PR 5646
[binutils.git] / gold / symtab.h
blob43a228d7ccc64255705b9d8f9a67649764c2c89d
1 // symtab.h -- the gold symbol table -*- C++ -*-
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Symbol_table
24 // The symbol table.
26 #include <string>
27 #include <utility>
28 #include <vector>
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
38 namespace gold
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Version_script_info;
50 class Input_objects;
51 class Output_data;
52 class Output_section;
53 class Output_segment;
54 class Output_file;
55 class Target;
57 // The base class of an entry in the symbol table. The symbol table
58 // can have a lot of entries, so we don't want this class to big.
59 // Size dependent fields can be found in the template class
60 // Sized_symbol. Targets may support their own derived classes.
62 class Symbol
64 public:
65 // Because we want the class to be small, we don't use any virtual
66 // functions. But because symbols can be defined in different
67 // places, we need to classify them. This enum is the different
68 // sources of symbols we support.
69 enum Source
71 // Symbol defined in a relocatable or dynamic input file--this is
72 // the most common case.
73 FROM_OBJECT,
74 // Symbol defined in an Output_data, a special section created by
75 // the target.
76 IN_OUTPUT_DATA,
77 // Symbol defined in an Output_segment, with no associated
78 // section.
79 IN_OUTPUT_SEGMENT,
80 // Symbol value is constant.
81 CONSTANT
84 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
85 // the offset means.
86 enum Segment_offset_base
88 // From the start of the segment.
89 SEGMENT_START,
90 // From the end of the segment.
91 SEGMENT_END,
92 // From the filesz of the segment--i.e., after the loaded bytes
93 // but before the bytes which are allocated but zeroed.
94 SEGMENT_BSS
97 // Return the symbol name.
98 const char*
99 name() const
100 { return this->name_; }
102 // Return the (ANSI) demangled version of the name, if
103 // parameters.demangle() is true. Otherwise, return the name. This
104 // is intended to be used only for logging errors, so it's not
105 // super-efficient.
106 std::string
107 demangled_name() const;
109 // Return the symbol version. This will return NULL for an
110 // unversioned symbol.
111 const char*
112 version() const
113 { return this->version_; }
115 // Return whether this version is the default for this symbol name
116 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
117 // meaningful for versioned symbols.
118 bool
119 is_default() const
121 gold_assert(this->version_ != NULL);
122 return this->is_def_;
125 // Set whether this version is the default for this symbol name.
126 void
127 set_is_default(bool def)
128 { this->is_def_ = def; }
130 // Return the symbol source.
131 Source
132 source() const
133 { return this->source_; }
135 // Return the object with which this symbol is associated.
136 Object*
137 object() const
139 gold_assert(this->source_ == FROM_OBJECT);
140 return this->u_.from_object.object;
143 // Return the index of the section in the input relocatable or
144 // dynamic object file.
145 unsigned int
146 shndx() const
148 gold_assert(this->source_ == FROM_OBJECT);
149 return this->u_.from_object.shndx;
152 // Return the output data section with which this symbol is
153 // associated, if the symbol was specially defined with respect to
154 // an output data section.
155 Output_data*
156 output_data() const
158 gold_assert(this->source_ == IN_OUTPUT_DATA);
159 return this->u_.in_output_data.output_data;
162 // If this symbol was defined with respect to an output data
163 // section, return whether the value is an offset from end.
164 bool
165 offset_is_from_end() const
167 gold_assert(this->source_ == IN_OUTPUT_DATA);
168 return this->u_.in_output_data.offset_is_from_end;
171 // Return the output segment with which this symbol is associated,
172 // if the symbol was specially defined with respect to an output
173 // segment.
174 Output_segment*
175 output_segment() const
177 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
178 return this->u_.in_output_segment.output_segment;
181 // If this symbol was defined with respect to an output segment,
182 // return the offset base.
183 Segment_offset_base
184 offset_base() const
186 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
187 return this->u_.in_output_segment.offset_base;
190 // Return the symbol binding.
191 elfcpp::STB
192 binding() const
193 { return this->binding_; }
195 // Return the symbol type.
196 elfcpp::STT
197 type() const
198 { return this->type_; }
200 // Return the symbol visibility.
201 elfcpp::STV
202 visibility() const
203 { return this->visibility_; }
205 // Return the non-visibility part of the st_other field.
206 unsigned char
207 nonvis() const
208 { return this->nonvis_; }
210 // Return whether this symbol is a forwarder. This will never be
211 // true of a symbol found in the hash table, but may be true of
212 // symbol pointers attached to object files.
213 bool
214 is_forwarder() const
215 { return this->is_forwarder_; }
217 // Mark this symbol as a forwarder.
218 void
219 set_forwarder()
220 { this->is_forwarder_ = true; }
222 // Return whether this symbol has an alias in the weak aliases table
223 // in Symbol_table.
224 bool
225 has_alias() const
226 { return this->has_alias_; }
228 // Mark this symbol as having an alias.
229 void
230 set_has_alias()
231 { this->has_alias_ = true; }
233 // Return whether this symbol needs an entry in the dynamic symbol
234 // table.
235 bool
236 needs_dynsym_entry() const
238 return (this->needs_dynsym_entry_
239 || (this->in_reg() && this->in_dyn()));
242 // Mark this symbol as needing an entry in the dynamic symbol table.
