1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 static reloc_howto_type
*elf_i386_reloc_type_lookup
28 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rela
*));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rel
*));
33 static boolean elf_i386_is_local_label_name
PARAMS ((bfd
*, const char *));
34 static struct bfd_hash_entry
*elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
36 static struct bfd_link_hash_table
*elf_i386_link_hash_table_create
38 static boolean elf_i386_check_relocs
39 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
40 const Elf_Internal_Rela
*));
41 static boolean elf_i386_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
43 static boolean elf_i386_size_dynamic_sections
44 PARAMS ((bfd
*, struct bfd_link_info
*));
45 static boolean elf_i386_relocate_section
46 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
47 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
48 static boolean elf_i386_finish_dynamic_symbol
49 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
51 static boolean elf_i386_finish_dynamic_sections
52 PARAMS ((bfd
*, struct bfd_link_info
*));
54 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
58 static reloc_howto_type elf_howto_table
[]=
60 HOWTO(R_386_NONE
, 0, 0, 0, false, 0, complain_overflow_bitfield
,
61 bfd_elf_generic_reloc
, "R_386_NONE",
62 true, 0x00000000, 0x00000000, false),
63 HOWTO(R_386_32
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
64 bfd_elf_generic_reloc
, "R_386_32",
65 true, 0xffffffff, 0xffffffff, false),
66 HOWTO(R_386_PC32
, 0, 2, 32, true, 0, complain_overflow_bitfield
,
67 bfd_elf_generic_reloc
, "R_386_PC32",
68 true, 0xffffffff, 0xffffffff, true),
69 HOWTO(R_386_GOT32
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
70 bfd_elf_generic_reloc
, "R_386_GOT32",
71 true, 0xffffffff, 0xffffffff, false),
72 HOWTO(R_386_PLT32
, 0, 2, 32, true, 0, complain_overflow_bitfield
,
73 bfd_elf_generic_reloc
, "R_386_PLT32",
74 true, 0xffffffff, 0xffffffff, true),
75 HOWTO(R_386_COPY
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
76 bfd_elf_generic_reloc
, "R_386_COPY",
77 true, 0xffffffff, 0xffffffff, false),
78 HOWTO(R_386_GLOB_DAT
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_386_GLOB_DAT",
80 true, 0xffffffff, 0xffffffff, false),
81 HOWTO(R_386_JUMP_SLOT
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
82 bfd_elf_generic_reloc
, "R_386_JUMP_SLOT",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_RELATIVE
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
85 bfd_elf_generic_reloc
, "R_386_RELATIVE",
86 true, 0xffffffff, 0xffffffff, false),
87 HOWTO(R_386_GOTOFF
, 0, 2, 32, false, 0, complain_overflow_bitfield
,
88 bfd_elf_generic_reloc
, "R_386_GOTOFF",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_GOTPC
, 0, 2, 32, true, 0, complain_overflow_bitfield
,
91 bfd_elf_generic_reloc
, "R_386_GOTPC",
92 true, 0xffffffff, 0xffffffff, true),
94 /* We have a gap in the reloc numbers here.
95 R_386_standard counts the number up to this point, and
96 R_386_ext_offset is the value to subtract from a reloc type of
97 R_386_16 thru R_386_PC8 to form an index into this table. */
98 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
99 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
101 /* The remaining relocs are a GNU extension. */
102 HOWTO(R_386_16
, 0, 1, 16, false, 0, complain_overflow_bitfield
,
103 bfd_elf_generic_reloc
, "R_386_16",
104 true, 0xffff, 0xffff, false),
105 HOWTO(R_386_PC16
, 0, 1, 16, true, 0, complain_overflow_bitfield
,
106 bfd_elf_generic_reloc
, "R_386_PC16",
107 true, 0xffff, 0xffff, true),
108 HOWTO(R_386_8
, 0, 0, 8, false, 0, complain_overflow_bitfield
,
109 bfd_elf_generic_reloc
, "R_386_8",
110 true, 0xff, 0xff, false),
111 HOWTO(R_386_PC8
, 0, 0, 8, true, 0, complain_overflow_signed
,
112 bfd_elf_generic_reloc
, "R_386_PC8",
113 true, 0xff, 0xff, true),
116 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
117 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
119 /* GNU extension to record C++ vtable hierarchy. */
120 HOWTO (R_386_GNU_VTINHERIT
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 false, /* pc_relative */
126 complain_overflow_dont
, /* complain_on_overflow */
127 NULL
, /* special_function */
128 "R_386_GNU_VTINHERIT", /* name */
129 false, /* partial_inplace */
134 /* GNU extension to record C++ vtable member usage. */
135 HOWTO (R_386_GNU_VTENTRY
, /* type */
137 2, /* size (0 = byte, 1 = short, 2 = long) */
139 false, /* pc_relative */
141 complain_overflow_dont
, /* complain_on_overflow */
142 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
143 "R_386_GNU_VTENTRY", /* name */
144 false, /* partial_inplace */
149 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
153 #ifdef DEBUG_GEN_RELOC
154 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
159 static reloc_howto_type
*
160 elf_i386_reloc_type_lookup (abfd
, code
)
161 bfd
*abfd ATTRIBUTE_UNUSED
;
162 bfd_reloc_code_real_type code
;
167 TRACE ("BFD_RELOC_NONE");
168 return &elf_howto_table
[(unsigned int) R_386_NONE
];
171 TRACE ("BFD_RELOC_32");
172 return &elf_howto_table
[(unsigned int) R_386_32
];
175 TRACE ("BFD_RELOC_CTOR");
176 return &elf_howto_table
[(unsigned int) R_386_32
];
178 case BFD_RELOC_32_PCREL
:
179 TRACE ("BFD_RELOC_PC32");
180 return &elf_howto_table
[(unsigned int) R_386_PC32
];
182 case BFD_RELOC_386_GOT32
:
183 TRACE ("BFD_RELOC_386_GOT32");
184 return &elf_howto_table
[(unsigned int) R_386_GOT32
];
186 case BFD_RELOC_386_PLT32
:
187 TRACE ("BFD_RELOC_386_PLT32");
188 return &elf_howto_table
[(unsigned int) R_386_PLT32
];
190 case BFD_RELOC_386_COPY
:
191 TRACE ("BFD_RELOC_386_COPY");
192 return &elf_howto_table
[(unsigned int) R_386_COPY
];
