriate. */
1357 #define SEC_IN_MEMORY 0x4000
1359 /* The contents of this section are to be excluded by the
1360 linker for executable and shared objects unless those
1361 objects are to be further relocated. */
1362 #define SEC_EXCLUDE 0x8000
1364 /* The contents of this section are to be sorted based on the sum of
1365 the symbol and addend values specified by the associated relocation
1366 entries. Entries without associated relocation entries will be
1367 appended to the end of the section in an unspecified order. */
1368 #define SEC_SORT_ENTRIES 0x10000
1370 /* When linking, duplicate sections of the same name should be
1371 discarded, rather than being combined into a single section as
1372 is usually done. This is similar to how common symbols are
1373 handled. See SEC_LINK_DUPLICATES below. */
1374 #define SEC_LINK_ONCE 0x20000
1376 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
1377 should handle duplicate sections. */
1378 #define SEC_LINK_DUPLICATES 0x40000
1380 /* This value for SEC_LINK_DUPLICATES means that duplicate
1381 sections with the same name should simply be discarded. */
1382 #define SEC_LINK_DUPLICATES_DISCARD 0x0
1384 /* This value for SEC_LINK_DUPLICATES means that the linker
1385 should warn if there are any duplicate sections, although
1386 it should still only link one copy. */
1387 #define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
1389 /* This value for SEC_LINK_DUPLICATES means that the linker
1390 should warn if any duplicate sections are a different size. */
1391 #define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
1393 /* This value for SEC_LINK_DUPLICATES means that the linker
1394 should warn if any duplicate sections contain different
1396 #define SEC_LINK_DUPLICATES_SAME_CONTENTS \
1397 (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
1399 /* This section was created by the linker as part of dynamic
1400 relocation or other arcane processing. It is skipped when
1401 going through the first-pass output, trusting that someone
1402 else up the line will take care of it later. */
1403 #define SEC_LINKER_CREATED 0x200000
1405 /* This section should not be subject to garbage collection.
1406 Also set to inform the linker that this section should not be
1407 listed in the link map as discarded. */
1408 #define SEC_KEEP 0x400000
1410 /* This section contains "short" data, and should be placed
1412 #define SEC_SMALL_DATA 0x800000
1414 /* Attempt to merge identical entities in the section.
1415 Entity size is given in the entsize field. */
1416 #define SEC_MERGE 0x1000000
1418 /* If given with SEC_MERGE, entities to merge are zero terminated
1419 strings where entsize specifies character size instead of fixed
1421 #define SEC_STRINGS 0x2000000
1423 /* This section contains data about section groups. */
1424 #define SEC_GROUP 0x4000000
1426 /* The section is a COFF shared library section. This flag is
1427 only for the linker. If this type of section appears in
1428 the input file, the linker must copy it to the output file
1429 without changing the vma or size. FIXME: Although this
1430 was originally intended to be general, it really is COFF
1431 specific (and the flag was renamed to indicate this). It
1432 might be cleaner to have some more general mechanism to
1433 allow the back end to control what the linker does with
1435 #define SEC_COFF_SHARED_LIBRARY 0x10000000
1437 /* This section contains data which may be shared with other
1438 executables or shared objects. This is for COFF only. */
1439 #define SEC_COFF_SHARED 0x20000000
1441 /* When a section with this flag is being linked, then if the size of
1442 the input section is less than a page, it should not cross a page
1443 boundary. If the size of the input section is one page or more,
1444 it should be aligned on a page boundary. This is for TI
1446 #define SEC_TIC54X_BLOCK 0x40000000
1448 /* Conditionally link this section; do not link if there are no
1449 references found to any symbol in the section. This is for TI
1451 #define SEC_TIC54X_CLINK 0x80000000
1453 /* End of section flags. */
1455 /* Some internal packed boolean fields. */
1457 /* See the vma field. */
1458 unsigned int user_set_vma : 1;
1460 /* A mark flag used by some of the linker backends. */
1461 unsigned int linker_mark : 1;
1463 /* Another mark flag used by some of the linker backends. Set for
1464 output sections that have an input section. */
1465 unsigned int linker_has_input : 1;
1467 /* Mark flags used by some linker backends for garbage collection. */
1468 unsigned int gc_mark : 1;
1469 unsigned int gc_mark_from_eh : 1;
1471 /* The following flags are used by the ELF linker. */
1473 /* Mark sections which have been allocated to segments. */
1474 unsigned int segment_mark : 1;
1476 /* Type of sec_info information. */
1477 unsigned int sec_info_type:3;
1478 #define ELF_INFO_TYPE_NONE 0
1479 #define ELF_INFO_TYPE_STABS 1
1480 #define ELF_INFO_TYPE_MERGE 2
1481 #define ELF_INFO_TYPE_EH_FRAME 3
1482 #define ELF_INFO_TYPE_JUST_SYMS 4
1484 /* Nonzero if this section uses RELA relocations, rather than REL. */
1485 unsigned int use_rela_p:1;
1487 /* Bits used by various backends. The generic code doesn't touch
1490 /* Nonzero if this section has TLS related relocations. */
1491 unsigned int has_tls_reloc:1;
1493 /* Nonzero if this section has a gp reloc. */
1494 unsigned int has_gp_reloc:1;
1496 /* Nonzero if this section needs the relax finalize pass. */
1497 unsigned int need_finalize_relax:1;
1499 /* Whether relocations have been processed. */
1500 unsigned int reloc_done : 1;
1502 /* End of internal packed boolean fields. */
1504 /* The virtual memory address of the section - where it will be
1505 at run time. The symbols are relocated against this. The
1506 user_set_vma flag is maintained by bfd; if it's not set, the
1507 backend can assign addresses (for example, in `a.out', where
1508 the default address for `.data' is dependent on the specific
1509 target and various flags). */
1512 /* The load address of the section - where it would be in a
1513 rom image; really only used for writing section header
1517 /* The size of the section in octets, as it will be output.
1518 Contains a value even if the section has no contents (e.g., the
1522 /* For input sections, the original size on disk of the section, in
1523 octets. This field is used by the linker relaxation code. It is
1524 currently only set for sections where the linker relaxation scheme
1525 doesn't cache altered section and reloc contents (stabs, eh_frame,
1526 SEC_MERGE, some coff relaxing targets), and thus the original size
1527 needs to be kept to read the section multiple times.
1528 For output sections, rawsize holds the section size calculated on
1529 a previous linker relaxation pass. */
1530 bfd_size_type rawsize;
1532 /* If this section is going to be output, then this value is the
1533 offset in *bytes* into the output section of the first byte in the
1534 input section (byte ==> smallest addressable unit on the
1535 target). In most cases, if this was going to start at the
1536 100th octet (8-bit quantity) in the output section, this value
1537 would be 100. However, if the target byte size is 16 bits
1538 (bfd_octets_per_byte is "2"), this value would be 50. */
1539 bfd_vma output_offset;
1541 /* The output section through which to map on output. */
1542 struct bfd_section *output_section;
1544 /* The alignment requirement of the section, as an exponent of 2 -
1545 e.g., 3 aligns to 2^3 (or 8). */
1546 unsigned int alignment_power;
1548 /* If an input section, a pointer to a vector of relocation
1549 records for the data in this section. */
1550 struct reloc_cache_entry *relocation;
1552 /* If an output section, a pointer to a vector of pointers to
1553 relocation records for the data in this section. */
1554 struct reloc_cache_entry **orelocation;
1556 /* The number of relocation records in one of the above. */
1557 unsigned reloc_count;
1559 /* Information below is back end specific - and not always used
1562 /* File position of section data. */
1565 /* File position of relocation info. */
1566 file_ptr rel_filepos;
1568 /* File position of line data. */
1569 file_ptr line_filepos;
1571 /* Pointer to data for applications. */
1574 /* If the SEC_IN_MEMORY flag is set, this points to the actual
1576 unsigned char *contents;
1578 /* Attached line number information. */
1581 /* Number of line number records. */
1582 unsigned int lineno_count;
1584 /* Entity size for merging purposes. */
1585 unsigned int entsize;
1587 /* Points to the kept section if this section is a link-once section,
1588 and is discarded. */
1589 struct bfd_section *kept_section;
1591 /* When a section is being output, this value changes as more
1592 linenumbers are written out. */
1593 file_ptr moving_line_filepos;
1595 /* What the section number is in the target world. */
1600 /* If this is a constructor section then here is a list of the
1601 relocations created to relocate items within it. */
1602 struct relent_chain *constructor_chain;
1604 /* The BFD which owns the section. */
1607 /* A symbol which points at this section only. */
1608 struct bfd_symbol *symbol;
1609 struct bfd_symbol **symbol_ptr_ptr;
1611 /* Early in the link process, map_head and map_tail are used to build
1612 a list of input sections attached to an output section. Later,
1613 output sections use these fields for a list of bfd_link_order
1616 struct bfd_link_order *link_order;
1617 struct bfd_section *s;
1618 } map_head, map_tail;
1621 /* These sections are global, and are managed by BFD. The application
1622 and target back end are not permitted to change the values in
1623 these sections. New code should use the section_ptr macros rather
1624 than referring directly to the const sections. The const sections
1625 may eventually vanish. */
1626 #define BFD_ABS_SECTION_NAME "*ABS*"
1627 #define BFD_UND_SECTION_NAME "*UND*"
1628 #define BFD_COM_SECTION_NAME "*COM*"
1629 #define BFD_IND_SECTION_NAME "*IND*"
1631 /* The absolute section. */
1632 extern asection bfd_abs_section;
1633 #define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
1634 #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
1635 /* Pointer to the undefined section. */
1636 extern asection bfd_und_section;
1637 #define bfd_und_section_ptr ((asection *) &bfd_und_section)
1638 #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
1639 /* Pointer to the common section. */
1640 extern asection bfd_com_section;
1641 #define bfd_com_section_ptr ((asection *) &bfd_com_section)
1642 /* Pointer to the indirect section. */
1643 extern asection bfd_ind_section;
1644 #define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
1645 #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
1647 #define bfd_is_const_section(SEC) \
1648 ( ((SEC) == bfd_abs_section_ptr) \
1649 || ((SEC) == bfd_und_section_ptr) \
1650 || ((SEC) == bfd_com_section_ptr) \
1651 || ((SEC) == bfd_ind_section_ptr))
1653 /* Macros to handle insertion and deletion of a bfd's sections. These
1654 only handle the list pointers, ie. do not adjust section_count,
1655 target_index etc. */
1656 #define bfd_section_list_remove(ABFD, S) \
1660 asection *_next = _s->next; \
1661 asection *_prev = _s->prev; \
1663 _prev->next = _next; \
1665 (ABFD)->sections = _next; \
1667 _next->prev = _prev; \
1669 (ABFD)->section_last = _prev; \
1672 #define bfd_section_list_append(ABFD, S) \
1676 bfd *_abfd = ABFD; \
1678 if (_abfd->section_last) \
1680 _s->prev = _abfd->section_last; \
1681 _abfd->section_last->next = _s; \
1686 _abfd->sections = _s; \
1688 _abfd->section_last = _s; \
1691 #define bfd_section_list_prepend(ABFD, S) \
1695 bfd *_abfd = ABFD; \
1697 if (_abfd->sections) \
1699 _s->next = _abfd->sections; \
1700 _abfd->sections->prev = _s; \
1705 _abfd->section_last = _s; \
1707 _abfd->sections = _s; \
1710 #define bfd_section_list_insert_after(ABFD, A, S) \
1715 asection *_next = _a->next; \
1722 (ABFD)->section_last = _s; \
1725 #define bfd_section_list_insert_before(ABFD, B, S) \
1730 asection *_prev = _b->prev; \
1737 (ABFD)->sections = _s; \
1740 #define bfd_section_removed_from_list(ABFD, S) \
1741 ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
1743 #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
1744 /* name, id, index, next, prev, flags, user_set_vma, */ \
1745 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
1747 /* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, */ \
1750 /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \
1753 /* has_gp_reloc, need_finalize_relax, reloc_done, */ \
1756 /* vma, lma, size, rawsize */ \
1759 /* output_offset, output_section, alignment_power, */ \
1760 0, (struct bfd_section *) &SEC, 0, \
1762 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
1763 NULL, NULL, 0, 0, 0, \
1765 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
1766 0, NULL, NULL, NULL, 0, \
1768 /* entsize, kept_section, moving_line_filepos, */ \
1771 /* target_index, used_by_bfd, constructor_chain, owner, */ \
1772 0, NULL, NULL, NULL, \
1774 /* symbol, symbol_ptr_ptr, */ \
1775 (struct bfd_symbol *) SYM, &SEC.symbol, \
1777 /* map_head, map_tail */ \
1778 { NULL }, { NULL } \
1782 File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections
1784 2.6.5 Section prototypes
1785 ------------------------
1787 These are the functions exported by the section handling part of BFD.
1789 2.6.5.1 `bfd_section_list_clear'
1790 ................................
1793 void bfd_section_list_clear (bfd *);
1795 Clears the section list, and also resets the section count and hash
1798 2.6.5.2 `bfd_get_section_by_name'
1799 .................................
1802 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
1804 Run through ABFD and return the one of the `asection's whose name
1805 matches NAME, otherwise `NULL'. *Note Sections::, for more information.
1807 This should only be used in special cases; the normal way to process
1808 all sections of a given name is to use `bfd_map_over_sections' and
1809 `strcmp' on the name (or better yet, base it on the section flags or
1810 something else) for each section.
1812 2.6.5.3 `bfd_get_section_by_name_if'
1813 ....................................
1816 asection *bfd_get_section_by_name_if
1819 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
1822 Call the provided function FUNC for each section attached to the BFD
1823 ABFD whose name matches NAME, passing OBJ as an argument. The function
1824 will be called as if by
1826 func (abfd, the_section, obj);
1828 It returns the first section for which FUNC returns true, otherwise
1831 2.6.5.4 `bfd_get_unique_section_name'
1832 .....................................
1835 char *bfd_get_unique_section_name
1836 (bfd *abfd, const char *templat, int *count);
1838 Invent a section name that is unique in ABFD by tacking a dot and a
1839 digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it
1840 specifies the first number tried as a suffix to generate a unique name.
1841 The value pointed to by COUNT will be incremented in this case.
1843 2.6.5.5 `bfd_make_section_old_way'
1844 ..................................
1847 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1849 Create a new empty section called NAME and attach it to the end of the
1850 chain of sections for the BFD ABFD. An attempt to create a section with
1851 a name which is already in use returns its pointer without changing the
1854 It has the funny name since this is the way it used to be before it
1857 Possible errors are:
1858 * `bfd_error_invalid_operation' - If output has already started for
1861 * `bfd_error_no_memory' - If memory allocation fails.
1863 2.6.5.6 `bfd_make_section_anyway_with_flags'
1864 ............................................
1867 asection *bfd_make_section_anyway_with_flags
1868 (bfd *abfd, const char *name, flagword flags);
1870 Create a new empty section called NAME and attach it to the end of the
1871 chain of sections for ABFD. Create a new section even if there is
1872 already a section with that name. Also set the attributes of the new
1873 section to the value FLAGS.
1875 Return `NULL' and set `bfd_error' on error; possible errors are:
1876 * `bfd_error_invalid_operation' - If output has already started for
1879 * `bfd_error_no_memory' - If memory allocation fails.
1881 2.6.5.7 `bfd_make_section_anyway'
1882 .................................
1885 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1887 Create a new empty section called NAME and attach it to the end of the
1888 chain of sections for ABFD. Create a new section even if there is
1889 already a section with that name.
1891 Return `NULL' and set `bfd_error' on error; possible errors are:
1892 * `bfd_error_invalid_operation' - If output has already started for
1895 * `bfd_error_no_memory' - If memory allocation fails.
1897 2.6.5.8 `bfd_make_section_with_flags'
1898 .....................................
1901 asection *bfd_make_section_with_flags
1902 (bfd *, const char *name, flagword flags);
1904 Like `bfd_make_section_anyway', but return `NULL' (without calling
1905 bfd_set_error ()) without changing the section chain if there is
1906 already a section named NAME. Also set the attributes of the new
1907 section to the value FLAGS. If there is an error, return `NULL' and set
1910 2.6.5.9 `bfd_make_section'
1911 ..........................
1914 asection *bfd_make_section (bfd *, const char *name);
1916 Like `bfd_make_section_anyway', but return `NULL' (without calling
1917 bfd_set_error ()) without changing the section chain if there is
1918 already a section named NAME. If there is an error, return `NULL' and
1921 2.6.5.10 `bfd_set_section_flags'
1922 ................................
1925 bfd_boolean bfd_set_section_flags
1926 (bfd *abfd, asection *sec, flagword flags);
1928 Set the attributes of the section SEC in the BFD ABFD to the value
1929 FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error
1932 * `bfd_error_invalid_operation' - The section cannot have one or
1933 more of the attributes requested. For example, a .bss section in
1934 `a.out' may not have the `SEC_HAS_CONTENTS' field set.
1936 2.6.5.11 `bfd_map_over_sections'
1937 ................................
1940 void bfd_map_over_sections
1942 void (*func) (bfd *abfd, asection *sect, void *obj),
1945 Call the provided function FUNC for each section attached to the BFD
1946 ABFD, passing OBJ as an argument. The function will be called as if by
1948 func (abfd, the_section, obj);
1950 This is the preferred method for iterating over sections; an
1951 alternative would be to use a loop:
1954 for (p = abfd->sections; p != NULL; p = p->next)
1957 2.6.5.12 `bfd_sections_find_if'
1958 ...............................
1961 asection *bfd_sections_find_if
1963 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1966 Call the provided function OPERATION for each section attached to the
1967 BFD ABFD, passing OBJ as an argument. The function will be called as if
1970 operation (abfd, the_section, obj);
1972 It returns the first section for which OPERATION returns true.
1974 2.6.5.13 `bfd_set_section_size'
1975 ...............................
1978 bfd_boolean bfd_set_section_size
1979 (bfd *abfd, asection *sec, bfd_size_type val);
1981 Set SEC to the size VAL. If the operation is ok, then `TRUE' is
1982 returned, else `FALSE'.
1984 Possible error returns:
1985 * `bfd_error_invalid_operation' - Writing has started to the BFD, so
1986 setting the size is invalid.
1988 2.6.5.14 `bfd_set_section_contents'
1989 ...................................
1992 bfd_boolean bfd_set_section_contents
1993 (bfd *abfd, asection *section, const void *data,
1994 file_ptr offset, bfd_size_type count);
1996 Sets the contents of the section SECTION in BFD ABFD to the data
1997 starting in memory at DATA. The data is written to the output section
1998 starting at offset OFFSET for COUNT octets.
2000 Normally `TRUE' is returned, else `FALSE'. Possible error returns
2002 * `bfd_error_no_contents' - The output section does not have the
2003 `SEC_HAS_CONTENTS' attribute, so nothing can be written to it.
2006 This routine is front end to the back end function
2007 `_bfd_set_section_contents'.
2009 2.6.5.15 `bfd_get_section_contents'
2010 ...................................
2013 bfd_boolean bfd_get_section_contents
2014 (bfd *abfd, asection *section, void *location, file_ptr offset,
2015 bfd_size_type count);
2017 Read data from SECTION in BFD ABFD into memory starting at LOCATION.
2018 The data is read at an offset of OFFSET from the start of the input
2019 section, and is read for COUNT bytes.
2021 If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set
2022 are requested or if the section does not have the `SEC_HAS_CONTENTS'
2023 flag set, then the LOCATION is filled with zeroes. If no errors occur,
2024 `TRUE' is returned, else `FALSE'.
2026 2.6.5.16 `bfd_malloc_and_get_section'
2027 .....................................
2030 bfd_boolean bfd_malloc_and_get_section
2031 (bfd *abfd, asection *section, bfd_byte **buf);
2033 Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by
2036 2.6.5.17 `bfd_copy_private_section_data'
2037 ........................................
2040 bfd_boolean bfd_copy_private_section_data
2041 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
2043 Copy private section information from ISEC in the BFD IBFD to the
2044 section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on
2045 error. Possible error returns are:
2047 * `bfd_error_no_memory' - Not enough memory exists to create private
2050 #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
2051 BFD_SEND (obfd, _bfd_copy_private_section_data, \
2052 (ibfd, isection, obfd, osection))
2054 2.6.5.18 `bfd_generic_is_group_section'
2055 .......................................
2058 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
2060 Returns TRUE if SEC is a member of a group.
2062 2.6.5.19 `bfd_generic_discard_group'
2063 ....................................
2066 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
2068 Remove all members of GROUP from the output.
2071 File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end
2076 BFD tries to maintain as much symbol information as it can when it
2077 moves information from file to file. BFD passes information to
2078 applications though the `asymbol' structure. When the application
2079 requests the symbol table, BFD reads the table in the native form and
2080 translates parts of it into the internal format. To maintain more than
2081 the information passed to applications, some targets keep some
2082 information "behind the scenes" in a structure only the particular back
2083 end knows about. For example, the coff back end keeps the original
2084 symbol table structure as well as the canonical structure when a BFD is
2085 read in. On output, the coff back end can reconstruct the output symbol
2086 table so that no information is lost, even information unique to coff
2087 which BFD doesn't know or understand. If a coff symbol table were read,
2088 but were written through an a.out back end, all the coff specific
2089 information would be lost. The symbol table of a BFD is not necessarily
2090 read in until a canonicalize request is made. Then the BFD back end
2091 fills in a table provided by the application with pointers to the
2092 canonical information. To output symbols, the application provides BFD
2093 with a table of pointers to pointers to `asymbol's. This allows
2094 applications like the linker to output a symbol as it was read, since
2095 the "behind the scenes" information will be still available.
2103 * symbol handling functions::
2106 File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols
2108 2.7.1 Reading symbols
2109 ---------------------
2111 There are two stages to reading a symbol table from a BFD: allocating
2112 storage, and the actual reading process. This is an excerpt from an
2113 application which reads the symbol table:
2115 long storage_needed;
2116 asymbol **symbol_table;
2117 long number_of_symbols;
2120 storage_needed = bfd_get_symtab_upper_bound (abfd);
2122 if (storage_needed < 0)
2125 if (storage_needed == 0)
2128 symbol_table = xmalloc (storage_needed);
2131 bfd_canonicalize_symtab (abfd, symbol_table);
2133 if (number_of_symbols < 0)
2136 for (i = 0; i < number_of_symbols; i++)
2137 process_symbol (symbol_table[i]);
2139 All storage for the symbols themselves is in an objalloc connected
2140 to the BFD; it is freed when the BFD is closed.
2143 File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols
2145 2.7.2 Writing symbols
2146 ---------------------
2148 Writing of a symbol table is automatic when a BFD open for writing is
2149 closed. The application attaches a vector of pointers to pointers to
2150 symbols to the BFD being written, and fills in the symbol count. The
2151 close and cleanup code reads through the table provided and performs
2152 all the necessary operations. The BFD output code must always be
2153 provided with an "owned" symbol: one which has come from another BFD,
2154 or one which has been created using `bfd_make_empty_symbol'. Here is an
2155 example showing the creation of a symbol table with only one element:
2164 abfd = bfd_openw ("foo","a.out-sunos-big");
2165 bfd_set_format (abfd, bfd_object);
2166 new = bfd_make_empty_symbol (abfd);
2167 new->name = "dummy_symbol";
2168 new->section = bfd_make_section_old_way (abfd, ".text");
2169 new->flags = BSF_GLOBAL;
2170 new->value = 0x12345;
2175 bfd_set_symtab (abfd, ptrs, 1);
2182 00012345 A dummy_symbol
2184 Many formats cannot represent arbitrary symbol information; for
2185 instance, the `a.out' object format does not allow an arbitrary number
2186 of sections. A symbol pointing to a section which is not one of
2187 `.text', `.data' or `.bss' cannot be described.
2190 File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols
2195 Mini symbols provide read-only access to the symbol table. They use
2196 less memory space, but require more time to access. They can be useful
2197 for tools like nm or objdump, which may have to handle symbol tables of
2198 extremely large executables.
2200 The `bfd_read_minisymbols' function will read the symbols into
2201 memory in an internal form. It will return a `void *' pointer to a
2202 block of memory, a symbol count, and the size of each symbol. The
2203 pointer is allocated using `malloc', and should be freed by the caller
2204 when it is no longer needed.
2206 The function `bfd_minisymbol_to_symbol' will take a pointer to a
2207 minisymbol, and a pointer to a structure returned by
2208 `bfd_make_empty_symbol', and return a `asymbol' structure. The return
2209 value may or may not be the same as the value from
2210 `bfd_make_empty_symbol' which was passed in.
2213 File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols
2215 2.7.4 typedef asymbol
2216 ---------------------
2218 An `asymbol' has the form:
2221 typedef struct bfd_symbol
2223 /* A pointer to the BFD which owns the symbol. This information
2224 is necessary so that a back end can work out what additional
2225 information (invisible to the application writer) is carried
2228 This field is *almost* redundant, since you can use section->owner
2229 instead, except that some symbols point to the global sections
2230 bfd_{abs,com,und}_section. This could be fixed by making
2231 these globals be per-bfd (or per-target-flavor). FIXME. */
2232 struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
2234 /* The text of the symbol. The name is left alone, and not copied; the
2235 application may not alter it. */
2238 /* The value of the symbol. This really should be a union of a
2239 numeric value with a pointer, since some flags indicate that
2240 a pointer to another symbol is stored here. */
2243 /* Attributes of a symbol. */
2244 #define BSF_NO_FLAGS 0x00
2246 /* The symbol has local scope; `static' in `C'. The value
2247 is the offset into the section of the data. */
2248 #define BSF_LOCAL 0x01
2250 /* The symbol has global scope; initialized data in `C'. The
2251 value is the offset into the section of the data. */
2252 #define BSF_GLOBAL 0x02
2254 /* The symbol has global scope and is exported. The value is
2255 the offset into the section of the data. */
2256 #define BSF_EXPORT BSF_GLOBAL /* No real difference. */
2258 /* A normal C symbol would be one of:
2259 `BSF_LOCAL', `BSF_FORT_COMM', `BSF_UNDEFINED' or
2262 /* The symbol is a debugging record. The value has an arbitrary
2263 meaning, unless BSF_DEBUGGING_RELOC is also set. */
2264 #define BSF_DEBUGGING 0x08
2266 /* The symbol denotes a function entry point. Used in ELF,
2267 perhaps others someday. */
2268 #define BSF_FUNCTION 0x10
2270 /* Used by the linker. */
2271 #define BSF_KEEP 0x20
2272 #define BSF_KEEP_G 0x40
2274 /* A weak global symbol, overridable without warnings by
2275 a regular global symbol of the same name. */
2276 #define BSF_WEAK 0x80
2278 /* This symbol was created to point to a section, e.g. ELF's
2279 STT_SECTION symbols. */
2280 #define BSF_SECTION_SYM 0x100
2282 /* The symbol used to be a common symbol, but now it is
2284 #define BSF_OLD_COMMON 0x200
2286 /* The default value for common data. */
2287 #define BFD_FORT_COMM_DEFAULT_VALUE 0
2289 /* In some files the type of a symbol sometimes alters its
2290 location in an output file - ie in coff a `ISFCN' symbol
2291 which is also `C_EXT' symbol appears where it was
2292 declared and not at the end of a section. This bit is set
2293 by the target BFD part to convey this information. */
2294 #define BSF_NOT_AT_END 0x400
2296 /* Signal that the symbol is the label of constructor section. */
2297 #define BSF_CONSTRUCTOR 0x800
2299 /* Signal that the symbol is a warning symbol. The name is a
2300 warning. The name of the next symbol is the one to warn about;
2301 if a reference is made to a symbol with the same name as the next
2302 symbol, a warning is issued by the linker. */
2303 #define BSF_WARNING 0x1000
2305 /* Signal that the symbol is indirect. This symbol is an indirect
2306 pointer to the symbol with the same name as the next symbol. */
2307 #define BSF_INDIRECT 0x2000
2309 /* BSF_FILE marks symbols that contain a file name. This is used
2310 for ELF STT_FILE symbols. */
2311 #define BSF_FILE 0x4000
2313 /* Symbol is from dynamic linking information. */
2314 #define BSF_DYNAMIC 0x8000
2316 /* The symbol denotes a data object. Used in ELF, and perhaps
2318 #define BSF_OBJECT 0x10000
2320 /* This symbol is a debugging symbol. The value is the offset
2321 into the section of the data. BSF_DEBUGGING should be set
2323 #define BSF_DEBUGGING_RELOC 0x20000
2325 /* This symbol is thread local. Used in ELF. */
2326 #define BSF_THREAD_LOCAL 0x40000
2328 /* This symbol represents a complex relocation expression,
2329 with the expression tree serialized in the symbol name. */
2330 #define BSF_RELC 0x80000
2332 /* This symbol represents a signed complex relocation expression,
2333 with the expression tree serialized in the symbol name. */
2334 #define BSF_SRELC 0x100000
2338 /* A pointer to the section to which this symbol is
2339 relative. This will always be non NULL, there are special
2340 sections for undefined and absolute symbols. */
2341 struct bfd_section *section;
2343 /* Back end special data. */
2354 File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols
2356 2.7.5 Symbol handling functions
2357 -------------------------------
2359 2.7.5.1 `bfd_get_symtab_upper_bound'
2360 ....................................
2363 Return the number of bytes required to store a vector of pointers to
2364 `asymbols' for all the symbols in the BFD ABFD, including a terminal
2365 NULL pointer. If there are no symbols in the BFD, then return 0. If an
2366 error occurs, return -1.
2367 #define bfd_get_symtab_upper_bound(abfd) \
2368 BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
2370 2.7.5.2 `bfd_is_local_label'
2371 ............................
2374 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
2376 Return TRUE if the given symbol SYM in the BFD ABFD is a compiler
2377 generated local label, else return FALSE.
2379 2.7.5.3 `bfd_is_local_label_name'
2380 .................................
2383 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
2385 Return TRUE if a symbol with the name NAME in the BFD ABFD is a
2386 compiler generated local label, else return FALSE. This just checks
2387 whether the name has the form of a local label.
2388 #define bfd_is_local_label_name(abfd, name) \
2389 BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
2391 2.7.5.4 `bfd_is_target_special_symbol'
2392 ......................................
2395 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
2397 Return TRUE iff a symbol SYM in the BFD ABFD is something special to
2398 the particular target represented by the BFD. Such symbols should
2399 normally not be mentioned to the user.
2400 #define bfd_is_target_special_symbol(abfd, sym) \
2401 BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
2403 2.7.5.5 `bfd_canonicalize_symtab'
2404 .................................
2407 Read the symbols from the BFD ABFD, and fills in the vector LOCATION
2408 with pointers to the symbols and a trailing NULL. Return the actual
2409 number of symbol pointers, not including the NULL.
2410 #define bfd_canonicalize_symtab(abfd, location) \
2411 BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
2413 2.7.5.6 `bfd_set_symtab'
2414 ........................
2417 bfd_boolean bfd_set_symtab
2418 (bfd *abfd, asymbol **location, unsigned int count);
2420 Arrange that when the output BFD ABFD is closed, the table LOCATION of
2421 COUNT pointers to symbols will be written.
2423 2.7.5.7 `bfd_print_symbol_vandf'
2424 ................................
2427 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
2429 Print the value and flags of the SYMBOL supplied to the stream FILE.
2431 2.7.5.8 `bfd_make_empty_symbol'
2432 ...............................
2435 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2438 This routine is necessary because each back end has private
2439 information surrounding the `asymbol'. Building your own `asymbol' and
2440 pointing to it will not create the private information, and will cause
2442 #define bfd_make_empty_symbol(abfd) \
2443 BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
2445 2.7.5.9 `_bfd_generic_make_empty_symbol'
2446 ........................................
2449 asymbol *_bfd_generic_make_empty_symbol (bfd *);
2451 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2452 to it. Used by core file routines, binary back-end and anywhere else
2453 where no private info is needed.
2455 2.7.5.10 `bfd_make_debug_symbol'
2456 ................................
2459 Create a new `asymbol' structure for the BFD ABFD, to be used as a
2460 debugging symbol. Further details of its use have yet to be worked out.
2461 #define bfd_make_debug_symbol(abfd,ptr,size) \
2462 BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
2464 2.7.5.11 `bfd_decode_symclass'
2465 ..............................
2468 Return a character corresponding to the symbol class of SYMBOL, or '?'
2469 for an unknown class.
2472 int bfd_decode_symclass (asymbol *symbol);
2474 2.7.5.12 `bfd_is_undefined_symclass'
2475 ....................................
2478 Returns non-zero if the class symbol returned by bfd_decode_symclass
2479 represents an undefined symbol. Returns zero otherwise.
2482 bfd_boolean bfd_is_undefined_symclass (int symclass);
2484 2.7.5.13 `bfd_symbol_info'
2485 ..........................
2488 Fill in the basic info about symbol that nm needs. Additional info may
2489 be added by the back-ends after calling this function.
2492 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
2494 2.7.5.14 `bfd_copy_private_symbol_data'
2495 .......................................
2498 bfd_boolean bfd_copy_private_symbol_data
2499 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
2501 Copy private symbol information from ISYM in the BFD IBFD to the symbol
2502 OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error.
2503 Possible error returns are:
2505 * `bfd_error_no_memory' - Not enough memory exists to create private
2508 #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
2509 BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
2510 (ibfd, isymbol, obfd, osymbol))
2513 File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end
2519 An archive (or library) is just another BFD. It has a symbol table,
2520 although there's not much a user program will do with it.
2522 The big difference between an archive BFD and an ordinary BFD is
2523 that the archive doesn't have sections. Instead it has a chain of BFDs
2524 that are considered its contents. These BFDs can be manipulated like
2525 any other. The BFDs contained in an archive opened for reading will
2526 all be opened for reading. You may put either input or output BFDs
2527 into an archive opened for output; they will be handled correctly when
2528 the archive is closed.
2530 Use `bfd_openr_next_archived_file' to step through the contents of
2531 an archive opened for input. You don't have to read the entire archive
2532 if you don't want to! Read it until you find what you want.
2534 Archive contents of output BFDs are chained through the `next'
2535 pointer in a BFD. The first one is findable through the `archive_head'
2536 slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A
2537 given BFD may be in only one open output archive at a time.
2539 As expected, the BFD archive code is more general than the archive
2540 code of any given environment. BFD archives may contain files of
2541 different formats (e.g., a.out and coff) and even different
2542 architectures. You may even place archives recursively into archives!
2544 This can cause unexpected confusion, since some archive formats are
2545 more expressive than others. For instance, Intel COFF archives can
2546 preserve long filenames; SunOS a.out archives cannot. If you move a
2547 file from the first to the second format and back again, the filename
2548 may be truncated. Likewise, different a.out environments have different
2549 conventions as to how they truncate filenames, whether they preserve
2550 directory names in filenames, etc. When interoperating with native
2551 tools, be sure your files are homogeneous.
2553 Beware: most of these formats do not react well to the presence of
2554 spaces in filenames. We do the best we can, but can't always handle
2555 this case due to restrictions in the format of archives. Many Unix
2556 utilities are braindead in regards to spaces and such in filenames
2557 anyway, so this shouldn't be much of a restriction.
2559 Archives are supported in BFD in `archive.c'.
2561 2.8.1 Archive functions
2562 -----------------------
2564 2.8.1.1 `bfd_get_next_mapent'
2565 .............................
2568 symindex bfd_get_next_mapent
2569 (bfd *abfd, symindex previous, carsym **sym);
2571 Step through archive ABFD's symbol table (if it has one). Successively
2572 update SYM with the next symbol's information, returning that symbol's
2573 (internal) index into the symbol table.
2575 Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first
2576 one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one.
2578 A `carsym' is a canonical archive symbol. The only user-visible
2579 element is its name, a null-terminated string.
2581 2.8.1.2 `bfd_set_archive_head'
2582 ..............................
2585 bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);
2587 Set the head of the chain of BFDs contained in the archive OUTPUT to
2590 2.8.1.3 `bfd_openr_next_archived_file'
2591 ......................................
2594 bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);
2596 Provided a BFD, ARCHIVE, containing an archive and NULL, open an input
2597 BFD on the first contained element and returns that. Subsequent calls
2598 should pass the archive and the previous return value to return a
2599 created BFD to the next contained element. NULL is returned when there
2603 File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end
2608 A format is a BFD concept of high level file contents type. The formats
2609 supported by BFD are:
2612 The BFD may contain data, symbols, relocations and debug info.
2615 The BFD contains other BFDs and an optional index.
2618 The BFD contains the result of an executable core dump.
2620 2.9.1 File format functions
2621 ---------------------------
2623 2.9.1.1 `bfd_check_format'
2624 ..........................
2627 bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);
2629 Verify if the file attached to the BFD ABFD is compatible with the
2630 format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core').
2632 If the BFD has been set to a specific target before the call, only
2633 the named target and format combination is checked. If the target has
2634 not been set, or has been set to `default', then all the known target
2635 backends is interrogated to determine a match. If the default target
2636 matches, it is used. If not, exactly one target must recognize the
2637 file, or an error results.
2639 The function returns `TRUE' on success, otherwise `FALSE' with one
2640 of the following error codes:
2642 * `bfd_error_invalid_operation' - if `format' is not one of
2643 `bfd_object', `bfd_archive' or `bfd_core'.
2645 * `bfd_error_system_call' - if an error occured during a read - even
2646 some file mismatches can cause bfd_error_system_calls.
2648 * `file_not_recognised' - none of the backends recognised the file
2651 * `bfd_error_file_ambiguously_recognized' - more than one backend
2652 recognised the file format.
2654 2.9.1.2 `bfd_check_format_matches'
2655 ..................................
2658 bfd_boolean bfd_check_format_matches
2659 (bfd *abfd, bfd_format format, char ***matching);
2661 Like `bfd_check_format', except when it returns FALSE with `bfd_errno'
2662 set to `bfd_error_file_ambiguously_recognized'. In that case, if
2663 MATCHING is not NULL, it will be filled in with a NULL-terminated list
2664 of the names of the formats that matched, allocated with `malloc'.
2665 Then the user may choose a format and try again.
2667 When done with the list that MATCHING points to, the caller should
2670 2.9.1.3 `bfd_set_format'
2671 ........................
2674 bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);
2676 This function sets the file format of the BFD ABFD to the format
2677 FORMAT. If the target set in the BFD does not support the format
2678 requested, the format is invalid, or the BFD is not open for writing,
2679 then an error occurs.
2681 2.9.1.4 `bfd_format_string'
2682 ...........................
2685 const char *bfd_format_string (bfd_format format);
2687 Return a pointer to a const string `invalid', `object', `archive',
2688 `core', or `unknown', depending upon the value of FORMAT.
2691 File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end
2696 BFD maintains relocations in much the same way it maintains symbols:
2697 they are left alone until required, then read in en-masse and
2698 translated into an internal form. A common routine
2699 `bfd_perform_relocation' acts upon the canonical form to do the fixup.
2701 Relocations are maintained on a per section basis, while symbols are
2702 maintained on a per BFD basis.
2704 All that a back end has to do to fit the BFD interface is to create
2705 a `struct reloc_cache_entry' for each relocation in a particular
2706 section, and fill in the right bits of the structures.
2714 File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations
2716 2.10.1 typedef arelent
2717 ----------------------
2719 This is the structure of a relocation entry:
2722 typedef enum bfd_reloc_status
2724 /* No errors detected. */
2727 /* The relocation was performed, but there was an overflow. */
2730 /* The address to relocate was not within the section supplied. */
2731 bfd_reloc_outofrange,
2733 /* Used by special functions. */
2736 /* Unsupported relocation size requested. */
2737 bfd_reloc_notsupported,
2742 /* The symbol to relocate against was undefined. */
2743 bfd_reloc_undefined,
2745 /* The relocation was performed, but may not be ok - presently
2746 generated only when linking i960 coff files with i960 b.out
2747 symbols. If this type is returned, the error_message argument
2748 to bfd_perform_relocation will be set. */
2751 bfd_reloc_status_type;
2754 typedef struct reloc_cache_entry
2756 /* A pointer into the canonical table of pointers. */
2757 struct bfd_symbol **sym_ptr_ptr;
2759 /* offset in section. */
2760 bfd_size_type address;
2762 /* addend for relocation value. */
2765 /* Pointer to how to perform the required relocation. */
2766 reloc_howto_type *howto;
2771 Here is a description of each of the fields within an `arelent':
2774 The symbol table pointer points to a pointer to the symbol
2775 associated with the relocation request. It is the pointer into the
2776 table returned by the back end's `canonicalize_symtab' action. *Note
2777 Symbols::. The symbol is referenced through a pointer to a pointer so
2778 that tools like the linker can fix up all the symbols of the same name
2779 by modifying only one pointer. The relocation routine looks in the
2780 symbol and uses the base of the section the symbol is attached to and
2781 the value of the symbol as the initial relocation offset. If the symbol
2782 pointer is zero, then the section provided is looked up.
2785 The `address' field gives the offset in bytes from the base of the
2786 section data which owns the relocation record to the first byte of
2787 relocatable information. The actual data relocated will be relative to
2788 this point; for example, a relocation type which modifies the bottom
2789 two bytes of a four byte word would not touch the first byte pointed to
2790 in a big endian world.
2793 The `addend' is a value provided by the back end to be added (!) to
2794 the relocation offset. Its interpretation is dependent upon the howto.
2795 For example, on the 68k the code:
2800 return foo[0x12345678];
2803 Could be compiled into:
2811 This could create a reloc pointing to `foo', but leave the offset in
2812 the data, something like:
2814 RELOCATION RECORDS FOR [.text]:
2818 00000000 4e56 fffc ; linkw fp,#-4
2819 00000004 1039 1234 5678 ; moveb @#12345678,d0
2820 0000000a 49c0 ; extbl d0
2821 0000000c 4e5e ; unlk fp
2824 Using coff and an 88k, some instructions don't have enough space in
2825 them to represent the full address range, and pointers have to be
2826 loaded in two parts. So you'd get something like:
2828 or.u r13,r0,hi16(_foo+0x12345678)
2829 ld.b r2,r13,lo16(_foo+0x12345678)
2832 This should create two relocs, both pointing to `_foo', and with
2833 0x12340000 in their addend field. The data would consist of:
2835 RELOCATION RECORDS FOR [.text]:
2837 00000002 HVRT16 _foo+0x12340000
2838 00000006 LVRT16 _foo+0x12340000
2840 00000000 5da05678 ; or.u r13,r0,0x5678
2841 00000004 1c4d5678 ; ld.b r2,r13,0x5678
2842 00000008 f400c001 ; jmp r1
2844 The relocation routine digs out the value from the data, adds it to
2845 the addend to get the original offset, and then adds the value of
2846 `_foo'. Note that all 32 bits have to be kept around somewhere, to cope
2847 with carry from bit 15 to bit 16.
2849 One further example is the sparc and the a.out format. The sparc has
2850 a similar problem to the 88k, in that some instructions don't have room
2851 for an entire offset, but on the sparc the parts are created in odd
2852 sized lumps. The designers of the a.out format chose to not use the
2853 data within the section for storing part of the offset; all the offset
2854 is kept within the reloc. Anything in the data should be ignored.
2857 sethi %hi(_foo+0x12345678),%g2
2858 ldsb [%g2+%lo(_foo+0x12345678)],%i0
2862 Both relocs contain a pointer to `foo', and the offsets contain junk.
2864 RELOCATION RECORDS FOR [.text]:
2866 00000004 HI22 _foo+0x12345678
2867 00000008 LO10 _foo+0x12345678
2869 00000000 9de3bf90 ; save %sp,-112,%sp
2870 00000004 05000000 ; sethi %hi(_foo+0),%g2
2871 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
2872 0000000c 81c7e008 ; ret
2873 00000010 81e80000 ; restore
2876 The `howto' field can be imagined as a relocation instruction. It is
2877 a pointer to a structure which contains information on what to do with
2878 all of the other information in the reloc record and data section. A
2879 back end would normally have a relocation instruction set and turn
2880 relocations into pointers to the correct structure on input - but it
2881 would be possible to create each howto field on demand.
2883 2.10.1.1 `enum complain_overflow'
2884 .................................
2886 Indicates what sort of overflow checking should be done when performing
2890 enum complain_overflow
2892 /* Do not complain on overflow. */
2893 complain_overflow_dont,
2895 /* Complain if the value overflows when considered as a signed
2896 number one bit larger than the field. ie. A bitfield of N bits
2897 is allowed to represent -2**n to 2**n-1. */
2898 complain_overflow_bitfield,
2900 /* Complain if the value overflows when considered as a signed
2902 complain_overflow_signed,
2904 /* Complain if the value overflows when considered as an
2906 complain_overflow_unsigned
2909 2.10.1.2 `reloc_howto_type'
2910 ...........................
2912 The `reloc_howto_type' is a structure which contains all the
2913 information that libbfd needs to know to tie up a back end's data.
2915 struct bfd_symbol; /* Forward declaration. */
2917 struct reloc_howto_struct
2919 /* The type field has mainly a documentary use - the back end can
2920 do what it wants with it, though normally the back end's
2921 external idea of what a reloc number is stored
2922 in this field. For example, a PC relative word relocation
2923 in a coff environment has the type 023 - because that's
2924 what the outside world calls a R_PCRWORD reloc. */
2927 /* The value the final relocation is shifted right by. This drops
2928 unwanted data from the relocation. */
2929 unsigned int rightshift;
2931 /* The size of the item to be relocated. This is *not* a
2932 power-of-two measure. To get the number of bytes operated
2933 on by a type of relocation, use bfd_get_reloc_size. */
2936 /* The number of bits in the item to be relocated. This is used
2937 when doing overflow checking. */
2938 unsigned int bitsize;
2940 /* Notes that the relocation is relative to the location in the
2941 data section of the addend. The relocation function will
2942 subtract from the relocation value the address of the location
2944 bfd_boolean pc_relative;
2946 /* The bit position of the reloc value in the destination.
2947 The relocated value is left shifted by this amount. */
2948 unsigned int bitpos;
2950 /* What type of overflow error should be checked for when
2952 enum complain_overflow complain_on_overflow;
2954 /* If this field is non null, then the supplied function is
2955 called rather than the normal function. This allows really
2956 strange relocation methods to be accommodated (e.g., i960 callj
2958 bfd_reloc_status_type (*special_function)
2959 (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
2962 /* The textual name of the relocation type. */
2965 /* Some formats record a relocation addend in the section contents
2966 rather than with the relocation. For ELF formats this is the
2967 distinction between USE_REL and USE_RELA (though the code checks
2968 for USE_REL == 1/0). The value of this field is TRUE if the
2969 addend is recorded with the section contents; when performing a
2970 partial link (ld -r) the section contents (the data) will be
2971 modified. The value of this field is FALSE if addends are
2972 recorded with the relocation (in arelent.addend); when performing
2973 a partial link the relocation will be modified.
2974 All relocations for all ELF USE_RELA targets should set this field
2975 to FALSE (values of TRUE should be looked on with suspicion).
2976 However, the converse is not true: not all relocations of all ELF
2977 USE_REL targets set this field to TRUE. Why this is so is peculiar
2978 to each particular target. For relocs that aren't used in partial
2979 links (e.g. GOT stuff) it doesn't matter what this is set to. */
2980 bfd_boolean partial_inplace;
2982 /* src_mask selects the part of the instruction (or data) to be used
2983 in the relocation sum. If the target relocations don't have an
2984 addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
2985 dst_mask to extract the addend from the section contents. If
2986 relocations do have an addend in the reloc, eg. ELF USE_RELA, this
2987 field should be zero. Non-zero values for ELF USE_RELA targets are
2988 bogus as in those cases the value in the dst_mask part of the
2989 section contents should be treated as garbage. */
2992 /* dst_mask selects which parts of the instruction (or data) are
2993 replaced with a relocated value. */
2996 /* When some formats create PC relative instructions, they leave
2997 the value of the pc of the place being relocated in the offset
2998 slot of the instruction, so that a PC relative relocation can
2999 be made just by adding in an ordinary offset (e.g., sun3 a.out).
3000 Some formats leave the displacement part of an instruction
3001 empty (e.g., m88k bcs); this flag signals the fact. */
3002 bfd_boolean pcrel_offset;
3005 2.10.1.3 `The HOWTO Macro'
3006 ..........................
3009 The HOWTO define is horrible and will go away.
3010 #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
3011 { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
3014 And will be replaced with the totally magic way. But for the moment, we
3015 are compatible, so do it this way.
3016 #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
3017 HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
3018 NAME, FALSE, 0, 0, IN)
3021 This is used to fill in an empty howto entry in an array.
3022 #define EMPTY_HOWTO(C) \
3023 HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
3024 NULL, FALSE, 0, 0, FALSE)
3027 Helper routine to turn a symbol into a relocation value.
3028 #define HOWTO_PREPARE(relocation, symbol) \
3030 if (symbol != NULL) \
3032 if (bfd_is_com_section (symbol->section)) \
3038 relocation = symbol->value; \
3043 2.10.1.4 `bfd_get_reloc_size'
3044 .............................
3047 unsigned int bfd_get_reloc_size (reloc_howto_type *);
3049 For a reloc_howto_type that operates on a fixed number of bytes, this
3050 returns the number of bytes operated on.
3052 2.10.1.5 `arelent_chain'
3053 ........................
3056 How relocs are tied together in an `asection':
3057 typedef struct relent_chain
3060 struct relent_chain *next;
3064 2.10.1.6 `bfd_check_overflow'
3065 .............................
3068 bfd_reloc_status_type bfd_check_overflow
3069 (enum complain_overflow how,
3070 unsigned int bitsize,
3071 unsigned int rightshift,
3072 unsigned int addrsize,
3073 bfd_vma relocation);
3075 Perform overflow checking on RELOCATION which has BITSIZE significant
3076 bits and will be shifted right by RIGHTSHIFT bits, on a machine with
3077 addresses containing ADDRSIZE significant bits. The result is either of
3078 `bfd_reloc_ok' or `bfd_reloc_overflow'.
3080 2.10.1.7 `bfd_perform_relocation'
3081 .................................
3084 bfd_reloc_status_type bfd_perform_relocation
3086 arelent *reloc_entry,
3088 asection *input_section,
3090 char **error_message);
3092 If OUTPUT_BFD is supplied to this function, the generated image will be
3093 relocatable; the relocations are copied to the output file after they
3094 have been changed to reflect the new state of the world. There are two
3095 ways of reflecting the results of partial linkage in an output file: by
3096 modifying the output data in place, and by modifying the relocation
3097 record. Some native formats (e.g., basic a.out and basic coff) have no
3098 way of specifying an addend in the relocation type, so the addend has
3099 to go in the output data. This is no big deal since in these formats
3100 the output data slot will always be big enough for the addend. Complex
3101 reloc types with addends were invented to solve just this problem. The
3102 ERROR_MESSAGE argument is set to an error message if this return
3103 `bfd_reloc_dangerous'.
3105 2.10.1.8 `bfd_install_relocation'
3106 .................................
3109 bfd_reloc_status_type bfd_install_relocation
3111 arelent *reloc_entry,
3112 void *data, bfd_vma data_start,
3113 asection *input_section,
3114 char **error_message);
3116 This looks remarkably like `bfd_perform_relocation', except it does not
3117 expect that the section contents have been filled in. I.e., it's
3118 suitable for use when creating, rather than applying a relocation.
