1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
31 #include "target-select.h"
32 #include "dwarf_reader.h"
45 // Set the target based on fields in the ELF file header.
48 Object::set_target(int machine
, int size
, bool big_endian
, int osabi
,
51 Target
* target
= select_target(machine
, size
, big_endian
, osabi
, abiversion
);
53 gold_fatal(_("%s: unsupported ELF machine number %d"),
54 this->name().c_str(), machine
);
55 this->target_
= target
;
58 // Report an error for this object file. This is used by the
59 // elfcpp::Elf_file interface, and also called by the Object code
63 Object::error(const char* format
, ...) const
66 va_start(args
, format
);
68 if (vasprintf(&buf
, format
, args
) < 0)
71 gold_error(_("%s: %s"), this->name().c_str(), buf
);
75 // Return a view of the contents of a section.
78 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
81 Location
loc(this->do_section_contents(shndx
));
82 *plen
= convert_to_section_size_type(loc
.data_size
);
83 return this->get_view(loc
.file_offset
, *plen
, cache
);
86 // Read the section data into SD. This is code common to Sized_relobj
87 // and Sized_dynobj, so we put it into Object.
89 template<int size
, bool big_endian
>
91 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
92 Read_symbols_data
* sd
)
94 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
96 // Read the section headers.
97 const off_t shoff
= elf_file
->shoff();
98 const unsigned int shnum
= this->shnum();
99 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
, true);
101 // Read the section names.
102 const unsigned char* pshdrs
= sd
->section_headers
->data();
103 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
104 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
106 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
107 this->error(_("section name section has wrong type: %u"),
108 static_cast<unsigned int>(shdrnames
.get_sh_type()));
110 sd
->section_names_size
=
111 convert_to_section_size_type(shdrnames
.get_sh_size());
112 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
113 sd
->section_names_size
, false);
116 // If NAME is the name of a special .gnu.warning section, arrange for
117 // the warning to be issued. SHNDX is the section index. Return
118 // whether it is a warning section.
121 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
122 Symbol_table
* symtab
)
124 const char warn_prefix
[] = ".gnu.warning.";
125 const int warn_prefix_len
= sizeof warn_prefix
- 1;
126 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
128 // Read the section contents to get the warning text. It would
129 // be nicer if we only did this if we have to actually issue a
130 // warning. Unfortunately, warnings are issued as we relocate
131 // sections. That means that we can not lock the object then,
132 // as we might try to issue the same warning multiple times
134 section_size_type len
;
135 const unsigned char* contents
= this->section_contents(shndx
, &len
,
137 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
138 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
144 // Class Sized_relobj.
146 template<int size
, bool big_endian
>
147 Sized_relobj
<size
, big_endian
>::Sized_relobj(
148 const std::string
& name
,
149 Input_file
* input_file
,
151 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
152 : Relobj(name
, input_file
, offset
),
153 elf_file_(this, ehdr
),
155 local_symbol_count_(0),
156 output_local_symbol_count_(0),
157 output_local_dynsym_count_(0),
159 local_symbol_offset_(0),
160 local_dynsym_offset_(0),
162 local_got_offsets_(),
167 template<int size
, bool big_endian
>
168 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
172 // Set up an object file based on the file header. This sets up the
173 // target and reads the section information.
175 template<int size
, bool big_endian
>
177 Sized_relobj
<size
, big_endian
>::setup(
178 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
180 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
181 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
182 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
184 const unsigned int shnum
= this->elf_file_
.shnum();
185 this->set_shnum(shnum
);
188 // Find the SHT_SYMTAB section, given the section headers. The ELF
189 // standard says that maybe in the future there can be more than one
190 // SHT_SYMTAB section. Until somebody figures out how that could
191 // work, we assume there is only one.
193 template<int size
, bool big_endian
>
195 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
197 const unsigned int shnum
= this->shnum();
198 this->symtab_shndx_
= 0;
201 // Look through the sections in reverse order, since gas tends
202 // to put the symbol table at the end.
203 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
204 unsigned int i
= shnum
;
208 p
-= This::shdr_size
;
209 typename
This::Shdr
shdr(p
);
210 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
212 this->symtab_shndx_
= i
;
219 // Return whether SHDR has the right type and flags to be a GNU
220 // .eh_frame section.
222 template<int size
, bool big_endian
>
224 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
225 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
227 return (shdr
->get_sh_size() > 0
228 && shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
229 && shdr
->get_sh_flags() == elfcpp::SHF_ALLOC
);
232 // Return whether there is a GNU .eh_frame section, given the section
233 // headers and the section names.
