1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian
>
61 class Output_data_plt_arm
;
63 template<bool big_endian
>
66 template<bool big_endian
>
67 class Arm_input_section
;
69 class Arm_exidx_cantunwind
;
71 class Arm_exidx_merged_section
;
73 class Arm_exidx_fixup
;
75 template<bool big_endian
>
76 class Arm_output_section
;
78 class Arm_exidx_input_section
;
80 template<bool big_endian
>
83 template<bool big_endian
>
84 class Arm_relocate_functions
;
86 template<bool big_endian
>
87 class Arm_output_data_got
;
89 template<bool big_endian
>
93 typedef elfcpp::Elf_types
<32>::Elf_Addr Arm_address
;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET
= ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET
= ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET
= ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET
= (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET
= (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET
= (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE
= 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table
* arm_reloc_property_table
= NULL
;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE
,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data
)
155 { return Insn_template(data
, THUMB16_TYPE
, elfcpp::R_ARM_NONE
, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data
)
161 { return Insn_template(data
, THUMB16_SPECIAL_TYPE
, elfcpp::R_ARM_NONE
, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data
)
165 { return Insn_template(data
, THUMB32_TYPE
, elfcpp::R_ARM_NONE
, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data
, int reloc_addend
)
170 return Insn_template(data
, THUMB32_TYPE
, elfcpp::R_ARM_THM_JUMP24
,
174 static const Insn_template
175 arm_insn(uint32_t data
)
176 { return Insn_template(data
, ARM_TYPE
, elfcpp::R_ARM_NONE
, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data
, int reloc_addend
)
180 { return Insn_template(data
, ARM_TYPE
, elfcpp::R_ARM_JUMP24
, reloc_addend
); }
182 static const Insn_template
183 data_word(unsigned data
, unsigned int r_type
, int reloc_addend
)
184 { return Insn_template(data
, DATA_TYPE
, r_type
, reloc_addend
); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_
; }
193 // Return the instruction sequence type of this.
196 { return this->type_
; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_
; }
205 { return this->reloc_addend_
; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data
, Type type
, unsigned int r_type
, int reloc_addend
)
220 : data_(data
), type_(type
), r_type_(r_type
), reloc_addend_(reloc_addend
)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_
;
230 // Relocation addend.
231 int32_t reloc_addend_
;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first
= arm_stub_long_branch_any_any
,
266 // Last reloc stub type.
267 arm_stub_reloc_last
= arm_stub_long_branch_thumb_only_pic
,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first
= arm_stub_a8_veneer_b_cond
,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last
= arm_stub_a8_veneer_blx
,
275 arm_stub_type_last
= arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type
, const Insn_template
*, size_t);
294 { return this->type_
; }
296 // Return an array of instruction templates.
299 { return this->insns_
; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_
; }
306 // Return size of template in bytes.
309 { return this->size_
; }
311 // Return alignment of the stub template.
314 { return this->alignment_
; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_
; }
321 // Return number of relocations in this template.
324 { return this->relocs_
.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i
) const
330 gold_assert(i
< this->relocs_
.size());
331 return this->relocs_
[i
].first
;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i
) const
339 gold_assert(i
< this->relocs_
.size());
340 return this->relocs_
[i
].second
;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair
<size_t, section_size_type
> Reloc
;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template
&);
351 Stub_template
& operator=(const Stub_template
&);
355 // Points to an array of Insn_templates.
356 const Insn_template
* insns_
;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_
;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector
<Reloc
> relocs_
;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset
=
380 static_cast<section_offset_type
>(-1);
383 Stub(const Stub_template
* stub_template
)
384 : stub_template_(stub_template
), offset_(invalid_offset
)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_
; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_
!= invalid_offset
);
401 return this->offset_
;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset
)
407 { this->offset_
= offset
; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i
)
413 { return this->do_reloc_target(i
); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
418 { this->do_write(view
, view_size
, big_endian
); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i
)
424 { return this->do_thumb16_special(i
); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
436 this->do_fixed_endian_write
<true>(view
, view_size
);
438 this->do_fixed_endian_write
<false>(view
, view_size
);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian
>
451 do_fixed_endian_write(unsigned char*, section_size_type
);
454 const Stub_template
* stub_template_
;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_
;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub
: public Stub
465 static const unsigned int invalid_index
= static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address
= static_cast<Arm_address
>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_
!= this->invalid_address
);
474 return this->destination_address_
;
477 // Set destination address.
479 set_destination_address(Arm_address address
)
481 gold_assert(address
!= this->invalid_address
);
482 this->destination_address_
= address
;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_
= this->invalid_address
; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type
, Arm_address branch_address
,
496 Arm_address branch_target
, bool target_is_thumb
);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type
, const Symbol
* symbol
, const Relobj
* relobj
,
509 unsigned int r_sym
, int32_t addend
)
510 : stub_type_(stub_type
), addend_(addend
)
514 this->r_sym_
= Reloc_stub::invalid_index
;
515 this->u_
.symbol
= symbol
;
519 gold_assert(relobj
!= NULL
&& r_sym
!= invalid_index
);
520 this->r_sym_
= r_sym
;
521 this->u_
.relobj
= relobj
;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_
; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_
; }
541 // Return the symbol if there is one.
544 { return this->r_sym_
== invalid_index
? this->u_
.symbol
: NULL
; }
546 // Return the relobj if there is one.
549 { return this->r_sym_
!= invalid_index
? this->u_
.relobj
: NULL
; }
551 // Whether this equals to another key k.
553 eq(const Key
& k
) const
555 return ((this->stub_type_
== k
.stub_type_
)
556 && (this->r_sym_
== k
.r_sym_
)
557 && ((this->r_sym_
!= Reloc_stub::invalid_index
)
558 ? (this->u_
.relobj
== k
.u_
.relobj
)
559 : (this->u_
.symbol
== k
.u_
.symbol
))
560 && (this->addend_
== k
.addend_
));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash
<char>(
570 (this->r_sym_
!= Reloc_stub::invalid_index
)
571 ? this->u_
.relobj
->name().c_str()
572 : this->u_
.symbol
->name())
576 // Functors for STL associative containers.
580 operator()(const Key
& k
) const
581 { return k
.hash_value(); }
587 operator()(const Key
& k1
, const Key
& k2
) const
588 { return k1
.eq(k2
); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_
;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol
* symbol
;
610 const Relobj
* relobj
;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template
* stub_template
)
619 : Stub(stub_template
), destination_address_(invalid_address
)
625 friend class Stub_factory
;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i
)
632 // All reloc stub have only one relocation.
634 return this->destination_address_
;
638 // Address of destination.
639 Arm_address destination_address_
;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub
: public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_
; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_
; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_
; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_
; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_
; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template
* stub_template
, Relobj
* relobj
,
701 unsigned int shndx
, Arm_address source_address
,
702 Arm_address destination_address
, uint32_t original_insn
)
703 : Stub(stub_template
), relobj_(relobj
), shndx_(shndx
),
704 source_address_(source_address
| 1U),
705 destination_address_(destination_address
),
706 original_insn_(original_insn
)
709 friend class Stub_factory
;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i
)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond
)
718 // The conditional branch veneer has two relocations.
720 return i
== 0 ? this->source_address_
+ 4 : this->destination_address_
;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_
;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_
;
741 // Destination address of the original branch.
742 Arm_address destination_address_
;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_
;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub
: public Stub
755 // Return the associated register.
758 { return this->reg_
; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template
* stub_template
, const uint32_t reg
)
763 : Stub(stub_template
), reg_(reg
)
766 friend class Stub_factory
;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
779 this->do_fixed_endian_v4bx_write
<true>(view
, view_size
);
781 this->do_fixed_endian_v4bx_write
<false>(view
, view_size
);
785 // A template to implement do_write.
786 template<bool big_endian
>
788 do_fixed_endian_v4bx_write(unsigned char* view
, section_size_type
)
790 const Insn_template
* insns
= this->stub_template()->insns();
791 elfcpp::Swap
<32, big_endian
>::writeval(view
,
793 + (this->reg_
<< 16)));
794 view
+= insns
[0].size();
795 elfcpp::Swap
<32, big_endian
>::writeval(view
,
796 (insns
[1].data() + this->reg_
));
797 view
+= insns
[1].size();
798 elfcpp::Swap
<32, big_endian
>::writeval(view
,
799 (insns
[2].data() + this->reg_
));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory
&
815 static Stub_factory singleton
;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type
) const
823 gold_assert(stub_type
>= arm_stub_reloc_first
824 && stub_type
<= arm_stub_reloc_last
);
825 return new Reloc_stub(this->stub_templates_
[stub_type
]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type
, Relobj
* relobj
, unsigned int shndx
,
831 Arm_address source
, Arm_address destination
,
832 uint32_t original_insn
) const
834 gold_assert(stub_type
>= arm_stub_cortex_a8_first
835 && stub_type
<= arm_stub_cortex_a8_last
);
836 return new Cortex_a8_stub(this->stub_templates_
[stub_type
], relobj
, shndx
,
837 source
, destination
, original_insn
);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg
) const
845 gold_assert(reg
< 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_
[arm_stub_v4_veneer_bx
],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory
&);
858 Stub_factory
& operator=(Stub_factory
&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template
* stub_templates_
[arm_stub_type_last
+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian
>
867 class Stub_table
: public Output_data
870 Stub_table(Arm_input_section
<big_endian
>* owner
)
871 : Output_data(), owner_(owner
), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section
<big_endian
>*
882 { return this->owner_
; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_
.empty()
889 && this->cortex_a8_stubs_
.empty()
890 && this->arm_v4bx_stubs_
.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
901 add_reloc_stub(Reloc_stub
* stub
, const Reloc_stub::Key
& key
)
903 const Stub_template
* stub_template
= stub
->stub_template();
904 gold_assert(stub_template
->type() == key
.stub_type());
905 this->reloc_stubs_
[key
] = stub
;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align
= stub_template
->alignment();
910 this->reloc_stubs_size_
= align_address(this->reloc_stubs_size_
, align
);
911 stub
->set_offset(this->reloc_stubs_size_
);
912 this->reloc_stubs_size_
+= stub_template
->size();
913 this->reloc_stubs_addralign_
=
914 std::max(this->reloc_stubs_addralign_
, align
);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
921 add_cortex_a8_stub(Arm_address address
, Cortex_a8_stub
* stub
)
923 std::pair
<Arm_address
, Cortex_a8_stub
*> value(address
, stub
);
924 this->cortex_a8_stubs_
.insert(value
);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub
* stub
)
932 gold_assert(stub
!= NULL
&& this->arm_v4bx_stubs_
[stub
->reg()] == NULL
);
933 this->arm_v4bx_stubs_
[stub
->reg()] = stub
;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key
& key
) const
944 typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.find(key
);
945 return (p
!= this->reloc_stubs_
.end()) ? p
->second
: NULL
;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg
) const
953 gold_assert(reg
< 0xf);
954 return this->arm_v4bx_stubs_
[reg
];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info
<32, big_endian
>*,
960 Target_arm
<big_endian
>*, Output_section
*,
961 unsigned char*, Arm_address
, section_size_type
);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm
<big_endian
>*,
977 unsigned char*, Arm_address
,
981 // Write out section contents.
983 do_write(Output_file
*);
985 // Return the required alignment.
988 { return this->prev_addralign_
; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_
); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub
*, const Relocate_info
<32, big_endian
>*,
1004 Target_arm
<big_endian
>*, Output_section
*,
1005 unsigned char*, Arm_address
, section_size_type
);
1007 // Unordered map of relocation stubs.
1009 Unordered_map
<Reloc_stub::Key
, Reloc_stub
*, Reloc_stub::Key::hash
,
1010 Reloc_stub::Key::equal_to
>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map
<Arm_address
, Cortex_a8_stub
*> Cortex_a8_stub_list
;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector
<Arm_v4bx_stub
*> Arm_v4bx_stub_list
;
1019 // Owner of this stub table.
1020 Arm_input_section
<big_endian
>* owner_
;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_
;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_
;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_
;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_
;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_
;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_
;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_
;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind
: public Output_section_data
1043 Arm_exidx_cantunwind(Relobj
* relobj
, unsigned int shndx
)
1044 : Output_section_data(8, 4, true), relobj_(relobj
), shndx_(shndx
)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_
; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_
; }
1059 do_write(Output_file
* of
)
1061 if (parameters
->target().is_big_endian())
1062 this->do_fixed_endian_write
<true>(of
);
1064 this->do_fixed_endian_write
<false>(of
);
1067 // Write to a map file.
1069 do_print_to_mapfile(Mapfile
* mapfile
) const
1070 { mapfile
->print_output_data(this, _("** ARM cantunwind")); }
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian
>
1076 do_fixed_endian_write(Output_file
*);
1078 // The object containing the section pointed by this.
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_
;
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1088 typedef std::map
<section_offset_type
, section_offset_type
>
1089 Arm_exidx_section_offset_map
;
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1094 class Arm_exidx_merged_section
: public Output_relaxed_input_section
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section
& exidx_input_section
,
1104 const Arm_exidx_section_offset_map
& section_offset_map
,
1105 uint32_t deleted_bytes
);
1107 // Build output contents.
1109 build_contents(const unsigned char*, section_size_type
);
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section
&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_
; }
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map
&
1118 section_offset_map() const
1119 { return this->section_offset_map_
; }
1122 // Write merged section into file OF.
1124 do_write(Output_file
* of
);
1127 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
1128 section_offset_type
*) const;
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section
& exidx_input_section_
;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map
& section_offset_map_
;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_
;
1141 // A class to wrap an ordinary input section containing executable code.
1143 template<bool big_endian
>
1144 class Arm_input_section
: public Output_relaxed_input_section
1147 Arm_input_section(Relobj
* relobj
, unsigned int shndx
)
1148 : Output_relaxed_input_section(relobj
, shndx
, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL
),
1150 original_contents_(NULL
)
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_
; }
1160 // Whether this is a stub table owner.
1162 is_stub_table_owner() const
1163 { return this->stub_table_
!= NULL
&& this->stub_table_
->owner() == this; }
1165 // Return the stub table.
1166 Stub_table
<big_endian
>*
1168 { return this->stub_table_
; }
1170 // Set the stub_table.
1172 set_stub_table(Stub_table
<big_endian
>* stub_table
)
1173 { this->stub_table_
= stub_table
; }
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section
<big_endian
>*
1178 as_arm_input_section(Output_relaxed_input_section
* poris
)
1179 { return static_cast<Arm_input_section
<big_endian
>*>(poris
); }
1181 // Return the original size of the section.
1183 original_size() const
1184 { return this->original_size_
; }
1187 // Write data to output file.
1189 do_write(Output_file
*);
1191 // Return required alignment of this.
1193 do_addralign() const
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_
->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_
));
1199 return this->original_addralign_
;
1202 // Finalize data size.
1204 set_final_data_size();
1206 // Reset address and file offset.
1208 do_reset_address_and_file_offset();
1212 do_output_offset(const Relobj
* object
, unsigned int shndx
,
1213 section_offset_type offset
,
1214 section_offset_type
* poutput
) const
1216 if ((object
== this->relobj())
1217 && (shndx
== this->shndx())
1220 convert_types
<section_offset_type
, uint32_t>(this->original_size_
)))
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section
&);
1232 Arm_input_section
& operator=(const Arm_input_section
&);
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_
;
1236 // Section size of the original input section.
1237 uint32_t original_size_
;
1239 Stub_table
<big_endian
>* stub_table_
;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1243 unsigned char* original_contents_
;
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1249 class Arm_exidx_fixup
1252 Arm_exidx_fixup(Output_section
* exidx_output_section
,
1253 bool merge_exidx_entries
= true)
1254 : exidx_output_section_(exidx_output_section
), last_unwind_type_(UT_NONE
),
1255 last_inlined_entry_(0), last_input_section_(NULL
),
1256 section_offset_map_(NULL
), first_output_text_section_(NULL
),
1257 merge_exidx_entries_(merge_exidx_entries
)
1261 { delete this->section_offset_map_
; }
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian
>
1271 process_exidx_section(const Arm_exidx_input_section
* exidx_input_section
,
1272 const unsigned char* section_contents
,
1273 section_size_type section_size
,
1274 Arm_exidx_section_offset_map
** psection_offset_map
);
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1279 add_exidx_cantunwind_as_needed();
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1284 first_output_text_section() const
1285 { return this->first_output_text_section_
; }
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup
&);
1290 Arm_exidx_fixup
& operator=(const Arm_exidx_fixup
&);
1292 // Type of EXIDX unwind entry.
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND
,
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1308 process_exidx_entry(uint32_t second_word
);
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1316 update_offset_map(section_offset_type input_offset
,
1317 section_size_type deleted_bytes
, bool delete_entry
);
1319 // EXIDX output section.
1320 Output_section
* exidx_output_section_
;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_
;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_
;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section
* last_input_section_
;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map
* section_offset_map_
;
1329 // Output section for the text section which is linked to the first exidx
1331 Output_section
* first_output_text_section_
;
1333 bool merge_exidx_entries_
;
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1339 template<bool big_endian
>
1340 class Arm_output_section
: public Output_section
1343 typedef std::vector
<std::pair
<Relobj
*, unsigned int> > Text_section_list
;
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name
, elfcpp::Elf_Word type
,
1347 elfcpp::Elf_Xword flags
)
1348 : Output_section(name
, type
,
1349 (type
== elfcpp::SHT_ARM_EXIDX
1350 ? flags
| elfcpp::SHF_LINK_ORDER
1353 if (type
== elfcpp::SHT_ARM_EXIDX
)
1354 this->set_always_keeps_input_sections();
1357 ~Arm_output_section()
1360 // Group input sections for stub generation.
1362 group_sections(section_size_type
, bool, Target_arm
<big_endian
>*, const Task
*);
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section
<big_endian
>*
1367 as_arm_output_section(Output_section
* os
)
1368 { return static_cast<Arm_output_section
<big_endian
>*>(os
); }
1370 // Append all input text sections in this into LIST.
1372 append_text_sections_to_list(Text_section_list
* list
);
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1378 fix_exidx_coverage(Layout
* layout
,
1379 const Text_section_list
& sorted_text_section
,
1380 Symbol_table
* symtab
,
1381 bool merge_exidx_entries
,
1384 // Link an EXIDX section into its corresponding text section.
1386 set_exidx_section_link();
1390 typedef Output_section::Input_section Input_section
;
1391 typedef Output_section::Input_section_list Input_section_list
;
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator
,
1395 Input_section_list::const_iterator
,
1396 Input_section_list::const_iterator
,
1397 Target_arm
<big_endian
>*,
1398 std::vector
<Output_relaxed_input_section
*>*,
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1404 class Arm_exidx_input_section
1407 static const section_offset_type invalid_offset
=
1408 static_cast<section_offset_type
>(-1);
1410 Arm_exidx_input_section(Relobj
* relobj
, unsigned int shndx
,
1411 unsigned int link
, uint32_t size
,
1412 uint32_t addralign
, uint32_t text_size
)
1413 : relobj_(relobj
), shndx_(shndx
), link_(link
), size_(size
),
1414 addralign_(addralign
), text_size_(text_size
), has_errors_(false)
1417 ~Arm_exidx_input_section()
1420 // Accessors: This is a read-only class.
1422 // Return the object containing this EXIDX input section.
1425 { return this->relobj_
; }
1427 // Return the section index of this EXIDX input section.
1430 { return this->shndx_
; }
1432 // Return the section index of linked text section in the same object.
1435 { return this->link_
; }
1437 // Return size of the EXIDX input section.
1440 { return this->size_
; }
1442 // Return address alignment of EXIDX input section.
1445 { return this->addralign_
; }
1447 // Return size of the associated text input section.
1450 { return this->text_size_
; }
1452 // Whether there are any errors in the EXIDX input section.
1455 { return this->has_errors_
; }
1457 // Set has-errors flag.
1460 { this->has_errors_
= true; }
1463 // Object containing this.
1465 // Section index of this.
1466 unsigned int shndx_
;
1467 // text section linked to this in the same object.
1469 // Size of this. For ARM 32-bit is sufficient.
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_
;
1473 // Size of associated text section.
1474 uint32_t text_size_
;
1475 // Whether this has any errors.
1479 // Arm_relobj class.
1481 template<bool big_endian
>
1482 class Arm_relobj
: public Sized_relobj_file
<32, big_endian
>
1485 static const Arm_address invalid_address
= static_cast<Arm_address
>(-1);
1487 Arm_relobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1488 const typename
elfcpp::Ehdr
<32, big_endian
>& ehdr
)
1489 : Sized_relobj_file
<32, big_endian
>(name
, input_file
, offset
, ehdr
),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL
), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL
), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1498 { delete this->attributes_section_data_
; }
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table
<big_endian
>*
1502 stub_table(unsigned int shndx
) const
1504 gold_assert(shndx
< this->stub_tables_
.size());
1505 return this->stub_tables_
[shndx
];
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1510 set_stub_table(unsigned int shndx
, Stub_table
<big_endian
>* stub_table
)
1512 gold_assert(shndx
< this->stub_tables_
.size());
1513 this->stub_tables_
[shndx
] = stub_table
;
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1519 local_symbol_is_thumb_function(unsigned int r_sym
) const
1521 gold_assert(r_sym
< this->local_symbol_is_thumb_function_
.size());
1522 return this->local_symbol_is_thumb_function_
[r_sym
];
1525 // Scan all relocation sections for stub generation.
1527 scan_sections_for_stubs(Target_arm
<big_endian
>*, const Symbol_table
*,
1530 // Convert regular input section with index SHNDX to a relaxed section.
1532 convert_input_section_to_relaxed_section(unsigned shndx
)
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx
, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj
<big_endian
>*
1543 as_arm_relobj(Relobj
* relobj
)
1544 { return static_cast<Arm_relobj
<big_endian
>*>(relobj
); }
1546 // Processor-specific flags in ELF file header. This is valid only after
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_
; }
1552 // Attribute section data This is the contents of the .ARM.attribute section
1554 const Attributes_section_data
*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_
; }
1558 // Mapping symbol location.
1559 typedef std::pair
<unsigned int, Arm_address
> Mapping_symbol_position
;
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1565 operator()(const Mapping_symbol_position
& p1
,
1566 const Mapping_symbol_position
& p2
) const
1568 return (p1
.first
< p2
.first
1569 || (p1
.first
== p2
.first
&& p1
.second
< p2
.second
));
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map
<Mapping_symbol_position
, char,
1576 Mapping_symbol_position_less
> Mapping_symbols_info
;
1578 // Whether a section contains any Cortex-A8 workaround.
1580 section_has_cortex_a8_workaround(unsigned int shndx
) const
1582 return (this->section_has_cortex_a8_workaround_
!= NULL
1583 && (*this->section_has_cortex_a8_workaround_
)[shndx
]);
1586 // Mark a section that has Cortex-A8 workaround.
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx
)
1590 if (this->section_has_cortex_a8_workaround_
== NULL
)
1591 this->section_has_cortex_a8_workaround_
=
1592 new std::vector
<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_
)[shndx
] = true;
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section
*
1599 exidx_input_section_by_link(unsigned int shndx
) const
1601 Exidx_section_map::const_iterator p
= this->exidx_section_map_
.find(shndx
);
1602 return ((p
!= this->exidx_section_map_
.end()
1603 && p
->second
->link() == shndx
)
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section
*
1610 exidx_input_section_by_shndx(unsigned shndx
) const
1612 Exidx_section_map::const_iterator p
= this->exidx_section_map_
.find(shndx
);
1613 return ((p
!= this->exidx_section_map_
.end()
1614 && p
->second
->shndx() == shndx
)
1619 // Whether output local symbol count needs updating.
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_
; }
1624 // Set output_local_symbol_count_needs_update flag to be true.
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_
= true; }
1629 // Update output local symbol count at the end of relaxation.
1631 update_output_local_symbol_count();
1633 // Whether we want to merge processor-specific flags and attributes.
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_
; }
1638 // Export list of EXIDX section indices.
1640 get_exidx_shndx_list(std::vector
<unsigned int>* list
) const
1643 for (Exidx_section_map::const_iterator p
= this->exidx_section_map_
.begin();
1644 p
!= this->exidx_section_map_
.end();
1647 if (p
->second
->shndx() == p
->first
)
1648 list
->push_back(p
->first
);
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list
->begin(), list
->end());
1655 // Post constructor setup.
1659 // Call parent's setup method.
1660 Sized_relobj_file
<32, big_endian
>::do_setup();
1662 // Initialize look-up tables.
1663 Stub_table_list
empty_stub_table_list(this->shnum(), NULL
);
1664 this->stub_tables_
.swap(empty_stub_table_list
);
1667 // Count the local symbols.
1669 do_count_local_symbols(Stringpool_template
<char>*,
1670 Stringpool_template
<char>*);
1673 do_relocate_sections(
1674 const Symbol_table
* symtab
, const Layout
* layout
,
1675 const unsigned char* pshdrs
, Output_file
* of
,
1676 typename Sized_relobj_file
<32, big_endian
>::Views
* pivews
);
1678 // Read the symbol information.
1680 do_read_symbols(Read_symbols_data
* sd
);
1682 // Process relocs for garbage collection.
1684 do_gc_process_relocs(Symbol_table
*, Layout
*, Read_relocs_data
*);
1688 // Whether a section needs to be scanned for relocation stubs.
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr
<32, big_endian
>&,
1691 const Relobj::Output_sections
&,
1692 const Symbol_table
*, const unsigned char*);
1694 // Whether a section is a scannable text section.
1696 section_is_scannable(const elfcpp::Shdr
<32, big_endian
>&, unsigned int,
1697 const Output_section
*, const Symbol_table
*);
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr
<32, big_endian
>&,
1702 unsigned int, Output_section
*,
1703 const Symbol_table
*);
1705 // Scan a section for the Cortex-A8 erratum.
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr
<32, big_endian
>&,
1708 unsigned int, Output_section
*,
1709 Target_arm
<big_endian
>*);
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1717 find_linked_text_section(const unsigned char* pshdr
,
1718 const unsigned char* psyms
, unsigned int* pshndx
);
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1725 make_exidx_input_section(unsigned int shndx
,
1726 const elfcpp::Shdr
<32, big_endian
>& shdr
,
1727 unsigned int text_shndx
,
1728 const elfcpp::Shdr
<32, big_endian
>& text_shdr
);
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1733 simple_input_section_output_address(unsigned int, Output_section
*);
1735 typedef std::vector
<Stub_table
<big_endian
>*> Stub_table_list
;
1736 typedef Unordered_map
<unsigned int, const Arm_exidx_input_section
*>
1739 // List of stub tables.
1740 Stub_table_list stub_tables_
;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector
<bool> local_symbol_is_thumb_function_
;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_
;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data
* attributes_section_data_
;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_
;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector
<bool>* section_has_cortex_a8_workaround_
;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_
;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_
;
1756 // Whether we merge processor flags and attributes of this object to
1758 bool merge_flags_and_attributes_
;
1761 // Arm_dynobj class.
1763 template<bool big_endian
>
1764 class Arm_dynobj
: public Sized_dynobj
<32, big_endian
>
1767 Arm_dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1768 const elfcpp::Ehdr
<32, big_endian
>& ehdr
)
1769 : Sized_dynobj
<32, big_endian
>(name
, input_file
, offset
, ehdr
),
1770 processor_specific_flags_(0), attributes_section_data_(NULL
)
1774 { delete this->attributes_section_data_
; }
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj
<big_endian
>*
1779 as_arm_dynobj(Dynobj
* dynobj
)
1780 { return static_cast<Arm_dynobj
<big_endian
>*>(dynobj
); }
1782 // Processor-specific flags in ELF file header. This is valid only after
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_
; }
1788 // Attributes section data.
1789 const Attributes_section_data
*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_
; }
1794 // Read the symbol information.
1796 do_read_symbols(Read_symbols_data
* sd
);
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_
;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data
* attributes_section_data_
;
1805 // Functor to read reloc addends during stub generation.