3120 For now, this function should be considered reserved for the
3124 File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations
3126 2.10.2 The howto manager
3127 ------------------------
3129 When an application wants to create a relocation, but doesn't know what
3130 the target machine might call it, it can find out by using this bit of
3133 2.10.2.1 `bfd_reloc_code_type'
3134 ..............................
3137 The insides of a reloc code. The idea is that, eventually, there will
3138 be one enumerator for every type of relocation we ever do. Pass one of
3139 these values to `bfd_reloc_type_lookup', and it'll return a howto
3142 This does mean that the application must determine the correct
3143 enumerator value; you can't get a howto pointer from a random set of
3146 Here are the possible values for `enum bfd_reloc_code_real':
3155 Basic absolute relocations of N bits.
3157 -- : BFD_RELOC_64_PCREL
3158 -- : BFD_RELOC_32_PCREL
3159 -- : BFD_RELOC_24_PCREL
3160 -- : BFD_RELOC_16_PCREL
3161 -- : BFD_RELOC_12_PCREL
3162 -- : BFD_RELOC_8_PCREL
3163 PC-relative relocations. Sometimes these are relative to the
3164 address of the relocation itself; sometimes they are relative to
3165 the start of the section containing the relocation. It depends on
3166 the specific target.
3168 The 24-bit relocation is used in some Intel 960 configurations.
3170 -- : BFD_RELOC_32_SECREL
3171 Section relative relocations. Some targets need this for DWARF2.
3173 -- : BFD_RELOC_32_GOT_PCREL
3174 -- : BFD_RELOC_16_GOT_PCREL
3175 -- : BFD_RELOC_8_GOT_PCREL
3176 -- : BFD_RELOC_32_GOTOFF
3177 -- : BFD_RELOC_16_GOTOFF
3178 -- : BFD_RELOC_LO16_GOTOFF
3179 -- : BFD_RELOC_HI16_GOTOFF
3180 -- : BFD_RELOC_HI16_S_GOTOFF
3181 -- : BFD_RELOC_8_GOTOFF
3182 -- : BFD_RELOC_64_PLT_PCREL
3183 -- : BFD_RELOC_32_PLT_PCREL
3184 -- : BFD_RELOC_24_PLT_PCREL
3185 -- : BFD_RELOC_16_PLT_PCREL
3186 -- : BFD_RELOC_8_PLT_PCREL
3187 -- : BFD_RELOC_64_PLTOFF
3188 -- : BFD_RELOC_32_PLTOFF
3189 -- : BFD_RELOC_16_PLTOFF
3190 -- : BFD_RELOC_LO16_PLTOFF
3191 -- : BFD_RELOC_HI16_PLTOFF
3192 -- : BFD_RELOC_HI16_S_PLTOFF
3193 -- : BFD_RELOC_8_PLTOFF
3196 -- : BFD_RELOC_68K_GLOB_DAT
3197 -- : BFD_RELOC_68K_JMP_SLOT
3198 -- : BFD_RELOC_68K_RELATIVE
3199 Relocations used by 68K ELF.
3201 -- : BFD_RELOC_32_BASEREL
3202 -- : BFD_RELOC_16_BASEREL
3203 -- : BFD_RELOC_LO16_BASEREL
3204 -- : BFD_RELOC_HI16_BASEREL
3205 -- : BFD_RELOC_HI16_S_BASEREL
3206 -- : BFD_RELOC_8_BASEREL
3208 Linkage-table relative.
3210 -- : BFD_RELOC_8_FFnn
3211 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
3213 -- : BFD_RELOC_32_PCREL_S2
3214 -- : BFD_RELOC_16_PCREL_S2
3215 -- : BFD_RELOC_23_PCREL_S2
3216 These PC-relative relocations are stored as word displacements -
3217 i.e., byte displacements shifted right two bits. The 30-bit word
3218 displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the
3219 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
3220 signed 16-bit displacement is used on the MIPS, and the 23-bit
3221 displacement is used on the Alpha.
3225 High 22 bits and low 10 bits of 32-bit value, placed into lower
3226 bits of the target word. These are used on the SPARC.
3228 -- : BFD_RELOC_GPREL16
3229 -- : BFD_RELOC_GPREL32
3230 For systems that allocate a Global Pointer register, these are
3231 displacements off that register. These relocation types are
3232 handled specially, because the value the register will have is
3233 decided relatively late.
3235 -- : BFD_RELOC_I960_CALLJ
3236 Reloc types used for i960/b.out.
3239 -- : BFD_RELOC_SPARC_WDISP22
3240 -- : BFD_RELOC_SPARC22
3241 -- : BFD_RELOC_SPARC13
3242 -- : BFD_RELOC_SPARC_GOT10
3243 -- : BFD_RELOC_SPARC_GOT13
3244 -- : BFD_RELOC_SPARC_GOT22
3245 -- : BFD_RELOC_SPARC_PC10
3246 -- : BFD_RELOC_SPARC_PC22
3247 -- : BFD_RELOC_SPARC_WPLT30
3248 -- : BFD_RELOC_SPARC_COPY
3249 -- : BFD_RELOC_SPARC_GLOB_DAT
3250 -- : BFD_RELOC_SPARC_JMP_SLOT
3251 -- : BFD_RELOC_SPARC_RELATIVE
3252 -- : BFD_RELOC_SPARC_UA16
3253 -- : BFD_RELOC_SPARC_UA32
3254 -- : BFD_RELOC_SPARC_UA64
3255 SPARC ELF relocations. There is probably some overlap with other
3256 relocation types already defined.
3258 -- : BFD_RELOC_SPARC_BASE13
3259 -- : BFD_RELOC_SPARC_BASE22
3260 I think these are specific to SPARC a.out (e.g., Sun 4).
3262 -- : BFD_RELOC_SPARC_64
3263 -- : BFD_RELOC_SPARC_10
3264 -- : BFD_RELOC_SPARC_11
3265 -- : BFD_RELOC_SPARC_OLO10
3266 -- : BFD_RELOC_SPARC_HH22
3267 -- : BFD_RELOC_SPARC_HM10
3268 -- : BFD_RELOC_SPARC_LM22
3269 -- : BFD_RELOC_SPARC_PC_HH22
3270 -- : BFD_RELOC_SPARC_PC_HM10
3271 -- : BFD_RELOC_SPARC_PC_LM22
3272 -- : BFD_RELOC_SPARC_WDISP16
3273 -- : BFD_RELOC_SPARC_WDISP19
3274 -- : BFD_RELOC_SPARC_7
3275 -- : BFD_RELOC_SPARC_6
3276 -- : BFD_RELOC_SPARC_5
3277 -- : BFD_RELOC_SPARC_DISP64
3278 -- : BFD_RELOC_SPARC_PLT32
3279 -- : BFD_RELOC_SPARC_PLT64
3280 -- : BFD_RELOC_SPARC_HIX22
3281 -- : BFD_RELOC_SPARC_LOX10
3282 -- : BFD_RELOC_SPARC_H44
3283 -- : BFD_RELOC_SPARC_M44
3284 -- : BFD_RELOC_SPARC_L44
3285 -- : BFD_RELOC_SPARC_REGISTER
3288 -- : BFD_RELOC_SPARC_REV32
3289 SPARC little endian relocation
3291 -- : BFD_RELOC_SPARC_TLS_GD_HI22
3292 -- : BFD_RELOC_SPARC_TLS_GD_LO10
3293 -- : BFD_RELOC_SPARC_TLS_GD_ADD
3294 -- : BFD_RELOC_SPARC_TLS_GD_CALL
3295 -- : BFD_RELOC_SPARC_TLS_LDM_HI22
3296 -- : BFD_RELOC_SPARC_TLS_LDM_LO10
3297 -- : BFD_RELOC_SPARC_TLS_LDM_ADD
3298 -- : BFD_RELOC_SPARC_TLS_LDM_CALL
3299 -- : BFD_RELOC_SPARC_TLS_LDO_HIX22
3300 -- : BFD_RELOC_SPARC_TLS_LDO_LOX10
3301 -- : BFD_RELOC_SPARC_TLS_LDO_ADD
3302 -- : BFD_RELOC_SPARC_TLS_IE_HI22
3303 -- : BFD_RELOC_SPARC_TLS_IE_LO10
3304 -- : BFD_RELOC_SPARC_TLS_IE_LD
3305 -- : BFD_RELOC_SPARC_TLS_IE_LDX
3306 -- : BFD_RELOC_SPARC_TLS_IE_ADD
3307 -- : BFD_RELOC_SPARC_TLS_LE_HIX22
3308 -- : BFD_RELOC_SPARC_TLS_LE_LOX10
3309 -- : BFD_RELOC_SPARC_TLS_DTPMOD32
3310 -- : BFD_RELOC_SPARC_TLS_DTPMOD64
3311 -- : BFD_RELOC_SPARC_TLS_DTPOFF32
3312 -- : BFD_RELOC_SPARC_TLS_DTPOFF64
3313 -- : BFD_RELOC_SPARC_TLS_TPOFF32
3314 -- : BFD_RELOC_SPARC_TLS_TPOFF64
3315 SPARC TLS relocations
3317 -- : BFD_RELOC_SPU_IMM7
3318 -- : BFD_RELOC_SPU_IMM8
3319 -- : BFD_RELOC_SPU_IMM10
3320 -- : BFD_RELOC_SPU_IMM10W
3321 -- : BFD_RELOC_SPU_IMM16
3322 -- : BFD_RELOC_SPU_IMM16W
3323 -- : BFD_RELOC_SPU_IMM18
3324 -- : BFD_RELOC_SPU_PCREL9a
3325 -- : BFD_RELOC_SPU_PCREL9b
3326 -- : BFD_RELOC_SPU_PCREL16
3327 -- : BFD_RELOC_SPU_LO16
3328 -- : BFD_RELOC_SPU_HI16
3329 -- : BFD_RELOC_SPU_PPU32
3330 -- : BFD_RELOC_SPU_PPU64
3333 -- : BFD_RELOC_ALPHA_GPDISP_HI16
3334 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
3335 "addend" in some special way. For GPDISP_HI16 ("gpdisp")
3336 relocations, the symbol is ignored when writing; when reading, it
3337 will be the absolute section symbol. The addend is the
3338 displacement in bytes of the "lda" instruction from the "ldah"
3339 instruction (which is at the address of this reloc).
3341 -- : BFD_RELOC_ALPHA_GPDISP_LO16
3342 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
3343 with GPDISP_HI16 relocs. The addend is ignored when writing the
3344 relocations out, and is filled in with the file's GP value on
3345 reading, for convenience.
3347 -- : BFD_RELOC_ALPHA_GPDISP
3348 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
3349 relocation except that there is no accompanying GPDISP_LO16
3352 -- : BFD_RELOC_ALPHA_LITERAL
3353 -- : BFD_RELOC_ALPHA_ELF_LITERAL
3354 -- : BFD_RELOC_ALPHA_LITUSE
3355 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
3356 the assembler turns it into a LDQ instruction to load the address
3357 of the symbol, and then fills in a register in the real
3360 The LITERAL reloc, at the LDQ instruction, refers to the .lita
3361 section symbol. The addend is ignored when writing, but is filled
3362 in with the file's GP value on reading, for convenience, as with
3363 the GPDISP_LO16 reloc.
3365 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and
3366 GPDISP_LO16. It should refer to the symbol to be referenced, as
3367 with 16_GOTOFF, but it generates output not based on the position
3368 within the .got section, but relative to the GP value chosen for
3369 the file during the final link stage.
3371 The LITUSE reloc, on the instruction using the loaded address,
3372 gives information to the linker that it might be able to use to
3373 optimize away some literal section references. The symbol is
3374 ignored (read as the absolute section symbol), and the "addend"
3375 indicates the type of instruction using the register: 1 - "memory"
3376 fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target
3379 -- : BFD_RELOC_ALPHA_HINT
3380 The HINT relocation indicates a value that should be filled into
3381 the "hint" field of a jmp/jsr/ret instruction, for possible branch-
3382 prediction logic which may be provided on some processors.
3384 -- : BFD_RELOC_ALPHA_LINKAGE
3385 The LINKAGE relocation outputs a linkage pair in the object file,
3386 which is filled by the linker.
3388 -- : BFD_RELOC_ALPHA_CODEADDR
3389 The CODEADDR relocation outputs a STO_CA in the object file, which
3390 is filled by the linker.
3392 -- : BFD_RELOC_ALPHA_GPREL_HI16
3393 -- : BFD_RELOC_ALPHA_GPREL_LO16
3394 The GPREL_HI/LO relocations together form a 32-bit offset from the
3397 -- : BFD_RELOC_ALPHA_BRSGP
3398 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
3399 share a common GP, and the target address is adjusted for
3400 STO_ALPHA_STD_GPLOAD.
3402 -- : BFD_RELOC_ALPHA_TLSGD
3403 -- : BFD_RELOC_ALPHA_TLSLDM
3404 -- : BFD_RELOC_ALPHA_DTPMOD64
3405 -- : BFD_RELOC_ALPHA_GOTDTPREL16
3406 -- : BFD_RELOC_ALPHA_DTPREL64
3407 -- : BFD_RELOC_ALPHA_DTPREL_HI16
3408 -- : BFD_RELOC_ALPHA_DTPREL_LO16
3409 -- : BFD_RELOC_ALPHA_DTPREL16
3410 -- : BFD_RELOC_ALPHA_GOTTPREL16
3411 -- : BFD_RELOC_ALPHA_TPREL64
3412 -- : BFD_RELOC_ALPHA_TPREL_HI16
3413 -- : BFD_RELOC_ALPHA_TPREL_LO16
3414 -- : BFD_RELOC_ALPHA_TPREL16
3415 Alpha thread-local storage relocations.
3417 -- : BFD_RELOC_MIPS_JMP
3418 Bits 27..2 of the relocation address shifted right 2 bits; simple
3421 -- : BFD_RELOC_MIPS16_JMP
3422 The MIPS16 jump instruction.
3424 -- : BFD_RELOC_MIPS16_GPREL
3425 MIPS16 GP relative reloc.
3428 High 16 bits of 32-bit value; simple reloc.
3430 -- : BFD_RELOC_HI16_S
3431 High 16 bits of 32-bit value but the low 16 bits will be sign
3432 extended and added to form the final result. If the low 16 bits
3433 form a negative number, we need to add one to the high value to
3434 compensate for the borrow when the low bits are added.
3439 -- : BFD_RELOC_HI16_PCREL
3440 High 16 bits of 32-bit pc-relative value
3442 -- : BFD_RELOC_HI16_S_PCREL
3443 High 16 bits of 32-bit pc-relative value, adjusted
3445 -- : BFD_RELOC_LO16_PCREL
3446 Low 16 bits of pc-relative value
3448 -- : BFD_RELOC_MIPS16_HI16
3449 MIPS16 high 16 bits of 32-bit value.
3451 -- : BFD_RELOC_MIPS16_HI16_S
3452 MIPS16 high 16 bits of 32-bit value but the low 16 bits will be
3453 sign extended and added to form the final result. If the low 16
3454 bits form a negative number, we need to add one to the high value
3455 to compensate for the borrow when the low bits are added.
3457 -- : BFD_RELOC_MIPS16_LO16
3460 -- : BFD_RELOC_MIPS_LITERAL
3461 Relocation against a MIPS literal section.
3463 -- : BFD_RELOC_MIPS_GOT16
3464 -- : BFD_RELOC_MIPS_CALL16
3465 -- : BFD_RELOC_MIPS_GOT_HI16
3466 -- : BFD_RELOC_MIPS_GOT_LO16
3467 -- : BFD_RELOC_MIPS_CALL_HI16
3468 -- : BFD_RELOC_MIPS_CALL_LO16
3469 -- : BFD_RELOC_MIPS_SUB
3470 -- : BFD_RELOC_MIPS_GOT_PAGE
3471 -- : BFD_RELOC_MIPS_GOT_OFST
3472 -- : BFD_RELOC_MIPS_GOT_DISP
3473 -- : BFD_RELOC_MIPS_SHIFT5
3474 -- : BFD_RELOC_MIPS_SHIFT6
3475 -- : BFD_RELOC_MIPS_INSERT_A
3476 -- : BFD_RELOC_MIPS_INSERT_B
3477 -- : BFD_RELOC_MIPS_DELETE
3478 -- : BFD_RELOC_MIPS_HIGHEST
3479 -- : BFD_RELOC_MIPS_HIGHER
3480 -- : BFD_RELOC_MIPS_SCN_DISP
3481 -- : BFD_RELOC_MIPS_REL16
3482 -- : BFD_RELOC_MIPS_RELGOT
3483 -- : BFD_RELOC_MIPS_JALR
3484 -- : BFD_RELOC_MIPS_TLS_DTPMOD32
3485 -- : BFD_RELOC_MIPS_TLS_DTPREL32
3486 -- : BFD_RELOC_MIPS_TLS_DTPMOD64
3487 -- : BFD_RELOC_MIPS_TLS_DTPREL64
3488 -- : BFD_RELOC_MIPS_TLS_GD
3489 -- : BFD_RELOC_MIPS_TLS_LDM
3490 -- : BFD_RELOC_MIPS_TLS_DTPREL_HI16
3491 -- : BFD_RELOC_MIPS_TLS_DTPREL_LO16
3492 -- : BFD_RELOC_MIPS_TLS_GOTTPREL
3493 -- : BFD_RELOC_MIPS_TLS_TPREL32
3494 -- : BFD_RELOC_MIPS_TLS_TPREL64
3495 -- : BFD_RELOC_MIPS_TLS_TPREL_HI16
3496 -- : BFD_RELOC_MIPS_TLS_TPREL_LO16
3497 MIPS ELF relocations.
3499 -- : BFD_RELOC_MIPS_COPY
3500 -- : BFD_RELOC_MIPS_JUMP_SLOT
3501 MIPS ELF relocations (VxWorks extensions).
3503 -- : BFD_RELOC_FRV_LABEL16
3504 -- : BFD_RELOC_FRV_LABEL24
3505 -- : BFD_RELOC_FRV_LO16
3506 -- : BFD_RELOC_FRV_HI16
3507 -- : BFD_RELOC_FRV_GPREL12
3508 -- : BFD_RELOC_FRV_GPRELU12
3509 -- : BFD_RELOC_FRV_GPREL32
3510 -- : BFD_RELOC_FRV_GPRELHI
3511 -- : BFD_RELOC_FRV_GPRELLO
3512 -- : BFD_RELOC_FRV_GOT12
3513 -- : BFD_RELOC_FRV_GOTHI
3514 -- : BFD_RELOC_FRV_GOTLO
3515 -- : BFD_RELOC_FRV_FUNCDESC
3516 -- : BFD_RELOC_FRV_FUNCDESC_GOT12
3517 -- : BFD_RELOC_FRV_FUNCDESC_GOTHI
3518 -- : BFD_RELOC_FRV_FUNCDESC_GOTLO
3519 -- : BFD_RELOC_FRV_FUNCDESC_VALUE
3520 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12
3521 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
3522 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
3523 -- : BFD_RELOC_FRV_GOTOFF12
3524 -- : BFD_RELOC_FRV_GOTOFFHI
3525 -- : BFD_RELOC_FRV_GOTOFFLO
3526 -- : BFD_RELOC_FRV_GETTLSOFF
3527 -- : BFD_RELOC_FRV_TLSDESC_VALUE
3528 -- : BFD_RELOC_FRV_GOTTLSDESC12
3529 -- : BFD_RELOC_FRV_GOTTLSDESCHI
3530 -- : BFD_RELOC_FRV_GOTTLSDESCLO
3531 -- : BFD_RELOC_FRV_TLSMOFF12
3532 -- : BFD_RELOC_FRV_TLSMOFFHI
3533 -- : BFD_RELOC_FRV_TLSMOFFLO
3534 -- : BFD_RELOC_FRV_GOTTLSOFF12
3535 -- : BFD_RELOC_FRV_GOTTLSOFFHI
3536 -- : BFD_RELOC_FRV_GOTTLSOFFLO
3537 -- : BFD_RELOC_FRV_TLSOFF
3538 -- : BFD_RELOC_FRV_TLSDESC_RELAX
3539 -- : BFD_RELOC_FRV_GETTLSOFF_RELAX
3540 -- : BFD_RELOC_FRV_TLSOFF_RELAX
3541 -- : BFD_RELOC_FRV_TLSMOFF
3542 Fujitsu Frv Relocations.
3544 -- : BFD_RELOC_MN10300_GOTOFF24
3545 This is a 24bit GOT-relative reloc for the mn10300.
3547 -- : BFD_RELOC_MN10300_GOT32
3548 This is a 32bit GOT-relative reloc for the mn10300, offset by two
3549 bytes in the instruction.
3551 -- : BFD_RELOC_MN10300_GOT24
3552 This is a 24bit GOT-relative reloc for the mn10300, offset by two
3553 bytes in the instruction.
3555 -- : BFD_RELOC_MN10300_GOT16
3556 This is a 16bit GOT-relative reloc for the mn10300, offset by two
3557 bytes in the instruction.
3559 -- : BFD_RELOC_MN10300_COPY
3560 Copy symbol at runtime.
3562 -- : BFD_RELOC_MN10300_GLOB_DAT
3565 -- : BFD_RELOC_MN10300_JMP_SLOT
3568 -- : BFD_RELOC_MN10300_RELATIVE
3569 Adjust by program base.
3571 -- : BFD_RELOC_386_GOT32
3572 -- : BFD_RELOC_386_PLT32
3573 -- : BFD_RELOC_386_COPY
3574 -- : BFD_RELOC_386_GLOB_DAT
3575 -- : BFD_RELOC_386_JUMP_SLOT
3576 -- : BFD_RELOC_386_RELATIVE
3577 -- : BFD_RELOC_386_GOTOFF
3578 -- : BFD_RELOC_386_GOTPC
3579 -- : BFD_RELOC_386_TLS_TPOFF
3580 -- : BFD_RELOC_386_TLS_IE
3581 -- : BFD_RELOC_386_TLS_GOTIE
3582 -- : BFD_RELOC_386_TLS_LE
3583 -- : BFD_RELOC_386_TLS_GD
3584 -- : BFD_RELOC_386_TLS_LDM
3585 -- : BFD_RELOC_386_TLS_LDO_32
3586 -- : BFD_RELOC_386_TLS_IE_32
3587 -- : BFD_RELOC_386_TLS_LE_32
3588 -- : BFD_RELOC_386_TLS_DTPMOD32
3589 -- : BFD_RELOC_386_TLS_DTPOFF32
3590 -- : BFD_RELOC_386_TLS_TPOFF32
3591 -- : BFD_RELOC_386_TLS_GOTDESC
3592 -- : BFD_RELOC_386_TLS_DESC_CALL
3593 -- : BFD_RELOC_386_TLS_DESC
3594 i386/elf relocations
3596 -- : BFD_RELOC_X86_64_GOT32
3597 -- : BFD_RELOC_X86_64_PLT32
3598 -- : BFD_RELOC_X86_64_COPY
3599 -- : BFD_RELOC_X86_64_GLOB_DAT
3600 -- : BFD_RELOC_X86_64_JUMP_SLOT
3601 -- : BFD_RELOC_X86_64_RELATIVE
3602 -- : BFD_RELOC_X86_64_GOTPCREL
3603 -- : BFD_RELOC_X86_64_32S
3604 -- : BFD_RELOC_X86_64_DTPMOD64
3605 -- : BFD_RELOC_X86_64_DTPOFF64
3606 -- : BFD_RELOC_X86_64_TPOFF64
3607 -- : BFD_RELOC_X86_64_TLSGD
3608 -- : BFD_RELOC_X86_64_TLSLD
3609 -- : BFD_RELOC_X86_64_DTPOFF32
3610 -- : BFD_RELOC_X86_64_GOTTPOFF
3611 -- : BFD_RELOC_X86_64_TPOFF32
3612 -- : BFD_RELOC_X86_64_GOTOFF64
3613 -- : BFD_RELOC_X86_64_GOTPC32
3614 -- : BFD_RELOC_X86_64_GOT64
3615 -- : BFD_RELOC_X86_64_GOTPCREL64
3616 -- : BFD_RELOC_X86_64_GOTPC64
3617 -- : BFD_RELOC_X86_64_GOTPLT64
3618 -- : BFD_RELOC_X86_64_PLTOFF64
3619 -- : BFD_RELOC_X86_64_GOTPC32_TLSDESC
3620 -- : BFD_RELOC_X86_64_TLSDESC_CALL
3621 -- : BFD_RELOC_X86_64_TLSDESC
3622 x86-64/elf relocations
3624 -- : BFD_RELOC_NS32K_IMM_8
3625 -- : BFD_RELOC_NS32K_IMM_16
3626 -- : BFD_RELOC_NS32K_IMM_32
3627 -- : BFD_RELOC_NS32K_IMM_8_PCREL
3628 -- : BFD_RELOC_NS32K_IMM_16_PCREL
3629 -- : BFD_RELOC_NS32K_IMM_32_PCREL
3630 -- : BFD_RELOC_NS32K_DISP_8
3631 -- : BFD_RELOC_NS32K_DISP_16
3632 -- : BFD_RELOC_NS32K_DISP_32
3633 -- : BFD_RELOC_NS32K_DISP_8_PCREL
3634 -- : BFD_RELOC_NS32K_DISP_16_PCREL
3635 -- : BFD_RELOC_NS32K_DISP_32_PCREL
3638 -- : BFD_RELOC_PDP11_DISP_8_PCREL
3639 -- : BFD_RELOC_PDP11_DISP_6_PCREL
3642 -- : BFD_RELOC_PJ_CODE_HI16
3643 -- : BFD_RELOC_PJ_CODE_LO16
3644 -- : BFD_RELOC_PJ_CODE_DIR16
3645 -- : BFD_RELOC_PJ_CODE_DIR32
3646 -- : BFD_RELOC_PJ_CODE_REL16
3647 -- : BFD_RELOC_PJ_CODE_REL32
3648 Picojava relocs. Not all of these appear in object files.
3650 -- : BFD_RELOC_PPC_B26
3651 -- : BFD_RELOC_PPC_BA26
3652 -- : BFD_RELOC_PPC_TOC16
3653 -- : BFD_RELOC_PPC_B16
3654 -- : BFD_RELOC_PPC_B16_BRTAKEN
3655 -- : BFD_RELOC_PPC_B16_BRNTAKEN
3656 -- : BFD_RELOC_PPC_BA16
3657 -- : BFD_RELOC_PPC_BA16_BRTAKEN
3658 -- : BFD_RELOC_PPC_BA16_BRNTAKEN
3659 -- : BFD_RELOC_PPC_COPY
3660 -- : BFD_RELOC_PPC_GLOB_DAT
3661 -- : BFD_RELOC_PPC_JMP_SLOT
3662 -- : BFD_RELOC_PPC_RELATIVE
3663 -- : BFD_RELOC_PPC_LOCAL24PC
3664 -- : BFD_RELOC_PPC_EMB_NADDR32
3665 -- : BFD_RELOC_PPC_EMB_NADDR16
3666 -- : BFD_RELOC_PPC_EMB_NADDR16_LO
3667 -- : BFD_RELOC_PPC_EMB_NADDR16_HI
3668 -- : BFD_RELOC_PPC_EMB_NADDR16_HA
3669 -- : BFD_RELOC_PPC_EMB_SDAI16
3670 -- : BFD_RELOC_PPC_EMB_SDA2I16
3671 -- : BFD_RELOC_PPC_EMB_SDA2REL
3672 -- : BFD_RELOC_PPC_EMB_SDA21
3673 -- : BFD_RELOC_PPC_EMB_MRKREF
3674 -- : BFD_RELOC_PPC_EMB_RELSEC16
3675 -- : BFD_RELOC_PPC_EMB_RELST_LO
3676 -- : BFD_RELOC_PPC_EMB_RELST_HI
3677 -- : BFD_RELOC_PPC_EMB_RELST_HA
3678 -- : BFD_RELOC_PPC_EMB_BIT_FLD
3679 -- : BFD_RELOC_PPC_EMB_RELSDA
3680 -- : BFD_RELOC_PPC64_HIGHER
3681 -- : BFD_RELOC_PPC64_HIGHER_S
3682 -- : BFD_RELOC_PPC64_HIGHEST
3683 -- : BFD_RELOC_PPC64_HIGHEST_S
3684 -- : BFD_RELOC_PPC64_TOC16_LO
3685 -- : BFD_RELOC_PPC64_TOC16_HI
3686 -- : BFD_RELOC_PPC64_TOC16_HA
3687 -- : BFD_RELOC_PPC64_TOC
3688 -- : BFD_RELOC_PPC64_PLTGOT16
3689 -- : BFD_RELOC_PPC64_PLTGOT16_LO
3690 -- : BFD_RELOC_PPC64_PLTGOT16_HI
3691 -- : BFD_RELOC_PPC64_PLTGOT16_HA
3692 -- : BFD_RELOC_PPC64_ADDR16_DS
3693 -- : BFD_RELOC_PPC64_ADDR16_LO_DS
3694 -- : BFD_RELOC_PPC64_GOT16_DS
3695 -- : BFD_RELOC_PPC64_GOT16_LO_DS
3696 -- : BFD_RELOC_PPC64_PLT16_LO_DS
3697 -- : BFD_RELOC_PPC64_SECTOFF_DS
3698 -- : BFD_RELOC_PPC64_SECTOFF_LO_DS
3699 -- : BFD_RELOC_PPC64_TOC16_DS
3700 -- : BFD_RELOC_PPC64_TOC16_LO_DS
3701 -- : BFD_RELOC_PPC64_PLTGOT16_DS
3702 -- : BFD_RELOC_PPC64_PLTGOT16_LO_DS
3703 Power(rs6000) and PowerPC relocations.
3705 -- : BFD_RELOC_PPC_TLS
3706 -- : BFD_RELOC_PPC_DTPMOD
3707 -- : BFD_RELOC_PPC_TPREL16
3708 -- : BFD_RELOC_PPC_TPREL16_LO
3709 -- : BFD_RELOC_PPC_TPREL16_HI
3710 -- : BFD_RELOC_PPC_TPREL16_HA
3711 -- : BFD_RELOC_PPC_TPREL
3712 -- : BFD_RELOC_PPC_DTPREL16
3713 -- : BFD_RELOC_PPC_DTPREL16_LO
3714 -- : BFD_RELOC_PPC_DTPREL16_HI
3715 -- : BFD_RELOC_PPC_DTPREL16_HA
3716 -- : BFD_RELOC_PPC_DTPREL
3717 -- : BFD_RELOC_PPC_GOT_TLSGD16
3718 -- : BFD_RELOC_PPC_GOT_TLSGD16_LO
3719 -- : BFD_RELOC_PPC_GOT_TLSGD16_HI
3720 -- : BFD_RELOC_PPC_GOT_TLSGD16_HA
3721 -- : BFD_RELOC_PPC_GOT_TLSLD16
3722 -- : BFD_RELOC_PPC_GOT_TLSLD16_LO
3723 -- : BFD_RELOC_PPC_GOT_TLSLD16_HI
3724 -- : BFD_RELOC_PPC_GOT_TLSLD16_HA
3725 -- : BFD_RELOC_PPC_GOT_TPREL16
3726 -- : BFD_RELOC_PPC_GOT_TPREL16_LO
3727 -- : BFD_RELOC_PPC_GOT_TPREL16_HI
3728 -- : BFD_RELOC_PPC_GOT_TPREL16_HA
3729 -- : BFD_RELOC_PPC_GOT_DTPREL16
3730 -- : BFD_RELOC_PPC_GOT_DTPREL16_LO
3731 -- : BFD_RELOC_PPC_GOT_DTPREL16_HI
3732 -- : BFD_RELOC_PPC_GOT_DTPREL16_HA
3733 -- : BFD_RELOC_PPC64_TPREL16_DS
3734 -- : BFD_RELOC_PPC64_TPREL16_LO_DS
3735 -- : BFD_RELOC_PPC64_TPREL16_HIGHER
3736 -- : BFD_RELOC_PPC64_TPREL16_HIGHERA
3737 -- : BFD_RELOC_PPC64_TPREL16_HIGHEST
3738 -- : BFD_RELOC_PPC64_TPREL16_HIGHESTA
3739 -- : BFD_RELOC_PPC64_DTPREL16_DS
3740 -- : BFD_RELOC_PPC64_DTPREL16_LO_DS
3741 -- : BFD_RELOC_PPC64_DTPREL16_HIGHER
3742 -- : BFD_RELOC_PPC64_DTPREL16_HIGHERA
3743 -- : BFD_RELOC_PPC64_DTPREL16_HIGHEST
3744 -- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA
3745 PowerPC and PowerPC64 thread-local storage relocations.
3747 -- : BFD_RELOC_I370_D12
3748 IBM 370/390 relocations
3751 The type of reloc used to build a constructor table - at the moment
3752 probably a 32 bit wide absolute relocation, but the target can
3753 choose. It generally does map to one of the other relocation
3756 -- : BFD_RELOC_ARM_PCREL_BRANCH
3757 ARM 26 bit pc-relative branch. The lowest two bits must be zero
3758 and are not stored in the instruction.
3760 -- : BFD_RELOC_ARM_PCREL_BLX
3761 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
3762 not stored in the instruction. The 2nd lowest bit comes from a 1
3763 bit field in the instruction.
3765 -- : BFD_RELOC_THUMB_PCREL_BLX
3766 Thumb 22 bit pc-relative branch. The lowest bit must be zero and
3767 is not stored in the instruction. The 2nd lowest bit comes from a
3768 1 bit field in the instruction.
3770 -- : BFD_RELOC_ARM_PCREL_CALL
3771 ARM 26-bit pc-relative branch for an unconditional BL or BLX
3774 -- : BFD_RELOC_ARM_PCREL_JUMP
3775 ARM 26-bit pc-relative branch for B or conditional BL instruction.
3777 -- : BFD_RELOC_THUMB_PCREL_BRANCH7
3778 -- : BFD_RELOC_THUMB_PCREL_BRANCH9
3779 -- : BFD_RELOC_THUMB_PCREL_BRANCH12
3780 -- : BFD_RELOC_THUMB_PCREL_BRANCH20
3781 -- : BFD_RELOC_THUMB_PCREL_BRANCH23
3782 -- : BFD_RELOC_THUMB_PCREL_BRANCH25
3783 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The
3784 lowest bit must be zero and is not stored in the instruction.
3785 Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an
3786 "nn" one smaller in all cases. Note further that BRANCH23
3787 corresponds to R_ARM_THM_CALL.
3789 -- : BFD_RELOC_ARM_OFFSET_IMM
3790 12-bit immediate offset, used in ARM-format ldr and str
3793 -- : BFD_RELOC_ARM_THUMB_OFFSET
3794 5-bit immediate offset, used in Thumb-format ldr and str
3797 -- : BFD_RELOC_ARM_TARGET1
3798 Pc-relative or absolute relocation depending on target. Used for
3799 entries in .init_array sections.
3801 -- : BFD_RELOC_ARM_ROSEGREL32
3802 Read-only segment base relative address.
3804 -- : BFD_RELOC_ARM_SBREL32
3805 Data segment base relative address.
3807 -- : BFD_RELOC_ARM_TARGET2
3808 This reloc is used for references to RTTI data from exception
3809 handling tables. The actual definition depends on the target. It
3810 may be a pc-relative or some form of GOT-indirect relocation.
3812 -- : BFD_RELOC_ARM_PREL31
3813 31-bit PC relative address.
3815 -- : BFD_RELOC_ARM_MOVW
3816 -- : BFD_RELOC_ARM_MOVT
3817 -- : BFD_RELOC_ARM_MOVW_PCREL
3818 -- : BFD_RELOC_ARM_MOVT_PCREL
3819 -- : BFD_RELOC_ARM_THUMB_MOVW
3820 -- : BFD_RELOC_ARM_THUMB_MOVT
3821 -- : BFD_RELOC_ARM_THUMB_MOVW_PCREL
3822 -- : BFD_RELOC_ARM_THUMB_MOVT_PCREL
3823 Low and High halfword relocations for MOVW and MOVT instructions.
3825 -- : BFD_RELOC_ARM_JUMP_SLOT
3826 -- : BFD_RELOC_ARM_GLOB_DAT
3827 -- : BFD_RELOC_ARM_GOT32
3828 -- : BFD_RELOC_ARM_PLT32
3829 -- : BFD_RELOC_ARM_RELATIVE
3830 -- : BFD_RELOC_ARM_GOTOFF
3831 -- : BFD_RELOC_ARM_GOTPC
3832 Relocations for setting up GOTs and PLTs for shared libraries.
3834 -- : BFD_RELOC_ARM_TLS_GD32
3835 -- : BFD_RELOC_ARM_TLS_LDO32
3836 -- : BFD_RELOC_ARM_TLS_LDM32
3837 -- : BFD_RELOC_ARM_TLS_DTPOFF32
3838 -- : BFD_RELOC_ARM_TLS_DTPMOD32
3839 -- : BFD_RELOC_ARM_TLS_TPOFF32
3840 -- : BFD_RELOC_ARM_TLS_IE32
3841 -- : BFD_RELOC_ARM_TLS_LE32
3842 ARM thread-local storage relocations.
3844 -- : BFD_RELOC_ARM_ALU_PC_G0_NC
3845 -- : BFD_RELOC_ARM_ALU_PC_G0
3846 -- : BFD_RELOC_ARM_ALU_PC_G1_NC
3847 -- : BFD_RELOC_ARM_ALU_PC_G1
3848 -- : BFD_RELOC_ARM_ALU_PC_G2
3849 -- : BFD_RELOC_ARM_LDR_PC_G0
3850 -- : BFD_RELOC_ARM_LDR_PC_G1
3851 -- : BFD_RELOC_ARM_LDR_PC_G2
3852 -- : BFD_RELOC_ARM_LDRS_PC_G0
3853 -- : BFD_RELOC_ARM_LDRS_PC_G1
3854 -- : BFD_RELOC_ARM_LDRS_PC_G2
3855 -- : BFD_RELOC_ARM_LDC_PC_G0
3856 -- : BFD_RELOC_ARM_LDC_PC_G1
3857 -- : BFD_RELOC_ARM_LDC_PC_G2
3858 -- : BFD_RELOC_ARM_ALU_SB_G0_NC
3859 -- : BFD_RELOC_ARM_ALU_SB_G0
3860 -- : BFD_RELOC_ARM_ALU_SB_G1_NC
3861 -- : BFD_RELOC_ARM_ALU_SB_G1
3862 -- : BFD_RELOC_ARM_ALU_SB_G2
3863 -- : BFD_RELOC_ARM_LDR_SB_G0
3864 -- : BFD_RELOC_ARM_LDR_SB_G1
3865 -- : BFD_RELOC_ARM_LDR_SB_G2
3866 -- : BFD_RELOC_ARM_LDRS_SB_G0
3867 -- : BFD_RELOC_ARM_LDRS_SB_G1
3868 -- : BFD_RELOC_ARM_LDRS_SB_G2
3869 -- : BFD_RELOC_ARM_LDC_SB_G0
3870 -- : BFD_RELOC_ARM_LDC_SB_G1
3871 -- : BFD_RELOC_ARM_LDC_SB_G2
3872 ARM group relocations.
3874 -- : BFD_RELOC_ARM_IMMEDIATE
3875 -- : BFD_RELOC_ARM_ADRL_IMMEDIATE
3876 -- : BFD_RELOC_ARM_T32_IMMEDIATE
3877 -- : BFD_RELOC_ARM_T32_ADD_IMM
3878 -- : BFD_RELOC_ARM_T32_IMM12
3879 -- : BFD_RELOC_ARM_T32_ADD_PC12
3880 -- : BFD_RELOC_ARM_SHIFT_IMM
3881 -- : BFD_RELOC_ARM_SMC
3882 -- : BFD_RELOC_ARM_SWI
3883 -- : BFD_RELOC_ARM_MULTI
3884 -- : BFD_RELOC_ARM_CP_OFF_IMM
3885 -- : BFD_RELOC_ARM_CP_OFF_IMM_S2
3886 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM
3887 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
3888 -- : BFD_RELOC_ARM_ADR_IMM
3889 -- : BFD_RELOC_ARM_LDR_IMM
3890 -- : BFD_RELOC_ARM_LITERAL
3891 -- : BFD_RELOC_ARM_IN_POOL
3892 -- : BFD_RELOC_ARM_OFFSET_IMM8
3893 -- : BFD_RELOC_ARM_T32_OFFSET_U8
3894 -- : BFD_RELOC_ARM_T32_OFFSET_IMM
3895 -- : BFD_RELOC_ARM_HWLITERAL
3896 -- : BFD_RELOC_ARM_THUMB_ADD
3897 -- : BFD_RELOC_ARM_THUMB_IMM
3898 -- : BFD_RELOC_ARM_THUMB_SHIFT
3899 These relocs are only used within the ARM assembler. They are not
3900 (at present) written to any object files.
3902 -- : BFD_RELOC_SH_PCDISP8BY2
3903 -- : BFD_RELOC_SH_PCDISP12BY2
3904 -- : BFD_RELOC_SH_IMM3
3905 -- : BFD_RELOC_SH_IMM3U
3906 -- : BFD_RELOC_SH_DISP12
3907 -- : BFD_RELOC_SH_DISP12BY2
3908 -- : BFD_RELOC_SH_DISP12BY4
3909 -- : BFD_RELOC_SH_DISP12BY8
3910 -- : BFD_RELOC_SH_DISP20
3911 -- : BFD_RELOC_SH_DISP20BY8
3912 -- : BFD_RELOC_SH_IMM4
3913 -- : BFD_RELOC_SH_IMM4BY2
3914 -- : BFD_RELOC_SH_IMM4BY4
3915 -- : BFD_RELOC_SH_IMM8
3916 -- : BFD_RELOC_SH_IMM8BY2
3917 -- : BFD_RELOC_SH_IMM8BY4
3918 -- : BFD_RELOC_SH_PCRELIMM8BY2
3919 -- : BFD_RELOC_SH_PCRELIMM8BY4
3920 -- : BFD_RELOC_SH_SWITCH16
3921 -- : BFD_RELOC_SH_SWITCH32
3922 -- : BFD_RELOC_SH_USES
3923 -- : BFD_RELOC_SH_COUNT
3924 -- : BFD_RELOC_SH_ALIGN
3925 -- : BFD_RELOC_SH_CODE
3926 -- : BFD_RELOC_SH_DATA
3927 -- : BFD_RELOC_SH_LABEL
3928 -- : BFD_RELOC_SH_LOOP_START
3929 -- : BFD_RELOC_SH_LOOP_END
3930 -- : BFD_RELOC_SH_COPY
3931 -- : BFD_RELOC_SH_GLOB_DAT
3932 -- : BFD_RELOC_SH_JMP_SLOT
3933 -- : BFD_RELOC_SH_RELATIVE
3934 -- : BFD_RELOC_SH_GOTPC
3935 -- : BFD_RELOC_SH_GOT_LOW16
3936 -- : BFD_RELOC_SH_GOT_MEDLOW16
3937 -- : BFD_RELOC_SH_GOT_MEDHI16
3938 -- : BFD_RELOC_SH_GOT_HI16
3939 -- : BFD_RELOC_SH_GOTPLT_LOW16
3940 -- : BFD_RELOC_SH_GOTPLT_MEDLOW16
3941 -- : BFD_RELOC_SH_GOTPLT_MEDHI16
3942 -- : BFD_RELOC_SH_GOTPLT_HI16
3943 -- : BFD_RELOC_SH_PLT_LOW16
3944 -- : BFD_RELOC_SH_PLT_MEDLOW16
3945 -- : BFD_RELOC_SH_PLT_MEDHI16
3946 -- : BFD_RELOC_SH_PLT_HI16
3947 -- : BFD_RELOC_SH_GOTOFF_LOW16
3948 -- : BFD_RELOC_SH_GOTOFF_MEDLOW16
3949 -- : BFD_RELOC_SH_GOTOFF_MEDHI16
3950 -- : BFD_RELOC_SH_GOTOFF_HI16
3951 -- : BFD_RELOC_SH_GOTPC_LOW16
3952 -- : BFD_RELOC_SH_GOTPC_MEDLOW16
3953 -- : BFD_RELOC_SH_GOTPC_MEDHI16
3954 -- : BFD_RELOC_SH_GOTPC_HI16
3955 -- : BFD_RELOC_SH_COPY64
3956 -- : BFD_RELOC_SH_GLOB_DAT64
3957 -- : BFD_RELOC_SH_JMP_SLOT64
3958 -- : BFD_RELOC_SH_RELATIVE64
3959 -- : BFD_RELOC_SH_GOT10BY4
3960 -- : BFD_RELOC_SH_GOT10BY8
3961 -- : BFD_RELOC_SH_GOTPLT10BY4
3962 -- : BFD_RELOC_SH_GOTPLT10BY8
3963 -- : BFD_RELOC_SH_GOTPLT32
3964 -- : BFD_RELOC_SH_SHMEDIA_CODE
3965 -- : BFD_RELOC_SH_IMMU5
3966 -- : BFD_RELOC_SH_IMMS6
3967 -- : BFD_RELOC_SH_IMMS6BY32
3968 -- : BFD_RELOC_SH_IMMU6
3969 -- : BFD_RELOC_SH_IMMS10
3970 -- : BFD_RELOC_SH_IMMS10BY2
3971 -- : BFD_RELOC_SH_IMMS10BY4
3972 -- : BFD_RELOC_SH_IMMS10BY8
3973 -- : BFD_RELOC_SH_IMMS16
3974 -- : BFD_RELOC_SH_IMMU16
3975 -- : BFD_RELOC_SH_IMM_LOW16
3976 -- : BFD_RELOC_SH_IMM_LOW16_PCREL
3977 -- : BFD_RELOC_SH_IMM_MEDLOW16
3978 -- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL
3979 -- : BFD_RELOC_SH_IMM_MEDHI16
3980 -- : BFD_RELOC_SH_IMM_MEDHI16_PCREL
3981 -- : BFD_RELOC_SH_IMM_HI16
3982 -- : BFD_RELOC_SH_IMM_HI16_PCREL
3983 -- : BFD_RELOC_SH_PT_16
3984 -- : BFD_RELOC_SH_TLS_GD_32
3985 -- : BFD_RELOC_SH_TLS_LD_32
3986 -- : BFD_RELOC_SH_TLS_LDO_32
3987 -- : BFD_RELOC_SH_TLS_IE_32
3988 -- : BFD_RELOC_SH_TLS_LE_32
3989 -- : BFD_RELOC_SH_TLS_DTPMOD32
3990 -- : BFD_RELOC_SH_TLS_DTPOFF32
3991 -- : BFD_RELOC_SH_TLS_TPOFF32
3992 Renesas / SuperH SH relocs. Not all of these appear in object
3995 -- : BFD_RELOC_ARC_B22_PCREL
3996 ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two
3997 bits must be zero and are not stored in the instruction. The high
3998 20 bits are installed in bits 26 through 7 of the instruction.
4000 -- : BFD_RELOC_ARC_B26
4001 ARC 26 bit absolute branch. The lowest two bits must be zero and
4002 are not stored in the instruction. The high 24 bits are installed
4003 in bits 23 through 0.
4005 -- : BFD_RELOC_BFIN_16_IMM
4006 ADI Blackfin 16 bit immediate absolute reloc.
4008 -- : BFD_RELOC_BFIN_16_HIGH
4009 ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.
4011 -- : BFD_RELOC_BFIN_4_PCREL
4012 ADI Blackfin 'a' part of LSETUP.
4014 -- : BFD_RELOC_BFIN_5_PCREL
4017 -- : BFD_RELOC_BFIN_16_LOW
4018 ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.
4020 -- : BFD_RELOC_BFIN_10_PCREL
4023 -- : BFD_RELOC_BFIN_11_PCREL
4024 ADI Blackfin 'b' part of LSETUP.
4026 -- : BFD_RELOC_BFIN_12_PCREL_JUMP
4029 -- : BFD_RELOC_BFIN_12_PCREL_JUMP_S
4030 ADI Blackfin Short jump, pcrel.
4032 -- : BFD_RELOC_BFIN_24_PCREL_CALL_X
4033 ADI Blackfin Call.x not implemented.
4035 -- : BFD_RELOC_BFIN_24_PCREL_JUMP_L
4036 ADI Blackfin Long Jump pcrel.
4038 -- : BFD_RELOC_BFIN_GOT17M4
4039 -- : BFD_RELOC_BFIN_GOTHI
4040 -- : BFD_RELOC_BFIN_GOTLO
4041 -- : BFD_RELOC_BFIN_FUNCDESC
4042 -- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4
4043 -- : BFD_RELOC_BFIN_FUNCDESC_GOTHI
4044 -- : BFD_RELOC_BFIN_FUNCDESC_GOTLO
4045 -- : BFD_RELOC_BFIN_FUNCDESC_VALUE
4046 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
4047 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
4048 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
4049 -- : BFD_RELOC_BFIN_GOTOFF17M4
4050 -- : BFD_RELOC_BFIN_GOTOFFHI
4051 -- : BFD_RELOC_BFIN_GOTOFFLO
4052 ADI Blackfin FD-PIC relocations.
4054 -- : BFD_RELOC_BFIN_GOT
4055 ADI Blackfin GOT relocation.
4057 -- : BFD_RELOC_BFIN_PLTPC
4058 ADI Blackfin PLTPC relocation.
4060 -- : BFD_ARELOC_BFIN_PUSH
4061 ADI Blackfin arithmetic relocation.
4063 -- : BFD_ARELOC_BFIN_CONST
4064 ADI Blackfin arithmetic relocation.
4066 -- : BFD_ARELOC_BFIN_ADD
4067 ADI Blackfin arithmetic relocation.
4069 -- : BFD_ARELOC_BFIN_SUB
4070 ADI Blackfin arithmetic relocation.
4072 -- : BFD_ARELOC_BFIN_MULT
4073 ADI Blackfin arithmetic relocation.
4075 -- : BFD_ARELOC_BFIN_DIV
4076 ADI Blackfin arithmetic relocation.
4078 -- : BFD_ARELOC_BFIN_MOD
4079 ADI Blackfin arithmetic relocation.
4081 -- : BFD_ARELOC_BFIN_LSHIFT
4082 ADI Blackfin arithmetic relocation.
4084 -- : BFD_ARELOC_BFIN_RSHIFT
4085 ADI Blackfin arithmetic relocation.
4087 -- : BFD_ARELOC_BFIN_AND
4088 ADI Blackfin arithmetic relocation.
4090 -- : BFD_ARELOC_BFIN_OR
4091 ADI Blackfin arithmetic relocation.
4093 -- : BFD_ARELOC_BFIN_XOR
4094 ADI Blackfin arithmetic relocation.
4096 -- : BFD_ARELOC_BFIN_LAND
4097 ADI Blackfin arithmetic relocation.
4099 -- : BFD_ARELOC_BFIN_LOR
4100 ADI Blackfin arithmetic relocation.
4102 -- : BFD_ARELOC_BFIN_LEN
4103 ADI Blackfin arithmetic relocation.
4105 -- : BFD_ARELOC_BFIN_NEG
4106 ADI Blackfin arithmetic relocation.
4108 -- : BFD_ARELOC_BFIN_COMP
4109 ADI Blackfin arithmetic relocation.
4111 -- : BFD_ARELOC_BFIN_PAGE
4112 ADI Blackfin arithmetic relocation.
4114 -- : BFD_ARELOC_BFIN_HWPAGE
4115 ADI Blackfin arithmetic relocation.
4117 -- : BFD_ARELOC_BFIN_ADDR
4118 ADI Blackfin arithmetic relocation.
4120 -- : BFD_RELOC_D10V_10_PCREL_R
4121 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4122 bits assumed to be 0.