235 template<int size
, bool big_endian
>
237 Sized_relobj
<size
, big_endian
>::find_eh_frame(
238 const unsigned char* pshdrs
,
240 section_size_type names_size
) const
242 const unsigned int shnum
= this->shnum();
243 const unsigned char* p
= pshdrs
+ This::shdr_size
;
244 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
246 typename
This::Shdr
shdr(p
);
247 if (this->check_eh_frame_flags(&shdr
))
249 if (shdr
.get_sh_name() >= names_size
)
251 this->error(_("bad section name offset for section %u: %lu"),
252 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
256 const char* name
= names
+ shdr
.get_sh_name();
257 if (strcmp(name
, ".eh_frame") == 0)
264 // Read the sections and symbols from an object file.
266 template<int size
, bool big_endian
>
268 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
270 this->read_section_data(&this->elf_file_
, sd
);
272 const unsigned char* const pshdrs
= sd
->section_headers
->data();
274 this->find_symtab(pshdrs
);
276 const unsigned char* namesu
= sd
->section_names
->data();
277 const char* names
= reinterpret_cast<const char*>(namesu
);
278 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
279 this->has_eh_frame_
= true;
282 sd
->symbols_size
= 0;
283 sd
->external_symbols_offset
= 0;
284 sd
->symbol_names
= NULL
;
285 sd
->symbol_names_size
= 0;
287 if (this->symtab_shndx_
== 0)
289 // No symbol table. Weird but legal.
293 // Get the symbol table section header.
294 typename
This::Shdr
symtabshdr(pshdrs
295 + this->symtab_shndx_
* This::shdr_size
);
296 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
298 // If this object has a .eh_frame section, we need all the symbols.
299 // Otherwise we only need the external symbols. While it would be
300 // simpler to just always read all the symbols, I've seen object
301 // files with well over 2000 local symbols, which for a 64-bit
302 // object file format is over 5 pages that we don't need to read
305 const int sym_size
= This::sym_size
;
306 const unsigned int loccount
= symtabshdr
.get_sh_info();
307 this->local_symbol_count_
= loccount
;
308 this->local_values_
.resize(loccount
);
309 section_offset_type locsize
= loccount
* sym_size
;
310 off_t dataoff
= symtabshdr
.get_sh_offset();
311 section_size_type datasize
=
312 convert_to_section_size_type(symtabshdr
.get_sh_size());
313 off_t extoff
= dataoff
+ locsize
;
314 section_size_type extsize
= datasize
- locsize
;
316 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
317 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
319 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, false);
321 // Read the section header for the symbol names.
322 unsigned int strtab_shndx
= symtabshdr
.get_sh_link();
323 if (strtab_shndx
>= this->shnum())
325 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
328 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
329 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
331 this->error(_("symbol table name section has wrong type: %u"),
332 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
336 // Read the symbol names.
337 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
338 strtabshdr
.get_sh_size(), true);
340 sd
->symbols
= fvsymtab
;
341 sd
->symbols_size
= readsize
;
342 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
343 sd
->symbol_names
= fvstrtab
;
344 sd
->symbol_names_size
=
345 convert_to_section_size_type(strtabshdr
.get_sh_size());
348 // Return the section index of symbol SYM. Set *VALUE to its value in
349 // the object file. Note that for a symbol which is not defined in
350 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
351 // it will not return the final value of the symbol in the link.
353 template<int size
, bool big_endian
>
355 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
358 section_size_type symbols_size
;
359 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
363 const size_t count
= symbols_size
/ This::sym_size
;
364 gold_assert(sym
< count
);
366 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
367 *value
= elfsym
.get_st_value();
368 // FIXME: Handle SHN_XINDEX.
369 return elfsym
.get_st_shndx();
372 // Return whether to include a section group in the link. LAYOUT is
373 // used to keep track of which section groups we have already seen.
374 // INDEX is the index of the section group and SHDR is the section
375 // header. If we do not want to include this group, we set bits in
376 // OMIT for each section which should be discarded.
378 template<int size
, bool big_endian
>
380 Sized_relobj
<size
, big_endian
>::include_section_group(
383 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
384 std::vector
<bool>* omit
)
386 // Read the section contents.
387 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
388 shdr
.get_sh_size(), false);
389 const elfcpp::Elf_Word
* pword
=
390 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
392 // The first word contains flags. We only care about COMDAT section
393 // groups. Other section groups are always included in the link
394 // just like ordinary sections.
395 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
396 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
399 // Look up the group signature, which is the name of a symbol. This
400 // is a lot of effort to go to to read a string. Why didn't they
401 // just use the name of the SHT_GROUP section as the group
404 // Get the appropriate symbol table header (this will normally be
405 // the single SHT_SYMTAB section, but in principle it need not be).
406 const unsigned int link
= shdr
.get_sh_link();
407 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
409 // Read the symbol table entry.