1807 template<int sh_type
, bool big_endian
>
1808 struct Stub_addend_reader
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types
<32>::Elf_Swxword
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types
<sh_type
,
1818 32, big_endian
>::Reloc
& /* reloc */) const;
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1823 template<bool big_endian
>
1824 struct Stub_addend_reader
<elfcpp::SHT_REL
, big_endian
>
1826 elfcpp::Elf_types
<32>::Elf_Swxword
1829 const unsigned char*,
1830 const typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc
&) const;
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1838 template<bool big_endian
>
1839 struct Stub_addend_reader
<elfcpp::SHT_RELA
, big_endian
>
1841 elfcpp::Elf_types
<32>::Elf_Swxword
1844 const unsigned char*,
1845 const typename Reloc_types
<elfcpp::SHT_RELA
, 32,
1846 big_endian
>::Reloc
& reloc
) const
1847 { return reloc
.get_r_addend(); }
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1853 class Cortex_a8_reloc
1856 Cortex_a8_reloc(Reloc_stub
* reloc_stub
, unsigned r_type
,
1857 Arm_address destination
)
1858 : reloc_stub_(reloc_stub
), r_type_(r_type
), destination_(destination
)
1864 // Accessors: This is a read-only class.
1866 // Return the relocation stub associated with this relocation if there is
1870 { return this->reloc_stub_
; }
1872 // Return the relocation type.
1875 { return this->r_type_
; }
1877 // Return the destination address of the relocation. LSB stores the THUMB
1881 { return this->destination_
; }
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub
* reloc_stub_
;
1887 unsigned int r_type_
;
1888 // Destination address of this relocation. LSB is used to distinguish
1890 Arm_address destination_
;
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1896 template<bool big_endian
>
1897 class Arm_output_data_got
: public Output_data_got
<32, big_endian
>
1900 Arm_output_data_got(Symbol_table
* symtab
, Layout
* layout
)
1901 : Output_data_got
<32, big_endian
>(), symbol_table_(symtab
), layout_(layout
)
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1908 add_static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
1909 { this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, gsym
)); }
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1915 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
1916 Sized_relobj_file
<32, big_endian
>* relobj
,
1919 this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, relobj
,
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1929 add_tls_gd32_with_static_reloc(unsigned int got_type
, Symbol
* gsym
);
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type
,
1934 Sized_relobj_file
<32, big_endian
>* object
,
1935 unsigned int index
);
1938 // Write out the GOT table.
1940 do_write(Output_file
*);
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1948 Static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
1949 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(true)
1950 { this->u_
.global
.symbol
= gsym
; }
1952 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
1953 Sized_relobj_file
<32, big_endian
>* relobj
, unsigned int index
)
1954 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(false)
1956 this->u_
.local
.relobj
= relobj
;
1957 this->u_
.local
.index
= index
;
1960 // Return the GOT offset.
1963 { return this->got_offset_
; }
1968 { return this->r_type_
; }
1970 // Whether the symbol is global or not.
1972 symbol_is_global() const
1973 { return this->symbol_is_global_
; }
1975 // For a relocation against a global symbol, the global symbol.
1979 gold_assert(this->symbol_is_global_
);
1980 return this->u_
.global
.symbol
;
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file
<32, big_endian
>*
1987 gold_assert(!this->symbol_is_global_
);
1988 return this->u_
.local
.relobj
;
1991 // For a relocation against a local symbol, the local symbol index.
1995 gold_assert(!this->symbol_is_global_
);
1996 return this->u_
.local
.index
;
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_
;
2002 // Type of relocation.
2003 unsigned int r_type_
;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_
;
2006 // A global or local symbol.
2011 // For a global symbol, the symbol itself.
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file
<32, big_endian
>* relobj
;
2018 // For a local symbol, the symbol index.
2024 // Symbol table of the output object.
2025 Symbol_table
* symbol_table_
;
2026 // Layout of the output object.
2028 // Static relocs to be applied to the GOT.
2029 std::vector
<Static_reloc
> static_relocs_
;
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2036 template<bool big_endian
, int sh_type
, typename Classify_reloc
>
2037 class Arm_scan_relocatable_relocs
:
2038 public Default_scan_relocatable_relocs
<sh_type
, Classify_reloc
>
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type
, Relobj
*)
2046 if (sh_type
== elfcpp::SHT_RELA
)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA
;
2050 if (r_type
== elfcpp::R_ARM_TARGET1
2051 || r_type
== elfcpp::R_ARM_TARGET2
)
2053 const Target_arm
<big_endian
>* arm_target
=
2054 Target_arm
<big_endian
>::default_target();
2055 r_type
= arm_target
->get_real_reloc_type(r_type
);
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE
:
2063 case elfcpp::R_ARM_V4BX
:
2064 case elfcpp::R_ARM_TLS_GOTDESC
:
2065 case elfcpp::R_ARM_TLS_CALL
:
2066 case elfcpp::R_ARM_TLS_DESCSEQ
:
2067 case elfcpp::R_ARM_THM_TLS_CALL
:
2068 case elfcpp::R_ARM_GOTRELAX
:
2069 case elfcpp::R_ARM_GNU_VTENTRY
:
2070 case elfcpp::R_ARM_GNU_VTINHERIT
:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16
:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32
:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0
;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1
:
2076 case elfcpp::R_ARM_TARGET2
:
2078 // Relocations that write full 32 bits and
2079 // have alignment of 1.
2080 case elfcpp::R_ARM_ABS32
:
2081 case elfcpp::R_ARM_REL32
:
2082 case elfcpp::R_ARM_SBREL32
:
2083 case elfcpp::R_ARM_GOTOFF32
:
2084 case elfcpp::R_ARM_BASE_PREL
:
2085 case elfcpp::R_ARM_GOT_BREL
:
2086 case elfcpp::R_ARM_BASE_ABS
:
2087 case elfcpp::R_ARM_ABS32_NOI
:
2088 case elfcpp::R_ARM_REL32_NOI
:
2089 case elfcpp::R_ARM_PLT32_ABS
:
2090 case elfcpp::R_ARM_GOT_ABS
:
2091 case elfcpp::R_ARM_GOT_PREL
:
2092 case elfcpp::R_ARM_TLS_GD32
:
2093 case elfcpp::R_ARM_TLS_LDM32
:
2094 case elfcpp::R_ARM_TLS_LDO32
:
2095 case elfcpp::R_ARM_TLS_IE32
:
2096 case elfcpp::R_ARM_TLS_LE32
:
2097 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED
;
2099 // For all other static relocations, return RELOC_SPECIAL.
2100 return Relocatable_relocs::RELOC_SPECIAL
;
2106 template<bool big_endian
>
2107 class Target_arm
: public Sized_target
<32, big_endian
>
2110 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, 32, big_endian
>
2113 // When were are relocating a stub, we pass this as the relocation number.
2114 static const size_t fake_relnum_for_stubs
= static_cast<size_t>(-1);
2117 : Sized_target
<32, big_endian
>(&arm_info
),
2118 got_(NULL
), plt_(NULL
), got_plt_(NULL
), rel_dyn_(NULL
),
2119 copy_relocs_(elfcpp::R_ARM_COPY
), dynbss_(NULL
),
2120 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2121 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2122 should_force_pic_veneer_(false),
2123 arm_input_section_map_(), attributes_section_data_(NULL
),
2124 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2127 // Whether we force PCI branch veneers.
2129 should_force_pic_veneer() const
2130 { return this->should_force_pic_veneer_
; }
2132 // Set PIC veneer flag.
2134 set_should_force_pic_veneer(bool value
)
2135 { this->should_force_pic_veneer_
= value
; }
2137 // Whether we use THUMB-2 instructions.
2139 using_thumb2() const
2141 Object_attribute
* attr
=
2142 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2143 int arch
= attr
->int_value();
2144 return arch
== elfcpp::TAG_CPU_ARCH_V6T2
|| arch
>= elfcpp::TAG_CPU_ARCH_V7
;
2147 // Whether we use THUMB/THUMB-2 instructions only.
2149 using_thumb_only() const
2151 Object_attribute
* attr
=
2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2154 if (attr
->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2155 || attr
->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M
)
2157 if (attr
->int_value() != elfcpp::TAG_CPU_ARCH_V7
2158 && attr
->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M
)
2160 attr
= this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
);
2161 return attr
->int_value() == 'M';
2164 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2166 may_use_arm_nop() const
2168 Object_attribute
* attr
=
2169 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2170 int arch
= attr
->int_value();
2171 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2172 || arch
== elfcpp::TAG_CPU_ARCH_V6K
2173 || arch
== elfcpp::TAG_CPU_ARCH_V7
2174 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2177 // Whether we have THUMB-2 NOP.W instruction.
2179 may_use_thumb2_nop() const
2181 Object_attribute
* attr
=
2182 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2183 int arch
= attr
->int_value();
2184 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2185 || arch
== elfcpp::TAG_CPU_ARCH_V7
2186 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2189 // Whether we have v4T interworking instructions available.
2191 may_use_v4t_interworking() const
2193 Object_attribute
* attr
=
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2195 int arch
= attr
->int_value();
2196 return (arch
!= elfcpp::TAG_CPU_ARCH_PRE_V4
2197 && arch
!= elfcpp::TAG_CPU_ARCH_V4
);
2200 // Whether we have v5T interworking instructions available.
2202 may_use_v5t_interworking() const
2204 Object_attribute
* attr
=
2205 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2206 int arch
= attr
->int_value();
2207 if (parameters
->options().fix_arm1176())
2208 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2209 || arch
== elfcpp::TAG_CPU_ARCH_V7
2210 || arch
== elfcpp::TAG_CPU_ARCH_V6_M
2211 || arch
== elfcpp::TAG_CPU_ARCH_V6S_M
2212 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2214 return (arch
!= elfcpp::TAG_CPU_ARCH_PRE_V4
2215 && arch
!= elfcpp::TAG_CPU_ARCH_V4
2216 && arch
!= elfcpp::TAG_CPU_ARCH_V4T
);
2219 // Process the relocations to determine unreferenced sections for
2220 // garbage collection.
2222 gc_process_relocs(Symbol_table
* symtab
,
2224 Sized_relobj_file
<32, big_endian
>* object
,
2225 unsigned int data_shndx
,
2226 unsigned int sh_type
,
2227 const unsigned char* prelocs
,
2229 Output_section
* output_section
,
2230 bool needs_special_offset_handling
,
2231 size_t local_symbol_count
,
2232 const unsigned char* plocal_symbols
);
2234 // Scan the relocations to look for symbol adjustments.
2236 scan_relocs(Symbol_table
* symtab
,
2238 Sized_relobj_file
<32, big_endian
>* object
,
2239 unsigned int data_shndx
,
2240 unsigned int sh_type
,
2241 const unsigned char* prelocs
,
2243 Output_section
* output_section
,
2244 bool needs_special_offset_handling
,
2245 size_t local_symbol_count
,
2246 const unsigned char* plocal_symbols
);
2248 // Finalize the sections.
2250 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
2252 // Return the value to use for a dynamic symbol which requires special
2255 do_dynsym_value(const Symbol
*) const;
2257 // Relocate a section.
2259 relocate_section(const Relocate_info
<32, big_endian
>*,
2260 unsigned int sh_type
,
2261 const unsigned char* prelocs
,
2263 Output_section
* output_section
,
2264 bool needs_special_offset_handling
,
2265 unsigned char* view
,
2266 Arm_address view_address
,
2267 section_size_type view_size
,
2268 const Reloc_symbol_changes
*);
2270 // Scan the relocs during a relocatable link.
2272 scan_relocatable_relocs(Symbol_table
* symtab
,
2274 Sized_relobj_file
<32, big_endian
>* object
,
2275 unsigned int data_shndx
,
2276 unsigned int sh_type
,
2277 const unsigned char* prelocs
,
2279 Output_section
* output_section
,
2280 bool needs_special_offset_handling
,
2281 size_t local_symbol_count
,
2282 const unsigned char* plocal_symbols
,
2283 Relocatable_relocs
*);
2285 // Relocate a section during a relocatable link.
2287 relocate_for_relocatable(const Relocate_info
<32, big_endian
>*,
2288 unsigned int sh_type
,
2289 const unsigned char* prelocs
,
2291 Output_section
* output_section
,
2292 off_t offset_in_output_section
,
2293 const Relocatable_relocs
*,
2294 unsigned char* view
,
2295 Arm_address view_address
,
2296 section_size_type view_size
,
2297 unsigned char* reloc_view
,
2298 section_size_type reloc_view_size
);
2300 // Perform target-specific processing in a relocatable link. This is
2301 // only used if we use the relocation strategy RELOC_SPECIAL.
2303 relocate_special_relocatable(const Relocate_info
<32, big_endian
>* relinfo
,
2304 unsigned int sh_type
,
2305 const unsigned char* preloc_in
,
2307 Output_section
* output_section
,
2308 off_t offset_in_output_section
,
2309 unsigned char* view
,
2310 typename
elfcpp::Elf_types
<32>::Elf_Addr
2312 section_size_type view_size
,
2313 unsigned char* preloc_out
);
2315 // Return whether SYM is defined by the ABI.
2317 do_is_defined_by_abi(Symbol
* sym
) const
2318 { return strcmp(sym
->name(), "__tls_get_addr") == 0; }
2320 // Return whether there is a GOT section.
2322 has_got_section() const
2323 { return this->got_
!= NULL
; }
2325 // Return the size of the GOT section.
2329 gold_assert(this->got_
!= NULL
);
2330 return this->got_
->data_size();
2333 // Return the number of entries in the GOT.
2335 got_entry_count() const
2337 if (!this->has_got_section())
2339 return this->got_size() / 4;
2342 // Return the number of entries in the PLT.
2344 plt_entry_count() const;
2346 // Return the offset of the first non-reserved PLT entry.
2348 first_plt_entry_offset() const;
2350 // Return the size of each PLT entry.
2352 plt_entry_size() const;
2354 // Map platform-specific reloc types
2356 get_real_reloc_type(unsigned int r_type
);
2359 // Methods to support stub-generations.
2362 // Return the stub factory
2364 stub_factory() const
2365 { return this->stub_factory_
; }
2367 // Make a new Arm_input_section object.
2368 Arm_input_section
<big_endian
>*
2369 new_arm_input_section(Relobj
*, unsigned int);
2371 // Find the Arm_input_section object corresponding to the SHNDX-th input
2372 // section of RELOBJ.
2373 Arm_input_section
<big_endian
>*
2374 find_arm_input_section(Relobj
* relobj
, unsigned int shndx
) const;
2376 // Make a new Stub_table
2377 Stub_table
<big_endian
>*
2378 new_stub_table(Arm_input_section
<big_endian
>*);
2380 // Scan a section for stub generation.
2382 scan_section_for_stubs(const Relocate_info
<32, big_endian
>*, unsigned int,
2383 const unsigned char*, size_t, Output_section
*,
2384 bool, const unsigned char*, Arm_address
,
2389 relocate_stub(Stub
*, const Relocate_info
<32, big_endian
>*,
2390 Output_section
*, unsigned char*, Arm_address
,
2393 // Get the default ARM target.
2394 static Target_arm
<big_endian
>*
2397 gold_assert(parameters
->target().machine_code() == elfcpp::EM_ARM
2398 && parameters
->target().is_big_endian() == big_endian
);
2399 return static_cast<Target_arm
<big_endian
>*>(
2400 parameters
->sized_target
<32, big_endian
>());
2403 // Whether NAME belongs to a mapping symbol.
2405 is_mapping_symbol_name(const char* name
)
2409 && (name
[1] == 'a' || name
[1] == 't' || name
[1] == 'd')
2410 && (name
[2] == '\0' || name
[2] == '.'));
2413 // Whether we work around the Cortex-A8 erratum.
2415 fix_cortex_a8() const
2416 { return this->fix_cortex_a8_
; }
2418 // Whether we merge exidx entries in debuginfo.
2420 merge_exidx_entries() const
2421 { return parameters
->options().merge_exidx_entries(); }
2423 // Whether we fix R_ARM_V4BX relocation.
2425 // 1 - replace with MOV instruction (armv4 target)
2426 // 2 - make interworking veneer (>= armv4t targets only)
2427 General_options::Fix_v4bx
2429 { return parameters
->options().fix_v4bx(); }
2431 // Scan a span of THUMB code section for Cortex-A8 erratum.
2433 scan_span_for_cortex_a8_erratum(Arm_relobj
<big_endian
>*, unsigned int,
2434 section_size_type
, section_size_type
,
2435 const unsigned char*, Arm_address
);
2437 // Apply Cortex-A8 workaround to a branch.
2439 apply_cortex_a8_workaround(const Cortex_a8_stub
*, Arm_address
,
2440 unsigned char*, Arm_address
);
2443 // Make an ELF object.
2445 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2446 const elfcpp::Ehdr
<32, big_endian
>& ehdr
);
2449 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2450 const elfcpp::Ehdr
<32, !big_endian
>&)
2451 { gold_unreachable(); }
2454 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2455 const elfcpp::Ehdr
<64, false>&)
2456 { gold_unreachable(); }
2459 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2460 const elfcpp::Ehdr
<64, true>&)
2461 { gold_unreachable(); }
2463 // Make an output section.
2465 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
2466 elfcpp::Elf_Xword flags
)
2467 { return new Arm_output_section
<big_endian
>(name
, type
, flags
); }
2470 do_adjust_elf_header(unsigned char* view
, int len
) const;
2472 // We only need to generate stubs, and hence perform relaxation if we are
2473 // not doing relocatable linking.
2475 do_may_relax() const
2476 { return !parameters
->options().relocatable(); }
2479 do_relax(int, const Input_objects
*, Symbol_table
*, Layout
*, const Task
*);
2481 // Determine whether an object attribute tag takes an integer, a
2484 do_attribute_arg_type(int tag
) const;
2486 // Reorder tags during output.
2488 do_attributes_order(int num
) const;
2490 // This is called when the target is selected as the default.
2492 do_select_as_default_target()
2494 // No locking is required since there should only be one default target.
2495 // We cannot have both the big-endian and little-endian ARM targets
2497 gold_assert(arm_reloc_property_table
== NULL
);
2498 arm_reloc_property_table
= new Arm_reloc_property_table();
2501 // Virtual function which is set to return true by a target if
2502 // it can use relocation types to determine if a function's
2503 // pointer is taken.
2505 do_can_check_for_function_pointers() const
2508 // Whether a section called SECTION_NAME may have function pointers to
2509 // sections not eligible for safe ICF folding.
2511 do_section_may_have_icf_unsafe_pointers(const char* section_name
) const
2513 return (!is_prefix_of(".ARM.exidx", section_name
)
2514 && !is_prefix_of(".ARM.extab", section_name
)
2515 && Target::do_section_may_have_icf_unsafe_pointers(section_name
));
2519 // The class which scans relocations.
2524 : issued_non_pic_error_(false)
2528 get_reference_flags(unsigned int r_type
);
2531 local(Symbol_table
* symtab
, Layout
* layout
, Target_arm
* target
,
2532 Sized_relobj_file
<32, big_endian
>* object
,
2533 unsigned int data_shndx
,
2534 Output_section
* output_section
,
2535 const elfcpp::Rel
<32, big_endian
>& reloc
, unsigned int r_type
,
2536 const elfcpp::Sym
<32, big_endian
>& lsym
);
2539 global(Symbol_table
* symtab
, Layout
* layout
, Target_arm
* target
,
2540 Sized_relobj_file
<32, big_endian
>* object
,
2541 unsigned int data_shndx
,
2542 Output_section
* output_section
,
2543 const elfcpp::Rel
<32, big_endian
>& reloc
, unsigned int r_type
,
2547 local_reloc_may_be_function_pointer(Symbol_table
* , Layout
* , Target_arm
* ,
2548 Sized_relobj_file
<32, big_endian
>* ,
2551 const elfcpp::Rel
<32, big_endian
>& ,
2553 const elfcpp::Sym
<32, big_endian
>&);
2556 global_reloc_may_be_function_pointer(Symbol_table
* , Layout
* , Target_arm
* ,
2557 Sized_relobj_file
<32, big_endian
>* ,
2560 const elfcpp::Rel
<32, big_endian
>& ,
2561 unsigned int , Symbol
*);
2565 unsupported_reloc_local(Sized_relobj_file
<32, big_endian
>*,
2566 unsigned int r_type
);
2569 unsupported_reloc_global(Sized_relobj_file
<32, big_endian
>*,
2570 unsigned int r_type
, Symbol
*);
2573 check_non_pic(Relobj
*, unsigned int r_type
);
2575 // Almost identical to Symbol::needs_plt_entry except that it also
2576 // handles STT_ARM_TFUNC.
2578 symbol_needs_plt_entry(const Symbol
* sym
)
2580 // An undefined symbol from an executable does not need a PLT entry.
2581 if (sym
->is_undefined() && !parameters
->options().shared())
2584 return (!parameters
->doing_static_link()
2585 && (sym
->type() == elfcpp::STT_FUNC
2586 || sym
->type() == elfcpp::STT_ARM_TFUNC
)
2587 && (sym
->is_from_dynobj()
2588 || sym
->is_undefined()
2589 || sym
->is_preemptible()));
2593 possible_function_pointer_reloc(unsigned int r_type
);
2595 // Whether we have issued an error about a non-PIC compilation.
2596 bool issued_non_pic_error_
;
2599 // The class which implements relocation.
2609 // Return whether the static relocation needs to be applied.
2611 should_apply_static_reloc(const Sized_symbol
<32>* gsym
,
2612 unsigned int r_type
,
2614 Output_section
* output_section
);
2616 // Do a relocation. Return false if the caller should not issue
2617 // any warnings about this relocation.
2619 relocate(const Relocate_info
<32, big_endian
>*, Target_arm
*,
2620 Output_section
*, size_t relnum
,
2621 const elfcpp::Rel
<32, big_endian
>&,
2622 unsigned int r_type
, const Sized_symbol
<32>*,
2623 const Symbol_value
<32>*,
2624 unsigned char*, Arm_address
,
2627 // Return whether we want to pass flag NON_PIC_REF for this
2628 // reloc. This means the relocation type accesses a symbol not via
2631 reloc_is_non_pic(unsigned int r_type
)
2635 // These relocation types reference GOT or PLT entries explicitly.
2636 case elfcpp::R_ARM_GOT_BREL
:
2637 case elfcpp::R_ARM_GOT_ABS
:
2638 case elfcpp::R_ARM_GOT_PREL
:
2639 case elfcpp::R_ARM_GOT_BREL12
:
2640 case elfcpp::R_ARM_PLT32_ABS
:
2641 case elfcpp::R_ARM_TLS_GD32
:
2642 case elfcpp::R_ARM_TLS_LDM32
:
2643 case elfcpp::R_ARM_TLS_IE32
:
2644 case elfcpp::R_ARM_TLS_IE12GP
:
2646 // These relocate types may use PLT entries.
2647 case elfcpp::R_ARM_CALL
:
2648 case elfcpp::R_ARM_THM_CALL
:
2649 case elfcpp::R_ARM_JUMP24
:
2650 case elfcpp::R_ARM_THM_JUMP24
:
2651 case elfcpp::R_ARM_THM_JUMP19
:
2652 case elfcpp::R_ARM_PLT32
:
2653 case elfcpp::R_ARM_THM_XPC22
:
2654 case elfcpp::R_ARM_PREL31
:
2655 case elfcpp::R_ARM_SBREL31
:
2664 // Do a TLS relocation.
2665 inline typename Arm_relocate_functions
<big_endian
>::Status
2666 relocate_tls(const Relocate_info
<32, big_endian
>*, Target_arm
<big_endian
>*,
2667 size_t, const elfcpp::Rel
<32, big_endian
>&, unsigned int,
2668 const Sized_symbol
<32>*, const Symbol_value
<32>*,
2669 unsigned char*, elfcpp::Elf_types
<32>::Elf_Addr
,
2674 // A class which returns the size required for a relocation type,
2675 // used while scanning relocs during a relocatable link.
2676 class Relocatable_size_for_reloc
2680 get_size_for_reloc(unsigned int, Relobj
*);
2683 // Adjust TLS relocation type based on the options and whether this
2684 // is a local symbol.
2685 static tls::Tls_optimization
2686 optimize_tls_reloc(bool is_final
, int r_type
);
2688 // Get the GOT section, creating it if necessary.
2689 Arm_output_data_got
<big_endian
>*
2690 got_section(Symbol_table
*, Layout
*);
2692 // Get the GOT PLT section.
2694 got_plt_section() const
2696 gold_assert(this->got_plt_
!= NULL
);
2697 return this->got_plt_
;
2700 // Create a PLT entry for a global symbol.
2702 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
2704 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2706 define_tls_base_symbol(Symbol_table
*, Layout
*);
2708 // Create a GOT entry for the TLS module index.
2710 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
2711 Sized_relobj_file
<32, big_endian
>* object
);
2713 // Get the PLT section.
2714 const Output_data_plt_arm
<big_endian
>*
2717 gold_assert(this->plt_
!= NULL
);
2721 // Get the dynamic reloc section, creating it if necessary.
2723 rel_dyn_section(Layout
*);
2725 // Get the section to use for TLS_DESC relocations.
2727 rel_tls_desc_section(Layout
*) const;
2729 // Return true if the symbol may need a COPY relocation.
2730 // References from an executable object to non-function symbols
2731 // defined in a dynamic object may need a COPY relocation.
2733 may_need_copy_reloc(Symbol
* gsym
)
2735 return (gsym
->type() != elfcpp::STT_ARM_TFUNC
2736 && gsym
->may_need_copy_reloc());
2739 // Add a potential copy relocation.
2741 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
2742 Sized_relobj_file
<32, big_endian
>* object
,
2743 unsigned int shndx
, Output_section
* output_section
,
2744 Symbol
* sym
, const elfcpp::Rel
<32, big_endian
>& reloc
)
2746 this->copy_relocs_
.copy_reloc(symtab
, layout
,
2747 symtab
->get_sized_symbol
<32>(sym
),
2748 object
, shndx
, output_section
, reloc
,
2749 this->rel_dyn_section(layout
));
2752 // Whether two EABI versions are compatible.
2754 are_eabi_versions_compatible(elfcpp::Elf_Word v1
, elfcpp::Elf_Word v2
);
2756 // Merge processor-specific flags from input object and those in the ELF
2757 // header of the output.
2759 merge_processor_specific_flags(const std::string
&, elfcpp::Elf_Word
);
2761 // Get the secondary compatible architecture.
2763 get_secondary_compatible_arch(const Attributes_section_data
*);
2765 // Set the secondary compatible architecture.
2767 set_secondary_compatible_arch(Attributes_section_data
*, int);
2770 tag_cpu_arch_combine(const char*, int, int*, int, int);
2772 // Helper to print AEABI enum tag value.
2774 aeabi_enum_name(unsigned int);
2776 // Return string value for TAG_CPU_name.
2778 tag_cpu_name_value(unsigned int);
2780 // Merge object attributes from input object and those in the output.
2782 merge_object_attributes(const char*, const Attributes_section_data
*);
2784 // Helper to get an AEABI object attribute
2786 get_aeabi_object_attribute(int tag
) const
2788 Attributes_section_data
* pasd
= this->attributes_section_data_
;
2789 gold_assert(pasd
!= NULL
);
2790 Object_attribute
* attr
=
2791 pasd
->get_attribute(Object_attribute::OBJ_ATTR_PROC
, tag
);
2792 gold_assert(attr
!= NULL
);
2797 // Methods to support stub-generations.
2800 // Group input sections for stub generation.
2802 group_sections(Layout
*, section_size_type
, bool, const Task
*);
2804 // Scan a relocation for stub generation.
2806 scan_reloc_for_stub(const Relocate_info
<32, big_endian
>*, unsigned int,
2807 const Sized_symbol
<32>*, unsigned int,
2808 const Symbol_value
<32>*,
2809 elfcpp::Elf_types
<32>::Elf_Swxword
, Arm_address
);
2811 // Scan a relocation section for stub.