4124 -- : BFD_RELOC_D10V_10_PCREL_L
4125 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4126 bits assumed to be 0. This is the same as the previous reloc
4127 except it is in the left container, i.e., shifted left 15 bits.
4129 -- : BFD_RELOC_D10V_18
4130 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4132 -- : BFD_RELOC_D10V_18_PCREL
4133 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4135 -- : BFD_RELOC_D30V_6
4136 Mitsubishi D30V relocs. This is a 6-bit absolute reloc.
4138 -- : BFD_RELOC_D30V_9_PCREL
4139 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4142 -- : BFD_RELOC_D30V_9_PCREL_R
4143 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4144 be 0. Same as the previous reloc but on the right side of the
4147 -- : BFD_RELOC_D30V_15
4148 This is a 12-bit absolute reloc with the right 3 bitsassumed to be
4151 -- : BFD_RELOC_D30V_15_PCREL
4152 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4155 -- : BFD_RELOC_D30V_15_PCREL_R
4156 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4157 to be 0. Same as the previous reloc but on the right side of the
4160 -- : BFD_RELOC_D30V_21
4161 This is an 18-bit absolute reloc with the right 3 bits assumed to
4164 -- : BFD_RELOC_D30V_21_PCREL
4165 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4168 -- : BFD_RELOC_D30V_21_PCREL_R
4169 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4170 to be 0. Same as the previous reloc but on the right side of the
4173 -- : BFD_RELOC_D30V_32
4174 This is a 32-bit absolute reloc.
4176 -- : BFD_RELOC_D30V_32_PCREL
4177 This is a 32-bit pc-relative reloc.
4179 -- : BFD_RELOC_DLX_HI16_S
4182 -- : BFD_RELOC_DLX_LO16
4185 -- : BFD_RELOC_DLX_JMP26
4188 -- : BFD_RELOC_M32C_HI8
4189 -- : BFD_RELOC_M32C_RL_JUMP
4190 -- : BFD_RELOC_M32C_RL_1ADDR
4191 -- : BFD_RELOC_M32C_RL_2ADDR
4192 Renesas M16C/M32C Relocations.
4194 -- : BFD_RELOC_M32R_24
4195 Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit
4198 -- : BFD_RELOC_M32R_10_PCREL
4199 This is a 10-bit pc-relative reloc with the right 2 bits assumed
4202 -- : BFD_RELOC_M32R_18_PCREL
4203 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4205 -- : BFD_RELOC_M32R_26_PCREL
4206 This is a 26-bit reloc with the right 2 bits assumed to be 0.
4208 -- : BFD_RELOC_M32R_HI16_ULO
4209 This is a 16-bit reloc containing the high 16 bits of an address
4210 used when the lower 16 bits are treated as unsigned.
4212 -- : BFD_RELOC_M32R_HI16_SLO
4213 This is a 16-bit reloc containing the high 16 bits of an address
4214 used when the lower 16 bits are treated as signed.
4216 -- : BFD_RELOC_M32R_LO16
4217 This is a 16-bit reloc containing the lower 16 bits of an address.
4219 -- : BFD_RELOC_M32R_SDA16
4220 This is a 16-bit reloc containing the small data area offset for
4221 use in add3, load, and store instructions.
4223 -- : BFD_RELOC_M32R_GOT24
4224 -- : BFD_RELOC_M32R_26_PLTREL
4225 -- : BFD_RELOC_M32R_COPY
4226 -- : BFD_RELOC_M32R_GLOB_DAT
4227 -- : BFD_RELOC_M32R_JMP_SLOT
4228 -- : BFD_RELOC_M32R_RELATIVE
4229 -- : BFD_RELOC_M32R_GOTOFF
4230 -- : BFD_RELOC_M32R_GOTOFF_HI_ULO
4231 -- : BFD_RELOC_M32R_GOTOFF_HI_SLO
4232 -- : BFD_RELOC_M32R_GOTOFF_LO
4233 -- : BFD_RELOC_M32R_GOTPC24
4234 -- : BFD_RELOC_M32R_GOT16_HI_ULO
4235 -- : BFD_RELOC_M32R_GOT16_HI_SLO
4236 -- : BFD_RELOC_M32R_GOT16_LO
4237 -- : BFD_RELOC_M32R_GOTPC_HI_ULO
4238 -- : BFD_RELOC_M32R_GOTPC_HI_SLO
4239 -- : BFD_RELOC_M32R_GOTPC_LO
4242 -- : BFD_RELOC_V850_9_PCREL
4243 This is a 9-bit reloc
4245 -- : BFD_RELOC_V850_22_PCREL
4246 This is a 22-bit reloc
4248 -- : BFD_RELOC_V850_SDA_16_16_OFFSET
4249 This is a 16 bit offset from the short data area pointer.
4251 -- : BFD_RELOC_V850_SDA_15_16_OFFSET
4252 This is a 16 bit offset (of which only 15 bits are used) from the
4253 short data area pointer.
4255 -- : BFD_RELOC_V850_ZDA_16_16_OFFSET
4256 This is a 16 bit offset from the zero data area pointer.
4258 -- : BFD_RELOC_V850_ZDA_15_16_OFFSET
4259 This is a 16 bit offset (of which only 15 bits are used) from the
4260 zero data area pointer.
4262 -- : BFD_RELOC_V850_TDA_6_8_OFFSET
4263 This is an 8 bit offset (of which only 6 bits are used) from the
4264 tiny data area pointer.
4266 -- : BFD_RELOC_V850_TDA_7_8_OFFSET
4267 This is an 8bit offset (of which only 7 bits are used) from the
4268 tiny data area pointer.
4270 -- : BFD_RELOC_V850_TDA_7_7_OFFSET
4271 This is a 7 bit offset from the tiny data area pointer.
4273 -- : BFD_RELOC_V850_TDA_16_16_OFFSET
4274 This is a 16 bit offset from the tiny data area pointer.
4276 -- : BFD_RELOC_V850_TDA_4_5_OFFSET
4277 This is a 5 bit offset (of which only 4 bits are used) from the
4278 tiny data area pointer.
4280 -- : BFD_RELOC_V850_TDA_4_4_OFFSET
4281 This is a 4 bit offset from the tiny data area pointer.
4283 -- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
4284 This is a 16 bit offset from the short data area pointer, with the
4285 bits placed non-contiguously in the instruction.
4287 -- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
4288 This is a 16 bit offset from the zero data area pointer, with the
4289 bits placed non-contiguously in the instruction.
4291 -- : BFD_RELOC_V850_CALLT_6_7_OFFSET
4292 This is a 6 bit offset from the call table base pointer.
4294 -- : BFD_RELOC_V850_CALLT_16_16_OFFSET
4295 This is a 16 bit offset from the call table base pointer.
4297 -- : BFD_RELOC_V850_LONGCALL
4298 Used for relaxing indirect function calls.
4300 -- : BFD_RELOC_V850_LONGJUMP
4301 Used for relaxing indirect jumps.
4303 -- : BFD_RELOC_V850_ALIGN
4304 Used to maintain alignment whilst relaxing.
4306 -- : BFD_RELOC_V850_LO16_SPLIT_OFFSET
4307 This is a variation of BFD_RELOC_LO16 that can be used in v850e
4310 -- : BFD_RELOC_MN10300_32_PCREL
4311 This is a 32bit pcrel reloc for the mn10300, offset by two bytes
4314 -- : BFD_RELOC_MN10300_16_PCREL
4315 This is a 16bit pcrel reloc for the mn10300, offset by two bytes
4318 -- : BFD_RELOC_TIC30_LDP
4319 This is a 8bit DP reloc for the tms320c30, where the most
4320 significant 8 bits of a 24 bit word are placed into the least
4321 significant 8 bits of the opcode.
4323 -- : BFD_RELOC_TIC54X_PARTLS7
4324 This is a 7bit reloc for the tms320c54x, where the least
4325 significant 7 bits of a 16 bit word are placed into the least
4326 significant 7 bits of the opcode.
4328 -- : BFD_RELOC_TIC54X_PARTMS9
4329 This is a 9bit DP reloc for the tms320c54x, where the most
4330 significant 9 bits of a 16 bit word are placed into the least
4331 significant 9 bits of the opcode.
4333 -- : BFD_RELOC_TIC54X_23
4334 This is an extended address 23-bit reloc for the tms320c54x.
4336 -- : BFD_RELOC_TIC54X_16_OF_23
4337 This is a 16-bit reloc for the tms320c54x, where the least
4338 significant 16 bits of a 23-bit extended address are placed into
4341 -- : BFD_RELOC_TIC54X_MS7_OF_23
4342 This is a reloc for the tms320c54x, where the most significant 7
4343 bits of a 23-bit extended address are placed into the opcode.
4345 -- : BFD_RELOC_FR30_48
4346 This is a 48 bit reloc for the FR30 that stores 32 bits.
4348 -- : BFD_RELOC_FR30_20
4349 This is a 32 bit reloc for the FR30 that stores 20 bits split up
4352 -- : BFD_RELOC_FR30_6_IN_4
4353 This is a 16 bit reloc for the FR30 that stores a 6 bit word
4356 -- : BFD_RELOC_FR30_8_IN_8
4357 This is a 16 bit reloc for the FR30 that stores an 8 bit byte
4360 -- : BFD_RELOC_FR30_9_IN_8
4361 This is a 16 bit reloc for the FR30 that stores a 9 bit short
4364 -- : BFD_RELOC_FR30_10_IN_8
4365 This is a 16 bit reloc for the FR30 that stores a 10 bit word
4368 -- : BFD_RELOC_FR30_9_PCREL
4369 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
4370 short offset into 8 bits.
4372 -- : BFD_RELOC_FR30_12_PCREL
4373 This is a 16 bit reloc for the FR30 that stores a 12 bit pc
4374 relative short offset into 11 bits.
4376 -- : BFD_RELOC_MCORE_PCREL_IMM8BY4
4377 -- : BFD_RELOC_MCORE_PCREL_IMM11BY2
4378 -- : BFD_RELOC_MCORE_PCREL_IMM4BY2
4379 -- : BFD_RELOC_MCORE_PCREL_32
4380 -- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
4381 -- : BFD_RELOC_MCORE_RVA
4382 Motorola Mcore relocations.
4384 -- : BFD_RELOC_MEP_8
4385 -- : BFD_RELOC_MEP_16
4386 -- : BFD_RELOC_MEP_32
4387 -- : BFD_RELOC_MEP_PCREL8A2
4388 -- : BFD_RELOC_MEP_PCREL12A2
4389 -- : BFD_RELOC_MEP_PCREL17A2
4390 -- : BFD_RELOC_MEP_PCREL24A2
4391 -- : BFD_RELOC_MEP_PCABS24A2
4392 -- : BFD_RELOC_MEP_LOW16
4393 -- : BFD_RELOC_MEP_HI16U
4394 -- : BFD_RELOC_MEP_HI16S
4395 -- : BFD_RELOC_MEP_GPREL
4396 -- : BFD_RELOC_MEP_TPREL
4397 -- : BFD_RELOC_MEP_TPREL7
4398 -- : BFD_RELOC_MEP_TPREL7A2
4399 -- : BFD_RELOC_MEP_TPREL7A4
4400 -- : BFD_RELOC_MEP_UIMM24
4401 -- : BFD_RELOC_MEP_ADDR24A4
4402 -- : BFD_RELOC_MEP_GNU_VTINHERIT
4403 -- : BFD_RELOC_MEP_GNU_VTENTRY
4404 Toshiba Media Processor Relocations.
4406 -- : BFD_RELOC_MMIX_GETA
4407 -- : BFD_RELOC_MMIX_GETA_1
4408 -- : BFD_RELOC_MMIX_GETA_2
4409 -- : BFD_RELOC_MMIX_GETA_3
4410 These are relocations for the GETA instruction.
4412 -- : BFD_RELOC_MMIX_CBRANCH
4413 -- : BFD_RELOC_MMIX_CBRANCH_J
4414 -- : BFD_RELOC_MMIX_CBRANCH_1
4415 -- : BFD_RELOC_MMIX_CBRANCH_2
4416 -- : BFD_RELOC_MMIX_CBRANCH_3
4417 These are relocations for a conditional branch instruction.
4419 -- : BFD_RELOC_MMIX_PUSHJ
4420 -- : BFD_RELOC_MMIX_PUSHJ_1
4421 -- : BFD_RELOC_MMIX_PUSHJ_2
4422 -- : BFD_RELOC_MMIX_PUSHJ_3
4423 -- : BFD_RELOC_MMIX_PUSHJ_STUBBABLE
4424 These are relocations for the PUSHJ instruction.
4426 -- : BFD_RELOC_MMIX_JMP
4427 -- : BFD_RELOC_MMIX_JMP_1
4428 -- : BFD_RELOC_MMIX_JMP_2
4429 -- : BFD_RELOC_MMIX_JMP_3
4430 These are relocations for the JMP instruction.
4432 -- : BFD_RELOC_MMIX_ADDR19
4433 This is a relocation for a relative address as in a GETA
4434 instruction or a branch.
4436 -- : BFD_RELOC_MMIX_ADDR27
4437 This is a relocation for a relative address as in a JMP
4440 -- : BFD_RELOC_MMIX_REG_OR_BYTE
4441 This is a relocation for an instruction field that may be a general
4442 register or a value 0..255.
4444 -- : BFD_RELOC_MMIX_REG
4445 This is a relocation for an instruction field that may be a general
4448 -- : BFD_RELOC_MMIX_BASE_PLUS_OFFSET
4449 This is a relocation for two instruction fields holding a register
4450 and an offset, the equivalent of the relocation.
4452 -- : BFD_RELOC_MMIX_LOCAL
4453 This relocation is an assertion that the expression is not
4454 allocated as a global register. It does not modify contents.
4456 -- : BFD_RELOC_AVR_7_PCREL
4457 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
4458 short offset into 7 bits.
4460 -- : BFD_RELOC_AVR_13_PCREL
4461 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
4462 short offset into 12 bits.
4464 -- : BFD_RELOC_AVR_16_PM
4465 This is a 16 bit reloc for the AVR that stores 17 bit value
4466 (usually program memory address) into 16 bits.
4468 -- : BFD_RELOC_AVR_LO8_LDI
4469 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4470 data memory address) into 8 bit immediate value of LDI insn.
4472 -- : BFD_RELOC_AVR_HI8_LDI
4473 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4474 bit of data memory address) into 8 bit immediate value of LDI insn.
4476 -- : BFD_RELOC_AVR_HH8_LDI
4477 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4478 high 8 bit of program memory address) into 8 bit immediate value
4481 -- : BFD_RELOC_AVR_MS8_LDI
4482 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4483 high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.
4485 -- : BFD_RELOC_AVR_LO8_LDI_NEG
4486 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4487 (usually data memory address) into 8 bit immediate value of SUBI
4490 -- : BFD_RELOC_AVR_HI8_LDI_NEG
4491 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4492 (high 8 bit of data memory address) into 8 bit immediate value of
4495 -- : BFD_RELOC_AVR_HH8_LDI_NEG
4496 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4497 (most high 8 bit of program memory address) into 8 bit immediate
4498 value of LDI or SUBI insn.
4500 -- : BFD_RELOC_AVR_MS8_LDI_NEG
4501 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4502 (msb of 32 bit value) into 8 bit immediate value of LDI insn.
4504 -- : BFD_RELOC_AVR_LO8_LDI_PM
4505 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4506 command address) into 8 bit immediate value of LDI insn.
4508 -- : BFD_RELOC_AVR_LO8_LDI_GS
4509 This is a 16 bit reloc for the AVR that stores 8 bit value
4510 (command address) into 8 bit immediate value of LDI insn. If the
4511 address is beyond the 128k boundary, the linker inserts a jump
4512 stub for this reloc in the lower 128k.
4514 -- : BFD_RELOC_AVR_HI8_LDI_PM
4515 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4516 bit of command address) into 8 bit immediate value of LDI insn.
4518 -- : BFD_RELOC_AVR_HI8_LDI_GS
4519 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4520 bit of command address) into 8 bit immediate value of LDI insn.
4521 If the address is beyond the 128k boundary, the linker inserts a
4522 jump stub for this reloc below 128k.
4524 -- : BFD_RELOC_AVR_HH8_LDI_PM
4525 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4526 high 8 bit of command address) into 8 bit immediate value of LDI
4529 -- : BFD_RELOC_AVR_LO8_LDI_PM_NEG
4530 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4531 (usually command address) into 8 bit immediate value of SUBI insn.
4533 -- : BFD_RELOC_AVR_HI8_LDI_PM_NEG
4534 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4535 (high 8 bit of 16 bit command address) into 8 bit immediate value
4538 -- : BFD_RELOC_AVR_HH8_LDI_PM_NEG
4539 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4540 (high 6 bit of 22 bit command address) into 8 bit immediate value
4543 -- : BFD_RELOC_AVR_CALL
4544 This is a 32 bit reloc for the AVR that stores 23 bit value into
4547 -- : BFD_RELOC_AVR_LDI
4548 This is a 16 bit reloc for the AVR that stores all needed bits for
4549 absolute addressing with ldi with overflow check to linktime
4551 -- : BFD_RELOC_AVR_6
4552 This is a 6 bit reloc for the AVR that stores offset for ldd/std
4555 -- : BFD_RELOC_AVR_6_ADIW
4556 This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw
4559 -- : BFD_RELOC_390_12
4562 -- : BFD_RELOC_390_GOT12
4565 -- : BFD_RELOC_390_PLT32
4566 32 bit PC relative PLT address.
4568 -- : BFD_RELOC_390_COPY
4569 Copy symbol at runtime.
4571 -- : BFD_RELOC_390_GLOB_DAT
4574 -- : BFD_RELOC_390_JMP_SLOT
4577 -- : BFD_RELOC_390_RELATIVE
4578 Adjust by program base.
4580 -- : BFD_RELOC_390_GOTPC
4581 32 bit PC relative offset to GOT.
4583 -- : BFD_RELOC_390_GOT16
4586 -- : BFD_RELOC_390_PC16DBL
4587 PC relative 16 bit shifted by 1.
4589 -- : BFD_RELOC_390_PLT16DBL
4590 16 bit PC rel. PLT shifted by 1.
4592 -- : BFD_RELOC_390_PC32DBL
4593 PC relative 32 bit shifted by 1.
4595 -- : BFD_RELOC_390_PLT32DBL
4596 32 bit PC rel. PLT shifted by 1.
4598 -- : BFD_RELOC_390_GOTPCDBL
4599 32 bit PC rel. GOT shifted by 1.
4601 -- : BFD_RELOC_390_GOT64
4604 -- : BFD_RELOC_390_PLT64
4605 64 bit PC relative PLT address.
4607 -- : BFD_RELOC_390_GOTENT
4608 32 bit rel. offset to GOT entry.
4610 -- : BFD_RELOC_390_GOTOFF64
4611 64 bit offset to GOT.
4613 -- : BFD_RELOC_390_GOTPLT12
4614 12-bit offset to symbol-entry within GOT, with PLT handling.
4616 -- : BFD_RELOC_390_GOTPLT16
4617 16-bit offset to symbol-entry within GOT, with PLT handling.
4619 -- : BFD_RELOC_390_GOTPLT32
4620 32-bit offset to symbol-entry within GOT, with PLT handling.
4622 -- : BFD_RELOC_390_GOTPLT64
4623 64-bit offset to symbol-entry within GOT, with PLT handling.
4625 -- : BFD_RELOC_390_GOTPLTENT
4626 32-bit rel. offset to symbol-entry within GOT, with PLT handling.
4628 -- : BFD_RELOC_390_PLTOFF16
4629 16-bit rel. offset from the GOT to a PLT entry.
4631 -- : BFD_RELOC_390_PLTOFF32
4632 32-bit rel. offset from the GOT to a PLT entry.
4634 -- : BFD_RELOC_390_PLTOFF64
4635 64-bit rel. offset from the GOT to a PLT entry.
4637 -- : BFD_RELOC_390_TLS_LOAD
4638 -- : BFD_RELOC_390_TLS_GDCALL
4639 -- : BFD_RELOC_390_TLS_LDCALL
4640 -- : BFD_RELOC_390_TLS_GD32
4641 -- : BFD_RELOC_390_TLS_GD64
4642 -- : BFD_RELOC_390_TLS_GOTIE12
4643 -- : BFD_RELOC_390_TLS_GOTIE32
4644 -- : BFD_RELOC_390_TLS_GOTIE64
4645 -- : BFD_RELOC_390_TLS_LDM32
4646 -- : BFD_RELOC_390_TLS_LDM64
4647 -- : BFD_RELOC_390_TLS_IE32
4648 -- : BFD_RELOC_390_TLS_IE64
4649 -- : BFD_RELOC_390_TLS_IEENT
4650 -- : BFD_RELOC_390_TLS_LE32
4651 -- : BFD_RELOC_390_TLS_LE64
4652 -- : BFD_RELOC_390_TLS_LDO32
4653 -- : BFD_RELOC_390_TLS_LDO64
4654 -- : BFD_RELOC_390_TLS_DTPMOD
4655 -- : BFD_RELOC_390_TLS_DTPOFF
4656 -- : BFD_RELOC_390_TLS_TPOFF
4657 s390 tls relocations.
4659 -- : BFD_RELOC_390_20
4660 -- : BFD_RELOC_390_GOT20
4661 -- : BFD_RELOC_390_GOTPLT20
4662 -- : BFD_RELOC_390_TLS_GOTIE20
4663 Long displacement extension.
4665 -- : BFD_RELOC_SCORE_DUMMY1
4668 -- : BFD_RELOC_SCORE_GPREL15
4669 Low 16 bit for load/store
4671 -- : BFD_RELOC_SCORE_DUMMY2
4672 -- : BFD_RELOC_SCORE_JMP
4673 This is a 24-bit reloc with the right 1 bit assumed to be 0
4675 -- : BFD_RELOC_SCORE_BRANCH
4676 This is a 19-bit reloc with the right 1 bit assumed to be 0
4678 -- : BFD_RELOC_SCORE16_JMP
4679 This is a 11-bit reloc with the right 1 bit assumed to be 0
4681 -- : BFD_RELOC_SCORE16_BRANCH
4682 This is a 8-bit reloc with the right 1 bit assumed to be 0
4684 -- : BFD_RELOC_SCORE_GOT15
4685 -- : BFD_RELOC_SCORE_GOT_LO16
4686 -- : BFD_RELOC_SCORE_CALL15
4687 -- : BFD_RELOC_SCORE_DUMMY_HI16
4688 Undocumented Score relocs
4690 -- : BFD_RELOC_IP2K_FR9
4691 Scenix IP2K - 9-bit register number / data address
4693 -- : BFD_RELOC_IP2K_BANK
4694 Scenix IP2K - 4-bit register/data bank number
4696 -- : BFD_RELOC_IP2K_ADDR16CJP
4697 Scenix IP2K - low 13 bits of instruction word address
4699 -- : BFD_RELOC_IP2K_PAGE3
4700 Scenix IP2K - high 3 bits of instruction word address
4702 -- : BFD_RELOC_IP2K_LO8DATA
4703 -- : BFD_RELOC_IP2K_HI8DATA
4704 -- : BFD_RELOC_IP2K_EX8DATA
4705 Scenix IP2K - ext/low/high 8 bits of data address
4707 -- : BFD_RELOC_IP2K_LO8INSN
4708 -- : BFD_RELOC_IP2K_HI8INSN
4709 Scenix IP2K - low/high 8 bits of instruction word address
4711 -- : BFD_RELOC_IP2K_PC_SKIP
4712 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
4714 -- : BFD_RELOC_IP2K_TEXT
4715 Scenix IP2K - 16 bit word address in text section.
4717 -- : BFD_RELOC_IP2K_FR_OFFSET
4718 Scenix IP2K - 7-bit sp or dp offset
4720 -- : BFD_RELOC_VPE4KMATH_DATA
4721 -- : BFD_RELOC_VPE4KMATH_INSN
4722 Scenix VPE4K coprocessor - data/insn-space addressing
4724 -- : BFD_RELOC_VTABLE_INHERIT
4725 -- : BFD_RELOC_VTABLE_ENTRY
4726 These two relocations are used by the linker to determine which of
4727 the entries in a C++ virtual function table are actually used.
4728 When the -gc-sections option is given, the linker will zero out
4729 the entries that are not used, so that the code for those
4730 functions need not be included in the output.
4732 VTABLE_INHERIT is a zero-space relocation used to describe to the
4733 linker the inheritance tree of a C++ virtual function table. The
4734 relocation's symbol should be the parent class' vtable, and the
4735 relocation should be located at the child vtable.
4737 VTABLE_ENTRY is a zero-space relocation that describes the use of a
4738 virtual function table entry. The reloc's symbol should refer to
4739 the table of the class mentioned in the code. Off of that base,
4740 an offset describes the entry that is being used. For Rela hosts,
4741 this offset is stored in the reloc's addend. For Rel hosts, we
4742 are forced to put this offset in the reloc's section offset.
4744 -- : BFD_RELOC_IA64_IMM14
4745 -- : BFD_RELOC_IA64_IMM22
4746 -- : BFD_RELOC_IA64_IMM64
4747 -- : BFD_RELOC_IA64_DIR32MSB
4748 -- : BFD_RELOC_IA64_DIR32LSB
4749 -- : BFD_RELOC_IA64_DIR64MSB
4750 -- : BFD_RELOC_IA64_DIR64LSB
4751 -- : BFD_RELOC_IA64_GPREL22
4752 -- : BFD_RELOC_IA64_GPREL64I
4753 -- : BFD_RELOC_IA64_GPREL32MSB
4754 -- : BFD_RELOC_IA64_GPREL32LSB
4755 -- : BFD_RELOC_IA64_GPREL64MSB
4756 -- : BFD_RELOC_IA64_GPREL64LSB
4757 -- : BFD_RELOC_IA64_LTOFF22
4758 -- : BFD_RELOC_IA64_LTOFF64I
4759 -- : BFD_RELOC_IA64_PLTOFF22
4760 -- : BFD_RELOC_IA64_PLTOFF64I
4761 -- : BFD_RELOC_IA64_PLTOFF64MSB
4762 -- : BFD_RELOC_IA64_PLTOFF64LSB
4763 -- : BFD_RELOC_IA64_FPTR64I
4764 -- : BFD_RELOC_IA64_FPTR32MSB
4765 -- : BFD_RELOC_IA64_FPTR32LSB
4766 -- : BFD_RELOC_IA64_FPTR64MSB
4767 -- : BFD_RELOC_IA64_FPTR64LSB
4768 -- : BFD_RELOC_IA64_PCREL21B
4769 -- : BFD_RELOC_IA64_PCREL21BI
4770 -- : BFD_RELOC_IA64_PCREL21M
4771 -- : BFD_RELOC_IA64_PCREL21F
4772 -- : BFD_RELOC_IA64_PCREL22
4773 -- : BFD_RELOC_IA64_PCREL60B
4774 -- : BFD_RELOC_IA64_PCREL64I
4775 -- : BFD_RELOC_IA64_PCREL32MSB
4776 -- : BFD_RELOC_IA64_PCREL32LSB
4777 -- : BFD_RELOC_IA64_PCREL64MSB
4778 -- : BFD_RELOC_IA64_PCREL64LSB
4779 -- : BFD_RELOC_IA64_LTOFF_FPTR22
4780 -- : BFD_RELOC_IA64_LTOFF_FPTR64I
4781 -- : BFD_RELOC_IA64_LTOFF_FPTR32MSB
4782 -- : BFD_RELOC_IA64_LTOFF_FPTR32LSB
4783 -- : BFD_RELOC_IA64_LTOFF_FPTR64MSB
4784 -- : BFD_RELOC_IA64_LTOFF_FPTR64LSB
4785 -- : BFD_RELOC_IA64_SEGREL32MSB
4786 -- : BFD_RELOC_IA64_SEGREL32LSB
4787 -- : BFD_RELOC_IA64_SEGREL64MSB
4788 -- : BFD_RELOC_IA64_SEGREL64LSB
4789 -- : BFD_RELOC_IA64_SECREL32MSB
4790 -- : BFD_RELOC_IA64_SECREL32LSB
4791 -- : BFD_RELOC_IA64_SECREL64MSB
4792 -- : BFD_RELOC_IA64_SECREL64LSB
4793 -- : BFD_RELOC_IA64_REL32MSB
4794 -- : BFD_RELOC_IA64_REL32LSB
4795 -- : BFD_RELOC_IA64_REL64MSB
4796 -- : BFD_RELOC_IA64_REL64LSB
4797 -- : BFD_RELOC_IA64_LTV32MSB
4798 -- : BFD_RELOC_IA64_LTV32LSB
4799 -- : BFD_RELOC_IA64_LTV64MSB
4800 -- : BFD_RELOC_IA64_LTV64LSB
4801 -- : BFD_RELOC_IA64_IPLTMSB
4802 -- : BFD_RELOC_IA64_IPLTLSB
4803 -- : BFD_RELOC_IA64_COPY
4804 -- : BFD_RELOC_IA64_LTOFF22X
4805 -- : BFD_RELOC_IA64_LDXMOV
4806 -- : BFD_RELOC_IA64_TPREL14
4807 -- : BFD_RELOC_IA64_TPREL22
4808 -- : BFD_RELOC_IA64_TPREL64I
4809 -- : BFD_RELOC_IA64_TPREL64MSB
4810 -- : BFD_RELOC_IA64_TPREL64LSB
4811 -- : BFD_RELOC_IA64_LTOFF_TPREL22
4812 -- : BFD_RELOC_IA64_DTPMOD64MSB
4813 -- : BFD_RELOC_IA64_DTPMOD64LSB
4814 -- : BFD_RELOC_IA64_LTOFF_DTPMOD22
4815 -- : BFD_RELOC_IA64_DTPREL14
4816 -- : BFD_RELOC_IA64_DTPREL22
4817 -- : BFD_RELOC_IA64_DTPREL64I
4818 -- : BFD_RELOC_IA64_DTPREL32MSB
4819 -- : BFD_RELOC_IA64_DTPREL32LSB
4820 -- : BFD_RELOC_IA64_DTPREL64MSB
4821 -- : BFD_RELOC_IA64_DTPREL64LSB
4822 -- : BFD_RELOC_IA64_LTOFF_DTPREL22
4823 Intel IA64 Relocations.
4825 -- : BFD_RELOC_M68HC11_HI8
4826 Motorola 68HC11 reloc. This is the 8 bit high part of an absolute
4829 -- : BFD_RELOC_M68HC11_LO8
4830 Motorola 68HC11 reloc. This is the 8 bit low part of an absolute
4833 -- : BFD_RELOC_M68HC11_3B
4834 Motorola 68HC11 reloc. This is the 3 bit of a value.
4836 -- : BFD_RELOC_M68HC11_RL_JUMP
4837 Motorola 68HC11 reloc. This reloc marks the beginning of a
4838 jump/call instruction. It is used for linker relaxation to
4839 correctly identify beginning of instruction and change some
4840 branches to use PC-relative addressing mode.
4842 -- : BFD_RELOC_M68HC11_RL_GROUP
4843 Motorola 68HC11 reloc. This reloc marks a group of several
4844 instructions that gcc generates and for which the linker
4845 relaxation pass can modify and/or remove some of them.
4847 -- : BFD_RELOC_M68HC11_LO16
4848 Motorola 68HC11 reloc. This is the 16-bit lower part of an
4849 address. It is used for 'call' instruction to specify the symbol
4850 address without any special transformation (due to memory bank
4853 -- : BFD_RELOC_M68HC11_PAGE
4854 Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the
4855 page number of an address. It is used by 'call' instruction to
4856 specify the page number of the symbol.
4858 -- : BFD_RELOC_M68HC11_24
4859 Motorola 68HC11 reloc. This is a 24-bit reloc that represents the
4860 address with a 16-bit value and a 8-bit page number. The symbol
4861 address is transformed to follow the 16K memory bank of 68HC12
4862 (seen as mapped in the window).
4864 -- : BFD_RELOC_M68HC12_5B
4865 Motorola 68HC12 reloc. This is the 5 bits of a value.
4867 -- : BFD_RELOC_16C_NUM08
4868 -- : BFD_RELOC_16C_NUM08_C
4869 -- : BFD_RELOC_16C_NUM16
4870 -- : BFD_RELOC_16C_NUM16_C
4871 -- : BFD_RELOC_16C_NUM32
4872 -- : BFD_RELOC_16C_NUM32_C
4873 -- : BFD_RELOC_16C_DISP04
4874 -- : BFD_RELOC_16C_DISP04_C
4875 -- : BFD_RELOC_16C_DISP08
4876 -- : BFD_RELOC_16C_DISP08_C
4877 -- : BFD_RELOC_16C_DISP16
4878 -- : BFD_RELOC_16C_DISP16_C
4879 -- : BFD_RELOC_16C_DISP24
4880 -- : BFD_RELOC_16C_DISP24_C
4881 -- : BFD_RELOC_16C_DISP24a
4882 -- : BFD_RELOC_16C_DISP24a_C
4883 -- : BFD_RELOC_16C_REG04
4884 -- : BFD_RELOC_16C_REG04_C
4885 -- : BFD_RELOC_16C_REG04a
4886 -- : BFD_RELOC_16C_REG04a_C
4887 -- : BFD_RELOC_16C_REG14
4888 -- : BFD_RELOC_16C_REG14_C
4889 -- : BFD_RELOC_16C_REG16
4890 -- : BFD_RELOC_16C_REG16_C
4891 -- : BFD_RELOC_16C_REG20
4892 -- : BFD_RELOC_16C_REG20_C
4893 -- : BFD_RELOC_16C_ABS20
4894 -- : BFD_RELOC_16C_ABS20_C
4895 -- : BFD_RELOC_16C_ABS24
4896 -- : BFD_RELOC_16C_ABS24_C
4897 -- : BFD_RELOC_16C_IMM04
4898 -- : BFD_RELOC_16C_IMM04_C
4899 -- : BFD_RELOC_16C_IMM16
4900 -- : BFD_RELOC_16C_IMM16_C
4901 -- : BFD_RELOC_16C_IMM20
4902 -- : BFD_RELOC_16C_IMM20_C
4903 -- : BFD_RELOC_16C_IMM24
4904 -- : BFD_RELOC_16C_IMM24_C
4905 -- : BFD_RELOC_16C_IMM32
4906 -- : BFD_RELOC_16C_IMM32_C
4907 NS CR16C Relocations.
4909 -- : BFD_RELOC_CR16_NUM8
4910 -- : BFD_RELOC_CR16_NUM16
4911 -- : BFD_RELOC_CR16_NUM32
4912 -- : BFD_RELOC_CR16_NUM32a
4913 -- : BFD_RELOC_CR16_REGREL0
4914 -- : BFD_RELOC_CR16_REGREL4
4915 -- : BFD_RELOC_CR16_REGREL4a
4916 -- : BFD_RELOC_CR16_REGREL14
4917 -- : BFD_RELOC_CR16_REGREL14a
4918 -- : BFD_RELOC_CR16_REGREL16
4919 -- : BFD_RELOC_CR16_REGREL20
4920 -- : BFD_RELOC_CR16_REGREL20a
4921 -- : BFD_RELOC_CR16_ABS20
4922 -- : BFD_RELOC_CR16_ABS24
4923 -- : BFD_RELOC_CR16_IMM4
4924 -- : BFD_RELOC_CR16_IMM8
4925 -- : BFD_RELOC_CR16_IMM16
4926 -- : BFD_RELOC_CR16_IMM20
4927 -- : BFD_RELOC_CR16_IMM24
4928 -- : BFD_RELOC_CR16_IMM32
4929 -- : BFD_RELOC_CR16_IMM32a
4930 -- : BFD_RELOC_CR16_DISP4
4931 -- : BFD_RELOC_CR16_DISP8
4932 -- : BFD_RELOC_CR16_DISP16
4933 -- : BFD_RELOC_CR16_DISP20
4934 -- : BFD_RELOC_CR16_DISP24
4935 -- : BFD_RELOC_CR16_DISP24a
4936 NS CR16 Relocations.
4938 -- : BFD_RELOC_CRX_REL4
4939 -- : BFD_RELOC_CRX_REL8
4940 -- : BFD_RELOC_CRX_REL8_CMP
4941 -- : BFD_RELOC_CRX_REL16
4942 -- : BFD_RELOC_CRX_REL24
4943 -- : BFD_RELOC_CRX_REL32
4944 -- : BFD_RELOC_CRX_REGREL12
4945 -- : BFD_RELOC_CRX_REGREL22
4946 -- : BFD_RELOC_CRX_REGREL28
4947 -- : BFD_RELOC_CRX_REGREL32
4948 -- : BFD_RELOC_CRX_ABS16
4949 -- : BFD_RELOC_CRX_ABS32
4950 -- : BFD_RELOC_CRX_NUM8
4951 -- : BFD_RELOC_CRX_NUM16
4952 -- : BFD_RELOC_CRX_NUM32
4953 -- : BFD_RELOC_CRX_IMM16
4954 -- : BFD_RELOC_CRX_IMM32
4955 -- : BFD_RELOC_CRX_SWITCH8
4956 -- : BFD_RELOC_CRX_SWITCH16
4957 -- : BFD_RELOC_CRX_SWITCH32
4960 -- : BFD_RELOC_CRIS_BDISP8
4961 -- : BFD_RELOC_CRIS_UNSIGNED_5
4962 -- : BFD_RELOC_CRIS_SIGNED_6
4963 -- : BFD_RELOC_CRIS_UNSIGNED_6
4964 -- : BFD_RELOC_CRIS_SIGNED_8
4965 -- : BFD_RELOC_CRIS_UNSIGNED_8
4966 -- : BFD_RELOC_CRIS_SIGNED_16
4967 -- : BFD_RELOC_CRIS_UNSIGNED_16
4968 -- : BFD_RELOC_CRIS_LAPCQ_OFFSET
4969 -- : BFD_RELOC_CRIS_UNSIGNED_4
4970 These relocs are only used within the CRIS assembler. They are not
4971 (at present) written to any object files.
4973 -- : BFD_RELOC_CRIS_COPY
4974 -- : BFD_RELOC_CRIS_GLOB_DAT
4975 -- : BFD_RELOC_CRIS_JUMP_SLOT
4976 -- : BFD_RELOC_CRIS_RELATIVE
4977 Relocs used in ELF shared libraries for CRIS.
4979 -- : BFD_RELOC_CRIS_32_GOT
4980 32-bit offset to symbol-entry within GOT.
4982 -- : BFD_RELOC_CRIS_16_GOT
4983 16-bit offset to symbol-entry within GOT.
4985 -- : BFD_RELOC_CRIS_32_GOTPLT
4986 32-bit offset to symbol-entry within GOT, with PLT handling.
4988 -- : BFD_RELOC_CRIS_16_GOTPLT
4989 16-bit offset to symbol-entry within GOT, with PLT handling.
4991 -- : BFD_RELOC_CRIS_32_GOTREL
4992 32-bit offset to symbol, relative to GOT.
4994 -- : BFD_RELOC_CRIS_32_PLT_GOTREL
4995 32-bit offset to symbol with PLT entry, relative to GOT.
4997 -- : BFD_RELOC_CRIS_32_PLT_PCREL
4998 32-bit offset to symbol with PLT entry, relative to this
5001 -- : BFD_RELOC_860_COPY
5002 -- : BFD_RELOC_860_GLOB_DAT
5003 -- : BFD_RELOC_860_JUMP_SLOT
5004 -- : BFD_RELOC_860_RELATIVE
5005 -- : BFD_RELOC_860_PC26
5006 -- : BFD_RELOC_860_PLT26
5007 -- : BFD_RELOC_860_PC16
5008 -- : BFD_RELOC_860_LOW0
5009 -- : BFD_RELOC_860_SPLIT0
5010 -- : BFD_RELOC_860_LOW1
5011 -- : BFD_RELOC_860_SPLIT1
5012 -- : BFD_RELOC_860_LOW2
5013 -- : BFD_RELOC_860_SPLIT2
5014 -- : BFD_RELOC_860_LOW3
5015 -- : BFD_RELOC_860_LOGOT0
5016 -- : BFD_RELOC_860_SPGOT0
5017 -- : BFD_RELOC_860_LOGOT1
5018 -- : BFD_RELOC_860_SPGOT1
5019 -- : BFD_RELOC_860_LOGOTOFF0
5020 -- : BFD_RELOC_860_SPGOTOFF0
5021 -- : BFD_RELOC_860_LOGOTOFF1
5022 -- : BFD_RELOC_860_SPGOTOFF1
5023 -- : BFD_RELOC_860_LOGOTOFF2
5024 -- : BFD_RELOC_860_LOGOTOFF3
5025 -- : BFD_RELOC_860_LOPC
5026 -- : BFD_RELOC_860_HIGHADJ
5027 -- : BFD_RELOC_860_HAGOT
5028 -- : BFD_RELOC_860_HAGOTOFF
5029 -- : BFD_RELOC_860_HAPC
5030 -- : BFD_RELOC_860_HIGH
5031 -- : BFD_RELOC_860_HIGOT
5032 -- : BFD_RELOC_860_HIGOTOFF
5033 Intel i860 Relocations.
5035 -- : BFD_RELOC_OPENRISC_ABS_26
5036 -- : BFD_RELOC_OPENRISC_REL_26
5037 OpenRISC Relocations.
5039 -- : BFD_RELOC_H8_DIR16A8
5040 -- : BFD_RELOC_H8_DIR16R8
5041 -- : BFD_RELOC_H8_DIR24A8
5042 -- : BFD_RELOC_H8_DIR24R8
5043 -- : BFD_RELOC_H8_DIR32A16
5046 -- : BFD_RELOC_XSTORMY16_REL_12
5047 -- : BFD_RELOC_XSTORMY16_12
5048 -- : BFD_RELOC_XSTORMY16_24
5049 -- : BFD_RELOC_XSTORMY16_FPTR16
5050 Sony Xstormy16 Relocations.
5053 Self-describing complex relocations.
5055 -- : BFD_RELOC_XC16X_PAG
5056 -- : BFD_RELOC_XC16X_POF
5057 -- : BFD_RELOC_XC16X_SEG
5058 -- : BFD_RELOC_XC16X_SOF
5059 Infineon Relocations.
5061 -- : BFD_RELOC_VAX_GLOB_DAT
5062 -- : BFD_RELOC_VAX_JMP_SLOT
5063 -- : BFD_RELOC_VAX_RELATIVE
5064 Relocations used by VAX ELF.
5066 -- : BFD_RELOC_MT_PC16
5067 Morpho MT - 16 bit immediate relocation.
5069 -- : BFD_RELOC_MT_HI16
5070 Morpho MT - Hi 16 bits of an address.
5072 -- : BFD_RELOC_MT_LO16
5073 Morpho MT - Low 16 bits of an address.
5075 -- : BFD_RELOC_MT_GNU_VTINHERIT
5076 Morpho MT - Used to tell the linker which vtable entries are used.
5078 -- : BFD_RELOC_MT_GNU_VTENTRY
5079 Morpho MT - Used to tell the linker which vtable entries are used.
5081 -- : BFD_RELOC_MT_PCINSN8
5082 Morpho MT - 8 bit immediate relocation.
5084 -- : BFD_RELOC_MSP430_10_PCREL
5085 -- : BFD_RELOC_MSP430_16_PCREL
5086 -- : BFD_RELOC_MSP430_16
5087 -- : BFD_RELOC_MSP430_16_PCREL_BYTE
5088 -- : BFD_RELOC_MSP430_16_BYTE
5089 -- : BFD_RELOC_MSP430_2X_PCREL
5090 -- : BFD_RELOC_MSP430_RL_PCREL
5091 msp430 specific relocation codes
5093 -- : BFD_RELOC_IQ2000_OFFSET_16
5094 -- : BFD_RELOC_IQ2000_OFFSET_21
5095 -- : BFD_RELOC_IQ2000_UHI16
5098 -- : BFD_RELOC_XTENSA_RTLD
5099 Special Xtensa relocation used only by PLT entries in ELF shared
5100 objects to indicate that the runtime linker should set the value
5101 to one of its own internal functions or data structures.
5103 -- : BFD_RELOC_XTENSA_GLOB_DAT
5104 -- : BFD_RELOC_XTENSA_JMP_SLOT
5105 -- : BFD_RELOC_XTENSA_RELATIVE
5106 Xtensa relocations for ELF shared objects.
5108 -- : BFD_RELOC_XTENSA_PLT
5109 Xtensa relocation used in ELF object files for symbols that may
5110 require PLT entries. Otherwise, this is just a generic 32-bit
5113 -- : BFD_RELOC_XTENSA_DIFF8
5114 -- : BFD_RELOC_XTENSA_DIFF16
5115 -- : BFD_RELOC_XTENSA_DIFF32
5116 Xtensa relocations to mark the difference of two local symbols.
5117 These are only needed to support linker relaxation and can be
5118 ignored when not relaxing. The field is set to the value of the
5119 difference assuming no relaxation. The relocation encodes the
5120 position of the first symbol so the linker can determine whether
5121 to adjust the field value.
5123 -- : BFD_RELOC_XTENSA_SLOT0_OP
5124 -- : BFD_RELOC_XTENSA_SLOT1_OP
5125 -- : BFD_RELOC_XTENSA_SLOT2_OP
5126 -- : BFD_RELOC_XTENSA_SLOT3_OP
5127 -- : BFD_RELOC_XTENSA_SLOT4_OP
5128 -- : BFD_RELOC_XTENSA_SLOT5_OP
5129 -- : BFD_RELOC_XTENSA_SLOT6_OP
5130 -- : BFD_RELOC_XTENSA_SLOT7_OP
5131 -- : BFD_RELOC_XTENSA_SLOT8_OP
5132 -- : BFD_RELOC_XTENSA_SLOT9_OP
5133 -- : BFD_RELOC_XTENSA_SLOT10_OP
5134 -- : BFD_RELOC_XTENSA_SLOT11_OP
5135 -- : BFD_RELOC_XTENSA_SLOT12_OP
5136 -- : BFD_RELOC_XTENSA_SLOT13_OP
5137 -- : BFD_RELOC_XTENSA_SLOT14_OP
5138 Generic Xtensa relocations for instruction operands. Only the slot
5139 number is encoded in the relocation. The relocation applies to the
5140 last PC-relative immediate operand, or if there are no PC-relative
5141 immediates, to the last immediate operand.
5143 -- : BFD_RELOC_XTENSA_SLOT0_ALT
5144 -- : BFD_RELOC_XTENSA_SLOT1_ALT
5145 -- : BFD_RELOC_XTENSA_SLOT2_ALT
5146 -- : BFD_RELOC_XTENSA_SLOT3_ALT
5147 -- : BFD_RELOC_XTENSA_SLOT4_ALT
5148 -- : BFD_RELOC_XTENSA_SLOT5_ALT
5149 -- : BFD_RELOC_XTENSA_SLOT6_ALT
5150 -- : BFD_RELOC_XTENSA_SLOT7_ALT
5151 -- : BFD_RELOC_XTENSA_SLOT8_ALT
5152 -- : BFD_RELOC_XTENSA_SLOT9_ALT
5153 -- : BFD_RELOC_XTENSA_SLOT10_ALT
5154 -- : BFD_RELOC_XTENSA_SLOT11_ALT
5155 -- : BFD_RELOC_XTENSA_SLOT12_ALT
5156 -- : BFD_RELOC_XTENSA_SLOT13_ALT
5157 -- : BFD_RELOC_XTENSA_SLOT14_ALT
5158 Alternate Xtensa relocations. Only the slot is encoded in the
5159 relocation. The meaning of these relocations is opcode-specific.
5161 -- : BFD_RELOC_XTENSA_OP0
5162 -- : BFD_RELOC_XTENSA_OP1
5163 -- : BFD_RELOC_XTENSA_OP2
5164 Xtensa relocations for backward compatibility. These have all been
5165 replaced by BFD_RELOC_XTENSA_SLOT0_OP.
5167 -- : BFD_RELOC_XTENSA_ASM_EXPAND
5168 Xtensa relocation to mark that the assembler expanded the
5169 instructions from an original target. The expansion size is
5170 encoded in the reloc size.
5172 -- : BFD_RELOC_XTENSA_ASM_SIMPLIFY
5173 Xtensa relocation to mark that the linker should simplify
5174 assembler-expanded instructions. This is commonly used internally
5175 by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.
5177 -- : BFD_RELOC_Z80_DISP8
5178 8 bit signed offset in (ix+d) or (iy+d).
5180 -- : BFD_RELOC_Z8K_DISP7
5183 -- : BFD_RELOC_Z8K_CALLR
5186 -- : BFD_RELOC_Z8K_IMM4L
5190 typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
5192 2.10.2.2 `bfd_reloc_type_lookup'
5193 ................................
5196 reloc_howto_type *bfd_reloc_type_lookup
5197 (bfd *abfd, bfd_reloc_code_real_type code);
5198 reloc_howto_type *bfd_reloc_name_lookup
5199 (bfd *abfd, const char *reloc_name);
5201 Return a pointer to a howto structure which, when invoked, will perform
5202 the relocation CODE on data from the architecture noted.
5204 2.10.2.3 `bfd_default_reloc_type_lookup'
5205 ........................................
5208 reloc_howto_type *bfd_default_reloc_type_lookup
5209 (bfd *abfd, bfd_reloc_code_real_type code);
5211 Provides a default relocation lookup routine for any architecture.
5213 2.10.2.4 `bfd_get_reloc_code_name'
5214 ..................................
5217 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
5219 Provides a printable name for the supplied relocation code. Useful
5220 mainly for printing error messages.
5222 2.10.2.5 `bfd_generic_relax_section'
5223 ....................................
5226 bfd_boolean bfd_generic_relax_section
5229 struct bfd_link_info *,
5232 Provides default handling for relaxing for back ends which don't do
5235 2.10.2.6 `bfd_generic_gc_sections'
5236 ..................................
5239 bfd_boolean bfd_generic_gc_sections
5240 (bfd *, struct bfd_link_info *);
5242 Provides default handling for relaxing for back ends which don't do
5243 section gc - i.e., does nothing.
5245 2.10.2.7 `bfd_generic_merge_sections'
5246 .....................................
5249 bfd_boolean bfd_generic_merge_sections
5250 (bfd *, struct bfd_link_info *);
5252 Provides default handling for SEC_MERGE section merging for back ends
5253 which don't have SEC_MERGE support - i.e., does nothing.
5255 2.10.2.8 `bfd_generic_get_relocated_section_contents'
5256 .....................................................
5259 bfd_byte *bfd_generic_get_relocated_section_contents
5261 struct bfd_link_info *link_info,
5262 struct bfd_link_order *link_order,
5264 bfd_boolean relocatable,
5267 Provides default handling of relocation effort for back ends which
5268 can't be bothered to do it efficiently.
5271 File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end
5276 2.11.1 Core file functions
5277 --------------------------
5280 These are functions pertaining to core files.
5282 2.11.1.1 `bfd_core_file_failing_command'
5283 ........................................