243 void
244 set_needs_dynsym_entry()
245 { this->needs_dynsym_entry_ = true; }
247 // Return whether this symbol should be added to the dynamic symbol
248 // table.
249 bool
250 should_add_dynsym_entry() const;
252 // Return whether this symbol has been seen in a regular object.
253 bool
254 in_reg() const
255 { return this->in_reg_; }
257 // Mark this symbol as having been seen in a regular object.
258 void
259 set_in_reg()
260 { this->in_reg_ = true; }
262 // Return whether this symbol has been seen in a dynamic object.
263 bool
264 in_dyn() const
265 { return this->in_dyn_; }
267 // Mark this symbol as having been seen in a dynamic object.
268 void
269 set_in_dyn()
270 { this->in_dyn_ = true; }
272 // Return the index of this symbol in the output file symbol table.
273 // A value of -1U means that this symbol is not going into the
274 // output file. This starts out as zero, and is set to a non-zero
275 // value by Symbol_table::finalize. It is an error to ask for the
276 // symbol table index before it has been set.
277 unsigned int
278 symtab_index() const
280 gold_assert(this->symtab_index_ != 0);
281 return this->symtab_index_;
284 // Set the index of the symbol in the output file symbol table.
285 void
286 set_symtab_index(unsigned int index)
288 gold_assert(index != 0);
289 this->symtab_index_ = index;
292 // Return whether this symbol already has an index in the output
293 // file symbol table.
294 bool
295 has_symtab_index() const
296 { return this->symtab_index_ != 0; }
298 // Return the index of this symbol in the dynamic symbol table. A
299 // value of -1U means that this symbol is not going into the dynamic
300 // symbol table. This starts out as zero, and is set to a non-zero
301 // during Layout::finalize. It is an error to ask for the dynamic
302 // symbol table index before it has been set.
303 unsigned int
304 dynsym_index() const
306 gold_assert(this->dynsym_index_ != 0);
307 return this->dynsym_index_;
310 // Set the index of the symbol in the dynamic symbol table.
311 void
312 set_dynsym_index(unsigned int index)
314 gold_assert(index != 0);
315 this->dynsym_index_ = index;
318 // Return whether this symbol already has an index in the dynamic
319 // symbol table.
320 bool
321 has_dynsym_index() const
322 { return this->dynsym_index_ != 0; }
324 // Return whether this symbol has an entry in the GOT section.
325 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
326 bool
327 has_got_offset() const
328 { return this->has_got_offset_; }
330 // Return the offset into the GOT section of this symbol.
331 unsigned int
332 got_offset() const
334 gold_assert(this->has_got_offset());
335 return this->got_offset_;
338 // Set the GOT offset of this symbol.
339 void
340 set_got_offset(unsigned int got_offset)
342 this->has_got_offset_ = true;
343 this->got_offset_ = got_offset;
346 // Return whether this TLS symbol has an entry in the GOT section for
347 // its module index or, if NEED_PAIR is true, has a pair of entries
348 // for its module index and dtv-relative offset.
349 bool
350 has_tls_got_offset(bool need_pair) const
352 return (this->has_tls_mod_got_offset_
353 && (!need_pair || this->has_tls_pair_got_offset_));
356 // Return the offset into the GOT section for this symbol's TLS module
357 // index or, if NEED_PAIR is true, for the pair of entries for the
358 // module index and dtv-relative offset.
359 unsigned int
360 tls_got_offset(bool need_pair) const
362 gold_assert(this->has_tls_got_offset(need_pair));
363 return this->tls_mod_got_offset_;
366 // Set the GOT offset of this symbol.
367 void
368 set_tls_got_offset(unsigned int got_offset, bool have_pair)
370 this->has_tls_mod_got_offset_ = true;
371 this->has_tls_pair_got_offset_ = have_pair;
372 this->tls_mod_got_offset_ = got_offset;
375 // Return whether this symbol has an entry in the PLT section.
376 bool
377 has_plt_offset() const
378 { return this->has_plt_offset_; }
380 // Return the offset into the PLT section of this symbol.
381 unsigned int
382 plt_offset() const
384 gold_assert(this->has_plt_offset());
385 return this->plt_offset_;
388 // Set the PLT offset of this symbol.
389 void
390 set_plt_offset(unsigned int plt_offset)
392 this->has_plt_offset_ = true;
393 this->plt_offset_ = plt_offset;
396 // Return whether this dynamic symbol needs a special value in the
397 // dynamic symbol table.
398 bool
399 needs_dynsym_value() const
400 { return this->needs_dynsym_value_; }
402 // Set that this dynamic symbol needs a special value in the dynamic
403 // symbol table.
404 void
405 set_needs_dynsym_value()
407 gold_assert(this->object()->is_dynamic());
408 this->needs_dynsym_value_ = true;
411 // Return true if the final value of this symbol is known at link
412 // time.
413 bool
414 final_value_is_known() const;
416 // Return whether this is a defined symbol (not undefined or
417 // common).
418 bool
419 is_defined() const
421 return (this->source_ != FROM_OBJECT
422 || (this->shndx() != elfcpp::SHN_UNDEF
423 && this->shndx() != elfcpp::SHN_COMMON));
426 // Return true if this symbol is from a dynamic object.