410 if (shdr
.get_sh_info() >= symshdr
.get_sh_size() / This::sym_size
)
412 this->error(_("section group %u info %u out of range"),
413 index
, shdr
.get_sh_info());
416 off_t symoff
= symshdr
.get_sh_offset() + shdr
.get_sh_info() * This::sym_size
;
417 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, false);
418 elfcpp::Sym
<size
, big_endian
> sym(psym
);
420 // Read the symbol table names.
421 section_size_type symnamelen
;
422 const unsigned char* psymnamesu
;
423 psymnamesu
= this->section_contents(symshdr
.get_sh_link(), &symnamelen
,
425 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
427 // Get the section group signature.
428 if (sym
.get_st_name() >= symnamelen
)
430 this->error(_("symbol %u name offset %u out of range"),
431 shdr
.get_sh_info(), sym
.get_st_name());
435 const char* signature
= psymnames
+ sym
.get_st_name();
437 // It seems that some versions of gas will create a section group
438 // associated with a section symbol, and then fail to give a name to
439 // the section symbol. In such a case, use the name of the section.
442 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
444 secname
= this->section_name(sym
.get_st_shndx());
445 signature
= secname
.c_str();
448 // Record this section group, and see whether we've already seen one
449 // with the same signature.
450 if (layout
->add_comdat(signature
, true))
453 // This is a duplicate. We want to discard the sections in this
455 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
456 for (size_t i
= 1; i
< count
; ++i
)
458 elfcpp::Elf_Word secnum
=
459 elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
);
460 if (secnum
>= this->shnum())
462 this->error(_("section %u in section group %u out of range"),
466 (*omit
)[secnum
] = true;
472 // Whether to include a linkonce section in the link. NAME is the
473 // name of the section and SHDR is the section header.
475 // Linkonce sections are a GNU extension implemented in the original
476 // GNU linker before section groups were defined. The semantics are
477 // that we only include one linkonce section with a given name. The
478 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
479 // where T is the type of section and SYMNAME is the name of a symbol.
480 // In an attempt to make linkonce sections interact well with section
481 // groups, we try to identify SYMNAME and use it like a section group
482 // signature. We want to block section groups with that signature,
483 // but not other linkonce sections with that signature. We also use
484 // the full name of the linkonce section as a normal section group
487 template<int size
, bool big_endian
>
489 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
492 const elfcpp::Shdr
<size
, big_endian
>&)
494 // In general the symbol name we want will be the string following
495 // the last '.'. However, we have to handle the case of
496 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
497 // some versions of gcc. So we use a heuristic: if the name starts
498 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
499 // we look for the last '.'. We can't always simply skip
500 // ".gnu.linkonce.X", because we have to deal with cases like
501 // ".gnu.linkonce.d.rel.ro.local".
502 const char* const linkonce_t
= ".gnu.linkonce.t.";
504 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
505 symname
= name
+ strlen(linkonce_t
);
507 symname
= strrchr(name
, '.') + 1;
508 bool include1
= layout
->add_comdat(symname
, false);
509 bool include2
= layout
->add_comdat(name
, true);
510 return include1
&& include2
;
513 // Lay out the input sections. We walk through the sections and check
514 // whether they should be included in the link. If they should, we
515 // pass them to the Layout object, which will return an output section
518 template<int size
, bool big_endian
>
520 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
522 Read_symbols_data
* sd
)
524 const unsigned int shnum
= this->shnum();
528 // Get the section headers.
529 const unsigned char* pshdrs
= sd
->section_headers
->data();
531 // Get the section names.
532 const unsigned char* pnamesu
= sd
->section_names
->data();
533 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
535 // For each section, record the index of the reloc section if any.
536 // Use 0 to mean that there is no reloc section, -1U to mean that
537 // there is more than one.
538 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
539 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
540 // Skip the first, dummy, section.
541 pshdrs
+= This::shdr_size
;
542 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
544 typename
This::Shdr
shdr(pshdrs
);
546 unsigned int sh_type
= shdr
.get_sh_type();
547 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
549 unsigned int target_shndx
= shdr
.get_sh_info();
550 if (target_shndx
== 0 || target_shndx
>= shnum
)
552 this->error(_("relocation section %u has bad info %u"),
557 if (reloc_shndx
[target_shndx
] != 0)
558 reloc_shndx
[target_shndx
] = -1U;
561 reloc_shndx
[target_shndx
] = i
;
562 reloc_type
[target_shndx
] = sh_type
;
567 std::vector
<Map_to_output
>& map_sections(this->map_to_output());
568 map_sections
.resize(shnum
);
570 // Whether we've seen a .note.GNU-stack section.
571 bool seen_gnu_stack
= false;
572 // The flags of a .note.GNU-stack section.