5286 const char *bfd_core_file_failing_command (bfd *abfd);
5288 Return a read-only string explaining which program was running when it
5289 failed and produced the core file ABFD.
5291 2.11.1.2 `bfd_core_file_failing_signal'
5292 .......................................
5295 int bfd_core_file_failing_signal (bfd *abfd);
5297 Returns the signal number which caused the core dump which generated
5298 the file the BFD ABFD is attached to.
5300 2.11.1.3 `core_file_matches_executable_p'
5301 .........................................
5304 bfd_boolean core_file_matches_executable_p
5305 (bfd *core_bfd, bfd *exec_bfd);
5307 Return `TRUE' if the core file attached to CORE_BFD was generated by a
5308 run of the executable file attached to EXEC_BFD, `FALSE' otherwise.
5310 2.11.1.4 `generic_core_file_matches_executable_p'
5311 .................................................
5314 bfd_boolean generic_core_file_matches_executable_p
5315 (bfd *core_bfd, bfd *exec_bfd);
5317 Return TRUE if the core file attached to CORE_BFD was generated by a
5318 run of the executable file attached to EXEC_BFD. The match is based on
5319 executable basenames only.
5321 Note: When not able to determine the core file failing command or
5322 the executable name, we still return TRUE even though we're not sure
5323 that core file and executable match. This is to avoid generating a
5324 false warning in situations where we really don't know whether they
5328 File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end
5334 Each port of BFD to a different machine requires the creation of a
5335 target back end. All the back end provides to the root part of BFD is a
5336 structure containing pointers to functions which perform certain low
5337 level operations on files. BFD translates the applications's requests
5338 through a pointer into calls to the back end routines.
5340 When a file is opened with `bfd_openr', its format and target are
5341 unknown. BFD uses various mechanisms to determine how to interpret the
5342 file. The operations performed are:
5344 * Create a BFD by calling the internal routine `_bfd_new_bfd', then
5345 call `bfd_find_target' with the target string supplied to
5346 `bfd_openr' and the new BFD pointer.
5348 * If a null target string was provided to `bfd_find_target', look up
5349 the environment variable `GNUTARGET' and use that as the target
5352 * If the target string is still `NULL', or the target string is
5353 `default', then use the first item in the target vector as the
5354 target type, and set `target_defaulted' in the BFD to cause
5355 `bfd_check_format' to loop through all the targets. *Note
5356 bfd_target::. *Note Formats::.
5358 * Otherwise, inspect the elements in the target vector one by one,
5359 until a match on target name is found. When found, use it.
5361 * Otherwise return the error `bfd_error_invalid_target' to
5364 * `bfd_openr' attempts to open the file using `bfd_open_file', and
5366 Once the BFD has been opened and the target selected, the file
5367 format may be determined. This is done by calling `bfd_check_format' on
5368 the BFD with a suggested format. If `target_defaulted' has been set,
5369 each possible target type is tried to see if it recognizes the
5370 specified format. `bfd_check_format' returns `TRUE' when the caller
5378 File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets
5384 This structure contains everything that BFD knows about a target. It
5385 includes things like its byte order, name, and which routines to call
5386 to do various operations.
5388 Every BFD points to a target structure with its `xvec' member.
5390 The macros below are used to dispatch to functions through the
5391 `bfd_target' vector. They are used in a number of macros further down
5392 in `bfd.h', and are also used when calling various routines by hand
5393 inside the BFD implementation. The ARGLIST argument must be
5394 parenthesized; it contains all the arguments to the called function.
5396 They make the documentation (more) unpleasant to read, so if someone
5397 wants to fix this and not break the above, please do.
5398 #define BFD_SEND(bfd, message, arglist) \
5399 ((*((bfd)->xvec->message)) arglist)
5401 #ifdef DEBUG_BFD_SEND
5403 #define BFD_SEND(bfd, message, arglist) \
5404 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5405 ((*((bfd)->xvec->message)) arglist) : \
5406 (bfd_assert (__FILE__,__LINE__), NULL))
5408 For operations which index on the BFD format:
5409 #define BFD_SEND_FMT(bfd, message, arglist) \
5410 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)
5412 #ifdef DEBUG_BFD_SEND
5414 #define BFD_SEND_FMT(bfd, message, arglist) \
5415 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5416 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
5417 (bfd_assert (__FILE__,__LINE__), NULL))
5419 This is the structure which defines the type of BFD this is. The
5420 `xvec' member of the struct `bfd' itself points here. Each module that
5421 implements access to a different target under BFD, defines one of these.
5423 FIXME, these names should be rationalised with the names of the
5424 entry points which call them. Too bad we can't have one macro to define
5428 bfd_target_unknown_flavour,
5429 bfd_target_aout_flavour,
5430 bfd_target_coff_flavour,
5431 bfd_target_ecoff_flavour,
5432 bfd_target_xcoff_flavour,
5433 bfd_target_elf_flavour,
5434 bfd_target_ieee_flavour,
5435 bfd_target_nlm_flavour,
5436 bfd_target_oasys_flavour,
5437 bfd_target_tekhex_flavour,
5438 bfd_target_srec_flavour,
5439 bfd_target_ihex_flavour,
5440 bfd_target_som_flavour,
5441 bfd_target_os9k_flavour,
5442 bfd_target_versados_flavour,
5443 bfd_target_msdos_flavour,
5444 bfd_target_ovax_flavour,
5445 bfd_target_evax_flavour,
5446 bfd_target_mmo_flavour,
5447 bfd_target_mach_o_flavour,
5448 bfd_target_pef_flavour,
5449 bfd_target_pef_xlib_flavour,
5450 bfd_target_sym_flavour
5453 enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };
5455 /* Forward declaration. */
5456 typedef struct bfd_link_info _bfd_link_info;
5458 typedef struct bfd_target
5460 /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */
5463 /* The "flavour" of a back end is a general indication about
5464 the contents of a file. */
5465 enum bfd_flavour flavour;
5467 /* The order of bytes within the data area of a file. */
5468 enum bfd_endian byteorder;
5470 /* The order of bytes within the header parts of a file. */
5471 enum bfd_endian header_byteorder;
5473 /* A mask of all the flags which an executable may have set -
5474 from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */
5475 flagword object_flags;
5477 /* A mask of all the flags which a section may have set - from
5478 the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */
5479 flagword section_flags;
5481 /* The character normally found at the front of a symbol.
5482 (if any), perhaps `_'. */
5483 char symbol_leading_char;
5485 /* The pad character for file names within an archive header. */
5488 /* The maximum number of characters in an archive header. */
5489 unsigned short ar_max_namelen;
5491 /* Entries for byte swapping for data. These are different from the
5492 other entry points, since they don't take a BFD as the first argument.
5493 Certain other handlers could do the same. */
5494 bfd_uint64_t (*bfd_getx64) (const void *);
5495 bfd_int64_t (*bfd_getx_signed_64) (const void *);
5496 void (*bfd_putx64) (bfd_uint64_t, void *);
5497 bfd_vma (*bfd_getx32) (const void *);
5498 bfd_signed_vma (*bfd_getx_signed_32) (const void *);
5499 void (*bfd_putx32) (bfd_vma, void *);
5500 bfd_vma (*bfd_getx16) (const void *);
5501 bfd_signed_vma (*bfd_getx_signed_16) (const void *);
5502 void (*bfd_putx16) (bfd_vma, void *);
5504 /* Byte swapping for the headers. */
5505 bfd_uint64_t (*bfd_h_getx64) (const void *);
5506 bfd_int64_t (*bfd_h_getx_signed_64) (const void *);
5507 void (*bfd_h_putx64) (bfd_uint64_t, void *);
5508 bfd_vma (*bfd_h_getx32) (const void *);
5509 bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
5510 void (*bfd_h_putx32) (bfd_vma, void *);
5511 bfd_vma (*bfd_h_getx16) (const void *);
5512 bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
5513 void (*bfd_h_putx16) (bfd_vma, void *);
5515 /* Format dependent routines: these are vectors of entry points
5516 within the target vector structure, one for each format to check. */
5518 /* Check the format of a file being read. Return a `bfd_target *' or zero. */
5519 const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);
5521 /* Set the format of a file being written. */
5522 bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);
5524 /* Write cached information into a file being written, at `bfd_close'. */
5525 bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);
5526 The general target vector. These vectors are initialized using the
5527 BFD_JUMP_TABLE macros.
5529 /* Generic entry points. */
5530 #define BFD_JUMP_TABLE_GENERIC(NAME) \
5531 NAME##_close_and_cleanup, \
5532 NAME##_bfd_free_cached_info, \
5533 NAME##_new_section_hook, \
5534 NAME##_get_section_contents, \
5535 NAME##_get_section_contents_in_window
5537 /* Called when the BFD is being closed to do any necessary cleanup. */
5538 bfd_boolean (*_close_and_cleanup) (bfd *);
5539 /* Ask the BFD to free all cached information. */
5540 bfd_boolean (*_bfd_free_cached_info) (bfd *);
5541 /* Called when a new section is created. */
5542 bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
5543 /* Read the contents of a section. */
5544 bfd_boolean (*_bfd_get_section_contents)
5545 (bfd *, sec_ptr, void *, file_ptr, bfd_size_type);
5546 bfd_boolean (*_bfd_get_section_contents_in_window)
5547 (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);
5549 /* Entry points to copy private data. */
5550 #define BFD_JUMP_TABLE_COPY(NAME) \
5551 NAME##_bfd_copy_private_bfd_data, \
5552 NAME##_bfd_merge_private_bfd_data, \
5553 _bfd_generic_init_private_section_data, \
5554 NAME##_bfd_copy_private_section_data, \
5555 NAME##_bfd_copy_private_symbol_data, \
5556 NAME##_bfd_copy_private_header_data, \
5557 NAME##_bfd_set_private_flags, \
5558 NAME##_bfd_print_private_bfd_data
5560 /* Called to copy BFD general private data from one object file
5562 bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
5563 /* Called to merge BFD general private data from one object file
5564 to a common output file when linking. */
5565 bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
5566 /* Called to initialize BFD private section data from one object file
5568 #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
5569 BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
5570 bfd_boolean (*_bfd_init_private_section_data)
5571 (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);
5572 /* Called to copy BFD private section data from one object file
5574 bfd_boolean (*_bfd_copy_private_section_data)
5575 (bfd *, sec_ptr, bfd *, sec_ptr);
5576 /* Called to copy BFD private symbol data from one symbol
5578 bfd_boolean (*_bfd_copy_private_symbol_data)
5579 (bfd *, asymbol *, bfd *, asymbol *);
5580 /* Called to copy BFD private header data from one object file
5582 bfd_boolean (*_bfd_copy_private_header_data)
5584 /* Called to set private backend flags. */
5585 bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);
5587 /* Called to print private BFD data. */
5588 bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);
5590 /* Core file entry points. */
5591 #define BFD_JUMP_TABLE_CORE(NAME) \
5592 NAME##_core_file_failing_command, \
5593 NAME##_core_file_failing_signal, \
5594 NAME##_core_file_matches_executable_p
5596 char * (*_core_file_failing_command) (bfd *);
5597 int (*_core_file_failing_signal) (bfd *);
5598 bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
5600 /* Archive entry points. */
5601 #define BFD_JUMP_TABLE_ARCHIVE(NAME) \
5602 NAME##_slurp_armap, \
5603 NAME##_slurp_extended_name_table, \
5604 NAME##_construct_extended_name_table, \
5605 NAME##_truncate_arname, \
5606 NAME##_write_armap, \
5607 NAME##_read_ar_hdr, \
5608 NAME##_openr_next_archived_file, \
5609 NAME##_get_elt_at_index, \
5610 NAME##_generic_stat_arch_elt, \
5611 NAME##_update_armap_timestamp
5613 bfd_boolean (*_bfd_slurp_armap) (bfd *);
5614 bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
5615 bfd_boolean (*_bfd_construct_extended_name_table)
5616 (bfd *, char **, bfd_size_type *, const char **);
5617 void (*_bfd_truncate_arname) (bfd *, const char *, char *);
5618 bfd_boolean (*write_armap)
5619 (bfd *, unsigned int, struct orl *, unsigned int, int);
5620 void * (*_bfd_read_ar_hdr_fn) (bfd *);
5621 bfd * (*openr_next_archived_file) (bfd *, bfd *);
5622 #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
5623 bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);
5624 int (*_bfd_stat_arch_elt) (bfd *, struct stat *);
5625 bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);
5627 /* Entry points used for symbols. */
5628 #define BFD_JUMP_TABLE_SYMBOLS(NAME) \
5629 NAME##_get_symtab_upper_bound, \
5630 NAME##_canonicalize_symtab, \
5631 NAME##_make_empty_symbol, \
5632 NAME##_print_symbol, \
5633 NAME##_get_symbol_info, \
5634 NAME##_bfd_is_local_label_name, \
5635 NAME##_bfd_is_target_special_symbol, \
5636 NAME##_get_lineno, \
5637 NAME##_find_nearest_line, \
5638 _bfd_generic_find_line, \
5639 NAME##_find_inliner_info, \
5640 NAME##_bfd_make_debug_symbol, \
5641 NAME##_read_minisymbols, \
5642 NAME##_minisymbol_to_symbol
5644 long (*_bfd_get_symtab_upper_bound) (bfd *);
5645 long (*_bfd_canonicalize_symtab)
5646 (bfd *, struct bfd_symbol **);
5648 (*_bfd_make_empty_symbol) (bfd *);
5649 void (*_bfd_print_symbol)
5650 (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);
5651 #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
5652 void (*_bfd_get_symbol_info)
5653 (bfd *, struct bfd_symbol *, symbol_info *);
5654 #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
5655 bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
5656 bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
5657 alent * (*_get_lineno) (bfd *, struct bfd_symbol *);
5658 bfd_boolean (*_bfd_find_nearest_line)
5659 (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
5660 const char **, const char **, unsigned int *);
5661 bfd_boolean (*_bfd_find_line)
5662 (bfd *, struct bfd_symbol **, struct bfd_symbol *,
5663 const char **, unsigned int *);
5664 bfd_boolean (*_bfd_find_inliner_info)
5665 (bfd *, const char **, const char **, unsigned int *);
5666 /* Back-door to allow format-aware applications to create debug symbols
5667 while using BFD for everything else. Currently used by the assembler
5668 when creating COFF files. */
5669 asymbol * (*_bfd_make_debug_symbol)
5670 (bfd *, void *, unsigned long size);
5671 #define bfd_read_minisymbols(b, d, m, s) \
5672 BFD_SEND (b, _read_minisymbols, (b, d, m, s))
5673 long (*_read_minisymbols)
5674 (bfd *, bfd_boolean, void **, unsigned int *);
5675 #define bfd_minisymbol_to_symbol(b, d, m, f) \
5676 BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
5677 asymbol * (*_minisymbol_to_symbol)
5678 (bfd *, bfd_boolean, const void *, asymbol *);
5680 /* Routines for relocs. */
5681 #define BFD_JUMP_TABLE_RELOCS(NAME) \
5682 NAME##_get_reloc_upper_bound, \
5683 NAME##_canonicalize_reloc, \
5684 NAME##_bfd_reloc_type_lookup, \
5685 NAME##_bfd_reloc_name_lookup
5687 long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
5688 long (*_bfd_canonicalize_reloc)
5689 (bfd *, sec_ptr, arelent **, struct bfd_symbol **);
5690 /* See documentation on reloc types. */
5692 (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
5694 (*reloc_name_lookup) (bfd *, const char *);
5697 /* Routines used when writing an object file. */
5698 #define BFD_JUMP_TABLE_WRITE(NAME) \
5699 NAME##_set_arch_mach, \
5700 NAME##_set_section_contents
5702 bfd_boolean (*_bfd_set_arch_mach)
5703 (bfd *, enum bfd_architecture, unsigned long);
5704 bfd_boolean (*_bfd_set_section_contents)
5705 (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);
5707 /* Routines used by the linker. */
5708 #define BFD_JUMP_TABLE_LINK(NAME) \
5709 NAME##_sizeof_headers, \
5710 NAME##_bfd_get_relocated_section_contents, \
5711 NAME##_bfd_relax_section, \
5712 NAME##_bfd_link_hash_table_create, \
5713 NAME##_bfd_link_hash_table_free, \
5714 NAME##_bfd_link_add_symbols, \
5715 NAME##_bfd_link_just_syms, \
5716 NAME##_bfd_final_link, \
5717 NAME##_bfd_link_split_section, \
5718 NAME##_bfd_gc_sections, \
5719 NAME##_bfd_merge_sections, \
5720 NAME##_bfd_is_group_section, \
5721 NAME##_bfd_discard_group, \
5722 NAME##_section_already_linked \
5724 int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);
5725 bfd_byte * (*_bfd_get_relocated_section_contents)
5726 (bfd *, struct bfd_link_info *, struct bfd_link_order *,
5727 bfd_byte *, bfd_boolean, struct bfd_symbol **);
5729 bfd_boolean (*_bfd_relax_section)
5730 (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);
5732 /* Create a hash table for the linker. Different backends store
5733 different information in this table. */
5734 struct bfd_link_hash_table *
5735 (*_bfd_link_hash_table_create) (bfd *);
5737 /* Release the memory associated with the linker hash table. */
5738 void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *);
5740 /* Add symbols from this object file into the hash table. */
5741 bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);
5743 /* Indicate that we are only retrieving symbol values from this section. */
5744 void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);
5746 /* Do a link based on the link_order structures attached to each
5747 section of the BFD. */
5748 bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);
5750 /* Should this section be split up into smaller pieces during linking. */
5751 bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);
5753 /* Remove sections that are not referenced from the output. */
5754 bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);
5756 /* Attempt to merge SEC_MERGE sections. */
5757 bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);
5759 /* Is this section a member of a group? */
5760 bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);
5762 /* Discard members of a group. */
5763 bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);
5765 /* Check if SEC has been already linked during a reloceatable or
5767 void (*_section_already_linked) (bfd *, struct bfd_section *,
5768 struct bfd_link_info *);
5770 /* Routines to handle dynamic symbols and relocs. */
5771 #define BFD_JUMP_TABLE_DYNAMIC(NAME) \
5772 NAME##_get_dynamic_symtab_upper_bound, \
5773 NAME##_canonicalize_dynamic_symtab, \
5774 NAME##_get_synthetic_symtab, \
5775 NAME##_get_dynamic_reloc_upper_bound, \
5776 NAME##_canonicalize_dynamic_reloc
5778 /* Get the amount of memory required to hold the dynamic symbols. */
5779 long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
5780 /* Read in the dynamic symbols. */
5781 long (*_bfd_canonicalize_dynamic_symtab)
5782 (bfd *, struct bfd_symbol **);
5783 /* Create synthetized symbols. */
5784 long (*_bfd_get_synthetic_symtab)
5785 (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
5786 struct bfd_symbol **);
5787 /* Get the amount of memory required to hold the dynamic relocs. */
5788 long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
5789 /* Read in the dynamic relocs. */
5790 long (*_bfd_canonicalize_dynamic_reloc)
5791 (bfd *, arelent **, struct bfd_symbol **);
5792 A pointer to an alternative bfd_target in case the current one is not
5793 satisfactory. This can happen when the target cpu supports both big
5794 and little endian code, and target chosen by the linker has the wrong
5795 endianness. The function open_output() in ld/ldlang.c uses this field
5796 to find an alternative output format that is suitable.
5797 /* Opposite endian version of this target. */
5798 const struct bfd_target * alternative_target;
5800 /* Data for use by back-end routines, which isn't
5801 generic enough to belong in this structure. */
5802 const void *backend_data;
5806 2.12.1.1 `bfd_set_default_target'
5807 .................................
5810 bfd_boolean bfd_set_default_target (const char *name);
5812 Set the default target vector to use when recognizing a BFD. This
5813 takes the name of the target, which may be a BFD target name or a
5814 configuration triplet.
5816 2.12.1.2 `bfd_find_target'
5817 ..........................
5820 const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);
5822 Return a pointer to the transfer vector for the object target named
5823 TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the
5824 environment variable `GNUTARGET'; if that is null or not defined, then
5825 choose the first entry in the target list. Passing in the string
5826 "default" or setting the environment variable to "default" will cause
5827 the first entry in the target list to be returned, and
5828 "target_defaulted" will be set in the BFD if ABFD isn't `NULL'. This
5829 causes `bfd_check_format' to loop over all the targets to find the one
5830 that matches the file being read.
5832 2.12.1.3 `bfd_target_list'
5833 ..........................
5836 const char ** bfd_target_list (void);
5838 Return a freshly malloced NULL-terminated vector of the names of all
5839 the valid BFD targets. Do not modify the names.
5841 2.12.1.4 `bfd_seach_for_target'
5842 ...............................
5845 const bfd_target *bfd_search_for_target
5846 (int (*search_func) (const bfd_target *, void *),
5849 Return a pointer to the first transfer vector in the list of transfer
5850 vectors maintained by BFD that produces a non-zero result when passed
5851 to the function SEARCH_FUNC. The parameter DATA is passed, unexamined,
5852 to the search function.
5855 File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end
5860 BFD keeps one atom in a BFD describing the architecture of the data
5861 attached to the BFD: a pointer to a `bfd_arch_info_type'.
5863 Pointers to structures can be requested independently of a BFD so
5864 that an architecture's information can be interrogated without access
5867 The architecture information is provided by each architecture
5868 package. The set of default architectures is selected by the macro
5869 `SELECT_ARCHITECTURES'. This is normally set up in the
5870 `config/TARGET.mt' file of your choice. If the name is not defined,
5871 then all the architectures supported are included.
5873 When BFD starts up, all the architectures are called with an
5874 initialize method. It is up to the architecture back end to insert as
5875 many items into the list of architectures as it wants to; generally
5876 this would be one for each machine and one for the default case (an
5877 item with a machine field of 0).
5879 BFD's idea of an architecture is implemented in `archures.c'.
5881 2.13.1 bfd_architecture
5882 -----------------------
5885 This enum gives the object file's CPU architecture, in a global
5886 sense--i.e., what processor family does it belong to? Another field
5887 indicates which processor within the family is in use. The machine
5888 gives a number which distinguishes different versions of the
5889 architecture, containing, for example, 2 and 3 for Intel i960 KA and
5890 i960 KB, and 68020 and 68030 for Motorola 68020 and 68030.
5891 enum bfd_architecture
5893 bfd_arch_unknown, /* File arch not known. */
5894 bfd_arch_obscure, /* Arch known, not one of these. */
5895 bfd_arch_m68k, /* Motorola 68xxx */
5896 #define bfd_mach_m68000 1
5897 #define bfd_mach_m68008 2
5898 #define bfd_mach_m68010 3
5899 #define bfd_mach_m68020 4
5900 #define bfd_mach_m68030 5
5901 #define bfd_mach_m68040 6
5902 #define bfd_mach_m68060 7
5903 #define bfd_mach_cpu32 8
5904 #define bfd_mach_fido 9
5905 #define bfd_mach_mcf_isa_a_nodiv 10
5906 #define bfd_mach_mcf_isa_a 11
5907 #define bfd_mach_mcf_isa_a_mac 12
5908 #define bfd_mach_mcf_isa_a_emac 13
5909 #define bfd_mach_mcf_isa_aplus 14
5910 #define bfd_mach_mcf_isa_aplus_mac 15
5911 #define bfd_mach_mcf_isa_aplus_emac 16
5912 #define bfd_mach_mcf_isa_b_nousp 17
5913 #define bfd_mach_mcf_isa_b_nousp_mac 18
5914 #define bfd_mach_mcf_isa_b_nousp_emac 19
5915 #define bfd_mach_mcf_isa_b 20
5916 #define bfd_mach_mcf_isa_b_mac 21
5917 #define bfd_mach_mcf_isa_b_emac 22
5918 #define bfd_mach_mcf_isa_b_float 23
5919 #define bfd_mach_mcf_isa_b_float_mac 24
5920 #define bfd_mach_mcf_isa_b_float_emac 25
5921 #define bfd_mach_mcf_isa_c 26
5922 #define bfd_mach_mcf_isa_c_mac 27
5923 #define bfd_mach_mcf_isa_c_emac 28
5924 bfd_arch_vax, /* DEC Vax */
5925 bfd_arch_i960, /* Intel 960 */
5926 /* The order of the following is important.
5927 lower number indicates a machine type that
5928 only accepts a subset of the instructions
5929 available to machines with higher numbers.
5930 The exception is the "ca", which is
5931 incompatible with all other machines except
5934 #define bfd_mach_i960_core 1
5935 #define bfd_mach_i960_ka_sa 2
5936 #define bfd_mach_i960_kb_sb 3
5937 #define bfd_mach_i960_mc 4
5938 #define bfd_mach_i960_xa 5
5939 #define bfd_mach_i960_ca 6
5940 #define bfd_mach_i960_jx 7
5941 #define bfd_mach_i960_hx 8
5943 bfd_arch_or32, /* OpenRISC 32 */
5945 bfd_arch_sparc, /* SPARC */
5946 #define bfd_mach_sparc 1
5947 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
5948 #define bfd_mach_sparc_sparclet 2
5949 #define bfd_mach_sparc_sparclite 3
5950 #define bfd_mach_sparc_v8plus 4
5951 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */
5952 #define bfd_mach_sparc_sparclite_le 6
5953 #define bfd_mach_sparc_v9 7
5954 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */
5955 #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */
5956 #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */
5957 /* Nonzero if MACH has the v9 instruction set. */
5958 #define bfd_mach_sparc_v9_p(mach) \
5959 ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
5960 && (mach) != bfd_mach_sparc_sparclite_le)
5961 /* Nonzero if MACH is a 64 bit sparc architecture. */
5962 #define bfd_mach_sparc_64bit_p(mach) \
5963 ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
5964 bfd_arch_spu, /* PowerPC SPU */
5965 #define bfd_mach_spu 256
5966 bfd_arch_mips, /* MIPS Rxxxx */
5967 #define bfd_mach_mips3000 3000
5968 #define bfd_mach_mips3900 3900
5969 #define bfd_mach_mips4000 4000
5970 #define bfd_mach_mips4010 4010
5971 #define bfd_mach_mips4100 4100
5972 #define bfd_mach_mips4111 4111
5973 #define bfd_mach_mips4120 4120
5974 #define bfd_mach_mips4300 4300
5975 #define bfd_mach_mips4400 4400
5976 #define bfd_mach_mips4600 4600
5977 #define bfd_mach_mips4650 4650
5978 #define bfd_mach_mips5000 5000
5979 #define bfd_mach_mips5400 5400
5980 #define bfd_mach_mips5500 5500
5981 #define bfd_mach_mips6000 6000
5982 #define bfd_mach_mips7000 7000
5983 #define bfd_mach_mips8000 8000
5984 #define bfd_mach_mips9000 9000
5985 #define bfd_mach_mips10000 10000
5986 #define bfd_mach_mips12000 12000
5987 #define bfd_mach_mips16 16
5988 #define bfd_mach_mips5 5
5989 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */
5990 #define bfd_mach_mipsisa32 32
5991 #define bfd_mach_mipsisa32r2 33
5992 #define bfd_mach_mipsisa64 64
5993 #define bfd_mach_mipsisa64r2 65
5994 bfd_arch_i386, /* Intel 386 */
5995 #define bfd_mach_i386_i386 1
5996 #define bfd_mach_i386_i8086 2
5997 #define bfd_mach_i386_i386_intel_syntax 3
5998 #define bfd_mach_x86_64 64
5999 #define bfd_mach_x86_64_intel_syntax 65
6000 bfd_arch_we32k, /* AT&T WE32xxx */
6001 bfd_arch_tahoe, /* CCI/Harris Tahoe */
6002 bfd_arch_i860, /* Intel 860 */
6003 bfd_arch_i370, /* IBM 360/370 Mainframes */
6004 bfd_arch_romp, /* IBM ROMP PC/RT */
6005 bfd_arch_convex, /* Convex */
6006 bfd_arch_m88k, /* Motorola 88xxx */
6007 bfd_arch_m98k, /* Motorola 98xxx */
6008 bfd_arch_pyramid, /* Pyramid Technology */
6009 bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */
6010 #define bfd_mach_h8300 1
6011 #define bfd_mach_h8300h 2
6012 #define bfd_mach_h8300s 3
6013 #define bfd_mach_h8300hn 4
6014 #define bfd_mach_h8300sn 5
6015 #define bfd_mach_h8300sx 6
6016 #define bfd_mach_h8300sxn 7
6017 bfd_arch_pdp11, /* DEC PDP-11 */
6018 bfd_arch_powerpc, /* PowerPC */
6019 #define bfd_mach_ppc 32
6020 #define bfd_mach_ppc64 64
6021 #define bfd_mach_ppc_403 403
6022 #define bfd_mach_ppc_403gc 4030
6023 #define bfd_mach_ppc_505 505
6024 #define bfd_mach_ppc_601 601
6025 #define bfd_mach_ppc_602 602
6026 #define bfd_mach_ppc_603 603
6027 #define bfd_mach_ppc_ec603e 6031
6028 #define bfd_mach_ppc_604 604
6029 #define bfd_mach_ppc_620 620
6030 #define bfd_mach_ppc_630 630
6031 #define bfd_mach_ppc_750 750
6032 #define bfd_mach_ppc_860 860
6033 #define bfd_mach_ppc_a35 35
6034 #define bfd_mach_ppc_rs64ii 642
6035 #define bfd_mach_ppc_rs64iii 643
6036 #define bfd_mach_ppc_7400 7400
6037 #define bfd_mach_ppc_e500 500
6038 bfd_arch_rs6000, /* IBM RS/6000 */
6039 #define bfd_mach_rs6k 6000
6040 #define bfd_mach_rs6k_rs1 6001
6041 #define bfd_mach_rs6k_rsc 6003
6042 #define bfd_mach_rs6k_rs2 6002
6043 bfd_arch_hppa, /* HP PA RISC */
6044 #define bfd_mach_hppa10 10
6045 #define bfd_mach_hppa11 11
6046 #define bfd_mach_hppa20 20
6047 #define bfd_mach_hppa20w 25
6048 bfd_arch_d10v, /* Mitsubishi D10V */
6049 #define bfd_mach_d10v 1
6050 #define bfd_mach_d10v_ts2 2
6051 #define bfd_mach_d10v_ts3 3
6052 bfd_arch_d30v, /* Mitsubishi D30V */
6053 bfd_arch_dlx, /* DLX */
6054 bfd_arch_m68hc11, /* Motorola 68HC11 */
6055 bfd_arch_m68hc12, /* Motorola 68HC12 */
6056 #define bfd_mach_m6812_default 0
6057 #define bfd_mach_m6812 1
6058 #define bfd_mach_m6812s 2
6059 bfd_arch_z8k, /* Zilog Z8000 */
6060 #define bfd_mach_z8001 1
6061 #define bfd_mach_z8002 2
6062 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */
6063 bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */
6064 #define bfd_mach_sh 1
6065 #define bfd_mach_sh2 0x20
6066 #define bfd_mach_sh_dsp 0x2d
6067 #define bfd_mach_sh2a 0x2a
6068 #define bfd_mach_sh2a_nofpu 0x2b
6069 #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
6070 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
6071 #define bfd_mach_sh2a_or_sh4 0x2a3
6072 #define bfd_mach_sh2a_or_sh3e 0x2a4
6073 #define bfd_mach_sh2e 0x2e
6074 #define bfd_mach_sh3 0x30
6075 #define bfd_mach_sh3_nommu 0x31
6076 #define bfd_mach_sh3_dsp 0x3d
6077 #define bfd_mach_sh3e 0x3e
6078 #define bfd_mach_sh4 0x40
6079 #define bfd_mach_sh4_nofpu 0x41
6080 #define bfd_mach_sh4_nommu_nofpu 0x42
6081 #define bfd_mach_sh4a 0x4a
6082 #define bfd_mach_sh4a_nofpu 0x4b
6083 #define bfd_mach_sh4al_dsp 0x4d
6084 #define bfd_mach_sh5 0x50
6085 bfd_arch_alpha, /* Dec Alpha */
6086 #define bfd_mach_alpha_ev4 0x10
6087 #define bfd_mach_alpha_ev5 0x20
6088 #define bfd_mach_alpha_ev6 0x30
6089 bfd_arch_arm, /* Advanced Risc Machines ARM. */
6090 #define bfd_mach_arm_unknown 0
6091 #define bfd_mach_arm_2 1
6092 #define bfd_mach_arm_2a 2
6093 #define bfd_mach_arm_3 3
6094 #define bfd_mach_arm_3M 4
6095 #define bfd_mach_arm_4 5
6096 #define bfd_mach_arm_4T 6
6097 #define bfd_mach_arm_5 7
6098 #define bfd_mach_arm_5T 8
6099 #define bfd_mach_arm_5TE 9
6100 #define bfd_mach_arm_XScale 10
6101 #define bfd_mach_arm_ep9312 11
6102 #define bfd_mach_arm_iWMMXt 12
6103 #define bfd_mach_arm_iWMMXt2 13
6104 bfd_arch_ns32k, /* National Semiconductors ns32000 */
6105 bfd_arch_w65, /* WDC 65816 */
6106 bfd_arch_tic30, /* Texas Instruments TMS320C30 */
6107 bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */
6108 #define bfd_mach_tic3x 30
6109 #define bfd_mach_tic4x 40
6110 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */
6111 bfd_arch_tic80, /* TI TMS320c80 (MVP) */
6112 bfd_arch_v850, /* NEC V850 */
6113 #define bfd_mach_v850 1
6114 #define bfd_mach_v850e 'E'
6115 #define bfd_mach_v850e1 '1'
6116 bfd_arch_arc, /* ARC Cores */
6117 #define bfd_mach_arc_5 5
6118 #define bfd_mach_arc_6 6
6119 #define bfd_mach_arc_7 7
6120 #define bfd_mach_arc_8 8
6121 bfd_arch_m32c, /* Renesas M16C/M32C. */
6122 #define bfd_mach_m16c 0x75
6123 #define bfd_mach_m32c 0x78
6124 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */
6125 #define bfd_mach_m32r 1 /* For backwards compatibility. */
6126 #define bfd_mach_m32rx 'x'
6127 #define bfd_mach_m32r2 '2'
6128 bfd_arch_mn10200, /* Matsushita MN10200 */
6129 bfd_arch_mn10300, /* Matsushita MN10300 */
6130 #define bfd_mach_mn10300 300
6131 #define bfd_mach_am33 330
6132 #define bfd_mach_am33_2 332
6134 #define bfd_mach_fr30 0x46523330
6136 #define bfd_mach_frv 1
6137 #define bfd_mach_frvsimple 2
6138 #define bfd_mach_fr300 300
6139 #define bfd_mach_fr400 400
6140 #define bfd_mach_fr450 450
6141 #define bfd_mach_frvtomcat 499 /* fr500 prototype */
6142 #define bfd_mach_fr500 500
6143 #define bfd_mach_fr550 550
6146 #define bfd_mach_mep 1
6147 #define bfd_mach_mep_h1 0x6831
6148 bfd_arch_ia64, /* HP/Intel ia64 */
6149 #define bfd_mach_ia64_elf64 64
6150 #define bfd_mach_ia64_elf32 32
6151 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */
6152 #define bfd_mach_ip2022 1
6153 #define bfd_mach_ip2022ext 2
6154 bfd_arch_iq2000, /* Vitesse IQ2000. */
6155 #define bfd_mach_iq2000 1
6156 #define bfd_mach_iq10 2
6158 #define bfd_mach_ms1 1
6159 #define bfd_mach_mrisc2 2
6160 #define bfd_mach_ms2 3
6162 bfd_arch_avr, /* Atmel AVR microcontrollers. */
6163 #define bfd_mach_avr1 1
6164 #define bfd_mach_avr2 2
6165 #define bfd_mach_avr3 3
6166 #define bfd_mach_avr4 4
6167 #define bfd_mach_avr5 5
6168 #define bfd_mach_avr6 6
6169 bfd_arch_bfin, /* ADI Blackfin */
6170 #define bfd_mach_bfin 1
6171 bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */
6172 #define bfd_mach_cr16 1
6173 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */
6174 #define bfd_mach_cr16c 1
6175 bfd_arch_crx, /* National Semiconductor CRX. */
6176 #define bfd_mach_crx 1
6177 bfd_arch_cris, /* Axis CRIS */
6178 #define bfd_mach_cris_v0_v10 255
6179 #define bfd_mach_cris_v32 32
6180 #define bfd_mach_cris_v10_v32 1032
6181 bfd_arch_s390, /* IBM s390 */
6182 #define bfd_mach_s390_31 31
6183 #define bfd_mach_s390_64 64
6184 bfd_arch_score, /* Sunplus score */
6185 bfd_arch_openrisc, /* OpenRISC */
6186 bfd_arch_mmix, /* Donald Knuth's educational processor. */
6188 #define bfd_mach_xstormy16 1
6189 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */
6190 #define bfd_mach_msp11 11
6191 #define bfd_mach_msp110 110
6192 #define bfd_mach_msp12 12
6193 #define bfd_mach_msp13 13
6194 #define bfd_mach_msp14 14
6195 #define bfd_mach_msp15 15
6196 #define bfd_mach_msp16 16
6197 #define bfd_mach_msp21 21
6198 #define bfd_mach_msp31 31
6199 #define bfd_mach_msp32 32
6200 #define bfd_mach_msp33 33
6201 #define bfd_mach_msp41 41
6202 #define bfd_mach_msp42 42
6203 #define bfd_mach_msp43 43
6204 #define bfd_mach_msp44 44
6205 bfd_arch_xc16x, /* Infineon's XC16X Series. */
6206 #define bfd_mach_xc16x 1
6207 #define bfd_mach_xc16xl 2
6208 #define bfd_mach_xc16xs 3
6209 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */
6210 #define bfd_mach_xtensa 1
6211 bfd_arch_maxq, /* Dallas MAXQ 10/20 */
6212 #define bfd_mach_maxq10 10
6213 #define bfd_mach_maxq20 20
6215 #define bfd_mach_z80strict 1 /* No undocumented opcodes. */
6216 #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
6217 #define bfd_mach_z80full 7 /* All undocumented instructions. */
6218 #define bfd_mach_r800 11 /* R800: successor with multiplication. */
6222 2.13.2 bfd_arch_info
6223 --------------------
6226 This structure contains information on architectures for use within BFD.
6228 typedef struct bfd_arch_info
6231 int bits_per_address;
6233 enum bfd_architecture arch;
6235 const char *arch_name;
6236 const char *printable_name;
6237 unsigned int section_align_power;
6238 /* TRUE if this is the default machine for the architecture.
6239 The default arch should be the first entry for an arch so that
6240 all the entries for that arch can be accessed via `next'. */
6241 bfd_boolean the_default;
6242 const struct bfd_arch_info * (*compatible)
6243 (const struct bfd_arch_info *a, const struct bfd_arch_info *b);
6245 bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);
6247 const struct bfd_arch_info *next;
6251 2.13.2.1 `bfd_printable_name'
6252 .............................
6255 const char *bfd_printable_name (bfd *abfd);
6257 Return a printable string representing the architecture and machine
6258 from the pointer to the architecture info structure.
6260 2.13.2.2 `bfd_scan_arch'
6261 ........................
6264 const bfd_arch_info_type *bfd_scan_arch (const char *string);
6266 Figure out if BFD supports any cpu which could be described with the
6267 name STRING. Return a pointer to an `arch_info' structure if a machine
6268 is found, otherwise NULL.
6270 2.13.2.3 `bfd_arch_list'
6271 ........................
6274 const char **bfd_arch_list (void);
6276 Return a freshly malloced NULL-terminated vector of the names of all
6277 the valid BFD architectures. Do not modify the names.
6279 2.13.2.4 `bfd_arch_get_compatible'
6280 ..................................
6283 const bfd_arch_info_type *bfd_arch_get_compatible
6284 (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
6286 Determine whether two BFDs' architectures and machine types are
6287 compatible. Calculates the lowest common denominator between the two
6288 architectures and machine types implied by the BFDs and returns a
6289 pointer to an `arch_info' structure describing the compatible machine.
6291 2.13.2.5 `bfd_default_arch_struct'
6292 ..................................
6295 The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which
6296 has been initialized to a fairly generic state. A BFD starts life by
6297 pointing to this structure, until the correct back end has determined
6298 the real architecture of the file.
6299 extern const bfd_arch_info_type bfd_default_arch_struct;
6301 2.13.2.6 `bfd_set_arch_info'
6302 ............................
6305 void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
6307 Set the architecture info of ABFD to ARG.
6309 2.13.2.7 `bfd_default_set_arch_mach'
6310 ....................................
6313 bfd_boolean bfd_default_set_arch_mach
6314 (bfd *abfd, enum bfd_architecture arch, unsigned long mach);
6316 Set the architecture and machine type in BFD ABFD to ARCH and MACH.
6317 Find the correct pointer to a structure and insert it into the
6318 `arch_info' pointer.
6320 2.13.2.8 `bfd_get_arch'
6321 .......................
6324 enum bfd_architecture bfd_get_arch (bfd *abfd);
6326 Return the enumerated type which describes the BFD ABFD's architecture.
6328 2.13.2.9 `bfd_get_mach'
6329 .......................
6332 unsigned long bfd_get_mach (bfd *abfd);
6334 Return the long type which describes the BFD ABFD's machine.
6336 2.13.2.10 `bfd_arch_bits_per_byte'
6337 ..................................
6340 unsigned int bfd_arch_bits_per_byte (bfd *abfd);
6342 Return the number of bits in one of the BFD ABFD's architecture's bytes.
6344 2.13.2.11 `bfd_arch_bits_per_address'
6345 .....................................
6348 unsigned int bfd_arch_bits_per_address (bfd *abfd);
6350 Return the number of bits in one of the BFD ABFD's architecture's
6353 2.13.2.12 `bfd_default_compatible'
6354 ..................................
6357 const bfd_arch_info_type *bfd_default_compatible
6358 (const bfd_arch_info_type *a, const bfd_arch_info_type *b);
6360 The default function for testing for compatibility.
6362 2.13.2.13 `bfd_default_scan'
6363 ............................
6366 bfd_boolean bfd_default_scan
6367 (const struct bfd_arch_info *info, const char *string);
6369 The default function for working out whether this is an architecture
6370 hit and a machine hit.
6372 2.13.2.14 `bfd_get_arch_info'
6373 .............................
6376 const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
6378 Return the architecture info struct in ABFD.
6380 2.13.2.15 `bfd_lookup_arch'
6381 ...........................
6384 const bfd_arch_info_type *bfd_lookup_arch
6385 (enum bfd_architecture arch, unsigned long machine);
6387 Look for the architecture info structure which matches the arguments
6388 ARCH and MACHINE. A machine of 0 matches the machine/architecture
6389 structure which marks itself as the default.
6391 2.13.2.16 `bfd_printable_arch_mach'
6392 ...................................
6395 const char *bfd_printable_arch_mach
6396 (enum bfd_architecture arch, unsigned long machine);
6398 Return a printable string representing the architecture and machine
6401 This routine is depreciated.
6403 2.13.2.17 `bfd_octets_per_byte'
6404 ...............................
6407 unsigned int bfd_octets_per_byte (bfd *abfd);
6409 Return the number of octets (8-bit quantities) per target byte (minimum
6410 addressable unit). In most cases, this will be one, but some DSP
6411 targets have 16, 32, or even 48 bits per byte.
6413 2.13.2.18 `bfd_arch_mach_octets_per_byte'
6414 .........................................
6417 unsigned int bfd_arch_mach_octets_per_byte
6418 (enum bfd_architecture arch, unsigned long machine);
6420 See bfd_octets_per_byte.
6422 This routine is provided for those cases where a bfd * is not
6426 File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end
6428 2.14 Opening and closing BFDs
6429 =============================
6431 2.14.1 Functions for opening and closing
6432 ----------------------------------------
6434 2.14.1.1 `bfd_fopen'
6435 ....................
6438 bfd *bfd_fopen (const char *filename, const char *target,
6439 const char *mode, int fd);
6441 Open the file FILENAME with the target TARGET. Return a pointer to the
6442 created BFD. If FD is not -1, then `fdopen' is used to open the file;
6443 otherwise, `fopen' is used. MODE is passed directly to `fopen' or
6446 Calls `bfd_find_target', so TARGET is interpreted as by that
6449 The new BFD is marked as cacheable iff FD is -1.
6451 If `NULL' is returned then an error has occured. Possible errors
6452 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6455 2.14.1.2 `bfd_openr'
6456 ....................
6459 bfd *bfd_openr (const char *filename, const char *target);
6461 Open the file FILENAME (using `fopen') with the target TARGET. Return
6462 a pointer to the created BFD.
6464 Calls `bfd_find_target', so TARGET is interpreted as by that
6467 If `NULL' is returned then an error has occured. Possible errors
6468 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6471 2.14.1.3 `bfd_fdopenr'
6472 ......................
6475 bfd *bfd_fdopenr (const char *filename, const char *target, int fd);
6477 `bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It
6478 opens a BFD on a file already described by the FD supplied.
6480 When the file is later `bfd_close'd, the file descriptor will be
6481 closed. If the caller desires that this file descriptor be cached by
6482 BFD (opened as needed, closed as needed to free descriptors for other
6483 opens), with the supplied FD used as an initial file descriptor (but
6484 subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the
6485 returned BFD. The default is to assume no caching; the file descriptor
6486 will remain open until `bfd_close', and will not be affected by BFD
6487 operations on other files.
6489 Possible errors are `bfd_error_no_memory',
6490 `bfd_error_invalid_target' and `bfd_error_system_call'.
6492 2.14.1.4 `bfd_openstreamr'
6493 ..........................
6496 bfd *bfd_openstreamr (const char *, const char *, void *);
6498 Open a BFD for read access on an existing stdio stream. When the BFD
6499 is passed to `bfd_close', the stream will be closed.
6501 2.14.1.5 `bfd_openr_iovec'
6502 ..........................
6505 bfd *bfd_openr_iovec (const char *filename, const char *target,
6506 void *(*open) (struct bfd *nbfd,
6507 void *open_closure),
6509 file_ptr (*pread) (struct bfd *nbfd,
6514 int (*close) (struct bfd *nbfd,
6516 int (*stat) (struct bfd *abfd,
6520 Create and return a BFD backed by a read-only STREAM. The STREAM is
6521 created using OPEN, accessed using PREAD and destroyed using CLOSE.
6523 Calls `bfd_find_target', so TARGET is interpreted as by that
6526 Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to
6527 obtain the read-only stream backing the BFD. OPEN either succeeds
6528 returning the non-`NULL' STREAM, or fails returning `NULL' (setting
6531 Calls PREAD to request NBYTES of data from STREAM starting at OFFSET
6532 (e.g., via a call to `bfd_read'). PREAD either succeeds returning the
6533 number of bytes read (which can be less than NBYTES when end-of-file),
6534 or fails returning -1 (setting `bfd_error').
6536 Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE
6537 either succeeds returning 0, or fails returning -1 (setting
6540 Calls STAT to fill in a stat structure for bfd_stat, bfd_get_size,
6541 and bfd_get_mtime calls. STAT returns 0 on success, or returns -1 on
6542 failure (setting `bfd_error').
6544 If `bfd_openr_iovec' returns `NULL' then an error has occurred.
6545 Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target'
6546 and `bfd_error_system_call'.
6548 2.14.1.6 `bfd_openw'
6549 ....................
6552 bfd *bfd_openw (const char *filename, const char *target);
6554 Create a BFD, associated with file FILENAME, using the file format
6555 TARGET, and return a pointer to it.
6557 Possible errors are `bfd_error_system_call', `bfd_error_no_memory',
6558 `bfd_error_invalid_target'.
6560 2.14.1.7 `bfd_close'
6561 ....................
6564 bfd_boolean bfd_close (bfd *abfd);
6566 Close a BFD. If the BFD was open for writing, then pending operations
6567 are completed and the file written out and closed. If the created file
6568 is executable, then `chmod' is called to mark it as such.
6570 All memory attached to the BFD is released.
6572 The file descriptor associated with the BFD is closed (even if it
6573 was passed in to BFD by `bfd_fdopenr').
6576 `TRUE' is returned if all is ok, otherwise `FALSE'.
6578 2.14.1.8 `bfd_close_all_done'
6579 .............................
6582 bfd_boolean bfd_close_all_done (bfd *);
6584 Close a BFD. Differs from `bfd_close' since it does not complete any
6585 pending operations. This routine would be used if the application had
6586 just used BFD for swapping and didn't want to use any of the writing
6589 If the created file is executable, then `chmod' is called to mark it
6592 All memory attached to the BFD is released.
6595 `TRUE' is returned if all is ok, otherwise `FALSE'.
6597 2.14.1.9 `bfd_create'
6598 .....................
6601 bfd *bfd_create (const char *filename, bfd *templ);
6603 Create a new BFD in the manner of `bfd_openw', but without opening a
6604 file. The new BFD takes the target from the target used by TEMPLATE.
6605 The format is always set to `bfd_object'.
6607 2.14.1.10 `bfd_make_writable'
6608 .............................
6611 bfd_boolean bfd_make_writable (bfd *abfd);
6613 Takes a BFD as created by `bfd_create' and converts it into one like as
6614 returned by `bfd_openw'. It does this by converting the BFD to
6615 BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on
6619 `TRUE' is returned if all is ok, otherwise `FALSE'.
6621 2.14.1.11 `bfd_make_readable'
6622 .............................
6625 bfd_boolean bfd_make_readable (bfd *abfd);
6627 Takes a BFD as created by `bfd_create' and `bfd_make_writable' and
6628 converts it into one like as returned by `bfd_openr'. It does this by
6629 writing the contents out to the memory buffer, then reversing the
6633 `TRUE' is returned if all is ok, otherwise `FALSE'.
6635 2.14.1.12 `bfd_alloc'
6636 .....................
6639 void *bfd_alloc (bfd *abfd, bfd_size_type wanted);
6641 Allocate a block of WANTED bytes of memory attached to `abfd' and
6642 return a pointer to it.
6644 2.14.1.13 `bfd_alloc2'
6645 ......................
6648 void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6650 Allocate a block of NMEMB elements of SIZE bytes each of memory
6651 attached to `abfd' and return a pointer to it.
6653 2.14.1.14 `bfd_zalloc'
6654 ......................
6657 void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);
6659 Allocate a block of WANTED bytes of zeroed memory attached to `abfd'
6660 and return a pointer to it.
6662 2.14.1.15 `bfd_zalloc2'
6663 .......................
6666 void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6668 Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory
6669 attached to `abfd' and return a pointer to it.
6671 2.14.1.16 `bfd_calc_gnu_debuglink_crc32'
6672 ........................................
6675 unsigned long bfd_calc_gnu_debuglink_crc32
6676 (unsigned long crc, const unsigned char *buf, bfd_size_type len);
6678 Computes a CRC value as used in the .gnu_debuglink section. Advances
6679 the previously computed CRC value by computing and adding in the crc32
6680 for LEN bytes of BUF.
6683 Return the updated CRC32 value.
6685 2.14.1.17 `get_debug_link_info'
6686 ...............................
6689 char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out);
6691 fetch the filename and CRC32 value for any separate debuginfo
6692 associated with ABFD. Return NULL if no such info found, otherwise
6693 return filename and update CRC32_OUT.