427 bool
428 is_from_dynobj() const
430 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
433 // Return whether this is an undefined symbol.
434 bool
435 is_undefined() const
437 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
440 // Return whether this is a common symbol.
441 bool
442 is_common() const
444 return (this->source_ == FROM_OBJECT
445 && (this->shndx() == elfcpp::SHN_COMMON
446 || this->type_ == elfcpp::STT_COMMON));
449 // Return whether this symbol can be seen outside this object.
450 bool
451 is_externally_visible() const
453 return (this->visibility_ == elfcpp::STV_DEFAULT
454 || this->visibility_ == elfcpp::STV_PROTECTED);
457 // Return true if this symbol can be preempted by a definition in
458 // another link unit.
459 bool
460 is_preemptible() const
462 // It doesn't make sense to ask whether a symbol defined in
463 // another object is preemptible.
464 gold_assert(!this->is_from_dynobj());
466 return (this->visibility_ != elfcpp::STV_INTERNAL
467 && this->visibility_ != elfcpp::STV_HIDDEN
468 && this->visibility_ != elfcpp::STV_PROTECTED
469 && parameters->output_is_shared()
470 && !parameters->symbolic());
473 // Return true if this symbol is a function that needs a PLT entry.
474 // If the symbol is defined in a dynamic object or if it is subject
475 // to pre-emption, we need to make a PLT entry.
476 bool
477 needs_plt_entry() const
479 return (this->type() == elfcpp::STT_FUNC
480 && (this->is_from_dynobj() || this->is_preemptible()));
483 // Given a direct absolute or pc-relative static relocation against
484 // the global symbol, this function returns whether a dynamic relocation
485 // is needed.
487 bool
488 needs_dynamic_reloc(bool is_absolute_ref, bool is_function_call) const
490 // An absolute reference within a position-independent output file
491 // will need a dynamic relocaion.
492 if (is_absolute_ref && parameters->output_is_position_independent())
493 return true;
495 // A function call that can branch to a local PLT entry does not need
496 // a dynamic relocation.
497 if (is_function_call && this->has_plt_offset())
498 return false;
500 // A reference to any PLT entry in a non-position-independent executable
501 // does not need a dynamic relocation.
502 if (!parameters->output_is_position_independent()
503 && this->has_plt_offset())
504 return false;
506 // A reference to a symbol defined in a dynamic object or to a
507 // symbol that is preemptible will need a dynamic relocation.
508 if (this->is_from_dynobj() || this->is_preemptible())
509 return true;
511 // For all other cases, return FALSE.
512 return false;
515 // Given a direct absolute static relocation against
516 // the global symbol, where a dynamic relocation is needed, this
517 // function returns whether a relative dynamic relocation can be used.
518 // The caller must determine separately whether the static relocation
519 // is compatible with a relative relocation.
521 bool
522 can_use_relative_reloc(bool is_function_call) const
524 // A function call that can branch to a local PLT entry can
525 // use a RELATIVE relocation.
526 if (is_function_call && this->has_plt_offset())
527 return true;
529 // A reference to a symbol defined in a dynamic object or to a
530 // symbol that is preemptible can not use a RELATIVE relocaiton.
531 if (this->is_from_dynobj() || this->is_preemptible())
532 return false;
534 // For all other cases, return TRUE.
535 return true;
538 // Return whether there should be a warning for references to this
539 // symbol.
540 bool
541 has_warning() const
542 { return this->has_warning_; }
544 // Mark this symbol as having a warning.
545 void
546 set_has_warning()
547 { this->has_warning_ = true; }
549 // Return whether this symbol is defined by a COPY reloc from a
550 // dynamic object.
551 bool
552 is_copied_from_dynobj() const
553 { return this->is_copied_from_dynobj_; }
555 // Mark this symbol as defined by a COPY reloc.
556 void
557 set_is_copied_from_dynobj()
558 { this->is_copied_from_dynobj_ = true; }
560 protected:
561 // Instances of this class should always be created at a specific
562 // size.
563 Symbol()
564 { memset(this, 0, sizeof *this); }
566 // Initialize the general fields.
567 void
568 init_fields(const char* name, const char* version,
569 elfcpp::STT type, elfcpp::STB binding,
570 elfcpp::STV visibility, unsigned char nonvis);
572 // Initialize fields from an ELF symbol in OBJECT.
573 template<int size, bool big_endian>
574 void
575 init_base(const char *name, const char* version, Object* object,
576 const elfcpp::Sym<size, big_endian>&);
578 // Initialize fields for an Output_data.
579 void
580 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
581 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
583 // Initialize fields for an Output_segment.
584 void
585 init_base(const char* name, Output_segment* os, elfcpp::STT type,
586 elfcpp::STB binding, elfcpp::STV visibility,
587 unsigned char nonvis, Segment_offset_base offset_base);
589 // Initialize fields for a constant.
590 void
591 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
592 elfcpp::STV visibility, unsigned char nonvis);
594 // Override existing symbol.
595 template<int size, bool big_endian>
596 void
597 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
598 const char* version);
600 // Override existing symbol with a special symbol.
601 void
602 override_base_with_special(const Symbol* from);
604 // Allocate a common symbol by giving it a location in the output
605 // file.
