PR 5646
[binutils.git] / gold / object.cc
blobe56f6a4c7cc025b9c6c80ab08ae95887d7c2bf2a
1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
40 namespace gold
43 // Class Object.
45 // Set the target based on fields in the ELF file header.
47 void
48 Object::set_target(int machine, int size, bool big_endian, int osabi,
49 int abiversion)
51 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
52 if (target == NULL)
53 gold_fatal(_("%s: unsupported ELF machine number %d"),
54 this->name().c_str(), machine);
55 this->target_ = target;
58 // Report an error for this object file. This is used by the
59 // elfcpp::Elf_file interface, and also called by the Object code
60 // itself.
62 void
63 Object::error(const char* format, ...) const
65 va_list args;
66 va_start(args, format);
67 char* buf = NULL;
68 if (vasprintf(&buf, format, args) < 0)
69 gold_nomem();
70 va_end(args);
71 gold_error(_("%s: %s"), this->name().c_str(), buf);
72 free(buf);
75 // Return a view of the contents of a section.
77 const unsigned char*
78 Object::section_contents(unsigned int shndx, section_size_type* plen,
79 bool cache)
81 Location loc(this->do_section_contents(shndx));
82 *plen = convert_to_section_size_type(loc.data_size);
83 return this->get_view(loc.file_offset, *plen, cache);
86 // Read the section data into SD. This is code common to Sized_relobj
87 // and Sized_dynobj, so we put it into Object.
89 template<int size, bool big_endian>
90 void
91 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
92 Read_symbols_data* sd)
94 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
96 // Read the section headers.
97 const off_t shoff = elf_file->shoff();
98 const unsigned int shnum = this->shnum();
99 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, true);
101 // Read the section names.
102 const unsigned char* pshdrs = sd->section_headers->data();
103 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
104 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
106 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
107 this->error(_("section name section has wrong type: %u"),
108 static_cast<unsigned int>(shdrnames.get_sh_type()));
110 sd->section_names_size =
111 convert_to_section_size_type(shdrnames.get_sh_size());
112 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
113 sd->section_names_size, false);
116 // If NAME is the name of a special .gnu.warning section, arrange for
117 // the warning to be issued. SHNDX is the section index. Return
118 // whether it is a warning section.
120 bool
121 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
122 Symbol_table* symtab)
124 const char warn_prefix[] = ".gnu.warning.";
125 const int warn_prefix_len = sizeof warn_prefix - 1;
126 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
128 // Read the section contents to get the warning text. It would
129 // be nicer if we only did this if we have to actually issue a
130 // warning. Unfortunately, warnings are issued as we relocate
131 // sections. That means that we can not lock the object then,
132 // as we might try to issue the same warning multiple times
133 // simultaneously.
134 section_size_type len;
135 const unsigned char* contents = this->section_contents(shndx, &len,
136 false);
137 std::string warning(reinterpret_cast<const char*>(contents), len);
138 symtab->add_warning(name + warn_prefix_len, this, warning);
139 return true;
141 return false;
144 // Class Sized_relobj.
146 template<int size, bool big_endian>
147 Sized_relobj<size, big_endian>::Sized_relobj(
148 const std::string& name,
149 Input_file* input_file,
150 off_t offset,
151 const elfcpp::Ehdr<size, big_endian>& ehdr)
152 : Relobj(name, input_file, offset),
153 elf_file_(this, ehdr),
154 symtab_shndx_(-1U),
155 local_symbol_count_(0),
156 output_local_symbol_count_(0),
157 output_local_dynsym_count_(0),
158 symbols_(),
159 local_symbol_offset_(0),
160 local_dynsym_offset_(0),
161 local_values_(),
162 local_got_offsets_(),
163 has_eh_frame_(false)
167 template<int size, bool big_endian>
168 Sized_relobj<size, big_endian>::~Sized_relobj()
172 // Set up an object file based on the file header. This sets up the
173 // target and reads the section information.
175 template<int size, bool big_endian>
176 void
177 Sized_relobj<size, big_endian>::setup(
178 const elfcpp::Ehdr<size, big_endian>& ehdr)
180 this->set_target(ehdr.get_e_machine(), size, big_endian,
181 ehdr.get_e_ident()[elfcpp::EI_OSABI],
182 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
184 const unsigned int shnum = this->elf_file_.shnum();
185 this->set_shnum(shnum);
188 // Find the SHT_SYMTAB section, given the section headers. The ELF
189 // standard says that maybe in the future there can be more than one
190 // SHT_SYMTAB section. Until somebody figures out how that could
191 // work, we assume there is only one.
193 template<int size, bool big_endian>
194 void
195 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
197 const unsigned int shnum = this->shnum();
198 this->symtab_shndx_ = 0;
199 if (shnum > 0)
201 // Look through the sections in reverse order, since gas tends
202 // to put the symbol table at the end.
203 const unsigned char* p = pshdrs + shnum * This::shdr_size;
204 unsigned int i = shnum;
205 while (i > 0)
207 --i;
208 p -= This::shdr_size;
209 typename This::Shdr shdr(p);
210 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
212 this->symtab_shndx_ = i;
213 break;
219 // Return whether SHDR has the right type and flags to be a GNU
220 // .eh_frame section.