573 uint64_t gnu_stack_flags
= 0;
575 // Keep track of which sections to omit.
576 std::vector
<bool> omit(shnum
, false);
578 // Keep track of .eh_frame sections.
579 std::vector
<unsigned int> eh_frame_sections
;
581 // Skip the first, dummy, section.
582 pshdrs
= sd
->section_headers
->data() + This::shdr_size
;
583 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
585 typename
This::Shdr
shdr(pshdrs
);
587 if (shdr
.get_sh_name() >= sd
->section_names_size
)
589 this->error(_("bad section name offset for section %u: %lu"),
590 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
594 const char* name
= pnames
+ shdr
.get_sh_name();
596 if (this->handle_gnu_warning_section(name
, i
, symtab
))
598 if (!parameters
->output_is_object())
602 // The .note.GNU-stack section is special. It gives the
603 // protection flags that this object file requires for the stack
605 if (strcmp(name
, ".note.GNU-stack") == 0)
607 seen_gnu_stack
= true;
608 gnu_stack_flags
|= shdr
.get_sh_flags();
612 bool discard
= omit
[i
];
615 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
617 if (!this->include_section_group(layout
, i
, shdr
, &omit
))
620 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
621 && Layout::is_linkonce(name
))
623 if (!this->include_linkonce_section(layout
, name
, shdr
))
630 // Do not include this section in the link.
631 map_sections
[i
].output_section
= NULL
;
635 // The .eh_frame section is special. It holds exception frame
636 // information that we need to read in order to generate the
637 // exception frame header. We process these after all the other
638 // sections so that the exception frame reader can reliably
639 // determine which sections are being discarded, and discard the
640 // corresponding information.
641 if (!parameters
->output_is_object()
642 && strcmp(name
, ".eh_frame") == 0
643 && this->check_eh_frame_flags(&shdr
))
645 eh_frame_sections
.push_back(i
);
650 Output_section
* os
= layout
->layout(this, i
, name
, shdr
,
651 reloc_shndx
[i
], reloc_type
[i
],
654 map_sections
[i
].output_section
= os
;
655 map_sections
[i
].offset
= offset
;
657 // If this section requires special handling, and if there are
658 // relocs that apply to it, then we must do the special handling
659 // before we apply the relocs.
660 if (offset
== -1 && reloc_shndx
[i
] != 0)
661 this->set_relocs_must_follow_section_writes();
664 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
666 // Handle the .eh_frame sections at the end.
667 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
668 p
!= eh_frame_sections
.end();
671 gold_assert(this->has_eh_frame_
);
672 gold_assert(sd
->external_symbols_offset
!= 0);
675 const unsigned char *pshdr
;
676 pshdr
= sd
->section_headers
->data() + i
* This::shdr_size
;
677 typename
This::Shdr
shdr(pshdr
);
680 Output_section
* os
= layout
->layout_eh_frame(this,
683 sd
->symbol_names
->data(),
684 sd
->symbol_names_size
,
689 map_sections
[i
].output_section
= os
;
690 map_sections
[i
].offset
= offset
;
692 // If this section requires special handling, and if there are
693 // relocs that apply to it, then we must do the special handling
694 // before we apply the relocs.
695 if (offset
== -1 && reloc_shndx
[i
] != 0)
696 this->set_relocs_must_follow_section_writes();
699 delete sd
->section_headers
;
700 sd
->section_headers
= NULL
;
701 delete sd
->section_names
;
702 sd
->section_names
= NULL
;
705 // Add the symbols to the symbol table.
707 template<int size
, bool big_endian
>
709 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
710 Read_symbols_data
* sd
)
712 if (sd
->symbols
== NULL
)
714 gold_assert(sd
->symbol_names
== NULL
);
718 const int sym_size
= This::sym_size
;
719 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
721 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
723 this->error(_("size of symbols is not multiple of symbol size"));
727 this->symbols_
.resize(symcount
);
729 const char* sym_names
=
730 reinterpret_cast<const char*>(sd
->symbol_names
->data());
731 symtab
->add_from_relobj(this,
732 sd
->symbols
->data() + sd
->external_symbols_offset
,
733 symcount
, sym_names
, sd
->symbol_names_size
,
738 delete sd
->symbol_names
;
739 sd
->symbol_names
= NULL
;
742 // First pass over the local symbols. Here we add their names to
743 // *POOL and *DYNPOOL, and we store the symbol value in
744 // THIS->LOCAL_VALUES_. This function is always called from a
745 // singleton thread. This is followed by a call to
746 // finalize_local_symbols.
748 template<int size
, bool big_endian
>
750 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
753 gold_assert(this->symtab_shndx_
!= -1U);
754 if (this->symtab_shndx_
== 0)
756 // This object has no symbols. Weird but legal.