6695 2.14.1.18 `separate_debug_file_exists'
6696 ......................................
6699 bfd_boolean separate_debug_file_exists
6700 (char *name, unsigned long crc32);
6702 Checks to see if NAME is a file and if its contents match CRC32.
6704 2.14.1.19 `find_separate_debug_file'
6705 ....................................
6708 char *find_separate_debug_file (bfd *abfd);
6710 Searches ABFD for a reference to separate debugging information, scans
6711 various locations in the filesystem, including the file tree rooted at
6712 DEBUG_FILE_DIRECTORY, and returns a filename of such debugging
6713 information if the file is found and has matching CRC32. Returns NULL
6714 if no reference to debugging file exists, or file cannot be found.
6716 2.14.1.20 `bfd_follow_gnu_debuglink'
6717 ....................................
6720 char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);
6722 Takes a BFD and searches it for a .gnu_debuglink section. If this
6723 section is found, it examines the section for the name and checksum of
6724 a '.debug' file containing auxiliary debugging information. It then
6725 searches the filesystem for this .debug file in some standard
6726 locations, including the directory tree rooted at DIR, and if found
6727 returns the full filename.
6729 If DIR is NULL, it will search a default path configured into libbfd
6730 at build time. [XXX this feature is not currently implemented].
6733 `NULL' on any errors or failure to locate the .debug file, otherwise a
6734 pointer to a heap-allocated string containing the filename. The caller
6735 is responsible for freeing this string.
6737 2.14.1.21 `bfd_create_gnu_debuglink_section'
6738 ............................................
6741 struct bfd_section *bfd_create_gnu_debuglink_section
6742 (bfd *abfd, const char *filename);
6744 Takes a BFD and adds a .gnu_debuglink section to it. The section is
6745 sized to be big enough to contain a link to the specified FILENAME.
6748 A pointer to the new section is returned if all is ok. Otherwise
6749 `NULL' is returned and bfd_error is set.
6751 2.14.1.22 `bfd_fill_in_gnu_debuglink_section'
6752 .............................................
6755 bfd_boolean bfd_fill_in_gnu_debuglink_section
6756 (bfd *abfd, struct bfd_section *sect, const char *filename);
6758 Takes a BFD and containing a .gnu_debuglink section SECT and fills in
6759 the contents of the section to contain a link to the specified
6760 FILENAME. The filename should be relative to the current directory.
6763 `TRUE' is returned if all is ok. Otherwise `FALSE' is returned and
6767 File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end
6769 2.15 Implementation details
6770 ===========================
6772 2.15.1 Internal functions
6773 -------------------------
6776 These routines are used within BFD. They are not intended for export,
6777 but are documented here for completeness.
6779 2.15.1.1 `bfd_write_bigendian_4byte_int'
6780 ........................................
6783 bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
6785 Write a 4 byte integer I to the output BFD ABFD, in big endian order
6786 regardless of what else is going on. This is useful in archives.
6788 2.15.1.2 `bfd_put_size'
6789 .......................
6791 2.15.1.3 `bfd_get_size'
6792 .......................
6795 These macros as used for reading and writing raw data in sections; each
6796 access (except for bytes) is vectored through the target format of the
6797 BFD and mangled accordingly. The mangling performs any necessary endian
6798 translations and removes alignment restrictions. Note that types
6799 accepted and returned by these macros are identical so they can be
6800 swapped around in macros--for example, `libaout.h' defines `GET_WORD'
6801 to either `bfd_get_32' or `bfd_get_64'.
6803 In the put routines, VAL must be a `bfd_vma'. If we are on a system
6804 without prototypes, the caller is responsible for making sure that is
6805 true, with a cast if necessary. We don't cast them in the macro
6806 definitions because that would prevent `lint' or `gcc -Wall' from
6807 detecting sins such as passing a pointer. To detect calling these with
6808 less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit
6811 /* Byte swapping macros for user section data. */
6813 #define bfd_put_8(abfd, val, ptr) \
6814 ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
6815 #define bfd_put_signed_8 \
6817 #define bfd_get_8(abfd, ptr) \
6818 (*(unsigned char *) (ptr) & 0xff)
6819 #define bfd_get_signed_8(abfd, ptr) \
6820 (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)
6822 #define bfd_put_16(abfd, val, ptr) \
6823 BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
6824 #define bfd_put_signed_16 \
6826 #define bfd_get_16(abfd, ptr) \
6827 BFD_SEND (abfd, bfd_getx16, (ptr))
6828 #define bfd_get_signed_16(abfd, ptr) \
6829 BFD_SEND (abfd, bfd_getx_signed_16, (ptr))
6831 #define bfd_put_32(abfd, val, ptr) \
6832 BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
6833 #define bfd_put_signed_32 \
6835 #define bfd_get_32(abfd, ptr) \
6836 BFD_SEND (abfd, bfd_getx32, (ptr))
6837 #define bfd_get_signed_32(abfd, ptr) \
6838 BFD_SEND (abfd, bfd_getx_signed_32, (ptr))
6840 #define bfd_put_64(abfd, val, ptr) \
6841 BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
6842 #define bfd_put_signed_64 \
6844 #define bfd_get_64(abfd, ptr) \
6845 BFD_SEND (abfd, bfd_getx64, (ptr))
6846 #define bfd_get_signed_64(abfd, ptr) \
6847 BFD_SEND (abfd, bfd_getx_signed_64, (ptr))
6849 #define bfd_get(bits, abfd, ptr) \
6850 ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \
6851 : (bits) == 16 ? bfd_get_16 (abfd, ptr) \
6852 : (bits) == 32 ? bfd_get_32 (abfd, ptr) \
6853 : (bits) == 64 ? bfd_get_64 (abfd, ptr) \
6854 : (abort (), (bfd_vma) - 1))
6856 #define bfd_put(bits, abfd, val, ptr) \
6857 ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
6858 : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
6859 : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
6860 : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
6861 : (abort (), (void) 0))
6863 2.15.1.4 `bfd_h_put_size'
6864 .........................
6867 These macros have the same function as their `bfd_get_x' brethren,
6868 except that they are used for removing information for the header
6869 records of object files. Believe it or not, some object files keep
6870 their header records in big endian order and their data in little
6873 /* Byte swapping macros for file header data. */
6875 #define bfd_h_put_8(abfd, val, ptr) \
6876 bfd_put_8 (abfd, val, ptr)
6877 #define bfd_h_put_signed_8(abfd, val, ptr) \
6878 bfd_put_8 (abfd, val, ptr)
6879 #define bfd_h_get_8(abfd, ptr) \
6880 bfd_get_8 (abfd, ptr)
6881 #define bfd_h_get_signed_8(abfd, ptr) \
6882 bfd_get_signed_8 (abfd, ptr)
6884 #define bfd_h_put_16(abfd, val, ptr) \
6885 BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
6886 #define bfd_h_put_signed_16 \
6888 #define bfd_h_get_16(abfd, ptr) \
6889 BFD_SEND (abfd, bfd_h_getx16, (ptr))
6890 #define bfd_h_get_signed_16(abfd, ptr) \
6891 BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))
6893 #define bfd_h_put_32(abfd, val, ptr) \
6894 BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
6895 #define bfd_h_put_signed_32 \
6897 #define bfd_h_get_32(abfd, ptr) \
6898 BFD_SEND (abfd, bfd_h_getx32, (ptr))
6899 #define bfd_h_get_signed_32(abfd, ptr) \
6900 BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))
6902 #define bfd_h_put_64(abfd, val, ptr) \
6903 BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
6904 #define bfd_h_put_signed_64 \
6906 #define bfd_h_get_64(abfd, ptr) \
6907 BFD_SEND (abfd, bfd_h_getx64, (ptr))
6908 #define bfd_h_get_signed_64(abfd, ptr) \
6909 BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))
6911 /* Aliases for the above, which should eventually go away. */
6913 #define H_PUT_64 bfd_h_put_64
6914 #define H_PUT_32 bfd_h_put_32
6915 #define H_PUT_16 bfd_h_put_16
6916 #define H_PUT_8 bfd_h_put_8
6917 #define H_PUT_S64 bfd_h_put_signed_64
6918 #define H_PUT_S32 bfd_h_put_signed_32
6919 #define H_PUT_S16 bfd_h_put_signed_16
6920 #define H_PUT_S8 bfd_h_put_signed_8
6921 #define H_GET_64 bfd_h_get_64
6922 #define H_GET_32 bfd_h_get_32
6923 #define H_GET_16 bfd_h_get_16
6924 #define H_GET_8 bfd_h_get_8
6925 #define H_GET_S64 bfd_h_get_signed_64
6926 #define H_GET_S32 bfd_h_get_signed_32
6927 #define H_GET_S16 bfd_h_get_signed_16
6928 #define H_GET_S8 bfd_h_get_signed_8
6934 unsigned int bfd_log2 (bfd_vma x);
6936 Return the log base 2 of the value supplied, rounded up. E.g., an X of
6937 1025 returns 11. A X of 0 returns 0.
6940 File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end
6945 The file caching mechanism is embedded within BFD and allows the
6946 application to open as many BFDs as it wants without regard to the
6947 underlying operating system's file descriptor limit (often as low as 20
6948 open files). The module in `cache.c' maintains a least recently used
6949 list of `BFD_CACHE_MAX_OPEN' files, and exports the name
6950 `bfd_cache_lookup', which runs around and makes sure that the required
6951 BFD is open. If not, then it chooses a file to close, closes it and
6952 opens the one wanted, returning its file handle.
6954 2.16.1 Caching functions
6955 ------------------------
6957 2.16.1.1 `bfd_cache_init'
6958 .........................
6961 bfd_boolean bfd_cache_init (bfd *abfd);
6963 Add a newly opened BFD to the cache.
6965 2.16.1.2 `bfd_cache_close'
6966 ..........................
6969 bfd_boolean bfd_cache_close (bfd *abfd);
6971 Remove the BFD ABFD from the cache. If the attached file is open, then
6975 `FALSE' is returned if closing the file fails, `TRUE' is returned if
6978 2.16.1.3 `bfd_cache_close_all'
6979 ..............................
6982 bfd_boolean bfd_cache_close_all (void);
6984 Remove all BFDs from the cache. If the attached file is open, then
6988 `FALSE' is returned if closing one of the file fails, `TRUE' is
6989 returned if all is well.
6991 2.16.1.4 `bfd_open_file'
6992 ........................
6995 FILE* bfd_open_file (bfd *abfd);
6997 Call the OS to open a file for ABFD. Return the `FILE *' (possibly
6998 `NULL') that results from this operation. Set up the BFD so that
6999 future accesses know the file is open. If the `FILE *' returned is
7000 `NULL', then it won't have been put in the cache, so it won't have to
7004 File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end
7006 2.17 Linker Functions
7007 =====================
7009 The linker uses three special entry points in the BFD target vector.
7010 It is not necessary to write special routines for these entry points
7011 when creating a new BFD back end, since generic versions are provided.
7012 However, writing them can speed up linking and make it use
7013 significantly less runtime memory.
7015 The first routine creates a hash table used by the other routines.
7016 The second routine adds the symbols from an object file to the hash
7017 table. The third routine takes all the object files and links them
7018 together to create the output file. These routines are designed so
7019 that the linker proper does not need to know anything about the symbols
7020 in the object files that it is linking. The linker merely arranges the
7021 sections as directed by the linker script and lets BFD handle the
7022 details of symbols and relocs.
7024 The second routine and third routines are passed a pointer to a
7025 `struct bfd_link_info' structure (defined in `bfdlink.h') which holds
7026 information relevant to the link, including the linker hash table
7027 (which was created by the first routine) and a set of callback
7028 functions to the linker proper.
7030 The generic linker routines are in `linker.c', and use the header
7031 file `genlink.h'. As of this writing, the only back ends which have
7032 implemented versions of these routines are a.out (in `aoutx.h') and
7033 ECOFF (in `ecoff.c'). The a.out routines are used as examples
7034 throughout this section.
7038 * Creating a Linker Hash Table::
7039 * Adding Symbols to the Hash Table::
7040 * Performing the Final Link::
7043 File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions
7045 2.17.1 Creating a linker hash table
7046 -----------------------------------
7048 The linker routines must create a hash table, which must be derived
7049 from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash
7050 Tables::, for information on how to create a derived hash table. This
7051 entry point is called using the target vector of the linker output file.
7053 The `_bfd_link_hash_table_create' entry point must allocate and
7054 initialize an instance of the desired hash table. If the back end does
7055 not require any additional information to be stored with the entries in
7056 the hash table, the entry point may simply create a `struct
7057 bfd_link_hash_table'. Most likely, however, some additional
7058 information will be needed.
7060 For example, with each entry in the hash table the a.out linker
7061 keeps the index the symbol has in the final output file (this index
7062 number is used so that when doing a relocatable link the symbol index
7063 used in the output file can be quickly filled in when copying over a
7064 reloc). The a.out linker code defines the required structures and
7065 functions for a hash table derived from `struct bfd_link_hash_table'.
7066 The a.out linker hash table is created by the function
7067 `NAME(aout,link_hash_table_create)'; it simply allocates space for the
7068 hash table, initializes it, and returns a pointer to it.
7070 When writing the linker routines for a new back end, you will
7071 generally not know exactly which fields will be required until you have
7072 finished. You should simply create a new hash table which defines no
7073 additional fields, and then simply add fields as they become necessary.
7076 File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions
7078 2.17.2 Adding symbols to the hash table
7079 ---------------------------------------
7081 The linker proper will call the `_bfd_link_add_symbols' entry point for
7082 each object file or archive which is to be linked (typically these are
7083 the files named on the command line, but some may also come from the
7084 linker script). The entry point is responsible for examining the file.
7085 For an object file, BFD must add any relevant symbol information to
7086 the hash table. For an archive, BFD must determine which elements of
7087 the archive should be used and adding them to the link.
7089 The a.out version of this entry point is
7090 `NAME(aout,link_add_symbols)'.
7094 * Differing file formats::
7095 * Adding symbols from an object file::
7096 * Adding symbols from an archive::
7099 File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table
7101 2.17.2.1 Differing file formats
7102 ...............................
7104 Normally all the files involved in a link will be of the same format,
7105 but it is also possible to link together different format object files,
7106 and the back end must support that. The `_bfd_link_add_symbols' entry
7107 point is called via the target vector of the file to be added. This
7108 has an important consequence: the function may not assume that the hash
7109 table is the type created by the corresponding
7110 `_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols'
7111 function can assume about the hash table is that it is derived from
7112 `struct bfd_link_hash_table'.
7114 Sometimes the `_bfd_link_add_symbols' function must store some
7115 information in the hash table entry to be used by the `_bfd_final_link'
7116 function. In such a case the `creator' field of the hash table must be
7117 checked to make sure that the hash table was created by an object file
7120 The `_bfd_final_link' routine must be prepared to handle a hash
7121 entry without any extra information added by the
7122 `_bfd_link_add_symbols' function. A hash entry without extra
7123 information will also occur when the linker script directs the linker
7124 to create a symbol. Note that, regardless of how a hash table entry is
7125 added, all the fields will be initialized to some sort of null value by
7126 the hash table entry initialization function.
7128 See `ecoff_link_add_externals' for an example of how to check the
7129 `creator' field before saving information (in this case, the ECOFF
7130 external symbol debugging information) in a hash table entry.
7133 File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table
7135 2.17.2.2 Adding symbols from an object file
7136 ...........................................
7138 When the `_bfd_link_add_symbols' routine is passed an object file, it
7139 must add all externally visible symbols in that object file to the hash
7140 table. The actual work of adding the symbol to the hash table is
7141 normally handled by the function `_bfd_generic_link_add_one_symbol'.
7142 The `_bfd_link_add_symbols' routine is responsible for reading all the
7143 symbols from the object file and passing the correct information to
7144 `_bfd_generic_link_add_one_symbol'.
7146 The `_bfd_link_add_symbols' routine should not use
7147 `bfd_canonicalize_symtab' to read the symbols. The point of providing
7148 this routine is to avoid the overhead of converting the symbols into
7149 generic `asymbol' structures.
7151 `_bfd_generic_link_add_one_symbol' handles the details of combining
7152 common symbols, warning about multiple definitions, and so forth. It
7153 takes arguments which describe the symbol to add, notably symbol flags,
7154 a section, and an offset. The symbol flags include such things as
7155 `BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object
7156 file, or something like `bfd_und_section_ptr' for an undefined symbol
7157 or `bfd_com_section_ptr' for a common symbol.
7159 If the `_bfd_final_link' routine is also going to need to read the
7160 symbol information, the `_bfd_link_add_symbols' routine should save it
7161 somewhere attached to the object file BFD. However, the information
7162 should only be saved if the `keep_memory' field of the `info' argument
7163 is TRUE, so that the `-no-keep-memory' linker switch is effective.
7165 The a.out function which adds symbols from an object file is
7166 `aout_link_add_object_symbols', and most of the interesting work is in
7167 `aout_link_add_symbols'. The latter saves pointers to the hash tables
7168 entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol
7169 number, so that the `_bfd_final_link' routine does not have to call the
7170 hash table lookup routine to locate the entry.
7173 File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table
7175 2.17.2.3 Adding symbols from an archive
7176 .......................................
7178 When the `_bfd_link_add_symbols' routine is passed an archive, it must
7179 look through the symbols defined by the archive and decide which
7180 elements of the archive should be included in the link. For each such
7181 element it must call the `add_archive_element' linker callback, and it
7182 must add the symbols from the object file to the linker hash table.
7184 In most cases the work of looking through the symbols in the archive
7185 should be done by the `_bfd_generic_link_add_archive_symbols' function.
7186 This function builds a hash table from the archive symbol table and
7187 looks through the list of undefined symbols to see which elements
7188 should be included. `_bfd_generic_link_add_archive_symbols' is passed
7189 a function to call to make the final decision about adding an archive
7190 element to the link and to do the actual work of adding the symbols to
7191 the linker hash table.
7193 The function passed to `_bfd_generic_link_add_archive_symbols' must
7194 read the symbols of the archive element and decide whether the archive
7195 element should be included in the link. If the element is to be
7196 included, the `add_archive_element' linker callback routine must be
7197 called with the element as an argument, and the elements symbols must
7198 be added to the linker hash table just as though the element had itself
7199 been passed to the `_bfd_link_add_symbols' function.
7201 When the a.out `_bfd_link_add_symbols' function receives an archive,
7202 it calls `_bfd_generic_link_add_archive_symbols' passing
7203 `aout_link_check_archive_element' as the function argument.
7204 `aout_link_check_archive_element' calls `aout_link_check_ar_symbols'.
7205 If the latter decides to add the element (an element is only added if
7206 it provides a real, non-common, definition for a previously undefined
7207 or common symbol) it calls the `add_archive_element' callback and then
7208 `aout_link_check_archive_element' calls `aout_link_add_symbols' to
7209 actually add the symbols to the linker hash table.
7211 The ECOFF back end is unusual in that it does not normally call
7212 `_bfd_generic_link_add_archive_symbols', because ECOFF archives already
7213 contain a hash table of symbols. The ECOFF back end searches the
7214 archive itself to avoid the overhead of creating a new hash table.
7217 File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions
7219 2.17.3 Performing the final link
7220 --------------------------------
7222 When all the input files have been processed, the linker calls the
7223 `_bfd_final_link' entry point of the output BFD. This routine is
7224 responsible for producing the final output file, which has several
7225 aspects. It must relocate the contents of the input sections and copy
7226 the data into the output sections. It must build an output symbol
7227 table including any local symbols from the input files and the global
7228 symbols from the hash table. When producing relocatable output, it must
7229 modify the input relocs and write them into the output file. There may
7230 also be object format dependent work to be done.
7232 The linker will also call the `write_object_contents' entry point
7233 when the BFD is closed. The two entry points must work together in
7234 order to produce the correct output file.
7236 The details of how this works are inevitably dependent upon the
7237 specific object file format. The a.out `_bfd_final_link' routine is
7238 `NAME(aout,final_link)'.
7242 * Information provided by the linker::
7243 * Relocating the section contents::
7244 * Writing the symbol table::
7247 File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link
7249 2.17.3.1 Information provided by the linker
7250 ...........................................
7252 Before the linker calls the `_bfd_final_link' entry point, it sets up
7253 some data structures for the function to use.
7255 The `input_bfds' field of the `bfd_link_info' structure will point
7256 to a list of all the input files included in the link. These files are
7257 linked through the `link_next' field of the `bfd' structure.
7259 Each section in the output file will have a list of `link_order'
7260 structures attached to the `map_head.link_order' field (the
7261 `link_order' structure is defined in `bfdlink.h'). These structures
7262 describe how to create the contents of the output section in terms of
7263 the contents of various input sections, fill constants, and,
7264 eventually, other types of information. They also describe relocs that
7265 must be created by the BFD backend, but do not correspond to any input
7266 file; this is used to support -Ur, which builds constructors while
7267 generating a relocatable object file.
7270 File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link
7272 2.17.3.2 Relocating the section contents
7273 ........................................
7275 The `_bfd_final_link' function should look through the `link_order'
7276 structures attached to each section of the output file. Each
7277 `link_order' structure should either be handled specially, or it should
7278 be passed to the function `_bfd_default_link_order' which will do the
7279 right thing (`_bfd_default_link_order' is defined in `linker.c').
7281 For efficiency, a `link_order' of type `bfd_indirect_link_order'
7282 whose associated section belongs to a BFD of the same format as the
7283 output BFD must be handled specially. This type of `link_order'
7284 describes part of an output section in terms of a section belonging to
7285 one of the input files. The `_bfd_final_link' function should read the
7286 contents of the section and any associated relocs, apply the relocs to
7287 the section contents, and write out the modified section contents. If
7288 performing a relocatable link, the relocs themselves must also be
7289 modified and written out.
7291 The functions `_bfd_relocate_contents' and
7292 `_bfd_final_link_relocate' provide some general support for performing
7293 the actual relocations, notably overflow checking. Their arguments
7294 include information about the symbol the relocation is against and a
7295 `reloc_howto_type' argument which describes the relocation to perform.
7296 These functions are defined in `reloc.c'.
7298 The a.out function which handles reading, relocating, and writing
7299 section contents is `aout_link_input_section'. The actual relocation
7300 is done in `aout_link_input_section_std' and
7301 `aout_link_input_section_ext'.
7304 File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link
7306 2.17.3.3 Writing the symbol table
7307 .................................
7309 The `_bfd_final_link' function must gather all the symbols in the input
7310 files and write them out. It must also write out all the symbols in
7311 the global hash table. This must be controlled by the `strip' and
7312 `discard' fields of the `bfd_link_info' structure.
7314 The local symbols of the input files will not have been entered into
7315 the linker hash table. The `_bfd_final_link' routine must consider
7316 each input file and include the symbols in the output file. It may be
7317 convenient to do this when looking through the `link_order' structures,
7318 or it may be done by stepping through the `input_bfds' list.
7320 The `_bfd_final_link' routine must also traverse the global hash
7321 table to gather all the externally visible symbols. It is possible
7322 that most of the externally visible symbols may be written out when
7323 considering the symbols of each input file, but it is still necessary
7324 to traverse the hash table since the linker script may have defined
7325 some symbols that are not in any of the input files.
7327 The `strip' field of the `bfd_link_info' structure controls which
7328 symbols are written out. The possible values are listed in
7329 `bfdlink.h'. If the value is `strip_some', then the `keep_hash' field
7330 of the `bfd_link_info' structure is a hash table of symbols to keep;
7331 each symbol should be looked up in this hash table, and only symbols
7332 which are present should be included in the output file.
7334 If the `strip' field of the `bfd_link_info' structure permits local
7335 symbols to be written out, the `discard' field is used to further
7336 controls which local symbols are included in the output file. If the
7337 value is `discard_l', then all local symbols which begin with a certain
7338 prefix are discarded; this is controlled by the
7339 `bfd_is_local_label_name' entry point.
7341 The a.out backend handles symbols by calling
7342 `aout_link_write_symbols' on each input BFD and then traversing the
7343 global hash table with the function `aout_link_write_other_symbol'. It
7344 builds a string table while writing out the symbols, which is written
7345 to the output file at the end of `NAME(aout,final_link)'.
7347 2.17.3.4 `bfd_link_split_section'
7348 .................................
7351 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
7353 Return nonzero if SEC should be split during a reloceatable or final
7355 #define bfd_link_split_section(abfd, sec) \
7356 BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
7358 2.17.3.5 `bfd_section_already_linked'
7359 .....................................
7362 void bfd_section_already_linked (bfd *abfd, asection *sec,
7363 struct bfd_link_info *info);
7365 Check if SEC has been already linked during a reloceatable or final
7367 #define bfd_section_already_linked(abfd, sec, info) \
7368 BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
7371 File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end
7376 BFD provides a simple set of hash table functions. Routines are
7377 provided to initialize a hash table, to free a hash table, to look up a
7378 string in a hash table and optionally create an entry for it, and to
7379 traverse a hash table. There is currently no routine to delete an
7380 string from a hash table.
7382 The basic hash table does not permit any data to be stored with a
7383 string. However, a hash table is designed to present a base class from
7384 which other types of hash tables may be derived. These derived types
7385 may store additional information with the string. Hash tables were
7386 implemented in this way, rather than simply providing a data pointer in
7387 a hash table entry, because they were designed for use by the linker
7388 back ends. The linker may create thousands of hash table entries, and
7389 the overhead of allocating private data and storing and following
7390 pointers becomes noticeable.
7392 The basic hash table code is in `hash.c'.
7396 * Creating and Freeing a Hash Table::
7397 * Looking Up or Entering a String::
7398 * Traversing a Hash Table::
7399 * Deriving a New Hash Table Type::
7402 File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables
7404 2.18.1 Creating and freeing a hash table
7405 ----------------------------------------
7407 To create a hash table, create an instance of a `struct bfd_hash_table'
7408 (defined in `bfd.h') and call `bfd_hash_table_init' (if you know
7409 approximately how many entries you will need, the function
7410 `bfd_hash_table_init_n', which takes a SIZE argument, may be used).
7411 `bfd_hash_table_init' returns `FALSE' if some sort of error occurs.
7413 The function `bfd_hash_table_init' take as an argument a function to
7414 use to create new entries. For a basic hash table, use the function
7415 `bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why
7416 you would want to use a different value for this argument.
7418 `bfd_hash_table_init' will create an objalloc which will be used to
7419 allocate new entries. You may allocate memory on this objalloc using
7420 `bfd_hash_allocate'.
7422 Use `bfd_hash_table_free' to free up all the memory that has been
7423 allocated for a hash table. This will not free up the `struct
7424 bfd_hash_table' itself, which you must provide.
7426 Use `bfd_hash_set_default_size' to set the default size of hash
7430 File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables
7432 2.18.2 Looking up or entering a string
7433 --------------------------------------
7435 The function `bfd_hash_lookup' is used both to look up a string in the
7436 hash table and to create a new entry.
7438 If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a
7439 string. If the string is found, it will returns a pointer to a `struct
7440 bfd_hash_entry'. If the string is not found in the table
7441 `bfd_hash_lookup' will return `NULL'. You should not modify any of the
7442 fields in the returns `struct bfd_hash_entry'.
7444 If the CREATE argument is `TRUE', the string will be entered into
7445 the hash table if it is not already there. Either way a pointer to a
7446 `struct bfd_hash_entry' will be returned, either to the existing
7447 structure or to a newly created one. In this case, a `NULL' return
7448 means that an error occurred.
7450 If the CREATE argument is `TRUE', and a new entry is created, the
7451 COPY argument is used to decide whether to copy the string onto the
7452 hash table objalloc or not. If COPY is passed as `FALSE', you must be
7453 careful not to deallocate or modify the string as long as the hash table
7457 File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables
7459 2.18.3 Traversing a hash table
7460 ------------------------------
7462 The function `bfd_hash_traverse' may be used to traverse a hash table,
7463 calling a function on each element. The traversal is done in a random
7466 `bfd_hash_traverse' takes as arguments a function and a generic
7467 `void *' pointer. The function is called with a hash table entry (a
7468 `struct bfd_hash_entry *') and the generic pointer passed to
7469 `bfd_hash_traverse'. The function must return a `boolean' value, which
7470 indicates whether to continue traversing the hash table. If the
7471 function returns `FALSE', `bfd_hash_traverse' will stop the traversal
7472 and return immediately.
7475 File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables
7477 2.18.4 Deriving a new hash table type
7478 -------------------------------------
7480 Many uses of hash tables want to store additional information which
7481 each entry in the hash table. Some also find it convenient to store
7482 additional information with the hash table itself. This may be done
7483 using a derived hash table.
7485 Since C is not an object oriented language, creating a derived hash
7486 table requires sticking together some boilerplate routines with a few
7487 differences specific to the type of hash table you want to create.
7489 An example of a derived hash table is the linker hash table. The
7490 structures for this are defined in `bfdlink.h'. The functions are in
7493 You may also derive a hash table from an already derived hash table.
7494 For example, the a.out linker backend code uses a hash table derived
7495 from the linker hash table.
7499 * Define the Derived Structures::
7500 * Write the Derived Creation Routine::
7501 * Write Other Derived Routines::
7504 File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type
7506 2.18.4.1 Define the derived structures
7507 ......................................
7509 You must define a structure for an entry in the hash table, and a
7510 structure for the hash table itself.
7512 The first field in the structure for an entry in the hash table must
7513 be of the type used for an entry in the hash table you are deriving
7514 from. If you are deriving from a basic hash table this is `struct
7515 bfd_hash_entry', which is defined in `bfd.h'. The first field in the
7516 structure for the hash table itself must be of the type of the hash
7517 table you are deriving from itself. If you are deriving from a basic
7518 hash table, this is `struct bfd_hash_table'.
7520 For example, the linker hash table defines `struct
7521 bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of
7522 type `struct bfd_hash_entry'. Similarly, the first field in `struct
7523 bfd_link_hash_table', `table', is of type `struct bfd_hash_table'.
7526 File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type
7528 2.18.4.2 Write the derived creation routine
7529 ...........................................
7531 You must write a routine which will create and initialize an entry in
7532 the hash table. This routine is passed as the function argument to
7533 `bfd_hash_table_init'.
7535 In order to permit other hash tables to be derived from the hash
7536 table you are creating, this routine must be written in a standard way.
7538 The first argument to the creation routine is a pointer to a hash
7539 table entry. This may be `NULL', in which case the routine should
7540 allocate the right amount of space. Otherwise the space has already
7541 been allocated by a hash table type derived from this one.
7543 After allocating space, the creation routine must call the creation
7544 routine of the hash table type it is derived from, passing in a pointer
7545 to the space it just allocated. This will initialize any fields used
7546 by the base hash table.
7548 Finally the creation routine must initialize any local fields for
7549 the new hash table type.
7551 Here is a boilerplate example of a creation routine. FUNCTION_NAME
7552 is the name of the routine. ENTRY_TYPE is the type of an entry in the
7553 hash table you are creating. BASE_NEWFUNC is the name of the creation
7554 routine of the hash table type your hash table is derived from.
7556 struct bfd_hash_entry *
7557 FUNCTION_NAME (struct bfd_hash_entry *entry,
7558 struct bfd_hash_table *table,
7561 struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry;
7563 /* Allocate the structure if it has not already been allocated by a
7567 ret = bfd_hash_allocate (table, sizeof (* ret));
7572 /* Call the allocation method of the base class. */
7573 ret = ((ENTRY_TYPE *)
7574 BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string));
7576 /* Initialize the local fields here. */
7578 return (struct bfd_hash_entry *) ret;
7581 The creation routine for the linker hash table, which is in `linker.c',
7582 looks just like this example. FUNCTION_NAME is
7583 `_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'.
7584 BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic
7587 `_bfd_link_hash_newfunc' also initializes the local fields in a
7588 linker hash table entry: `type', `written' and `next'.
7591 File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type
7593 2.18.4.3 Write other derived routines
7594 .....................................
7596 You will want to write other routines for your new hash table, as well.
7598 You will want an initialization routine which calls the
7599 initialization routine of the hash table you are deriving from and
7600 initializes any other local fields. For the linker hash table, this is
7601 `_bfd_link_hash_table_init' in `linker.c'.
7603 You will want a lookup routine which calls the lookup routine of the
7604 hash table you are deriving from and casts the result. The linker hash
7605 table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an
7606 additional argument which it uses to decide how to return the looked up
7609 You may want a traversal routine. This should just call the
7610 traversal routine of the hash table you are deriving from with
7611 appropriate casts. The linker hash table uses `bfd_link_hash_traverse'
7614 These routines may simply be defined as macros. For example, the
7615 a.out backend linker hash table, which is derived from the linker hash
7616 table, uses macros for the lookup and traversal routines. These are
7617 `aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h.
7620 File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top
7627 * What to Put Where::
7628 * aout :: a.out backends
7629 * coff :: coff backends
7630 * elf :: elf backends
7631 * mmo :: mmo backend
7634 File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends
7636 3.1 What to Put Where
7637 =====================
7639 All of BFD lives in one directory.
7642 File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends
7648 BFD supports a number of different flavours of a.out format, though the
7649 major differences are only the sizes of the structures on disk, and the
7650 shape of the relocation information.
7652 The support is split into a basic support file `aoutx.h' and other
7653 files which derive functions from the base. One derivation file is
7654 `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions
7655 support for sun3, sun4, 386 and 29k a.out files, to create a target
7656 jump vector for a specific target.
7658 This information is further split out into more specific files for
7659 each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for
7660 the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out
7663 The base file `aoutx.h' defines general mechanisms for reading and
7664 writing records to and from disk and various other methods which BFD
7665 requires. It is included by `aout32.c' and `aout64.c' to form the names
7666 `aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc.
7668 As an example, this is what goes on to make the back end for a sun4,
7671 #define ARCH_SIZE 32
7674 Which exports names:
7677 aout_32_canonicalize_reloc
7678 aout_32_find_nearest_line
7680 aout_32_get_reloc_upper_bound
7685 #define TARGET_NAME "a.out-sunos-big"
7686 #define VECNAME sunos_big_vec
7689 requires all the names from `aout32.c', and produces the jump vector
7693 The file `host-aout.c' is a special case. It is for a large set of
7694 hosts that use "more or less standard" a.out files, and for which
7695 cross-debugging is not interesting. It uses the standard 32-bit a.out
7696 support routines, but determines the file offsets and addresses of the
7697 text, data, and BSS sections, the machine architecture and machine
7698 type, and the entry point address, in a host-dependent manner. Once
7699 these values have been determined, generic code is used to handle the
7702 When porting it to run on a new system, you must supply:
7706 HOST_MACHINE_ARCH (optional)
7707 HOST_MACHINE_MACHINE (optional)
7708 HOST_TEXT_START_ADDR
7711 in the file `../include/sys/h-XXX.h' (for your host). These values,
7712 plus the structures and macros defined in `a.out.h' on your host
7713 system, will produce a BFD target that will access ordinary a.out files
7714 on your host. To configure a new machine to use `host-aout.c', specify:
7716 TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
7717 TDEPFILES= host-aout.o trad-core.o
7719 in the `config/XXX.mt' file, and modify `configure.in' to use the
7720 `XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration
7727 The file `aoutx.h' provides for both the _standard_ and _extended_
7728 forms of a.out relocation records.
7730 The standard records contain only an address, a symbol index, and a
7731 type field. The extended records (used on 29ks and sparcs) also have a
7732 full integer for an addend.
7734 3.2.2 Internal entry points
7735 ---------------------------
7738 `aoutx.h' exports several routines for accessing the contents of an
7739 a.out file, which are gathered and exported in turn by various format
7740 specific files (eg sunos.c).
7742 3.2.2.1 `aout_SIZE_swap_exec_header_in'
7743 .......................................
7746 void aout_SIZE_swap_exec_header_in,
7748 struct external_exec *bytes,
7749 struct internal_exec *execp);
7751 Swap the information in an executable header RAW_BYTES taken from a raw
7752 byte stream memory image into the internal exec header structure EXECP.
7754 3.2.2.2 `aout_SIZE_swap_exec_header_out'
7755 ........................................
7758 void aout_SIZE_swap_exec_header_out
7760 struct internal_exec *execp,
7761 struct external_exec *raw_bytes);
7763 Swap the information in an internal exec header structure EXECP into
7764 the buffer RAW_BYTES ready for writing to disk.
7766 3.2.2.3 `aout_SIZE_some_aout_object_p'
7767 ......................................
7770 const bfd_target *aout_SIZE_some_aout_object_p
7772 struct internal_exec *execp,
7773 const bfd_target *(*callback_to_real_object_p) (bfd *));
7775 Some a.out variant thinks that the file open in ABFD checking is an
7776 a.out file. Do some more checking, and set up for access if it really
7777 is. Call back to the calling environment's "finish up" function just
7778 before returning, to handle any last-minute setup.
7780 3.2.2.4 `aout_SIZE_mkobject'
7781 ............................
7784 bfd_boolean aout_SIZE_mkobject, (bfd *abfd);
7786 Initialize BFD ABFD for use with a.out files.
7788 3.2.2.5 `aout_SIZE_machine_type'
7789 ................................
7792 enum machine_type aout_SIZE_machine_type
7793 (enum bfd_architecture arch,
7794 unsigned long machine,
7795 bfd_boolean *unknown);
7797 Keep track of machine architecture and machine type for a.out's. Return
7798 the `machine_type' for a particular architecture and machine, or
7799 `M_UNKNOWN' if that exact architecture and machine can't be represented
7802 If the architecture is understood, machine type 0 (default) is
7805 3.2.2.6 `aout_SIZE_set_arch_mach'
7806 .................................
7809 bfd_boolean aout_SIZE_set_arch_mach,
7811 enum bfd_architecture arch,
7812 unsigned long machine);
7814 Set the architecture and the machine of the BFD ABFD to the values ARCH
7815 and MACHINE. Verify that ABFD's format can support the architecture
7818 3.2.2.7 `aout_SIZE_new_section_hook'
7819 ....................................
7822 bfd_boolean aout_SIZE_new_section_hook,
7826 Called by the BFD in response to a `bfd_make_section' request.
7829 File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends
7834 BFD supports a number of different flavours of coff format. The major
7835 differences between formats are the sizes and alignments of fields in
7836 structures on disk, and the occasional extra field.
7838 Coff in all its varieties is implemented with a few common files and
7839 a number of implementation specific files. For example, The 88k bcs
7840 coff format is implemented in the file `coff-m88k.c'. This file
7841 `#include's `coff/m88k.h' which defines the external structure of the
7842 coff format for the 88k, and `coff/internal.h' which defines the
7843 internal structure. `coff-m88k.c' also defines the relocations used by
7844 the 88k format *Note Relocations::.
7846 The Intel i960 processor version of coff is implemented in
7847 `coff-i960.c'. This file has the same structure as `coff-m88k.c',
7848 except that it includes `coff/i960.h' rather than `coff-m88k.h'.
7850 3.3.1 Porting to a new version of coff
7851 --------------------------------------
7853 The recommended method is to select from the existing implementations
7854 the version of coff which is most like the one you want to use. For
7855 example, we'll say that i386 coff is the one you select, and that your
7856 coff flavour is called foo. Copy `i386coff.c' to `foocoff.c', copy
7857 `../include/coff/i386.h' to `../include/coff/foo.h', and add the lines
7858 to `targets.c' and `Makefile.in' so that your new back end is used.
7859 Alter the shapes of the structures in `../include/coff/foo.h' so that
7860 they match what you need. You will probably also have to add `#ifdef's
7861 to the code in `coff/internal.h' and `coffcode.h' if your version of
7864 You can verify that your new BFD backend works quite simply by
7865 building `objdump' from the `binutils' directory, and making sure that
7866 its version of what's going on and your host system's idea (assuming it
7867 has the pretty standard coff dump utility, usually called `att-dump' or
7868 just `dump') are the same. Then clean up your code, and send what
7869 you've done to Cygnus. Then your stuff will be in the next release, and
7870 you won't have to keep integrating it.
7872 3.3.2 How the coff backend works
7873 --------------------------------
7878 The Coff backend is split into generic routines that are applicable to
7879 any Coff target and routines that are specific to a particular target.
7880 The target-specific routines are further split into ones which are
7881 basically the same for all Coff targets except that they use the
7882 external symbol format or use different values for certain constants.
7884 The generic routines are in `coffgen.c'. These routines work for
7885 any Coff target. They use some hooks into the target specific code;
7886 the hooks are in a `bfd_coff_backend_data' structure, one of which
7887 exists for each target.
7889 The essentially similar target-specific routines are in
7890 `coffcode.h'. This header file includes executable C code. The
7891 various Coff targets first include the appropriate Coff header file,
7892 make any special defines that are needed, and then include `coffcode.h'.
7894 Some of the Coff targets then also have additional routines in the
7895 target source file itself.
7897 For example, `coff-i960.c' includes `coff/internal.h' and
7898 `coff/i960.h'. It then defines a few constants, such as `I960', and
7899 includes `coffcode.h'. Since the i960 has complex relocation types,
7900 `coff-i960.c' also includes some code to manipulate the i960 relocs.
7901 This code is not in `coffcode.h' because it would not be used by any
7904 3.3.2.2 Bit twiddling
7905 .....................
7907 Each flavour of coff supported in BFD has its own header file
7908 describing the external layout of the structures. There is also an
7909 internal description of the coff layout, in `coff/internal.h'. A major
7910 function of the coff backend is swapping the bytes and twiddling the
7911 bits to translate the external form of the structures into the normal
7912 internal form. This is all performed in the `bfd_swap'_thing_direction
7913 routines. Some elements are different sizes between different versions
7914 of coff; it is the duty of the coff version specific include file to
7915 override the definitions of various packing routines in `coffcode.h'.
7916 E.g., the size of line number entry in coff is sometimes 16 bits, and
7917 sometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO'
7918 will select the correct one. No doubt, some day someone will find a
7919 version of coff which has a varying field size not catered to at the
7920 moment. To port BFD, that person will have to add more `#defines'.
7921 Three of the bit twiddling routines are exported to `gdb';
7922 `coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB'
7923 reads the symbol table on its own, but uses BFD to fix things up. More
7924 of the bit twiddlers are exported for `gas'; `coff_swap_aux_out',
7925 `coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out',
7926 `coff_swap_filehdr_out', `coff_swap_aouthdr_out',
7927 `coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symbol
7928 table and reloc drudgery itself, thereby saving the internal BFD
7929 overhead, but uses BFD to swap things on the way out, making cross
7930 ports much safer. Doing so also allows BFD (and thus the linker) to
7931 use the same header files as `gas', which makes one avenue to disaster
7934 3.3.2.3 Symbol reading
7935 ......................
7937 The simple canonical form for symbols used by BFD is not rich enough to
7938 keep all the information available in a coff symbol table. The back end
7939 gets around this problem by keeping the original symbol table around,
7940 "behind the scenes".
7942 When a symbol table is requested (through a call to
7943 `bfd_canonicalize_symtab'), a request gets through to
7944 `coff_get_normalized_symtab'. This reads the symbol table from the coff
7945 file and swaps all the structures inside into the internal form. It
7946 also fixes up all the pointers in the table (represented in the file by
7947 offsets from the first symbol in the table) into physical pointers to
7948 elements in the new internal table. This involves some work since the
7949 meanings of fields change depending upon context: a field that is a
7950 pointer to another structure in the symbol table at one moment may be
7951 the size in bytes of a structure at the next. Another pass is made
7952 over the table. All symbols which mark file names (`C_FILE' symbols)
7953 are modified so that the internal string points to the value in the
7954 auxent (the real filename) rather than the normal text associated with
7955 the symbol (`".file"').
7957 At this time the symbol names are moved around. Coff stores all
7958 symbols less than nine characters long physically within the symbol
7959 table; longer strings are kept at the end of the file in the string
7960 table. This pass moves all strings into memory and replaces them with
7961 pointers to the strings.
7963 The symbol table is massaged once again, this time to create the
7964 canonical table used by the BFD application. Each symbol is inspected
7965 in turn, and a decision made (using the `sclass' field) about the
7966 various flags to set in the `asymbol'. *Note Symbols::. The generated
7967 canonical table shares strings with the hidden internal symbol table.
7969 Any linenumbers are read from the coff file too, and attached to the
7970 symbols which own the functions the linenumbers belong to.
7972 3.3.2.4 Symbol writing
7973 ......................
7975 Writing a symbol to a coff file which didn't come from a coff file will
7976 lose any debugging information. The `asymbol' structure remembers the
7977 BFD from which the symbol was taken, and on output the back end makes
7978 sure that the same destination target as source target is present.
7980 When the symbols have come from a coff file then all the debugging
7981 information is preserved.
7983 Symbol tables are provided for writing to the back end in a vector
7984 of pointers to pointers. This allows applications like the linker to
7985 accumulate and output large symbol tables without having to do too much
7988 This function runs through the provided symbol table and patches
7989 each symbol marked as a file place holder (`C_FILE') to point to the
7990 next file place holder in the list. It also marks each `offset' field
7991 in the list with the offset from the first symbol of the current symbol.
7993 Another function of this procedure is to turn the canonical value
7994 form of BFD into the form used by coff. Internally, BFD expects symbol
7995 values to be offsets from a section base; so a symbol physically at
7996 0x120, but in a section starting at 0x100, would have the value 0x20.
7997 Coff expects symbols to contain their final value, so symbols have
7998 their values changed at this point to reflect their sum with their
7999 owning section. This transformation uses the `output_section' field of
8000 the `asymbol''s `asection' *Note Sections::.
8002 * `coff_mangle_symbols'
8003 This routine runs though the provided symbol table and uses the
8004 offsets generated by the previous pass and the pointers generated when
8005 the symbol table was read in to create the structured hierarchy
8006 required by coff. It changes each pointer to a symbol into the index
8007 into the symbol table of the asymbol.
8009 * `coff_write_symbols'
8010 This routine runs through the symbol table and patches up the
8011 symbols from their internal form into the coff way, calls the bit
8012 twiddlers, and writes out the table to the file.
8014 3.3.2.5 `coff_symbol_type'
8015 ..........................
8018 The hidden information for an `asymbol' is described in a
8019 `combined_entry_type':
8022 typedef struct coff_ptr_struct
8024 /* Remembers the offset from the first symbol in the file for
8025 this symbol. Generated by coff_renumber_symbols. */
8026 unsigned int offset;
8028 /* Should the value of this symbol be renumbered. Used for
8029 XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */
8030 unsigned int fix_value : 1;
8032 /* Should the tag field of this symbol be renumbered.
8033 Created by coff_pointerize_aux. */
8034 unsigned int fix_tag : 1;
8036 /* Should the endidx field of this symbol be renumbered.
8037 Created by coff_pointerize_aux. */
8038 unsigned int fix_end : 1;
8040 /* Should the x_csect.x_scnlen field be renumbered.
8041 Created by coff_pointerize_aux. */
8042 unsigned int fix_scnlen : 1;
8044 /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the
8045 index into the line number entries. Set by coff_slurp_symbol_table. */
8046 unsigned int fix_line : 1;
8048 /* The container for the symbol structure as read and translated
8052 union internal_auxent auxent;
8053 struct internal_syment syment;
8055 } combined_entry_type;
8058 /* Each canonical asymbol really looks like this: */
8060 typedef struct coff_symbol_struct
8062 /* The actual symbol which the rest of BFD works with */
8065 /* A pointer to the hidden information for this symbol */
8066 combined_entry_type *native;
8068 /* A pointer to the linenumber information for this symbol */
8069 struct lineno_cache_entry *lineno;
8071 /* Have the line numbers been relocated yet ? */
8072 bfd_boolean done_lineno;
8075 3.3.2.6 `bfd_coff_backend_data'
8076 ...............................