222 template<int size, bool big_endian>
223 bool
224 Sized_relobj<size, big_endian>::check_eh_frame_flags(
225 const elfcpp::Shdr<size, big_endian>* shdr) const
227 return (shdr->get_sh_size() > 0
228 && shdr->get_sh_type() == elfcpp::SHT_PROGBITS
229 && shdr->get_sh_flags() == elfcpp::SHF_ALLOC);
232 // Return whether there is a GNU .eh_frame section, given the section
233 // headers and the section names.
235 template<int size, bool big_endian>
236 bool
237 Sized_relobj<size, big_endian>::find_eh_frame(
238 const unsigned char* pshdrs,
239 const char* names,
240 section_size_type names_size) const
242 const unsigned int shnum = this->shnum();
243 const unsigned char* p = pshdrs + This::shdr_size;
244 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
246 typename This::Shdr shdr(p);
247 if (this->check_eh_frame_flags(&shdr))
249 if (shdr.get_sh_name() >= names_size)
251 this->error(_("bad section name offset for section %u: %lu"),
252 i, static_cast<unsigned long>(shdr.get_sh_name()));
253 continue;
256 const char* name = names + shdr.get_sh_name();
257 if (strcmp(name, ".eh_frame") == 0)
258 return true;
261 return false;
264 // Read the sections and symbols from an object file.
266 template<int size, bool big_endian>
267 void
268 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
270 this->read_section_data(&this->elf_file_, sd);
272 const unsigned char* const pshdrs = sd->section_headers->data();
274 this->find_symtab(pshdrs);
276 const unsigned char* namesu = sd->section_names->data();
277 const char* names = reinterpret_cast<const char*>(namesu);
278 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
279 this->has_eh_frame_ = true;
281 sd->symbols = NULL;
282 sd->symbols_size = 0;
283 sd->external_symbols_offset = 0;
284 sd->symbol_names = NULL;
285 sd->symbol_names_size = 0;
287 if (this->symtab_shndx_ == 0)
289 // No symbol table. Weird but legal.
290 return;
293 // Get the symbol table section header.
294 typename This::Shdr symtabshdr(pshdrs
295 + this->symtab_shndx_ * This::shdr_size);
296 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
298 // If this object has a .eh_frame section, we need all the symbols.
299 // Otherwise we only need the external symbols. While it would be
300 // simpler to just always read all the symbols, I've seen object
301 // files with well over 2000 local symbols, which for a 64-bit
302 // object file format is over 5 pages that we don't need to read
303 // now.
305 const int sym_size = This::sym_size;
306 const unsigned int loccount = symtabshdr.get_sh_info();
307 this->local_symbol_count_ = loccount;
308 this->local_values_.resize(loccount);
309 section_offset_type locsize = loccount * sym_size;
310 off_t dataoff = symtabshdr.get_sh_offset();
311 section_size_type datasize =
312 convert_to_section_size_type(symtabshdr.get_sh_size());
313 off_t extoff = dataoff + locsize;
314 section_size_type extsize = datasize - locsize;
316 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
317 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
319 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, false);
321 // Read the section header for the symbol names.
322 unsigned int strtab_shndx = symtabshdr.get_sh_link();
323 if (strtab_shndx >= this->shnum())
325 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
326 return;
328 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
329 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
331 this->error(_("symbol table name section has wrong type: %u"),
332 static_cast<unsigned int>(strtabshdr.get_sh_type()));
333 return;
336 // Read the symbol names.
337 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
338 strtabshdr.get_sh_size(), true);
340 sd->symbols = fvsymtab;
341 sd->symbols_size = readsize;
342 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
343 sd->symbol_names = fvstrtab;
344 sd->symbol_names_size =
345 convert_to_section_size_type(strtabshdr.get_sh_size());
348 // Return the section index of symbol SYM. Set *VALUE to its value in
349 // the object file. Note that for a symbol which is not defined in
350 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
351 // it will not return the final value of the symbol in the link.
353 template<int size, bool big_endian>
354 unsigned int
355 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
356 Address* value)
358 section_size_type symbols_size;
359 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
360 &symbols_size,
361 false);
363 const size_t count = symbols_size / This::sym_size;
364 gold_assert(sym < count);
366 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
367 *value = elfsym.get_st_value();
368 // FIXME: Handle SHN_XINDEX.
369 return elfsym.get_st_shndx();
372 // Return whether to include a section group in the link. LAYOUT is
373 // used to keep track of which section groups we have already seen.
374 // INDEX is the index of the section group and SHDR is the section
375 // header. If we do not want to include this group, we set bits in
376 // OMIT for each section which should be discarded.
378 template<int size, bool big_endian>
379 bool
380 Sized_relobj<size, big_endian>::include_section_group(
381 Layout* layout,
382 unsigned int index,
383 const elfcpp::Shdr<size, big_endian>& shdr,
384 std::vector<bool>* omit)
386 // Read the section contents.
387 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
388 shdr.get_sh_size(), false);
389 const elfcpp::Elf_Word* pword =
390 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
392 // The first word contains flags. We only care about COMDAT section
393 // groups. Other section groups are always included in the link
394 // just like ordinary sections.