194 case BFD_RELOC_386_GLOB_DAT
:
195 TRACE ("BFD_RELOC_386_GLOB_DAT");
196 return &elf_howto_table
[(unsigned int) R_386_GLOB_DAT
];
198 case BFD_RELOC_386_JUMP_SLOT
:
199 TRACE ("BFD_RELOC_386_JUMP_SLOT");
200 return &elf_howto_table
[(unsigned int) R_386_JUMP_SLOT
];
202 case BFD_RELOC_386_RELATIVE
:
203 TRACE ("BFD_RELOC_386_RELATIVE");
204 return &elf_howto_table
[(unsigned int) R_386_RELATIVE
];
206 case BFD_RELOC_386_GOTOFF
:
207 TRACE ("BFD_RELOC_386_GOTOFF");
208 return &elf_howto_table
[(unsigned int) R_386_GOTOFF
];
210 case BFD_RELOC_386_GOTPC
:
211 TRACE ("BFD_RELOC_386_GOTPC");
212 return &elf_howto_table
[(unsigned int) R_386_GOTPC
];
214 /* The remaining relocs are a GNU extension. */
216 TRACE ("BFD_RELOC_16");
217 return &elf_howto_table
[(unsigned int) R_386_16
- R_386_ext_offset
];
219 case BFD_RELOC_16_PCREL
:
220 TRACE ("BFD_RELOC_16_PCREL");
221 return &elf_howto_table
[(unsigned int) R_386_PC16
- R_386_ext_offset
];
224 TRACE ("BFD_RELOC_8");
225 return &elf_howto_table
[(unsigned int) R_386_8
- R_386_ext_offset
];
227 case BFD_RELOC_8_PCREL
:
228 TRACE ("BFD_RELOC_8_PCREL");
229 return &elf_howto_table
[(unsigned int) R_386_PC8
- R_386_ext_offset
];
231 case BFD_RELOC_VTABLE_INHERIT
:
232 TRACE ("BFD_RELOC_VTABLE_INHERIT");
233 return &elf_howto_table
[(unsigned int) R_386_GNU_VTINHERIT
236 case BFD_RELOC_VTABLE_ENTRY
:
237 TRACE ("BFD_RELOC_VTABLE_ENTRY");
238 return &elf_howto_table
[(unsigned int) R_386_GNU_VTENTRY
250 elf_i386_info_to_howto (abfd
, cache_ptr
, dst
)
251 bfd
*abfd ATTRIBUTE_UNUSED
;
252 arelent
*cache_ptr ATTRIBUTE_UNUSED
;
253 Elf32_Internal_Rela
*dst ATTRIBUTE_UNUSED
;
259 elf_i386_info_to_howto_rel (abfd
, cache_ptr
, dst
)
260 bfd
*abfd ATTRIBUTE_UNUSED
;
262 Elf32_Internal_Rel
*dst
;
264 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
267 if ((indx
= r_type
) >= R_386_standard
268 && ((indx
= r_type
- R_386_ext_offset
) - R_386_standard
269 >= R_386_ext
- R_386_standard
)
270 && ((indx
= r_type
- R_386_vt_offset
) - R_386_ext
271 >= R_386_vt
- R_386_ext
))
273 (*_bfd_error_handler
) (_("%s: invalid relocation type %d"),
274 bfd_get_filename (abfd
), (int) r_type
);
275 indx
= (unsigned int) R_386_NONE
;
277 cache_ptr
->howto
= &elf_howto_table
[indx
];
280 /* Return whether a symbol name implies a local label. The UnixWare
281 2.1 cc generates temporary symbols that start with .X, so we
282 recognize them here. FIXME: do other SVR4 compilers also use .X?.
283 If so, we should move the .X recognition into
284 _bfd_elf_is_local_label_name. */
287 elf_i386_is_local_label_name (abfd
, name
)
291 if (name
[0] == '.' && name
[1] == 'X')
294 return _bfd_elf_is_local_label_name (abfd
, name
);
297 /* Functions for the i386 ELF linker. */
299 /* The name of the dynamic interpreter. This is put in the .interp
302 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
304 /* The size in bytes of an entry in the procedure linkage table. */
306 #define PLT_ENTRY_SIZE 16
308 /* The first entry in an absolute procedure linkage table looks like
309 this. See the SVR4 ABI i386 supplement to see how this works. */
311 static const bfd_byte elf_i386_plt0_entry
[PLT_ENTRY_SIZE
] =
313 0xff, 0x35, /* pushl contents of address */
314 0, 0, 0, 0, /* replaced with address of .got + 4. */
315 0xff, 0x25, /* jmp indirect */
316 0, 0, 0, 0, /* replaced with address of .got + 8. */
317 0, 0, 0, 0 /* pad out to 16 bytes. */
320 /* Subsequent entries in an absolute procedure linkage table look like
323 static const bfd_byte elf_i386_plt_entry
[PLT_ENTRY_SIZE
] =
325 0xff, 0x25, /* jmp indirect */
326 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
327 0x68, /* pushl immediate */
328 0, 0, 0, 0, /* replaced with offset into relocation table. */
329 0xe9, /* jmp relative */
330 0, 0, 0, 0 /* replaced with offset to start of .plt. */
333 /* The first entry in a PIC procedure linkage table look like this. */
335 static const bfd_byte elf_i386_pic_plt0_entry
[PLT_ENTRY_SIZE
] =
337 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
338 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
339 0, 0, 0, 0 /* pad out to 16 bytes. */
342 /* Subsequent entries in a PIC procedure linkage table look like this. */
344 static const bfd_byte elf_i386_pic_plt_entry
[PLT_ENTRY_SIZE
] =
346 0xff, 0xa3, /* jmp *offset(%ebx) */
347 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
348 0x68, /* pushl immediate */
349 0, 0, 0, 0, /* replaced with offset into relocation table. */
350 0xe9, /* jmp relative */
351 0, 0, 0, 0 /* replaced with offset to start of .plt. */
354 /* The i386 linker needs to keep track of the number of relocs that it
355 decides to copy in check_relocs for each symbol. This is so that
356 it can discard PC relative relocs if it doesn't need them when
357 linking with -Bsymbolic. We store the information in a field
358 extending the regular ELF linker hash table. */
360 /* This structure keeps track of the number of PC relative relocs we
361 have copied for a given symbol. */
363 struct elf_i386_pcrel_relocs_copied
366 struct elf_i386_pcrel_relocs_copied
*next
;
367 /* A section in dynobj. */
369 /* Number of relocs copied in this section. */
373 /* i386 ELF linker hash entry. */
375 struct elf_i386_link_hash_entry
377 struct elf_link_hash_entry root
;
379 /* Number of PC relative relocs copied for this symbol. */
380 struct elf_i386_pcrel_relocs_copied
*pcrel_relocs_copied
;
383 /* i386 ELF linker hash table. */
385 struct elf_i386_link_hash_table
387 struct elf_link_hash_table root
;
390 /* Declare this now that the above structures are defined. */
392 static boolean elf_i386_discard_copies
393 PARAMS ((struct elf_i386_link_hash_entry
*, PTR
));
395 /* Traverse an i386 ELF linker hash table. */