2812 template<int sh_type
>
2814 scan_reloc_section_for_stubs(
2815 const Relocate_info
<32, big_endian
>* relinfo
,
2816 const unsigned char* prelocs
,
2818 Output_section
* output_section
,
2819 bool needs_special_offset_handling
,
2820 const unsigned char* view
,
2821 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
2824 // Fix .ARM.exidx section coverage.
2826 fix_exidx_coverage(Layout
*, const Input_objects
*,
2827 Arm_output_section
<big_endian
>*, Symbol_table
*,
2830 // Functors for STL set.
2831 struct output_section_address_less_than
2834 operator()(const Output_section
* s1
, const Output_section
* s2
) const
2835 { return s1
->address() < s2
->address(); }
2838 // Information about this specific target which we pass to the
2839 // general Target structure.
2840 static const Target::Target_info arm_info
;
2842 // The types of GOT entries needed for this platform.
2843 // These values are exposed to the ABI in an incremental link.
2844 // Do not renumber existing values without changing the version
2845 // number of the .gnu_incremental_inputs section.
2848 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
2849 GOT_TYPE_TLS_NOFFSET
= 1, // GOT entry for negative TLS offset
2850 GOT_TYPE_TLS_OFFSET
= 2, // GOT entry for positive TLS offset
2851 GOT_TYPE_TLS_PAIR
= 3, // GOT entry for TLS module/offset pair
2852 GOT_TYPE_TLS_DESC
= 4 // GOT entry for TLS_DESC pair
2855 typedef typename
std::vector
<Stub_table
<big_endian
>*> Stub_table_list
;
2857 // Map input section to Arm_input_section.
2858 typedef Unordered_map
<Section_id
,
2859 Arm_input_section
<big_endian
>*,
2861 Arm_input_section_map
;
2863 // Map output addresses to relocs for Cortex-A8 erratum.
2864 typedef Unordered_map
<Arm_address
, const Cortex_a8_reloc
*>
2865 Cortex_a8_relocs_info
;
2868 Arm_output_data_got
<big_endian
>* got_
;
2870 Output_data_plt_arm
<big_endian
>* plt_
;
2871 // The GOT PLT section.
2872 Output_data_space
* got_plt_
;
2873 // The dynamic reloc section.
2874 Reloc_section
* rel_dyn_
;
2875 // Relocs saved to avoid a COPY reloc.
2876 Copy_relocs
<elfcpp::SHT_REL
, 32, big_endian
> copy_relocs_
;
2877 // Space for variables copied with a COPY reloc.
2878 Output_data_space
* dynbss_
;
2879 // Offset of the GOT entry for the TLS module index.
2880 unsigned int got_mod_index_offset_
;
2881 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2882 bool tls_base_symbol_defined_
;
2883 // Vector of Stub_tables created.
2884 Stub_table_list stub_tables_
;
2886 const Stub_factory
&stub_factory_
;
2887 // Whether we force PIC branch veneers.
2888 bool should_force_pic_veneer_
;
2889 // Map for locating Arm_input_sections.
2890 Arm_input_section_map arm_input_section_map_
;
2891 // Attributes section data in output.
2892 Attributes_section_data
* attributes_section_data_
;
2893 // Whether we want to fix code for Cortex-A8 erratum.
2894 bool fix_cortex_a8_
;
2895 // Map addresses to relocs for Cortex-A8 erratum.
2896 Cortex_a8_relocs_info cortex_a8_relocs_info_
;
2899 template<bool big_endian
>
2900 const Target::Target_info Target_arm
<big_endian
>::arm_info
=
2903 big_endian
, // is_big_endian
2904 elfcpp::EM_ARM
, // machine_code
2905 false, // has_make_symbol
2906 false, // has_resolve
2907 false, // has_code_fill
2908 true, // is_default_stack_executable
2909 false, // can_icf_inline_merge_sections
2911 "/usr/lib/libc.so.1", // dynamic_linker
2912 0x8000, // default_text_segment_address
2913 0x1000, // abi_pagesize (overridable by -z max-page-size)
2914 0x1000, // common_pagesize (overridable by -z common-page-size)
2915 elfcpp::SHN_UNDEF
, // small_common_shndx
2916 elfcpp::SHN_UNDEF
, // large_common_shndx
2917 0, // small_common_section_flags
2918 0, // large_common_section_flags
2919 ".ARM.attributes", // attributes_section
2920 "aeabi" // attributes_vendor
2923 // Arm relocate functions class
2926 template<bool big_endian
>
2927 class Arm_relocate_functions
: public Relocate_functions
<32, big_endian
>
2932 STATUS_OKAY
, // No error during relocation.
2933 STATUS_OVERFLOW
, // Relocation overflow.
2934 STATUS_BAD_RELOC
// Relocation cannot be applied.
2938 typedef Relocate_functions
<32, big_endian
> Base
;
2939 typedef Arm_relocate_functions
<big_endian
> This
;
2941 // Encoding of imm16 argument for movt and movw ARM instructions
2944 // imm16 := imm4 | imm12
2946 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2947 // +-------+---------------+-------+-------+-----------------------+
2948 // | | |imm4 | |imm12 |
2949 // +-------+---------------+-------+-------+-----------------------+
2951 // Extract the relocation addend from VAL based on the ARM
2952 // instruction encoding described above.
2953 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2954 extract_arm_movw_movt_addend(
2955 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
)
2957 // According to the Elf ABI for ARM Architecture the immediate
2958 // field is sign-extended to form the addend.
2959 return Bits
<16>::sign_extend32(((val
>> 4) & 0xf000) | (val
& 0xfff));
2962 // Insert X into VAL based on the ARM instruction encoding described
2964 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2965 insert_val_arm_movw_movt(
2966 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
,
2967 typename
elfcpp::Swap
<32, big_endian
>::Valtype x
)
2971 val
|= (x
& 0xf000) << 4;
2975 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2978 // imm16 := imm4 | i | imm3 | imm8
2980 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2981 // +---------+-+-----------+-------++-+-----+-------+---------------+
2982 // | |i| |imm4 || |imm3 | |imm8 |
2983 // +---------+-+-----------+-------++-+-----+-------+---------------+
2985 // Extract the relocation addend from VAL based on the Thumb2
2986 // instruction encoding described above.
2987 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2988 extract_thumb_movw_movt_addend(
2989 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
)
2991 // According to the Elf ABI for ARM Architecture the immediate
2992 // field is sign-extended to form the addend.
2993 return Bits
<16>::sign_extend32(((val
>> 4) & 0xf000)
2994 | ((val
>> 15) & 0x0800)
2995 | ((val
>> 4) & 0x0700)
2999 // Insert X into VAL based on the Thumb2 instruction encoding
3001 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
3002 insert_val_thumb_movw_movt(
3003 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
,
3004 typename
elfcpp::Swap
<32, big_endian
>::Valtype x
)
3007 val
|= (x
& 0xf000) << 4;
3008 val
|= (x
& 0x0800) << 15;
3009 val
|= (x
& 0x0700) << 4;
3010 val
|= (x
& 0x00ff);
3014 // Calculate the smallest constant Kn for the specified residual.
3015 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3017 calc_grp_kn(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
)
3023 // Determine the most significant bit in the residual and
3024 // align the resulting value to a 2-bit boundary.
3025 for (msb
= 30; (msb
>= 0) && !(residual
& (3 << msb
)); msb
-= 2)
3027 // The desired shift is now (msb - 6), or zero, whichever
3029 return (((msb
- 6) < 0) ? 0 : (msb
- 6));
3032 // Calculate the final residual for the specified group index.
3033 // If the passed group index is less than zero, the method will return
3034 // the value of the specified residual without any change.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036 static typename
elfcpp::Swap
<32, big_endian
>::Valtype
3037 calc_grp_residual(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
,
3040 for (int n
= 0; n
<= group
; n
++)
3042 // Calculate which part of the value to mask.
3043 uint32_t shift
= calc_grp_kn(residual
);
3044 // Calculate the residual for the next time around.
3045 residual
&= ~(residual
& (0xff << shift
));
3051 // Calculate the value of Gn for the specified group index.
3052 // We return it in the form of an encoded constant-and-rotation.
3053 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3054 static typename
elfcpp::Swap
<32, big_endian
>::Valtype
3055 calc_grp_gn(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
,
3058 typename
elfcpp::Swap
<32, big_endian
>::Valtype gn
= 0;
3061 for (int n
= 0; n
<= group
; n
++)
3063 // Calculate which part of the value to mask.
3064 shift
= calc_grp_kn(residual
);
3065 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3066 gn
= residual
& (0xff << shift
);
3067 // Calculate the residual for the next time around.
3070 // Return Gn in the form of an encoded constant-and-rotation.
3071 return ((gn
>> shift
) | ((gn
<= 0xff ? 0 : (32 - shift
) / 2) << 8));
3075 // Handle ARM long branches.
3076 static typename
This::Status
3077 arm_branch_common(unsigned int, const Relocate_info
<32, big_endian
>*,
3078 unsigned char*, const Sized_symbol
<32>*,
3079 const Arm_relobj
<big_endian
>*, unsigned int,
3080 const Symbol_value
<32>*, Arm_address
, Arm_address
, bool);
3082 // Handle THUMB long branches.
3083 static typename
This::Status
3084 thumb_branch_common(unsigned int, const Relocate_info
<32, big_endian
>*,
3085 unsigned char*, const Sized_symbol
<32>*,
3086 const Arm_relobj
<big_endian
>*, unsigned int,
3087 const Symbol_value
<32>*, Arm_address
, Arm_address
, bool);
3090 // Return the branch offset of a 32-bit THUMB branch.
3091 static inline int32_t
3092 thumb32_branch_offset(uint16_t upper_insn
, uint16_t lower_insn
)
3094 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3095 // involving the J1 and J2 bits.
3096 uint32_t s
= (upper_insn
& (1U << 10)) >> 10;
3097 uint32_t upper
= upper_insn
& 0x3ffU
;
3098 uint32_t lower
= lower_insn
& 0x7ffU
;
3099 uint32_t j1
= (lower_insn
& (1U << 13)) >> 13;
3100 uint32_t j2
= (lower_insn
& (1U << 11)) >> 11;
3101 uint32_t i1
= j1
^ s
? 0 : 1;
3102 uint32_t i2
= j2
^ s
? 0 : 1;
3104 return Bits
<25>::sign_extend32((s
<< 24) | (i1
<< 23) | (i2
<< 22)
3105 | (upper
<< 12) | (lower
<< 1));
3108 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3109 // UPPER_INSN is the original upper instruction of the branch. Caller is
3110 // responsible for overflow checking and BLX offset adjustment.
3111 static inline uint16_t
3112 thumb32_branch_upper(uint16_t upper_insn
, int32_t offset
)
3114 uint32_t s
= offset
< 0 ? 1 : 0;
3115 uint32_t bits
= static_cast<uint32_t>(offset
);
3116 return (upper_insn
& ~0x7ffU
) | ((bits
>> 12) & 0x3ffU
) | (s
<< 10);
3119 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3120 // LOWER_INSN is the original lower instruction of the branch. Caller is
3121 // responsible for overflow checking and BLX offset adjustment.
3122 static inline uint16_t
3123 thumb32_branch_lower(uint16_t lower_insn
, int32_t offset
)
3125 uint32_t s
= offset
< 0 ? 1 : 0;
3126 uint32_t bits
= static_cast<uint32_t>(offset
);
3127 return ((lower_insn
& ~0x2fffU
)
3128 | ((((bits
>> 23) & 1) ^ !s
) << 13)
3129 | ((((bits
>> 22) & 1) ^ !s
) << 11)
3130 | ((bits
>> 1) & 0x7ffU
));
3133 // Return the branch offset of a 32-bit THUMB conditional branch.
3134 static inline int32_t
3135 thumb32_cond_branch_offset(uint16_t upper_insn
, uint16_t lower_insn
)
3137 uint32_t s
= (upper_insn
& 0x0400U
) >> 10;
3138 uint32_t j1
= (lower_insn
& 0x2000U
) >> 13;
3139 uint32_t j2
= (lower_insn
& 0x0800U
) >> 11;
3140 uint32_t lower
= (lower_insn
& 0x07ffU
);
3141 uint32_t upper
= (s
<< 8) | (j2
<< 7) | (j1
<< 6) | (upper_insn
& 0x003fU
);
3143 return Bits
<21>::sign_extend32((upper
<< 12) | (lower
<< 1));
3146 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3147 // instruction. UPPER_INSN is the original upper instruction of the branch.
3148 // Caller is responsible for overflow checking.
3149 static inline uint16_t
3150 thumb32_cond_branch_upper(uint16_t upper_insn
, int32_t offset
)
3152 uint32_t s
= offset
< 0 ? 1 : 0;
3153 uint32_t bits
= static_cast<uint32_t>(offset
);
3154 return (upper_insn
& 0xfbc0U
) | (s
<< 10) | ((bits
& 0x0003f000U
) >> 12);
3157 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3158 // instruction. LOWER_INSN is the original lower instruction of the branch.
3159 // The caller is responsible for overflow checking.
3160 static inline uint16_t
3161 thumb32_cond_branch_lower(uint16_t lower_insn
, int32_t offset
)
3163 uint32_t bits
= static_cast<uint32_t>(offset
);
3164 uint32_t j2
= (bits
& 0x00080000U
) >> 19;
3165 uint32_t j1
= (bits
& 0x00040000U
) >> 18;
3166 uint32_t lo
= (bits
& 0x00000ffeU
) >> 1;
3168 return (lower_insn
& 0xd000U
) | (j1
<< 13) | (j2
<< 11) | lo
;
3171 // R_ARM_ABS8: S + A
3172 static inline typename
This::Status
3173 abs8(unsigned char* view
,
3174 const Sized_relobj_file
<32, big_endian
>* object
,
3175 const Symbol_value
<32>* psymval
)
3177 typedef typename
elfcpp::Swap
<8, big_endian
>::Valtype Valtype
;
3178 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3179 Valtype val
= elfcpp::Swap
<8, big_endian
>::readval(wv
);
3180 int32_t addend
= Bits
<8>::sign_extend32(val
);
3181 Arm_address x
= psymval
->value(object
, addend
);
3182 val
= Bits
<32>::bit_select32(val
, x
, 0xffU
);
3183 elfcpp::Swap
<8, big_endian
>::writeval(wv
, val
);
3185 // R_ARM_ABS8 permits signed or unsigned results.
3186 return (Bits
<8>::has_signed_unsigned_overflow32(x
)
3187 ? This::STATUS_OVERFLOW
3188 : This::STATUS_OKAY
);
3191 // R_ARM_THM_ABS5: S + A
3192 static inline typename
This::Status
3193 thm_abs5(unsigned char* view
,
3194 const Sized_relobj_file
<32, big_endian
>* object
,
3195 const Symbol_value
<32>* psymval
)
3197 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3198 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3199 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3200 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3201 Reltype addend
= (val
& 0x7e0U
) >> 6;
3202 Reltype x
= psymval
->value(object
, addend
);
3203 val
= Bits
<32>::bit_select32(val
, x
<< 6, 0x7e0U
);
3204 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3205 return (Bits
<5>::has_overflow32(x
)
3206 ? This::STATUS_OVERFLOW
3207 : This::STATUS_OKAY
);
3210 // R_ARM_ABS12: S + A
3211 static inline typename
This::Status
3212 abs12(unsigned char* view
,
3213 const Sized_relobj_file
<32, big_endian
>* object
,
3214 const Symbol_value
<32>* psymval
)
3216 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3217 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3218 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3219 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3220 Reltype addend
= val
& 0x0fffU
;
3221 Reltype x
= psymval
->value(object
, addend
);
3222 val
= Bits
<32>::bit_select32(val
, x
, 0x0fffU
);
3223 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3224 return (Bits
<12>::has_overflow32(x
)
3225 ? This::STATUS_OVERFLOW
3226 : This::STATUS_OKAY
);
3229 // R_ARM_ABS16: S + A
3230 static inline typename
This::Status
3231 abs16(unsigned char* view
,
3232 const Sized_relobj_file
<32, big_endian
>* object
,
3233 const Symbol_value
<32>* psymval
)
3235 typedef typename
elfcpp::Swap_unaligned
<16, big_endian
>::Valtype Valtype
;
3236 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3237 Valtype val
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(view
);
3238 int32_t addend
= Bits
<16>::sign_extend32(val
);
3239 Arm_address x
= psymval
->value(object
, addend
);
3240 val
= Bits
<32>::bit_select32(val
, x
, 0xffffU
);
3241 elfcpp::Swap_unaligned
<16, big_endian
>::writeval(view
, val
);
3243 // R_ARM_ABS16 permits signed or unsigned results.
3244 return (Bits
<16>::has_signed_unsigned_overflow32(x
)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY
);
3249 // R_ARM_ABS32: (S + A) | T
3250 static inline typename
This::Status
3251 abs32(unsigned char* view
,
3252 const Sized_relobj_file
<32, big_endian
>* object
,
3253 const Symbol_value
<32>* psymval
,
3254 Arm_address thumb_bit
)
3256 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
3257 Valtype addend
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(view
);
3258 Valtype x
= psymval
->value(object
, addend
) | thumb_bit
;
3259 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(view
, x
);
3260 return This::STATUS_OKAY
;
3263 // R_ARM_REL32: (S + A) | T - P
3264 static inline typename
This::Status
3265 rel32(unsigned char* view
,
3266 const Sized_relobj_file
<32, big_endian
>* object
,
3267 const Symbol_value
<32>* psymval
,
3268 Arm_address address
,
3269 Arm_address thumb_bit
)
3271 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
3272 Valtype addend
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(view
);
3273 Valtype x
= (psymval
->value(object
, addend
) | thumb_bit
) - address
;
3274 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(view
, x
);
3275 return This::STATUS_OKAY
;
3278 // R_ARM_THM_JUMP24: (S + A) | T - P
3279 static typename
This::Status
3280 thm_jump19(unsigned char* view
, const Arm_relobj
<big_endian
>* object
,
3281 const Symbol_value
<32>* psymval
, Arm_address address
,
3282 Arm_address thumb_bit
);
3284 // R_ARM_THM_JUMP6: S + A – P
3285 static inline typename
This::Status
3286 thm_jump6(unsigned char* view
,
3287 const Sized_relobj_file
<32, big_endian
>* object
,
3288 const Symbol_value
<32>* psymval
,
3289 Arm_address address
)
3291 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3292 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3293 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3294 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3295 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3296 Reltype addend
= (((val
& 0x0200) >> 3) | ((val
& 0x00f8) >> 2));
3297 Reltype x
= (psymval
->value(object
, addend
) - address
);
3298 val
= (val
& 0xfd07) | ((x
& 0x0040) << 3) | ((val
& 0x003e) << 2);
3299 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3300 // CZB does only forward jumps.
3301 return ((x
> 0x007e)
3302 ? This::STATUS_OVERFLOW
3303 : This::STATUS_OKAY
);
3306 // R_ARM_THM_JUMP8: S + A – P
3307 static inline typename
This::Status
3308 thm_jump8(unsigned char* view
,
3309 const Sized_relobj_file
<32, big_endian
>* object
,
3310 const Symbol_value
<32>* psymval
,
3311 Arm_address address
)
3313 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3314 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3315 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3316 int32_t addend
= Bits
<8>::sign_extend32((val
& 0x00ff) << 1);
3317 int32_t x
= (psymval
->value(object
, addend
) - address
);
3318 elfcpp::Swap
<16, big_endian
>::writeval(wv
, ((val
& 0xff00)
3319 | ((x
& 0x01fe) >> 1)));
3320 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3321 return (Bits
<9>::has_overflow32(x
)
3322 ? This::STATUS_OVERFLOW
3323 : This::STATUS_OKAY
);
3326 // R_ARM_THM_JUMP11: S + A – P
3327 static inline typename
This::Status
3328 thm_jump11(unsigned char* view
,
3329 const Sized_relobj_file
<32, big_endian
>* object
,
3330 const Symbol_value
<32>* psymval
,
3331 Arm_address address
)
3333 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3334 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3335 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3336 int32_t addend
= Bits
<11>::sign_extend32((val
& 0x07ff) << 1);
3337 int32_t x
= (psymval
->value(object
, addend
) - address
);
3338 elfcpp::Swap
<16, big_endian
>::writeval(wv
, ((val
& 0xf800)
3339 | ((x
& 0x0ffe) >> 1)));
3340 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3341 return (Bits
<12>::has_overflow32(x
)
3342 ? This::STATUS_OVERFLOW
3343 : This::STATUS_OKAY
);
3346 // R_ARM_BASE_PREL: B(S) + A - P
3347 static inline typename
This::Status
3348 base_prel(unsigned char* view
,
3350 Arm_address address
)
3352 Base::rel32(view
, origin
- address
);
3356 // R_ARM_BASE_ABS: B(S) + A
3357 static inline typename
This::Status
3358 base_abs(unsigned char* view
,
3361 Base::rel32(view
, origin
);
3365 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3366 static inline typename
This::Status
3367 got_brel(unsigned char* view
,
3368 typename
elfcpp::Swap
<32, big_endian
>::Valtype got_offset
)
3370 Base::rel32(view
, got_offset
);
3371 return This::STATUS_OKAY
;
3374 // R_ARM_GOT_PREL: GOT(S) + A - P
3375 static inline typename
This::Status
3376 got_prel(unsigned char* view
,
3377 Arm_address got_entry
,
3378 Arm_address address
)
3380 Base::rel32(view
, got_entry
- address
);
3381 return This::STATUS_OKAY
;
3384 // R_ARM_PREL: (S + A) | T - P
3385 static inline typename
This::Status
3386 prel31(unsigned char* view
,
3387 const Sized_relobj_file
<32, big_endian
>* object
,
3388 const Symbol_value
<32>* psymval
,
3389 Arm_address address
,
3390 Arm_address thumb_bit
)
3392 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
3393 Valtype val
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(view
);
3394 Valtype addend
= Bits
<31>::sign_extend32(val
);
3395 Valtype x
= (psymval
->value(object
, addend
) | thumb_bit
) - address
;
3396 val
= Bits
<32>::bit_select32(val
, x
, 0x7fffffffU
);
3397 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(view
, val
);
3398 return (Bits
<31>::has_overflow32(x
)
3399 ? This::STATUS_OVERFLOW
3400 : This::STATUS_OKAY
);
3403 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3404 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3405 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3406 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3407 static inline typename
This::Status
3408 movw(unsigned char* view
,
3409 const Sized_relobj_file
<32, big_endian
>* object
,
3410 const Symbol_value
<32>* psymval
,
3411 Arm_address relative_address_base
,
3412 Arm_address thumb_bit
,
3413 bool check_overflow
)
3415 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3416 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3417 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3418 Valtype addend
= This::extract_arm_movw_movt_addend(val
);
3419 Valtype x
= ((psymval
->value(object
, addend
) | thumb_bit
)
3420 - relative_address_base
);
3421 val
= This::insert_val_arm_movw_movt(val
, x
);
3422 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3423 return ((check_overflow
&& Bits
<16>::has_overflow32(x
))
3424 ? This::STATUS_OVERFLOW
3425 : This::STATUS_OKAY
);
3428 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3429 // R_ARM_MOVT_PREL: S + A - P
3430 // R_ARM_MOVT_BREL: S + A - B(S)
3431 static inline typename
This::Status
3432 movt(unsigned char* view
,
3433 const Sized_relobj_file
<32, big_endian
>* object
,
3434 const Symbol_value
<32>* psymval
,
3435 Arm_address relative_address_base
)
3437 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3438 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3439 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3440 Valtype addend
= This::extract_arm_movw_movt_addend(val
);
3441 Valtype x
= (psymval
->value(object
, addend
) - relative_address_base
) >> 16;
3442 val
= This::insert_val_arm_movw_movt(val
, x
);
3443 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3444 // FIXME: IHI0044D says that we should check for overflow.
3445 return This::STATUS_OKAY
;
3448 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3449 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3450 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3451 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3452 static inline typename
This::Status
3453 thm_movw(unsigned char* view
,
3454 const Sized_relobj_file
<32, big_endian
>* object
,
3455 const Symbol_value
<32>* psymval
,
3456 Arm_address relative_address_base
,
3457 Arm_address thumb_bit
,
3458 bool check_overflow
)
3460 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3461 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3462 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3463 Reltype val
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3464 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3465 Reltype addend
= This::extract_thumb_movw_movt_addend(val
);
3467 (psymval
->value(object
, addend
) | thumb_bit
) - relative_address_base
;
3468 val
= This::insert_val_thumb_movw_movt(val
, x
);
3469 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
>> 16);
3470 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, val
& 0xffff);
3471 return ((check_overflow
&& Bits
<16>::has_overflow32(x
))
3472 ? This::STATUS_OVERFLOW
3473 : This::STATUS_OKAY
);
3476 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3477 // R_ARM_THM_MOVT_PREL: S + A - P
3478 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3479 static inline typename
This::Status
3480 thm_movt(unsigned char* view
,
3481 const Sized_relobj_file
<32, big_endian
>* object
,
3482 const Symbol_value
<32>* psymval
,
3483 Arm_address relative_address_base
)
3485 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3486 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3487 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3488 Reltype val
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3489 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3490 Reltype addend
= This::extract_thumb_movw_movt_addend(val
);
3491 Reltype x
= (psymval
->value(object
, addend
) - relative_address_base
) >> 16;
3492 val
= This::insert_val_thumb_movw_movt(val
, x
);
3493 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
>> 16);
3494 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, val
& 0xffff);
3495 return This::STATUS_OKAY
;
3498 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3499 static inline typename
This::Status
3500 thm_alu11(unsigned char* view
,
3501 const Sized_relobj_file
<32, big_endian
>* object
,
3502 const Symbol_value
<32>* psymval
,
3503 Arm_address address
,
3504 Arm_address thumb_bit
)
3506 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3507 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3508 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3509 Reltype insn
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3510 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3512 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3513 // -----------------------------------------------------------------------
3514 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3515 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3516 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3517 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3518 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3519 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3521 // Determine a sign for the addend.
3522 const int sign
= ((insn
& 0xf8ef0000) == 0xf0ad0000
3523 || (insn
& 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3524 // Thumb2 addend encoding:
3525 // imm12 := i | imm3 | imm8
3526 int32_t addend
= (insn
& 0xff)
3527 | ((insn
& 0x00007000) >> 4)
3528 | ((insn
& 0x04000000) >> 15);
3529 // Apply a sign to the added.
3532 int32_t x
= (psymval
->value(object
, addend
) | thumb_bit
)
3533 - (address
& 0xfffffffc);
3534 Reltype val
= abs(x
);
3535 // Mask out the value and a distinct part of the ADD/SUB opcode
3536 // (bits 7:5 of opword).
3537 insn
= (insn
& 0xfb0f8f00)
3539 | ((val
& 0x700) << 4)
3540 | ((val
& 0x800) << 15);
3541 // Set the opcode according to whether the value to go in the
3542 // place is negative.
3546 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
>> 16);
3547 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, insn
& 0xffff);
3548 return ((val
> 0xfff) ?
3549 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3552 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3553 static inline typename
This::Status
3554 thm_pc8(unsigned char* view
,
3555 const Sized_relobj_file
<32, big_endian
>* object
,
3556 const Symbol_value
<32>* psymval
,
3557 Arm_address address
)
3559 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3560 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3561 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3562 Valtype insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3563 Reltype addend
= ((insn
& 0x00ff) << 2);
3564 int32_t x
= (psymval
->value(object
, addend
) - (address
& 0xfffffffc));
3565 Reltype val
= abs(x
);
3566 insn
= (insn
& 0xff00) | ((val
& 0x03fc) >> 2);
3568 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
);
3569 return ((val
> 0x03fc)
3570 ? This::STATUS_OVERFLOW
3571 : This::STATUS_OKAY
);
3574 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3575 static inline typename
This::Status
3576 thm_pc12(unsigned char* view
,
3577 const Sized_relobj_file
<32, big_endian
>* object
,
3578 const Symbol_value
<32>* psymval
,
3579 Arm_address address
)
3581 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3582 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3583 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3584 Reltype insn
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3585 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3586 // Determine a sign for the addend (positive if the U bit is 1).