395 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
396 if ((flags & elfcpp::GRP_COMDAT) == 0)
397 return true;
399 // Look up the group signature, which is the name of a symbol. This
400 // is a lot of effort to go to to read a string. Why didn't they
401 // just use the name of the SHT_GROUP section as the group
402 // signature?
404 // Get the appropriate symbol table header (this will normally be
405 // the single SHT_SYMTAB section, but in principle it need not be).
406 const unsigned int link = shdr.get_sh_link();
407 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
409 // Read the symbol table entry.
410 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
412 this->error(_("section group %u info %u out of range"),
413 index, shdr.get_sh_info());
414 return false;
416 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
417 const unsigned char* psym = this->get_view(symoff, This::sym_size, false);
418 elfcpp::Sym<size, big_endian> sym(psym);
420 // Read the symbol table names.
421 section_size_type symnamelen;
422 const unsigned char* psymnamesu;
423 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen,
424 true);
425 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
427 // Get the section group signature.
428 if (sym.get_st_name() >= symnamelen)
430 this->error(_("symbol %u name offset %u out of range"),
431 shdr.get_sh_info(), sym.get_st_name());
432 return false;
435 const char* signature = psymnames + sym.get_st_name();
437 // It seems that some versions of gas will create a section group
438 // associated with a section symbol, and then fail to give a name to
439 // the section symbol. In such a case, use the name of the section.
440 // FIXME.
441 std::string secname;
442 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
444 secname = this->section_name(sym.get_st_shndx());
445 signature = secname.c_str();
448 // Record this section group, and see whether we've already seen one
449 // with the same signature.
450 if (layout->add_comdat(signature, true))
451 return true;
453 // This is a duplicate. We want to discard the sections in this
454 // group.
455 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
456 for (size_t i = 1; i < count; ++i)
458 elfcpp::Elf_Word secnum =
459 elfcpp::Swap<32, big_endian>::readval(pword + i);
460 if (secnum >= this->shnum())
462 this->error(_("section %u in section group %u out of range"),
463 secnum, index);
464 continue;
466 (*omit)[secnum] = true;
469 return false;
472 // Whether to include a linkonce section in the link. NAME is the
473 // name of the section and SHDR is the section header.
475 // Linkonce sections are a GNU extension implemented in the original
476 // GNU linker before section groups were defined. The semantics are
477 // that we only include one linkonce section with a given name. The
478 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
479 // where T is the type of section and SYMNAME is the name of a symbol.
480 // In an attempt to make linkonce sections interact well with section
481 // groups, we try to identify SYMNAME and use it like a section group
482 // signature. We want to block section groups with that signature,
483 // but not other linkonce sections with that signature. We also use
484 // the full name of the linkonce section as a normal section group
485 // signature.
487 template<int size, bool big_endian>
488 bool
489 Sized_relobj<size, big_endian>::include_linkonce_section(
490 Layout* layout,
491 const char* name,
492 const elfcpp::Shdr<size, big_endian>&)
494 // In general the symbol name we want will be the string following
495 // the last '.'. However, we have to handle the case of
496 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
497 // some versions of gcc. So we use a heuristic: if the name starts
498 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
499 // we look for the last '.'. We can't always simply skip
500 // ".gnu.linkonce.X", because we have to deal with cases like
501 // ".gnu.linkonce.d.rel.ro.local".
502 const char* const linkonce_t = ".gnu.linkonce.t.";
503 const char* symname;
504 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
505 symname = name + strlen(linkonce_t);
506 else
507 symname = strrchr(name, '.') + 1;
508 bool include1 = layout->add_comdat(symname, false);
509 bool include2 = layout->add_comdat(name, true);
510 return include1 && include2;
513 // Lay out the input sections. We walk through the sections and check
514 // whether they should be included in the link. If they should, we
515 // pass them to the Layout object, which will return an output section
516 // and an offset.
518 template<int size, bool big_endian>
519 void
520 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
521 Layout* layout,
522 Read_symbols_data* sd)
524 const unsigned int shnum = this->shnum();
525 if (shnum == 0)
526 return;
528 // Get the section headers.
529 const unsigned char* pshdrs = sd->section_headers->data();
531 // Get the section names.
532 const unsigned char* pnamesu = sd->section_names->data();
533 const char* pnames = reinterpret_cast<const char*>(pnamesu);
535 // For each section, record the index of the reloc section if any.
536 // Use 0 to mean that there is no reloc section, -1U to mean that
537 // there is more than one.
538 std::vector<unsigned int> reloc_shndx(shnum, 0);
539 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
540 // Skip the first, dummy, section.
541 pshdrs += This::shdr_size;
542 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
544 typename This::Shdr shdr(pshdrs);
546 unsigned int sh_type = shdr.get_sh_type();
547 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
549 unsigned int target_shndx = shdr.get_sh_info();
550 if (target_shndx == 0 || target_shndx >= shnum)
552 this->error(_("relocation section %u has bad info %u"),
553 i, target_shndx);
554 continue;
557 if (reloc_shndx[target_shndx] != 0)
558 reloc_shndx[target_shndx] = -1U;
559 else
561 reloc_shndx[target_shndx] = i;
562 reloc_type[target_shndx] = sh_type;
567 std::vector<Map_to_output>& map_sections(this->map_to_output());
568 map_sections.resize(shnum);
570 // Whether we've seen a .note.GNU-stack section.