760 // Read the symbol table section header.
761 const unsigned int symtab_shndx
= this->symtab_shndx_
;
762 typename
This::Shdr
symtabshdr(this,
763 this->elf_file_
.section_header(symtab_shndx
));
764 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
766 // Read the local symbols.
767 const int sym_size
= This::sym_size
;
768 const unsigned int loccount
= this->local_symbol_count_
;
769 gold_assert(loccount
== symtabshdr
.get_sh_info());
770 off_t locsize
= loccount
* sym_size
;
771 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
774 // Read the symbol names.
775 const unsigned int strtab_shndx
= symtabshdr
.get_sh_link();
776 section_size_type strtab_size
;
777 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
780 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
782 // Loop over the local symbols.
784 const std::vector
<Map_to_output
>& mo(this->map_to_output());
785 unsigned int shnum
= this->shnum();
786 unsigned int count
= 0;
787 unsigned int dyncount
= 0;
788 // Skip the first, dummy, symbol.
790 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
792 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
794 Symbol_value
<size
>& lv(this->local_values_
[i
]);
796 unsigned int shndx
= sym
.get_st_shndx();
797 lv
.set_input_shndx(shndx
);
799 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
800 lv
.set_is_section_symbol();
801 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
802 lv
.set_is_tls_symbol();
804 // Save the input symbol value for use in do_finalize_local_symbols().
805 lv
.set_input_value(sym
.get_st_value());
807 // Decide whether this symbol should go into the output file.
809 if (shndx
< shnum
&& mo
[shndx
].output_section
== NULL
)
811 lv
.set_no_output_symtab_entry();
815 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
817 lv
.set_no_output_symtab_entry();
821 if (sym
.get_st_name() >= strtab_size
)
823 this->error(_("local symbol %u section name out of range: %u >= %u"),
824 i
, sym
.get_st_name(),
825 static_cast<unsigned int>(strtab_size
));
826 lv
.set_no_output_symtab_entry();
830 // Add the symbol to the symbol table string pool.
831 const char* name
= pnames
+ sym
.get_st_name();
832 pool
->add(name
, true, NULL
);
835 // If needed, add the symbol to the dynamic symbol table string pool.
836 if (lv
.needs_output_dynsym_entry())
838 dynpool
->add(name
, true, NULL
);
843 this->output_local_symbol_count_
= count
;
844 this->output_local_dynsym_count_
= dyncount
;
847 // Finalize the local symbols. Here we set the final value in
848 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
849 // This function is always called from a singleton thread. The actual
850 // output of the local symbols will occur in a separate task.
852 template<int size
, bool big_endian
>
854 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
857 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
859 const unsigned int loccount
= this->local_symbol_count_
;
860 this->local_symbol_offset_
= off
;
862 const std::vector
<Map_to_output
>& mo(this->map_to_output());
863 unsigned int shnum
= this->shnum();
865 for (unsigned int i
= 1; i
< loccount
; ++i
)
867 Symbol_value
<size
>& lv(this->local_values_
[i
]);
869 unsigned int shndx
= lv
.input_shndx();
871 // Set the output symbol value.
873 if (shndx
>= elfcpp::SHN_LORESERVE
)
875 if (shndx
== elfcpp::SHN_ABS
)
876 lv
.set_output_value(lv
.input_value());
879 // FIXME: Handle SHN_XINDEX.
880 this->error(_("unknown section index %u for local symbol %u"),
882 lv
.set_output_value(0);
889 this->error(_("local symbol %u section index %u out of range"),
894 Output_section
* os
= mo
[shndx
].output_section
;
898 lv
.set_output_value(0);
901 else if (mo
[shndx
].offset
== -1)
903 // This is a SHF_MERGE section or one which otherwise
904 // requires special handling. We get the output address
905 // of the start of the merged section. If this is not a
906 // section symbol, we can then determine the final
907 // value. If it is a section symbol, we can not, as in
908 // that case we have to consider the addend to determine
909 // the value to use in a relocation.
910 if (!lv
.is_section_symbol())
911 lv
.set_output_value(os
->output_address(this, shndx
,
915 section_offset_type start
=
916 os
->starting_output_address(this, shndx
);
917 Merged_symbol_value
<size
>* msv
=
918 new Merged_symbol_value
<size
>(lv
.input_value(), start
);
919 lv
.set_merged_symbol_value(msv
);
922 else if (lv
.is_tls_symbol())
923 lv
.set_output_value(os
->tls_offset()
927 lv
.set_output_value(os
->address()
932 if (lv
.needs_output_symtab_entry())
934 lv
.set_output_symtab_index(index
);
941 // Set the output dynamic symbol table indexes for the local variables.