3587 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3588 int32_t addend
= (insn
& 0xfff);
3589 // Apply a sign to the added.
3592 int32_t x
= (psymval
->value(object
, addend
) - (address
& 0xfffffffc));
3593 Reltype val
= abs(x
);
3594 // Mask out and apply the value and the U bit.
3595 insn
= (insn
& 0xff7ff000) | (val
& 0xfff);
3596 // Set the U bit according to whether the value to go in the
3597 // place is positive.
3601 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
>> 16);
3602 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, insn
& 0xffff);
3603 return ((val
> 0xfff) ?
3604 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3608 static inline typename
This::Status
3609 v4bx(const Relocate_info
<32, big_endian
>* relinfo
,
3610 unsigned char* view
,
3611 const Arm_relobj
<big_endian
>* object
,
3612 const Arm_address address
,
3613 const bool is_interworking
)
3616 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3617 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3618 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3620 // Ensure that we have a BX instruction.
3621 gold_assert((val
& 0x0ffffff0) == 0x012fff10);
3622 const uint32_t reg
= (val
& 0xf);
3623 if (is_interworking
&& reg
!= 0xf)
3625 Stub_table
<big_endian
>* stub_table
=
3626 object
->stub_table(relinfo
->data_shndx
);
3627 gold_assert(stub_table
!= NULL
);
3629 Arm_v4bx_stub
* stub
= stub_table
->find_arm_v4bx_stub(reg
);
3630 gold_assert(stub
!= NULL
);
3632 int32_t veneer_address
=
3633 stub_table
->address() + stub
->offset() - 8 - address
;
3634 gold_assert((veneer_address
<= ARM_MAX_FWD_BRANCH_OFFSET
)
3635 && (veneer_address
>= ARM_MAX_BWD_BRANCH_OFFSET
));
3636 // Replace with a branch to veneer (B <addr>)
3637 val
= (val
& 0xf0000000) | 0x0a000000
3638 | ((veneer_address
>> 2) & 0x00ffffff);
3642 // Preserve Rm (lowest four bits) and the condition code
3643 // (highest four bits). Other bits encode MOV PC,Rm.
3644 val
= (val
& 0xf000000f) | 0x01a0f000;
3646 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3647 return This::STATUS_OKAY
;
3650 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3651 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3652 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3653 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3654 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3655 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3656 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3657 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3658 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3659 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3660 static inline typename
This::Status
3661 arm_grp_alu(unsigned char* view
,
3662 const Sized_relobj_file
<32, big_endian
>* object
,
3663 const Symbol_value
<32>* psymval
,
3665 Arm_address address
,
3666 Arm_address thumb_bit
,
3667 bool check_overflow
)
3669 gold_assert(group
>= 0 && group
< 3);
3670 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3671 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3672 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3674 // ALU group relocations are allowed only for the ADD/SUB instructions.
3675 // (0x00800000 - ADD, 0x00400000 - SUB)
3676 const Valtype opcode
= insn
& 0x01e00000;
3677 if (opcode
!= 0x00800000 && opcode
!= 0x00400000)
3678 return This::STATUS_BAD_RELOC
;
3680 // Determine a sign for the addend.
3681 const int sign
= (opcode
== 0x00800000) ? 1 : -1;
3682 // shifter = rotate_imm * 2
3683 const uint32_t shifter
= (insn
& 0xf00) >> 7;
3684 // Initial addend value.
3685 int32_t addend
= insn
& 0xff;
3686 // Rotate addend right by shifter.
3687 addend
= (addend
>> shifter
) | (addend
<< (32 - shifter
));
3688 // Apply a sign to the added.
3691 int32_t x
= ((psymval
->value(object
, addend
) | thumb_bit
) - address
);
3692 Valtype gn
= Arm_relocate_functions::calc_grp_gn(abs(x
), group
);
3693 // Check for overflow if required
3695 && (Arm_relocate_functions::calc_grp_residual(abs(x
), group
) != 0))
3696 return This::STATUS_OVERFLOW
;
3698 // Mask out the value and the ADD/SUB part of the opcode; take care
3699 // not to destroy the S bit.
3701 // Set the opcode according to whether the value to go in the
3702 // place is negative.
3703 insn
|= ((x
< 0) ? 0x00400000 : 0x00800000);
3704 // Encode the offset (encoded Gn).
3707 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3708 return This::STATUS_OKAY
;
3711 // R_ARM_LDR_PC_G0: S + A - P
3712 // R_ARM_LDR_PC_G1: S + A - P
3713 // R_ARM_LDR_PC_G2: S + A - P
3714 // R_ARM_LDR_SB_G0: S + A - B(S)
3715 // R_ARM_LDR_SB_G1: S + A - B(S)
3716 // R_ARM_LDR_SB_G2: S + A - B(S)
3717 static inline typename
This::Status
3718 arm_grp_ldr(unsigned char* view
,
3719 const Sized_relobj_file
<32, big_endian
>* object
,
3720 const Symbol_value
<32>* psymval
,
3722 Arm_address address
)
3724 gold_assert(group
>= 0 && group
< 3);
3725 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3726 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3727 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3729 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3730 int32_t addend
= (insn
& 0xfff) * sign
;
3731 int32_t x
= (psymval
->value(object
, addend
) - address
);
3732 // Calculate the relevant G(n-1) value to obtain this stage residual.
3734 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3735 if (residual
>= 0x1000)
3736 return This::STATUS_OVERFLOW
;
3738 // Mask out the value and U bit.
3740 // Set the U bit for non-negative values.
3745 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3746 return This::STATUS_OKAY
;
3749 // R_ARM_LDRS_PC_G0: S + A - P
3750 // R_ARM_LDRS_PC_G1: S + A - P
3751 // R_ARM_LDRS_PC_G2: S + A - P
3752 // R_ARM_LDRS_SB_G0: S + A - B(S)
3753 // R_ARM_LDRS_SB_G1: S + A - B(S)
3754 // R_ARM_LDRS_SB_G2: S + A - B(S)
3755 static inline typename
This::Status
3756 arm_grp_ldrs(unsigned char* view
,
3757 const Sized_relobj_file
<32, big_endian
>* object
,
3758 const Symbol_value
<32>* psymval
,
3760 Arm_address address
)
3762 gold_assert(group
>= 0 && group
< 3);
3763 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3764 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3765 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3767 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3768 int32_t addend
= (((insn
& 0xf00) >> 4) + (insn
& 0xf)) * sign
;
3769 int32_t x
= (psymval
->value(object
, addend
) - address
);
3770 // Calculate the relevant G(n-1) value to obtain this stage residual.
3772 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3773 if (residual
>= 0x100)
3774 return This::STATUS_OVERFLOW
;
3776 // Mask out the value and U bit.
3778 // Set the U bit for non-negative values.
3781 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
3783 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3784 return This::STATUS_OKAY
;
3787 // R_ARM_LDC_PC_G0: S + A - P
3788 // R_ARM_LDC_PC_G1: S + A - P
3789 // R_ARM_LDC_PC_G2: S + A - P
3790 // R_ARM_LDC_SB_G0: S + A - B(S)
3791 // R_ARM_LDC_SB_G1: S + A - B(S)
3792 // R_ARM_LDC_SB_G2: S + A - B(S)
3793 static inline typename
This::Status
3794 arm_grp_ldc(unsigned char* view
,
3795 const Sized_relobj_file
<32, big_endian
>* object
,
3796 const Symbol_value
<32>* psymval
,
3798 Arm_address address
)
3800 gold_assert(group
>= 0 && group
< 3);
3801 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3802 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3803 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3805 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3806 int32_t addend
= ((insn
& 0xff) << 2) * sign
;
3807 int32_t x
= (psymval
->value(object
, addend
) - address
);
3808 // Calculate the relevant G(n-1) value to obtain this stage residual.
3810 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3811 if ((residual
& 0x3) != 0 || residual
>= 0x400)
3812 return This::STATUS_OVERFLOW
;
3814 // Mask out the value and U bit.
3816 // Set the U bit for non-negative values.
3819 insn
|= (residual
>> 2);
3821 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3822 return This::STATUS_OKAY
;
3826 // Relocate ARM long branches. This handles relocation types
3827 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3828 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3829 // undefined and we do not use PLT in this relocation. In such a case,
3830 // the branch is converted into an NOP.
3832 template<bool big_endian
>
3833 typename Arm_relocate_functions
<big_endian
>::Status
3834 Arm_relocate_functions
<big_endian
>::arm_branch_common(
3835 unsigned int r_type
,
3836 const Relocate_info
<32, big_endian
>* relinfo
,
3837 unsigned char* view
,
3838 const Sized_symbol
<32>* gsym
,
3839 const Arm_relobj
<big_endian
>* object
,
3841 const Symbol_value
<32>* psymval
,
3842 Arm_address address
,
3843 Arm_address thumb_bit
,
3844 bool is_weakly_undefined_without_plt
)
3846 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3847 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3848 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3850 bool insn_is_b
= (((val
>> 28) & 0xf) <= 0xe)
3851 && ((val
& 0x0f000000UL
) == 0x0a000000UL
);
3852 bool insn_is_uncond_bl
= (val
& 0xff000000UL
) == 0xeb000000UL
;
3853 bool insn_is_cond_bl
= (((val
>> 28) & 0xf) < 0xe)
3854 && ((val
& 0x0f000000UL
) == 0x0b000000UL
);
3855 bool insn_is_blx
= (val
& 0xfe000000UL
) == 0xfa000000UL
;
3856 bool insn_is_any_branch
= (val
& 0x0e000000UL
) == 0x0a000000UL
;
3858 // Check that the instruction is valid.
3859 if (r_type
== elfcpp::R_ARM_CALL
)
3861 if (!insn_is_uncond_bl
&& !insn_is_blx
)
3862 return This::STATUS_BAD_RELOC
;
3864 else if (r_type
== elfcpp::R_ARM_JUMP24
)
3866 if (!insn_is_b
&& !insn_is_cond_bl
)
3867 return This::STATUS_BAD_RELOC
;
3869 else if (r_type
== elfcpp::R_ARM_PLT32
)
3871 if (!insn_is_any_branch
)
3872 return This::STATUS_BAD_RELOC
;
3874 else if (r_type
== elfcpp::R_ARM_XPC25
)
3876 // FIXME: AAELF document IH0044C does not say much about it other
3877 // than it being obsolete.
3878 if (!insn_is_any_branch
)
3879 return This::STATUS_BAD_RELOC
;
3884 // A branch to an undefined weak symbol is turned into a jump to
3885 // the next instruction unless a PLT entry will be created.
3886 // Do the same for local undefined symbols.
3887 // The jump to the next instruction is optimized as a NOP depending
3888 // on the architecture.
3889 const Target_arm
<big_endian
>* arm_target
=
3890 Target_arm
<big_endian
>::default_target();
3891 if (is_weakly_undefined_without_plt
)
3893 gold_assert(!parameters
->options().relocatable());
3894 Valtype cond
= val
& 0xf0000000U
;
3895 if (arm_target
->may_use_arm_nop())
3896 val
= cond
| 0x0320f000;
3898 val
= cond
| 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3899 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3900 return This::STATUS_OKAY
;
3903 Valtype addend
= Bits
<26>::sign_extend32(val
<< 2);
3904 Valtype branch_target
= psymval
->value(object
, addend
);
3905 int32_t branch_offset
= branch_target
- address
;
3907 // We need a stub if the branch offset is too large or if we need
3909 bool may_use_blx
= arm_target
->may_use_v5t_interworking();
3910 Reloc_stub
* stub
= NULL
;
3912 if (!parameters
->options().relocatable()
3913 && (Bits
<26>::has_overflow32(branch_offset
)
3914 || ((thumb_bit
!= 0)
3915 && !(may_use_blx
&& r_type
== elfcpp::R_ARM_CALL
))))
3917 Valtype unadjusted_branch_target
= psymval
->value(object
, 0);
3919 Stub_type stub_type
=
3920 Reloc_stub::stub_type_for_reloc(r_type
, address
,
3921 unadjusted_branch_target
,
3923 if (stub_type
!= arm_stub_none
)
3925 Stub_table
<big_endian
>* stub_table
=
3926 object
->stub_table(relinfo
->data_shndx
);
3927 gold_assert(stub_table
!= NULL
);
3929 Reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
3930 stub
= stub_table
->find_reloc_stub(stub_key
);
3931 gold_assert(stub
!= NULL
);
3932 thumb_bit
= stub
->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3933 branch_target
= stub_table
->address() + stub
->offset() + addend
;
3934 branch_offset
= branch_target
- address
;
3935 gold_assert(!Bits
<26>::has_overflow32(branch_offset
));
3939 // At this point, if we still need to switch mode, the instruction
3940 // must either be a BLX or a BL that can be converted to a BLX.
3944 gold_assert(may_use_blx
&& r_type
== elfcpp::R_ARM_CALL
);
3945 val
= (val
& 0xffffff) | 0xfa000000 | ((branch_offset
& 2) << 23);
3948 val
= Bits
<32>::bit_select32(val
, (branch_offset
>> 2), 0xffffffUL
);
3949 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3950 return (Bits
<26>::has_overflow32(branch_offset
)
3951 ? This::STATUS_OVERFLOW
3952 : This::STATUS_OKAY
);
3955 // Relocate THUMB long branches. This handles relocation types
3956 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3957 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3958 // undefined and we do not use PLT in this relocation. In such a case,
3959 // the branch is converted into an NOP.
3961 template<bool big_endian
>
3962 typename Arm_relocate_functions
<big_endian
>::Status
3963 Arm_relocate_functions
<big_endian
>::thumb_branch_common(
3964 unsigned int r_type
,
3965 const Relocate_info
<32, big_endian
>* relinfo
,
3966 unsigned char* view
,
3967 const Sized_symbol
<32>* gsym
,
3968 const Arm_relobj
<big_endian
>* object
,
3970 const Symbol_value
<32>* psymval
,
3971 Arm_address address
,
3972 Arm_address thumb_bit
,
3973 bool is_weakly_undefined_without_plt
)
3975 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3976 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3977 uint32_t upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3978 uint32_t lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3980 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3982 bool is_bl_insn
= (lower_insn
& 0x1000U
) == 0x1000U
;
3983 bool is_blx_insn
= (lower_insn
& 0x1000U
) == 0x0000U
;
3985 // Check that the instruction is valid.
3986 if (r_type
== elfcpp::R_ARM_THM_CALL
)
3988 if (!is_bl_insn
&& !is_blx_insn
)
3989 return This::STATUS_BAD_RELOC
;
3991 else if (r_type
== elfcpp::R_ARM_THM_JUMP24
)
3993 // This cannot be a BLX.
3995 return This::STATUS_BAD_RELOC
;
3997 else if (r_type
== elfcpp::R_ARM_THM_XPC22
)
3999 // Check for Thumb to Thumb call.
4001 return This::STATUS_BAD_RELOC
;
4004 gold_warning(_("%s: Thumb BLX instruction targets "
4005 "thumb function '%s'."),
4006 object
->name().c_str(),
4007 (gsym
? gsym
->name() : "(local)"));
4008 // Convert BLX to BL.
4009 lower_insn
|= 0x1000U
;
4015 // A branch to an undefined weak symbol is turned into a jump to
4016 // the next instruction unless a PLT entry will be created.
4017 // The jump to the next instruction is optimized as a NOP.W for
4018 // Thumb-2 enabled architectures.
4019 const Target_arm
<big_endian
>* arm_target
=
4020 Target_arm
<big_endian
>::default_target();
4021 if (is_weakly_undefined_without_plt
)
4023 gold_assert(!parameters
->options().relocatable());
4024 if (arm_target
->may_use_thumb2_nop())
4026 elfcpp::Swap
<16, big_endian
>::writeval(wv
, 0xf3af);
4027 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, 0x8000);
4031 elfcpp::Swap
<16, big_endian
>::writeval(wv
, 0xe000);
4032 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, 0xbf00);
4034 return This::STATUS_OKAY
;
4037 int32_t addend
= This::thumb32_branch_offset(upper_insn
, lower_insn
);
4038 Arm_address branch_target
= psymval
->value(object
, addend
);
4040 // For BLX, bit 1 of target address comes from bit 1 of base address.
4041 bool may_use_blx
= arm_target
->may_use_v5t_interworking();
4042 if (thumb_bit
== 0 && may_use_blx
)
4043 branch_target
= Bits
<32>::bit_select32(branch_target
, address
, 0x2);
4045 int32_t branch_offset
= branch_target
- address
;
4047 // We need a stub if the branch offset is too large or if we need
4049 bool thumb2
= arm_target
->using_thumb2();
4050 if (!parameters
->options().relocatable()
4051 && ((!thumb2
&& Bits
<23>::has_overflow32(branch_offset
))
4052 || (thumb2
&& Bits
<25>::has_overflow32(branch_offset
))
4053 || ((thumb_bit
== 0)
4054 && (((r_type
== elfcpp::R_ARM_THM_CALL
) && !may_use_blx
)
4055 || r_type
== elfcpp::R_ARM_THM_JUMP24
))))
4057 Arm_address unadjusted_branch_target
= psymval
->value(object
, 0);
4059 Stub_type stub_type
=
4060 Reloc_stub::stub_type_for_reloc(r_type
, address
,
4061 unadjusted_branch_target
,
4064 if (stub_type
!= arm_stub_none
)
4066 Stub_table
<big_endian
>* stub_table
=
4067 object
->stub_table(relinfo
->data_shndx
);
4068 gold_assert(stub_table
!= NULL
);
4070 Reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
4071 Reloc_stub
* stub
= stub_table
->find_reloc_stub(stub_key
);
4072 gold_assert(stub
!= NULL
);
4073 thumb_bit
= stub
->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4074 branch_target
= stub_table
->address() + stub
->offset() + addend
;
4075 if (thumb_bit
== 0 && may_use_blx
)
4076 branch_target
= Bits
<32>::bit_select32(branch_target
, address
, 0x2);
4077 branch_offset
= branch_target
- address
;
4081 // At this point, if we still need to switch mode, the instruction
4082 // must either be a BLX or a BL that can be converted to a BLX.
4085 gold_assert(may_use_blx
4086 && (r_type
== elfcpp::R_ARM_THM_CALL
4087 || r_type
== elfcpp::R_ARM_THM_XPC22
));
4088 // Make sure this is a BLX.
4089 lower_insn
&= ~0x1000U
;
4093 // Make sure this is a BL.
4094 lower_insn
|= 0x1000U
;
4097 // For a BLX instruction, make sure that the relocation is rounded up
4098 // to a word boundary. This follows the semantics of the instruction
4099 // which specifies that bit 1 of the target address will come from bit
4100 // 1 of the base address.
4101 if ((lower_insn
& 0x5000U
) == 0x4000U
)
4102 gold_assert((branch_offset
& 3) == 0);
4104 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4105 // We use the Thumb-2 encoding, which is safe even if dealing with
4106 // a Thumb-1 instruction by virtue of our overflow check above. */
4107 upper_insn
= This::thumb32_branch_upper(upper_insn
, branch_offset
);
4108 lower_insn
= This::thumb32_branch_lower(lower_insn
, branch_offset
);
4110 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
4111 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
4113 gold_assert(!Bits
<25>::has_overflow32(branch_offset
));
4116 ? Bits
<25>::has_overflow32(branch_offset
)
4117 : Bits
<23>::has_overflow32(branch_offset
))
4118 ? This::STATUS_OVERFLOW
4119 : This::STATUS_OKAY
);
4122 // Relocate THUMB-2 long conditional branches.
4123 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4124 // undefined and we do not use PLT in this relocation. In such a case,
4125 // the branch is converted into an NOP.
4127 template<bool big_endian
>
4128 typename Arm_relocate_functions
<big_endian
>::Status
4129 Arm_relocate_functions
<big_endian
>::thm_jump19(
4130 unsigned char* view
,
4131 const Arm_relobj
<big_endian
>* object
,
4132 const Symbol_value
<32>* psymval
,
4133 Arm_address address
,
4134 Arm_address thumb_bit
)
4136 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
4137 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
4138 uint32_t upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
4139 uint32_t lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
4140 int32_t addend
= This::thumb32_cond_branch_offset(upper_insn
, lower_insn
);
4142 Arm_address branch_target
= psymval
->value(object
, addend
);
4143 int32_t branch_offset
= branch_target
- address
;
4145 // ??? Should handle interworking? GCC might someday try to
4146 // use this for tail calls.
4147 // FIXME: We do support thumb entry to PLT yet.
4150 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4151 return This::STATUS_BAD_RELOC
;
4154 // Put RELOCATION back into the insn.
4155 upper_insn
= This::thumb32_cond_branch_upper(upper_insn
, branch_offset
);
4156 lower_insn
= This::thumb32_cond_branch_lower(lower_insn
, branch_offset
);
4158 // Put the relocated value back in the object file:
4159 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
4160 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
4162 return (Bits
<21>::has_overflow32(branch_offset
)
4163 ? This::STATUS_OVERFLOW
4164 : This::STATUS_OKAY
);
4167 // Get the GOT section, creating it if necessary.
4169 template<bool big_endian
>
4170 Arm_output_data_got
<big_endian
>*
4171 Target_arm
<big_endian
>::got_section(Symbol_table
* symtab
, Layout
* layout
)
4173 if (this->got_
== NULL
)
4175 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
4177 this->got_
= new Arm_output_data_got
<big_endian
>(symtab
, layout
);
4179 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4180 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
4181 this->got_
, ORDER_DATA
, false);
4183 // The old GNU linker creates a .got.plt section. We just
4184 // create another set of data in the .got section. Note that we
4185 // always create a PLT if we create a GOT, although the PLT
4187 this->got_plt_
= new Output_data_space(4, "** GOT PLT");
4188 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4189 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
4190 this->got_plt_
, ORDER_DATA
, false);
4192 // The first three entries are reserved.
4193 this->got_plt_
->set_current_data_size(3 * 4);
4195 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4196 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
4197 Symbol_table::PREDEFINED
,
4199 0, 0, elfcpp::STT_OBJECT
,
4201 elfcpp::STV_HIDDEN
, 0,
4207 // Get the dynamic reloc section, creating it if necessary.
4209 template<bool big_endian
>
4210 typename Target_arm
<big_endian
>::Reloc_section
*
4211 Target_arm
<big_endian
>::rel_dyn_section(Layout
* layout
)
4213 if (this->rel_dyn_
== NULL
)
4215 gold_assert(layout
!= NULL
);
4216 this->rel_dyn_
= new Reloc_section(parameters
->options().combreloc());
4217 layout
->add_output_section_data(".rel.dyn", elfcpp::SHT_REL
,
4218 elfcpp::SHF_ALLOC
, this->rel_dyn_
,
4219 ORDER_DYNAMIC_RELOCS
, false);
4221 return this->rel_dyn_
;
4224 // Insn_template methods.
4226 // Return byte size of an instruction template.
4229 Insn_template::size() const
4231 switch (this->type())
4234 case THUMB16_SPECIAL_TYPE
:
4245 // Return alignment of an instruction template.
4248 Insn_template::alignment() const
4250 switch (this->type())
4253 case THUMB16_SPECIAL_TYPE
:
4264 // Stub_template methods.
4266 Stub_template::Stub_template(
4267 Stub_type type
, const Insn_template
* insns
,
4269 : type_(type
), insns_(insns
), insn_count_(insn_count
), alignment_(1),
4270 entry_in_thumb_mode_(false), relocs_()
4274 // Compute byte size and alignment of stub template.
4275 for (size_t i
= 0; i
< insn_count
; i
++)
4277 unsigned insn_alignment
= insns
[i
].alignment();
4278 size_t insn_size
= insns
[i
].size();
4279 gold_assert((offset
& (insn_alignment
- 1)) == 0);
4280 this->alignment_
= std::max(this->alignment_
, insn_alignment
);
4281 switch (insns
[i
].type())
4283 case Insn_template::THUMB16_TYPE
:
4284 case Insn_template::THUMB16_SPECIAL_TYPE
:
4286 this->entry_in_thumb_mode_
= true;
4289 case Insn_template::THUMB32_TYPE
:
4290 if (insns
[i
].r_type() != elfcpp::R_ARM_NONE
)
4291 this->relocs_
.push_back(Reloc(i
, offset
));
4293 this->entry_in_thumb_mode_
= true;
4296 case Insn_template::ARM_TYPE
:
4297 // Handle cases where the target is encoded within the
4299 if (insns
[i
].r_type() == elfcpp::R_ARM_JUMP24
)
4300 this->relocs_
.push_back(Reloc(i
, offset
));
4303 case Insn_template::DATA_TYPE
:
4304 // Entry point cannot be data.
4305 gold_assert(i
!= 0);
4306 this->relocs_
.push_back(Reloc(i
, offset
));
4312 offset
+= insn_size
;
4314 this->size_
= offset
;
4319 // Template to implement do_write for a specific target endianness.
4321 template<bool big_endian
>
4323 Stub::do_fixed_endian_write(unsigned char* view
, section_size_type view_size
)
4325 const Stub_template
* stub_template
= this->stub_template();
4326 const Insn_template
* insns
= stub_template
->insns();
4328 // FIXME: We do not handle BE8 encoding yet.
4329 unsigned char* pov
= view
;
4330 for (size_t i
= 0; i
< stub_template
->insn_count(); i
++)
4332 switch (insns
[i
].type())
4334 case Insn_template::THUMB16_TYPE
:
4335 elfcpp::Swap
<16, big_endian
>::writeval(pov
, insns
[i
].data() & 0xffff);
4337 case Insn_template::THUMB16_SPECIAL_TYPE
:
4338 elfcpp::Swap
<16, big_endian
>::writeval(
4340 this->thumb16_special(i
));
4342 case Insn_template::THUMB32_TYPE
:
4344 uint32_t hi
= (insns
[i
].data() >> 16) & 0xffff;
4345 uint32_t lo
= insns
[i
].data() & 0xffff;
4346 elfcpp::Swap
<16, big_endian
>::writeval(pov
, hi
);
4347 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lo
);
4350 case Insn_template::ARM_TYPE
:
4351 case Insn_template::DATA_TYPE
:
4352 elfcpp::Swap
<32, big_endian
>::writeval(pov
, insns
[i
].data());
4357 pov
+= insns
[i
].size();
4359 gold_assert(static_cast<section_size_type
>(pov
- view
) == view_size
);
4362 // Reloc_stub::Key methods.
4364 // Dump a Key as a string for debugging.
4367 Reloc_stub::Key::name() const
4369 if (this->r_sym_
== invalid_index
)
4371 // Global symbol key name
4372 // <stub-type>:<symbol name>:<addend>.
4373 const std::string sym_name
= this->u_
.symbol
->name();
4374 // We need to print two hex number and two colons. So just add 100 bytes
4375 // to the symbol name size.
4376 size_t len
= sym_name
.size() + 100;
4377 char* buffer
= new char[len
];
4378 int c
= snprintf(buffer
, len
, "%d:%s:%x", this->stub_type_
,
4379 sym_name
.c_str(), this->addend_
);
4380 gold_assert(c
> 0 && c
< static_cast<int>(len
));
4382 return std::string(buffer
);
4386 // local symbol key name
4387 // <stub-type>:<object>:<r_sym>:<addend>.
4388 const size_t len
= 200;
4390 int c
= snprintf(buffer
, len
, "%d:%p:%u:%x", this->stub_type_
,
4391 this->u_
.relobj
, this->r_sym_
, this->addend_
);
4392 gold_assert(c
> 0 && c
< static_cast<int>(len
));
4393 return std::string(buffer
);
4397 // Reloc_stub methods.
4399 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4400 // LOCATION to DESTINATION.
4401 // This code is based on the arm_type_of_stub function in
4402 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4406 Reloc_stub::stub_type_for_reloc(
4407 unsigned int r_type
,
4408 Arm_address location
,
4409 Arm_address destination
,
4410 bool target_is_thumb
)
4412 Stub_type stub_type
= arm_stub_none
;
4414 // This is a bit ugly but we want to avoid using a templated class for
4415 // big and little endianities.