397 #define elf_i386_link_hash_traverse(table, func, info) \
398 (elf_link_hash_traverse \
400 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
403 /* Get the i386 ELF linker hash table from a link_info structure. */
405 #define elf_i386_hash_table(p) \
406 ((struct elf_i386_link_hash_table *) ((p)->hash))
408 /* Create an entry in an i386 ELF linker hash table. */
410 static struct bfd_hash_entry
*
411 elf_i386_link_hash_newfunc (entry
, table
, string
)
412 struct bfd_hash_entry
*entry
;
413 struct bfd_hash_table
*table
;
416 struct elf_i386_link_hash_entry
*ret
=
417 (struct elf_i386_link_hash_entry
*) entry
;
419 /* Allocate the structure if it has not already been allocated by a
421 if (ret
== (struct elf_i386_link_hash_entry
*) NULL
)
422 ret
= ((struct elf_i386_link_hash_entry
*)
423 bfd_hash_allocate (table
,
424 sizeof (struct elf_i386_link_hash_entry
)));
425 if (ret
== (struct elf_i386_link_hash_entry
*) NULL
)
426 return (struct bfd_hash_entry
*) ret
;
428 /* Call the allocation method of the superclass. */
429 ret
= ((struct elf_i386_link_hash_entry
*)
430 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
432 if (ret
!= (struct elf_i386_link_hash_entry
*) NULL
)
434 ret
->pcrel_relocs_copied
= NULL
;
437 return (struct bfd_hash_entry
*) ret
;
440 /* Create an i386 ELF linker hash table. */
442 static struct bfd_link_hash_table
*
443 elf_i386_link_hash_table_create (abfd
)
446 struct elf_i386_link_hash_table
*ret
;
448 ret
= ((struct elf_i386_link_hash_table
*)
449 bfd_alloc (abfd
, sizeof (struct elf_i386_link_hash_table
)));
450 if (ret
== (struct elf_i386_link_hash_table
*) NULL
)
453 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
454 elf_i386_link_hash_newfunc
))
456 bfd_release (abfd
, ret
);
460 return &ret
->root
.root
;
463 /* Look through the relocs for a section during the first phase, and
464 allocate space in the global offset table or procedure linkage
468 elf_i386_check_relocs (abfd
, info
, sec
, relocs
)
470 struct bfd_link_info
*info
;
472 const Elf_Internal_Rela
*relocs
;
475 Elf_Internal_Shdr
*symtab_hdr
;
476 struct elf_link_hash_entry
**sym_hashes
;
477 bfd_signed_vma
*local_got_refcounts
;
478 const Elf_Internal_Rela
*rel
;
479 const Elf_Internal_Rela
*rel_end
;
484 if (info
->relocateable
)
487 dynobj
= elf_hash_table (info
)->dynobj
;
488 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
489 sym_hashes
= elf_sym_hashes (abfd
);
490 local_got_refcounts
= elf_local_got_refcounts (abfd
);
496 rel_end
= relocs
+ sec
->reloc_count
;
497 for (rel
= relocs
; rel
< rel_end
; rel
++)
499 unsigned long r_symndx
;
500 struct elf_link_hash_entry
*h
;
502 r_symndx
= ELF32_R_SYM (rel
->r_info
);
504 if (r_symndx
< symtab_hdr
->sh_info
)
507 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
509 /* Some relocs require a global offset table. */
512 switch (ELF32_R_TYPE (rel
->r_info
))
517 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
518 if (! _bfd_elf_create_got_section (dynobj
, info
))
527 switch (ELF32_R_TYPE (rel
->r_info
))
530 /* This symbol requires a global offset table entry. */
534 sgot
= bfd_get_section_by_name (dynobj
, ".got");
535 BFD_ASSERT (sgot
!= NULL
);
539 && (h
!= NULL
|| info
->shared
))
541 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
544 srelgot
= bfd_make_section (dynobj
, ".rel.got");
546 || ! bfd_set_section_flags (dynobj
, srelgot
,
553 || ! bfd_set_section_alignment (dynobj
, srelgot
, 2))
560 if (h
->got
.refcount
== -1)
564 /* Make sure this symbol is output as a dynamic symbol. */
565 if (h
->dynindx
== -1)
567 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
571 sgot
->_raw_size
+= 4;
572 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
575 h
->got
.refcount
+= 1;
579 /* This is a global offset table entry for a local symbol. */
580 if (local_got_refcounts
== NULL
)
584 size
= symtab_hdr
->sh_info
* sizeof (bfd_signed_vma
);
585 local_got_refcounts
= ((bfd_signed_vma
*)
586 bfd_alloc (abfd
, size
));
587 if (local_got_refcounts
== NULL
)
589 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
590 memset (local_got_refcounts
, -1, size
);
592 if (local_got_refcounts
[r_symndx
] == -1)
594 local_got_refcounts
[r_symndx
] = 1;
596 sgot
->_raw_size
+= 4;
599 /* If we are generating a shared object, we need to
600 output a R_386_RELATIVE reloc so that the dynamic
601 linker can adjust this GOT entry. */
602 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
606 local_got_refcounts
[r_symndx
] += 1;
611 /* This symbol requires a procedure linkage table entry. We
612 actually build the entry in adjust_dynamic_symbol,
613 because this might be a case of linking PIC code which is
614 never referenced by a dynamic object, in which case we
615 don't need to generate a procedure linkage table entry
618 /* If this is a local symbol, we resolve it directly without
619 creating a procedure linkage table entry. */
623 if (h
->plt
.refcount
== -1)
626 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
629 h
->plt
.refcount
+= 1;
635 h
->elf_link_hash_flags
|= ELF_LINK_NON_GOT_REF
;
637 /* If we are creating a shared library, and this is a reloc
638 against a global symbol, or a non PC relative reloc
639 against a local symbol, then we need to copy the reloc
640 into the shared library. However, if we are linking with
641 -Bsymbolic, we do not need to copy a reloc against a
642 global symbol which is defined in an object we are
643 including in the link (i.e., DEF_REGULAR is set). At
644 this point we have not seen all the input files, so it is
645 possible that DEF_REGULAR is not set now but will be set
646 later (it is never cleared). We account for that
647 possibility below by storing information in the
648 pcrel_relocs_copied field of the hash table entry.