571 bool seen_gnu_stack = false;
572 // The flags of a .note.GNU-stack section.
573 uint64_t gnu_stack_flags = 0;
575 // Keep track of which sections to omit.
576 std::vector<bool> omit(shnum, false);
578 // Keep track of .eh_frame sections.
579 std::vector<unsigned int> eh_frame_sections;
581 // Skip the first, dummy, section.
582 pshdrs = sd->section_headers->data() + This::shdr_size;
583 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
585 typename This::Shdr shdr(pshdrs);
587 if (shdr.get_sh_name() >= sd->section_names_size)
589 this->error(_("bad section name offset for section %u: %lu"),
590 i, static_cast<unsigned long>(shdr.get_sh_name()));
591 return;
594 const char* name = pnames + shdr.get_sh_name();
596 if (this->handle_gnu_warning_section(name, i, symtab))
598 if (!parameters->output_is_object())
599 omit[i] = true;
602 // The .note.GNU-stack section is special. It gives the
603 // protection flags that this object file requires for the stack
604 // in memory.
605 if (strcmp(name, ".note.GNU-stack") == 0)
607 seen_gnu_stack = true;
608 gnu_stack_flags |= shdr.get_sh_flags();
609 omit[i] = true;
612 bool discard = omit[i];
613 if (!discard)
615 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
617 if (!this->include_section_group(layout, i, shdr, &omit))
618 discard = true;
620 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
621 && Layout::is_linkonce(name))
623 if (!this->include_linkonce_section(layout, name, shdr))
624 discard = true;
628 if (discard)
630 // Do not include this section in the link.
631 map_sections[i].output_section = NULL;
632 continue;
635 // The .eh_frame section is special. It holds exception frame
636 // information that we need to read in order to generate the
637 // exception frame header. We process these after all the other
638 // sections so that the exception frame reader can reliably
639 // determine which sections are being discarded, and discard the
640 // corresponding information.
641 if (!parameters->output_is_object()
642 && strcmp(name, ".eh_frame") == 0
643 && this->check_eh_frame_flags(&shdr))
645 eh_frame_sections.push_back(i);
646 continue;
649 off_t offset;
650 Output_section* os = layout->layout(this, i, name, shdr,
651 reloc_shndx[i], reloc_type[i],
652 &offset);
654 map_sections[i].output_section = os;
655 map_sections[i].offset = offset;
657 // If this section requires special handling, and if there are
658 // relocs that apply to it, then we must do the special handling
659 // before we apply the relocs.
660 if (offset == -1 && reloc_shndx[i] != 0)
661 this->set_relocs_must_follow_section_writes();
664 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
666 // Handle the .eh_frame sections at the end.
667 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
668 p != eh_frame_sections.end();
669 ++p)
671 gold_assert(this->has_eh_frame_);
672 gold_assert(sd->external_symbols_offset != 0);
674 unsigned int i = *p;
675 const unsigned char *pshdr;
676 pshdr = sd->section_headers->data() + i * This::shdr_size;
677 typename This::Shdr shdr(pshdr);
679 off_t offset;
680 Output_section* os = layout->layout_eh_frame(this,
681 sd->symbols->data(),
682 sd->symbols_size,
683 sd->symbol_names->data(),
684 sd->symbol_names_size,
685 i, shdr,
686 reloc_shndx[i],
687 reloc_type[i],
688 &offset);
689 map_sections[i].output_section = os;
690 map_sections[i].offset = offset;
692 // If this section requires special handling, and if there are
693 // relocs that apply to it, then we must do the special handling
694 // before we apply the relocs.
695 if (offset == -1 && reloc_shndx[i] != 0)
696 this->set_relocs_must_follow_section_writes();
699 delete sd->section_headers;
700 sd->section_headers = NULL;
701 delete sd->section_names;
702 sd->section_names = NULL;
705 // Add the symbols to the symbol table.
707 template<int size, bool big_endian>
708 void
709 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
710 Read_symbols_data* sd)
712 if (sd->symbols == NULL)
714 gold_assert(sd->symbol_names == NULL);
715 return;
718 const int sym_size = This::sym_size;
719 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
720 / sym_size);
721 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
723 this->error(_("size of symbols is not multiple of symbol size"));
724 return;
727 this->symbols_.resize(symcount);
729 const char* sym_names =
730 reinterpret_cast<const char*>(sd->symbol_names->data());
731 symtab->add_from_relobj(this,
732 sd->symbols->data() + sd->external_symbols_offset,
733 symcount, sym_names, sd->symbol_names_size,
734 &this->symbols_);
736 delete sd->symbols;
737 sd->symbols = NULL;
738 delete sd->symbol_names;
739 sd->symbol_names = NULL;
742 // First pass over the local symbols. Here we add their names to
743 // *POOL and *DYNPOOL, and we store the symbol value in
744 // THIS->LOCAL_VALUES_. This function is always called from a
745 // singleton thread. This is followed by a call to
746 // finalize_local_symbols.
748 template<int size, bool big_endian>
749 void
750 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
751 Stringpool* dynpool)
753 gold_assert(this->symtab_shndx_ != -1U);
754 if (this->symtab_shndx_ == 0)
756 // This object has no symbols. Weird but legal.