4417 bool should_force_pic_veneer
;
4420 if (parameters
->target().is_big_endian())
4422 const Target_arm
<true>* big_endian_target
=
4423 Target_arm
<true>::default_target();
4424 may_use_blx
= big_endian_target
->may_use_v5t_interworking();
4425 should_force_pic_veneer
= big_endian_target
->should_force_pic_veneer();
4426 thumb2
= big_endian_target
->using_thumb2();
4427 thumb_only
= big_endian_target
->using_thumb_only();
4431 const Target_arm
<false>* little_endian_target
=
4432 Target_arm
<false>::default_target();
4433 may_use_blx
= little_endian_target
->may_use_v5t_interworking();
4434 should_force_pic_veneer
= little_endian_target
->should_force_pic_veneer();
4435 thumb2
= little_endian_target
->using_thumb2();
4436 thumb_only
= little_endian_target
->using_thumb_only();
4439 int64_t branch_offset
;
4440 bool output_is_position_independent
=
4441 parameters
->options().output_is_position_independent();
4442 if (r_type
== elfcpp::R_ARM_THM_CALL
|| r_type
== elfcpp::R_ARM_THM_JUMP24
)
4444 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4445 // base address (instruction address + 4).
4446 if ((r_type
== elfcpp::R_ARM_THM_CALL
) && may_use_blx
&& !target_is_thumb
)
4447 destination
= Bits
<32>::bit_select32(destination
, location
, 0x2);
4448 branch_offset
= static_cast<int64_t>(destination
) - location
;
4450 // Handle cases where:
4451 // - this call goes too far (different Thumb/Thumb2 max
4453 // - it's a Thumb->Arm call and blx is not available, or it's a
4454 // Thumb->Arm branch (not bl). A stub is needed in this case.
4456 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
4457 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
4459 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
4460 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
4461 || ((!target_is_thumb
)
4462 && (((r_type
== elfcpp::R_ARM_THM_CALL
) && !may_use_blx
)
4463 || (r_type
== elfcpp::R_ARM_THM_JUMP24
))))
4465 if (target_is_thumb
)
4470 stub_type
= (output_is_position_independent
4471 || should_force_pic_veneer
)
4474 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4475 // V5T and above. Stub starts with ARM code, so
4476 // we must be able to switch mode before
4477 // reaching it, which is only possible for 'bl'
4478 // (ie R_ARM_THM_CALL relocation).
4479 ? arm_stub_long_branch_any_thumb_pic
4480 // On V4T, use Thumb code only.
4481 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
4485 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4486 ? arm_stub_long_branch_any_any
// V5T and above.
4487 : arm_stub_long_branch_v4t_thumb_thumb
); // V4T.
4491 stub_type
= (output_is_position_independent
4492 || should_force_pic_veneer
)
4493 ? arm_stub_long_branch_thumb_only_pic
// PIC stub.
4494 : arm_stub_long_branch_thumb_only
; // non-PIC stub.
4501 // FIXME: We should check that the input section is from an
4502 // object that has interwork enabled.
4504 stub_type
= (output_is_position_independent
4505 || should_force_pic_veneer
)
4508 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4509 ? arm_stub_long_branch_any_arm_pic
// V5T and above.
4510 : arm_stub_long_branch_v4t_thumb_arm_pic
) // V4T.
4514 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4515 ? arm_stub_long_branch_any_any
// V5T and above.
4516 : arm_stub_long_branch_v4t_thumb_arm
); // V4T.
4518 // Handle v4t short branches.
4519 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
4520 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
4521 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
4522 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
4526 else if (r_type
== elfcpp::R_ARM_CALL
4527 || r_type
== elfcpp::R_ARM_JUMP24
4528 || r_type
== elfcpp::R_ARM_PLT32
)
4530 branch_offset
= static_cast<int64_t>(destination
) - location
;
4531 if (target_is_thumb
)
4535 // FIXME: We should check that the input section is from an
4536 // object that has interwork enabled.
4538 // We have an extra 2-bytes reach because of
4539 // the mode change (bit 24 (H) of BLX encoding).
4540 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
4541 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
4542 || ((r_type
== elfcpp::R_ARM_CALL
) && !may_use_blx
)
4543 || (r_type
== elfcpp::R_ARM_JUMP24
)
4544 || (r_type
== elfcpp::R_ARM_PLT32
))
4546 stub_type
= (output_is_position_independent
4547 || should_force_pic_veneer
)
4550 ? arm_stub_long_branch_any_thumb_pic
// V5T and above.
4551 : arm_stub_long_branch_v4t_arm_thumb_pic
) // V4T stub.
4555 ? arm_stub_long_branch_any_any
// V5T and above.
4556 : arm_stub_long_branch_v4t_arm_thumb
); // V4T.
4562 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
4563 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
4565 stub_type
= (output_is_position_independent
4566 || should_force_pic_veneer
)
4567 ? arm_stub_long_branch_any_arm_pic
// PIC stubs.
4568 : arm_stub_long_branch_any_any
; /// non-PIC.
4576 // Cortex_a8_stub methods.
4578 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4579 // I is the position of the instruction template in the stub template.
4582 Cortex_a8_stub::do_thumb16_special(size_t i
)
4584 // The only use of this is to copy condition code from a conditional
4585 // branch being worked around to the corresponding conditional branch in
4587 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4589 uint16_t data
= this->stub_template()->insns()[i
].data();
4590 gold_assert((data
& 0xff00U
) == 0xd000U
);
4591 data
|= ((this->original_insn_
>> 22) & 0xf) << 8;
4595 // Stub_factory methods.
4597 Stub_factory::Stub_factory()
4599 // The instruction template sequences are declared as static
4600 // objects and initialized first time the constructor runs.
4602 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4603 // to reach the stub if necessary.
4604 static const Insn_template elf32_arm_stub_long_branch_any_any
[] =
4606 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4607 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4608 // dcd R_ARM_ABS32(X)
4611 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4613 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
4615 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4616 Insn_template::arm_insn(0xe12fff1c), // bx ip
4617 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4618 // dcd R_ARM_ABS32(X)
4621 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4622 static const Insn_template elf32_arm_stub_long_branch_thumb_only
[] =
4624 Insn_template::thumb16_insn(0xb401), // push {r0}
4625 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4626 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4627 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4628 Insn_template::thumb16_insn(0x4760), // bx ip
4629 Insn_template::thumb16_insn(0xbf00), // nop
4630 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4631 // dcd R_ARM_ABS32(X)
4634 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4636 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
4638 Insn_template::thumb16_insn(0x4778), // bx pc
4639 Insn_template::thumb16_insn(0x46c0), // nop
4640 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4641 Insn_template::arm_insn(0xe12fff1c), // bx ip
4642 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4643 // dcd R_ARM_ABS32(X)
4646 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4648 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
4650 Insn_template::thumb16_insn(0x4778), // bx pc
4651 Insn_template::thumb16_insn(0x46c0), // nop
4652 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4653 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4654 // dcd R_ARM_ABS32(X)
4657 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4658 // one, when the destination is close enough.
4659 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
4661 Insn_template::thumb16_insn(0x4778), // bx pc
4662 Insn_template::thumb16_insn(0x46c0), // nop
4663 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4666 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4667 // blx to reach the stub if necessary.
4668 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic
[] =
4670 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4671 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4672 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, -4),
4673 // dcd R_ARM_REL32(X-4)
4676 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4677 // blx to reach the stub if necessary. We can not add into pc;
4678 // it is not guaranteed to mode switch (different in ARMv6 and
4680 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic
[] =
4682 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4683 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4684 Insn_template::arm_insn(0xe12fff1c), // bx ip
4685 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4686 // dcd R_ARM_REL32(X)
4689 // V4T ARM -> ARM long branch stub, PIC.
4690 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
4692 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4693 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4694 Insn_template::arm_insn(0xe12fff1c), // bx ip
4695 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4696 // dcd R_ARM_REL32(X)
4699 // V4T Thumb -> ARM long branch stub, PIC.
4700 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
4702 Insn_template::thumb16_insn(0x4778), // bx pc
4703 Insn_template::thumb16_insn(0x46c0), // nop
4704 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4705 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4706 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, -4),
4707 // dcd R_ARM_REL32(X)
4710 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4712 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic
[] =
4714 Insn_template::thumb16_insn(0xb401), // push {r0}
4715 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4716 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4717 Insn_template::thumb16_insn(0x4484), // add ip, r0
4718 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4719 Insn_template::thumb16_insn(0x4760), // bx ip
4720 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 4),
4721 // dcd R_ARM_REL32(X)
4724 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4726 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
4728 Insn_template::thumb16_insn(0x4778), // bx pc
4729 Insn_template::thumb16_insn(0x46c0), // nop
4730 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4731 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4732 Insn_template::arm_insn(0xe12fff1c), // bx ip
4733 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4734 // dcd R_ARM_REL32(X)
4737 // Cortex-A8 erratum-workaround stubs.
4739 // Stub used for conditional branches (which may be beyond +/-1MB away,
4740 // so we can't use a conditional branch to reach this stub).
4747 static const Insn_template elf32_arm_stub_a8_veneer_b_cond
[] =
4749 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4750 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4751 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4755 // Stub used for b.w and bl.w instructions.
4757 static const Insn_template elf32_arm_stub_a8_veneer_b
[] =
4759 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4762 static const Insn_template elf32_arm_stub_a8_veneer_bl
[] =
4764 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4767 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4768 // instruction (which switches to ARM mode) to point to this stub. Jump to
4769 // the real destination using an ARM-mode branch.
4770 static const Insn_template elf32_arm_stub_a8_veneer_blx
[] =
4772 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4775 // Stub used to provide an interworking for R_ARM_V4BX relocation
4776 // (bx r[n] instruction).
4777 static const Insn_template elf32_arm_stub_v4_veneer_bx
[] =
4779 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4780 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4781 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4784 // Fill in the stub template look-up table. Stub templates are constructed
4785 // per instance of Stub_factory for fast look-up without locking
4786 // in a thread-enabled environment.
4788 this->stub_templates_
[arm_stub_none
] =
4789 new Stub_template(arm_stub_none
, NULL
, 0);
4791 #define DEF_STUB(x) \
4795 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4796 Stub_type type = arm_stub_##x; \
4797 this->stub_templates_[type] = \
4798 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4806 // Stub_table methods.
4808 // Remove all Cortex-A8 stub.
4810 template<bool big_endian
>
4812 Stub_table
<big_endian
>::remove_all_cortex_a8_stubs()
4814 for (Cortex_a8_stub_list::iterator p
= this->cortex_a8_stubs_
.begin();
4815 p
!= this->cortex_a8_stubs_
.end();
4818 this->cortex_a8_stubs_
.clear();
4821 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4823 template<bool big_endian
>
4825 Stub_table
<big_endian
>::relocate_stub(
4827 const Relocate_info
<32, big_endian
>* relinfo
,
4828 Target_arm
<big_endian
>* arm_target
,
4829 Output_section
* output_section
,
4830 unsigned char* view
,
4831 Arm_address address
,
4832 section_size_type view_size
)
4834 const Stub_template
* stub_template
= stub
->stub_template();
4835 if (stub_template
->reloc_count() != 0)
4837 // Adjust view to cover the stub only.
4838 section_size_type offset
= stub
->offset();
4839 section_size_type stub_size
= stub_template
->size();
4840 gold_assert(offset
+ stub_size
<= view_size
);
4842 arm_target
->relocate_stub(stub
, relinfo
, output_section
, view
+ offset
,
4843 address
+ offset
, stub_size
);
4847 // Relocate all stubs in this stub table.
4849 template<bool big_endian
>
4851 Stub_table
<big_endian
>::relocate_stubs(
4852 const Relocate_info
<32, big_endian
>* relinfo
,
4853 Target_arm
<big_endian
>* arm_target
,
4854 Output_section
* output_section
,
4855 unsigned char* view
,
4856 Arm_address address
,
4857 section_size_type view_size
)
4859 // If we are passed a view bigger than the stub table's. we need to
4861 gold_assert(address
== this->address()
4863 == static_cast<section_size_type
>(this->data_size())));
4865 // Relocate all relocation stubs.
4866 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
4867 p
!= this->reloc_stubs_
.end();
4869 this->relocate_stub(p
->second
, relinfo
, arm_target
, output_section
, view
,
4870 address
, view_size
);
4872 // Relocate all Cortex-A8 stubs.
4873 for (Cortex_a8_stub_list::iterator p
= this->cortex_a8_stubs_
.begin();
4874 p
!= this->cortex_a8_stubs_
.end();
4876 this->relocate_stub(p
->second
, relinfo
, arm_target
, output_section
, view
,
4877 address
, view_size
);
4879 // Relocate all ARM V4BX stubs.
4880 for (Arm_v4bx_stub_list::iterator p
= this->arm_v4bx_stubs_
.begin();
4881 p
!= this->arm_v4bx_stubs_
.end();
4885 this->relocate_stub(*p
, relinfo
, arm_target
, output_section
, view
,
4886 address
, view_size
);
4890 // Write out the stubs to file.
4892 template<bool big_endian
>
4894 Stub_table
<big_endian
>::do_write(Output_file
* of
)
4896 off_t offset
= this->offset();
4897 const section_size_type oview_size
=
4898 convert_to_section_size_type(this->data_size());
4899 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
4901 // Write relocation stubs.
4902 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
4903 p
!= this->reloc_stubs_
.end();
4906 Reloc_stub
* stub
= p
->second
;
4907 Arm_address address
= this->address() + stub
->offset();
4909 == align_address(address
,
4910 stub
->stub_template()->alignment()));
4911 stub
->write(oview
+ stub
->offset(), stub
->stub_template()->size(),
4915 // Write Cortex-A8 stubs.
4916 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
4917 p
!= this->cortex_a8_stubs_
.end();
4920 Cortex_a8_stub
* stub
= p
->second
;
4921 Arm_address address
= this->address() + stub
->offset();
4923 == align_address(address
,
4924 stub
->stub_template()->alignment()));
4925 stub
->write(oview
+ stub
->offset(), stub
->stub_template()->size(),
4929 // Write ARM V4BX relocation stubs.
4930 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
4931 p
!= this->arm_v4bx_stubs_
.end();
4937 Arm_address address
= this->address() + (*p
)->offset();
4939 == align_address(address
,
4940 (*p
)->stub_template()->alignment()));
4941 (*p
)->write(oview
+ (*p
)->offset(), (*p
)->stub_template()->size(),
4945 of
->write_output_view(this->offset(), oview_size
, oview
);
4948 // Update the data size and address alignment of the stub table at the end
4949 // of a relaxation pass. Return true if either the data size or the
4950 // alignment changed in this relaxation pass.
4952 template<bool big_endian
>
4954 Stub_table
<big_endian
>::update_data_size_and_addralign()
4956 // Go over all stubs in table to compute data size and address alignment.
4957 off_t size
= this->reloc_stubs_size_
;
4958 unsigned addralign
= this->reloc_stubs_addralign_
;
4960 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
4961 p
!= this->cortex_a8_stubs_
.end();
4964 const Stub_template
* stub_template
= p
->second
->stub_template();
4965 addralign
= std::max(addralign
, stub_template
->alignment());
4966 size
= (align_address(size
, stub_template
->alignment())
4967 + stub_template
->size());
4970 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
4971 p
!= this->arm_v4bx_stubs_
.end();
4977 const Stub_template
* stub_template
= (*p
)->stub_template();
4978 addralign
= std::max(addralign
, stub_template
->alignment());
4979 size
= (align_address(size
, stub_template
->alignment())
4980 + stub_template
->size());
4983 // Check if either data size or alignment changed in this pass.
4984 // Update prev_data_size_ and prev_addralign_. These will be used
4985 // as the current data size and address alignment for the next pass.
4986 bool changed
= size
!= this->prev_data_size_
;
4987 this->prev_data_size_
= size
;
4989 if (addralign
!= this->prev_addralign_
)
4991 this->prev_addralign_
= addralign
;
4996 // Finalize the stubs. This sets the offsets of the stubs within the stub
4997 // table. It also marks all input sections needing Cortex-A8 workaround.
4999 template<bool big_endian
>
5001 Stub_table
<big_endian
>::finalize_stubs()
5003 off_t off
= this->reloc_stubs_size_
;
5004 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
5005 p
!= this->cortex_a8_stubs_
.end();
5008 Cortex_a8_stub
* stub
= p
->second
;
5009 const Stub_template
* stub_template
= stub
->stub_template();
5010 uint64_t stub_addralign
= stub_template
->alignment();
5011 off
= align_address(off
, stub_addralign
);
5012 stub
->set_offset(off
);
5013 off
+= stub_template
->size();
5015 // Mark input section so that we can determine later if a code section
5016 // needs the Cortex-A8 workaround quickly.
5017 Arm_relobj
<big_endian
>* arm_relobj
=
5018 Arm_relobj
<big_endian
>::as_arm_relobj(stub
->relobj());
5019 arm_relobj
->mark_section_for_cortex_a8_workaround(stub
->shndx());
5022 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
5023 p
!= this->arm_v4bx_stubs_
.end();
5029 const Stub_template
* stub_template
= (*p
)->stub_template();
5030 uint64_t stub_addralign
= stub_template
->alignment();
5031 off
= align_address(off
, stub_addralign
);
5032 (*p
)->set_offset(off
);
5033 off
+= stub_template
->size();
5036 gold_assert(off
<= this->prev_data_size_
);
5039 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5040 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5041 // of the address range seen by the linker.
5043 template<bool big_endian
>
5045 Stub_table
<big_endian
>::apply_cortex_a8_workaround_to_address_range(
5046 Target_arm
<big_endian
>* arm_target
,
5047 unsigned char* view
,
5048 Arm_address view_address
,
5049 section_size_type view_size
)
5051 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5052 for (Cortex_a8_stub_list::const_iterator p
=
5053 this->cortex_a8_stubs_
.lower_bound(view_address
);
5054 ((p
!= this->cortex_a8_stubs_
.end())
5055 && (p
->first
< (view_address
+ view_size
)));
5058 // We do not store the THUMB bit in the LSB of either the branch address
5059 // or the stub offset. There is no need to strip the LSB.
5060 Arm_address branch_address
= p
->first
;
5061 const Cortex_a8_stub
* stub
= p
->second
;
5062 Arm_address stub_address
= this->address() + stub
->offset();
5064 // Offset of the branch instruction relative to this view.
5065 section_size_type offset
=
5066 convert_to_section_size_type(branch_address
- view_address
);
5067 gold_assert((offset
+ 4) <= view_size
);
5069 arm_target
->apply_cortex_a8_workaround(stub
, stub_address
,
5070 view
+ offset
, branch_address
);
5074 // Arm_input_section methods.
5076 // Initialize an Arm_input_section.
5078 template<bool big_endian
>
5080 Arm_input_section
<big_endian
>::init()
5082 Relobj
* relobj
= this->relobj();
5083 unsigned int shndx
= this->shndx();
5085 // We have to cache original size, alignment and contents to avoid locking
5086 // the original file.
5087 this->original_addralign_
=
5088 convert_types
<uint32_t, uint64_t>(relobj
->section_addralign(shndx
));
5090 // This is not efficient but we expect only a small number of relaxed
5091 // input sections for stubs.
5092 section_size_type section_size
;
5093 const unsigned char* section_contents
=
5094 relobj
->section_contents(shndx
, §ion_size
, false);
5095 this->original_size_
=
5096 convert_types
<uint32_t, uint64_t>(relobj
->section_size(shndx
));
5098 gold_assert(this->original_contents_
== NULL
);
5099 this->original_contents_
= new unsigned char[section_size
];
5100 memcpy(this->original_contents_
, section_contents
, section_size
);
5102 // We want to make this look like the original input section after
5103 // output sections are finalized.
5104 Output_section
* os
= relobj
->output_section(shndx
);
5105 off_t offset
= relobj
->output_section_offset(shndx
);
5106 gold_assert(os
!= NULL
&& !relobj
->is_output_section_offset_invalid(shndx
));
5107 this->set_address(os
->address() + offset
);
5108 this->set_file_offset(os
->offset() + offset
);
5110 this->set_current_data_size(this->original_size_
);
5111 this->finalize_data_size();
5114 template<bool big_endian
>
5116 Arm_input_section
<big_endian
>::do_write(Output_file
* of
)
5118 // We have to write out the original section content.
5119 gold_assert(this->original_contents_
!= NULL
);
5120 of
->write(this->offset(), this->original_contents_
,
5121 this->original_size_
);
5123 // If this owns a stub table and it is not empty, write it.
5124 if (this->is_stub_table_owner() && !this->stub_table_
->empty())
5125 this->stub_table_
->write(of
);
5128 // Finalize data size.
5130 template<bool big_endian
>
5132 Arm_input_section
<big_endian
>::set_final_data_size()
5134 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
5136 if (this->is_stub_table_owner())
5138 this->stub_table_
->finalize_data_size();
5139 off
= align_address(off
, this->stub_table_
->addralign());
5140 off
+= this->stub_table_
->data_size();
5142 this->set_data_size(off
);
5145 // Reset address and file offset.
5147 template<bool big_endian
>
5149 Arm_input_section
<big_endian
>::do_reset_address_and_file_offset()
5151 // Size of the original input section contents.
5152 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
5154 // If this is a stub table owner, account for the stub table size.
5155 if (this->is_stub_table_owner())
5157 Stub_table
<big_endian
>* stub_table
= this->stub_table_
;
5159 // Reset the stub table's address and file offset. The
5160 // current data size for child will be updated after that.
5161 stub_table_
->reset_address_and_file_offset();
5162 off
= align_address(off
, stub_table_
->addralign());
5163 off
+= stub_table
->current_data_size();
5166 this->set_current_data_size(off
);
5169 // Arm_exidx_cantunwind methods.
5171 // Write this to Output file OF for a fixed endianness.
5173 template<bool big_endian
>
5175 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file
* of
)
5177 off_t offset
= this->offset();
5178 const section_size_type oview_size
= 8;
5179 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5181 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
5183 Output_section
* os
= this->relobj_
->output_section(this->shndx_
);
5184 gold_assert(os
!= NULL
);
5186 Arm_relobj
<big_endian
>* arm_relobj
=
5187 Arm_relobj
<big_endian
>::as_arm_relobj(this->relobj_
);
5188 Arm_address output_offset
=
5189 arm_relobj
->get_output_section_offset(this->shndx_
);
5190 Arm_address section_start
;
5191 section_size_type section_size
;
5193 // Find out the end of the text section referred by this.
5194 if (output_offset
!= Arm_relobj
<big_endian
>::invalid_address
)
5196 section_start
= os
->address() + output_offset
;
5197 const Arm_exidx_input_section
* exidx_input_section
=
5198 arm_relobj
->exidx_input_section_by_link(this->shndx_
);
5199 gold_assert(exidx_input_section
!= NULL
);
5201 convert_to_section_size_type(exidx_input_section
->text_size());
5205 // Currently this only happens for a relaxed section.
5206 const Output_relaxed_input_section
* poris
=
5207 os
->find_relaxed_input_section(this->relobj_
, this->shndx_
);
5208 gold_assert(poris
!= NULL
);
5209 section_start
= poris
->address();
5210 section_size
= convert_to_section_size_type(poris
->data_size());
5213 // We always append this to the end of an EXIDX section.
5214 Arm_address output_address
= section_start
+ section_size
;
5216 // Write out the entry. The first word either points to the beginning
5217 // or after the end of a text section. The second word is the special
5218 // EXIDX_CANTUNWIND value.
5219 uint32_t prel31_offset
= output_address
- this->address();
5220 if (Bits
<31>::has_overflow32(offset
))
5221 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5222 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(oview
,
5223 prel31_offset
& 0x7fffffffU
);
5224 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(oview
+ 4,
5225 elfcpp::EXIDX_CANTUNWIND
);
5227 of
->write_output_view(this->offset(), oview_size
, oview
);
5230 // Arm_exidx_merged_section methods.
5232 // Constructor for Arm_exidx_merged_section.
5233 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5234 // SECTION_OFFSET_MAP points to a section offset map describing how
5235 // parts of the input section are mapped to output. DELETED_BYTES is
5236 // the number of bytes deleted from the EXIDX input section.
5238 Arm_exidx_merged_section::Arm_exidx_merged_section(
5239 const Arm_exidx_input_section
& exidx_input_section
,
5240 const Arm_exidx_section_offset_map
& section_offset_map
,
5241 uint32_t deleted_bytes
)
5242 : Output_relaxed_input_section(exidx_input_section
.relobj(),
5243 exidx_input_section
.shndx(),
5244 exidx_input_section
.addralign()),
5245 exidx_input_section_(exidx_input_section
),
5246 section_offset_map_(section_offset_map
)
5248 // If we retain or discard the whole EXIDX input section, we would
5250 gold_assert(deleted_bytes
!= 0
5251 && deleted_bytes
!= this->exidx_input_section_
.size());
5253 // Fix size here so that we do not need to implement set_final_data_size.
5254 uint32_t size
= exidx_input_section
.size() - deleted_bytes
;
5255 this->set_data_size(size
);
5256 this->fix_data_size();
5258 // Allocate buffer for section contents and build contents.
5259 this->section_contents_
= new unsigned char[size
];
5262 // Build the contents of a merged EXIDX output section.
5265 Arm_exidx_merged_section::build_contents(
5266 const unsigned char* original_contents
,
5267 section_size_type original_size
)
5269 // Go over spans of input offsets and write only those that are not
5271 section_offset_type in_start
= 0;
5272 section_offset_type out_start
= 0;
5273 section_offset_type in_max
=
5274 convert_types
<section_offset_type
>(original_size
);
5275 section_offset_type out_max
=
5276 convert_types
<section_offset_type
>(this->data_size());
5277 for (Arm_exidx_section_offset_map::const_iterator p
=
5278 this->section_offset_map_
.begin();
5279 p
!= this->section_offset_map_
.end();
5282 section_offset_type in_end
= p
->first
;
5283 gold_assert(in_end
>= in_start
);
5284 section_offset_type out_end
= p
->second
;
5285 size_t in_chunk_size
= convert_types
<size_t>(in_end
- in_start
+ 1);
5288 size_t out_chunk_size
=
5289 convert_types
<size_t>(out_end
- out_start
+ 1);
5291 gold_assert(out_chunk_size
== in_chunk_size
5292 && in_end
< in_max
&& out_end
< out_max
);
5294 memcpy(this->section_contents_
+ out_start
,
5295 original_contents
+ in_start
,
5297 out_start
+= out_chunk_size
;
5299 in_start
+= in_chunk_size
;
5303 // Given an input OBJECT, an input section index SHNDX within that
5304 // object, and an OFFSET relative to the start of that input
5305 // section, return whether or not the corresponding offset within
5306 // the output section is known. If this function returns true, it
5307 // sets *POUTPUT to the output offset. The value -1 indicates that
5308 // this input offset is being discarded.
5311 Arm_exidx_merged_section::do_output_offset(
5312 const Relobj
* relobj
,
5314 section_offset_type offset
,
5315 section_offset_type
* poutput
) const
5317 // We only handle offsets for the original EXIDX input section.
5318 if (relobj
!= this->exidx_input_section_
.relobj()
5319 || shndx
!= this->exidx_input_section_
.shndx())
5322 section_offset_type section_size
=
5323 convert_types
<section_offset_type
>(this->exidx_input_section_
.size());
5324 if (offset
< 0 || offset
>= section_size
)
5325 // Input offset is out of valid range.
5329 // We need to look up the section offset map to determine the output
5330 // offset. Find the reference point in map that is first offset
5331 // bigger than or equal to this offset.
5332 Arm_exidx_section_offset_map::const_iterator p
=
5333 this->section_offset_map_
.lower_bound(offset
);
5335 // The section offset maps are build such that this should not happen if
5336 // input offset is in the valid range.