649 A similar situation occurs when creating shared libraries
650 and symbol visibility changes render the symbol local. */
652 && (sec
->flags
& SEC_ALLOC
) != 0
653 && (ELF32_R_TYPE (rel
->r_info
) != R_386_PC32
656 || (h
->elf_link_hash_flags
657 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
659 /* When creating a shared object, we must copy these
660 reloc types into the output file. We create a reloc
661 section in dynobj and make room for this reloc. */
666 name
= (bfd_elf_string_from_elf_section
668 elf_elfheader (abfd
)->e_shstrndx
,
669 elf_section_data (sec
)->rel_hdr
.sh_name
));
673 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
674 && strcmp (bfd_get_section_name (abfd
, sec
),
677 sreloc
= bfd_get_section_by_name (dynobj
, name
);
682 sreloc
= bfd_make_section (dynobj
, name
);
683 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
684 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
685 if ((sec
->flags
& SEC_ALLOC
) != 0)
686 flags
|= SEC_ALLOC
| SEC_LOAD
;
688 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
689 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
694 sreloc
->_raw_size
+= sizeof (Elf32_External_Rel
);
696 /* If this is a global symbol, we count the number of PC
697 relative relocations we have entered for this symbol,
698 so that we can discard them later as necessary. Note
699 that this function is only called if we are using an
700 elf_i386 linker hash table, which means that h is
701 really a pointer to an elf_i386_link_hash_entry. */
703 && ELF32_R_TYPE (rel
->r_info
) == R_386_PC32
)
705 struct elf_i386_link_hash_entry
*eh
;
706 struct elf_i386_pcrel_relocs_copied
*p
;
708 eh
= (struct elf_i386_link_hash_entry
*) h
;
710 for (p
= eh
->pcrel_relocs_copied
; p
!= NULL
; p
= p
->next
)
711 if (p
->section
== sreloc
)
716 p
= ((struct elf_i386_pcrel_relocs_copied
*)
717 bfd_alloc (dynobj
, sizeof *p
));
720 p
->next
= eh
->pcrel_relocs_copied
;
721 eh
->pcrel_relocs_copied
= p
;
732 /* This relocation describes the C++ object vtable hierarchy.
733 Reconstruct it for later use during GC. */
734 case R_386_GNU_VTINHERIT
:
735 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
739 /* This relocation describes which C++ vtable entries are actually
740 used. Record for later use during GC. */
741 case R_386_GNU_VTENTRY
:
742 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
754 /* Return the section that should be marked against GC for a given
758 elf_i386_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
760 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
761 Elf_Internal_Rela
*rel
;
762 struct elf_link_hash_entry
*h
;
763 Elf_Internal_Sym
*sym
;
767 switch (ELF32_R_TYPE (rel
->r_info
))
769 case R_386_GNU_VTINHERIT
:
770 case R_386_GNU_VTENTRY
:
774 switch (h
->root
.type
)
776 case bfd_link_hash_defined
:
777 case bfd_link_hash_defweak
:
778 return h
->root
.u
.def
.section
;
780 case bfd_link_hash_common
:
781 return h
->root
.u
.c
.p
->section
;
790 if (!(elf_bad_symtab (abfd
)
791 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
792 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
793 && sym
->st_shndx
!= SHN_COMMON
))
795 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
802 /* Update the got entry reference counts for the section being removed. */
805 elf_i386_gc_sweep_hook (abfd
, info
, sec
, relocs
)
807 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
809 const Elf_Internal_Rela
*relocs
;
811 Elf_Internal_Shdr
*symtab_hdr
;
812 struct elf_link_hash_entry
**sym_hashes
;
813 bfd_signed_vma
*local_got_refcounts
;
814 const Elf_Internal_Rela
*rel
, *relend
;
815 unsigned long r_symndx
;
816 struct elf_link_hash_entry
*h
;
821 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
822 sym_hashes
= elf_sym_hashes (abfd
);
823 local_got_refcounts
= elf_local_got_refcounts (abfd
);
825 dynobj
= elf_hash_table (info
)->dynobj
;
829 sgot
= bfd_get_section_by_name (dynobj
, ".got");
830 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
832 relend
= relocs
+ sec
->reloc_count
;
833 for (rel
= relocs
; rel
< relend
; rel
++)
834 switch (ELF32_R_TYPE (rel
->r_info
))
839 r_symndx
= ELF32_R_SYM (rel
->r_info
);
840 if (r_symndx
>= symtab_hdr
->sh_info
)
842 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
843 if (h
->got
.refcount
> 0)
845 h
->got
.refcount
-= 1;
846 if (h
->got
.refcount
== 0)
848 sgot
->_raw_size
-= 4;
849 srelgot
->_raw_size
-= sizeof (Elf32_External_Rel
);
853 else if (local_got_refcounts
!= NULL
)
855 if (local_got_refcounts
[r_symndx
] > 0)
857 local_got_refcounts
[r_symndx
] -= 1;
858 if (local_got_refcounts
[r_symndx
] == 0)
860 sgot
->_raw_size
-= 4;
862 srelgot
->_raw_size
-= sizeof (Elf32_External_Rel
);
869 r_symndx
= ELF32_R_SYM (rel
->r_info
);
870 if (r_symndx
>= symtab_hdr
->sh_info
)
872 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
873 if (h
->plt
.refcount
> 0)
874 h
->plt
.refcount
-= 1;
885 /* Adjust a symbol defined by a dynamic object and referenced by a
886 regular object. The current definition is in some section of the
887 dynamic object, but we're not including those sections. We have to
888 change the definition to something the rest of the link can
892 elf_i386_adjust_dynamic_symbol (info
, h
)
893 struct bfd_link_info
*info
;
894 struct elf_link_hash_entry
*h
;
898 unsigned int power_of_two
;
900 dynobj
= elf_hash_table (info
)->dynobj
;
902 /* Make sure we know what is going on here. */
903 BFD_ASSERT (dynobj
!= NULL
904 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
905 || h
->weakdef
!= NULL
906 || ((h
->elf_link_hash_flags
907 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
908 && (h
->elf_link_hash_flags
909 & ELF_LINK_HASH_REF_REGULAR
) != 0
910 && (h
->elf_link_hash_flags
911 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
913 /* If this is a function, put it in the procedure linkage table. We
914 will fill in the contents of the procedure linkage table later,
915 when we know the address of the .got section. */
916 if (h
->type
== STT_FUNC
917 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
920 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
921 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
922 || (info
->shared
&& h
->plt
.refcount
<= 0))
924 /* This case can occur if we saw a PLT32 reloc in an input
925 file, but the symbol was never referred to by a dynamic
926 object, or if all references were garbage collected. In
927 such a case, we don't actually need to build a procedure
928 linkage table, and we can just do a PC32 reloc instead. */
929 h
->plt
.offset
= (bfd_vma
) -1;
930 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
934 /* Make sure this symbol is output as a dynamic symbol. */
935 if (h
->dynindx
== -1)
937 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
941 s
= bfd_get_section_by_name (dynobj
, ".plt");
942 BFD_ASSERT (s
!= NULL
);
944 /* If this is the first .plt entry, make room for the special
946 if (s
->_raw_size
== 0)
947 s
->_raw_size
+= PLT_ENTRY_SIZE
;
949 /* If this symbol is not defined in a regular file, and we are
950 not generating a shared library, then set the symbol to this
951 location in the .plt. This is required to make function
952 pointers compare as equal between the normal executable and
953 the shared library. */
955 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
957 h
->root
.u
.def
.section
= s
;
958 h
->root
.u
.def
.value
= s
->_raw_size
;
961 h
->plt
.offset
= s
->_raw_size
;
963 /* Make room for this entry. */
964 s
->_raw_size
+= PLT_ENTRY_SIZE
;
966 /* We also need to make an entry in the .got.plt section, which
967 will be placed in the .got section by the linker script. */
968 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
969 BFD_ASSERT (s
!= NULL
);
972 /* We also need to make an entry in the .rel.plt section. */
973 s
= bfd_get_section_by_name (dynobj
, ".rel.plt");
974 BFD_ASSERT (s
!= NULL
);
975 s
->_raw_size
+= sizeof (Elf32_External_Rel
);
980 /* If this is a weak symbol, and there is a real definition, the
981 processor independent code will have arranged for us to see the
982 real definition first, and we can just use the same value. */
983 if (h
->weakdef
!= NULL
)
985 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
986 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
987 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
988 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
992 /* This is a reference to a symbol defined by a dynamic object which
993 is not a function. */
995 /* If we are creating a shared library, we must presume that the
996 only references to the symbol are via the global offset table.