757 return;
760 // Read the symbol table section header.
761 const unsigned int symtab_shndx = this->symtab_shndx_;
762 typename This::Shdr symtabshdr(this,
763 this->elf_file_.section_header(symtab_shndx));
764 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
766 // Read the local symbols.
767 const int sym_size = This::sym_size;
768 const unsigned int loccount = this->local_symbol_count_;
769 gold_assert(loccount == symtabshdr.get_sh_info());
770 off_t locsize = loccount * sym_size;
771 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
772 locsize, true);
774 // Read the symbol names.
775 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
776 section_size_type strtab_size;
777 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
778 &strtab_size,
779 true);
780 const char* pnames = reinterpret_cast<const char*>(pnamesu);
782 // Loop over the local symbols.
784 const std::vector<Map_to_output>& mo(this->map_to_output());
785 unsigned int shnum = this->shnum();
786 unsigned int count = 0;
787 unsigned int dyncount = 0;
788 // Skip the first, dummy, symbol.
789 psyms += sym_size;
790 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
792 elfcpp::Sym<size, big_endian> sym(psyms);
794 Symbol_value<size>& lv(this->local_values_[i]);
796 unsigned int shndx = sym.get_st_shndx();
797 lv.set_input_shndx(shndx);
799 if (sym.get_st_type() == elfcpp::STT_SECTION)
800 lv.set_is_section_symbol();
801 else if (sym.get_st_type() == elfcpp::STT_TLS)
802 lv.set_is_tls_symbol();
804 // Save the input symbol value for use in do_finalize_local_symbols().
805 lv.set_input_value(sym.get_st_value());
807 // Decide whether this symbol should go into the output file.
809 if (shndx < shnum && mo[shndx].output_section == NULL)
811 lv.set_no_output_symtab_entry();
812 continue;
815 if (sym.get_st_type() == elfcpp::STT_SECTION)
817 lv.set_no_output_symtab_entry();
818 continue;
821 if (sym.get_st_name() >= strtab_size)
823 this->error(_("local symbol %u section name out of range: %u >= %u"),
824 i, sym.get_st_name(),
825 static_cast<unsigned int>(strtab_size));
826 lv.set_no_output_symtab_entry();
827 continue;
830 // Add the symbol to the symbol table string pool.
831 const char* name = pnames + sym.get_st_name();
832 pool->add(name, true, NULL);
833 ++count;
835 // If needed, add the symbol to the dynamic symbol table string pool.
836 if (lv.needs_output_dynsym_entry())
838 dynpool->add(name, true, NULL);
839 ++dyncount;
843 this->output_local_symbol_count_ = count;
844 this->output_local_dynsym_count_ = dyncount;
847 // Finalize the local symbols. Here we set the final value in
848 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
849 // This function is always called from a singleton thread. The actual
850 // output of the local symbols will occur in a separate task.
852 template<int size, bool big_endian>
853 unsigned int
854 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
855 off_t off)
857 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
859 const unsigned int loccount = this->local_symbol_count_;
860 this->local_symbol_offset_ = off;
862 const std::vector<Map_to_output>& mo(this->map_to_output());
863 unsigned int shnum = this->shnum();
865 for (unsigned int i = 1; i < loccount; ++i)
867 Symbol_value<size>& lv(this->local_values_[i]);
869 unsigned int shndx = lv.input_shndx();
871 // Set the output symbol value.
873 if (shndx >= elfcpp::SHN_LORESERVE)
875 if (shndx == elfcpp::SHN_ABS)
876 lv.set_output_value(lv.input_value());
877 else
879 // FIXME: Handle SHN_XINDEX.
880 this->error(_("unknown section index %u for local symbol %u"),
881 shndx, i);
882 lv.set_output_value(0);
885 else
887 if (shndx >= shnum)
889 this->error(_("local symbol %u section index %u out of range"),
890 i, shndx);
891 shndx = 0;
894 Output_section* os = mo[shndx].output_section;
896 if (os == NULL)
898 lv.set_output_value(0);
899 continue;
901 else if (mo[shndx].offset == -1)
903 // This is a SHF_MERGE section or one which otherwise
904 // requires special handling. We get the output address
905 // of the start of the merged section. If this is not a
906 // section symbol, we can then determine the final
907 // value. If it is a section symbol, we can not, as in
908 // that case we have to consider the addend to determine
909 // the value to use in a relocation.
910 if (!lv.is_section_symbol())
911 lv.set_output_value(os->output_address(this, shndx,
912 lv.input_value()));
913 else
915 section_offset_type start =
916 os->starting_output_address(this, shndx);
917 Merged_symbol_value<size>* msv =
918 new Merged_symbol_value<size>(lv.input_value(), start);
919 lv.set_merged_symbol_value(msv);
922 else if (lv.is_tls_symbol())
923 lv.set_output_value(os->tls_offset()
924 + mo[shndx].offset
925 + lv.input_value());
926 else
927 lv.set_output_value(os->address()
928 + mo[shndx].offset
929 + lv.input_value());
932 if (lv.needs_output_symtab_entry())
934 lv.set_output_symtab_index(index);
935 ++index;
938 return index;
941 // Set the output dynamic symbol table indexes for the local variables.