606 void
607 allocate_base_common(Output_data*);
609 private:
610 Symbol(const Symbol&);
611 Symbol& operator=(const Symbol&);
613 // Symbol name (expected to point into a Stringpool).
614 const char* name_;
615 // Symbol version (expected to point into a Stringpool). This may
616 // be NULL.
617 const char* version_;
619 union
621 // This struct is used if SOURCE_ == FROM_OBJECT.
622 struct
624 // Object in which symbol is defined, or in which it was first
625 // seen.
626 Object* object;
627 // Section number in object_ in which symbol is defined.
628 unsigned int shndx;
629 } from_object;
631 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
632 struct
634 // Output_data in which symbol is defined. Before
635 // Layout::finalize the symbol's value is an offset within the
636 // Output_data.
637 Output_data* output_data;
638 // True if the offset is from the end, false if the offset is
639 // from the beginning.
640 bool offset_is_from_end;
641 } in_output_data;
643 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
644 struct
646 // Output_segment in which the symbol is defined. Before
647 // Layout::finalize the symbol's value is an offset.
648 Output_segment* output_segment;
649 // The base to use for the offset before Layout::finalize.
650 Segment_offset_base offset_base;
651 } in_output_segment;
652 } u_;
654 // The index of this symbol in the output file. If the symbol is
655 // not going into the output file, this value is -1U. This field
656 // starts as always holding zero. It is set to a non-zero value by
657 // Symbol_table::finalize.
658 unsigned int symtab_index_;
660 // The index of this symbol in the dynamic symbol table. If the
661 // symbol is not going into the dynamic symbol table, this value is
662 // -1U. This field starts as always holding zero. It is set to a
663 // non-zero value during Layout::finalize.
664 unsigned int dynsym_index_;
666 // If this symbol has an entry in the GOT section (has_got_offset_
667 // is true), this is the offset from the start of the GOT section.
668 // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
669 // serves as the GOT offset for the GOT entry that holds its
670 // TP-relative offset.
671 unsigned int got_offset_;
673 // If this is a TLS symbol and has an entry in the GOT section
674 // for a module index or a pair of entries (module index,
675 // dtv-relative offset), these are the offsets from the start
676 // of the GOT section.
677 unsigned int tls_mod_got_offset_;
678 unsigned int tls_pair_got_offset_;
680 // If this symbol has an entry in the PLT section (has_plt_offset_
681 // is true), then this is the offset from the start of the PLT
682 // section.
683 unsigned int plt_offset_;
685 // Symbol type.
686 elfcpp::STT type_ : 4;
687 // Symbol binding.
688 elfcpp::STB binding_ : 4;
689 // Symbol visibility.
690 elfcpp::STV visibility_ : 2;
691 // Rest of symbol st_other field.
692 unsigned int nonvis_ : 6;
693 // The type of symbol.
694 Source source_ : 3;
695 // True if this symbol always requires special target-specific
696 // handling.
697 bool is_target_special_ : 1;
698 // True if this is the default version of the symbol.
699 bool is_def_ : 1;
700 // True if this symbol really forwards to another symbol. This is
701 // used when we discover after the fact that two different entries
702 // in the hash table really refer to the same symbol. This will
703 // never be set for a symbol found in the hash table, but may be set
704 // for a symbol found in the list of symbols attached to an Object.
705 // It forwards to the symbol found in the forwarders_ map of
706 // Symbol_table.
707 bool is_forwarder_ : 1;
708 // True if the symbol has an alias in the weak_aliases table in
709 // Symbol_table.
710 bool has_alias_ : 1;
711 // True if this symbol needs to be in the dynamic symbol table.
712 bool needs_dynsym_entry_ : 1;
713 // True if we've seen this symbol in a regular object.
714 bool in_reg_ : 1;
715 // True if we've seen this symbol in a dynamic object.
716 bool in_dyn_ : 1;
717 // True if the symbol has an entry in the GOT section.
718 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
719 bool has_got_offset_ : 1;
720 // True if the symbol has an entry in the GOT section for its
721 // module index.
722 bool has_tls_mod_got_offset_ : 1;
723 // True if the symbol has a pair of entries in the GOT section for its
724 // module index and dtv-relative offset.
725 bool has_tls_pair_got_offset_ : 1;
726 // True if the symbol has an entry in the PLT section.
727 bool has_plt_offset_ : 1;
728 // True if this is a dynamic symbol which needs a special value in
729 // the dynamic symbol table.
730 bool needs_dynsym_value_ : 1;
731 // True if there is a warning for this symbol.
732 bool has_warning_ : 1;
733 // True if we are using a COPY reloc for this symbol, so that the
734 // real definition lives in a dynamic object.
735 bool is_copied_from_dynobj_ : 1;
738 // The parts of a symbol which are size specific. Using a template
739 // derived class like this helps us use less space on a 32-bit system.
741 template<int size>
742 class Sized_symbol : public Symbol
744 public:
745 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
746 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
748 Sized_symbol()
751 // Initialize fields from an ELF symbol in OBJECT.
752 template<bool big_endian>
753 void
754 init(const char *name, const char* version, Object* object,
755 const elfcpp::Sym<size, big_endian>&);
757 // Initialize fields for an Output_data.