8078 /* COFF symbol classifications. */
8080 enum coff_symbol_classification
8082 /* Global symbol. */
8084 /* Common symbol. */
8086 /* Undefined symbol. */
8087 COFF_SYMBOL_UNDEFINED,
8090 /* PE section symbol. */
8091 COFF_SYMBOL_PE_SECTION
8093 Special entry points for gdb to swap in coff symbol table parts:
8096 void (*_bfd_coff_swap_aux_in)
8097 (bfd *, void *, int, int, int, int, void *);
8099 void (*_bfd_coff_swap_sym_in)
8100 (bfd *, void *, void *);
8102 void (*_bfd_coff_swap_lineno_in)
8103 (bfd *, void *, void *);
8105 unsigned int (*_bfd_coff_swap_aux_out)
8106 (bfd *, void *, int, int, int, int, void *);
8108 unsigned int (*_bfd_coff_swap_sym_out)
8109 (bfd *, void *, void *);
8111 unsigned int (*_bfd_coff_swap_lineno_out)
8112 (bfd *, void *, void *);
8114 unsigned int (*_bfd_coff_swap_reloc_out)
8115 (bfd *, void *, void *);
8117 unsigned int (*_bfd_coff_swap_filehdr_out)
8118 (bfd *, void *, void *);
8120 unsigned int (*_bfd_coff_swap_aouthdr_out)
8121 (bfd *, void *, void *);
8123 unsigned int (*_bfd_coff_swap_scnhdr_out)
8124 (bfd *, void *, void *);
8126 unsigned int _bfd_filhsz;
8127 unsigned int _bfd_aoutsz;
8128 unsigned int _bfd_scnhsz;
8129 unsigned int _bfd_symesz;
8130 unsigned int _bfd_auxesz;
8131 unsigned int _bfd_relsz;
8132 unsigned int _bfd_linesz;
8133 unsigned int _bfd_filnmlen;
8134 bfd_boolean _bfd_coff_long_filenames;
8135 bfd_boolean _bfd_coff_long_section_names;
8136 unsigned int _bfd_coff_default_section_alignment_power;
8137 bfd_boolean _bfd_coff_force_symnames_in_strings;
8138 unsigned int _bfd_coff_debug_string_prefix_length;
8140 void (*_bfd_coff_swap_filehdr_in)
8141 (bfd *, void *, void *);
8143 void (*_bfd_coff_swap_aouthdr_in)
8144 (bfd *, void *, void *);
8146 void (*_bfd_coff_swap_scnhdr_in)
8147 (bfd *, void *, void *);
8149 void (*_bfd_coff_swap_reloc_in)
8150 (bfd *abfd, void *, void *);
8152 bfd_boolean (*_bfd_coff_bad_format_hook)
8155 bfd_boolean (*_bfd_coff_set_arch_mach_hook)
8158 void * (*_bfd_coff_mkobject_hook)
8159 (bfd *, void *, void *);
8161 bfd_boolean (*_bfd_styp_to_sec_flags_hook)
8162 (bfd *, void *, const char *, asection *, flagword *);
8164 void (*_bfd_set_alignment_hook)
8165 (bfd *, asection *, void *);
8167 bfd_boolean (*_bfd_coff_slurp_symbol_table)
8170 bfd_boolean (*_bfd_coff_symname_in_debug)
8171 (bfd *, struct internal_syment *);
8173 bfd_boolean (*_bfd_coff_pointerize_aux_hook)
8174 (bfd *, combined_entry_type *, combined_entry_type *,
8175 unsigned int, combined_entry_type *);
8177 bfd_boolean (*_bfd_coff_print_aux)
8178 (bfd *, FILE *, combined_entry_type *, combined_entry_type *,
8179 combined_entry_type *, unsigned int);
8181 void (*_bfd_coff_reloc16_extra_cases)
8182 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
8183 bfd_byte *, unsigned int *, unsigned int *);
8185 int (*_bfd_coff_reloc16_estimate)
8186 (bfd *, asection *, arelent *, unsigned int,
8187 struct bfd_link_info *);
8189 enum coff_symbol_classification (*_bfd_coff_classify_symbol)
8190 (bfd *, struct internal_syment *);
8192 bfd_boolean (*_bfd_coff_compute_section_file_positions)
8195 bfd_boolean (*_bfd_coff_start_final_link)
8196 (bfd *, struct bfd_link_info *);
8198 bfd_boolean (*_bfd_coff_relocate_section)
8199 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8200 struct internal_reloc *, struct internal_syment *, asection **);
8202 reloc_howto_type *(*_bfd_coff_rtype_to_howto)
8203 (bfd *, asection *, struct internal_reloc *,
8204 struct coff_link_hash_entry *, struct internal_syment *,
8207 bfd_boolean (*_bfd_coff_adjust_symndx)
8208 (bfd *, struct bfd_link_info *, bfd *, asection *,
8209 struct internal_reloc *, bfd_boolean *);
8211 bfd_boolean (*_bfd_coff_link_add_one_symbol)
8212 (struct bfd_link_info *, bfd *, const char *, flagword,
8213 asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean,
8214 struct bfd_link_hash_entry **);
8216 bfd_boolean (*_bfd_coff_link_output_has_begun)
8217 (bfd *, struct coff_final_link_info *);
8219 bfd_boolean (*_bfd_coff_final_link_postscript)
8220 (bfd *, struct coff_final_link_info *);
8222 } bfd_coff_backend_data;
8224 #define coff_backend_info(abfd) \
8225 ((bfd_coff_backend_data *) (abfd)->xvec->backend_data)
8227 #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
8228 ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))
8230 #define bfd_coff_swap_sym_in(a,e,i) \
8231 ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))
8233 #define bfd_coff_swap_lineno_in(a,e,i) \
8234 ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i))
8236 #define bfd_coff_swap_reloc_out(abfd, i, o) \
8237 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))
8239 #define bfd_coff_swap_lineno_out(abfd, i, o) \
8240 ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))
8242 #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \
8243 ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))
8245 #define bfd_coff_swap_sym_out(abfd, i,o) \
8246 ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))
8248 #define bfd_coff_swap_scnhdr_out(abfd, i,o) \
8249 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))
8251 #define bfd_coff_swap_filehdr_out(abfd, i,o) \
8252 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))
8254 #define bfd_coff_swap_aouthdr_out(abfd, i,o) \
8255 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))
8257 #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
8258 #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
8259 #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
8260 #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
8261 #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
8262 #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)
8263 #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
8264 #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)
8265 #define bfd_coff_long_filenames(abfd) \
8266 (coff_backend_info (abfd)->_bfd_coff_long_filenames)
8267 #define bfd_coff_long_section_names(abfd) \
8268 (coff_backend_info (abfd)->_bfd_coff_long_section_names)
8269 #define bfd_coff_default_section_alignment_power(abfd) \
8270 (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)
8271 #define bfd_coff_swap_filehdr_in(abfd, i,o) \
8272 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))
8274 #define bfd_coff_swap_aouthdr_in(abfd, i,o) \
8275 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))
8277 #define bfd_coff_swap_scnhdr_in(abfd, i,o) \
8278 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))
8280 #define bfd_coff_swap_reloc_in(abfd, i, o) \
8281 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))
8283 #define bfd_coff_bad_format_hook(abfd, filehdr) \
8284 ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))
8286 #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\
8287 ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))
8288 #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\
8289 ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\
8290 (abfd, filehdr, aouthdr))
8292 #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\
8293 ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\
8294 (abfd, scnhdr, name, section, flags_ptr))
8296 #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
8297 ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))
8299 #define bfd_coff_slurp_symbol_table(abfd)\
8300 ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))
8302 #define bfd_coff_symname_in_debug(abfd, sym)\
8303 ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))
8305 #define bfd_coff_force_symnames_in_strings(abfd)\
8306 (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)
8308 #define bfd_coff_debug_string_prefix_length(abfd)\
8309 (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)
8311 #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
8312 ((coff_backend_info (abfd)->_bfd_coff_print_aux)\
8313 (abfd, file, base, symbol, aux, indaux))
8315 #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\
8316 reloc, data, src_ptr, dst_ptr)\
8317 ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\
8318 (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))
8320 #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\
8321 ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\
8322 (abfd, section, reloc, shrink, link_info))
8324 #define bfd_coff_classify_symbol(abfd, sym)\
8325 ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\
8328 #define bfd_coff_compute_section_file_positions(abfd)\
8329 ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\
8332 #define bfd_coff_start_final_link(obfd, info)\
8333 ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
8335 #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
8336 ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
8337 (obfd, info, ibfd, o, con, rel, isyms, secs))
8338 #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\
8339 ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
8340 (abfd, sec, rel, h, sym, addendp))
8341 #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
8342 ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
8343 (obfd, info, ibfd, sec, rel, adjustedp))
8344 #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\
8345 value, string, cp, coll, hashp)\
8346 ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
8347 (info, abfd, name, flags, section, value, string, cp, coll, hashp))
8349 #define bfd_coff_link_output_has_begun(a,p) \
8350 ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))
8351 #define bfd_coff_final_link_postscript(a,p) \
8352 ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))
8354 3.3.2.7 Writing relocations
8355 ...........................
8357 To write relocations, the back end steps though the canonical
8358 relocation table and create an `internal_reloc'. The symbol index to
8359 use is removed from the `offset' field in the symbol table supplied.
8360 The address comes directly from the sum of the section base address and
8361 the relocation offset; the type is dug directly from the howto field.
8362 Then the `internal_reloc' is swapped into the shape of an
8363 `external_reloc' and written out to disk.
8365 3.3.2.8 Reading linenumbers
8366 ...........................
8368 Creating the linenumber table is done by reading in the entire coff
8369 linenumber table, and creating another table for internal use.
8371 A coff linenumber table is structured so that each function is
8372 marked as having a line number of 0. Each line within the function is
8373 an offset from the first line in the function. The base of the line
8374 number information for the table is stored in the symbol associated
8377 Note: The PE format uses line number 0 for a flag indicating a new
8380 The information is copied from the external to the internal table,
8381 and each symbol which marks a function is marked by pointing its...
8383 How does this work ?
8385 3.3.2.9 Reading relocations
8386 ...........................
8388 Coff relocations are easily transformed into the internal BFD form
8391 Reading a coff relocation table is done in the following stages:
8393 * Read the entire coff relocation table into memory.
8395 * Process each relocation in turn; first swap it from the external
8396 to the internal form.
8398 * Turn the symbol referenced in the relocation's symbol index into a
8399 pointer into the canonical symbol table. This table is the same
8400 as the one returned by a call to `bfd_canonicalize_symtab'. The
8401 back end will call that routine and save the result if a
8402 canonicalization hasn't been done.
8404 * The reloc index is turned into a pointer to a howto structure, in
8405 a back end specific way. For instance, the 386 and 960 use the
8406 `r_type' to directly produce an index into a howto table vector;
8407 the 88k subtracts a number from the `r_type' field and creates an
8411 File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends
8416 BFD support for ELF formats is being worked on. Currently, the best
8417 supported back ends are for sparc and i386 (running svr4 or Solaris 2).
8419 Documentation of the internals of the support code still needs to be
8420 written. The code is changing quickly enough that we haven't bothered
8423 3.4.0.1 `bfd_elf_find_section'
8424 ..............................
8427 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
8429 Helper functions for GDB to locate the string tables. Since BFD hides
8430 string tables from callers, GDB needs to use an internal hook to find
8431 them. Sun's .stabstr, in particular, isn't even pointed to by the
8432 .stab section, so ordinary mechanisms wouldn't work to find it, even if
8436 File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends
8441 The mmo object format is used exclusively together with Professor
8442 Donald E. Knuth's educational 64-bit processor MMIX. The simulator
8443 `mmix' which is available at
8444 `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'
8445 understands this format. That package also includes a combined
8446 assembler and linker called `mmixal'. The mmo format has no advantages
8447 feature-wise compared to e.g. ELF. It is a simple non-relocatable
8448 object format with no support for archives or debugging information,
8449 except for symbol value information and line numbers (which is not yet
8450 implemented in BFD). See
8451 `http://www-cs-faculty.stanford.edu/~knuth/mmix.html' for more
8452 information about MMIX. The ELF format is used for intermediate object
8453 files in the BFD implementation.
8459 * mmo section mapping::
8462 File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo
8467 The mmo file contents is not partitioned into named sections as with
8468 e.g. ELF. Memory areas is formed by specifying the location of the
8469 data that follows. Only the memory area `0x0000...00' to `0x01ff...ff'
8470 is executable, so it is used for code (and constants) and the area
8471 `0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmo
8474 There is provision for specifying "special data" of 65536 different
8475 types. We use type 80 (decimal), arbitrarily chosen the same as the
8476 ELF `e_machine' number for MMIX, filling it with section information
8477 normally found in ELF objects. *Note mmo section mapping::.
8479 Contents is entered as 32-bit words, xor:ed over previous contents,
8480 always zero-initialized. A word that starts with the byte `0x98' forms
8481 a command called a `lopcode', where the next byte distinguished between
8482 the thirteen lopcodes. The two remaining bytes, called the `Y' and `Z'
8483 fields, or the `YZ' field (a 16-bit big-endian number), are used for
8484 various purposes different for each lopcode. As documented in
8485 `http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz', the
8489 0x98000001. The next word is contents, regardless of whether it
8490 starts with 0x98 or not.
8493 0x9801YYZZ, where `Z' is 1 or 2. This is a location directive,
8494 setting the location for the next data to the next 32-bit word
8495 (for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally
8496 `Y' is 0 for the text segment and 2 for the data segment.
8499 0x9802YYZZ. Increase the current location by `YZ' bytes.
8502 0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64
8503 bits into the location pointed to by the next 32-bit (Z = 1) or
8504 64-bit (Z = 2) word, plus Y * 2^56.
8507 0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 *
8511 0x980500ZZ. `Z' is 16 or 24. A value `L' derived from the
8512 following 32-bit word are used in a manner similar to `YZ' in
8513 lop_fixr: it is xor:ed into the current location minus 4 * L. The
8514 first byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24
8515 BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD).
8518 0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words.
8519 Set the file number to `Y' and the line counter to 0. The next Z
8520 * 4 bytes contain the file name, padded with zeros if the count is
8521 not a multiple of four. The same `Y' may occur multiple times,
8522 but `Z' must be 0 for all but the first occurrence.
8525 0x9807YYZZ. `YZ' is the line number. Together with lop_file, it
8526 forms the source location for the next 32-bit word. Note that for
8527 each non-lopcode 32-bit word, line numbers are assumed incremented
8531 0x9808YYZZ. `YZ' is the type number. Data until the next lopcode
8532 other than lop_quote forms special data of type `YZ'. *Note mmo
8535 Other types than 80, (or type 80 with a content that does not
8536 parse) is stored in sections named `.MMIX.spec_data.N' where N is
8537 the `YZ'-type. The flags for such a sections say not to allocate
8538 or load the data. The vma is 0. Contents of multiple occurrences
8539 of special data N is concatenated to the data of the previous
8540 lop_spec Ns. The location in data or code at which the lop_spec
8544 0x980901ZZ. The first lopcode in a file. The `Z' field forms the
8545 length of header information in 32-bit words, where the first word
8546 tells the time in seconds since `00:00:00 GMT Jan 1 1970'.
8549 0x980a00ZZ. Z > 32. This lopcode follows after all
8550 content-generating lopcodes in a program. The `Z' field denotes
8551 the value of `rG' at the beginning of the program. The following
8552 256 - Z big-endian 64-bit words are loaded into global registers
8556 0x980b0000. The next-to-last lopcode in a program. Must follow
8557 immediately after the lop_post lopcode and its data. After this
8558 lopcode follows all symbols in a compressed format (*note
8562 0x980cYYZZ. The last lopcode in a program. It must follow the
8563 lop_stab lopcode and its data. The `YZ' field contains the number
8564 of 32-bit words of symbol table information after the preceding
8567 Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and
8568 `lop_fixo' are not generated by BFD, but are handled. They are
8569 generated by `mmixal'.
8571 This trivial one-label, one-instruction file:
8575 can be represented this way in mmo:
8577 0x98090101 - lop_pre, one 32-bit word with timestamp.
8579 0x98010002 - lop_loc, text segment, using a 64-bit address.
8580 Note that mmixal does not emit this for the file above.
8581 0x00000000 - Address, high 32 bits.
8582 0x00000000 - Address, low 32 bits.
8583 0x98060002 - lop_file, 2 32-bit words for file-name.
8585 0x2e730000 - ".s\0\0"
8586 0x98070001 - lop_line, line 1.
8587 0x00010203 - TRAP 1,2,3
8588 0x980a00ff - lop_post, setting $255 to 0.
8591 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
8592 0x203a4040 *Note Symbol-table::.
8597 0x980c0005 - lop_end; symbol table contained five 32-bit words.
8600 File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo
8602 3.5.2 Symbol table format
8603 -------------------------
8605 From mmixal.w (or really, the generated mmixal.tex) in
8606 `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'):
8607 "Symbols are stored and retrieved by means of a `ternary search trie',
8608 following ideas of Bentley and Sedgewick. (See ACM-SIAM Symp. on
8609 Discrete Algorithms `8' (1997), 360-369; R.Sedgewick, `Algorithms in C'
8610 (Reading, Mass. Addison-Wesley, 1998), `15.4'.) Each trie node stores
8611 a character, and there are branches to subtries for the cases where a
8612 given character is less than, equal to, or greater than the character
8613 in the trie. There also is a pointer to a symbol table entry if a
8614 symbol ends at the current node."
8616 So it's a tree encoded as a stream of bytes. The stream of bytes
8617 acts on a single virtual global symbol, adding and removing characters
8618 and signalling complete symbol points. Here, we read the stream and
8619 create symbols at the completion points.
8621 First, there's a control byte `m'. If any of the listed bits in `m'
8622 is nonzero, we execute what stands at the right, in the listed order:
8625 0x40 - Traverse left trie.
8626 (Read a new command byte and recurse.)
8629 0x2f - Read the next byte as a character and store it in the
8630 current character position; increment character position.
8631 Test the bits of `m':
8634 0x80 - The character is 16-bit (so read another byte,
8635 merge into current character.
8638 0xf - We have a complete symbol; parse the type, value
8639 and serial number and do what should be done
8640 with a symbol. The type and length information
8641 is in j = (m & 0xf).
8644 j == 0xf: A register variable. The following
8645 byte tells which register.
8646 j <= 8: An absolute symbol. Read j bytes as the
8647 big-endian number the symbol equals.
8648 A j = 2 with two zero bytes denotes an
8650 j > 8: As with j <= 8, but add (0x20 << 56)
8651 to the value in the following j - 8
8654 Then comes the serial number, as a variant of
8655 uleb128, but better named ubeb128:
8656 Read bytes and shift the previous value left 7
8657 (multiply by 128). Add in the new byte, repeat
8658 until a byte has bit 7 set. The serial number
8659 is the computed value minus 128.
8662 0x20 - Traverse middle trie. (Read a new command byte
8663 and recurse.) Decrement character position.
8666 0x10 - Traverse right trie. (Read a new command byte and
8669 Let's look again at the `lop_stab' for the trivial file (*note File
8672 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
8679 This forms the trivial trie (note that the path between ":" and "M"
8691 016e "n" is the last character in a full symbol, and
8692 with a value represented in one byte.
8694 81 The serial number is 1.
8697 File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo
8699 3.5.3 mmo section mapping
8700 -------------------------
8702 The implementation in BFD uses special data type 80 (decimal) to
8703 encapsulate and describe named sections, containing e.g. debug
8704 information. If needed, any datum in the encapsulation will be quoted
8705 using lop_quote. First comes a 32-bit word holding the number of
8706 32-bit words containing the zero-terminated zero-padded segment name.
8707 After the name there's a 32-bit word holding flags describing the
8708 section type. Then comes a 64-bit big-endian word with the section
8709 length (in bytes), then another with the section start address.
8710 Depending on the type of section, the contents might follow,
8711 zero-padded to 32-bit boundary. For a loadable section (such as data
8712 or code), the contents might follow at some later point, not
8713 necessarily immediately, as a lop_loc with the same start address as in
8714 the section description, followed by the contents. This in effect
8715 forms a descriptor that must be emitted before the actual contents.
8716 Sections described this way must not overlap.
8718 For areas that don't have such descriptors, synthetic sections are
8719 formed by BFD. Consecutive contents in the two memory areas
8720 `0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' are
8721 entered in sections named `.text' and `.data' respectively. If an area
8722 is not otherwise described, but would together with a neighboring lower
8723 area be less than `0x40000000' bytes long, it is joined with the lower
8724 area and the gap is zero-filled. For other cases, a new section is
8725 formed, named `.MMIX.sec.N'. Here, N is a number, a running count
8726 through the mmo file, starting at 0.
8728 A loadable section specified as:
8730 .section secname,"ax"
8731 TETRA 1,2,3,4,-1,-2009
8734 and linked to address `0x4', is represented by the sequence:
8736 0x98080050 - lop_spec 80
8737 0x00000002 - two 32-bit words for the section name
8739 0x616d6500 - "ame\0"
8740 0x00000033 - flags CODE, READONLY, LOAD, ALLOC
8741 0x00000000 - high 32 bits of section length
8742 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits
8743 0x00000000 - high 32 bits of section address
8744 0x00000004 - section address is 4
8745 0x98010002 - 64 bits with address of following data
8746 0x00000000 - high 32 bits of address
8747 0x00000004 - low 32 bits: data starts at address 4
8754 0x50000000 - 80 as a byte, padded with zeros.
8756 Note that the lop_spec wrapping does not include the section
8757 contents. Compare this to a non-loaded section specified as:
8763 This, when linked to address `0x200000000000001c', is represented by:
8765 0x98080050 - lop_spec 80
8766 0x00000002 - two 32-bit words for the section name
8769 0x00000010 - flag READONLY
8770 0x00000000 - high 32 bits of section length
8771 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits
8772 0x20000000 - high 32 bits of address
8773 0x0000001c - low 32 bits of address 0x200000000000001c
8776 0x26280000 - 38, 40 as bytes, padded with zeros
8778 For the latter example, the section contents must not be loaded in
8779 memory, and is therefore specified as part of the special data. The
8780 address is usually unimportant but might provide information for e.g.
8781 the DWARF 2 debugging format.
8784 File: bfd.info, Node: GNU Free Documentation License, Next: BFD Index, Prev: BFD back ends, Up: Top
8786 Appendix A GNU Free Documentation License
8787 *****************************************
8789 Version 1.1, March 2000
8791 Copyright (C) 2000, 2003 Free Software Foundation, Inc.
8792 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
8794 Everyone is permitted to copy and distribute verbatim copies
8795 of this license document, but changing it is not allowed.
8800 The purpose of this License is to make a manual, textbook, or other
8801 written document "free" in the sense of freedom: to assure everyone
8802 the effective freedom to copy and redistribute it, with or without
8803 modifying it, either commercially or noncommercially. Secondarily,
8804 this License preserves for the author and publisher a way to get
8805 credit for their work, while not being considered responsible for
8806 modifications made by others.
8808 This License is a kind of "copyleft", which means that derivative
8809 works of the document must themselves be free in the same sense.
8810 It complements the GNU General Public License, which is a copyleft
8811 license designed for free software.
8813 We have designed this License in order to use it for manuals for
8814 free software, because free software needs free documentation: a
8815 free program should come with manuals providing the same freedoms
8816 that the software does. But this License is not limited to
8817 software manuals; it can be used for any textual work, regardless
8818 of subject matter or whether it is published as a printed book.
8819 We recommend this License principally for works whose purpose is
8820 instruction or reference.
8823 1. APPLICABILITY AND DEFINITIONS
8825 This License applies to any manual or other work that contains a
8826 notice placed by the copyright holder saying it can be distributed
8827 under the terms of this License. The "Document", below, refers to
8828 any such manual or work. Any member of the public is a licensee,
8829 and is addressed as "you."
8831 A "Modified Version" of the Document means any work containing the
8832 Document or a portion of it, either copied verbatim, or with
8833 modifications and/or translated into another language.
8835 A "Secondary Section" is a named appendix or a front-matter
8836 section of the Document that deals exclusively with the
8837 relationship of the publishers or authors of the Document to the
8838 Document's overall subject (or to related matters) and contains
8839 nothing that could fall directly within that overall subject.
8840 (For example, if the Document is in part a textbook of
8841 mathematics, a Secondary Section may not explain any mathematics.)
8842 The relationship could be a matter of historical connection with
8843 the subject or with related matters, or of legal, commercial,
8844 philosophical, ethical or political position regarding them.
8846 The "Invariant Sections" are certain Secondary Sections whose
8847 titles are designated, as being those of Invariant Sections, in
8848 the notice that says that the Document is released under this
8851 The "Cover Texts" are certain short passages of text that are
8852 listed, as Front-Cover Texts or Back-Cover Texts, in the notice
8853 that says that the Document is released under this License.
8855 A "Transparent" copy of the Document means a machine-readable copy,
8856 represented in a format whose specification is available to the
8857 general public, whose contents can be viewed and edited directly
8858 and straightforwardly with generic text editors or (for images
8859 composed of pixels) generic paint programs or (for drawings) some
8860 widely available drawing editor, and that is suitable for input to
8861 text formatters or for automatic translation to a variety of
8862 formats suitable for input to text formatters. A copy made in an
8863 otherwise Transparent file format whose markup has been designed
8864 to thwart or discourage subsequent modification by readers is not
8865 Transparent. A copy that is not "Transparent" is called "Opaque."
8867 Examples of suitable formats for Transparent copies include plain
8868 ASCII without markup, Texinfo input format, LaTeX input format,
8869 SGML or XML using a publicly available DTD, and
8870 standard-conforming simple HTML designed for human modification.
8871 Opaque formats include PostScript, PDF, proprietary formats that
8872 can be read and edited only by proprietary word processors, SGML
8873 or XML for which the DTD and/or processing tools are not generally
8874 available, and the machine-generated HTML produced by some word
8875 processors for output purposes only.
8877 The "Title Page" means, for a printed book, the title page itself,
8878 plus such following pages as are needed to hold, legibly, the
8879 material this License requires to appear in the title page. For
8880 works in formats which do not have any title page as such, "Title
8881 Page" means the text near the most prominent appearance of the
8882 work's title, preceding the beginning of the body of the text.
8886 You may copy and distribute the Document in any medium, either
8887 commercially or noncommercially, provided that this License, the
8888 copyright notices, and the license notice saying this License
8889 applies to the Document are reproduced in all copies, and that you
8890 add no other conditions whatsoever to those of this License. You
8891 may not use technical measures to obstruct or control the reading
8892 or further copying of the copies you make or distribute. However,
8893 you may accept compensation in exchange for copies. If you
8894 distribute a large enough number of copies you must also follow
8895 the conditions in section 3.
8897 You may also lend copies, under the same conditions stated above,
8898 and you may publicly display copies.
8900 3. COPYING IN QUANTITY
8902 If you publish printed copies of the Document numbering more than
8903 100, and the Document's license notice requires Cover Texts, you
8904 must enclose the copies in covers that carry, clearly and legibly,
8905 all these Cover Texts: Front-Cover Texts on the front cover, and
8906 Back-Cover Texts on the back cover. Both covers must also clearly
8907 and legibly identify you as the publisher of these copies. The
8908 front cover must present the full title with all words of the
8909 title equally prominent and visible. You may add other material
8910 on the covers in addition. Copying with changes limited to the
8911 covers, as long as they preserve the title of the Document and
8912 satisfy these conditions, can be treated as verbatim copying in
8915 If the required texts for either cover are too voluminous to fit
8916 legibly, you should put the first ones listed (as many as fit
8917 reasonably) on the actual cover, and continue the rest onto
8920 If you publish or distribute Opaque copies of the Document
8921 numbering more than 100, you must either include a
8922 machine-readable Transparent copy along with each Opaque copy, or
8923 state in or with each Opaque copy a publicly-accessible
8924 computer-network location containing a complete Transparent copy
8925 of the Document, free of added material, which the general
8926 network-using public has access to download anonymously at no
8927 charge using public-standard network protocols. If you use the
8928 latter option, you must take reasonably prudent steps, when you
8929 begin distribution of Opaque copies in quantity, to ensure that
8930 this Transparent copy will remain thus accessible at the stated
8931 location until at least one year after the last time you
8932 distribute an Opaque copy (directly or through your agents or
8933 retailers) of that edition to the public.
8935 It is requested, but not required, that you contact the authors of
8936 the Document well before redistributing any large number of
8937 copies, to give them a chance to provide you with an updated
8938 version of the Document.
8942 You may copy and distribute a Modified Version of the Document
8943 under the conditions of sections 2 and 3 above, provided that you
8944 release the Modified Version under precisely this License, with
8945 the Modified Version filling the role of the Document, thus
8946 licensing distribution and modification of the Modified Version to
8947 whoever possesses a copy of it. In addition, you must do these
8948 things in the Modified Version:
8950 A. Use in the Title Page (and on the covers, if any) a title
8951 distinct from that of the Document, and from those of previous
8952 versions (which should, if there were any, be listed in the
8953 History section of the Document). You may use the same title
8954 as a previous version if the original publisher of that version
8956 B. List on the Title Page, as authors, one or more persons or
8957 entities responsible for authorship of the modifications in the
8958 Modified Version, together with at least five of the principal
8959 authors of the Document (all of its principal authors, if it
8960 has less than five).
8961 C. State on the Title page the name of the publisher of the
8962 Modified Version, as the publisher.
8963 D. Preserve all the copyright notices of the Document.
8964 E. Add an appropriate copyright notice for your modifications
8965 adjacent to the other copyright notices.
8966 F. Include, immediately after the copyright notices, a license
8967 notice giving the public permission to use the Modified Version
8968 under the terms of this License, in the form shown in the
8970 G. Preserve in that license notice the full lists of Invariant
8971 Sections and required Cover Texts given in the Document's
8973 H. Include an unaltered copy of this License.
8974 I. Preserve the section entitled "History", and its title, and add
8975 to it an item stating at least the title, year, new authors, and
8976 publisher of the Modified Version as given on the Title Page.
8977 If there is no section entitled "History" in the Document,
8978 create one stating the title, year, authors, and publisher of
8979 the Document as given on its Title Page, then add an item
8980 describing the Modified Version as stated in the previous
8982 J. Preserve the network location, if any, given in the Document for
8983 public access to a Transparent copy of the Document, and
8984 likewise the network locations given in the Document for
8985 previous versions it was based on. These may be placed in the
8986 "History" section. You may omit a network location for a work
8987 that was published at least four years before the Document
8988 itself, or if the original publisher of the version it refers
8989 to gives permission.
8990 K. In any section entitled "Acknowledgements" or "Dedications",
8991 preserve the section's title, and preserve in the section all the
8992 substance and tone of each of the contributor acknowledgements
8993 and/or dedications given therein.
8994 L. Preserve all the Invariant Sections of the Document,
8995 unaltered in their text and in their titles. Section numbers
8996 or the equivalent are not considered part of the section titles.
8997 M. Delete any section entitled "Endorsements." Such a section
8998 may not be included in the Modified Version.
8999 N. Do not retitle any existing section as "Endorsements" or to
9000 conflict in title with any Invariant Section.
9002 If the Modified Version includes new front-matter sections or
9003 appendices that qualify as Secondary Sections and contain no
9004 material copied from the Document, you may at your option
9005 designate some or all of these sections as invariant. To do this,
9006 add their titles to the list of Invariant Sections in the Modified
9007 Version's license notice. These titles must be distinct from any
9008 other section titles.
9010 You may add a section entitled "Endorsements", provided it contains
9011 nothing but endorsements of your Modified Version by various
9012 parties-for example, statements of peer review or that the text has
9013 been approved by an organization as the authoritative definition
9016 You may add a passage of up to five words as a Front-Cover Text,
9017 and a passage of up to 25 words as a Back-Cover Text, to the end
9018 of the list of Cover Texts in the Modified Version. Only one
9019 passage of Front-Cover Text and one of Back-Cover Text may be
9020 added by (or through arrangements made by) any one entity. If the
9021 Document already includes a cover text for the same cover,
9022 previously added by you or by arrangement made by the same entity
9023 you are acting on behalf of, you may not add another; but you may
9024 replace the old one, on explicit permission from the previous
9025 publisher that added the old one.
9027 The author(s) and publisher(s) of the Document do not by this
9028 License give permission to use their names for publicity for or to
9029 assert or imply endorsement of any Modified Version.
9031 5. COMBINING DOCUMENTS
9033 You may combine the Document with other documents released under
9034 this License, under the terms defined in section 4 above for
9035 modified versions, provided that you include in the combination
9036 all of the Invariant Sections of all of the original documents,
9037 unmodified, and list them all as Invariant Sections of your
9038 combined work in its license notice.
9040 The combined work need only contain one copy of this License, and
9041 multiple identical Invariant Sections may be replaced with a single
9042 copy. If there are multiple Invariant Sections with the same name
9043 but different contents, make the title of each such section unique
9044 by adding at the end of it, in parentheses, the name of the
9045 original author or publisher of that section if known, or else a
9046 unique number. Make the same adjustment to the section titles in
9047 the list of Invariant Sections in the license notice of the
9050 In the combination, you must combine any sections entitled
9051 "History" in the various original documents, forming one section
9052 entitled "History"; likewise combine any sections entitled
9053 "Acknowledgements", and any sections entitled "Dedications." You
9054 must delete all sections entitled "Endorsements."
9056 6. COLLECTIONS OF DOCUMENTS
9058 You may make a collection consisting of the Document and other
9059 documents released under this License, and replace the individual
9060 copies of this License in the various documents with a single copy
9061 that is included in the collection, provided that you follow the
9062 rules of this License for verbatim copying of each of the
9063 documents in all other respects.
9065 You may extract a single document from such a collection, and
9066 distribute it individually under this License, provided you insert
9067 a copy of this License into the extracted document, and follow
9068 this License in all other respects regarding verbatim copying of
9071 7. AGGREGATION WITH INDEPENDENT WORKS
9073 A compilation of the Document or its derivatives with other
9074 separate and independent documents or works, in or on a volume of
9075 a storage or distribution medium, does not as a whole count as a
9076 Modified Version of the Document, provided no compilation
9077 copyright is claimed for the compilation. Such a compilation is
9078 called an "aggregate", and this License does not apply to the
9079 other self-contained works thus compiled with the Document, on
9080 account of their being thus compiled, if they are not themselves
9081 derivative works of the Document.
9083 If the Cover Text requirement of section 3 is applicable to these
9084 copies of the Document, then if the Document is less than one
9085 quarter of the entire aggregate, the Document's Cover Texts may be
9086 placed on covers that surround only the Document within the
9087 aggregate. Otherwise they must appear on covers around the whole
9092 Translation is considered a kind of modification, so you may
9093 distribute translations of the Document under the terms of section
9094 4. Replacing Invariant Sections with translations requires special
9095 permission from their copyright holders, but you may include
9096 translations of some or all Invariant Sections in addition to the
9097 original versions of these Invariant Sections. You may include a
9098 translation of this License provided that you also include the
9099 original English version of this License. In case of a
9100 disagreement between the translation and the original English
9101 version of this License, the original English version will prevail.
9105 You may not copy, modify, sublicense, or distribute the Document
9106 except as expressly provided for under this License. Any other
9107 attempt to copy, modify, sublicense or distribute the Document is
9108 void, and will automatically terminate your rights under this
9109 License. However, parties who have received copies, or rights,
9110 from you under this License will not have their licenses
9111 terminated so long as such parties remain in full compliance.
9113 10. FUTURE REVISIONS OF THIS LICENSE
9115 The Free Software Foundation may publish new, revised versions of
9116 the GNU Free Documentation License from time to time. Such new
9117 versions will be similar in spirit to the present version, but may
9118 differ in detail to address new problems or concerns. See
9119 http://www.gnu.org/copyleft/.
9121 Each version of the License is given a distinguishing version
9122 number. If the Document specifies that a particular numbered
9123 version of this License "or any later version" applies to it, you
9124 have the option of following the terms and conditions either of
9125 that specified version or of any later version that has been
9126 published (not as a draft) by the Free Software Foundation. If
9127 the Document does not specify a version number of this License,
9128 you may choose any version ever published (not as a draft) by the
9129 Free Software Foundation.
9132 ADDENDUM: How to use this License for your documents
9133 ====================================================
9135 To use this License in a document you have written, include a copy of
9136 the License in the document and put the following copyright and license
9137 notices just after the title page:
9139 Copyright (C) YEAR YOUR NAME.
9140 Permission is granted to copy, distribute and/or modify this document
9141 under the terms of the GNU Free Documentation License, Version 1.1
9142 or any later version published by the Free Software Foundation;
9143 with the Invariant Sections being LIST THEIR TITLES, with the
9144 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
9145 A copy of the license is included in the section entitled "GNU
9146 Free Documentation License."
9148 If you have no Invariant Sections, write "with no Invariant Sections"
9149 instead of saying which ones are invariant. If you have no Front-Cover
9150 Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
9151 LIST"; likewise for Back-Cover Texts.
9153 If your document contains nontrivial examples of program code, we
9154 recommend releasing these examples in parallel under your choice of
9155 free software license, such as the GNU General Public License, to
9156 permit their use in free software.
9159 File: bfd.info, Node: BFD Index, Prev: GNU Free Documentation License, Up: Top
9167 * _bfd_final_link_relocate: Relocating the section contents.
9169 * _bfd_generic_link_add_archive_symbols: Adding symbols from an archive.
9171 * _bfd_generic_link_add_one_symbol: Adding symbols from an object file.
9173 * _bfd_generic_make_empty_symbol: symbol handling functions.
9175 * _bfd_link_add_symbols in target vector: Adding Symbols to the Hash Table.
9177 * _bfd_link_final_link in target vector: Performing the Final Link.
9179 * _bfd_link_hash_table_create in target vector: Creating a Linker Hash Table.
9181 * _bfd_relocate_contents: Relocating the section contents.
9183 * aout_SIZE_machine_type: aout. (line 147)
9184 * aout_SIZE_mkobject: aout. (line 139)
9185 * aout_SIZE_new_section_hook: aout. (line 177)
9186 * aout_SIZE_set_arch_mach: aout. (line 164)
9187 * aout_SIZE_some_aout_object_p: aout. (line 125)
9188 * aout_SIZE_swap_exec_header_in: aout. (line 101)
9189 * aout_SIZE_swap_exec_header_out: aout. (line 113)
9190 * arelent_chain: typedef arelent. (line 339)
9191 * BFD: Overview. (line 6)
9192 * BFD canonical format: Canonical format. (line 11)
9193 * bfd_alloc: Opening and Closing.
9195 * bfd_alloc2: Opening and Closing.
9197 * bfd_alt_mach_code: BFD front end. (line 602)
9198 * bfd_arch_bits_per_address: Architectures. (line 490)
9199 * bfd_arch_bits_per_byte: Architectures. (line 482)
9200 * bfd_arch_get_compatible: Architectures. (line 425)
9201 * bfd_arch_list: Architectures. (line 416)
9202 * bfd_arch_mach_octets_per_byte: Architectures. (line 559)
9203 * BFD_ARELOC_BFIN_ADD: howto manager. (line 944)
9204 * BFD_ARELOC_BFIN_ADDR: howto manager. (line 995)
9205 * BFD_ARELOC_BFIN_AND: howto manager. (line 965)
9206 * BFD_ARELOC_BFIN_COMP: howto manager. (line 986)
9207 * BFD_ARELOC_BFIN_CONST: howto manager. (line 941)
9208 * BFD_ARELOC_BFIN_DIV: howto manager. (line 953)
9209 * BFD_ARELOC_BFIN_HWPAGE: howto manager. (line 992)
9210 * BFD_ARELOC_BFIN_LAND: howto manager. (line 974)
9211 * BFD_ARELOC_BFIN_LEN: howto manager. (line 980)
9212 * BFD_ARELOC_BFIN_LOR: howto manager. (line 977)
9213 * BFD_ARELOC_BFIN_LSHIFT: howto manager. (line 959)
9214 * BFD_ARELOC_BFIN_MOD: howto manager. (line 956)
9215 * BFD_ARELOC_BFIN_MULT: howto manager. (line 950)
9216 * BFD_ARELOC_BFIN_NEG: howto manager. (line 983)
9217 * BFD_ARELOC_BFIN_OR: howto manager. (line 968)
9218 * BFD_ARELOC_BFIN_PAGE: howto manager. (line 989)
9219 * BFD_ARELOC_BFIN_PUSH: howto manager. (line 938)
9220 * BFD_ARELOC_BFIN_RSHIFT: howto manager. (line 962)
9221 * BFD_ARELOC_BFIN_SUB: howto manager. (line 947)
9222 * BFD_ARELOC_BFIN_XOR: howto manager. (line 971)
9223 * bfd_cache_close: File Caching. (line 26)
9224 * bfd_cache_close_all: File Caching. (line 39)
9225 * bfd_cache_init: File Caching. (line 18)
9226 * bfd_calc_gnu_debuglink_crc32: Opening and Closing.
9228 * bfd_canonicalize_reloc: BFD front end. (line 321)
9229 * bfd_canonicalize_symtab: symbol handling functions.
9231 * bfd_check_format: Formats. (line 21)
9232 * bfd_check_format_matches: Formats. (line 52)
9233 * bfd_check_overflow: typedef arelent. (line 351)
9234 * bfd_close: Opening and Closing.
9236 * bfd_close_all_done: Opening and Closing.
9238 * bfd_coff_backend_data: coff. (line 246)
9239 * bfd_copy_private_bfd_data: BFD front end. (line 460)
9240 * bfd_copy_private_header_data: BFD front end. (line 442)
9241 * bfd_copy_private_section_data: section prototypes. (line 255)
9242 * bfd_copy_private_symbol_data: symbol handling functions.
9244 * bfd_core_file_failing_command: Core Files. (line 12)
9245 * bfd_core_file_failing_signal: Core Files. (line 21)
9246 * bfd_create: Opening and Closing.
9248 * bfd_create_gnu_debuglink_section: Opening and Closing.
9250 * bfd_decode_symclass: symbol handling functions.
9252 * bfd_default_arch_struct: Architectures. (line 437)
9253 * bfd_default_compatible: Architectures. (line 499)
9254 * bfd_default_reloc_type_lookup: howto manager. (line 2081)
9255 * bfd_default_scan: Architectures. (line 508)
9256 * bfd_default_set_arch_mach: Architectures. (line 455)
9257 * bfd_demangle: BFD front end. (line 700)
9258 * bfd_elf_find_section: elf. (line 13)
9259 * bfd_emul_get_commonpagesize: BFD front end. (line 680)
9260 * bfd_emul_get_maxpagesize: BFD front end. (line 660)
9261 * bfd_emul_set_commonpagesize: BFD front end. (line 691)
9262 * bfd_emul_set_maxpagesize: BFD front end. (line 671)
9263 * bfd_errmsg: BFD front end. (line 246)
9264 * bfd_fdopenr: Opening and Closing.
9266 * bfd_fill_in_gnu_debuglink_section: Opening and Closing.
9268 * bfd_find_target: bfd_target. (line 439)
9269 * bfd_follow_gnu_debuglink: Opening and Closing.
9271 * bfd_fopen: Opening and Closing.
9273 * bfd_format_string: Formats. (line 79)
9274 * bfd_generic_discard_group: section prototypes. (line 281)
9275 * bfd_generic_gc_sections: howto manager. (line 2112)
9276 * bfd_generic_get_relocated_section_contents: howto manager. (line 2132)
9277 * bfd_generic_is_group_section: section prototypes. (line 273)
9278 * bfd_generic_merge_sections: howto manager. (line 2122)
9279 * bfd_generic_relax_section: howto manager. (line 2099)
9280 * bfd_get_arch: Architectures. (line 466)
9281 * bfd_get_arch_info: Architectures. (line 518)
9282 * bfd_get_arch_size: BFD front end. (line 365)
9283 * bfd_get_error: BFD front end. (line 227)
9284 * bfd_get_error_handler: BFD front end. (line 297)
9285 * bfd_get_gp_size: BFD front end. (line 406)
9286 * bfd_get_mach: Architectures. (line 474)
9287 * bfd_get_mtime: BFD front end. (line 741)
9288 * bfd_get_next_mapent: Archives. (line 52)
9289 * bfd_get_reloc_code_name: howto manager. (line 2090)
9290 * bfd_get_reloc_size: typedef arelent. (line 330)
9291 * bfd_get_reloc_upper_bound: BFD front end. (line 311)
9292 * bfd_get_section_by_name: section prototypes. (line 17)
9293 * bfd_get_section_by_name_if: section prototypes. (line 31)
9294 * bfd_get_section_contents: section prototypes. (line 228)
9295 * bfd_get_sign_extend_vma: BFD front end. (line 378)
9296 * bfd_get_size <1>: Internal. (line 25)
9297 * bfd_get_size: BFD front end. (line 750)
9298 * bfd_get_symtab_upper_bound: symbol handling functions.
9300 * bfd_get_unique_section_name: section prototypes. (line 50)
9301 * bfd_h_put_size: Internal. (line 97)
9302 * bfd_hash_allocate: Creating and Freeing a Hash Table.
9304 * bfd_hash_lookup: Looking Up or Entering a String.
9306 * bfd_hash_newfunc: Creating and Freeing a Hash Table.
9308 * bfd_hash_set_default_size: Creating and Freeing a Hash Table.
9310 * bfd_hash_table_free: Creating and Freeing a Hash Table.
9312 * bfd_hash_table_init: Creating and Freeing a Hash Table.
9314 * bfd_hash_table_init_n: Creating and Freeing a Hash Table.
9316 * bfd_hash_traverse: Traversing a Hash Table.
9318 * bfd_init: Initialization. (line 11)
9319 * bfd_install_relocation: typedef arelent. (line 392)
9320 * bfd_is_local_label: symbol handling functions.
9322 * bfd_is_local_label_name: symbol handling functions.
9324 * bfd_is_target_special_symbol: symbol handling functions.
9326 * bfd_is_undefined_symclass: symbol handling functions.
9328 * bfd_link_split_section: Writing the symbol table.
9330 * bfd_log2: Internal. (line 164)
9331 * bfd_lookup_arch: Architectures. (line 526)
9332 * bfd_make_debug_symbol: symbol handling functions.
9334 * bfd_make_empty_symbol: symbol handling functions.
9336 * bfd_make_readable: Opening and Closing.
9338 * bfd_make_section: section prototypes. (line 129)
9339 * bfd_make_section_anyway: section prototypes. (line 100)
9340 * bfd_make_section_anyway_with_flags: section prototypes. (line 82)
9341 * bfd_make_section_old_way: section prototypes. (line 62)
9342 * bfd_make_section_with_flags: section prototypes. (line 116)
9343 * bfd_make_writable: Opening and Closing.
9345 * bfd_malloc_and_get_section: section prototypes. (line 245)
9346 * bfd_map_over_sections: section prototypes. (line 155)
9347 * bfd_merge_private_bfd_data: BFD front end. (line 476)
9348 * bfd_octets_per_byte: Architectures. (line 549)
9349 * bfd_open_file: File Caching. (line 52)
9350 * bfd_openr: Opening and Closing.
9352 * bfd_openr_iovec: Opening and Closing.
9354 * bfd_openr_next_archived_file: Archives. (line 78)
9355 * bfd_openstreamr: Opening and Closing.
9357 * bfd_openw: Opening and Closing.
9359 * bfd_perform_relocation: typedef arelent. (line 367)
9360 * bfd_perror: BFD front end. (line 255)
9361 * bfd_preserve_finish: BFD front end. (line 650)
9362 * bfd_preserve_restore: BFD front end. (line 640)
9363 * bfd_preserve_save: BFD front end. (line 624)
9364 * bfd_print_symbol_vandf: symbol handling functions.