943 template<int size, bool big_endian>
944 unsigned int
945 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
947 const unsigned int loccount = this->local_symbol_count_;
948 for (unsigned int i = 1; i < loccount; ++i)
950 Symbol_value<size>& lv(this->local_values_[i]);
951 if (lv.needs_output_dynsym_entry())
953 lv.set_output_dynsym_index(index);
954 ++index;
957 return index;
960 // Set the offset where local dynamic symbol information will be stored.
961 // Returns the count of local symbols contributed to the symbol table by
962 // this object.
964 template<int size, bool big_endian>
965 unsigned int
966 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
968 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
969 this->local_dynsym_offset_ = off;
970 return this->output_local_dynsym_count_;
973 // Return the value of the local symbol symndx.
974 template<int size, bool big_endian>
975 typename elfcpp::Elf_types<size>::Elf_Addr
976 Sized_relobj<size, big_endian>::local_symbol_value(unsigned int symndx) const
978 gold_assert(symndx < this->local_symbol_count_);
979 gold_assert(symndx < this->local_values_.size());
980 const Symbol_value<size>& lv(this->local_values_[symndx]);
981 return lv.value(this, 0);
984 // Write out the local symbols.
986 template<int size, bool big_endian>
987 void
988 Sized_relobj<size, big_endian>::write_local_symbols(
989 Output_file* of,
990 const Stringpool* sympool,
991 const Stringpool* dynpool)
993 if (parameters->strip_all() && this->output_local_dynsym_count_ == 0)
994 return;
996 gold_assert(this->symtab_shndx_ != -1U);
997 if (this->symtab_shndx_ == 0)
999 // This object has no symbols. Weird but legal.
1000 return;
1003 // Read the symbol table section header.
1004 const unsigned int symtab_shndx = this->symtab_shndx_;
1005 typename This::Shdr symtabshdr(this,
1006 this->elf_file_.section_header(symtab_shndx));
1007 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1008 const unsigned int loccount = this->local_symbol_count_;
1009 gold_assert(loccount == symtabshdr.get_sh_info());
1011 // Read the local symbols.
1012 const int sym_size = This::sym_size;
1013 off_t locsize = loccount * sym_size;
1014 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1015 locsize, false);
1017 // Read the symbol names.
1018 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
1019 section_size_type strtab_size;
1020 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1021 &strtab_size,
1022 false);
1023 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1025 // Get views into the output file for the portions of the symbol table
1026 // and the dynamic symbol table that we will be writing.
1027 off_t output_size = this->output_local_symbol_count_ * sym_size;
1028 unsigned char* oview = NULL;
1029 if (output_size > 0)
1030 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1032 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1033 unsigned char* dyn_oview = NULL;
1034 if (dyn_output_size > 0)
1035 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1036 dyn_output_size);
1038 const std::vector<Map_to_output>& mo(this->map_to_output());
1040 gold_assert(this->local_values_.size() == loccount);
1042 unsigned char* ov = oview;
1043 unsigned char* dyn_ov = dyn_oview;
1044 psyms += sym_size;
1045 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1047 elfcpp::Sym<size, big_endian> isym(psyms);
1049 unsigned int st_shndx = isym.get_st_shndx();
1050 if (st_shndx < elfcpp::SHN_LORESERVE)
1052 gold_assert(st_shndx < mo.size());
1053 if (mo[st_shndx].output_section == NULL)
1054 continue;
1055 st_shndx = mo[st_shndx].output_section->out_shndx();
1058 // Write the symbol to the output symbol table.
1059 if (!parameters->strip_all()
1060 && this->local_values_[i].needs_output_symtab_entry())
1062 elfcpp::Sym_write<size, big_endian> osym(ov);
1064 gold_assert(isym.get_st_name() < strtab_size);
1065 const char* name = pnames + isym.get_st_name();
1066 osym.put_st_name(sympool->get_offset(name));
1067 osym.put_st_value(this->local_values_[i].value(this, 0));
1068 osym.put_st_size(isym.get_st_size());
1069 osym.put_st_info(isym.get_st_info());
1070 osym.put_st_other(isym.get_st_other());
1071 osym.put_st_shndx(st_shndx);
1073 ov += sym_size;
1076 // Write the symbol to the output dynamic symbol table.
1077 if (this->local_values_[i].needs_output_dynsym_entry())
1079 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1080 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1082 gold_assert(isym.get_st_name() < strtab_size);
1083 const char* name = pnames + isym.get_st_name();
1084 osym.put_st_name(dynpool->get_offset(name));
1085 osym.put_st_value(this->local_values_[i].value(this, 0));
1086 osym.put_st_size(isym.get_st_size());
1087 osym.put_st_info(isym.get_st_info());
1088 osym.put_st_other(isym.get_st_other());
1089 osym.put_st_shndx(st_shndx);
1091 dyn_ov += sym_size;
1096 if (output_size > 0)
1098 gold_assert(ov - oview == output_size);
1099 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1102 if (dyn_output_size > 0)
1104 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1105 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1106 dyn_oview);
1110 // Set *INFO to symbolic information about the offset OFFSET in the
1111 // section SHNDX. Return true if we found something, false if we
1112 // found nothing.