758 void
759 init(const char* name, Output_data*, Value_type value, Size_type symsize,
760 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
761 bool offset_is_from_end);
763 // Initialize fields for an Output_segment.
764 void
765 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
766 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
767 Segment_offset_base offset_base);
769 // Initialize fields for a constant.
770 void
771 init(const char* name, Value_type value, Size_type symsize,
772 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
774 // Override existing symbol.
775 template<bool big_endian>
776 void
777 override(const elfcpp::Sym<size, big_endian>&, Object* object,
778 const char* version);
780 // Override existing symbol with a special symbol.
781 void
782 override_with_special(const Sized_symbol<size>*);
784 // Return the symbol's value.
785 Value_type
786 value() const
787 { return this->value_; }
789 // Return the symbol's size (we can't call this 'size' because that
790 // is a template parameter).
791 Size_type
792 symsize() const
793 { return this->symsize_; }
795 // Set the symbol size. This is used when resolving common symbols.
796 void
797 set_symsize(Size_type symsize)
798 { this->symsize_ = symsize; }
800 // Set the symbol value. This is called when we store the final
801 // values of the symbols into the symbol table.
802 void
803 set_value(Value_type value)
804 { this->value_ = value; }
806 // Allocate a common symbol by giving it a location in the output
807 // file.
808 void
809 allocate_common(Output_data*, Value_type value);
811 private:
812 Sized_symbol(const Sized_symbol&);
813 Sized_symbol& operator=(const Sized_symbol&);
815 // Symbol value. Before Layout::finalize this is the offset in the
816 // input section. This is set to the final value during
817 // Layout::finalize.
818 Value_type value_;
819 // Symbol size.
820 Size_type symsize_;
823 // A struct describing a symbol defined by the linker, where the value
824 // of the symbol is defined based on an output section. This is used
825 // for symbols defined by the linker, like "_init_array_start".
827 struct Define_symbol_in_section
829 // The symbol name.
830 const char* name;
831 // The name of the output section with which this symbol should be
832 // associated. If there is no output section with that name, the
833 // symbol will be defined as zero.
834 const char* output_section;
835 // The offset of the symbol within the output section. This is an
836 // offset from the start of the output section, unless start_at_end
837 // is true, in which case this is an offset from the end of the
838 // output section.
839 uint64_t value;
840 // The size of the symbol.
841 uint64_t size;
842 // The symbol type.
843 elfcpp::STT type;
844 // The symbol binding.
845 elfcpp::STB binding;
846 // The symbol visibility.
847 elfcpp::STV visibility;
848 // The rest of the st_other field.
849 unsigned char nonvis;
850 // If true, the value field is an offset from the end of the output
851 // section.
852 bool offset_is_from_end;
853 // If true, this symbol is defined only if we see a reference to it.
854 bool only_if_ref;
857 // A struct describing a symbol defined by the linker, where the value
858 // of the symbol is defined based on a segment. This is used for
859 // symbols defined by the linker, like "_end". We describe the
860 // segment with which the symbol should be associated by its
861 // characteristics. If no segment meets these characteristics, the
862 // symbol will be defined as zero. If there is more than one segment
863 // which meets these characteristics, we will use the first one.
865 struct Define_symbol_in_segment
867 // The symbol name.
868 const char* name;
869 // The segment type where the symbol should be defined, typically
870 // PT_LOAD.
871 elfcpp::PT segment_type;
872 // Bitmask of segment flags which must be set.
873 elfcpp::PF segment_flags_set;
874 // Bitmask of segment flags which must be clear.
875 elfcpp::PF segment_flags_clear;
876 // The offset of the symbol within the segment. The offset is
877 // calculated from the position set by offset_base.
878 uint64_t value;
879 // The size of the symbol.
880 uint64_t size;
881 // The symbol type.
882 elfcpp::STT type;
883 // The symbol binding.
884 elfcpp::STB binding;
885 // The symbol visibility.
886 elfcpp::STV visibility;
887 // The rest of the st_other field.
888 unsigned char nonvis;
889 // The base from which we compute the offset.
890 Symbol::Segment_offset_base offset_base;
891 // If true, this symbol is defined only if we see a reference to it.
892 bool only_if_ref;
895 // This class manages warnings. Warnings are a GNU extension. When
896 // we see a section named .gnu.warning.SYM in an object file, and if
897 // we wind using the definition of SYM from that object file, then we
898 // will issue a warning for any relocation against SYM from a
899 // different object file. The text of the warning is the contents of
900 // the section. This is not precisely the definition used by the old
901 // GNU linker; the old GNU linker treated an occurrence of
902 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
903 // would trigger a warning on any reference. However, it was
904 // inconsistent in that a warning in a dynamic object only triggered
905 // if there was no definition in a regular object. This linker is
906 // different in that we only issue a warning if we use the symbol
907 // definition from the same object file as the warning section.
909 class Warnings
911 public:
912 Warnings()
913 : warnings_()
916 // Add a warning for symbol NAME in object OBJ. WARNING is the text
917 // of the warning.
918 void
919 add_warning(Symbol_table* symtab, const char* name, Object* obj,
920 const std::string& warning);
922 // For each symbol for which we should give a warning, make a note
923 // on the symbol.