997 For such cases we need not do anything here; the relocations will
998 be handled correctly by relocate_section. */
1002 /* If there are no references to this symbol that do not use the
1003 GOT, we don't need to generate a copy reloc. */
1004 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0)
1007 /* We must allocate the symbol in our .dynbss section, which will
1008 become part of the .bss section of the executable. There will be
1009 an entry for this symbol in the .dynsym section. The dynamic
1010 object will contain position independent code, so all references
1011 from the dynamic object to this symbol will go through the global
1012 offset table. The dynamic linker will use the .dynsym entry to
1013 determine the address it must put in the global offset table, so
1014 both the dynamic object and the regular object will refer to the
1015 same memory location for the variable. */
1017 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1018 BFD_ASSERT (s
!= NULL
);
1020 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1021 copy the initial value out of the dynamic object and into the
1022 runtime process image. We need to remember the offset into the
1023 .rel.bss section we are going to use. */
1024 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1028 srel
= bfd_get_section_by_name (dynobj
, ".rel.bss");
1029 BFD_ASSERT (srel
!= NULL
);
1030 srel
->_raw_size
+= sizeof (Elf32_External_Rel
);
1031 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1034 /* We need to figure out the alignment required for this symbol. I
1035 have no idea how ELF linkers handle this. */
1036 power_of_two
= bfd_log2 (h
->size
);
1037 if (power_of_two
> 3)
1040 /* Apply the required alignment. */
1041 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1042 (bfd_size_type
) (1 << power_of_two
));
1043 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1045 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1049 /* Define the symbol as being at this point in the section. */
1050 h
->root
.u
.def
.section
= s
;
1051 h
->root
.u
.def
.value
= s
->_raw_size
;
1053 /* Increment the section size to make room for the symbol. */
1054 s
->_raw_size
+= h
->size
;
1059 /* Set the sizes of the dynamic sections. */
1062 elf_i386_size_dynamic_sections (output_bfd
, info
)
1064 struct bfd_link_info
*info
;
1072 dynobj
= elf_hash_table (info
)->dynobj
;
1073 BFD_ASSERT (dynobj
!= NULL
);
1075 if (elf_hash_table (info
)->dynamic_sections_created
)
1077 /* Set the contents of the .interp section to the interpreter. */
1080 s
= bfd_get_section_by_name (dynobj
, ".interp");
1081 BFD_ASSERT (s
!= NULL
);
1082 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1083 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1088 /* We may have created entries in the .rel.got section.
1089 However, if we are not creating the dynamic sections, we will
1090 not actually use these entries. Reset the size of .rel.got,
1091 which will cause it to get stripped from the output file
1093 s
= bfd_get_section_by_name (dynobj
, ".rel.got");
1098 /* If this is a -Bsymbolic shared link, then we need to discard all
1099 PC relative relocs against symbols defined in a regular object.
1100 We allocated space for them in the check_relocs routine, but we
1101 will not fill them in in the relocate_section routine. */
1103 elf_i386_link_hash_traverse (elf_i386_hash_table (info
),
1104 elf_i386_discard_copies
,
1107 /* The check_relocs and adjust_dynamic_symbol entry points have
1108 determined the sizes of the various dynamic sections. Allocate
1113 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1118 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1121 /* It's OK to base decisions on the section name, because none
1122 of the dynobj section names depend upon the input files. */
1123 name
= bfd_get_section_name (dynobj
, s
);
1127 if (strcmp (name
, ".plt") == 0)
1129 if (s
->_raw_size
== 0)
1131 /* Strip this section if we don't need it; see the
1137 /* Remember whether there is a PLT. */
1141 else if (strncmp (name
, ".rel", 4) == 0)
1143 if (s
->_raw_size
== 0)
1145 /* If we don't need this section, strip it from the
1146 output file. This is mostly to handle .rel.bss and
1147 .rel.plt. We must create both sections in
1148 create_dynamic_sections, because they must be created
1149 before the linker maps input sections to output
1150 sections. The linker does that before
1151 adjust_dynamic_symbol is called, and it is that
1152 function which decides whether anything needs to go
1153 into these sections. */
1160 /* Remember whether there are any reloc sections other
1162 if (strcmp (name
, ".rel.plt") != 0)
1164 const char *outname
;
1168 /* If this relocation section applies to a read only
1169 section, then we probably need a DT_TEXTREL
1170 entry. The entries in the .rel.plt section
1171 really apply to the .got section, which we
1172 created ourselves and so know is not readonly. */
1173 outname
= bfd_get_section_name (output_bfd
,
1175 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1177 && (target
->flags
& SEC_READONLY
) != 0
1178 && (target
->flags
& SEC_ALLOC
) != 0)
1182 /* We use the reloc_count field as a counter if we need
1183 to copy relocs into the output file. */
1187 else if (strncmp (name
, ".got", 4) != 0)
1189 /* It's not one of our sections, so don't allocate space. */
1195 _bfd_strip_section_from_output (info
, s
);
1199 /* Allocate memory for the section contents. We use bfd_zalloc
1200 here in case unused entries are not reclaimed before the
1201 section's contents are written out. This should not happen,
1202 but this way if it does, we get a R_386_NONE reloc instead
1204 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1205 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1209 if (elf_hash_table (info
)->dynamic_sections_created
)
1211 /* Add some entries to the .dynamic section. We fill in the
1212 values later, in elf_i386_finish_dynamic_sections, but we
1213 must add the entries now so that we get the correct size for
1214 the .dynamic section. The DT_DEBUG entry is filled in by the
1215 dynamic linker and used by the debugger. */
1218 if (! bfd_elf32_add_dynamic_entry (info
, DT_DEBUG
, 0))
1224 if (! bfd_elf32_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1225 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1226 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTREL
, DT_REL
)
1227 || ! bfd_elf32_add_dynamic_entry (info
, DT_JMPREL
, 0))
1233 if (! bfd_elf32_add_dynamic_entry (info
, DT_REL
, 0)
1234 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELSZ
, 0)
1235 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELENT
,
1236 sizeof (Elf32_External_Rel
)))
1242 if (! bfd_elf32_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1244 info
->flags
|= DF_TEXTREL
;
1251 /* This function is called via elf_i386_link_hash_traverse if we are
1252 creating a shared object. In the -Bsymbolic case, it discards the
1253 space allocated to copy PC relative relocs against symbols which
1254 are defined in regular objects. For the normal non-symbolic case,
1255 we also discard space for relocs that have become local due to
1256 symbol visibility changes. We allocated space for them in the
1257 check_relocs routine, but we won't fill them in in the
1258 relocate_section routine. */
1261 elf_i386_discard_copies (h
, inf
)
1262 struct elf_i386_link_hash_entry
*h
;
1265 struct elf_i386_pcrel_relocs_copied
*s
;
1266 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
1268 /* If a symbol has been forced local or we have found a regular
1269 definition for the symbolic link case, then we won't be needing
1271 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1272 && ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0
1275 for (s
= h
->pcrel_relocs_copied
; s
!= NULL
; s
= s
->next
)
1276 s
->section
->_raw_size
-= s
->count
* sizeof (Elf32_External_Rel
);
1282 /* Relocate an i386 ELF section. */
1285 elf_i386_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1286 contents
, relocs
, local_syms
, local_sections
)
1288 struct bfd_link_info
*info
;
1290 asection
*input_section
;
1292 Elf_Internal_Rela
*relocs
;
1293 Elf_Internal_Sym
*local_syms
;
1294 asection
**local_sections
;
1297 Elf_Internal_Shdr
*symtab_hdr
;
1298 struct elf_link_hash_entry
**sym_hashes
;
1299 bfd_vma
*local_got_offsets
;
1303 Elf_Internal_Rela
*rel
;
1304 Elf_Internal_Rela
*relend
;
1306 dynobj
= elf_hash_table (info
)->dynobj
;
1307 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1308 sym_hashes
= elf_sym_hashes (input_bfd
);
1309 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1316 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1317 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1321 relend
= relocs
+ input_section
->reloc_count
;
1322 for (; rel
< relend
; rel
++)
1325 reloc_howto_type
*howto
;
1326 unsigned long r_symndx
;
1327 struct elf_link_hash_entry
*h
;
1328 Elf_Internal_Sym
*sym
;
1331 bfd_reloc_status_type r
;
1334 r_type
= ELF32_R_TYPE (rel
->r_info
);
1335 if (r_type
== (int) R_386_GNU_VTINHERIT
1336 || r_type
== (int) R_386_GNU_VTENTRY
)
1339 if ((indx
= (unsigned) r_type
) >= R_386_standard
1340 && ((indx
= (unsigned) r_type
- R_386_ext_offset
) - R_386_standard
1341 >= R_386_ext
- R_386_standard
))
1343 bfd_set_error (bfd_error_bad_value
);
1346 howto
= elf_howto_table
+ indx
;
1348 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1350 if (info
->relocateable
)
1352 /* This is a relocateable link. We don't have to change
1353 anything, unless the reloc is against a section symbol,
1354 in which case we have to adjust according to where the
1355 section symbol winds up in the output section. */
1356 if (r_symndx
< symtab_hdr
->sh_info
)
1358 sym
= local_syms
+ r_symndx
;
1359 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1363 sec
= local_sections
[r_symndx
];
1364 val
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
1365 val
+= sec
->output_offset
+ sym
->st_value
;
1366 bfd_put_32 (input_bfd
, val
, contents
+ rel
->r_offset
);
1373 /* This is a final link. */
1377 if (r_symndx
< symtab_hdr
->sh_info
)
1379 sym
= local_syms
+ r_symndx
;
1380 sec
= local_sections
[r_symndx
];
1381 relocation
= (sec
->output_section
->vma
1382 + sec
->output_offset
1387 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1388 while (h
->root
.type
== bfd_link_hash_indirect
1389 || h
->root
.type
== bfd_link_hash_warning
)
1390 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1391 if (h
->root
.type
== bfd_link_hash_defined
1392 || h
->root
.type
== bfd_link_hash_defweak
)
1394 sec
= h
->root
.u
.def
.section
;
1395 if (r_type
== R_386_GOTPC
1396 || (r_type
== R_386_PLT32
1398 && h
->plt
.offset
!= (bfd_vma
) -1)
1399 || (r_type
== R_386_GOT32
1400 && elf_hash_table (info
)->dynamic_sections_created
1402 || (! info
->symbolic
&& h
->dynindx
!= -1)
1403 || (h
->elf_link_hash_flags
1404 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
1406 && ((! info
->symbolic
&& h
->dynindx
!= -1)
1407 || (h
->elf_link_hash_flags
1408 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
1409 && (r_type
== R_386_32
1410 || r_type
== R_386_PC32
)
1411 && ((input_section
->flags
& SEC_ALLOC
) != 0
1412 /* DWARF will emit R_386_32 relocations in its
1413 sections against symbols defined externally
1414 in shared libraries. We can't do anything
1416 || ((input_section
->flags
& SEC_DEBUGGING
) != 0
1417 && (h
->elf_link_hash_flags
1418 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0))))
1420 /* In these cases, we don't need the relocation
1421 value. We check specially because in some
1422 obscure cases sec->output_section will be NULL. */
1425 else if (sec
->output_section
== NULL
)
1427 (*_bfd_error_handler
)
1428 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1429 bfd_get_filename (input_bfd
), h
->root
.root
.string
,
1430 bfd_get_section_name (input_bfd
, input_section
));
1434 relocation
= (h
->root
.u
.def
.value
1435 + sec
->output_section
->vma
1436 + sec
->output_offset
);
1438 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1440 else if (info
->shared
&& !info
->symbolic
1441 && !info
->no_undefined
1442 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
1446 if (! ((*info
->callbacks
->undefined_symbol
)
1447 (info
, h
->root
.root
.string
, input_bfd
,
1448 input_section
, rel
->r_offset
,
1449 (!info
->shared
|| info
->no_undefined
1450 || ELF_ST_VISIBILITY (h
->other
)))))
1459 /* Relocation is to the entry for this symbol in the global
1461 BFD_ASSERT (sgot
!= NULL
);
1467 off
= h
->got
.offset
;
1468 BFD_ASSERT (off
!= (bfd_vma
) -1);
1470 if (! elf_hash_table (info
)->dynamic_sections_created
1472 && (info
->symbolic
|| h
->dynindx
== -1)
1473 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1475 /* This is actually a static link, or it is a
1476 -Bsymbolic link and the symbol is defined
1477 locally, or the symbol was forced to be local
1478 because of a version file. We must initialize
1479 this entry in the global offset table. Since the
1480 offset must always be a multiple of 4, we use the
1481 least significant bit to record whether we have
1482 initialized it already.