1114 template<int size, bool big_endian>
1115 bool
1116 Sized_relobj<size, big_endian>::get_symbol_location_info(
1117 unsigned int shndx,
1118 off_t offset,
1119 Symbol_location_info* info)
1121 if (this->symtab_shndx_ == 0)
1122 return false;
1124 section_size_type symbols_size;
1125 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1126 &symbols_size,
1127 false);
1129 unsigned int symbol_names_shndx = this->section_link(this->symtab_shndx_);
1130 section_size_type names_size;
1131 const unsigned char* symbol_names_u =
1132 this->section_contents(symbol_names_shndx, &names_size, false);
1133 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1135 const int sym_size = This::sym_size;
1136 const size_t count = symbols_size / sym_size;
1138 const unsigned char* p = symbols;
1139 for (size_t i = 0; i < count; ++i, p += sym_size)
1141 elfcpp::Sym<size, big_endian> sym(p);
1143 if (sym.get_st_type() == elfcpp::STT_FILE)
1145 if (sym.get_st_name() >= names_size)
1146 info->source_file = "(invalid)";
1147 else
1148 info->source_file = symbol_names + sym.get_st_name();
1150 else if (sym.get_st_shndx() == shndx
1151 && static_cast<off_t>(sym.get_st_value()) <= offset
1152 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1153 > offset))
1155 if (sym.get_st_name() > names_size)
1156 info->enclosing_symbol_name = "(invalid)";
1157 else
1159 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1160 if (parameters->demangle())
1162 char* demangled_name = cplus_demangle(
1163 info->enclosing_symbol_name.c_str(),
1164 DMGL_ANSI | DMGL_PARAMS);
1165 if (demangled_name != NULL)
1167 info->enclosing_symbol_name.assign(demangled_name);
1168 free(demangled_name);
1172 return true;
1176 return false;
1179 // Input_objects methods.
1181 // Add a regular relocatable object to the list. Return false if this
1182 // object should be ignored.
1184 bool
1185 Input_objects::add_object(Object* obj)
1187 Target* target = obj->target();
1188 if (this->target_ == NULL)
1189 this->target_ = target;
1190 else if (this->target_ != target)
1192 gold_error(_("%s: incompatible target"), obj->name().c_str());
1193 return false;
1196 if (!obj->is_dynamic())
1197 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1198 else
1200 // See if this is a duplicate SONAME.
1201 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1202 const char* soname = dynobj->soname();
1204 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1205 this->sonames_.insert(soname);
1206 if (!ins.second)
1208 // We have already seen a dynamic object with this soname.
1209 return false;
1212 this->dynobj_list_.push_back(dynobj);
1214 // If this is -lc, remember the directory in which we found it.
1215 // We use this when issuing warnings about undefined symbols: as
1216 // a heuristic, we don't warn about system libraries found in
1217 // the same directory as -lc.
1218 if (strncmp(soname, "libc.so", 7) == 0)
1220 const char* object_name = dynobj->name().c_str();
1221 const char* base = lbasename(object_name);
1222 if (base != object_name)
1223 this->system_library_directory_.assign(object_name,
1224 base - 1 - object_name);
1228 set_parameters_target(target);
1230 return true;
1233 // Return whether an object was found in the system library directory.
1235 bool
1236 Input_objects::found_in_system_library_directory(const Object* object) const
1238 return (!this->system_library_directory_.empty()
1239 && object->name().compare(0,
1240 this->system_library_directory_.size(),
1241 this->system_library_directory_) == 0);
1244 // For each dynamic object, record whether we've seen all of its
1245 // explicit dependencies.
1247 void
1248 Input_objects::check_dynamic_dependencies() const
1250 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1251 p != this->dynobj_list_.end();
1252 ++p)
1254 const Dynobj::Needed& needed((*p)->needed());
1255 bool found_all = true;
1256 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1257 pneeded != needed.end();
1258 ++pneeded)
1260 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1262 found_all = false;
1263 break;
1266 (*p)->set_has_unknown_needed_entries(!found_all);
1270 // Relocate_info methods.
1272 // Return a string describing the location of a relocation. This is
1273 // only used in error messages.
1275 template<int size, bool big_endian>
1276 std::string
1277 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1279 // See if we can get line-number information from debugging sections.
1280 std::string filename;
1281 std::string file_and_lineno; // Better than filename-only, if available.
1283 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1284 // This will be "" if we failed to parse the debug info for any reason.
1285 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1287 std::string ret(this->object->name());
1288 ret += ':';
1289 Symbol_location_info info;
1290 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1292 ret += " in function ";
1293 ret += info.enclosing_symbol_name;
1294 ret += ":";
1295 filename = info.source_file;
1298 if (!file_and_lineno.empty())
1299 ret += file_and_lineno;
1300 else
1302 if (!filename.empty())
1303 ret += filename;
1304 ret += "(";
1305 ret += this->object->section_name(this->data_shndx);
1306 char buf[100];
1307 // Offsets into sections have to be positive.
1308 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1309 ret += buf;
1310 ret += ")";
1312 return ret;
1315 } // End namespace gold.