943 template<int size
, bool big_endian
>
945 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
947 const unsigned int loccount
= this->local_symbol_count_
;
948 for (unsigned int i
= 1; i
< loccount
; ++i
)
950 Symbol_value
<size
>& lv(this->local_values_
[i
]);
951 if (lv
.needs_output_dynsym_entry())
953 lv
.set_output_dynsym_index(index
);
960 // Set the offset where local dynamic symbol information will be stored.
961 // Returns the count of local symbols contributed to the symbol table by
964 template<int size
, bool big_endian
>
966 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
968 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
969 this->local_dynsym_offset_
= off
;
970 return this->output_local_dynsym_count_
;
973 // Return the value of the local symbol symndx.
974 template<int size
, bool big_endian
>
975 typename
elfcpp::Elf_types
<size
>::Elf_Addr
976 Sized_relobj
<size
, big_endian
>::local_symbol_value(unsigned int symndx
) const
978 gold_assert(symndx
< this->local_symbol_count_
);
979 gold_assert(symndx
< this->local_values_
.size());
980 const Symbol_value
<size
>& lv(this->local_values_
[symndx
]);
981 return lv
.value(this, 0);
984 // Write out the local symbols.
986 template<int size
, bool big_endian
>
988 Sized_relobj
<size
, big_endian
>::write_local_symbols(
990 const Stringpool
* sympool
,
991 const Stringpool
* dynpool
)
993 if (parameters
->strip_all() && this->output_local_dynsym_count_
== 0)
996 gold_assert(this->symtab_shndx_
!= -1U);
997 if (this->symtab_shndx_
== 0)
999 // This object has no symbols. Weird but legal.
1003 // Read the symbol table section header.
1004 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1005 typename
This::Shdr
symtabshdr(this,
1006 this->elf_file_
.section_header(symtab_shndx
));
1007 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1008 const unsigned int loccount
= this->local_symbol_count_
;
1009 gold_assert(loccount
== symtabshdr
.get_sh_info());
1011 // Read the local symbols.
1012 const int sym_size
= This::sym_size
;
1013 off_t locsize
= loccount
* sym_size
;
1014 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1017 // Read the symbol names.
1018 const unsigned int strtab_shndx
= symtabshdr
.get_sh_link();
1019 section_size_type strtab_size
;
1020 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1023 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1025 // Get views into the output file for the portions of the symbol table
1026 // and the dynamic symbol table that we will be writing.
1027 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
1028 unsigned char* oview
= NULL
;
1029 if (output_size
> 0)
1030 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
1032 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
1033 unsigned char* dyn_oview
= NULL
;
1034 if (dyn_output_size
> 0)
1035 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
1038 const std::vector
<Map_to_output
>& mo(this->map_to_output());
1040 gold_assert(this->local_values_
.size() == loccount
);
1042 unsigned char* ov
= oview
;
1043 unsigned char* dyn_ov
= dyn_oview
;
1045 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1047 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
1049 unsigned int st_shndx
= isym
.get_st_shndx();
1050 if (st_shndx
< elfcpp::SHN_LORESERVE
)
1052 gold_assert(st_shndx
< mo
.size());
1053 if (mo
[st_shndx
].output_section
== NULL
)
1055 st_shndx
= mo
[st_shndx
].output_section
->out_shndx();
1058 // Write the symbol to the output symbol table.
1059 if (!parameters
->strip_all()
1060 && this->local_values_
[i
].needs_output_symtab_entry())
1062 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
1064 gold_assert(isym
.get_st_name() < strtab_size
);
1065 const char* name
= pnames
+ isym
.get_st_name();
1066 osym
.put_st_name(sympool
->get_offset(name
));
1067 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1068 osym
.put_st_size(isym
.get_st_size());
1069 osym
.put_st_info(isym
.get_st_info());
1070 osym
.put_st_other(isym
.get_st_other());
1071 osym
.put_st_shndx(st_shndx
);
1076 // Write the symbol to the output dynamic symbol table.