1484 When doing a dynamic link, we create a .rel.got
1485 relocation entry to initialize the value. This
1486 is done in the finish_dynamic_symbol routine. */
1491 bfd_put_32 (output_bfd
, relocation
,
1492 sgot
->contents
+ off
);
1497 relocation
= sgot
->output_offset
+ off
;
1503 BFD_ASSERT (local_got_offsets
!= NULL
1504 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1506 off
= local_got_offsets
[r_symndx
];
1508 /* The offset must always be a multiple of 4. We use
1509 the least significant bit to record whether we have
1510 already generated the necessary reloc. */
1515 bfd_put_32 (output_bfd
, relocation
, sgot
->contents
+ off
);
1520 Elf_Internal_Rel outrel
;
1522 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
1523 BFD_ASSERT (srelgot
!= NULL
);
1525 outrel
.r_offset
= (sgot
->output_section
->vma
1526 + sgot
->output_offset
1528 outrel
.r_info
= ELF32_R_INFO (0, R_386_RELATIVE
);
1529 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1530 (((Elf32_External_Rel
*)
1532 + srelgot
->reloc_count
));
1533 ++srelgot
->reloc_count
;
1536 local_got_offsets
[r_symndx
] |= 1;
1539 relocation
= sgot
->output_offset
+ off
;
1545 /* Relocation is relative to the start of the global offset
1550 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1551 BFD_ASSERT (sgot
!= NULL
);
1554 /* Note that sgot->output_offset is not involved in this
1555 calculation. We always want the start of .got. If we
1556 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1557 permitted by the ABI, we might have to change this
1559 relocation
-= sgot
->output_section
->vma
;
1564 /* Use global offset table as symbol value. */
1568 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1569 BFD_ASSERT (sgot
!= NULL
);
1572 relocation
= sgot
->output_section
->vma
;
1577 /* Relocation is to the entry for this symbol in the
1578 procedure linkage table. */
1580 /* Resolve a PLT32 reloc against a local symbol directly,
1581 without using the procedure linkage table. */
1585 if (h
->plt
.offset
== (bfd_vma
) -1
1588 /* We didn't make a PLT entry for this symbol. This
1589 happens when statically linking PIC code, or when
1590 using -Bsymbolic. */
1594 relocation
= (splt
->output_section
->vma
1595 + splt
->output_offset
1603 && (input_section
->flags
& SEC_ALLOC
) != 0
1604 && (r_type
!= R_386_PC32
1607 && (! info
->symbolic
1608 || (h
->elf_link_hash_flags
1609 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1611 Elf_Internal_Rel outrel
;
1612 boolean skip
, relocate
;
1614 /* When generating a shared object, these relocations
1615 are copied into the output file to be resolved at run
1622 name
= (bfd_elf_string_from_elf_section
1624 elf_elfheader (input_bfd
)->e_shstrndx
,
1625 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1629 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
1630 && strcmp (bfd_get_section_name (input_bfd
,
1634 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1635 BFD_ASSERT (sreloc
!= NULL
);
1640 if (elf_section_data (input_section
)->stab_info
== NULL
)
1641 outrel
.r_offset
= rel
->r_offset
;
1646 off
= (_bfd_stab_section_offset
1647 (output_bfd
, &elf_hash_table (info
)->stab_info
,
1649 &elf_section_data (input_section
)->stab_info
,
1651 if (off
== (bfd_vma
) -1)
1653 outrel
.r_offset
= off
;
1656 outrel
.r_offset
+= (input_section
->output_section
->vma
1657 + input_section
->output_offset
);
1661 memset (&outrel
, 0, sizeof outrel
);
1664 else if (r_type
== R_386_PC32
)
1666 BFD_ASSERT (h
!= NULL
&& h
->dynindx
!= -1);
1668 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_PC32
);
1672 /* h->dynindx may be -1 if this symbol was marked to
1675 || ((info
->symbolic
|| h
->dynindx
== -1)
1676 && (h
->elf_link_hash_flags
1677 & ELF_LINK_HASH_DEF_REGULAR
) != 0))
1680 outrel
.r_info
= ELF32_R_INFO (0, R_386_RELATIVE
);
1684 BFD_ASSERT (h
->dynindx
!= -1);
1686 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_32
);
1690 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1691 (((Elf32_External_Rel
*)
1693 + sreloc
->reloc_count
));
1694 ++sreloc
->reloc_count
;
1696 /* If this reloc is against an external symbol, we do
1697 not want to fiddle with the addend. Otherwise, we
1698 need to include the symbol value so that it becomes
1699 an addend for the dynamic reloc. */
1710 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1711 contents
, rel
->r_offset
,
1712 relocation
, (bfd_vma
) 0);
1714 if (r
!= bfd_reloc_ok
)
1719 case bfd_reloc_outofrange
:
1721 case bfd_reloc_overflow
:
1726 name
= h
->root
.root
.string
;
1729 name
= bfd_elf_string_from_elf_section (input_bfd
,
1730 symtab_hdr
->sh_link
,
1735 name
= bfd_section_name (input_bfd
, sec
);
1737 if (! ((*info
->callbacks
->reloc_overflow
)
1738 (info
, name
, howto
->name
, (bfd_vma
) 0,
1739 input_bfd
, input_section
, rel
->r_offset
)))
1750 /* Finish up dynamic symbol handling. We set the contents of various
1751 dynamic sections here. */
1754 elf_i386_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1756 struct bfd_link_info
*info
;
1757 struct elf_link_hash_entry
*h
;
1758 Elf_Internal_Sym
*sym
;
1762 dynobj
= elf_hash_table (info
)->dynobj
;
1764 if (h
->plt
.offset
!= (bfd_vma
) -1)
1771 Elf_Internal_Rel rel
;
1773 /* This symbol has an entry in the procedure linkage table. Set
1776 BFD_ASSERT (h
->dynindx
!= -1);
1778 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1779 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
1780 srel
= bfd_get_section_by_name (dynobj
, ".rel.plt");
1781 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
1783 /* Get the index in the procedure linkage table which
1784 corresponds to this symbol. This is the index of this symbol
1785 in all the symbols for which we are making plt entries. The
1786 first entry in the procedure linkage table is reserved. */
1787 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
1789 /* Get the offset into the .got table of the entry that
1790 corresponds to this function. Each .got entry is 4 bytes.