5337 gold_assert(p
!= this->section_offset_map_
.end());
5339 // We need to check if this is dropped.
5340 section_offset_type ref
= p
->first
;
5341 section_offset_type mapped_ref
= p
->second
;
5343 if (mapped_ref
!= Arm_exidx_input_section::invalid_offset
)
5344 // Offset is present in output.
5345 *poutput
= mapped_ref
+ (offset
- ref
);
5347 // Offset is discarded owing to EXIDX entry merging.
5354 // Write this to output file OF.
5357 Arm_exidx_merged_section::do_write(Output_file
* of
)
5359 off_t offset
= this->offset();
5360 const section_size_type oview_size
= this->data_size();
5361 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5363 Output_section
* os
= this->relobj()->output_section(this->shndx());
5364 gold_assert(os
!= NULL
);
5366 memcpy(oview
, this->section_contents_
, oview_size
);
5367 of
->write_output_view(this->offset(), oview_size
, oview
);
5370 // Arm_exidx_fixup methods.
5372 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5373 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5374 // points to the end of the last seen EXIDX section.
5377 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5379 if (this->last_unwind_type_
!= UT_EXIDX_CANTUNWIND
5380 && this->last_input_section_
!= NULL
)
5382 Relobj
* relobj
= this->last_input_section_
->relobj();
5383 unsigned int text_shndx
= this->last_input_section_
->link();
5384 Arm_exidx_cantunwind
* cantunwind
=
5385 new Arm_exidx_cantunwind(relobj
, text_shndx
);
5386 this->exidx_output_section_
->add_output_section_data(cantunwind
);
5387 this->last_unwind_type_
= UT_EXIDX_CANTUNWIND
;
5391 // Process an EXIDX section entry in input. Return whether this entry
5392 // can be deleted in the output. SECOND_WORD in the second word of the
5396 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word
)
5399 if (second_word
== elfcpp::EXIDX_CANTUNWIND
)
5401 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5402 delete_entry
= this->last_unwind_type_
== UT_EXIDX_CANTUNWIND
;
5403 this->last_unwind_type_
= UT_EXIDX_CANTUNWIND
;
5405 else if ((second_word
& 0x80000000) != 0)
5407 // Inlined unwinding data. Merge if equal to previous.
5408 delete_entry
= (merge_exidx_entries_
5409 && this->last_unwind_type_
== UT_INLINED_ENTRY
5410 && this->last_inlined_entry_
== second_word
);
5411 this->last_unwind_type_
= UT_INLINED_ENTRY
;
5412 this->last_inlined_entry_
= second_word
;
5416 // Normal table entry. In theory we could merge these too,
5417 // but duplicate entries are likely to be much less common.
5418 delete_entry
= false;
5419 this->last_unwind_type_
= UT_NORMAL_ENTRY
;
5421 return delete_entry
;
5424 // Update the current section offset map during EXIDX section fix-up.
5425 // If there is no map, create one. INPUT_OFFSET is the offset of a
5426 // reference point, DELETED_BYTES is the number of deleted by in the
5427 // section so far. If DELETE_ENTRY is true, the reference point and
5428 // all offsets after the previous reference point are discarded.
5431 Arm_exidx_fixup::update_offset_map(
5432 section_offset_type input_offset
,
5433 section_size_type deleted_bytes
,
5436 if (this->section_offset_map_
== NULL
)
5437 this->section_offset_map_
= new Arm_exidx_section_offset_map();
5438 section_offset_type output_offset
;
5440 output_offset
= Arm_exidx_input_section::invalid_offset
;
5442 output_offset
= input_offset
- deleted_bytes
;
5443 (*this->section_offset_map_
)[input_offset
] = output_offset
;
5446 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5447 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5448 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5449 // If some entries are merged, also store a pointer to a newly created
5450 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5451 // owns the map and is responsible for releasing it after use.
5453 template<bool big_endian
>
5455 Arm_exidx_fixup::process_exidx_section(
5456 const Arm_exidx_input_section
* exidx_input_section
,
5457 const unsigned char* section_contents
,
5458 section_size_type section_size
,
5459 Arm_exidx_section_offset_map
** psection_offset_map
)
5461 Relobj
* relobj
= exidx_input_section
->relobj();
5462 unsigned shndx
= exidx_input_section
->shndx();
5464 if ((section_size
% 8) != 0)
5466 // Something is wrong with this section. Better not touch it.
5467 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5468 relobj
->name().c_str(), shndx
);
5469 this->last_input_section_
= exidx_input_section
;
5470 this->last_unwind_type_
= UT_NONE
;
5474 uint32_t deleted_bytes
= 0;
5475 bool prev_delete_entry
= false;
5476 gold_assert(this->section_offset_map_
== NULL
);
5478 for (section_size_type i
= 0; i
< section_size
; i
+= 8)
5480 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
5482 reinterpret_cast<const Valtype
*>(section_contents
+ i
+ 4);
5483 uint32_t second_word
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5485 bool delete_entry
= this->process_exidx_entry(second_word
);
5487 // Entry deletion causes changes in output offsets. We use a std::map
5488 // to record these. And entry (x, y) means input offset x
5489 // is mapped to output offset y. If y is invalid_offset, then x is
5490 // dropped in the output. Because of the way std::map::lower_bound
5491 // works, we record the last offset in a region w.r.t to keeping or
5492 // dropping. If there is no entry (x0, y0) for an input offset x0,
5493 // the output offset y0 of it is determined by the output offset y1 of
5494 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5495 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5497 if (delete_entry
!= prev_delete_entry
&& i
!= 0)
5498 this->update_offset_map(i
- 1, deleted_bytes
, prev_delete_entry
);
5500 // Update total deleted bytes for this entry.
5504 prev_delete_entry
= delete_entry
;
5507 // If section offset map is not NULL, make an entry for the end of
5509 if (this->section_offset_map_
!= NULL
)
5510 update_offset_map(section_size
- 1, deleted_bytes
, prev_delete_entry
);
5512 *psection_offset_map
= this->section_offset_map_
;
5513 this->section_offset_map_
= NULL
;
5514 this->last_input_section_
= exidx_input_section
;
5516 // Set the first output text section so that we can link the EXIDX output
5517 // section to it. Ignore any EXIDX input section that is completely merged.
5518 if (this->first_output_text_section_
== NULL
5519 && deleted_bytes
!= section_size
)
5521 unsigned int link
= exidx_input_section
->link();
5522 Output_section
* os
= relobj
->output_section(link
);
5523 gold_assert(os
!= NULL
);
5524 this->first_output_text_section_
= os
;
5527 return deleted_bytes
;
5530 // Arm_output_section methods.
5532 // Create a stub group for input sections from BEGIN to END. OWNER
5533 // points to the input section to be the owner a new stub table.
5535 template<bool big_endian
>
5537 Arm_output_section
<big_endian
>::create_stub_group(
5538 Input_section_list::const_iterator begin
,
5539 Input_section_list::const_iterator end
,
5540 Input_section_list::const_iterator owner
,
5541 Target_arm
<big_endian
>* target
,
5542 std::vector
<Output_relaxed_input_section
*>* new_relaxed_sections
,
5545 // We use a different kind of relaxed section in an EXIDX section.
5546 // The static casting from Output_relaxed_input_section to
5547 // Arm_input_section is invalid in an EXIDX section. We are okay
5548 // because we should not be calling this for an EXIDX section.
5549 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX
);
5551 // Currently we convert ordinary input sections into relaxed sections only
5552 // at this point but we may want to support creating relaxed input section
5553 // very early. So we check here to see if owner is already a relaxed
5556 Arm_input_section
<big_endian
>* arm_input_section
;
5557 if (owner
->is_relaxed_input_section())
5560 Arm_input_section
<big_endian
>::as_arm_input_section(
5561 owner
->relaxed_input_section());
5565 gold_assert(owner
->is_input_section());
5566 // Create a new relaxed input section. We need to lock the original
5568 Task_lock_obj
<Object
> tl(task
, owner
->relobj());
5570 target
->new_arm_input_section(owner
->relobj(), owner
->shndx());
5571 new_relaxed_sections
->push_back(arm_input_section
);
5574 // Create a stub table.
5575 Stub_table
<big_endian
>* stub_table
=
5576 target
->new_stub_table(arm_input_section
);
5578 arm_input_section
->set_stub_table(stub_table
);
5580 Input_section_list::const_iterator p
= begin
;
5581 Input_section_list::const_iterator prev_p
;
5583 // Look for input sections or relaxed input sections in [begin ... end].
5586 if (p
->is_input_section() || p
->is_relaxed_input_section())
5588 // The stub table information for input sections live
5589 // in their objects.
5590 Arm_relobj
<big_endian
>* arm_relobj
=
5591 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
5592 arm_relobj
->set_stub_table(p
->shndx(), stub_table
);
5596 while (prev_p
!= end
);
5599 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5600 // of stub groups. We grow a stub group by adding input section until the
5601 // size is just below GROUP_SIZE. The last input section will be converted
5602 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5603 // input section after the stub table, effectively double the group size.
5605 // This is similar to the group_sections() function in elf32-arm.c but is
5606 // implemented differently.
5608 template<bool big_endian
>
5610 Arm_output_section
<big_endian
>::group_sections(
5611 section_size_type group_size
,
5612 bool stubs_always_after_branch
,
5613 Target_arm
<big_endian
>* target
,
5616 // We only care about sections containing code.
5617 if ((this->flags() & elfcpp::SHF_EXECINSTR
) == 0)
5620 // States for grouping.
5623 // No group is being built.
5625 // A group is being built but the stub table is not found yet.
5626 // We keep group a stub group until the size is just under GROUP_SIZE.
5627 // The last input section in the group will be used as the stub table.
5628 FINDING_STUB_SECTION
,
5629 // A group is being built and we have already found a stub table.
5630 // We enter this state to grow a stub group by adding input section
5631 // after the stub table. This effectively doubles the group size.
5635 // Any newly created relaxed sections are stored here.
5636 std::vector
<Output_relaxed_input_section
*> new_relaxed_sections
;
5638 State state
= NO_GROUP
;
5639 section_size_type off
= 0;
5640 section_size_type group_begin_offset
= 0;
5641 section_size_type group_end_offset
= 0;
5642 section_size_type stub_table_end_offset
= 0;
5643 Input_section_list::const_iterator group_begin
=
5644 this->input_sections().end();
5645 Input_section_list::const_iterator stub_table
=
5646 this->input_sections().end();
5647 Input_section_list::const_iterator group_end
= this->input_sections().end();
5648 for (Input_section_list::const_iterator p
= this->input_sections().begin();
5649 p
!= this->input_sections().end();
5652 section_size_type section_begin_offset
=
5653 align_address(off
, p
->addralign());
5654 section_size_type section_end_offset
=
5655 section_begin_offset
+ p
->data_size();
5657 // Check to see if we should group the previously seen sections.
5663 case FINDING_STUB_SECTION
:
5664 // Adding this section makes the group larger than GROUP_SIZE.
5665 if (section_end_offset
- group_begin_offset
>= group_size
)
5667 if (stubs_always_after_branch
)
5669 gold_assert(group_end
!= this->input_sections().end());
5670 this->create_stub_group(group_begin
, group_end
, group_end
,
5671 target
, &new_relaxed_sections
,
5677 // But wait, there's more! Input sections up to
5678 // stub_group_size bytes after the stub table can be
5679 // handled by it too.
5680 state
= HAS_STUB_SECTION
;
5681 stub_table
= group_end
;
5682 stub_table_end_offset
= group_end_offset
;
5687 case HAS_STUB_SECTION
:
5688 // Adding this section makes the post stub-section group larger
5690 if (section_end_offset
- stub_table_end_offset
>= group_size
)
5692 gold_assert(group_end
!= this->input_sections().end());
5693 this->create_stub_group(group_begin
, group_end
, stub_table
,
5694 target
, &new_relaxed_sections
, task
);
5703 // If we see an input section and currently there is no group, start
5704 // a new one. Skip any empty sections. We look at the data size
5705 // instead of calling p->relobj()->section_size() to avoid locking.
5706 if ((p
->is_input_section() || p
->is_relaxed_input_section())
5707 && (p
->data_size() != 0))
5709 if (state
== NO_GROUP
)
5711 state
= FINDING_STUB_SECTION
;
5713 group_begin_offset
= section_begin_offset
;
5716 // Keep track of the last input section seen.
5718 group_end_offset
= section_end_offset
;
5721 off
= section_end_offset
;
5724 // Create a stub group for any ungrouped sections.
5725 if (state
== FINDING_STUB_SECTION
|| state
== HAS_STUB_SECTION
)
5727 gold_assert(group_end
!= this->input_sections().end());
5728 this->create_stub_group(group_begin
, group_end
,
5729 (state
== FINDING_STUB_SECTION
5732 target
, &new_relaxed_sections
, task
);
5735 // Convert input section into relaxed input section in a batch.
5736 if (!new_relaxed_sections
.empty())
5737 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections
);
5739 // Update the section offsets
5740 for (size_t i
= 0; i
< new_relaxed_sections
.size(); ++i
)
5742 Arm_relobj
<big_endian
>* arm_relobj
=
5743 Arm_relobj
<big_endian
>::as_arm_relobj(
5744 new_relaxed_sections
[i
]->relobj());
5745 unsigned int shndx
= new_relaxed_sections
[i
]->shndx();
5746 // Tell Arm_relobj that this input section is converted.
5747 arm_relobj
->convert_input_section_to_relaxed_section(shndx
);
5751 // Append non empty text sections in this to LIST in ascending
5752 // order of their position in this.
5754 template<bool big_endian
>
5756 Arm_output_section
<big_endian
>::append_text_sections_to_list(
5757 Text_section_list
* list
)
5759 gold_assert((this->flags() & elfcpp::SHF_ALLOC
) != 0);
5761 for (Input_section_list::const_iterator p
= this->input_sections().begin();
5762 p
!= this->input_sections().end();
5765 // We only care about plain or relaxed input sections. We also
5766 // ignore any merged sections.
5767 if (p
->is_input_section() || p
->is_relaxed_input_section())
5768 list
->push_back(Text_section_list::value_type(p
->relobj(),
5773 template<bool big_endian
>
5775 Arm_output_section
<big_endian
>::fix_exidx_coverage(
5777 const Text_section_list
& sorted_text_sections
,
5778 Symbol_table
* symtab
,
5779 bool merge_exidx_entries
,
5782 // We should only do this for the EXIDX output section.
5783 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX
);
5785 // We don't want the relaxation loop to undo these changes, so we discard
5786 // the current saved states and take another one after the fix-up.
5787 this->discard_states();
5789 // Remove all input sections.
5790 uint64_t address
= this->address();
5791 typedef std::list
<Output_section::Input_section
> Input_section_list
;
5792 Input_section_list input_sections
;
5793 this->reset_address_and_file_offset();
5794 this->get_input_sections(address
, std::string(""), &input_sections
);
5796 if (!this->input_sections().empty())
5797 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5799 // Go through all the known input sections and record them.
5800 typedef Unordered_set
<Section_id
, Section_id_hash
> Section_id_set
;
5801 typedef Unordered_map
<Section_id
, const Output_section::Input_section
*,
5802 Section_id_hash
> Text_to_exidx_map
;
5803 Text_to_exidx_map text_to_exidx_map
;
5804 for (Input_section_list::const_iterator p
= input_sections
.begin();
5805 p
!= input_sections
.end();
5808 // This should never happen. At this point, we should only see
5809 // plain EXIDX input sections.
5810 gold_assert(!p
->is_relaxed_input_section());
5811 text_to_exidx_map
[Section_id(p
->relobj(), p
->shndx())] = &(*p
);
5814 Arm_exidx_fixup
exidx_fixup(this, merge_exidx_entries
);
5816 // Go over the sorted text sections.
5817 typedef Unordered_set
<Section_id
, Section_id_hash
> Section_id_set
;
5818 Section_id_set processed_input_sections
;
5819 for (Text_section_list::const_iterator p
= sorted_text_sections
.begin();
5820 p
!= sorted_text_sections
.end();
5823 Relobj
* relobj
= p
->first
;
5824 unsigned int shndx
= p
->second
;
5826 Arm_relobj
<big_endian
>* arm_relobj
=
5827 Arm_relobj
<big_endian
>::as_arm_relobj(relobj
);
5828 const Arm_exidx_input_section
* exidx_input_section
=
5829 arm_relobj
->exidx_input_section_by_link(shndx
);
5831 // If this text section has no EXIDX section or if the EXIDX section
5832 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5833 // of the last seen EXIDX section.
5834 if (exidx_input_section
== NULL
|| exidx_input_section
->has_errors())
5836 exidx_fixup
.add_exidx_cantunwind_as_needed();
5840 Relobj
* exidx_relobj
= exidx_input_section
->relobj();
5841 unsigned int exidx_shndx
= exidx_input_section
->shndx();
5842 Section_id
sid(exidx_relobj
, exidx_shndx
);
5843 Text_to_exidx_map::const_iterator iter
= text_to_exidx_map
.find(sid
);
5844 if (iter
== text_to_exidx_map
.end())
5846 // This is odd. We have not seen this EXIDX input section before.
5847 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5848 // issue a warning instead. We assume the user knows what he
5849 // or she is doing. Otherwise, this is an error.
5850 if (layout
->script_options()->saw_sections_clause())
5851 gold_warning(_("unwinding may not work because EXIDX input section"
5852 " %u of %s is not in EXIDX output section"),
5853 exidx_shndx
, exidx_relobj
->name().c_str());
5855 gold_error(_("unwinding may not work because EXIDX input section"
5856 " %u of %s is not in EXIDX output section"),
5857 exidx_shndx
, exidx_relobj
->name().c_str());
5859 exidx_fixup
.add_exidx_cantunwind_as_needed();
5863 // We need to access the contents of the EXIDX section, lock the
5865 Task_lock_obj
<Object
> tl(task
, exidx_relobj
);
5866 section_size_type exidx_size
;
5867 const unsigned char* exidx_contents
=
5868 exidx_relobj
->section_contents(exidx_shndx
, &exidx_size
, false);
5870 // Fix up coverage and append input section to output data list.
5871 Arm_exidx_section_offset_map
* section_offset_map
= NULL
;
5872 uint32_t deleted_bytes
=
5873 exidx_fixup
.process_exidx_section
<big_endian
>(exidx_input_section
,
5876 §ion_offset_map
);
5878 if (deleted_bytes
== exidx_input_section
->size())
5880 // The whole EXIDX section got merged. Remove it from output.
5881 gold_assert(section_offset_map
== NULL
);
5882 exidx_relobj
->set_output_section(exidx_shndx
, NULL
);
5884 // All local symbols defined in this input section will be dropped.
5885 // We need to adjust output local symbol count.
5886 arm_relobj
->set_output_local_symbol_count_needs_update();
5888 else if (deleted_bytes
> 0)
5890 // Some entries are merged. We need to convert this EXIDX input
5891 // section into a relaxed section.
5892 gold_assert(section_offset_map
!= NULL
);
5894 Arm_exidx_merged_section
* merged_section
=
5895 new Arm_exidx_merged_section(*exidx_input_section
,
5896 *section_offset_map
, deleted_bytes
);
5897 merged_section
->build_contents(exidx_contents
, exidx_size
);
5899 const std::string secname
= exidx_relobj
->section_name(exidx_shndx
);
5900 this->add_relaxed_input_section(layout
, merged_section
, secname
);
5901 arm_relobj
->convert_input_section_to_relaxed_section(exidx_shndx
);
5903 // All local symbols defined in discarded portions of this input
5904 // section will be dropped. We need to adjust output local symbol
5906 arm_relobj
->set_output_local_symbol_count_needs_update();
5910 // Just add back the EXIDX input section.
5911 gold_assert(section_offset_map
== NULL
);
5912 const Output_section::Input_section
* pis
= iter
->second
;
5913 gold_assert(pis
->is_input_section());
5914 this->add_script_input_section(*pis
);
5917 processed_input_sections
.insert(Section_id(exidx_relobj
, exidx_shndx
));
5920 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5921 exidx_fixup
.add_exidx_cantunwind_as_needed();
5923 // Remove any known EXIDX input sections that are not processed.
5924 for (Input_section_list::const_iterator p
= input_sections
.begin();
5925 p
!= input_sections
.end();
5928 if (processed_input_sections
.find(Section_id(p
->relobj(), p
->shndx()))
5929 == processed_input_sections
.end())
5931 // We discard a known EXIDX section because its linked
5932 // text section has been folded by ICF. We also discard an
5933 // EXIDX section with error, the output does not matter in this
5934 // case. We do this to avoid triggering asserts.
5935 Arm_relobj
<big_endian
>* arm_relobj
=
5936 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
5937 const Arm_exidx_input_section
* exidx_input_section
=
5938 arm_relobj
->exidx_input_section_by_shndx(p
->shndx());
5939 gold_assert(exidx_input_section
!= NULL
);
5940 if (!exidx_input_section
->has_errors())
5942 unsigned int text_shndx
= exidx_input_section
->link();
5943 gold_assert(symtab
->is_section_folded(p
->relobj(), text_shndx
));
5946 // Remove this from link. We also need to recount the
5948 p
->relobj()->set_output_section(p
->shndx(), NULL
);
5949 arm_relobj
->set_output_local_symbol_count_needs_update();
5953 // Link exidx output section to the first seen output section and
5954 // set correct entry size.
5955 this->set_link_section(exidx_fixup
.first_output_text_section());
5956 this->set_entsize(8);
5958 // Make changes permanent.
5959 this->save_states();
5960 this->set_section_offsets_need_adjustment();
5963 // Link EXIDX output sections to text output sections.
5965 template<bool big_endian
>
5967 Arm_output_section
<big_endian
>::set_exidx_section_link()
5969 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX
);
5970 if (!this->input_sections().empty())
5972 Input_section_list::const_iterator p
= this->input_sections().begin();
5973 Arm_relobj
<big_endian
>* arm_relobj
=
5974 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
5975 unsigned exidx_shndx
= p
->shndx();
5976 const Arm_exidx_input_section
* exidx_input_section
=
5977 arm_relobj
->exidx_input_section_by_shndx(exidx_shndx
);
5978 gold_assert(exidx_input_section
!= NULL
);
5979 unsigned int text_shndx
= exidx_input_section
->link();
5980 Output_section
* os
= arm_relobj
->output_section(text_shndx
);
5981 this->set_link_section(os
);
5985 // Arm_relobj methods.
5987 // Determine if an input section is scannable for stub processing. SHDR is
5988 // the header of the section and SHNDX is the section index. OS is the output
5989 // section for the input section and SYMTAB is the global symbol table used to
5990 // look up ICF information.
5992 template<bool big_endian
>
5994 Arm_relobj
<big_endian
>::section_is_scannable(
5995 const elfcpp::Shdr
<32, big_endian
>& shdr
,
5997 const Output_section
* os
,
5998 const Symbol_table
* symtab
)
6000 // Skip any empty sections, unallocated sections or sections whose
6001 // type are not SHT_PROGBITS.
6002 if (shdr
.get_sh_size() == 0
6003 || (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0
6004 || shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
6007 // Skip any discarded or ICF'ed sections.
6008 if (os
== NULL
|| symtab
->is_section_folded(this, shndx
))
6011 // If this requires special offset handling, check to see if it is
6012 // a relaxed section. If this is not, then it is a merged section that
6013 // we cannot handle.
6014 if (this->is_output_section_offset_invalid(shndx
))
6016 const Output_relaxed_input_section
* poris
=
6017 os
->find_relaxed_input_section(this, shndx
);
6025 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6026 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6028 template<bool big_endian
>
6030 Arm_relobj
<big_endian
>::section_needs_reloc_stub_scanning(
6031 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6032 const Relobj::Output_sections
& out_sections
,
6033 const Symbol_table
* symtab
,
6034 const unsigned char* pshdrs
)
6036 unsigned int sh_type
= shdr
.get_sh_type();
6037 if (sh_type
!= elfcpp::SHT_REL
&& sh_type
!= elfcpp::SHT_RELA
)
6040 // Ignore empty section.
6041 off_t sh_size
= shdr
.get_sh_size();
6045 // Ignore reloc section with unexpected symbol table. The
6046 // error will be reported in the final link.
6047 if (this->adjust_shndx(shdr
.get_sh_link()) != this->symtab_shndx())
6050 unsigned int reloc_size
;
6051 if (sh_type
== elfcpp::SHT_REL
)
6052 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6054 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6056 // Ignore reloc section with unexpected entsize or uneven size.
6057 // The error will be reported in the final link.
6058 if (reloc_size
!= shdr
.get_sh_entsize() || sh_size
% reloc_size
!= 0)
6061 // Ignore reloc section with bad info. This error will be
6062 // reported in the final link.
6063 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
6064 if (index
>= this->shnum())
6067 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6068 const elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
+ index
* shdr_size
);
6069 return this->section_is_scannable(text_shdr
, index
,
6070 out_sections
[index
], symtab
);
6073 // Return the output address of either a plain input section or a relaxed
6074 // input section. SHNDX is the section index. We define and use this
6075 // instead of calling Output_section::output_address because that is slow
6076 // for large output.
6078 template<bool big_endian
>
6080 Arm_relobj
<big_endian
>::simple_input_section_output_address(
6084 if (this->is_output_section_offset_invalid(shndx
))
6086 const Output_relaxed_input_section
* poris
=
6087 os
->find_relaxed_input_section(this, shndx
);
6088 // We do not handle merged sections here.
6089 gold_assert(poris
!= NULL
);
6090 return poris
->address();
6093 return os
->address() + this->get_output_section_offset(shndx
);
6096 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6097 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6099 template<bool big_endian
>
6101 Arm_relobj
<big_endian
>::section_needs_cortex_a8_stub_scanning(
6102 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6105 const Symbol_table
* symtab
)
6107 if (!this->section_is_scannable(shdr
, shndx
, os
, symtab
))
6110 // If the section does not cross any 4K-boundaries, it does not need to
6112 Arm_address address
= this->simple_input_section_output_address(shndx
, os
);
6113 if ((address
& ~0xfffU
) == ((address
+ shdr
.get_sh_size() - 1) & ~0xfffU
))
6119 // Scan a section for Cortex-A8 workaround.
6121 template<bool big_endian
>
6123 Arm_relobj
<big_endian
>::scan_section_for_cortex_a8_erratum(
6124 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6127 Target_arm
<big_endian
>* arm_target
)
6129 // Look for the first mapping symbol in this section. It should be
6131 Mapping_symbol_position
section_start(shndx
, 0);
6132 typename
Mapping_symbols_info::const_iterator p
=
6133 this->mapping_symbols_info_
.lower_bound(section_start
);
6135 // There are no mapping symbols for this section. Treat it as a data-only
6136 // section. Issue a warning if section is marked as containing
6138 if (p
== this->mapping_symbols_info_
.end() || p
->first
.first
!= shndx
)
6140 if ((this->section_flags(shndx
) & elfcpp::SHF_EXECINSTR
) != 0)
6141 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6142 "erratum because it has no mapping symbols."),
6143 shndx
, this->name().c_str());
6147 Arm_address output_address
=
6148 this->simple_input_section_output_address(shndx
, os
);
6150 // Get the section contents.
6151 section_size_type input_view_size
= 0;
6152 const unsigned char* input_view
=
6153 this->section_contents(shndx
, &input_view_size
, false);
6155 // We need to go through the mapping symbols to determine what to
6156 // scan. There are two reasons. First, we should look at THUMB code and
6157 // THUMB code only. Second, we only want to look at the 4K-page boundary
6158 // to speed up the scanning.
6160 while (p
!= this->mapping_symbols_info_
.end()
6161 && p
->first
.first
== shndx
)
6163 typename
Mapping_symbols_info::const_iterator next
=
6164 this->mapping_symbols_info_
.upper_bound(p
->first
);
6166 // Only scan part of a section with THUMB code.
6167 if (p
->second
== 't')
6169 // Determine the end of this range.