924 void
925 note_warnings(Symbol_table* symtab);
927 // Issue a warning for a reference to SYM at RELINFO's location.
928 template<int size, bool big_endian>
929 void
930 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
931 size_t relnum, off_t reloffset) const;
933 private:
934 Warnings(const Warnings&);
935 Warnings& operator=(const Warnings&);
937 // What we need to know to get the warning text.
938 struct Warning_location
940 // The object the warning is in.
941 Object* object;
942 // The warning text.
943 std::string text;
945 Warning_location()
946 : object(NULL), text()
949 void
950 set(Object* o, const std::string& t)
952 this->object = o;
953 this->text = t;
957 // A mapping from warning symbol names (canonicalized in
958 // Symbol_table's namepool_ field) to warning information.
959 typedef Unordered_map<const char*, Warning_location> Warning_table;
961 Warning_table warnings_;
964 // The main linker symbol table.
966 class Symbol_table
968 public:
969 // COUNT is an estimate of how many symbosl will be inserted in the
970 // symbol table. It's ok to put 0 if you don't know; a correct
971 // guess will just save some CPU by reducing hashtable resizes.
972 Symbol_table(unsigned int count, const Version_script_info& version_script);
974 ~Symbol_table();
976 // Add COUNT external symbols from the relocatable object RELOBJ to
977 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
978 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
979 // point to the symbols in the symbol table.
980 template<int size, bool big_endian>
981 void
982 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
983 const unsigned char* syms, size_t count,
984 const char* sym_names, size_t sym_name_size,
985 typename Sized_relobj<size, big_endian>::Symbols*);
987 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
988 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
989 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
990 // symbol version data.
991 template<int size, bool big_endian>
992 void
993 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
994 const unsigned char* syms, size_t count,
995 const char* sym_names, size_t sym_name_size,
996 const unsigned char* versym, size_t versym_size,
997 const std::vector<const char*>*);
999 // Define a special symbol based on an Output_data. It is a
1000 // multiple definition error if this symbol is already defined.
1001 Symbol*
1002 define_in_output_data(const Target*, const char* name, const char* version,
1003 Output_data*, uint64_t value, uint64_t symsize,
1004 elfcpp::STT type, elfcpp::STB binding,
1005 elfcpp::STV visibility, unsigned char nonvis,
1006 bool offset_is_from_end, bool only_if_ref);
1008 // Define a special symbol based on an Output_segment. It is a
1009 // multiple definition error if this symbol is already defined.
1010 Symbol*
1011 define_in_output_segment(const Target*, const char* name,
1012 const char* version, Output_segment*,
1013 uint64_t value, uint64_t symsize,
1014 elfcpp::STT type, elfcpp::STB binding,
1015 elfcpp::STV visibility, unsigned char nonvis,
1016 Symbol::Segment_offset_base, bool only_if_ref);
1018 // Define a special symbol with a constant value. It is a multiple
1019 // definition error if this symbol is already defined.
1020 Symbol*
1021 define_as_constant(const Target*, const char* name, const char* version,
1022 uint64_t value, uint64_t symsize, elfcpp::STT type,
1023 elfcpp::STB binding, elfcpp::STV visibility,
1024 unsigned char nonvis, bool only_if_ref);
1026 // Define a set of symbols in output sections.
1027 void
1028 define_symbols(const Layout*, const Target*, int count,
1029 const Define_symbol_in_section*);
1031 // Define a set of symbols in output segments.
1032 void
1033 define_symbols(const Layout*, const Target*, int count,
1034 const Define_symbol_in_segment*);
1036 // Define SYM using a COPY reloc. POSD is the Output_data where the
1037 // symbol should be defined--typically a .dyn.bss section. VALUE is
1038 // the offset within POSD.
1039 template<int size>
1040 void
1041 define_with_copy_reloc(const Target*, Sized_symbol<size>* sym,
1042 Output_data* posd,
1043 typename elfcpp::Elf_types<size>::Elf_Addr);
1045 // Look up a symbol.
1046 Symbol*
1047 lookup(const char*, const char* version = NULL) const;
1049 // Return the real symbol associated with the forwarder symbol FROM.
1050 Symbol*
1051 resolve_forwards(const Symbol* from) const;
1053 // Return the sized version of a symbol in this table.
1054 template<int size>
1055 Sized_symbol<size>*
1056 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
1058 template<int size>
1059 const Sized_symbol<size>*
1060 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
1062 // Return the count of undefined symbols seen.
1064 saw_undefined() const
1065 { return this->saw_undefined_; }
1067 // Allocate the common symbols
1068 void
1069 allocate_commons(const General_options&, Layout*);
1071 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1072 // of the warning.
1073 void
1074 add_warning(const char* name, Object* obj, const std::string& warning)
1075 { this->warnings_.add_warning(this, name, obj, warning); }
1077 // Canonicalize a symbol name for use in the hash table.
1078 const char*
1079 canonicalize_name(const char* name)
1080 { return this->namepool_.add(name, true, NULL); }
1082 // Possibly issue a warning for a reference to SYM at LOCATION which
1083 // is in OBJ.