1077 if (this->local_values_
[i
].needs_output_dynsym_entry())
1079 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
1080 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
1082 gold_assert(isym
.get_st_name() < strtab_size
);
1083 const char* name
= pnames
+ isym
.get_st_name();
1084 osym
.put_st_name(dynpool
->get_offset(name
));
1085 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1086 osym
.put_st_size(isym
.get_st_size());
1087 osym
.put_st_info(isym
.get_st_info());
1088 osym
.put_st_other(isym
.get_st_other());
1089 osym
.put_st_shndx(st_shndx
);
1096 if (output_size
> 0)
1098 gold_assert(ov
- oview
== output_size
);
1099 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
1102 if (dyn_output_size
> 0)
1104 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
1105 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
1110 // Set *INFO to symbolic information about the offset OFFSET in the
1111 // section SHNDX. Return true if we found something, false if we
1114 template<int size
, bool big_endian
>
1116 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
1119 Symbol_location_info
* info
)
1121 if (this->symtab_shndx_
== 0)
1124 section_size_type symbols_size
;
1125 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
1129 unsigned int symbol_names_shndx
= this->section_link(this->symtab_shndx_
);
1130 section_size_type names_size
;
1131 const unsigned char* symbol_names_u
=
1132 this->section_contents(symbol_names_shndx
, &names_size
, false);
1133 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
1135 const int sym_size
= This::sym_size
;
1136 const size_t count
= symbols_size
/ sym_size
;
1138 const unsigned char* p
= symbols
;
1139 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1141 elfcpp::Sym
<size
, big_endian
> sym(p
);
1143 if (sym
.get_st_type() == elfcpp::STT_FILE
)
1145 if (sym
.get_st_name() >= names_size
)
1146 info
->source_file
= "(invalid)";
1148 info
->source_file
= symbol_names
+ sym
.get_st_name();
1150 else if (sym
.get_st_shndx() == shndx
1151 && static_cast<off_t
>(sym
.get_st_value()) <= offset
1152 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
1155 if (sym
.get_st_name() > names_size
)
1156 info
->enclosing_symbol_name
= "(invalid)";
1159 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
1160 if (parameters
->demangle())
1162 char* demangled_name
= cplus_demangle(
1163 info
->enclosing_symbol_name
.c_str(),
1164 DMGL_ANSI
| DMGL_PARAMS
);
1165 if (demangled_name
!= NULL
)
1167 info
->enclosing_symbol_name
.assign(demangled_name
);
1168 free(demangled_name
);
1179 // Input_objects methods.
1181 // Add a regular relocatable object to the list. Return false if this
1182 // object should be ignored.
1185 Input_objects::add_object(Object
* obj
)
1187 Target
* target
= obj
->target();
1188 if (this->target_
== NULL
)
1189 this->target_
= target
;
1190 else if (this->target_
!= target
)
1192 gold_error(_("%s: incompatible target"), obj
->name().c_str());
1196 if (!obj
->is_dynamic())
1197 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
1200 // See if this is a duplicate SONAME.
1201 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
1202 const char* soname
= dynobj
->soname();
1204 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
1205 this->sonames_
.insert(soname
);
1208 // We have already seen a dynamic object with this soname.
1212 this->dynobj_list_
.push_back(dynobj
);
1214 // If this is -lc, remember the directory in which we found it.
1215 // We use this when issuing warnings about undefined symbols: as
1216 // a heuristic, we don't warn about system libraries found in
1217 // the same directory as -lc.
1218 if (strncmp(soname
, "libc.so", 7) == 0)
1220 const char* object_name
= dynobj
->name().c_str();
1221 const char* base
= lbasename(object_name
);
1222 if (base
!= object_name
)
1223 this->system_library_directory_
.assign(object_name
,
1224 base
- 1 - object_name
);
1228 set_parameters_target(target
);
1233 // Return whether an object was found in the system library directory.
1236 Input_objects::found_in_system_library_directory(const Object
* object
) const
1238 return (!this->system_library_directory_
.empty()
1239 && object
->name().compare(0,
1240 this->system_library_directory_
.size(),
1241 this->system_library_directory_
) == 0);
1244 // For each dynamic object, record whether we've seen all of its
1245 // explicit dependencies.
1248 Input_objects::check_dynamic_dependencies() const
1250 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
1251 p
!= this->dynobj_list_
.end();
1254 const Dynobj::Needed
& needed((*p
)->needed());
1255 bool found_all
= true;
1256 for (Dynobj::Needed::const_iterator pneeded
= needed
.begin();
1257 pneeded
!= needed
.end();
1260 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
1266 (*p
)->set_has_unknown_needed_entries(!found_all
);
1270 // Relocate_info methods.
1272 // Return a string describing the location of a relocation. This is
1273 // only used in error messages.
1275 template<int size
, bool big_endian
>
1277 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
1279 // See if we can get line-number information from debugging sections.
1280 std::string filename
;
1281 std::string file_and_lineno
; // Better than filename-only, if available.
1283 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
1284 // This will be "" if we failed to parse the debug info for any reason.
1285 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
1287 std::string
ret(this->object
->name());
1289 Symbol_location_info info
;
1290 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
1292 ret
+= " in function ";
1293 ret
+= info
.enclosing_symbol_name
;
1295 filename
= info
.source_file
;
1298 if (!file_and_lineno
.empty())
1299 ret
+= file_and_lineno
;
1302 if (!filename
.empty())
1305 ret
+= this->object
->section_name(this->data_shndx
);
1307 // Offsets into sections have to be positive.