6170 section_size_type span_start
=
6171 convert_to_section_size_type(p
->first
.second
);
6172 section_size_type span_end
;
6173 if (next
!= this->mapping_symbols_info_
.end()
6174 && next
->first
.first
== shndx
)
6175 span_end
= convert_to_section_size_type(next
->first
.second
);
6177 span_end
= convert_to_section_size_type(shdr
.get_sh_size());
6179 if (((span_start
+ output_address
) & ~0xfffUL
)
6180 != ((span_end
+ output_address
- 1) & ~0xfffUL
))
6182 arm_target
->scan_span_for_cortex_a8_erratum(this, shndx
,
6183 span_start
, span_end
,
6193 // Scan relocations for stub generation.
6195 template<bool big_endian
>
6197 Arm_relobj
<big_endian
>::scan_sections_for_stubs(
6198 Target_arm
<big_endian
>* arm_target
,
6199 const Symbol_table
* symtab
,
6200 const Layout
* layout
)
6202 unsigned int shnum
= this->shnum();
6203 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6205 // Read the section headers.
6206 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
6210 // To speed up processing, we set up hash tables for fast lookup of
6211 // input offsets to output addresses.
6212 this->initialize_input_to_output_maps();
6214 const Relobj::Output_sections
& out_sections(this->output_sections());
6216 Relocate_info
<32, big_endian
> relinfo
;
6217 relinfo
.symtab
= symtab
;
6218 relinfo
.layout
= layout
;
6219 relinfo
.object
= this;
6221 // Do relocation stubs scanning.
6222 const unsigned char* p
= pshdrs
+ shdr_size
;
6223 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
6225 const elfcpp::Shdr
<32, big_endian
> shdr(p
);
6226 if (this->section_needs_reloc_stub_scanning(shdr
, out_sections
, symtab
,
6229 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
6230 Arm_address output_offset
= this->get_output_section_offset(index
);
6231 Arm_address output_address
;
6232 if (output_offset
!= invalid_address
)
6233 output_address
= out_sections
[index
]->address() + output_offset
;
6236 // Currently this only happens for a relaxed section.
6237 const Output_relaxed_input_section
* poris
=
6238 out_sections
[index
]->find_relaxed_input_section(this, index
);
6239 gold_assert(poris
!= NULL
);
6240 output_address
= poris
->address();
6243 // Get the relocations.
6244 const unsigned char* prelocs
= this->get_view(shdr
.get_sh_offset(),
6248 // Get the section contents. This does work for the case in which
6249 // we modify the contents of an input section. We need to pass the
6250 // output view under such circumstances.
6251 section_size_type input_view_size
= 0;
6252 const unsigned char* input_view
=
6253 this->section_contents(index
, &input_view_size
, false);
6255 relinfo
.reloc_shndx
= i
;
6256 relinfo
.data_shndx
= index
;
6257 unsigned int sh_type
= shdr
.get_sh_type();
6258 unsigned int reloc_size
;
6259 if (sh_type
== elfcpp::SHT_REL
)
6260 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6262 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6264 Output_section
* os
= out_sections
[index
];
6265 arm_target
->scan_section_for_stubs(&relinfo
, sh_type
, prelocs
,
6266 shdr
.get_sh_size() / reloc_size
,
6268 output_offset
== invalid_address
,
6269 input_view
, output_address
,
6274 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6275 // after its relocation section, if there is one, is processed for
6276 // relocation stubs. Merging this loop with the one above would have been
6277 // complicated since we would have had to make sure that relocation stub
6278 // scanning is done first.
6279 if (arm_target
->fix_cortex_a8())
6281 const unsigned char* p
= pshdrs
+ shdr_size
;
6282 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
6284 const elfcpp::Shdr
<32, big_endian
> shdr(p
);
6285 if (this->section_needs_cortex_a8_stub_scanning(shdr
, i
,
6288 this->scan_section_for_cortex_a8_erratum(shdr
, i
, out_sections
[i
],
6293 // After we've done the relocations, we release the hash tables,
6294 // since we no longer need them.
6295 this->free_input_to_output_maps();
6298 // Count the local symbols. The ARM backend needs to know if a symbol
6299 // is a THUMB function or not. For global symbols, it is easy because
6300 // the Symbol object keeps the ELF symbol type. For local symbol it is
6301 // harder because we cannot access this information. So we override the
6302 // do_count_local_symbol in parent and scan local symbols to mark
6303 // THUMB functions. This is not the most efficient way but I do not want to
6304 // slow down other ports by calling a per symbol target hook inside
6305 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6307 template<bool big_endian
>
6309 Arm_relobj
<big_endian
>::do_count_local_symbols(
6310 Stringpool_template
<char>* pool
,
6311 Stringpool_template
<char>* dynpool
)
6313 // We need to fix-up the values of any local symbols whose type are
6316 // Ask parent to count the local symbols.
6317 Sized_relobj_file
<32, big_endian
>::do_count_local_symbols(pool
, dynpool
);
6318 const unsigned int loccount
= this->local_symbol_count();
6322 // Initialize the thumb function bit-vector.
6323 std::vector
<bool> empty_vector(loccount
, false);
6324 this->local_symbol_is_thumb_function_
.swap(empty_vector
);
6326 // Read the symbol table section header.
6327 const unsigned int symtab_shndx
= this->symtab_shndx();
6328 elfcpp::Shdr
<32, big_endian
>
6329 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6330 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6332 // Read the local symbols.
6333 const int sym_size
=elfcpp::Elf_sizes
<32>::sym_size
;
6334 gold_assert(loccount
== symtabshdr
.get_sh_info());
6335 off_t locsize
= loccount
* sym_size
;
6336 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6337 locsize
, true, true);
6339 // For mapping symbol processing, we need to read the symbol names.
6340 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
6341 if (strtab_shndx
>= this->shnum())
6343 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
6347 elfcpp::Shdr
<32, big_endian
>
6348 strtabshdr(this, this->elf_file()->section_header(strtab_shndx
));
6349 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6351 this->error(_("symbol table name section has wrong type: %u"),
6352 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
6355 const char* pnames
=
6356 reinterpret_cast<const char*>(this->get_view(strtabshdr
.get_sh_offset(),
6357 strtabshdr
.get_sh_size(),
6360 // Loop over the local symbols and mark any local symbols pointing
6361 // to THUMB functions.
6363 // Skip the first dummy symbol.
6365 typename Sized_relobj_file
<32, big_endian
>::Local_values
* plocal_values
=
6366 this->local_values();
6367 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
6369 elfcpp::Sym
<32, big_endian
> sym(psyms
);
6370 elfcpp::STT st_type
= sym
.get_st_type();
6371 Symbol_value
<32>& lv((*plocal_values
)[i
]);
6372 Arm_address input_value
= lv
.input_value();
6374 // Check to see if this is a mapping symbol.
6375 const char* sym_name
= pnames
+ sym
.get_st_name();
6376 if (Target_arm
<big_endian
>::is_mapping_symbol_name(sym_name
))
6379 unsigned int input_shndx
=
6380 this->adjust_sym_shndx(i
, sym
.get_st_shndx(), &is_ordinary
);
6381 gold_assert(is_ordinary
);
6383 // Strip of LSB in case this is a THUMB symbol.
6384 Mapping_symbol_position
msp(input_shndx
, input_value
& ~1U);
6385 this->mapping_symbols_info_
[msp
] = sym_name
[1];
6388 if (st_type
== elfcpp::STT_ARM_TFUNC
6389 || (st_type
== elfcpp::STT_FUNC
&& ((input_value
& 1) != 0)))
6391 // This is a THUMB function. Mark this and canonicalize the
6392 // symbol value by setting LSB.
6393 this->local_symbol_is_thumb_function_
[i
] = true;
6394 if ((input_value
& 1) == 0)
6395 lv
.set_input_value(input_value
| 1);
6400 // Relocate sections.
6401 template<bool big_endian
>
6403 Arm_relobj
<big_endian
>::do_relocate_sections(
6404 const Symbol_table
* symtab
,
6405 const Layout
* layout
,
6406 const unsigned char* pshdrs
,
6408 typename Sized_relobj_file
<32, big_endian
>::Views
* pviews
)
6410 // Call parent to relocate sections.
6411 Sized_relobj_file
<32, big_endian
>::do_relocate_sections(symtab
, layout
,
6412 pshdrs
, of
, pviews
);
6414 // We do not generate stubs if doing a relocatable link.
6415 if (parameters
->options().relocatable())
6418 // Relocate stub tables.
6419 unsigned int shnum
= this->shnum();
6421 Target_arm
<big_endian
>* arm_target
=
6422 Target_arm
<big_endian
>::default_target();
6424 Relocate_info
<32, big_endian
> relinfo
;
6425 relinfo
.symtab
= symtab
;
6426 relinfo
.layout
= layout
;
6427 relinfo
.object
= this;
6429 for (unsigned int i
= 1; i
< shnum
; ++i
)
6431 Arm_input_section
<big_endian
>* arm_input_section
=
6432 arm_target
->find_arm_input_section(this, i
);
6434 if (arm_input_section
!= NULL
6435 && arm_input_section
->is_stub_table_owner()
6436 && !arm_input_section
->stub_table()->empty())
6438 // We cannot discard a section if it owns a stub table.
6439 Output_section
* os
= this->output_section(i
);
6440 gold_assert(os
!= NULL
);
6442 relinfo
.reloc_shndx
= elfcpp::SHN_UNDEF
;
6443 relinfo
.reloc_shdr
= NULL
;
6444 relinfo
.data_shndx
= i
;
6445 relinfo
.data_shdr
= pshdrs
+ i
* elfcpp::Elf_sizes
<32>::shdr_size
;
6447 gold_assert((*pviews
)[i
].view
!= NULL
);
6449 // We are passed the output section view. Adjust it to cover the
6451 Stub_table
<big_endian
>* stub_table
= arm_input_section
->stub_table();
6452 gold_assert((stub_table
->address() >= (*pviews
)[i
].address
)
6453 && ((stub_table
->address() + stub_table
->data_size())
6454 <= (*pviews
)[i
].address
+ (*pviews
)[i
].view_size
));
6456 off_t offset
= stub_table
->address() - (*pviews
)[i
].address
;
6457 unsigned char* view
= (*pviews
)[i
].view
+ offset
;
6458 Arm_address address
= stub_table
->address();
6459 section_size_type view_size
= stub_table
->data_size();
6461 stub_table
->relocate_stubs(&relinfo
, arm_target
, os
, view
, address
,
6465 // Apply Cortex A8 workaround if applicable.
6466 if (this->section_has_cortex_a8_workaround(i
))
6468 unsigned char* view
= (*pviews
)[i
].view
;
6469 Arm_address view_address
= (*pviews
)[i
].address
;
6470 section_size_type view_size
= (*pviews
)[i
].view_size
;
6471 Stub_table
<big_endian
>* stub_table
= this->stub_tables_
[i
];
6473 // Adjust view to cover section.
6474 Output_section
* os
= this->output_section(i
);
6475 gold_assert(os
!= NULL
);
6476 Arm_address section_address
=
6477 this->simple_input_section_output_address(i
, os
);
6478 uint64_t section_size
= this->section_size(i
);
6480 gold_assert(section_address
>= view_address
6481 && ((section_address
+ section_size
)
6482 <= (view_address
+ view_size
)));
6484 unsigned char* section_view
= view
+ (section_address
- view_address
);
6486 // Apply the Cortex-A8 workaround to the output address range
6487 // corresponding to this input section.
6488 stub_table
->apply_cortex_a8_workaround_to_address_range(
6497 // Find the linked text section of an EXIDX section by looking at the first
6498 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6499 // must be linked to its associated code section via the sh_link field of
6500 // its section header. However, some tools are broken and the link is not
6501 // always set. LD just drops such an EXIDX section silently, causing the
6502 // associated code not unwindabled. Here we try a little bit harder to
6503 // discover the linked code section.
6505 // PSHDR points to the section header of a relocation section of an EXIDX
6506 // section. If we can find a linked text section, return true and
6507 // store the text section index in the location PSHNDX. Otherwise
6510 template<bool big_endian
>
6512 Arm_relobj
<big_endian
>::find_linked_text_section(
6513 const unsigned char* pshdr
,
6514 const unsigned char* psyms
,
6515 unsigned int* pshndx
)
6517 elfcpp::Shdr
<32, big_endian
> shdr(pshdr
);
6519 // If there is no relocation, we cannot find the linked text section.
6521 if (shdr
.get_sh_type() == elfcpp::SHT_REL
)
6522 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6524 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6525 size_t reloc_count
= shdr
.get_sh_size() / reloc_size
;
6527 // Get the relocations.
6528 const unsigned char* prelocs
=
6529 this->get_view(shdr
.get_sh_offset(), shdr
.get_sh_size(), true, false);
6531 // Find the REL31 relocation for the first word of the first EXIDX entry.
6532 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
6534 Arm_address r_offset
;
6535 typename
elfcpp::Elf_types
<32>::Elf_WXword r_info
;
6536 if (shdr
.get_sh_type() == elfcpp::SHT_REL
)
6538 typename
elfcpp::Rel
<32, big_endian
> reloc(prelocs
);
6539 r_info
= reloc
.get_r_info();
6540 r_offset
= reloc
.get_r_offset();
6544 typename
elfcpp::Rela
<32, big_endian
> reloc(prelocs
);
6545 r_info
= reloc
.get_r_info();
6546 r_offset
= reloc
.get_r_offset();
6549 unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
6550 if (r_type
!= elfcpp::R_ARM_PREL31
&& r_type
!= elfcpp::R_ARM_SBREL31
)
6553 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
6555 || r_sym
>= this->local_symbol_count()
6559 // This is the relocation for the first word of the first EXIDX entry.
6560 // We expect to see a local section symbol.
6561 const int sym_size
= elfcpp::Elf_sizes
<32>::sym_size
;
6562 elfcpp::Sym
<32, big_endian
> sym(psyms
+ r_sym
* sym_size
);
6563 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
6567 this->adjust_sym_shndx(r_sym
, sym
.get_st_shndx(), &is_ordinary
);
6568 gold_assert(is_ordinary
);
6578 // Make an EXIDX input section object for an EXIDX section whose index is
6579 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6580 // is the section index of the linked text section.
6582 template<bool big_endian
>
6584 Arm_relobj
<big_endian
>::make_exidx_input_section(
6586 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6587 unsigned int text_shndx
,
6588 const elfcpp::Shdr
<32, big_endian
>& text_shdr
)
6590 // Create an Arm_exidx_input_section object for this EXIDX section.
6591 Arm_exidx_input_section
* exidx_input_section
=
6592 new Arm_exidx_input_section(this, shndx
, text_shndx
, shdr
.get_sh_size(),
6593 shdr
.get_sh_addralign(),
6594 text_shdr
.get_sh_size());
6596 gold_assert(this->exidx_section_map_
[shndx
] == NULL
);
6597 this->exidx_section_map_
[shndx
] = exidx_input_section
;
6599 if (text_shndx
== elfcpp::SHN_UNDEF
|| text_shndx
>= this->shnum())
6601 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6602 this->section_name(shndx
).c_str(), shndx
, text_shndx
,
6603 this->name().c_str());
6604 exidx_input_section
->set_has_errors();
6606 else if (this->exidx_section_map_
[text_shndx
] != NULL
)
6608 unsigned other_exidx_shndx
=
6609 this->exidx_section_map_
[text_shndx
]->shndx();
6610 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6612 this->section_name(shndx
).c_str(), shndx
,
6613 this->section_name(other_exidx_shndx
).c_str(),
6614 other_exidx_shndx
, this->section_name(text_shndx
).c_str(),
6615 text_shndx
, this->name().c_str());
6616 exidx_input_section
->set_has_errors();
6619 this->exidx_section_map_
[text_shndx
] = exidx_input_section
;
6621 // Check section flags of text section.
6622 if ((text_shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
6624 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6626 this->section_name(shndx
).c_str(), shndx
,
6627 this->section_name(text_shndx
).c_str(), text_shndx
,
6628 this->name().c_str());
6629 exidx_input_section
->set_has_errors();
6631 else if ((text_shdr
.get_sh_flags() & elfcpp::SHF_EXECINSTR
) == 0)
6632 // I would like to make this an error but currently ld just ignores
6634 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6636 this->section_name(shndx
).c_str(), shndx
,
6637 this->section_name(text_shndx
).c_str(), text_shndx
,
6638 this->name().c_str());
6641 // Read the symbol information.
6643 template<bool big_endian
>
6645 Arm_relobj
<big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
6647 // Call parent class to read symbol information.
6648 Sized_relobj_file
<32, big_endian
>::do_read_symbols(sd
);
6650 // If this input file is a binary file, it has no processor
6651 // specific flags and attributes section.
6652 Input_file::Format format
= this->input_file()->format();
6653 if (format
!= Input_file::FORMAT_ELF
)
6655 gold_assert(format
== Input_file::FORMAT_BINARY
);
6656 this->merge_flags_and_attributes_
= false;
6660 // Read processor-specific flags in ELF file header.
6661 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
6662 elfcpp::Elf_sizes
<32>::ehdr_size
,
6664 elfcpp::Ehdr
<32, big_endian
> ehdr(pehdr
);
6665 this->processor_specific_flags_
= ehdr
.get_e_flags();
6667 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6669 std::vector
<unsigned int> deferred_exidx_sections
;
6670 const size_t shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6671 const unsigned char* pshdrs
= sd
->section_headers
->data();
6672 const unsigned char* ps
= pshdrs
+ shdr_size
;
6673 bool must_merge_flags_and_attributes
= false;
6674 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6676 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6678 // Sometimes an object has no contents except the section name string
6679 // table and an empty symbol table with the undefined symbol. We
6680 // don't want to merge processor-specific flags from such an object.
6681 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
6683 // Symbol table is not empty.
6684 const elfcpp::Elf_types
<32>::Elf_WXword sym_size
=
6685 elfcpp::Elf_sizes
<32>::sym_size
;
6686 if (shdr
.get_sh_size() > sym_size
)
6687 must_merge_flags_and_attributes
= true;
6689 else if (shdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6690 // If this is neither an empty symbol table nor a string table,
6692 must_merge_flags_and_attributes
= true;
6694 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES
)
6696 gold_assert(this->attributes_section_data_
== NULL
);
6697 section_offset_type section_offset
= shdr
.get_sh_offset();
6698 section_size_type section_size
=
6699 convert_to_section_size_type(shdr
.get_sh_size());
6700 const unsigned char* view
=
6701 this->get_view(section_offset
, section_size
, true, false);
6702 this->attributes_section_data_
=
6703 new Attributes_section_data(view
, section_size
);
6705 else if (shdr
.get_sh_type() == elfcpp::SHT_ARM_EXIDX
)
6707 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_link());
6708 if (text_shndx
== elfcpp::SHN_UNDEF
)
6709 deferred_exidx_sections
.push_back(i
);
6712 elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
6713 + text_shndx
* shdr_size
);
6714 this->make_exidx_input_section(i
, shdr
, text_shndx
, text_shdr
);
6716 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6717 if ((shdr
.get_sh_flags() & elfcpp::SHF_LINK_ORDER
) == 0)
6718 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6719 this->section_name(i
).c_str(), this->name().c_str());
6724 if (!must_merge_flags_and_attributes
)
6726 gold_assert(deferred_exidx_sections
.empty());
6727 this->merge_flags_and_attributes_
= false;
6731 // Some tools are broken and they do not set the link of EXIDX sections.
6732 // We look at the first relocation to figure out the linked sections.
6733 if (!deferred_exidx_sections
.empty())
6735 // We need to go over the section headers again to find the mapping
6736 // from sections being relocated to their relocation sections. This is
6737 // a bit inefficient as we could do that in the loop above. However,
6738 // we do not expect any deferred EXIDX sections normally. So we do not
6739 // want to slow down the most common path.
6740 typedef Unordered_map
<unsigned int, unsigned int> Reloc_map
;
6741 Reloc_map reloc_map
;
6742 ps
= pshdrs
+ shdr_size
;
6743 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6745 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6746 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
6747 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
6749 unsigned int info_shndx
= this->adjust_shndx(shdr
.get_sh_info());
6750 if (info_shndx
>= this->shnum())
6751 gold_error(_("relocation section %u has invalid info %u"),
6753 Reloc_map::value_type
value(info_shndx
, i
);
6754 std::pair
<Reloc_map::iterator
, bool> result
=
6755 reloc_map
.insert(value
);
6757 gold_error(_("section %u has multiple relocation sections "
6759 info_shndx
, i
, reloc_map
[info_shndx
]);
6763 // Read the symbol table section header.
6764 const unsigned int symtab_shndx
= this->symtab_shndx();
6765 elfcpp::Shdr
<32, big_endian
>
6766 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6767 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6769 // Read the local symbols.
6770 const int sym_size
=elfcpp::Elf_sizes
<32>::sym_size
;
6771 const unsigned int loccount
= this->local_symbol_count();
6772 gold_assert(loccount
== symtabshdr
.get_sh_info());
6773 off_t locsize
= loccount
* sym_size
;
6774 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6775 locsize
, true, true);
6777 // Process the deferred EXIDX sections.
6778 for (unsigned int i
= 0; i
< deferred_exidx_sections
.size(); ++i
)
6780 unsigned int shndx
= deferred_exidx_sections
[i
];
6781 elfcpp::Shdr
<32, big_endian
> shdr(pshdrs
+ shndx
* shdr_size
);
6782 unsigned int text_shndx
= elfcpp::SHN_UNDEF
;
6783 Reloc_map::const_iterator it
= reloc_map
.find(shndx
);
6784 if (it
!= reloc_map
.end())
6785 find_linked_text_section(pshdrs
+ it
->second
* shdr_size
,
6786 psyms
, &text_shndx
);
6787 elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
6788 + text_shndx
* shdr_size
);
6789 this->make_exidx_input_section(shndx
, shdr
, text_shndx
, text_shdr
);
6794 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6795 // sections for unwinding. These sections are referenced implicitly by
6796 // text sections linked in the section headers. If we ignore these implicit
6797 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6798 // will be garbage-collected incorrectly. Hence we override the same function
6799 // in the base class to handle these implicit references.
6801 template<bool big_endian
>
6803 Arm_relobj
<big_endian
>::do_gc_process_relocs(Symbol_table
* symtab
,
6805 Read_relocs_data
* rd
)
6807 // First, call base class method to process relocations in this object.
6808 Sized_relobj_file
<32, big_endian
>::do_gc_process_relocs(symtab
, layout
, rd
);
6810 // If --gc-sections is not specified, there is nothing more to do.
6811 // This happens when --icf is used but --gc-sections is not.
6812 if (!parameters
->options().gc_sections())
6815 unsigned int shnum
= this->shnum();
6816 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6817 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
6821 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6822 // to these from the linked text sections.
6823 const unsigned char* ps
= pshdrs
+ shdr_size
;
6824 for (unsigned int i
= 1; i
< shnum
; ++i
, ps
+= shdr_size
)
6826 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6827 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_EXIDX
)
6829 // Found an .ARM.exidx section, add it to the set of reachable
6830 // sections from its linked text section.
6831 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_link());
6832 symtab
->gc()->add_reference(this, text_shndx
, this, i
);
6837 // Update output local symbol count. Owing to EXIDX entry merging, some local
6838 // symbols will be removed in output. Adjust output local symbol count
6839 // accordingly. We can only changed the static output local symbol count. It
6840 // is too late to change the dynamic symbols.
6842 template<bool big_endian
>
6844 Arm_relobj
<big_endian
>::update_output_local_symbol_count()
6846 // Caller should check that this needs updating. We want caller checking
6847 // because output_local_symbol_count_needs_update() is most likely inlined.
6848 gold_assert(this->output_local_symbol_count_needs_update_
);
6850 gold_assert(this->symtab_shndx() != -1U);
6851 if (this->symtab_shndx() == 0)
6853 // This object has no symbols. Weird but legal.
6857 // Read the symbol table section header.
6858 const unsigned int symtab_shndx
= this->symtab_shndx();
6859 elfcpp::Shdr
<32, big_endian
>
6860 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6861 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6863 // Read the local symbols.
6864 const int sym_size
= elfcpp::Elf_sizes
<32>::sym_size
;
6865 const unsigned int loccount
= this->local_symbol_count();
6866 gold_assert(loccount
== symtabshdr
.get_sh_info());
6867 off_t locsize
= loccount
* sym_size
;
6868 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6869 locsize
, true, true);
6871 // Loop over the local symbols.
6873 typedef typename Sized_relobj_file
<32, big_endian
>::Output_sections
6875 const Output_sections
& out_sections(this->output_sections());
6876 unsigned int shnum
= this->shnum();
6877 unsigned int count
= 0;
6878 // Skip the first, dummy, symbol.
6880 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
6882 elfcpp::Sym
<32, big_endian
> sym(psyms
);
6884 Symbol_value
<32>& lv((*this->local_values())[i
]);
6886 // This local symbol was already discarded by do_count_local_symbols.
6887 if (lv
.is_output_symtab_index_set() && !lv
.has_output_symtab_entry())
6891 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
6896 Output_section
* os
= out_sections
[shndx
];
6898 // This local symbol no longer has an output section. Discard it.
6901 lv
.set_no_output_symtab_entry();
6905 // Currently we only discard parts of EXIDX input sections.
6906 // We explicitly check for a merged EXIDX input section to avoid
6907 // calling Output_section_data::output_offset unless necessary.
6908 if ((this->get_output_section_offset(shndx
) == invalid_address
)
6909 && (this->exidx_input_section_by_shndx(shndx
) != NULL
))
6911 section_offset_type output_offset
=
6912 os
->output_offset(this, shndx
, lv
.input_value());
6913 if (output_offset
== -1)
6915 // This symbol is defined in a part of an EXIDX input section
6916 // that is discarded due to entry merging.
6917 lv
.set_no_output_symtab_entry();
6926 this->set_output_local_symbol_count(count
);
6927 this->output_local_symbol_count_needs_update_
= false;
6930 // Arm_dynobj methods.
6932 // Read the symbol information.
6934 template<bool big_endian
>
6936 Arm_dynobj
<big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
6938 // Call parent class to read symbol information.
6939 Sized_dynobj
<32, big_endian
>::do_read_symbols(sd
);
6941 // Read processor-specific flags in ELF file header.
6942 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
6943 elfcpp::Elf_sizes
<32>::ehdr_size
,
6945 elfcpp::Ehdr
<32, big_endian
> ehdr(pehdr
);
6946 this->processor_specific_flags_
= ehdr
.get_e_flags();
6948 // Read the attributes section if there is one.
6949 // We read from the end because gas seems to put it near the end of
6950 // the section headers.
6951 const size_t shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6952 const unsigned char* ps
=
6953 sd
->section_headers
->data() + shdr_size
* (this->shnum() - 1);
6954 for (unsigned int i
= this->shnum(); i
> 0; --i
, ps
-= shdr_size
)
6956 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6957 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES
)
6959 section_offset_type section_offset
= shdr
.get_sh_offset();
6960 section_size_type section_size
=
6961 convert_to_section_size_type(shdr
.get_sh_size());
6962 const unsigned char* view
=
6963 this->get_view(section_offset
, section_size
, true, false);
6964 this->attributes_section_data_
=
6965 new Attributes_section_data(view
, section_size
);
6971 // Stub_addend_reader methods.
6973 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6975 template<bool big_endian
>
6976 elfcpp::Elf_types
<32>::Elf_Swxword
6977 Stub_addend_reader
<elfcpp::SHT_REL
, big_endian
>::operator()(
6978 unsigned int r_type
,
6979 const unsigned char* view
,
6980 const typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc
&) const
6982 typedef struct Arm_relocate_functions
<big_endian
> RelocFuncs
;
6986 case elfcpp::R_ARM_CALL
:
6987 case elfcpp::R_ARM_JUMP24
:
6988 case elfcpp::R_ARM_PLT32
:
6990 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
6991 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
6992 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
6993 return Bits
<26>::sign_extend32(val
<< 2);
6996 case elfcpp::R_ARM_THM_CALL
:
6997 case elfcpp::R_ARM_THM_JUMP24
:
6998 case elfcpp::R_ARM_THM_XPC22
:
7000 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
7001 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
7002 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
7003 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
7004 return RelocFuncs::thumb32_branch_offset(upper_insn
, lower_insn
);
7007 case elfcpp::R_ARM_THM_JUMP19
:
7009 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
7010 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
7011 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
7012 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
7013 return RelocFuncs::thumb32_cond_branch_offset(upper_insn
, lower_insn
);
7021 // Arm_output_data_got methods.