1084 template<int size, bool big_endian>
1085 void
1086 issue_warning(const Symbol* sym,
1087 const Relocate_info<size, big_endian>* relinfo,
1088 size_t relnum, off_t reloffset) const
1089 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1091 // Check candidate_odr_violations_ to find symbols with the same name
1092 // but apparently different definitions (different source-file/line-no).
1093 void
1094 detect_odr_violations(const Task*, const char* output_file_name) const;
1096 // SYM is defined using a COPY reloc. Return the dynamic object
1097 // where the original definition was found.
1098 Dynobj*
1099 get_copy_source(const Symbol* sym) const;
1101 // Set the dynamic symbol indexes. INDEX is the index of the first
1102 // global dynamic symbol. Pointers to the symbols are stored into
1103 // the vector. The names are stored into the Stringpool. This
1104 // returns an updated dynamic symbol index.
1105 unsigned int
1106 set_dynsym_indexes(const Target*, unsigned int index,
1107 std::vector<Symbol*>*, Stringpool*, Versions*);
1109 // Finalize the symbol table after we have set the final addresses
1110 // of all the input sections. This sets the final symbol indexes,
1111 // values and adds the names to *POOL. INDEX is the index of the
1112 // first global symbol. OFF is the file offset of the global symbol
1113 // table, DYNOFF is the offset of the globals in the dynamic symbol
1114 // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
1115 // symbol, and DYNCOUNT is the number of global dynamic symbols.
1116 // This records the parameters, and returns the new file offset.
1117 off_t
1118 finalize(unsigned int index, off_t off, off_t dynoff,
1119 size_t dyn_global_index, size_t dyncount, Stringpool* pool);
1121 // Write out the global symbols.
1122 void
1123 write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
1124 Output_file*) const;
1126 // Write out a section symbol. Return the updated offset.
1127 void
1128 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1130 // Dump statistical information to stderr.
1131 void
1132 print_stats() const;
1134 // Return the version script information.
1135 const Version_script_info&
1136 version_script() const
1137 { return version_script_; }
1139 private:
1140 Symbol_table(const Symbol_table&);
1141 Symbol_table& operator=(const Symbol_table&);
1143 // Make FROM a forwarder symbol to TO.
1144 void
1145 make_forwarder(Symbol* from, Symbol* to);
1147 // Add a symbol.
1148 template<int size, bool big_endian>
1149 Sized_symbol<size>*
1150 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1151 const char *version, Stringpool::Key version_key,
1152 bool def, const elfcpp::Sym<size, big_endian>& sym,
1153 const elfcpp::Sym<size, big_endian>& orig_sym);
1155 // Resolve symbols.
1156 template<int size, bool big_endian>
1157 void
1158 resolve(Sized_symbol<size>* to,
1159 const elfcpp::Sym<size, big_endian>& sym,
1160 const elfcpp::Sym<size, big_endian>& orig_sym,
1161 Object*, const char* version);
1163 template<int size, bool big_endian>
1164 void
1165 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1166 const char* version ACCEPT_SIZE_ENDIAN);
1168 // Whether we should override a symbol, based on flags in
1169 // resolve.cc.
1170 static bool
1171 should_override(const Symbol*, unsigned int, Object*, bool*);
1173 // Override a symbol.
1174 template<int size, bool big_endian>
1175 void
1176 override(Sized_symbol<size>* tosym,
1177 const elfcpp::Sym<size, big_endian>& fromsym,
1178 Object* object, const char* version);
1180 // Whether we should override a symbol with a special symbol which
1181 // is automatically defined by the linker.
1182 static bool
1183 should_override_with_special(const Symbol*);
1185 // Override a symbol with a special symbol.
1186 template<int size>
1187 void
1188 override_with_special(Sized_symbol<size>* tosym,
1189 const Sized_symbol<size>* fromsym);
1191 // Record all weak alias sets for a dynamic object.
1192 template<int size>
1193 void
1194 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1196 // Define a special symbol.
1197 template<int size, bool big_endian>
1198 Sized_symbol<size>*
1199 define_special_symbol(const Target* target, const char** pname,
1200 const char** pversion, bool only_if_ref,
1201 Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);
1203 // Define a symbol in an Output_data, sized version.
1204 template<int size>
1205 Sized_symbol<size>*
1206 do_define_in_output_data(const Target*, const char* name,
1207 const char* version, Output_data*,
1208 typename elfcpp::Elf_types<size>::Elf_Addr value,
1209 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1210 elfcpp::STT type, elfcpp::STB binding,
1211 elfcpp::STV visibility, unsigned char nonvis,
1212 bool offset_is_from_end, bool only_if_ref);
1214 // Define a symbol in an Output_segment, sized version.
1215 template<int size>
1216 Sized_symbol<size>*
1217 do_define_in_output_segment(
1218 const Target*, const char* name, const char* version, Output_segment* os,
1219 typename elfcpp::Elf_types<size>::Elf_Addr value,
1220 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1221 elfcpp::STT type, elfcpp::STB binding,
1222 elfcpp::STV visibility, unsigned char nonvis,
1223 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1225 // Define a symbol as a constant, sized version.
1226 template<int size>
1227 Sized_symbol<size>*
1228 do_define_as_constant(
1229 const Target*, const char* name, const char* version,
1230 typename elfcpp::Elf_types<size>::Elf_Addr value,
1231 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1232 elfcpp::STT type, elfcpp::STB binding,
1233 elfcpp::STV visibility, unsigned char nonvis,
1234 bool only_if_ref);
1236 // Allocate the common symbols, sized version.