1791 The first three are reserved. */
1792 got_offset
= (plt_index
+ 3) * 4;
1794 /* Fill in the entry in the procedure linkage table. */
1797 memcpy (splt
->contents
+ h
->plt
.offset
, elf_i386_plt_entry
,
1799 bfd_put_32 (output_bfd
,
1800 (sgot
->output_section
->vma
1801 + sgot
->output_offset
1803 splt
->contents
+ h
->plt
.offset
+ 2);
1807 memcpy (splt
->contents
+ h
->plt
.offset
, elf_i386_pic_plt_entry
,
1809 bfd_put_32 (output_bfd
, got_offset
,
1810 splt
->contents
+ h
->plt
.offset
+ 2);
1813 bfd_put_32 (output_bfd
, plt_index
* sizeof (Elf32_External_Rel
),
1814 splt
->contents
+ h
->plt
.offset
+ 7);
1815 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
1816 splt
->contents
+ h
->plt
.offset
+ 12);
1818 /* Fill in the entry in the global offset table. */
1819 bfd_put_32 (output_bfd
,
1820 (splt
->output_section
->vma
1821 + splt
->output_offset
1824 sgot
->contents
+ got_offset
);
1826 /* Fill in the entry in the .rel.plt section. */
1827 rel
.r_offset
= (sgot
->output_section
->vma
1828 + sgot
->output_offset
1830 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_JUMP_SLOT
);
1831 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
1832 ((Elf32_External_Rel
*) srel
->contents
1835 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1837 /* Mark the symbol as undefined, rather than as defined in
1838 the .plt section. Leave the value alone. */
1839 sym
->st_shndx
= SHN_UNDEF
;
1843 if (h
->got
.offset
!= (bfd_vma
) -1)
1847 Elf_Internal_Rel rel
;
1849 /* This symbol has an entry in the global offset table. Set it
1852 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1853 srel
= bfd_get_section_by_name (dynobj
, ".rel.got");
1854 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
1856 rel
.r_offset
= (sgot
->output_section
->vma
1857 + sgot
->output_offset
1858 + (h
->got
.offset
&~ 1));
1860 /* If this is a static link, or it is a -Bsymbolic link and the
1861 symbol is defined locally or was forced to be local because
1862 of a version file, we just want to emit a RELATIVE reloc.
1863 The entry in the global offset table will already have been
1864 initialized in the relocate_section function. */
1865 if (! elf_hash_table (info
)->dynamic_sections_created
1867 && (info
->symbolic
|| h
->dynindx
== -1)
1868 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1870 rel
.r_info
= ELF32_R_INFO (0, R_386_RELATIVE
);
1874 BFD_ASSERT((h
->got
.offset
& 1) == 0);
1875 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
1876 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_GLOB_DAT
);
1879 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
1880 ((Elf32_External_Rel
*) srel
->contents
1881 + srel
->reloc_count
));
1882 ++srel
->reloc_count
;
1885 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
1888 Elf_Internal_Rel rel
;
1890 /* This symbol needs a copy reloc. Set it up. */
1892 BFD_ASSERT (h
->dynindx
!= -1
1893 && (h
->root
.type
== bfd_link_hash_defined
1894 || h
->root
.type
== bfd_link_hash_defweak
));
1896 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
1898 BFD_ASSERT (s
!= NULL
);
1900 rel
.r_offset
= (h
->root
.u
.def
.value
1901 + h
->root
.u
.def
.section
->output_section
->vma
1902 + h
->root
.u
.def
.section
->output_offset
);
1903 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_COPY
);
1904 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
1905 ((Elf32_External_Rel
*) s
->contents
1910 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1911 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
1912 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1913 sym
->st_shndx
= SHN_ABS
;
1918 /* Finish up the dynamic sections. */
1921 elf_i386_finish_dynamic_sections (output_bfd
, info
)
1923 struct bfd_link_info
*info
;
1929 dynobj
= elf_hash_table (info
)->dynobj
;
1931 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
1932 BFD_ASSERT (sgot
!= NULL
);
1933 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
1935 if (elf_hash_table (info
)->dynamic_sections_created
)
1938 Elf32_External_Dyn
*dyncon
, *dynconend
;
1940 BFD_ASSERT (sdyn
!= NULL
);
1942 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
1943 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
1944 for (; dyncon
< dynconend
; dyncon
++)
1946 Elf_Internal_Dyn dyn
;
1950 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
1963 s
= bfd_get_section_by_name (output_bfd
, name
);
1964 BFD_ASSERT (s
!= NULL
);
1965 dyn
.d_un
.d_ptr
= s
->vma
;
1966 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
1970 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
1971 BFD_ASSERT (s
!= NULL
);
1972 if (s
->_cooked_size
!= 0)
1973 dyn
.d_un
.d_val
= s
->_cooked_size
;
1975 dyn
.d_un
.d_val
= s
->_raw_size
;
1976 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
1980 /* My reading of the SVR4 ABI indicates that the
1981 procedure linkage table relocs (DT_JMPREL) should be
1982 included in the overall relocs (DT_REL). This is
1983 what Solaris does. However, UnixWare can not handle
1984 that case. Therefore, we override the DT_RELSZ entry
1985 here to make it not include the JMPREL relocs. Since
1986 the linker script arranges for .rel.plt to follow all
1987 other relocation sections, we don't have to worry
1988 about changing the DT_REL entry. */
1989 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
1992 if (s
->_cooked_size
!= 0)
1993 dyn
.d_un
.d_val
-= s
->_cooked_size
;
1995 dyn
.d_un
.d_val
-= s
->_raw_size
;
1997 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2002 /* Fill in the first entry in the procedure linkage table. */
2003 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2004 if (splt
&& splt
->_raw_size
> 0)
2007 memcpy (splt
->contents
, elf_i386_pic_plt0_entry
, PLT_ENTRY_SIZE
);
2010 memcpy (splt
->contents
, elf_i386_plt0_entry
, PLT_ENTRY_SIZE
);
2011 bfd_put_32 (output_bfd
,
2012 sgot
->output_section
->vma
+ sgot
->output_offset
+ 4,
2013 splt
->contents
+ 2);
2014 bfd_put_32 (output_bfd
,
2015 sgot
->output_section
->vma
+ sgot
->output_offset
+ 8,
2016 splt
->contents
+ 8);
2019 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2020 really seem like the right value. */
2021 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
2025 /* Fill in the first three entries in the global offset table. */
2026 if (sgot
->_raw_size
> 0)
2029 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2031 bfd_put_32 (output_bfd
,
2032 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2034 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
2035 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
2038 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
2043 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2044 #define TARGET_LITTLE_NAME "elf32-i386"
2045 #define ELF_ARCH bfd_arch_i386
2046 #define ELF_MACHINE_CODE EM_386
2047 #define ELF_MAXPAGESIZE 0x1000
2049 #define elf_backend_can_gc_sections 1
2050 #define elf_backend_want_got_plt 1
2051 #define elf_backend_plt_readonly 1
2052 #define elf_backend_want_plt_sym 0
2053 #define elf_backend_got_header_size 12
2054 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2056 #define elf_info_to_howto elf_i386_info_to_howto
2057 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2059 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2060 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2061 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2062 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2064 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2065 #define elf_backend_check_relocs elf_i386_check_relocs
2066 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2067 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2068 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2069 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2070 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2071 #define elf_backend_relocate_section elf_i386_relocate_section
2072 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2074 #include "elf32-target.h"