9366 * bfd_printable_arch_mach: Architectures. (line 537)
9367 * bfd_printable_name: Architectures. (line 397)
9368 * bfd_put_size: Internal. (line 22)
9369 * BFD_RELOC_12_PCREL: howto manager. (line 39)
9370 * BFD_RELOC_14: howto manager. (line 31)
9371 * BFD_RELOC_16: howto manager. (line 30)
9372 * BFD_RELOC_16_BASEREL: howto manager. (line 80)
9373 * BFD_RELOC_16_GOT_PCREL: howto manager. (line 52)
9374 * BFD_RELOC_16_GOTOFF: howto manager. (line 55)
9375 * BFD_RELOC_16_PCREL: howto manager. (line 38)
9376 * BFD_RELOC_16_PCREL_S2: howto manager. (line 92)
9377 * BFD_RELOC_16_PLT_PCREL: howto manager. (line 63)
9378 * BFD_RELOC_16_PLTOFF: howto manager. (line 67)
9379 * BFD_RELOC_16C_ABS20: howto manager. (line 1771)
9380 * BFD_RELOC_16C_ABS20_C: howto manager. (line 1772)
9381 * BFD_RELOC_16C_ABS24: howto manager. (line 1773)
9382 * BFD_RELOC_16C_ABS24_C: howto manager. (line 1774)
9383 * BFD_RELOC_16C_DISP04: howto manager. (line 1751)
9384 * BFD_RELOC_16C_DISP04_C: howto manager. (line 1752)
9385 * BFD_RELOC_16C_DISP08: howto manager. (line 1753)
9386 * BFD_RELOC_16C_DISP08_C: howto manager. (line 1754)
9387 * BFD_RELOC_16C_DISP16: howto manager. (line 1755)
9388 * BFD_RELOC_16C_DISP16_C: howto manager. (line 1756)
9389 * BFD_RELOC_16C_DISP24: howto manager. (line 1757)
9390 * BFD_RELOC_16C_DISP24_C: howto manager. (line 1758)
9391 * BFD_RELOC_16C_DISP24a: howto manager. (line 1759)
9392 * BFD_RELOC_16C_DISP24a_C: howto manager. (line 1760)
9393 * BFD_RELOC_16C_IMM04: howto manager. (line 1775)
9394 * BFD_RELOC_16C_IMM04_C: howto manager. (line 1776)
9395 * BFD_RELOC_16C_IMM16: howto manager. (line 1777)
9396 * BFD_RELOC_16C_IMM16_C: howto manager. (line 1778)
9397 * BFD_RELOC_16C_IMM20: howto manager. (line 1779)
9398 * BFD_RELOC_16C_IMM20_C: howto manager. (line 1780)
9399 * BFD_RELOC_16C_IMM24: howto manager. (line 1781)
9400 * BFD_RELOC_16C_IMM24_C: howto manager. (line 1782)
9401 * BFD_RELOC_16C_IMM32: howto manager. (line 1783)
9402 * BFD_RELOC_16C_IMM32_C: howto manager. (line 1784)
9403 * BFD_RELOC_16C_NUM08: howto manager. (line 1745)
9404 * BFD_RELOC_16C_NUM08_C: howto manager. (line 1746)
9405 * BFD_RELOC_16C_NUM16: howto manager. (line 1747)
9406 * BFD_RELOC_16C_NUM16_C: howto manager. (line 1748)
9407 * BFD_RELOC_16C_NUM32: howto manager. (line 1749)
9408 * BFD_RELOC_16C_NUM32_C: howto manager. (line 1750)
9409 * BFD_RELOC_16C_REG04: howto manager. (line 1761)
9410 * BFD_RELOC_16C_REG04_C: howto manager. (line 1762)
9411 * BFD_RELOC_16C_REG04a: howto manager. (line 1763)
9412 * BFD_RELOC_16C_REG04a_C: howto manager. (line 1764)
9413 * BFD_RELOC_16C_REG14: howto manager. (line 1765)
9414 * BFD_RELOC_16C_REG14_C: howto manager. (line 1766)
9415 * BFD_RELOC_16C_REG16: howto manager. (line 1767)
9416 * BFD_RELOC_16C_REG16_C: howto manager. (line 1768)
9417 * BFD_RELOC_16C_REG20: howto manager. (line 1769)
9418 * BFD_RELOC_16C_REG20_C: howto manager. (line 1770)
9419 * BFD_RELOC_23_PCREL_S2: howto manager. (line 93)
9420 * BFD_RELOC_24: howto manager. (line 29)
9421 * BFD_RELOC_24_PCREL: howto manager. (line 37)
9422 * BFD_RELOC_24_PLT_PCREL: howto manager. (line 62)
9423 * BFD_RELOC_26: howto manager. (line 28)
9424 * BFD_RELOC_32: howto manager. (line 27)
9425 * BFD_RELOC_32_BASEREL: howto manager. (line 79)
9426 * BFD_RELOC_32_GOT_PCREL: howto manager. (line 51)
9427 * BFD_RELOC_32_GOTOFF: howto manager. (line 54)
9428 * BFD_RELOC_32_PCREL: howto manager. (line 36)
9429 * BFD_RELOC_32_PCREL_S2: howto manager. (line 91)
9430 * BFD_RELOC_32_PLT_PCREL: howto manager. (line 61)
9431 * BFD_RELOC_32_PLTOFF: howto manager. (line 66)
9432 * BFD_RELOC_32_SECREL: howto manager. (line 48)
9433 * BFD_RELOC_386_COPY: howto manager. (line 451)
9434 * BFD_RELOC_386_GLOB_DAT: howto manager. (line 452)
9435 * BFD_RELOC_386_GOT32: howto manager. (line 449)
9436 * BFD_RELOC_386_GOTOFF: howto manager. (line 455)
9437 * BFD_RELOC_386_GOTPC: howto manager. (line 456)
9438 * BFD_RELOC_386_JUMP_SLOT: howto manager. (line 453)
9439 * BFD_RELOC_386_PLT32: howto manager. (line 450)
9440 * BFD_RELOC_386_RELATIVE: howto manager. (line 454)
9441 * BFD_RELOC_386_TLS_DESC: howto manager. (line 471)
9442 * BFD_RELOC_386_TLS_DESC_CALL: howto manager. (line 470)
9443 * BFD_RELOC_386_TLS_DTPMOD32: howto manager. (line 466)
9444 * BFD_RELOC_386_TLS_DTPOFF32: howto manager. (line 467)
9445 * BFD_RELOC_386_TLS_GD: howto manager. (line 461)
9446 * BFD_RELOC_386_TLS_GOTDESC: howto manager. (line 469)
9447 * BFD_RELOC_386_TLS_GOTIE: howto manager. (line 459)
9448 * BFD_RELOC_386_TLS_IE: howto manager. (line 458)
9449 * BFD_RELOC_386_TLS_IE_32: howto manager. (line 464)
9450 * BFD_RELOC_386_TLS_LDM: howto manager. (line 462)
9451 * BFD_RELOC_386_TLS_LDO_32: howto manager. (line 463)
9452 * BFD_RELOC_386_TLS_LE: howto manager. (line 460)
9453 * BFD_RELOC_386_TLS_LE_32: howto manager. (line 465)
9454 * BFD_RELOC_386_TLS_TPOFF: howto manager. (line 457)
9455 * BFD_RELOC_386_TLS_TPOFF32: howto manager. (line 468)
9456 * BFD_RELOC_390_12: howto manager. (line 1437)
9457 * BFD_RELOC_390_20: howto manager. (line 1537)
9458 * BFD_RELOC_390_COPY: howto manager. (line 1446)
9459 * BFD_RELOC_390_GLOB_DAT: howto manager. (line 1449)
9460 * BFD_RELOC_390_GOT12: howto manager. (line 1440)
9461 * BFD_RELOC_390_GOT16: howto manager. (line 1461)
9462 * BFD_RELOC_390_GOT20: howto manager. (line 1538)
9463 * BFD_RELOC_390_GOT64: howto manager. (line 1479)
9464 * BFD_RELOC_390_GOTENT: howto manager. (line 1485)
9465 * BFD_RELOC_390_GOTOFF64: howto manager. (line 1488)
9466 * BFD_RELOC_390_GOTPC: howto manager. (line 1458)
9467 * BFD_RELOC_390_GOTPCDBL: howto manager. (line 1476)
9468 * BFD_RELOC_390_GOTPLT12: howto manager. (line 1491)
9469 * BFD_RELOC_390_GOTPLT16: howto manager. (line 1494)
9470 * BFD_RELOC_390_GOTPLT20: howto manager. (line 1539)
9471 * BFD_RELOC_390_GOTPLT32: howto manager. (line 1497)
9472 * BFD_RELOC_390_GOTPLT64: howto manager. (line 1500)
9473 * BFD_RELOC_390_GOTPLTENT: howto manager. (line 1503)
9474 * BFD_RELOC_390_JMP_SLOT: howto manager. (line 1452)
9475 * BFD_RELOC_390_PC16DBL: howto manager. (line 1464)
9476 * BFD_RELOC_390_PC32DBL: howto manager. (line 1470)
9477 * BFD_RELOC_390_PLT16DBL: howto manager. (line 1467)
9478 * BFD_RELOC_390_PLT32: howto manager. (line 1443)
9479 * BFD_RELOC_390_PLT32DBL: howto manager. (line 1473)
9480 * BFD_RELOC_390_PLT64: howto manager. (line 1482)
9481 * BFD_RELOC_390_PLTOFF16: howto manager. (line 1506)
9482 * BFD_RELOC_390_PLTOFF32: howto manager. (line 1509)
9483 * BFD_RELOC_390_PLTOFF64: howto manager. (line 1512)
9484 * BFD_RELOC_390_RELATIVE: howto manager. (line 1455)
9485 * BFD_RELOC_390_TLS_DTPMOD: howto manager. (line 1532)
9486 * BFD_RELOC_390_TLS_DTPOFF: howto manager. (line 1533)
9487 * BFD_RELOC_390_TLS_GD32: howto manager. (line 1518)
9488 * BFD_RELOC_390_TLS_GD64: howto manager. (line 1519)
9489 * BFD_RELOC_390_TLS_GDCALL: howto manager. (line 1516)
9490 * BFD_RELOC_390_TLS_GOTIE12: howto manager. (line 1520)
9491 * BFD_RELOC_390_TLS_GOTIE20: howto manager. (line 1540)
9492 * BFD_RELOC_390_TLS_GOTIE32: howto manager. (line 1521)
9493 * BFD_RELOC_390_TLS_GOTIE64: howto manager. (line 1522)
9494 * BFD_RELOC_390_TLS_IE32: howto manager. (line 1525)
9495 * BFD_RELOC_390_TLS_IE64: howto manager. (line 1526)
9496 * BFD_RELOC_390_TLS_IEENT: howto manager. (line 1527)
9497 * BFD_RELOC_390_TLS_LDCALL: howto manager. (line 1517)
9498 * BFD_RELOC_390_TLS_LDM32: howto manager. (line 1523)
9499 * BFD_RELOC_390_TLS_LDM64: howto manager. (line 1524)
9500 * BFD_RELOC_390_TLS_LDO32: howto manager. (line 1530)
9501 * BFD_RELOC_390_TLS_LDO64: howto manager. (line 1531)
9502 * BFD_RELOC_390_TLS_LE32: howto manager. (line 1528)
9503 * BFD_RELOC_390_TLS_LE64: howto manager. (line 1529)
9504 * BFD_RELOC_390_TLS_LOAD: howto manager. (line 1515)
9505 * BFD_RELOC_390_TLS_TPOFF: howto manager. (line 1534)
9506 * BFD_RELOC_64: howto manager. (line 26)
9507 * BFD_RELOC_64_PCREL: howto manager. (line 35)
9508 * BFD_RELOC_64_PLT_PCREL: howto manager. (line 60)
9509 * BFD_RELOC_64_PLTOFF: howto manager. (line 65)
9510 * BFD_RELOC_68K_GLOB_DAT: howto manager. (line 74)
9511 * BFD_RELOC_68K_JMP_SLOT: howto manager. (line 75)
9512 * BFD_RELOC_68K_RELATIVE: howto manager. (line 76)
9513 * BFD_RELOC_8: howto manager. (line 32)
9514 * BFD_RELOC_860_COPY: howto manager. (line 1879)
9515 * BFD_RELOC_860_GLOB_DAT: howto manager. (line 1880)
9516 * BFD_RELOC_860_HAGOT: howto manager. (line 1905)
9517 * BFD_RELOC_860_HAGOTOFF: howto manager. (line 1906)
9518 * BFD_RELOC_860_HAPC: howto manager. (line 1907)
9519 * BFD_RELOC_860_HIGH: howto manager. (line 1908)
9520 * BFD_RELOC_860_HIGHADJ: howto manager. (line 1904)
9521 * BFD_RELOC_860_HIGOT: howto manager. (line 1909)
9522 * BFD_RELOC_860_HIGOTOFF: howto manager. (line 1910)
9523 * BFD_RELOC_860_JUMP_SLOT: howto manager. (line 1881)
9524 * BFD_RELOC_860_LOGOT0: howto manager. (line 1893)
9525 * BFD_RELOC_860_LOGOT1: howto manager. (line 1895)
9526 * BFD_RELOC_860_LOGOTOFF0: howto manager. (line 1897)
9527 * BFD_RELOC_860_LOGOTOFF1: howto manager. (line 1899)
9528 * BFD_RELOC_860_LOGOTOFF2: howto manager. (line 1901)
9529 * BFD_RELOC_860_LOGOTOFF3: howto manager. (line 1902)
9530 * BFD_RELOC_860_LOPC: howto manager. (line 1903)
9531 * BFD_RELOC_860_LOW0: howto manager. (line 1886)
9532 * BFD_RELOC_860_LOW1: howto manager. (line 1888)
9533 * BFD_RELOC_860_LOW2: howto manager. (line 1890)
9534 * BFD_RELOC_860_LOW3: howto manager. (line 1892)
9535 * BFD_RELOC_860_PC16: howto manager. (line 1885)
9536 * BFD_RELOC_860_PC26: howto manager. (line 1883)
9537 * BFD_RELOC_860_PLT26: howto manager. (line 1884)
9538 * BFD_RELOC_860_RELATIVE: howto manager. (line 1882)
9539 * BFD_RELOC_860_SPGOT0: howto manager. (line 1894)
9540 * BFD_RELOC_860_SPGOT1: howto manager. (line 1896)
9541 * BFD_RELOC_860_SPGOTOFF0: howto manager. (line 1898)
9542 * BFD_RELOC_860_SPGOTOFF1: howto manager. (line 1900)
9543 * BFD_RELOC_860_SPLIT0: howto manager. (line 1887)
9544 * BFD_RELOC_860_SPLIT1: howto manager. (line 1889)
9545 * BFD_RELOC_860_SPLIT2: howto manager. (line 1891)
9546 * BFD_RELOC_8_BASEREL: howto manager. (line 84)
9547 * BFD_RELOC_8_FFnn: howto manager. (line 88)
9548 * BFD_RELOC_8_GOT_PCREL: howto manager. (line 53)
9549 * BFD_RELOC_8_GOTOFF: howto manager. (line 59)
9550 * BFD_RELOC_8_PCREL: howto manager. (line 40)
9551 * BFD_RELOC_8_PLT_PCREL: howto manager. (line 64)
9552 * BFD_RELOC_8_PLTOFF: howto manager. (line 71)
9553 * BFD_RELOC_ALPHA_BRSGP: howto manager. (line 275)
9554 * BFD_RELOC_ALPHA_CODEADDR: howto manager. (line 266)
9555 * BFD_RELOC_ALPHA_DTPMOD64: howto manager. (line 282)
9556 * BFD_RELOC_ALPHA_DTPREL16: howto manager. (line 287)
9557 * BFD_RELOC_ALPHA_DTPREL64: howto manager. (line 284)
9558 * BFD_RELOC_ALPHA_DTPREL_HI16: howto manager. (line 285)
9559 * BFD_RELOC_ALPHA_DTPREL_LO16: howto manager. (line 286)
9560 * BFD_RELOC_ALPHA_ELF_LITERAL: howto manager. (line 231)
9561 * BFD_RELOC_ALPHA_GOTDTPREL16: howto manager. (line 283)
9562 * BFD_RELOC_ALPHA_GOTTPREL16: howto manager. (line 288)
9563 * BFD_RELOC_ALPHA_GPDISP: howto manager. (line 225)
9564 * BFD_RELOC_ALPHA_GPDISP_HI16: howto manager. (line 211)
9565 * BFD_RELOC_ALPHA_GPDISP_LO16: howto manager. (line 219)
9566 * BFD_RELOC_ALPHA_GPREL_HI16: howto manager. (line 270)
9567 * BFD_RELOC_ALPHA_GPREL_LO16: howto manager. (line 271)
9568 * BFD_RELOC_ALPHA_HINT: howto manager. (line 257)
9569 * BFD_RELOC_ALPHA_LINKAGE: howto manager. (line 262)
9570 * BFD_RELOC_ALPHA_LITERAL: howto manager. (line 230)
9571 * BFD_RELOC_ALPHA_LITUSE: howto manager. (line 232)
9572 * BFD_RELOC_ALPHA_TLSGD: howto manager. (line 280)
9573 * BFD_RELOC_ALPHA_TLSLDM: howto manager. (line 281)
9574 * BFD_RELOC_ALPHA_TPREL16: howto manager. (line 292)
9575 * BFD_RELOC_ALPHA_TPREL64: howto manager. (line 289)
9576 * BFD_RELOC_ALPHA_TPREL_HI16: howto manager. (line 290)
9577 * BFD_RELOC_ALPHA_TPREL_LO16: howto manager. (line 291)
9578 * BFD_RELOC_ARC_B22_PCREL: howto manager. (line 873)
9579 * BFD_RELOC_ARC_B26: howto manager. (line 878)
9580 * BFD_RELOC_ARM_ADR_IMM: howto manager. (line 766)
9581 * BFD_RELOC_ARM_ADRL_IMMEDIATE: howto manager. (line 753)
9582 * BFD_RELOC_ARM_ALU_PC_G0: howto manager. (line 723)
9583 * BFD_RELOC_ARM_ALU_PC_G0_NC: howto manager. (line 722)
9584 * BFD_RELOC_ARM_ALU_PC_G1: howto manager. (line 725)
9585 * BFD_RELOC_ARM_ALU_PC_G1_NC: howto manager. (line 724)
9586 * BFD_RELOC_ARM_ALU_PC_G2: howto manager. (line 726)
9587 * BFD_RELOC_ARM_ALU_SB_G0: howto manager. (line 737)
9588 * BFD_RELOC_ARM_ALU_SB_G0_NC: howto manager. (line 736)
9589 * BFD_RELOC_ARM_ALU_SB_G1: howto manager. (line 739)
9590 * BFD_RELOC_ARM_ALU_SB_G1_NC: howto manager. (line 738)
9591 * BFD_RELOC_ARM_ALU_SB_G2: howto manager. (line 740)
9592 * BFD_RELOC_ARM_CP_OFF_IMM: howto manager. (line 762)
9593 * BFD_RELOC_ARM_CP_OFF_IMM_S2: howto manager. (line 763)
9594 * BFD_RELOC_ARM_GLOB_DAT: howto manager. (line 704)
9595 * BFD_RELOC_ARM_GOT32: howto manager. (line 705)
9596 * BFD_RELOC_ARM_GOTOFF: howto manager. (line 708)
9597 * BFD_RELOC_ARM_GOTPC: howto manager. (line 709)
9598 * BFD_RELOC_ARM_HWLITERAL: howto manager. (line 773)
9599 * BFD_RELOC_ARM_IMMEDIATE: howto manager. (line 752)
9600 * BFD_RELOC_ARM_IN_POOL: howto manager. (line 769)
9601 * BFD_RELOC_ARM_JUMP_SLOT: howto manager. (line 703)
9602 * BFD_RELOC_ARM_LDC_PC_G0: howto manager. (line 733)
9603 * BFD_RELOC_ARM_LDC_PC_G1: howto manager. (line 734)
9604 * BFD_RELOC_ARM_LDC_PC_G2: howto manager. (line 735)
9605 * BFD_RELOC_ARM_LDC_SB_G0: howto manager. (line 747)
9606 * BFD_RELOC_ARM_LDC_SB_G1: howto manager. (line 748)
9607 * BFD_RELOC_ARM_LDC_SB_G2: howto manager. (line 749)
9608 * BFD_RELOC_ARM_LDR_IMM: howto manager. (line 767)
9609 * BFD_RELOC_ARM_LDR_PC_G0: howto manager. (line 727)
9610 * BFD_RELOC_ARM_LDR_PC_G1: howto manager. (line 728)
9611 * BFD_RELOC_ARM_LDR_PC_G2: howto manager. (line 729)
9612 * BFD_RELOC_ARM_LDR_SB_G0: howto manager. (line 741)
9613 * BFD_RELOC_ARM_LDR_SB_G1: howto manager. (line 742)
9614 * BFD_RELOC_ARM_LDR_SB_G2: howto manager. (line 743)
9615 * BFD_RELOC_ARM_LDRS_PC_G0: howto manager. (line 730)
9616 * BFD_RELOC_ARM_LDRS_PC_G1: howto manager. (line 731)
9617 * BFD_RELOC_ARM_LDRS_PC_G2: howto manager. (line 732)
9618 * BFD_RELOC_ARM_LDRS_SB_G0: howto manager. (line 744)
9619 * BFD_RELOC_ARM_LDRS_SB_G1: howto manager. (line 745)
9620 * BFD_RELOC_ARM_LDRS_SB_G2: howto manager. (line 746)
9621 * BFD_RELOC_ARM_LITERAL: howto manager. (line 768)
9622 * BFD_RELOC_ARM_MOVT: howto manager. (line 694)
9623 * BFD_RELOC_ARM_MOVT_PCREL: howto manager. (line 696)
9624 * BFD_RELOC_ARM_MOVW: howto manager. (line 693)
9625 * BFD_RELOC_ARM_MOVW_PCREL: howto manager. (line 695)
9626 * BFD_RELOC_ARM_MULTI: howto manager. (line 761)
9627 * BFD_RELOC_ARM_OFFSET_IMM: howto manager. (line 667)
9628 * BFD_RELOC_ARM_OFFSET_IMM8: howto manager. (line 770)
9629 * BFD_RELOC_ARM_PCREL_BLX: howto manager. (line 638)
9630 * BFD_RELOC_ARM_PCREL_BRANCH: howto manager. (line 634)
9631 * BFD_RELOC_ARM_PCREL_CALL: howto manager. (line 648)
9632 * BFD_RELOC_ARM_PCREL_JUMP: howto manager. (line 652)
9633 * BFD_RELOC_ARM_PLT32: howto manager. (line 706)
9634 * BFD_RELOC_ARM_PREL31: howto manager. (line 690)
9635 * BFD_RELOC_ARM_RELATIVE: howto manager. (line 707)
9636 * BFD_RELOC_ARM_ROSEGREL32: howto manager. (line 679)
9637 * BFD_RELOC_ARM_SBREL32: howto manager. (line 682)
9638 * BFD_RELOC_ARM_SHIFT_IMM: howto manager. (line 758)
9639 * BFD_RELOC_ARM_SMC: howto manager. (line 759)
9640 * BFD_RELOC_ARM_SWI: howto manager. (line 760)
9641 * BFD_RELOC_ARM_T32_ADD_IMM: howto manager. (line 755)
9642 * BFD_RELOC_ARM_T32_ADD_PC12: howto manager. (line 757)
9643 * BFD_RELOC_ARM_T32_CP_OFF_IMM: howto manager. (line 764)
9644 * BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: howto manager. (line 765)
9645 * BFD_RELOC_ARM_T32_IMM12: howto manager. (line 756)
9646 * BFD_RELOC_ARM_T32_IMMEDIATE: howto manager. (line 754)
9647 * BFD_RELOC_ARM_T32_OFFSET_IMM: howto manager. (line 772)
9648 * BFD_RELOC_ARM_T32_OFFSET_U8: howto manager. (line 771)
9649 * BFD_RELOC_ARM_TARGET1: howto manager. (line 675)
9650 * BFD_RELOC_ARM_TARGET2: howto manager. (line 685)
9651 * BFD_RELOC_ARM_THUMB_ADD: howto manager. (line 774)
9652 * BFD_RELOC_ARM_THUMB_IMM: howto manager. (line 775)
9653 * BFD_RELOC_ARM_THUMB_MOVT: howto manager. (line 698)
9654 * BFD_RELOC_ARM_THUMB_MOVT_PCREL: howto manager. (line 700)
9655 * BFD_RELOC_ARM_THUMB_MOVW: howto manager. (line 697)
9656 * BFD_RELOC_ARM_THUMB_MOVW_PCREL: howto manager. (line 699)
9657 * BFD_RELOC_ARM_THUMB_OFFSET: howto manager. (line 671)
9658 * BFD_RELOC_ARM_THUMB_SHIFT: howto manager. (line 776)
9659 * BFD_RELOC_ARM_TLS_DTPMOD32: howto manager. (line 716)
9660 * BFD_RELOC_ARM_TLS_DTPOFF32: howto manager. (line 715)
9661 * BFD_RELOC_ARM_TLS_GD32: howto manager. (line 712)
9662 * BFD_RELOC_ARM_TLS_IE32: howto manager. (line 718)
9663 * BFD_RELOC_ARM_TLS_LDM32: howto manager. (line 714)
9664 * BFD_RELOC_ARM_TLS_LDO32: howto manager. (line 713)
9665 * BFD_RELOC_ARM_TLS_LE32: howto manager. (line 719)
9666 * BFD_RELOC_ARM_TLS_TPOFF32: howto manager. (line 717)
9667 * BFD_RELOC_AVR_13_PCREL: howto manager. (line 1338)
9668 * BFD_RELOC_AVR_16_PM: howto manager. (line 1342)
9669 * BFD_RELOC_AVR_6: howto manager. (line 1429)
9670 * BFD_RELOC_AVR_6_ADIW: howto manager. (line 1433)
9671 * BFD_RELOC_AVR_7_PCREL: howto manager. (line 1334)
9672 * BFD_RELOC_AVR_CALL: howto manager. (line 1421)
9673 * BFD_RELOC_AVR_HH8_LDI: howto manager. (line 1354)
9674 * BFD_RELOC_AVR_HH8_LDI_NEG: howto manager. (line 1373)
9675 * BFD_RELOC_AVR_HH8_LDI_PM: howto manager. (line 1402)
9676 * BFD_RELOC_AVR_HH8_LDI_PM_NEG: howto manager. (line 1416)
9677 * BFD_RELOC_AVR_HI8_LDI: howto manager. (line 1350)
9678 * BFD_RELOC_AVR_HI8_LDI_GS: howto manager. (line 1396)
9679 * BFD_RELOC_AVR_HI8_LDI_NEG: howto manager. (line 1368)
9680 * BFD_RELOC_AVR_HI8_LDI_PM: howto manager. (line 1392)
9681 * BFD_RELOC_AVR_HI8_LDI_PM_NEG: howto manager. (line 1411)
9682 * BFD_RELOC_AVR_LDI: howto manager. (line 1425)
9683 * BFD_RELOC_AVR_LO8_LDI: howto manager. (line 1346)
9684 * BFD_RELOC_AVR_LO8_LDI_GS: howto manager. (line 1386)
9685 * BFD_RELOC_AVR_LO8_LDI_NEG: howto manager. (line 1363)
9686 * BFD_RELOC_AVR_LO8_LDI_PM: howto manager. (line 1382)
9687 * BFD_RELOC_AVR_LO8_LDI_PM_NEG: howto manager. (line 1407)
9688 * BFD_RELOC_AVR_MS8_LDI: howto manager. (line 1359)
9689 * BFD_RELOC_AVR_MS8_LDI_NEG: howto manager. (line 1378)
9690 * BFD_RELOC_BFIN_10_PCREL: howto manager. (line 898)
9691 * BFD_RELOC_BFIN_11_PCREL: howto manager. (line 901)
9692 * BFD_RELOC_BFIN_12_PCREL_JUMP: howto manager. (line 904)
9693 * BFD_RELOC_BFIN_12_PCREL_JUMP_S: howto manager. (line 907)
9694 * BFD_RELOC_BFIN_16_HIGH: howto manager. (line 886)
9695 * BFD_RELOC_BFIN_16_IMM: howto manager. (line 883)
9696 * BFD_RELOC_BFIN_16_LOW: howto manager. (line 895)
9697 * BFD_RELOC_BFIN_24_PCREL_CALL_X: howto manager. (line 910)
9698 * BFD_RELOC_BFIN_24_PCREL_JUMP_L: howto manager. (line 913)
9699 * BFD_RELOC_BFIN_4_PCREL: howto manager. (line 889)
9700 * BFD_RELOC_BFIN_5_PCREL: howto manager. (line 892)
9701 * BFD_RELOC_BFIN_FUNCDESC: howto manager. (line 919)
9702 * BFD_RELOC_BFIN_FUNCDESC_GOT17M4: howto manager. (line 920)
9703 * BFD_RELOC_BFIN_FUNCDESC_GOTHI: howto manager. (line 921)
9704 * BFD_RELOC_BFIN_FUNCDESC_GOTLO: howto manager. (line 922)
9705 * BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4: howto manager. (line 924)
9706 * BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI: howto manager. (line 925)
9707 * BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO: howto manager. (line 926)
9708 * BFD_RELOC_BFIN_FUNCDESC_VALUE: howto manager. (line 923)
9709 * BFD_RELOC_BFIN_GOT: howto manager. (line 932)
9710 * BFD_RELOC_BFIN_GOT17M4: howto manager. (line 916)
9711 * BFD_RELOC_BFIN_GOTHI: howto manager. (line 917)
9712 * BFD_RELOC_BFIN_GOTLO: howto manager. (line 918)
9713 * BFD_RELOC_BFIN_GOTOFF17M4: howto manager. (line 927)
9714 * BFD_RELOC_BFIN_GOTOFFHI: howto manager. (line 928)
9715 * BFD_RELOC_BFIN_GOTOFFLO: howto manager. (line 929)
9716 * BFD_RELOC_BFIN_PLTPC: howto manager. (line 935)
9717 * bfd_reloc_code_type: howto manager. (line 10)
9718 * BFD_RELOC_CR16_ABS20: howto manager. (line 1799)
9719 * BFD_RELOC_CR16_ABS24: howto manager. (line 1800)
9720 * BFD_RELOC_CR16_DISP16: howto manager. (line 1810)
9721 * BFD_RELOC_CR16_DISP20: howto manager. (line 1811)
9722 * BFD_RELOC_CR16_DISP24: howto manager. (line 1812)
9723 * BFD_RELOC_CR16_DISP24a: howto manager. (line 1813)
9724 * BFD_RELOC_CR16_DISP4: howto manager. (line 1808)
9725 * BFD_RELOC_CR16_DISP8: howto manager. (line 1809)
9726 * BFD_RELOC_CR16_IMM16: howto manager. (line 1803)
9727 * BFD_RELOC_CR16_IMM20: howto manager. (line 1804)
9728 * BFD_RELOC_CR16_IMM24: howto manager. (line 1805)
9729 * BFD_RELOC_CR16_IMM32: howto manager. (line 1806)
9730 * BFD_RELOC_CR16_IMM32a: howto manager. (line 1807)
9731 * BFD_RELOC_CR16_IMM4: howto manager. (line 1801)
9732 * BFD_RELOC_CR16_IMM8: howto manager. (line 1802)
9733 * BFD_RELOC_CR16_NUM16: howto manager. (line 1788)
9734 * BFD_RELOC_CR16_NUM32: howto manager. (line 1789)
9735 * BFD_RELOC_CR16_NUM32a: howto manager. (line 1790)
9736 * BFD_RELOC_CR16_NUM8: howto manager. (line 1787)
9737 * BFD_RELOC_CR16_REGREL0: howto manager. (line 1791)
9738 * BFD_RELOC_CR16_REGREL14: howto manager. (line 1794)
9739 * BFD_RELOC_CR16_REGREL14a: howto manager. (line 1795)
9740 * BFD_RELOC_CR16_REGREL16: howto manager. (line 1796)
9741 * BFD_RELOC_CR16_REGREL20: howto manager. (line 1797)
9742 * BFD_RELOC_CR16_REGREL20a: howto manager. (line 1798)
9743 * BFD_RELOC_CR16_REGREL4: howto manager. (line 1792)
9744 * BFD_RELOC_CR16_REGREL4a: howto manager. (line 1793)
9745 * BFD_RELOC_CRIS_16_GOT: howto manager. (line 1860)
9746 * BFD_RELOC_CRIS_16_GOTPLT: howto manager. (line 1866)
9747 * BFD_RELOC_CRIS_32_GOT: howto manager. (line 1857)
9748 * BFD_RELOC_CRIS_32_GOTPLT: howto manager. (line 1863)
9749 * BFD_RELOC_CRIS_32_GOTREL: howto manager. (line 1869)
9750 * BFD_RELOC_CRIS_32_PLT_GOTREL: howto manager. (line 1872)
9751 * BFD_RELOC_CRIS_32_PLT_PCREL: howto manager. (line 1875)
9752 * BFD_RELOC_CRIS_BDISP8: howto manager. (line 1838)
9753 * BFD_RELOC_CRIS_COPY: howto manager. (line 1851)
9754 * BFD_RELOC_CRIS_GLOB_DAT: howto manager. (line 1852)
9755 * BFD_RELOC_CRIS_JUMP_SLOT: howto manager. (line 1853)
9756 * BFD_RELOC_CRIS_LAPCQ_OFFSET: howto manager. (line 1846)
9757 * BFD_RELOC_CRIS_RELATIVE: howto manager. (line 1854)
9758 * BFD_RELOC_CRIS_SIGNED_16: howto manager. (line 1844)
9759 * BFD_RELOC_CRIS_SIGNED_6: howto manager. (line 1840)
9760 * BFD_RELOC_CRIS_SIGNED_8: howto manager. (line 1842)
9761 * BFD_RELOC_CRIS_UNSIGNED_16: howto manager. (line 1845)
9762 * BFD_RELOC_CRIS_UNSIGNED_4: howto manager. (line 1847)
9763 * BFD_RELOC_CRIS_UNSIGNED_5: howto manager. (line 1839)
9764 * BFD_RELOC_CRIS_UNSIGNED_6: howto manager. (line 1841)
9765 * BFD_RELOC_CRIS_UNSIGNED_8: howto manager. (line 1843)
9766 * BFD_RELOC_CRX_ABS16: howto manager. (line 1826)
9767 * BFD_RELOC_CRX_ABS32: howto manager. (line 1827)
9768 * BFD_RELOC_CRX_IMM16: howto manager. (line 1831)
9769 * BFD_RELOC_CRX_IMM32: howto manager. (line 1832)
9770 * BFD_RELOC_CRX_NUM16: howto manager. (line 1829)
9771 * BFD_RELOC_CRX_NUM32: howto manager. (line 1830)
9772 * BFD_RELOC_CRX_NUM8: howto manager. (line 1828)
9773 * BFD_RELOC_CRX_REGREL12: howto manager. (line 1822)
9774 * BFD_RELOC_CRX_REGREL22: howto manager. (line 1823)
9775 * BFD_RELOC_CRX_REGREL28: howto manager. (line 1824)
9776 * BFD_RELOC_CRX_REGREL32: howto manager. (line 1825)
9777 * BFD_RELOC_CRX_REL16: howto manager. (line 1819)
9778 * BFD_RELOC_CRX_REL24: howto manager. (line 1820)
9779 * BFD_RELOC_CRX_REL32: howto manager. (line 1821)
9780 * BFD_RELOC_CRX_REL4: howto manager. (line 1816)
9781 * BFD_RELOC_CRX_REL8: howto manager. (line 1817)
9782 * BFD_RELOC_CRX_REL8_CMP: howto manager. (line 1818)
9783 * BFD_RELOC_CRX_SWITCH16: howto manager. (line 1834)
9784 * BFD_RELOC_CRX_SWITCH32: howto manager. (line 1835)
9785 * BFD_RELOC_CRX_SWITCH8: howto manager. (line 1833)
9786 * BFD_RELOC_CTOR: howto manager. (line 628)
9787 * BFD_RELOC_D10V_10_PCREL_L: howto manager. (line 1002)
9788 * BFD_RELOC_D10V_10_PCREL_R: howto manager. (line 998)
9789 * BFD_RELOC_D10V_18: howto manager. (line 1007)
9790 * BFD_RELOC_D10V_18_PCREL: howto manager. (line 1010)
9791 * BFD_RELOC_D30V_15: howto manager. (line 1025)
9792 * BFD_RELOC_D30V_15_PCREL: howto manager. (line 1029)
9793 * BFD_RELOC_D30V_15_PCREL_R: howto manager. (line 1033)
9794 * BFD_RELOC_D30V_21: howto manager. (line 1038)
9795 * BFD_RELOC_D30V_21_PCREL: howto manager. (line 1042)
9796 * BFD_RELOC_D30V_21_PCREL_R: howto manager. (line 1046)
9797 * BFD_RELOC_D30V_32: howto manager. (line 1051)
9798 * BFD_RELOC_D30V_32_PCREL: howto manager. (line 1054)
9799 * BFD_RELOC_D30V_6: howto manager. (line 1013)
9800 * BFD_RELOC_D30V_9_PCREL: howto manager. (line 1016)
9801 * BFD_RELOC_D30V_9_PCREL_R: howto manager. (line 1020)
9802 * BFD_RELOC_DLX_HI16_S: howto manager. (line 1057)
9803 * BFD_RELOC_DLX_JMP26: howto manager. (line 1063)
9804 * BFD_RELOC_DLX_LO16: howto manager. (line 1060)
9805 * BFD_RELOC_FR30_10_IN_8: howto manager. (line 1242)
9806 * BFD_RELOC_FR30_12_PCREL: howto manager. (line 1250)
9807 * BFD_RELOC_FR30_20: howto manager. (line 1226)
9808 * BFD_RELOC_FR30_48: howto manager. (line 1223)
9809 * BFD_RELOC_FR30_6_IN_4: howto manager. (line 1230)
9810 * BFD_RELOC_FR30_8_IN_8: howto manager. (line 1234)
9811 * BFD_RELOC_FR30_9_IN_8: howto manager. (line 1238)
9812 * BFD_RELOC_FR30_9_PCREL: howto manager. (line 1246)
9813 * BFD_RELOC_FRV_FUNCDESC: howto manager. (line 393)
9814 * BFD_RELOC_FRV_FUNCDESC_GOT12: howto manager. (line 394)
9815 * BFD_RELOC_FRV_FUNCDESC_GOTHI: howto manager. (line 395)
9816 * BFD_RELOC_FRV_FUNCDESC_GOTLO: howto manager. (line 396)
9817 * BFD_RELOC_FRV_FUNCDESC_GOTOFF12: howto manager. (line 398)
9818 * BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: howto manager. (line 399)
9819 * BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: howto manager. (line 400)
9820 * BFD_RELOC_FRV_FUNCDESC_VALUE: howto manager. (line 397)
9821 * BFD_RELOC_FRV_GETTLSOFF: howto manager. (line 404)
9822 * BFD_RELOC_FRV_GETTLSOFF_RELAX: howto manager. (line 417)
9823 * BFD_RELOC_FRV_GOT12: howto manager. (line 390)
9824 * BFD_RELOC_FRV_GOTHI: howto manager. (line 391)
9825 * BFD_RELOC_FRV_GOTLO: howto manager. (line 392)
9826 * BFD_RELOC_FRV_GOTOFF12: howto manager. (line 401)
9827 * BFD_RELOC_FRV_GOTOFFHI: howto manager. (line 402)
9828 * BFD_RELOC_FRV_GOTOFFLO: howto manager. (line 403)
9829 * BFD_RELOC_FRV_GOTTLSDESC12: howto manager. (line 406)
9830 * BFD_RELOC_FRV_GOTTLSDESCHI: howto manager. (line 407)
9831 * BFD_RELOC_FRV_GOTTLSDESCLO: howto manager. (line 408)
9832 * BFD_RELOC_FRV_GOTTLSOFF12: howto manager. (line 412)
9833 * BFD_RELOC_FRV_GOTTLSOFFHI: howto manager. (line 413)
9834 * BFD_RELOC_FRV_GOTTLSOFFLO: howto manager. (line 414)
9835 * BFD_RELOC_FRV_GPREL12: howto manager. (line 385)
9836 * BFD_RELOC_FRV_GPREL32: howto manager. (line 387)
9837 * BFD_RELOC_FRV_GPRELHI: howto manager. (line 388)
9838 * BFD_RELOC_FRV_GPRELLO: howto manager. (line 389)
9839 * BFD_RELOC_FRV_GPRELU12: howto manager. (line 386)
9840 * BFD_RELOC_FRV_HI16: howto manager. (line 384)
9841 * BFD_RELOC_FRV_LABEL16: howto manager. (line 381)
9842 * BFD_RELOC_FRV_LABEL24: howto manager. (line 382)
9843 * BFD_RELOC_FRV_LO16: howto manager. (line 383)
9844 * BFD_RELOC_FRV_TLSDESC_RELAX: howto manager. (line 416)
9845 * BFD_RELOC_FRV_TLSDESC_VALUE: howto manager. (line 405)
9846 * BFD_RELOC_FRV_TLSMOFF: howto manager. (line 419)
9847 * BFD_RELOC_FRV_TLSMOFF12: howto manager. (line 409)
9848 * BFD_RELOC_FRV_TLSMOFFHI: howto manager. (line 410)
9849 * BFD_RELOC_FRV_TLSMOFFLO: howto manager. (line 411)
9850 * BFD_RELOC_FRV_TLSOFF: howto manager. (line 415)
9851 * BFD_RELOC_FRV_TLSOFF_RELAX: howto manager. (line 418)
9852 * BFD_RELOC_GPREL16: howto manager. (line 106)
9853 * BFD_RELOC_GPREL32: howto manager. (line 107)
9854 * BFD_RELOC_H8_DIR16A8: howto manager. (line 1917)
9855 * BFD_RELOC_H8_DIR16R8: howto manager. (line 1918)
9856 * BFD_RELOC_H8_DIR24A8: howto manager. (line 1919)
9857 * BFD_RELOC_H8_DIR24R8: howto manager. (line 1920)
9858 * BFD_RELOC_H8_DIR32A16: howto manager. (line 1921)
9859 * BFD_RELOC_HI16: howto manager. (line 305)
9860 * BFD_RELOC_HI16_BASEREL: howto manager. (line 82)
9861 * BFD_RELOC_HI16_GOTOFF: howto manager. (line 57)
9862 * BFD_RELOC_HI16_PCREL: howto manager. (line 317)
9863 * BFD_RELOC_HI16_PLTOFF: howto manager. (line 69)
9864 * BFD_RELOC_HI16_S: howto manager. (line 308)
9865 * BFD_RELOC_HI16_S_BASEREL: howto manager. (line 83)
9866 * BFD_RELOC_HI16_S_GOTOFF: howto manager. (line 58)
9867 * BFD_RELOC_HI16_S_PCREL: howto manager. (line 320)
9868 * BFD_RELOC_HI16_S_PLTOFF: howto manager. (line 70)
9869 * BFD_RELOC_HI22: howto manager. (line 101)
9870 * BFD_RELOC_I370_D12: howto manager. (line 625)
9871 * BFD_RELOC_I960_CALLJ: howto manager. (line 113)
9872 * BFD_RELOC_IA64_COPY: howto manager. (line 1681)
9873 * BFD_RELOC_IA64_DIR32LSB: howto manager. (line 1626)
9874 * BFD_RELOC_IA64_DIR32MSB: howto manager. (line 1625)
9875 * BFD_RELOC_IA64_DIR64LSB: howto manager. (line 1628)
9876 * BFD_RELOC_IA64_DIR64MSB: howto manager. (line 1627)
9877 * BFD_RELOC_IA64_DTPMOD64LSB: howto manager. (line 1691)
9878 * BFD_RELOC_IA64_DTPMOD64MSB: howto manager. (line 1690)
9879 * BFD_RELOC_IA64_DTPREL14: howto manager. (line 1693)
9880 * BFD_RELOC_IA64_DTPREL22: howto manager. (line 1694)
9881 * BFD_RELOC_IA64_DTPREL32LSB: howto manager. (line 1697)
9882 * BFD_RELOC_IA64_DTPREL32MSB: howto manager. (line 1696)
9883 * BFD_RELOC_IA64_DTPREL64I: howto manager. (line 1695)
9884 * BFD_RELOC_IA64_DTPREL64LSB: howto manager. (line 1699)
9885 * BFD_RELOC_IA64_DTPREL64MSB: howto manager. (line 1698)
9886 * BFD_RELOC_IA64_FPTR32LSB: howto manager. (line 1643)
9887 * BFD_RELOC_IA64_FPTR32MSB: howto manager. (line 1642)
9888 * BFD_RELOC_IA64_FPTR64I: howto manager. (line 1641)
9889 * BFD_RELOC_IA64_FPTR64LSB: howto manager. (line 1645)
9890 * BFD_RELOC_IA64_FPTR64MSB: howto manager. (line 1644)
9891 * BFD_RELOC_IA64_GPREL22: howto manager. (line 1629)
9892 * BFD_RELOC_IA64_GPREL32LSB: howto manager. (line 1632)
9893 * BFD_RELOC_IA64_GPREL32MSB: howto manager. (line 1631)
9894 * BFD_RELOC_IA64_GPREL64I: howto manager. (line 1630)
9895 * BFD_RELOC_IA64_GPREL64LSB: howto manager. (line 1634)
9896 * BFD_RELOC_IA64_GPREL64MSB: howto manager. (line 1633)
9897 * BFD_RELOC_IA64_IMM14: howto manager. (line 1622)
9898 * BFD_RELOC_IA64_IMM22: howto manager. (line 1623)
9899 * BFD_RELOC_IA64_IMM64: howto manager. (line 1624)
9900 * BFD_RELOC_IA64_IPLTLSB: howto manager. (line 1680)
9901 * BFD_RELOC_IA64_IPLTMSB: howto manager. (line 1679)
9902 * BFD_RELOC_IA64_LDXMOV: howto manager. (line 1683)
9903 * BFD_RELOC_IA64_LTOFF22: howto manager. (line 1635)
9904 * BFD_RELOC_IA64_LTOFF22X: howto manager. (line 1682)
9905 * BFD_RELOC_IA64_LTOFF64I: howto manager. (line 1636)
9906 * BFD_RELOC_IA64_LTOFF_DTPMOD22: howto manager. (line 1692)
9907 * BFD_RELOC_IA64_LTOFF_DTPREL22: howto manager. (line 1700)
9908 * BFD_RELOC_IA64_LTOFF_FPTR22: howto manager. (line 1657)
9909 * BFD_RELOC_IA64_LTOFF_FPTR32LSB: howto manager. (line 1660)
9910 * BFD_RELOC_IA64_LTOFF_FPTR32MSB: howto manager. (line 1659)
9911 * BFD_RELOC_IA64_LTOFF_FPTR64I: howto manager. (line 1658)
9912 * BFD_RELOC_IA64_LTOFF_FPTR64LSB: howto manager. (line 1662)
9913 * BFD_RELOC_IA64_LTOFF_FPTR64MSB: howto manager. (line 1661)
9914 * BFD_RELOC_IA64_LTOFF_TPREL22: howto manager. (line 1689)
9915 * BFD_RELOC_IA64_LTV32LSB: howto manager. (line 1676)
9916 * BFD_RELOC_IA64_LTV32MSB: howto manager. (line 1675)
9917 * BFD_RELOC_IA64_LTV64LSB: howto manager. (line 1678)
9918 * BFD_RELOC_IA64_LTV64MSB: howto manager. (line 1677)
9919 * BFD_RELOC_IA64_PCREL21B: howto manager. (line 1646)
9920 * BFD_RELOC_IA64_PCREL21BI: howto manager. (line 1647)
9921 * BFD_RELOC_IA64_PCREL21F: howto manager. (line 1649)
9922 * BFD_RELOC_IA64_PCREL21M: howto manager. (line 1648)
9923 * BFD_RELOC_IA64_PCREL22: howto manager. (line 1650)
9924 * BFD_RELOC_IA64_PCREL32LSB: howto manager. (line 1654)
9925 * BFD_RELOC_IA64_PCREL32MSB: howto manager. (line 1653)
9926 * BFD_RELOC_IA64_PCREL60B: howto manager. (line 1651)
9927 * BFD_RELOC_IA64_PCREL64I: howto manager. (line 1652)
9928 * BFD_RELOC_IA64_PCREL64LSB: howto manager. (line 1656)
9929 * BFD_RELOC_IA64_PCREL64MSB: howto manager. (line 1655)
9930 * BFD_RELOC_IA64_PLTOFF22: howto manager. (line 1637)
9931 * BFD_RELOC_IA64_PLTOFF64I: howto manager. (line 1638)
9932 * BFD_RELOC_IA64_PLTOFF64LSB: howto manager. (line 1640)
9933 * BFD_RELOC_IA64_PLTOFF64MSB: howto manager. (line 1639)
9934 * BFD_RELOC_IA64_REL32LSB: howto manager. (line 1672)
9935 * BFD_RELOC_IA64_REL32MSB: howto manager. (line 1671)
9936 * BFD_RELOC_IA64_REL64LSB: howto manager. (line 1674)
9937 * BFD_RELOC_IA64_REL64MSB: howto manager. (line 1673)
9938 * BFD_RELOC_IA64_SECREL32LSB: howto manager. (line 1668)
9939 * BFD_RELOC_IA64_SECREL32MSB: howto manager. (line 1667)
9940 * BFD_RELOC_IA64_SECREL64LSB: howto manager. (line 1670)
9941 * BFD_RELOC_IA64_SECREL64MSB: howto manager. (line 1669)
9942 * BFD_RELOC_IA64_SEGREL32LSB: howto manager. (line 1664)
9943 * BFD_RELOC_IA64_SEGREL32MSB: howto manager. (line 1663)
9944 * BFD_RELOC_IA64_SEGREL64LSB: howto manager. (line 1666)
9945 * BFD_RELOC_IA64_SEGREL64MSB: howto manager. (line 1665)
9946 * BFD_RELOC_IA64_TPREL14: howto manager. (line 1684)
9947 * BFD_RELOC_IA64_TPREL22: howto manager. (line 1685)
9948 * BFD_RELOC_IA64_TPREL64I: howto manager. (line 1686)
9949 * BFD_RELOC_IA64_TPREL64LSB: howto manager. (line 1688)
9950 * BFD_RELOC_IA64_TPREL64MSB: howto manager. (line 1687)
9951 * BFD_RELOC_IP2K_ADDR16CJP: howto manager. (line 1574)
9952 * BFD_RELOC_IP2K_BANK: howto manager. (line 1571)
9953 * BFD_RELOC_IP2K_EX8DATA: howto manager. (line 1582)
9954 * BFD_RELOC_IP2K_FR9: howto manager. (line 1568)
9955 * BFD_RELOC_IP2K_FR_OFFSET: howto manager. (line 1595)
9956 * BFD_RELOC_IP2K_HI8DATA: howto manager. (line 1581)
9957 * BFD_RELOC_IP2K_HI8INSN: howto manager. (line 1586)
9958 * BFD_RELOC_IP2K_LO8DATA: howto manager. (line 1580)
9959 * BFD_RELOC_IP2K_LO8INSN: howto manager. (line 1585)
9960 * BFD_RELOC_IP2K_PAGE3: howto manager. (line 1577)
9961 * BFD_RELOC_IP2K_PC_SKIP: howto manager. (line 1589)
9962 * BFD_RELOC_IP2K_TEXT: howto manager. (line 1592)
9963 * BFD_RELOC_IQ2000_OFFSET_16: howto manager. (line 1971)
9964 * BFD_RELOC_IQ2000_OFFSET_21: howto manager. (line 1972)
9965 * BFD_RELOC_IQ2000_UHI16: howto manager. (line 1973)
9966 * BFD_RELOC_LO10: howto manager. (line 102)
9967 * BFD_RELOC_LO16: howto manager. (line 314)
9968 * BFD_RELOC_LO16_BASEREL: howto manager. (line 81)
9969 * BFD_RELOC_LO16_GOTOFF: howto manager. (line 56)
9970 * BFD_RELOC_LO16_PCREL: howto manager. (line 323)
9971 * BFD_RELOC_LO16_PLTOFF: howto manager. (line 68)
9972 * BFD_RELOC_M32C_HI8: howto manager. (line 1066)
9973 * BFD_RELOC_M32C_RL_1ADDR: howto manager. (line 1068)
9974 * BFD_RELOC_M32C_RL_2ADDR: howto manager. (line 1069)
9975 * BFD_RELOC_M32C_RL_JUMP: howto manager. (line 1067)
9976 * BFD_RELOC_M32R_10_PCREL: howto manager. (line 1076)
9977 * BFD_RELOC_M32R_18_PCREL: howto manager. (line 1080)
9978 * BFD_RELOC_M32R_24: howto manager. (line 1072)
9979 * BFD_RELOC_M32R_26_PCREL: howto manager. (line 1083)
9980 * BFD_RELOC_M32R_26_PLTREL: howto manager. (line 1102)
9981 * BFD_RELOC_M32R_COPY: howto manager. (line 1103)
9982 * BFD_RELOC_M32R_GLOB_DAT: howto manager. (line 1104)
9983 * BFD_RELOC_M32R_GOT16_HI_SLO: howto manager. (line 1113)
9984 * BFD_RELOC_M32R_GOT16_HI_ULO: howto manager. (line 1112)
9985 * BFD_RELOC_M32R_GOT16_LO: howto manager. (line 1114)
9986 * BFD_RELOC_M32R_GOT24: howto manager. (line 1101)
9987 * BFD_RELOC_M32R_GOTOFF: howto manager. (line 1107)
9988 * BFD_RELOC_M32R_GOTOFF_HI_SLO: howto manager. (line 1109)
9989 * BFD_RELOC_M32R_GOTOFF_HI_ULO: howto manager. (line 1108)
9990 * BFD_RELOC_M32R_GOTOFF_LO: howto manager. (line 1110)
9991 * BFD_RELOC_M32R_GOTPC24: howto manager. (line 1111)
9992 * BFD_RELOC_M32R_GOTPC_HI_SLO: howto manager. (line 1116)
9993 * BFD_RELOC_M32R_GOTPC_HI_ULO: howto manager. (line 1115)
9994 * BFD_RELOC_M32R_GOTPC_LO: howto manager. (line 1117)
9995 * BFD_RELOC_M32R_HI16_SLO: howto manager. (line 1090)
9996 * BFD_RELOC_M32R_HI16_ULO: howto manager. (line 1086)
9997 * BFD_RELOC_M32R_JMP_SLOT: howto manager. (line 1105)
9998 * BFD_RELOC_M32R_LO16: howto manager. (line 1094)
9999 * BFD_RELOC_M32R_RELATIVE: howto manager. (line 1106)
10000 * BFD_RELOC_M32R_SDA16: howto manager. (line 1097)
10001 * BFD_RELOC_M68HC11_24: howto manager. (line 1736)
10002 * BFD_RELOC_M68HC11_3B: howto manager. (line 1711)
10003 * BFD_RELOC_M68HC11_HI8: howto manager. (line 1703)
10004 * BFD_RELOC_M68HC11_LO16: howto manager. (line 1725)
10005 * BFD_RELOC_M68HC11_LO8: howto manager. (line 1707)
10006 * BFD_RELOC_M68HC11_PAGE: howto manager. (line 1731)
10007 * BFD_RELOC_M68HC11_RL_GROUP: howto manager. (line 1720)