1308 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
1315 } // End namespace gold.
1320 using namespace gold
;
1322 // Read an ELF file with the header and return the appropriate
1323 // instance of Object.
1325 template<int size
, bool big_endian
>
1327 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
1328 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
1330 int et
= ehdr
.get_e_type();
1331 if (et
== elfcpp::ET_REL
)
1333 Sized_relobj
<size
, big_endian
>* obj
=
1334 new Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
1338 else if (et
== elfcpp::ET_DYN
)
1340 Sized_dynobj
<size
, big_endian
>* obj
=
1341 new Sized_dynobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
1347 gold_error(_("%s: unsupported ELF file type %d"),
1353 } // End anonymous namespace.
1358 // Read an ELF file and return the appropriate instance of Object.
1361 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1362 const unsigned char* p
, section_offset_type bytes
)
1364 if (bytes
< elfcpp::EI_NIDENT
)
1366 gold_error(_("%s: ELF file too short"), name
.c_str());
1370 int v
= p
[elfcpp::EI_VERSION
];
1371 if (v
!= elfcpp::EV_CURRENT
)
1373 if (v
== elfcpp::EV_NONE
)
1374 gold_error(_("%s: invalid ELF version 0"), name
.c_str());
1376 gold_error(_("%s: unsupported ELF version %d"), name
.c_str(), v
);
1380 int c
= p
[elfcpp::EI_CLASS
];
1381 if (c
== elfcpp::ELFCLASSNONE
)
1383 gold_error(_("%s: invalid ELF class 0"), name
.c_str());
1386 else if (c
!= elfcpp::ELFCLASS32
1387 && c
!= elfcpp::ELFCLASS64
)
1389 gold_error(_("%s: unsupported ELF class %d"), name
.c_str(), c
);
1393 int d
= p
[elfcpp::EI_DATA
];
1394 if (d
== elfcpp::ELFDATANONE
)
1396 gold_error(_("%s: invalid ELF data encoding"), name
.c_str());
1399 else if (d
!= elfcpp::ELFDATA2LSB
1400 && d
!= elfcpp::ELFDATA2MSB
)
1402 gold_error(_("%s: unsupported ELF data encoding %d"), name
.c_str(), d
);
1406 bool big_endian
= d
== elfcpp::ELFDATA2MSB
;
1408 if (c
== elfcpp::ELFCLASS32
)
1410 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
1412 gold_error(_("%s: ELF file too short"), name
.c_str());
1417 #ifdef HAVE_TARGET_32_BIG
1418 elfcpp::Ehdr
<32, true> ehdr(p
);
1419 return make_elf_sized_object
<32, true>(name
, input_file
,
1422 gold_error(_("%s: not configured to support "
1423 "32-bit big-endian object"),
1430 #ifdef HAVE_TARGET_32_LITTLE
1431 elfcpp::Ehdr
<32, false> ehdr(p
);
1432 return make_elf_sized_object
<32, false>(name
, input_file
,
1435 gold_error(_("%s: not configured to support "
1436 "32-bit little-endian object"),
1444 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
1446 gold_error(_("%s: ELF file too short"), name
.c_str());
1451 #ifdef HAVE_TARGET_64_BIG
1452 elfcpp::Ehdr
<64, true> ehdr(p
);
1453 return make_elf_sized_object
<64, true>(name
, input_file
,
1456 gold_error(_("%s: not configured to support "
1457 "64-bit big-endian object"),
1464 #ifdef HAVE_TARGET_64_LITTLE
1465 elfcpp::Ehdr
<64, false> ehdr(p
);
1466 return make_elf_sized_object
<64, false>(name
, input_file
,
1469 gold_error(_("%s: not configured to support "
1470 "64-bit little-endian object"),
1478 // Instantiate the templates we need. We could use the configure
1479 // script to restrict this to only the ones for implemented targets.
1481 #ifdef HAVE_TARGET_32_LITTLE
1483 class Sized_relobj
<32, false>;
1486 #ifdef HAVE_TARGET_32_BIG
1488 class Sized_relobj
<32, true>;
1491 #ifdef HAVE_TARGET_64_LITTLE
1493 class Sized_relobj
<64, false>;
1496 #ifdef HAVE_TARGET_64_BIG
1498 class Sized_relobj
<64, true>;
1501 #ifdef HAVE_TARGET_32_LITTLE
1503 struct Relocate_info
<32, false>;
1506 #ifdef HAVE_TARGET_32_BIG
1508 struct Relocate_info
<32, true>;
1511 #ifdef HAVE_TARGET_64_LITTLE
1513 struct Relocate_info
<64, false>;
1516 #ifdef HAVE_TARGET_64_BIG
1518 struct Relocate_info
<64, true>;
1521 } // End namespace gold.