1237 template<int size>
1238 void
1239 do_allocate_commons(const General_options&, Layout*);
1241 // Implement detect_odr_violations.
1242 template<int size, bool big_endian>
1243 void
1244 sized_detect_odr_violations() const;
1246 // Finalize symbols specialized for size.
1247 template<int size>
1248 off_t
1249 sized_finalize(unsigned int, off_t, Stringpool*);
1251 // Write globals specialized for size and endianness.
1252 template<int size, bool big_endian>
1253 void
1254 sized_write_globals(const Input_objects*, const Stringpool*,
1255 const Stringpool*, Output_file*) const;
1257 // Write out a symbol to P.
1258 template<int size, bool big_endian>
1259 void
1260 sized_write_symbol(Sized_symbol<size>*,
1261 typename elfcpp::Elf_types<size>::Elf_Addr value,
1262 unsigned int shndx,
1263 const Stringpool*, unsigned char* p
1264 ACCEPT_SIZE_ENDIAN) const;
1266 // Possibly warn about an undefined symbol from a dynamic object.
1267 void
1268 warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;
1270 // Write out a section symbol, specialized for size and endianness.
1271 template<int size, bool big_endian>
1272 void
1273 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1275 // The type of the symbol hash table.
1277 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1279 struct Symbol_table_hash
1281 size_t
1282 operator()(const Symbol_table_key&) const;
1285 struct Symbol_table_eq
1287 bool
1288 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1291 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1292 Symbol_table_eq> Symbol_table_type;
1294 // The type of the list of common symbols.
1295 typedef std::vector<Symbol*> Commons_type;
1297 // A map from symbols with COPY relocs to the dynamic objects where
1298 // they are defined.
1299 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1301 // A map from symbol name (as a pointer into the namepool) to all
1302 // the locations the symbols is (weakly) defined (and certain other
1303 // conditions are met). This map will be used later to detect
1304 // possible One Definition Rule (ODR) violations.
1305 struct Symbol_location
1307 Object* object; // Object where the symbol is defined.
1308 unsigned int shndx; // Section-in-object where the symbol is defined.
1309 off_t offset; // Offset-in-section where the symbol is defined.
1310 bool operator==(const Symbol_location& that) const
1312 return (this->object == that.object
1313 && this->shndx == that.shndx
1314 && this->offset == that.offset);
1318 struct Symbol_location_hash
1320 size_t operator()(const Symbol_location& loc) const
1321 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1324 typedef Unordered_map<const char*,
1325 Unordered_set<Symbol_location, Symbol_location_hash> >
1326 Odr_map;
1328 // We increment this every time we see a new undefined symbol, for
1329 // use in archive groups.
1330 int saw_undefined_;
1331 // The index of the first global symbol in the output file.
1332 unsigned int first_global_index_;
1333 // The file offset within the output symtab section where we should
1334 // write the table.
1335 off_t offset_;
1336 // The number of global symbols we want to write out.
1337 size_t output_count_;
1338 // The file offset of the global dynamic symbols, or 0 if none.
1339 off_t dynamic_offset_;
1340 // The index of the first global dynamic symbol.
1341 unsigned int first_dynamic_global_index_;
1342 // The number of global dynamic symbols, or 0 if none.
1343 off_t dynamic_count_;
1344 // The symbol hash table.
1345 Symbol_table_type table_;
1346 // A pool of symbol names. This is used for all global symbols.
1347 // Entries in the hash table point into this pool.
1348 Stringpool namepool_;
1349 // Forwarding symbols.
1350 Unordered_map<const Symbol*, Symbol*> forwarders_;
1351 // Weak aliases. A symbol in this list points to the next alias.
1352 // The aliases point to each other in a circular list.
1353 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1354 // We don't expect there to be very many common symbols, so we keep
1355 // a list of them. When we find a common symbol we add it to this
1356 // list. It is possible that by the time we process the list the
1357 // symbol is no longer a common symbol. It may also have become a
1358 // forwarder.
1359 Commons_type commons_;
1360 // Manage symbol warnings.
1361 Warnings warnings_;
1362 // Manage potential One Definition Rule (ODR) violations.
1363 Odr_map candidate_odr_violations_;
1365 // When we emit a COPY reloc for a symbol, we define it in an
1366 // Output_data. When it's time to emit version information for it,
1367 // we need to know the dynamic object in which we found the original
1368 // definition. This maps symbols with COPY relocs to the dynamic
1369 // object where they were defined.
1370 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1371 // Information parsed from the version script, if any.
1372 const Version_script_info& version_script_;
1375 // We inline get_sized_symbol for efficiency.
1377 template<int size>
1378 Sized_symbol<size>*
1379 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1381 gold_assert(size == parameters->get_size());
1382 return static_cast<Sized_symbol<size>*>(sym);
1385 template<int size>
1386 const Sized_symbol<size>*
1387 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1389 gold_assert(size == parameters->get_size());
1390 return static_cast<const Sized_symbol<size>*>(sym);
1393 } // End namespace gold.
1395 #endif // !defined(GOLD_SYMTAB_H)