10008 * BFD_RELOC_M68HC11_RL_JUMP: howto manager. (line 1714)
10009 * BFD_RELOC_M68HC12_5B: howto manager. (line 1742)
10010 * BFD_RELOC_MCORE_PCREL_32: howto manager. (line 1257)
10011 * BFD_RELOC_MCORE_PCREL_IMM11BY2: howto manager. (line 1255)
10012 * BFD_RELOC_MCORE_PCREL_IMM4BY2: howto manager. (line 1256)
10013 * BFD_RELOC_MCORE_PCREL_IMM8BY4: howto manager. (line 1254)
10014 * BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2: howto manager. (line 1258)
10015 * BFD_RELOC_MCORE_RVA: howto manager. (line 1259)
10016 * BFD_RELOC_MEP_16: howto manager. (line 1263)
10017 * BFD_RELOC_MEP_32: howto manager. (line 1264)
10018 * BFD_RELOC_MEP_8: howto manager. (line 1262)
10019 * BFD_RELOC_MEP_ADDR24A4: howto manager. (line 1279)
10020 * BFD_RELOC_MEP_GNU_VTENTRY: howto manager. (line 1281)
10021 * BFD_RELOC_MEP_GNU_VTINHERIT: howto manager. (line 1280)
10022 * BFD_RELOC_MEP_GPREL: howto manager. (line 1273)
10023 * BFD_RELOC_MEP_HI16S: howto manager. (line 1272)
10024 * BFD_RELOC_MEP_HI16U: howto manager. (line 1271)
10025 * BFD_RELOC_MEP_LOW16: howto manager. (line 1270)
10026 * BFD_RELOC_MEP_PCABS24A2: howto manager. (line 1269)
10027 * BFD_RELOC_MEP_PCREL12A2: howto manager. (line 1266)
10028 * BFD_RELOC_MEP_PCREL17A2: howto manager. (line 1267)
10029 * BFD_RELOC_MEP_PCREL24A2: howto manager. (line 1268)
10030 * BFD_RELOC_MEP_PCREL8A2: howto manager. (line 1265)
10031 * BFD_RELOC_MEP_TPREL: howto manager. (line 1274)
10032 * BFD_RELOC_MEP_TPREL7: howto manager. (line 1275)
10033 * BFD_RELOC_MEP_TPREL7A2: howto manager. (line 1276)
10034 * BFD_RELOC_MEP_TPREL7A4: howto manager. (line 1277)
10035 * BFD_RELOC_MEP_UIMM24: howto manager. (line 1278)
10036 * BFD_RELOC_MIPS16_GPREL: howto manager. (line 302)
10037 * BFD_RELOC_MIPS16_HI16: howto manager. (line 326)
10038 * BFD_RELOC_MIPS16_HI16_S: howto manager. (line 329)
10039 * BFD_RELOC_MIPS16_JMP: howto manager. (line 299)
10040 * BFD_RELOC_MIPS16_LO16: howto manager. (line 335)
10041 * BFD_RELOC_MIPS_CALL16: howto manager. (line 342)
10042 * BFD_RELOC_MIPS_CALL_HI16: howto manager. (line 345)
10043 * BFD_RELOC_MIPS_CALL_LO16: howto manager. (line 346)
10044 * BFD_RELOC_MIPS_COPY: howto manager. (line 377)
10045 * BFD_RELOC_MIPS_DELETE: howto manager. (line 355)
10046 * BFD_RELOC_MIPS_GOT16: howto manager. (line 341)
10047 * BFD_RELOC_MIPS_GOT_DISP: howto manager. (line 350)
10048 * BFD_RELOC_MIPS_GOT_HI16: howto manager. (line 343)
10049 * BFD_RELOC_MIPS_GOT_LO16: howto manager. (line 344)
10050 * BFD_RELOC_MIPS_GOT_OFST: howto manager. (line 349)
10051 * BFD_RELOC_MIPS_GOT_PAGE: howto manager. (line 348)
10052 * BFD_RELOC_MIPS_HIGHER: howto manager. (line 357)
10053 * BFD_RELOC_MIPS_HIGHEST: howto manager. (line 356)
10054 * BFD_RELOC_MIPS_INSERT_A: howto manager. (line 353)
10055 * BFD_RELOC_MIPS_INSERT_B: howto manager. (line 354)
10056 * BFD_RELOC_MIPS_JALR: howto manager. (line 361)
10057 * BFD_RELOC_MIPS_JMP: howto manager. (line 295)
10058 * BFD_RELOC_MIPS_JUMP_SLOT: howto manager. (line 378)
10059 * BFD_RELOC_MIPS_LITERAL: howto manager. (line 338)
10060 * BFD_RELOC_MIPS_REL16: howto manager. (line 359)
10061 * BFD_RELOC_MIPS_RELGOT: howto manager. (line 360)
10062 * BFD_RELOC_MIPS_SCN_DISP: howto manager. (line 358)
10063 * BFD_RELOC_MIPS_SHIFT5: howto manager. (line 351)
10064 * BFD_RELOC_MIPS_SHIFT6: howto manager. (line 352)
10065 * BFD_RELOC_MIPS_SUB: howto manager. (line 347)
10066 * BFD_RELOC_MIPS_TLS_DTPMOD32: howto manager. (line 362)
10067 * BFD_RELOC_MIPS_TLS_DTPMOD64: howto manager. (line 364)
10068 * BFD_RELOC_MIPS_TLS_DTPREL32: howto manager. (line 363)
10069 * BFD_RELOC_MIPS_TLS_DTPREL64: howto manager. (line 365)
10070 * BFD_RELOC_MIPS_TLS_DTPREL_HI16: howto manager. (line 368)
10071 * BFD_RELOC_MIPS_TLS_DTPREL_LO16: howto manager. (line 369)
10072 * BFD_RELOC_MIPS_TLS_GD: howto manager. (line 366)
10073 * BFD_RELOC_MIPS_TLS_GOTTPREL: howto manager. (line 370)
10074 * BFD_RELOC_MIPS_TLS_LDM: howto manager. (line 367)
10075 * BFD_RELOC_MIPS_TLS_TPREL32: howto manager. (line 371)
10076 * BFD_RELOC_MIPS_TLS_TPREL64: howto manager. (line 372)
10077 * BFD_RELOC_MIPS_TLS_TPREL_HI16: howto manager. (line 373)
10078 * BFD_RELOC_MIPS_TLS_TPREL_LO16: howto manager. (line 374)
10079 * BFD_RELOC_MMIX_ADDR19: howto manager. (line 1310)
10080 * BFD_RELOC_MMIX_ADDR27: howto manager. (line 1314)
10081 * BFD_RELOC_MMIX_BASE_PLUS_OFFSET: howto manager. (line 1326)
10082 * BFD_RELOC_MMIX_CBRANCH: howto manager. (line 1290)
10083 * BFD_RELOC_MMIX_CBRANCH_1: howto manager. (line 1292)
10084 * BFD_RELOC_MMIX_CBRANCH_2: howto manager. (line 1293)
10085 * BFD_RELOC_MMIX_CBRANCH_3: howto manager. (line 1294)
10086 * BFD_RELOC_MMIX_CBRANCH_J: howto manager. (line 1291)
10087 * BFD_RELOC_MMIX_GETA: howto manager. (line 1284)
10088 * BFD_RELOC_MMIX_GETA_1: howto manager. (line 1285)
10089 * BFD_RELOC_MMIX_GETA_2: howto manager. (line 1286)
10090 * BFD_RELOC_MMIX_GETA_3: howto manager. (line 1287)
10091 * BFD_RELOC_MMIX_JMP: howto manager. (line 1304)
10092 * BFD_RELOC_MMIX_JMP_1: howto manager. (line 1305)
10093 * BFD_RELOC_MMIX_JMP_2: howto manager. (line 1306)
10094 * BFD_RELOC_MMIX_JMP_3: howto manager. (line 1307)
10095 * BFD_RELOC_MMIX_LOCAL: howto manager. (line 1330)
10096 * BFD_RELOC_MMIX_PUSHJ: howto manager. (line 1297)
10097 * BFD_RELOC_MMIX_PUSHJ_1: howto manager. (line 1298)
10098 * BFD_RELOC_MMIX_PUSHJ_2: howto manager. (line 1299)
10099 * BFD_RELOC_MMIX_PUSHJ_3: howto manager. (line 1300)
10100 * BFD_RELOC_MMIX_PUSHJ_STUBBABLE: howto manager. (line 1301)
10101 * BFD_RELOC_MMIX_REG: howto manager. (line 1322)
10102 * BFD_RELOC_MMIX_REG_OR_BYTE: howto manager. (line 1318)
10103 * BFD_RELOC_MN10300_16_PCREL: howto manager. (line 1192)
10104 * BFD_RELOC_MN10300_32_PCREL: howto manager. (line 1188)
10105 * BFD_RELOC_MN10300_COPY: howto manager. (line 437)
10106 * BFD_RELOC_MN10300_GLOB_DAT: howto manager. (line 440)
10107 * BFD_RELOC_MN10300_GOT16: howto manager. (line 433)
10108 * BFD_RELOC_MN10300_GOT24: howto manager. (line 429)
10109 * BFD_RELOC_MN10300_GOT32: howto manager. (line 425)
10110 * BFD_RELOC_MN10300_GOTOFF24: howto manager. (line 422)
10111 * BFD_RELOC_MN10300_JMP_SLOT: howto manager. (line 443)
10112 * BFD_RELOC_MN10300_RELATIVE: howto manager. (line 446)
10113 * BFD_RELOC_MSP430_10_PCREL: howto manager. (line 1962)
10114 * BFD_RELOC_MSP430_16: howto manager. (line 1964)
10115 * BFD_RELOC_MSP430_16_BYTE: howto manager. (line 1966)
10116 * BFD_RELOC_MSP430_16_PCREL: howto manager. (line 1963)
10117 * BFD_RELOC_MSP430_16_PCREL_BYTE: howto manager. (line 1965)
10118 * BFD_RELOC_MSP430_2X_PCREL: howto manager. (line 1967)
10119 * BFD_RELOC_MSP430_RL_PCREL: howto manager. (line 1968)
10120 * BFD_RELOC_MT_GNU_VTENTRY: howto manager. (line 1956)
10121 * BFD_RELOC_MT_GNU_VTINHERIT: howto manager. (line 1953)
10122 * BFD_RELOC_MT_HI16: howto manager. (line 1947)
10123 * BFD_RELOC_MT_LO16: howto manager. (line 1950)
10124 * BFD_RELOC_MT_PC16: howto manager. (line 1944)
10125 * BFD_RELOC_MT_PCINSN8: howto manager. (line 1959)
10126 * BFD_RELOC_NONE: howto manager. (line 116)
10127 * BFD_RELOC_NS32K_DISP_16: howto manager. (line 509)
10128 * BFD_RELOC_NS32K_DISP_16_PCREL: howto manager. (line 512)
10129 * BFD_RELOC_NS32K_DISP_32: howto manager. (line 510)
10130 * BFD_RELOC_NS32K_DISP_32_PCREL: howto manager. (line 513)
10131 * BFD_RELOC_NS32K_DISP_8: howto manager. (line 508)
10132 * BFD_RELOC_NS32K_DISP_8_PCREL: howto manager. (line 511)
10133 * BFD_RELOC_NS32K_IMM_16: howto manager. (line 503)
10134 * BFD_RELOC_NS32K_IMM_16_PCREL: howto manager. (line 506)
10135 * BFD_RELOC_NS32K_IMM_32: howto manager. (line 504)
10136 * BFD_RELOC_NS32K_IMM_32_PCREL: howto manager. (line 507)
10137 * BFD_RELOC_NS32K_IMM_8: howto manager. (line 502)
10138 * BFD_RELOC_NS32K_IMM_8_PCREL: howto manager. (line 505)
10139 * BFD_RELOC_OPENRISC_ABS_26: howto manager. (line 1913)
10140 * BFD_RELOC_OPENRISC_REL_26: howto manager. (line 1914)
10141 * BFD_RELOC_PDP11_DISP_6_PCREL: howto manager. (line 517)
10142 * BFD_RELOC_PDP11_DISP_8_PCREL: howto manager. (line 516)
10143 * BFD_RELOC_PJ_CODE_DIR16: howto manager. (line 522)
10144 * BFD_RELOC_PJ_CODE_DIR32: howto manager. (line 523)
10145 * BFD_RELOC_PJ_CODE_HI16: howto manager. (line 520)
10146 * BFD_RELOC_PJ_CODE_LO16: howto manager. (line 521)
10147 * BFD_RELOC_PJ_CODE_REL16: howto manager. (line 524)
10148 * BFD_RELOC_PJ_CODE_REL32: howto manager. (line 525)
10149 * BFD_RELOC_PPC64_ADDR16_DS: howto manager. (line 570)
10150 * BFD_RELOC_PPC64_ADDR16_LO_DS: howto manager. (line 571)
10151 * BFD_RELOC_PPC64_DTPREL16_DS: howto manager. (line 617)
10152 * BFD_RELOC_PPC64_DTPREL16_HIGHER: howto manager. (line 619)
10153 * BFD_RELOC_PPC64_DTPREL16_HIGHERA: howto manager. (line 620)
10154 * BFD_RELOC_PPC64_DTPREL16_HIGHEST: howto manager. (line 621)
10155 * BFD_RELOC_PPC64_DTPREL16_HIGHESTA: howto manager. (line 622)
10156 * BFD_RELOC_PPC64_DTPREL16_LO_DS: howto manager. (line 618)
10157 * BFD_RELOC_PPC64_GOT16_DS: howto manager. (line 572)
10158 * BFD_RELOC_PPC64_GOT16_LO_DS: howto manager. (line 573)
10159 * BFD_RELOC_PPC64_HIGHER: howto manager. (line 558)
10160 * BFD_RELOC_PPC64_HIGHER_S: howto manager. (line 559)
10161 * BFD_RELOC_PPC64_HIGHEST: howto manager. (line 560)
10162 * BFD_RELOC_PPC64_HIGHEST_S: howto manager. (line 561)
10163 * BFD_RELOC_PPC64_PLT16_LO_DS: howto manager. (line 574)
10164 * BFD_RELOC_PPC64_PLTGOT16: howto manager. (line 566)
10165 * BFD_RELOC_PPC64_PLTGOT16_DS: howto manager. (line 579)
10166 * BFD_RELOC_PPC64_PLTGOT16_HA: howto manager. (line 569)
10167 * BFD_RELOC_PPC64_PLTGOT16_HI: howto manager. (line 568)
10168 * BFD_RELOC_PPC64_PLTGOT16_LO: howto manager. (line 567)
10169 * BFD_RELOC_PPC64_PLTGOT16_LO_DS: howto manager. (line 580)
10170 * BFD_RELOC_PPC64_SECTOFF_DS: howto manager. (line 575)
10171 * BFD_RELOC_PPC64_SECTOFF_LO_DS: howto manager. (line 576)
10172 * BFD_RELOC_PPC64_TOC: howto manager. (line 565)
10173 * BFD_RELOC_PPC64_TOC16_DS: howto manager. (line 577)
10174 * BFD_RELOC_PPC64_TOC16_HA: howto manager. (line 564)
10175 * BFD_RELOC_PPC64_TOC16_HI: howto manager. (line 563)
10176 * BFD_RELOC_PPC64_TOC16_LO: howto manager. (line 562)
10177 * BFD_RELOC_PPC64_TOC16_LO_DS: howto manager. (line 578)
10178 * BFD_RELOC_PPC64_TPREL16_DS: howto manager. (line 611)
10179 * BFD_RELOC_PPC64_TPREL16_HIGHER: howto manager. (line 613)
10180 * BFD_RELOC_PPC64_TPREL16_HIGHERA: howto manager. (line 614)
10181 * BFD_RELOC_PPC64_TPREL16_HIGHEST: howto manager. (line 615)
10182 * BFD_RELOC_PPC64_TPREL16_HIGHESTA: howto manager. (line 616)
10183 * BFD_RELOC_PPC64_TPREL16_LO_DS: howto manager. (line 612)
10184 * BFD_RELOC_PPC_B16: howto manager. (line 531)
10185 * BFD_RELOC_PPC_B16_BRNTAKEN: howto manager. (line 533)
10186 * BFD_RELOC_PPC_B16_BRTAKEN: howto manager. (line 532)
10187 * BFD_RELOC_PPC_B26: howto manager. (line 528)
10188 * BFD_RELOC_PPC_BA16: howto manager. (line 534)
10189 * BFD_RELOC_PPC_BA16_BRNTAKEN: howto manager. (line 536)
10190 * BFD_RELOC_PPC_BA16_BRTAKEN: howto manager. (line 535)
10191 * BFD_RELOC_PPC_BA26: howto manager. (line 529)
10192 * BFD_RELOC_PPC_COPY: howto manager. (line 537)
10193 * BFD_RELOC_PPC_DTPMOD: howto manager. (line 584)
10194 * BFD_RELOC_PPC_DTPREL: howto manager. (line 594)
10195 * BFD_RELOC_PPC_DTPREL16: howto manager. (line 590)
10196 * BFD_RELOC_PPC_DTPREL16_HA: howto manager. (line 593)
10197 * BFD_RELOC_PPC_DTPREL16_HI: howto manager. (line 592)
10198 * BFD_RELOC_PPC_DTPREL16_LO: howto manager. (line 591)
10199 * BFD_RELOC_PPC_EMB_BIT_FLD: howto manager. (line 556)
10200 * BFD_RELOC_PPC_EMB_MRKREF: howto manager. (line 551)
10201 * BFD_RELOC_PPC_EMB_NADDR16: howto manager. (line 543)
10202 * BFD_RELOC_PPC_EMB_NADDR16_HA: howto manager. (line 546)
10203 * BFD_RELOC_PPC_EMB_NADDR16_HI: howto manager. (line 545)
10204 * BFD_RELOC_PPC_EMB_NADDR16_LO: howto manager. (line 544)
10205 * BFD_RELOC_PPC_EMB_NADDR32: howto manager. (line 542)
10206 * BFD_RELOC_PPC_EMB_RELSDA: howto manager. (line 557)
10207 * BFD_RELOC_PPC_EMB_RELSEC16: howto manager. (line 552)
10208 * BFD_RELOC_PPC_EMB_RELST_HA: howto manager. (line 555)
10209 * BFD_RELOC_PPC_EMB_RELST_HI: howto manager. (line 554)
10210 * BFD_RELOC_PPC_EMB_RELST_LO: howto manager. (line 553)
10211 * BFD_RELOC_PPC_EMB_SDA21: howto manager. (line 550)
10212 * BFD_RELOC_PPC_EMB_SDA2I16: howto manager. (line 548)
10213 * BFD_RELOC_PPC_EMB_SDA2REL: howto manager. (line 549)
10214 * BFD_RELOC_PPC_EMB_SDAI16: howto manager. (line 547)
10215 * BFD_RELOC_PPC_GLOB_DAT: howto manager. (line 538)
10216 * BFD_RELOC_PPC_GOT_DTPREL16: howto manager. (line 607)
10217 * BFD_RELOC_PPC_GOT_DTPREL16_HA: howto manager. (line 610)
10218 * BFD_RELOC_PPC_GOT_DTPREL16_HI: howto manager. (line 609)
10219 * BFD_RELOC_PPC_GOT_DTPREL16_LO: howto manager. (line 608)
10220 * BFD_RELOC_PPC_GOT_TLSGD16: howto manager. (line 595)
10221 * BFD_RELOC_PPC_GOT_TLSGD16_HA: howto manager. (line 598)
10222 * BFD_RELOC_PPC_GOT_TLSGD16_HI: howto manager. (line 597)
10223 * BFD_RELOC_PPC_GOT_TLSGD16_LO: howto manager. (line 596)
10224 * BFD_RELOC_PPC_GOT_TLSLD16: howto manager. (line 599)
10225 * BFD_RELOC_PPC_GOT_TLSLD16_HA: howto manager. (line 602)
10226 * BFD_RELOC_PPC_GOT_TLSLD16_HI: howto manager. (line 601)
10227 * BFD_RELOC_PPC_GOT_TLSLD16_LO: howto manager. (line 600)
10228 * BFD_RELOC_PPC_GOT_TPREL16: howto manager. (line 603)
10229 * BFD_RELOC_PPC_GOT_TPREL16_HA: howto manager. (line 606)
10230 * BFD_RELOC_PPC_GOT_TPREL16_HI: howto manager. (line 605)
10231 * BFD_RELOC_PPC_GOT_TPREL16_LO: howto manager. (line 604)
10232 * BFD_RELOC_PPC_JMP_SLOT: howto manager. (line 539)
10233 * BFD_RELOC_PPC_LOCAL24PC: howto manager. (line 541)
10234 * BFD_RELOC_PPC_RELATIVE: howto manager. (line 540)
10235 * BFD_RELOC_PPC_TLS: howto manager. (line 583)
10236 * BFD_RELOC_PPC_TOC16: howto manager. (line 530)
10237 * BFD_RELOC_PPC_TPREL: howto manager. (line 589)
10238 * BFD_RELOC_PPC_TPREL16: howto manager. (line 585)
10239 * BFD_RELOC_PPC_TPREL16_HA: howto manager. (line 588)
10240 * BFD_RELOC_PPC_TPREL16_HI: howto manager. (line 587)
10241 * BFD_RELOC_PPC_TPREL16_LO: howto manager. (line 586)
10242 * BFD_RELOC_RELC: howto manager. (line 1930)
10243 * BFD_RELOC_RVA: howto manager. (line 85)
10244 * BFD_RELOC_SCORE16_BRANCH: howto manager. (line 1559)
10245 * BFD_RELOC_SCORE16_JMP: howto manager. (line 1556)
10246 * BFD_RELOC_SCORE_BRANCH: howto manager. (line 1553)
10247 * BFD_RELOC_SCORE_CALL15: howto manager. (line 1564)
10248 * BFD_RELOC_SCORE_DUMMY1: howto manager. (line 1543)
10249 * BFD_RELOC_SCORE_DUMMY2: howto manager. (line 1549)
10250 * BFD_RELOC_SCORE_DUMMY_HI16: howto manager. (line 1565)
10251 * BFD_RELOC_SCORE_GOT15: howto manager. (line 1562)
10252 * BFD_RELOC_SCORE_GOT_LO16: howto manager. (line 1563)
10253 * BFD_RELOC_SCORE_GPREL15: howto manager. (line 1546)
10254 * BFD_RELOC_SCORE_JMP: howto manager. (line 1550)
10255 * BFD_RELOC_SH_ALIGN: howto manager. (line 802)
10256 * BFD_RELOC_SH_CODE: howto manager. (line 803)
10257 * BFD_RELOC_SH_COPY: howto manager. (line 808)
10258 * BFD_RELOC_SH_COPY64: howto manager. (line 833)
10259 * BFD_RELOC_SH_COUNT: howto manager. (line 801)
10260 * BFD_RELOC_SH_DATA: howto manager. (line 804)
10261 * BFD_RELOC_SH_DISP12: howto manager. (line 784)
10262 * BFD_RELOC_SH_DISP12BY2: howto manager. (line 785)
10263 * BFD_RELOC_SH_DISP12BY4: howto manager. (line 786)
10264 * BFD_RELOC_SH_DISP12BY8: howto manager. (line 787)
10265 * BFD_RELOC_SH_DISP20: howto manager. (line 788)
10266 * BFD_RELOC_SH_DISP20BY8: howto manager. (line 789)
10267 * BFD_RELOC_SH_GLOB_DAT: howto manager. (line 809)
10268 * BFD_RELOC_SH_GLOB_DAT64: howto manager. (line 834)
10269 * BFD_RELOC_SH_GOT10BY4: howto manager. (line 837)
10270 * BFD_RELOC_SH_GOT10BY8: howto manager. (line 838)
10271 * BFD_RELOC_SH_GOT_HI16: howto manager. (line 816)
10272 * BFD_RELOC_SH_GOT_LOW16: howto manager. (line 813)
10273 * BFD_RELOC_SH_GOT_MEDHI16: howto manager. (line 815)
10274 * BFD_RELOC_SH_GOT_MEDLOW16: howto manager. (line 814)
10275 * BFD_RELOC_SH_GOTOFF_HI16: howto manager. (line 828)
10276 * BFD_RELOC_SH_GOTOFF_LOW16: howto manager. (line 825)
10277 * BFD_RELOC_SH_GOTOFF_MEDHI16: howto manager. (line 827)
10278 * BFD_RELOC_SH_GOTOFF_MEDLOW16: howto manager. (line 826)
10279 * BFD_RELOC_SH_GOTPC: howto manager. (line 812)
10280 * BFD_RELOC_SH_GOTPC_HI16: howto manager. (line 832)
10281 * BFD_RELOC_SH_GOTPC_LOW16: howto manager. (line 829)
10282 * BFD_RELOC_SH_GOTPC_MEDHI16: howto manager. (line 831)
10283 * BFD_RELOC_SH_GOTPC_MEDLOW16: howto manager. (line 830)
10284 * BFD_RELOC_SH_GOTPLT10BY4: howto manager. (line 839)
10285 * BFD_RELOC_SH_GOTPLT10BY8: howto manager. (line 840)
10286 * BFD_RELOC_SH_GOTPLT32: howto manager. (line 841)
10287 * BFD_RELOC_SH_GOTPLT_HI16: howto manager. (line 820)
10288 * BFD_RELOC_SH_GOTPLT_LOW16: howto manager. (line 817)
10289 * BFD_RELOC_SH_GOTPLT_MEDHI16: howto manager. (line 819)
10290 * BFD_RELOC_SH_GOTPLT_MEDLOW16: howto manager. (line 818)
10291 * BFD_RELOC_SH_IMM3: howto manager. (line 782)
10292 * BFD_RELOC_SH_IMM3U: howto manager. (line 783)
10293 * BFD_RELOC_SH_IMM4: howto manager. (line 790)
10294 * BFD_RELOC_SH_IMM4BY2: howto manager. (line 791)
10295 * BFD_RELOC_SH_IMM4BY4: howto manager. (line 792)
10296 * BFD_RELOC_SH_IMM8: howto manager. (line 793)
10297 * BFD_RELOC_SH_IMM8BY2: howto manager. (line 794)
10298 * BFD_RELOC_SH_IMM8BY4: howto manager. (line 795)
10299 * BFD_RELOC_SH_IMM_HI16: howto manager. (line 859)
10300 * BFD_RELOC_SH_IMM_HI16_PCREL: howto manager. (line 860)
10301 * BFD_RELOC_SH_IMM_LOW16: howto manager. (line 853)
10302 * BFD_RELOC_SH_IMM_LOW16_PCREL: howto manager. (line 854)
10303 * BFD_RELOC_SH_IMM_MEDHI16: howto manager. (line 857)
10304 * BFD_RELOC_SH_IMM_MEDHI16_PCREL: howto manager. (line 858)
10305 * BFD_RELOC_SH_IMM_MEDLOW16: howto manager. (line 855)
10306 * BFD_RELOC_SH_IMM_MEDLOW16_PCREL: howto manager. (line 856)
10307 * BFD_RELOC_SH_IMMS10: howto manager. (line 847)
10308 * BFD_RELOC_SH_IMMS10BY2: howto manager. (line 848)
10309 * BFD_RELOC_SH_IMMS10BY4: howto manager. (line 849)
10310 * BFD_RELOC_SH_IMMS10BY8: howto manager. (line 850)
10311 * BFD_RELOC_SH_IMMS16: howto manager. (line 851)
10312 * BFD_RELOC_SH_IMMS6: howto manager. (line 844)
10313 * BFD_RELOC_SH_IMMS6BY32: howto manager. (line 845)
10314 * BFD_RELOC_SH_IMMU16: howto manager. (line 852)
10315 * BFD_RELOC_SH_IMMU5: howto manager. (line 843)
10316 * BFD_RELOC_SH_IMMU6: howto manager. (line 846)
10317 * BFD_RELOC_SH_JMP_SLOT: howto manager. (line 810)
10318 * BFD_RELOC_SH_JMP_SLOT64: howto manager. (line 835)
10319 * BFD_RELOC_SH_LABEL: howto manager. (line 805)
10320 * BFD_RELOC_SH_LOOP_END: howto manager. (line 807)
10321 * BFD_RELOC_SH_LOOP_START: howto manager. (line 806)
10322 * BFD_RELOC_SH_PCDISP12BY2: howto manager. (line 781)
10323 * BFD_RELOC_SH_PCDISP8BY2: howto manager. (line 780)
10324 * BFD_RELOC_SH_PCRELIMM8BY2: howto manager. (line 796)
10325 * BFD_RELOC_SH_PCRELIMM8BY4: howto manager. (line 797)
10326 * BFD_RELOC_SH_PLT_HI16: howto manager. (line 824)
10327 * BFD_RELOC_SH_PLT_LOW16: howto manager. (line 821)
10328 * BFD_RELOC_SH_PLT_MEDHI16: howto manager. (line 823)
10329 * BFD_RELOC_SH_PLT_MEDLOW16: howto manager. (line 822)
10330 * BFD_RELOC_SH_PT_16: howto manager. (line 861)
10331 * BFD_RELOC_SH_RELATIVE: howto manager. (line 811)
10332 * BFD_RELOC_SH_RELATIVE64: howto manager. (line 836)
10333 * BFD_RELOC_SH_SHMEDIA_CODE: howto manager. (line 842)
10334 * BFD_RELOC_SH_SWITCH16: howto manager. (line 798)
10335 * BFD_RELOC_SH_SWITCH32: howto manager. (line 799)
10336 * BFD_RELOC_SH_TLS_DTPMOD32: howto manager. (line 867)
10337 * BFD_RELOC_SH_TLS_DTPOFF32: howto manager. (line 868)
10338 * BFD_RELOC_SH_TLS_GD_32: howto manager. (line 862)
10339 * BFD_RELOC_SH_TLS_IE_32: howto manager. (line 865)
10340 * BFD_RELOC_SH_TLS_LD_32: howto manager. (line 863)
10341 * BFD_RELOC_SH_TLS_LDO_32: howto manager. (line 864)
10342 * BFD_RELOC_SH_TLS_LE_32: howto manager. (line 866)
10343 * BFD_RELOC_SH_TLS_TPOFF32: howto manager. (line 869)
10344 * BFD_RELOC_SH_USES: howto manager. (line 800)
10345 * BFD_RELOC_SPARC13: howto manager. (line 119)
10346 * BFD_RELOC_SPARC22: howto manager. (line 118)
10347 * BFD_RELOC_SPARC_10: howto manager. (line 141)
10348 * BFD_RELOC_SPARC_11: howto manager. (line 142)
10349 * BFD_RELOC_SPARC_5: howto manager. (line 154)
10350 * BFD_RELOC_SPARC_6: howto manager. (line 153)
10351 * BFD_RELOC_SPARC_64: howto manager. (line 140)
10352 * BFD_RELOC_SPARC_7: howto manager. (line 152)
10353 * BFD_RELOC_SPARC_BASE13: howto manager. (line 136)
10354 * BFD_RELOC_SPARC_BASE22: howto manager. (line 137)
10355 * BFD_RELOC_SPARC_COPY: howto manager. (line 126)
10356 * BFD_RELOC_SPARC_DISP64: howto manager. (line 155)
10357 * BFD_RELOC_SPARC_GLOB_DAT: howto manager. (line 127)
10358 * BFD_RELOC_SPARC_GOT10: howto manager. (line 120)
10359 * BFD_RELOC_SPARC_GOT13: howto manager. (line 121)
10360 * BFD_RELOC_SPARC_GOT22: howto manager. (line 122)
10361 * BFD_RELOC_SPARC_H44: howto manager. (line 160)
10362 * BFD_RELOC_SPARC_HH22: howto manager. (line 144)
10363 * BFD_RELOC_SPARC_HIX22: howto manager. (line 158)
10364 * BFD_RELOC_SPARC_HM10: howto manager. (line 145)
10365 * BFD_RELOC_SPARC_JMP_SLOT: howto manager. (line 128)
10366 * BFD_RELOC_SPARC_L44: howto manager. (line 162)
10367 * BFD_RELOC_SPARC_LM22: howto manager. (line 146)
10368 * BFD_RELOC_SPARC_LOX10: howto manager. (line 159)
10369 * BFD_RELOC_SPARC_M44: howto manager. (line 161)
10370 * BFD_RELOC_SPARC_OLO10: howto manager. (line 143)
10371 * BFD_RELOC_SPARC_PC10: howto manager. (line 123)
10372 * BFD_RELOC_SPARC_PC22: howto manager. (line 124)
10373 * BFD_RELOC_SPARC_PC_HH22: howto manager. (line 147)
10374 * BFD_RELOC_SPARC_PC_HM10: howto manager. (line 148)
10375 * BFD_RELOC_SPARC_PC_LM22: howto manager. (line 149)
10376 * BFD_RELOC_SPARC_PLT32: howto manager. (line 156)
10377 * BFD_RELOC_SPARC_PLT64: howto manager. (line 157)
10378 * BFD_RELOC_SPARC_REGISTER: howto manager. (line 163)
10379 * BFD_RELOC_SPARC_RELATIVE: howto manager. (line 129)
10380 * BFD_RELOC_SPARC_REV32: howto manager. (line 166)
10381 * BFD_RELOC_SPARC_TLS_DTPMOD32: howto manager. (line 187)
10382 * BFD_RELOC_SPARC_TLS_DTPMOD64: howto manager. (line 188)
10383 * BFD_RELOC_SPARC_TLS_DTPOFF32: howto manager. (line 189)
10384 * BFD_RELOC_SPARC_TLS_DTPOFF64: howto manager. (line 190)
10385 * BFD_RELOC_SPARC_TLS_GD_ADD: howto manager. (line 171)
10386 * BFD_RELOC_SPARC_TLS_GD_CALL: howto manager. (line 172)
10387 * BFD_RELOC_SPARC_TLS_GD_HI22: howto manager. (line 169)
10388 * BFD_RELOC_SPARC_TLS_GD_LO10: howto manager. (line 170)
10389 * BFD_RELOC_SPARC_TLS_IE_ADD: howto manager. (line 184)
10390 * BFD_RELOC_SPARC_TLS_IE_HI22: howto manager. (line 180)
10391 * BFD_RELOC_SPARC_TLS_IE_LD: howto manager. (line 182)
10392 * BFD_RELOC_SPARC_TLS_IE_LDX: howto manager. (line 183)
10393 * BFD_RELOC_SPARC_TLS_IE_LO10: howto manager. (line 181)
10394 * BFD_RELOC_SPARC_TLS_LDM_ADD: howto manager. (line 175)
10395 * BFD_RELOC_SPARC_TLS_LDM_CALL: howto manager. (line 176)
10396 * BFD_RELOC_SPARC_TLS_LDM_HI22: howto manager. (line 173)
10397 * BFD_RELOC_SPARC_TLS_LDM_LO10: howto manager. (line 174)
10398 * BFD_RELOC_SPARC_TLS_LDO_ADD: howto manager. (line 179)
10399 * BFD_RELOC_SPARC_TLS_LDO_HIX22: howto manager. (line 177)
10400 * BFD_RELOC_SPARC_TLS_LDO_LOX10: howto manager. (line 178)
10401 * BFD_RELOC_SPARC_TLS_LE_HIX22: howto manager. (line 185)
10402 * BFD_RELOC_SPARC_TLS_LE_LOX10: howto manager. (line 186)
10403 * BFD_RELOC_SPARC_TLS_TPOFF32: howto manager. (line 191)
10404 * BFD_RELOC_SPARC_TLS_TPOFF64: howto manager. (line 192)
10405 * BFD_RELOC_SPARC_UA16: howto manager. (line 130)
10406 * BFD_RELOC_SPARC_UA32: howto manager. (line 131)
10407 * BFD_RELOC_SPARC_UA64: howto manager. (line 132)
10408 * BFD_RELOC_SPARC_WDISP16: howto manager. (line 150)
10409 * BFD_RELOC_SPARC_WDISP19: howto manager. (line 151)
10410 * BFD_RELOC_SPARC_WDISP22: howto manager. (line 117)
10411 * BFD_RELOC_SPARC_WPLT30: howto manager. (line 125)
10412 * BFD_RELOC_SPU_HI16: howto manager. (line 206)
10413 * BFD_RELOC_SPU_IMM10: howto manager. (line 197)
10414 * BFD_RELOC_SPU_IMM10W: howto manager. (line 198)
10415 * BFD_RELOC_SPU_IMM16: howto manager. (line 199)
10416 * BFD_RELOC_SPU_IMM16W: howto manager. (line 200)
10417 * BFD_RELOC_SPU_IMM18: howto manager. (line 201)
10418 * BFD_RELOC_SPU_IMM7: howto manager. (line 195)
10419 * BFD_RELOC_SPU_IMM8: howto manager. (line 196)
10420 * BFD_RELOC_SPU_LO16: howto manager. (line 205)
10421 * BFD_RELOC_SPU_PCREL16: howto manager. (line 204)
10422 * BFD_RELOC_SPU_PCREL9a: howto manager. (line 202)
10423 * BFD_RELOC_SPU_PCREL9b: howto manager. (line 203)
10424 * BFD_RELOC_SPU_PPU32: howto manager. (line 207)
10425 * BFD_RELOC_SPU_PPU64: howto manager. (line 208)
10426 * BFD_RELOC_THUMB_PCREL_BLX: howto manager. (line 643)
10427 * BFD_RELOC_THUMB_PCREL_BRANCH12: howto manager. (line 657)
10428 * BFD_RELOC_THUMB_PCREL_BRANCH20: howto manager. (line 658)
10429 * BFD_RELOC_THUMB_PCREL_BRANCH23: howto manager. (line 659)
10430 * BFD_RELOC_THUMB_PCREL_BRANCH25: howto manager. (line 660)
10431 * BFD_RELOC_THUMB_PCREL_BRANCH7: howto manager. (line 655)
10432 * BFD_RELOC_THUMB_PCREL_BRANCH9: howto manager. (line 656)
10433 * BFD_RELOC_TIC30_LDP: howto manager. (line 1196)
10434 * BFD_RELOC_TIC54X_16_OF_23: howto manager. (line 1214)
10435 * BFD_RELOC_TIC54X_23: howto manager. (line 1211)
10436 * BFD_RELOC_TIC54X_MS7_OF_23: howto manager. (line 1219)
10437 * BFD_RELOC_TIC54X_PARTLS7: howto manager. (line 1201)
10438 * BFD_RELOC_TIC54X_PARTMS9: howto manager. (line 1206)
10439 * bfd_reloc_type_lookup: howto manager. (line 2068)
10440 * BFD_RELOC_V850_22_PCREL: howto manager. (line 1123)
10441 * BFD_RELOC_V850_9_PCREL: howto manager. (line 1120)
10442 * BFD_RELOC_V850_ALIGN: howto manager. (line 1181)
10443 * BFD_RELOC_V850_CALLT_16_16_OFFSET: howto manager. (line 1172)
10444 * BFD_RELOC_V850_CALLT_6_7_OFFSET: howto manager. (line 1169)
10445 * BFD_RELOC_V850_LO16_SPLIT_OFFSET: howto manager. (line 1184)
10446 * BFD_RELOC_V850_LONGCALL: howto manager. (line 1175)
10447 * BFD_RELOC_V850_LONGJUMP: howto manager. (line 1178)
10448 * BFD_RELOC_V850_SDA_15_16_OFFSET: howto manager. (line 1129)
10449 * BFD_RELOC_V850_SDA_16_16_OFFSET: howto manager. (line 1126)
10450 * BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET: howto manager. (line 1161)
10451 * BFD_RELOC_V850_TDA_16_16_OFFSET: howto manager. (line 1151)
10452 * BFD_RELOC_V850_TDA_4_4_OFFSET: howto manager. (line 1158)
10453 * BFD_RELOC_V850_TDA_4_5_OFFSET: howto manager. (line 1154)
10454 * BFD_RELOC_V850_TDA_6_8_OFFSET: howto manager. (line 1140)
10455 * BFD_RELOC_V850_TDA_7_7_OFFSET: howto manager. (line 1148)
10456 * BFD_RELOC_V850_TDA_7_8_OFFSET: howto manager. (line 1144)
10457 * BFD_RELOC_V850_ZDA_15_16_OFFSET: howto manager. (line 1136)
10458 * BFD_RELOC_V850_ZDA_16_16_OFFSET: howto manager. (line 1133)
10459 * BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET: howto manager. (line 1165)
10460 * BFD_RELOC_VAX_GLOB_DAT: howto manager. (line 1939)
10461 * BFD_RELOC_VAX_JMP_SLOT: howto manager. (line 1940)
10462 * BFD_RELOC_VAX_RELATIVE: howto manager. (line 1941)
10463 * BFD_RELOC_VPE4KMATH_DATA: howto manager. (line 1598)
10464 * BFD_RELOC_VPE4KMATH_INSN: howto manager. (line 1599)
10465 * BFD_RELOC_VTABLE_ENTRY: howto manager. (line 1603)
10466 * BFD_RELOC_VTABLE_INHERIT: howto manager. (line 1602)
10467 * BFD_RELOC_X86_64_32S: howto manager. (line 481)
10468 * BFD_RELOC_X86_64_COPY: howto manager. (line 476)
10469 * BFD_RELOC_X86_64_DTPMOD64: howto manager. (line 482)
10470 * BFD_RELOC_X86_64_DTPOFF32: howto manager. (line 487)
10471 * BFD_RELOC_X86_64_DTPOFF64: howto manager. (line 483)
10472 * BFD_RELOC_X86_64_GLOB_DAT: howto manager. (line 477)
10473 * BFD_RELOC_X86_64_GOT32: howto manager. (line 474)
10474 * BFD_RELOC_X86_64_GOT64: howto manager. (line 492)
10475 * BFD_RELOC_X86_64_GOTOFF64: howto manager. (line 490)
10476 * BFD_RELOC_X86_64_GOTPC32: howto manager. (line 491)
10477 * BFD_RELOC_X86_64_GOTPC32_TLSDESC: howto manager. (line 497)
10478 * BFD_RELOC_X86_64_GOTPC64: howto manager. (line 494)
10479 * BFD_RELOC_X86_64_GOTPCREL: howto manager. (line 480)
10480 * BFD_RELOC_X86_64_GOTPCREL64: howto manager. (line 493)
10481 * BFD_RELOC_X86_64_GOTPLT64: howto manager. (line 495)
10482 * BFD_RELOC_X86_64_GOTTPOFF: howto manager. (line 488)
10483 * BFD_RELOC_X86_64_JUMP_SLOT: howto manager. (line 478)
10484 * BFD_RELOC_X86_64_PLT32: howto manager. (line 475)
10485 * BFD_RELOC_X86_64_PLTOFF64: howto manager. (line 496)
10486 * BFD_RELOC_X86_64_RELATIVE: howto manager. (line 479)
10487 * BFD_RELOC_X86_64_TLSDESC: howto manager. (line 499)
10488 * BFD_RELOC_X86_64_TLSDESC_CALL: howto manager. (line 498)
10489 * BFD_RELOC_X86_64_TLSGD: howto manager. (line 485)
10490 * BFD_RELOC_X86_64_TLSLD: howto manager. (line 486)
10491 * BFD_RELOC_X86_64_TPOFF32: howto manager. (line 489)
10492 * BFD_RELOC_X86_64_TPOFF64: howto manager. (line 484)
10493 * BFD_RELOC_XC16X_PAG: howto manager. (line 1933)
10494 * BFD_RELOC_XC16X_POF: howto manager. (line 1934)
10495 * BFD_RELOC_XC16X_SEG: howto manager. (line 1935)
10496 * BFD_RELOC_XC16X_SOF: howto manager. (line 1936)
10497 * BFD_RELOC_XSTORMY16_12: howto manager. (line 1925)
10498 * BFD_RELOC_XSTORMY16_24: howto manager. (line 1926)
10499 * BFD_RELOC_XSTORMY16_FPTR16: howto manager. (line 1927)
10500 * BFD_RELOC_XSTORMY16_REL_12: howto manager. (line 1924)
10501 * BFD_RELOC_XTENSA_ASM_EXPAND: howto manager. (line 2045)
10502 * BFD_RELOC_XTENSA_ASM_SIMPLIFY: howto manager. (line 2050)
10503 * BFD_RELOC_XTENSA_DIFF16: howto manager. (line 1992)
10504 * BFD_RELOC_XTENSA_DIFF32: howto manager. (line 1993)
10505 * BFD_RELOC_XTENSA_DIFF8: howto manager. (line 1991)
10506 * BFD_RELOC_XTENSA_GLOB_DAT: howto manager. (line 1981)
10507 * BFD_RELOC_XTENSA_JMP_SLOT: howto manager. (line 1982)
10508 * BFD_RELOC_XTENSA_OP0: howto manager. (line 2039)
10509 * BFD_RELOC_XTENSA_OP1: howto manager. (line 2040)
10510 * BFD_RELOC_XTENSA_OP2: howto manager. (line 2041)
10511 * BFD_RELOC_XTENSA_PLT: howto manager. (line 1986)
10512 * BFD_RELOC_XTENSA_RELATIVE: howto manager. (line 1983)
10513 * BFD_RELOC_XTENSA_RTLD: howto manager. (line 1976)
10514 * BFD_RELOC_XTENSA_SLOT0_ALT: howto manager. (line 2021)
10515 * BFD_RELOC_XTENSA_SLOT0_OP: howto manager. (line 2001)
10516 * BFD_RELOC_XTENSA_SLOT10_ALT: howto manager. (line 2031)
10517 * BFD_RELOC_XTENSA_SLOT10_OP: howto manager. (line 2011)
10518 * BFD_RELOC_XTENSA_SLOT11_ALT: howto manager. (line 2032)
10519 * BFD_RELOC_XTENSA_SLOT11_OP: howto manager. (line 2012)
10520 * BFD_RELOC_XTENSA_SLOT12_ALT: howto manager. (line 2033)
10521 * BFD_RELOC_XTENSA_SLOT12_OP: howto manager. (line 2013)
10522 * BFD_RELOC_XTENSA_SLOT13_ALT: howto manager. (line 2034)
10523 * BFD_RELOC_XTENSA_SLOT13_OP: howto manager. (line 2014)
10524 * BFD_RELOC_XTENSA_SLOT14_ALT: howto manager. (line 2035)
10525 * BFD_RELOC_XTENSA_SLOT14_OP: howto manager. (line 2015)
10526 * BFD_RELOC_XTENSA_SLOT1_ALT: howto manager. (line 2022)
10527 * BFD_RELOC_XTENSA_SLOT1_OP: howto manager. (line 2002)
10528 * BFD_RELOC_XTENSA_SLOT2_ALT: howto manager. (line 2023)
10529 * BFD_RELOC_XTENSA_SLOT2_OP: howto manager. (line 2003)
10530 * BFD_RELOC_XTENSA_SLOT3_ALT: howto manager. (line 2024)
10531 * BFD_RELOC_XTENSA_SLOT3_OP: howto manager. (line 2004)
10532 * BFD_RELOC_XTENSA_SLOT4_ALT: howto manager. (line 2025)
10533 * BFD_RELOC_XTENSA_SLOT4_OP: howto manager. (line 2005)
10534 * BFD_RELOC_XTENSA_SLOT5_ALT: howto manager. (line 2026)
10535 * BFD_RELOC_XTENSA_SLOT5_OP: howto manager. (line 2006)
10536 * BFD_RELOC_XTENSA_SLOT6_ALT: howto manager. (line 2027)
10537 * BFD_RELOC_XTENSA_SLOT6_OP: howto manager. (line 2007)
10538 * BFD_RELOC_XTENSA_SLOT7_ALT: howto manager. (line 2028)
10539 * BFD_RELOC_XTENSA_SLOT7_OP: howto manager. (line 2008)
10540 * BFD_RELOC_XTENSA_SLOT8_ALT: howto manager. (line 2029)
10541 * BFD_RELOC_XTENSA_SLOT8_OP: howto manager. (line 2009)
10542 * BFD_RELOC_XTENSA_SLOT9_ALT: howto manager. (line 2030)
10543 * BFD_RELOC_XTENSA_SLOT9_OP: howto manager. (line 2010)
10544 * BFD_RELOC_Z80_DISP8: howto manager. (line 2055)
10545 * BFD_RELOC_Z8K_CALLR: howto manager. (line 2061)
10546 * BFD_RELOC_Z8K_DISP7: howto manager. (line 2058)
10547 * BFD_RELOC_Z8K_IMM4L: howto manager. (line 2064)
10548 * bfd_scan_arch: Architectures. (line 406)
10549 * bfd_scan_vma: BFD front end. (line 426)
10550 * bfd_seach_for_target: bfd_target. (line 464)
10551 * bfd_section_already_linked: Writing the symbol table.
10553 * bfd_section_list_clear: section prototypes. (line 8)
10554 * bfd_sections_find_if: section prototypes. (line 176)
10555 * bfd_set_arch_info: Architectures. (line 447)
10556 * bfd_set_archive_head: Archives. (line 69)
10557 * bfd_set_default_target: bfd_target. (line 429)
10558 * bfd_set_error: BFD front end. (line 236)
10559 * bfd_set_error_handler: BFD front end. (line 278)
10560 * bfd_set_error_program_name: BFD front end. (line 287)
10561 * bfd_set_file_flags: BFD front end. (line 346)
10562 * bfd_set_format: Formats. (line 68)
10563 * bfd_set_gp_size: BFD front end. (line 416)
10564 * bfd_set_private_flags: BFD front end. (line 493)
10565 * bfd_set_reloc: BFD front end. (line 336)
10566 * bfd_set_section_contents: section prototypes. (line 207)
10567 * bfd_set_section_flags: section prototypes. (line 140)
10568 * bfd_set_section_size: section prototypes. (line 193)
10569 * bfd_set_start_address: BFD front end. (line 395)
10570 * bfd_set_symtab: symbol handling functions.
10572 * bfd_symbol_info: symbol handling functions.
10574 * bfd_target_list: bfd_target. (line 455)
10575 * bfd_write_bigendian_4byte_int: Internal. (line 13)
10576 * bfd_zalloc: Opening and Closing.
10578 * bfd_zalloc2: Opening and Closing.
10580 * coff_symbol_type: coff. (line 186)
10581 * core_file_matches_executable_p: Core Files. (line 30)
10582 * find_separate_debug_file: Opening and Closing.
10584 * generic_core_file_matches_executable_p: Core Files. (line 40)
10585 * get_debug_link_info: Opening and Closing.
10587 * Hash tables: Hash Tables. (line 6)
10588 * internal object-file format: Canonical format. (line 11)
10589 * Linker: Linker Functions. (line 6)
10590 * Other functions: BFD front end. (line 508)
10591 * separate_debug_file_exists: Opening and Closing.
10593 * struct bfd_iovec: BFD front end. (line 711)
10594 * target vector (_bfd_final_link): Performing the Final Link.
10596 * target vector (_bfd_link_add_symbols): Adding Symbols to the Hash Table.
10598 * target vector (_bfd_link_hash_table_create): Creating a Linker Hash Table.
10600 * The HOWTO Macro: typedef arelent. (line 291)
10601 * what is it?: Overview. (line 6)
10607 Node: Overview
\x7f1384
10608 Node: History
\x7f2435
10609 Node: How It Works
\x7f3381
10610 Node: What BFD Version 2 Can Do
\x7f4924
10611 Node: BFD information loss
\x7f6239
10612 Node: Canonical format
\x7f8771
10613 Node: BFD front end
\x7f13143
10614 Node: Memory Usage
\x7f40479
10615 Node: Initialization
\x7f41707
10616 Node: Sections
\x7f42166
10617 Node: Section Input
\x7f42649
10618 Node: Section Output
\x7f44014
10619 Node: typedef asection
\x7f46500
10620 Node: section prototypes
\x7f71101
10621 Node: Symbols
\x7f80781
10622 Node: Reading Symbols
\x7f82376
10623 Node: Writing Symbols
\x7f83483
10624 Node: Mini Symbols
\x7f85192
10625 Node: typedef asymbol
\x7f86166
10626 Node: symbol handling functions
\x7f91427
10627 Node: Archives
\x7f96769
10628 Node: Formats
\x7f100495
10629 Node: Relocations
\x7f103443
10630 Node: typedef arelent
\x7f104170
10631 Node: howto manager
\x7f119981
10632 Node: Core Files
\x7f186663
10633 Node: Targets
\x7f188480
10634 Node: bfd_target
\x7f190450
10635 Node: Architectures
\x7f210755
10636 Node: Opening and Closing
\x7f232762
10637 Node: Internal
\x7f244026
10638 Node: File Caching
\x7f250359
10639 Node: Linker Functions
\x7f252273
10640 Node: Creating a Linker Hash Table
\x7f253946
10641 Node: Adding Symbols to the Hash Table
\x7f255684
10642 Node: Differing file formats
\x7f256584
10643 Node: Adding symbols from an object file
\x7f258332
10644 Node: Adding symbols from an archive
\x7f260483
10645 Node: Performing the Final Link
\x7f262897
10646 Node: Information provided by the linker
\x7f264139
10647 Node: Relocating the section contents
\x7f265293
10648 Node: Writing the symbol table
\x7f267044
10649 Node: Hash Tables
\x7f270086
10650 Node: Creating and Freeing a Hash Table
\x7f271284
10651 Node: Looking Up or Entering a String
\x7f272534
10652 Node: Traversing a Hash Table
\x7f273787
10653 Node: Deriving a New Hash Table Type
\x7f274576
10654 Node: Define the Derived Structures
\x7f275642
10655 Node: Write the Derived Creation Routine
\x7f276723
10656 Node: Write Other Derived Routines
\x7f279347
10657 Node: BFD back ends
\x7f280662
10658 Node: What to Put Where
\x7f280932
10659 Node: aout
\x7f281112
10660 Node: coff
\x7f287430
10661 Node: elf
\x7f311907
10662 Node: mmo
\x7f312770
10663 Node: File layout
\x7f313698
10664 Node: Symbol-table
\x7f319345
10665 Node: mmo section mapping
\x7f323114
10666 Node: GNU Free Documentation License
\x7f326766
10667 Node: BFD Index
\x7f346495