1317 namespace
1320 using namespace gold;
1322 // Read an ELF file with the header and return the appropriate
1323 // instance of Object.
1325 template<int size, bool big_endian>
1326 Object*
1327 make_elf_sized_object(const std::string& name, Input_file* input_file,
1328 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1330 int et = ehdr.get_e_type();
1331 if (et == elfcpp::ET_REL)
1333 Sized_relobj<size, big_endian>* obj =
1334 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1335 obj->setup(ehdr);
1336 return obj;
1338 else if (et == elfcpp::ET_DYN)
1340 Sized_dynobj<size, big_endian>* obj =
1341 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1342 obj->setup(ehdr);
1343 return obj;
1345 else
1347 gold_error(_("%s: unsupported ELF file type %d"),
1348 name.c_str(), et);
1349 return NULL;
1353 } // End anonymous namespace.
1355 namespace gold
1358 // Read an ELF file and return the appropriate instance of Object.
1360 Object*
1361 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1362 const unsigned char* p, section_offset_type bytes)
1364 if (bytes < elfcpp::EI_NIDENT)
1366 gold_error(_("%s: ELF file too short"), name.c_str());
1367 return NULL;
1370 int v = p[elfcpp::EI_VERSION];
1371 if (v != elfcpp::EV_CURRENT)
1373 if (v == elfcpp::EV_NONE)
1374 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1375 else
1376 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1377 return NULL;
1380 int c = p[elfcpp::EI_CLASS];
1381 if (c == elfcpp::ELFCLASSNONE)
1383 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1384 return NULL;
1386 else if (c != elfcpp::ELFCLASS32
1387 && c != elfcpp::ELFCLASS64)
1389 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1390 return NULL;
1393 int d = p[elfcpp::EI_DATA];
1394 if (d == elfcpp::ELFDATANONE)
1396 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1397 return NULL;
1399 else if (d != elfcpp::ELFDATA2LSB
1400 && d != elfcpp::ELFDATA2MSB)
1402 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1403 return NULL;
1406 bool big_endian = d == elfcpp::ELFDATA2MSB;
1408 if (c == elfcpp::ELFCLASS32)
1410 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1412 gold_error(_("%s: ELF file too short"), name.c_str());
1413 return NULL;
1415 if (big_endian)
1417 #ifdef HAVE_TARGET_32_BIG
1418 elfcpp::Ehdr<32, true> ehdr(p);
1419 return make_elf_sized_object<32, true>(name, input_file,
1420 offset, ehdr);
1421 #else
1422 gold_error(_("%s: not configured to support "
1423 "32-bit big-endian object"),
1424 name.c_str());
1425 return NULL;
1426 #endif
1428 else
1430 #ifdef HAVE_TARGET_32_LITTLE
1431 elfcpp::Ehdr<32, false> ehdr(p);
1432 return make_elf_sized_object<32, false>(name, input_file,
1433 offset, ehdr);
1434 #else
1435 gold_error(_("%s: not configured to support "
1436 "32-bit little-endian object"),
1437 name.c_str());
1438 return NULL;
1439 #endif
1442 else
1444 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1446 gold_error(_("%s: ELF file too short"), name.c_str());
1447 return NULL;
1449 if (big_endian)
1451 #ifdef HAVE_TARGET_64_BIG
1452 elfcpp::Ehdr<64, true> ehdr(p);
1453 return make_elf_sized_object<64, true>(name, input_file,
1454 offset, ehdr);
1455 #else
1456 gold_error(_("%s: not configured to support "
1457 "64-bit big-endian object"),
1458 name.c_str());
1459 return NULL;
1460 #endif
1462 else
1464 #ifdef HAVE_TARGET_64_LITTLE
1465 elfcpp::Ehdr<64, false> ehdr(p);
1466 return make_elf_sized_object<64, false>(name, input_file,
1467 offset, ehdr);
1468 #else
1469 gold_error(_("%s: not configured to support "
1470 "64-bit little-endian object"),
1471 name.c_str());
1472 return NULL;
1473 #endif
1478 // Instantiate the templates we need. We could use the configure
1479 // script to restrict this to only the ones for implemented targets.
1481 #ifdef HAVE_TARGET_32_LITTLE
1482 template
1483 class Sized_relobj<32, false>;
1484 #endif
1486 #ifdef HAVE_TARGET_32_BIG
1487 template
1488 class Sized_relobj<32, true>;
1489 #endif
1491 #ifdef HAVE_TARGET_64_LITTLE
1492 template
1493 class Sized_relobj<64, false>;
1494 #endif
1496 #ifdef HAVE_TARGET_64_BIG
1497 template
1498 class Sized_relobj<64, true>;
1499 #endif
1501 #ifdef HAVE_TARGET_32_LITTLE
1502 template
1503 struct Relocate_info<32, false>;
1504 #endif
1506 #ifdef HAVE_TARGET_32_BIG
1507 template
1508 struct Relocate_info<32, true>;
1509 #endif
1511 #ifdef HAVE_TARGET_64_LITTLE
1512 template
1513 struct Relocate_info<64, false>;
1514 #endif
1516 #ifdef HAVE_TARGET_64_BIG
1517 template
1518 struct Relocate_info<64, true>;
1519 #endif
1521 } // End namespace gold.