7023 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7024 // The first one is initialized to be 1, which is the module index for
7025 // the main executable and the second one 0. A reloc of the type
7026 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7027 // be applied by gold. GSYM is a global symbol.
7029 template<bool big_endian
>
7031 Arm_output_data_got
<big_endian
>::add_tls_gd32_with_static_reloc(
7032 unsigned int got_type
,
7035 if (gsym
->has_got_offset(got_type
))
7038 // We are doing a static link. Just mark it as belong to module 1,
7040 unsigned int got_offset
= this->add_constant(1);
7041 gsym
->set_got_offset(got_type
, got_offset
);
7042 got_offset
= this->add_constant(0);
7043 this->static_relocs_
.push_back(Static_reloc(got_offset
,
7044 elfcpp::R_ARM_TLS_DTPOFF32
,
7048 // Same as the above but for a local symbol.
7050 template<bool big_endian
>
7052 Arm_output_data_got
<big_endian
>::add_tls_gd32_with_static_reloc(
7053 unsigned int got_type
,
7054 Sized_relobj_file
<32, big_endian
>* object
,
7057 if (object
->local_has_got_offset(index
, got_type
))
7060 // We are doing a static link. Just mark it as belong to module 1,
7062 unsigned int got_offset
= this->add_constant(1);
7063 object
->set_local_got_offset(index
, got_type
, got_offset
);
7064 got_offset
= this->add_constant(0);
7065 this->static_relocs_
.push_back(Static_reloc(got_offset
,
7066 elfcpp::R_ARM_TLS_DTPOFF32
,
7070 template<bool big_endian
>
7072 Arm_output_data_got
<big_endian
>::do_write(Output_file
* of
)
7074 // Call parent to write out GOT.
7075 Output_data_got
<32, big_endian
>::do_write(of
);
7077 // We are done if there is no fix up.
7078 if (this->static_relocs_
.empty())
7081 gold_assert(parameters
->doing_static_link());
7083 const off_t offset
= this->offset();
7084 const section_size_type oview_size
=
7085 convert_to_section_size_type(this->data_size());
7086 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7088 Output_segment
* tls_segment
= this->layout_
->tls_segment();
7089 gold_assert(tls_segment
!= NULL
);
7091 // The thread pointer $tp points to the TCB, which is followed by the
7092 // TLS. So we need to adjust $tp relative addressing by this amount.
7093 Arm_address aligned_tcb_size
=
7094 align_address(ARM_TCB_SIZE
, tls_segment
->maximum_alignment());
7096 for (size_t i
= 0; i
< this->static_relocs_
.size(); ++i
)
7098 Static_reloc
& reloc(this->static_relocs_
[i
]);
7101 if (!reloc
.symbol_is_global())
7103 Sized_relobj_file
<32, big_endian
>* object
= reloc
.relobj();
7104 const Symbol_value
<32>* psymval
=
7105 reloc
.relobj()->local_symbol(reloc
.index());
7107 // We are doing static linking. Issue an error and skip this
7108 // relocation if the symbol is undefined or in a discarded_section.
7110 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
7111 if ((shndx
== elfcpp::SHN_UNDEF
)
7113 && shndx
!= elfcpp::SHN_UNDEF
7114 && !object
->is_section_included(shndx
)
7115 && !this->symbol_table_
->is_section_folded(object
, shndx
)))
7117 gold_error(_("undefined or discarded local symbol %u from "
7118 " object %s in GOT"),
7119 reloc
.index(), reloc
.relobj()->name().c_str());
7123 value
= psymval
->value(object
, 0);
7127 const Symbol
* gsym
= reloc
.symbol();
7128 gold_assert(gsym
!= NULL
);
7129 if (gsym
->is_forwarder())
7130 gsym
= this->symbol_table_
->resolve_forwards(gsym
);
7132 // We are doing static linking. Issue an error and skip this
7133 // relocation if the symbol is undefined or in a discarded_section
7134 // unless it is a weakly_undefined symbol.
7135 if ((gsym
->is_defined_in_discarded_section()
7136 || gsym
->is_undefined())
7137 && !gsym
->is_weak_undefined())
7139 gold_error(_("undefined or discarded symbol %s in GOT"),
7144 if (!gsym
->is_weak_undefined())
7146 const Sized_symbol
<32>* sym
=
7147 static_cast<const Sized_symbol
<32>*>(gsym
);
7148 value
= sym
->value();
7154 unsigned got_offset
= reloc
.got_offset();
7155 gold_assert(got_offset
< oview_size
);
7157 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
7158 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
7160 switch (reloc
.r_type())
7162 case elfcpp::R_ARM_TLS_DTPOFF32
:
7165 case elfcpp::R_ARM_TLS_TPOFF32
:
7166 x
= value
+ aligned_tcb_size
;
7171 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
7174 of
->write_output_view(offset
, oview_size
, oview
);
7177 // A class to handle the PLT data.
7179 template<bool big_endian
>
7180 class Output_data_plt_arm
: public Output_section_data
7183 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, 32, big_endian
>
7186 Output_data_plt_arm(Layout
*, Output_data_space
*);
7188 // Add an entry to the PLT.
7190 add_entry(Symbol
* gsym
);
7192 // Return the .rel.plt section data.
7193 const Reloc_section
*
7195 { return this->rel_
; }
7197 // Return the number of PLT entries.
7200 { return this->count_
; }
7202 // Return the offset of the first non-reserved PLT entry.
7204 first_plt_entry_offset()
7205 { return sizeof(first_plt_entry
); }
7207 // Return the size of a PLT entry.
7209 get_plt_entry_size()
7210 { return sizeof(plt_entry
); }
7214 do_adjust_output_section(Output_section
* os
);
7216 // Write to a map file.
7218 do_print_to_mapfile(Mapfile
* mapfile
) const
7219 { mapfile
->print_output_data(this, _("** PLT")); }
7222 // Template for the first PLT entry.
7223 static const uint32_t first_plt_entry
[5];
7225 // Template for subsequent PLT entries.
7226 static const uint32_t plt_entry
[3];
7228 // Set the final size.
7230 set_final_data_size()
7232 this->set_data_size(sizeof(first_plt_entry
)
7233 + this->count_
* sizeof(plt_entry
));
7236 // Write out the PLT data.
7238 do_write(Output_file
*);
7240 // The reloc section.
7241 Reloc_section
* rel_
;
7242 // The .got.plt section.
7243 Output_data_space
* got_plt_
;
7244 // The number of PLT entries.
7245 unsigned int count_
;
7248 // Create the PLT section. The ordinary .got section is an argument,
7249 // since we need to refer to the start. We also create our own .got
7250 // section just for PLT entries.
7252 template<bool big_endian
>
7253 Output_data_plt_arm
<big_endian
>::Output_data_plt_arm(Layout
* layout
,
7254 Output_data_space
* got_plt
)
7255 : Output_section_data(4), got_plt_(got_plt
), count_(0)
7257 this->rel_
= new Reloc_section(false);
7258 layout
->add_output_section_data(".rel.plt", elfcpp::SHT_REL
,
7259 elfcpp::SHF_ALLOC
, this->rel_
,
7260 ORDER_DYNAMIC_PLT_RELOCS
, false);
7263 template<bool big_endian
>
7265 Output_data_plt_arm
<big_endian
>::do_adjust_output_section(Output_section
* os
)
7270 // Add an entry to the PLT.
7272 template<bool big_endian
>
7274 Output_data_plt_arm
<big_endian
>::add_entry(Symbol
* gsym
)
7276 gold_assert(!gsym
->has_plt_offset());
7278 // Note that when setting the PLT offset we skip the initial
7279 // reserved PLT entry.
7280 gsym
->set_plt_offset((this->count_
) * sizeof(plt_entry
)
7281 + sizeof(first_plt_entry
));
7285 section_offset_type got_offset
= this->got_plt_
->current_data_size();
7287 // Every PLT entry needs a GOT entry which points back to the PLT
7288 // entry (this will be changed by the dynamic linker, normally
7289 // lazily when the function is called).
7290 this->got_plt_
->set_current_data_size(got_offset
+ 4);
7292 // Every PLT entry needs a reloc.
7293 gsym
->set_needs_dynsym_entry();
7294 this->rel_
->add_global(gsym
, elfcpp::R_ARM_JUMP_SLOT
, this->got_plt_
,
7297 // Note that we don't need to save the symbol. The contents of the
7298 // PLT are independent of which symbols are used. The symbols only
7299 // appear in the relocations.
7303 // FIXME: This is not very flexible. Right now this has only been tested
7304 // on armv5te. If we are to support additional architecture features like
7305 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7307 // The first entry in the PLT.
7308 template<bool big_endian
>
7309 const uint32_t Output_data_plt_arm
<big_endian
>::first_plt_entry
[5] =
7311 0xe52de004, // str lr, [sp, #-4]!
7312 0xe59fe004, // ldr lr, [pc, #4]
7313 0xe08fe00e, // add lr, pc, lr
7314 0xe5bef008, // ldr pc, [lr, #8]!
7315 0x00000000, // &GOT[0] - .
7318 // Subsequent entries in the PLT.
7320 template<bool big_endian
>
7321 const uint32_t Output_data_plt_arm
<big_endian
>::plt_entry
[3] =
7323 0xe28fc600, // add ip, pc, #0xNN00000
7324 0xe28cca00, // add ip, ip, #0xNN000
7325 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7328 // Write out the PLT. This uses the hand-coded instructions above,
7329 // and adjusts them as needed. This is all specified by the arm ELF
7330 // Processor Supplement.
7332 template<bool big_endian
>
7334 Output_data_plt_arm
<big_endian
>::do_write(Output_file
* of
)
7336 const off_t offset
= this->offset();
7337 const section_size_type oview_size
=
7338 convert_to_section_size_type(this->data_size());
7339 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7341 const off_t got_file_offset
= this->got_plt_
->offset();
7342 const section_size_type got_size
=
7343 convert_to_section_size_type(this->got_plt_
->data_size());
7344 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
7346 unsigned char* pov
= oview
;
7348 Arm_address plt_address
= this->address();
7349 Arm_address got_address
= this->got_plt_
->address();
7351 // Write first PLT entry. All but the last word are constants.
7352 const size_t num_first_plt_words
= (sizeof(first_plt_entry
)
7353 / sizeof(plt_entry
[0]));
7354 for (size_t i
= 0; i
< num_first_plt_words
- 1; i
++)
7355 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ i
* 4, first_plt_entry
[i
]);
7356 // Last word in first PLT entry is &GOT[0] - .
7357 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 16,
7358 got_address
- (plt_address
+ 16));
7359 pov
+= sizeof(first_plt_entry
);
7361 unsigned char* got_pov
= got_view
;
7363 memset(got_pov
, 0, 12);
7366 const int rel_size
= elfcpp::Elf_sizes
<32>::rel_size
;
7367 unsigned int plt_offset
= sizeof(first_plt_entry
);
7368 unsigned int plt_rel_offset
= 0;
7369 unsigned int got_offset
= 12;
7370 const unsigned int count
= this->count_
;
7371 for (unsigned int i
= 0;
7374 pov
+= sizeof(plt_entry
),
7376 plt_offset
+= sizeof(plt_entry
),
7377 plt_rel_offset
+= rel_size
,
7380 // Set and adjust the PLT entry itself.
7381 int32_t offset
= ((got_address
+ got_offset
)
7382 - (plt_address
+ plt_offset
+ 8));
7384 gold_assert(offset
>= 0 && offset
< 0x0fffffff);
7385 uint32_t plt_insn0
= plt_entry
[0] | ((offset
>> 20) & 0xff);
7386 elfcpp::Swap
<32, big_endian
>::writeval(pov
, plt_insn0
);
7387 uint32_t plt_insn1
= plt_entry
[1] | ((offset
>> 12) & 0xff);
7388 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4, plt_insn1
);
7389 uint32_t plt_insn2
= plt_entry
[2] | (offset
& 0xfff);
7390 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 8, plt_insn2
);
7392 // Set the entry in the GOT.
7393 elfcpp::Swap
<32, big_endian
>::writeval(got_pov
, plt_address
);
7396 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
7397 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
7399 of
->write_output_view(offset
, oview_size
, oview
);
7400 of
->write_output_view(got_file_offset
, got_size
, got_view
);
7403 // Create a PLT entry for a global symbol.
7405 template<bool big_endian
>
7407 Target_arm
<big_endian
>::make_plt_entry(Symbol_table
* symtab
, Layout
* layout
,
7410 if (gsym
->has_plt_offset())
7413 if (this->plt_
== NULL
)
7415 // Create the GOT sections first.
7416 this->got_section(symtab
, layout
);
7418 this->plt_
= new Output_data_plt_arm
<big_endian
>(layout
, this->got_plt_
);
7419 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
7421 | elfcpp::SHF_EXECINSTR
),
7422 this->plt_
, ORDER_PLT
, false);
7424 this->plt_
->add_entry(gsym
);
7427 // Return the number of entries in the PLT.
7429 template<bool big_endian
>
7431 Target_arm
<big_endian
>::plt_entry_count() const
7433 if (this->plt_
== NULL
)
7435 return this->plt_
->entry_count();
7438 // Return the offset of the first non-reserved PLT entry.
7440 template<bool big_endian
>
7442 Target_arm
<big_endian
>::first_plt_entry_offset() const
7444 return Output_data_plt_arm
<big_endian
>::first_plt_entry_offset();
7447 // Return the size of each PLT entry.
7449 template<bool big_endian
>
7451 Target_arm
<big_endian
>::plt_entry_size() const
7453 return Output_data_plt_arm
<big_endian
>::get_plt_entry_size();
7456 // Get the section to use for TLS_DESC relocations.
7458 template<bool big_endian
>
7459 typename Target_arm
<big_endian
>::Reloc_section
*
7460 Target_arm
<big_endian
>::rel_tls_desc_section(Layout
* layout
) const
7462 return this->plt_section()->rel_tls_desc(layout
);
7465 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7467 template<bool big_endian
>
7469 Target_arm
<big_endian
>::define_tls_base_symbol(
7470 Symbol_table
* symtab
,
7473 if (this->tls_base_symbol_defined_
)
7476 Output_segment
* tls_segment
= layout
->tls_segment();
7477 if (tls_segment
!= NULL
)
7479 bool is_exec
= parameters
->options().output_is_executable();
7480 symtab
->define_in_output_segment("_TLS_MODULE_BASE_", NULL
,
7481 Symbol_table::PREDEFINED
,
7485 elfcpp::STV_HIDDEN
, 0,
7487 ? Symbol::SEGMENT_END
7488 : Symbol::SEGMENT_START
),
7491 this->tls_base_symbol_defined_
= true;
7494 // Create a GOT entry for the TLS module index.
7496 template<bool big_endian
>
7498 Target_arm
<big_endian
>::got_mod_index_entry(
7499 Symbol_table
* symtab
,
7501 Sized_relobj_file
<32, big_endian
>* object
)
7503 if (this->got_mod_index_offset_
== -1U)
7505 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
7506 Arm_output_data_got
<big_endian
>* got
= this->got_section(symtab
, layout
);
7507 unsigned int got_offset
;
7508 if (!parameters
->doing_static_link())
7510 got_offset
= got
->add_constant(0);
7511 Reloc_section
* rel_dyn
= this->rel_dyn_section(layout
);
7512 rel_dyn
->add_local(object
, 0, elfcpp::R_ARM_TLS_DTPMOD32
, got
,
7517 // We are doing a static link. Just mark it as belong to module 1,
7519 got_offset
= got
->add_constant(1);
7522 got
->add_constant(0);
7523 this->got_mod_index_offset_
= got_offset
;
7525 return this->got_mod_index_offset_
;
7528 // Optimize the TLS relocation type based on what we know about the
7529 // symbol. IS_FINAL is true if the final address of this symbol is
7530 // known at link time.
7532 template<bool big_endian
>
7533 tls::Tls_optimization
7534 Target_arm
<big_endian
>::optimize_tls_reloc(bool, int)
7536 // FIXME: Currently we do not do any TLS optimization.
7537 return tls::TLSOPT_NONE
;
7540 // Get the Reference_flags for a particular relocation.
7542 template<bool big_endian
>
7544 Target_arm
<big_endian
>::Scan::get_reference_flags(unsigned int r_type
)
7548 case elfcpp::R_ARM_NONE
:
7549 case elfcpp::R_ARM_V4BX
:
7550 case elfcpp::R_ARM_GNU_VTENTRY
:
7551 case elfcpp::R_ARM_GNU_VTINHERIT
:
7552 // No symbol reference.
7555 case elfcpp::R_ARM_ABS32
:
7556 case elfcpp::R_ARM_ABS16
:
7557 case elfcpp::R_ARM_ABS12
:
7558 case elfcpp::R_ARM_THM_ABS5
:
7559 case elfcpp::R_ARM_ABS8
:
7560 case elfcpp::R_ARM_BASE_ABS
:
7561 case elfcpp::R_ARM_MOVW_ABS_NC
:
7562 case elfcpp::R_ARM_MOVT_ABS
:
7563 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
7564 case elfcpp::R_ARM_THM_MOVT_ABS
:
7565 case elfcpp::R_ARM_ABS32_NOI
:
7566 return Symbol::ABSOLUTE_REF
;
7568 case elfcpp::R_ARM_REL32
:
7569 case elfcpp::R_ARM_LDR_PC_G0
:
7570 case elfcpp::R_ARM_SBREL32
:
7571 case elfcpp::R_ARM_THM_PC8
:
7572 case elfcpp::R_ARM_BASE_PREL
:
7573 case elfcpp::R_ARM_MOVW_PREL_NC
:
7574 case elfcpp::R_ARM_MOVT_PREL
:
7575 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
7576 case elfcpp::R_ARM_THM_MOVT_PREL
:
7577 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
7578 case elfcpp::R_ARM_THM_PC12
:
7579 case elfcpp::R_ARM_REL32_NOI
:
7580 case elfcpp::R_ARM_ALU_PC_G0_NC
:
7581 case elfcpp::R_ARM_ALU_PC_G0
:
7582 case elfcpp::R_ARM_ALU_PC_G1_NC
:
7583 case elfcpp::R_ARM_ALU_PC_G1
:
7584 case elfcpp::R_ARM_ALU_PC_G2
:
7585 case elfcpp::R_ARM_LDR_PC_G1
:
7586 case elfcpp::R_ARM_LDR_PC_G2
:
7587 case elfcpp::R_ARM_LDRS_PC_G0
:
7588 case elfcpp::R_ARM_LDRS_PC_G1
:
7589 case elfcpp::R_ARM_LDRS_PC_G2
:
7590 case elfcpp::R_ARM_LDC_PC_G0
:
7591 case elfcpp::R_ARM_LDC_PC_G1
:
7592 case elfcpp::R_ARM_LDC_PC_G2
:
7593 case elfcpp::R_ARM_ALU_SB_G0_NC
:
7594 case elfcpp::R_ARM_ALU_SB_G0
:
7595 case elfcpp::R_ARM_ALU_SB_G1_NC
:
7596 case elfcpp::R_ARM_ALU_SB_G1
:
7597 case elfcpp::R_ARM_ALU_SB_G2
:
7598 case elfcpp::R_ARM_LDR_SB_G0
:
7599 case elfcpp::R_ARM_LDR_SB_G1
:
7600 case elfcpp::R_ARM_LDR_SB_G2
:
7601 case elfcpp::R_ARM_LDRS_SB_G0
:
7602 case elfcpp::R_ARM_LDRS_SB_G1
:
7603 case elfcpp::R_ARM_LDRS_SB_G2
:
7604 case elfcpp::R_ARM_LDC_SB_G0
:
7605 case elfcpp::R_ARM_LDC_SB_G1
:
7606 case elfcpp::R_ARM_LDC_SB_G2
:
7607 case elfcpp::R_ARM_MOVW_BREL_NC
:
7608 case elfcpp::R_ARM_MOVT_BREL
:
7609 case elfcpp::R_ARM_MOVW_BREL
:
7610 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
7611 case elfcpp::R_ARM_THM_MOVT_BREL
:
7612 case elfcpp::R_ARM_THM_MOVW_BREL
:
7613 case elfcpp::R_ARM_GOTOFF32
:
7614 case elfcpp::R_ARM_GOTOFF12
:
7615 case elfcpp::R_ARM_SBREL31
:
7616 return Symbol::RELATIVE_REF
;
7618 case elfcpp::R_ARM_PLT32
:
7619 case elfcpp::R_ARM_CALL
:
7620 case elfcpp::R_ARM_JUMP24
:
7621 case elfcpp::R_ARM_THM_CALL
:
7622 case elfcpp::R_ARM_THM_JUMP24
:
7623 case elfcpp::R_ARM_THM_JUMP19
:
7624 case elfcpp::R_ARM_THM_JUMP6
:
7625 case elfcpp::R_ARM_THM_JUMP11
:
7626 case elfcpp::R_ARM_THM_JUMP8
:
7627 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7628 // in unwind tables. It may point to functions via PLTs.
7629 // So we treat it like call/jump relocations above.
7630 case elfcpp::R_ARM_PREL31
:
7631 return Symbol::FUNCTION_CALL
| Symbol::RELATIVE_REF
;
7633 case elfcpp::R_ARM_GOT_BREL
:
7634 case elfcpp::R_ARM_GOT_ABS
:
7635 case elfcpp::R_ARM_GOT_PREL
:
7637 return Symbol::ABSOLUTE_REF
;
7639 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7640 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7641 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7642 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7643 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
7644 return Symbol::TLS_REF
;
7646 case elfcpp::R_ARM_TARGET1
:
7647 case elfcpp::R_ARM_TARGET2
:
7648 case elfcpp::R_ARM_COPY
:
7649 case elfcpp::R_ARM_GLOB_DAT
:
7650 case elfcpp::R_ARM_JUMP_SLOT
:
7651 case elfcpp::R_ARM_RELATIVE
:
7652 case elfcpp::R_ARM_PC24
:
7653 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
7654 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
7655 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
7657 // Not expected. We will give an error later.
7662 // Report an unsupported relocation against a local symbol.
7664 template<bool big_endian
>
7666 Target_arm
<big_endian
>::Scan::unsupported_reloc_local(
7667 Sized_relobj_file
<32, big_endian
>* object
,
7668 unsigned int r_type
)
7670 gold_error(_("%s: unsupported reloc %u against local symbol"),
7671 object
->name().c_str(), r_type
);
7674 // We are about to emit a dynamic relocation of type R_TYPE. If the
7675 // dynamic linker does not support it, issue an error. The GNU linker
7676 // only issues a non-PIC error for an allocated read-only section.
7677 // Here we know the section is allocated, but we don't know that it is
7678 // read-only. But we check for all the relocation types which the
7679 // glibc dynamic linker supports, so it seems appropriate to issue an
7680 // error even if the section is not read-only.
7682 template<bool big_endian
>
7684 Target_arm
<big_endian
>::Scan::check_non_pic(Relobj
* object
,
7685 unsigned int r_type
)
7689 // These are the relocation types supported by glibc for ARM.
7690 case elfcpp::R_ARM_RELATIVE
:
7691 case elfcpp::R_ARM_COPY
:
7692 case elfcpp::R_ARM_GLOB_DAT
:
7693 case elfcpp::R_ARM_JUMP_SLOT
:
7694 case elfcpp::R_ARM_ABS32
:
7695 case elfcpp::R_ARM_ABS32_NOI
:
7696 case elfcpp::R_ARM_PC24
:
7697 // FIXME: The following 3 types are not supported by Android's dynamic
7699 case elfcpp::R_ARM_TLS_DTPMOD32
:
7700 case elfcpp::R_ARM_TLS_DTPOFF32
:
7701 case elfcpp::R_ARM_TLS_TPOFF32
:
7706 // This prevents us from issuing more than one error per reloc
7707 // section. But we can still wind up issuing more than one
7708 // error per object file.
7709 if (this->issued_non_pic_error_
)
7711 const Arm_reloc_property
* reloc_property
=
7712 arm_reloc_property_table
->get_reloc_property(r_type
);
7713 gold_assert(reloc_property
!= NULL
);
7714 object
->error(_("requires unsupported dynamic reloc %s; "
7715 "recompile with -fPIC"),
7716 reloc_property
->name().c_str());
7717 this->issued_non_pic_error_
= true;
7721 case elfcpp::R_ARM_NONE
:
7726 // Scan a relocation for a local symbol.
7727 // FIXME: This only handles a subset of relocation types used by Android
7728 // on ARM v5te devices.
7730 template<bool big_endian
>
7732 Target_arm
<big_endian
>::Scan::local(Symbol_table
* symtab
,
7735 Sized_relobj_file
<32, big_endian
>* object
,
7736 unsigned int data_shndx
,
7737 Output_section
* output_section
,
7738 const elfcpp::Rel
<32, big_endian
>& reloc
,
7739 unsigned int r_type
,
7740 const elfcpp::Sym
<32, big_endian
>& lsym
)
7742 r_type
= get_real_reloc_type(r_type
);
7745 case elfcpp::R_ARM_NONE
:
7746 case elfcpp::R_ARM_V4BX
:
7747 case elfcpp::R_ARM_GNU_VTENTRY
:
7748 case elfcpp::R_ARM_GNU_VTINHERIT
:
7751 case elfcpp::R_ARM_ABS32
:
7752 case elfcpp::R_ARM_ABS32_NOI
:
7753 // If building a shared library (or a position-independent
7754 // executable), we need to create a dynamic relocation for
7755 // this location. The relocation applied at link time will
7756 // apply the link-time value, so we flag the location with
7757 // an R_ARM_RELATIVE relocation so the dynamic loader can
7758 // relocate it easily.
7759 if (parameters
->options().output_is_position_independent())
7761 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7762 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7763 // If we are to add more other reloc types than R_ARM_ABS32,
7764 // we need to add check_non_pic(object, r_type) here.
7765 rel_dyn
->add_local_relative(object
, r_sym
, elfcpp::R_ARM_RELATIVE
,
7766 output_section
, data_shndx
,
7767 reloc
.get_r_offset());
7771 case elfcpp::R_ARM_ABS16
:
7772 case elfcpp::R_ARM_ABS12
:
7773 case elfcpp::R_ARM_THM_ABS5
:
7774 case elfcpp::R_ARM_ABS8
:
7775 case elfcpp::R_ARM_BASE_ABS
:
7776 case elfcpp::R_ARM_MOVW_ABS_NC
:
7777 case elfcpp::R_ARM_MOVT_ABS
:
7778 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
7779 case elfcpp::R_ARM_THM_MOVT_ABS
:
7780 // If building a shared library (or a position-independent
7781 // executable), we need to create a dynamic relocation for
7782 // this location. Because the addend needs to remain in the
7783 // data section, we need to be careful not to apply this
7784 // relocation statically.
7785 if (parameters
->options().output_is_position_independent())
7787 check_non_pic(object
, r_type
);
7788 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7789 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7790 if (lsym
.get_st_type() != elfcpp::STT_SECTION
)
7791 rel_dyn
->add_local(object
, r_sym
, r_type
, output_section
,
7792 data_shndx
, reloc
.get_r_offset());
7795 gold_assert(lsym
.get_st_value() == 0);
7796 unsigned int shndx
= lsym
.get_st_shndx();
7798 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
,
7801 object
->error(_("section symbol %u has bad shndx %u"),
7804 rel_dyn
->add_local_section(object
, shndx
,
7805 r_type
, output_section
,
7806 data_shndx
, reloc
.get_r_offset());
7811 case elfcpp::R_ARM_REL32
:
7812 case elfcpp::R_ARM_LDR_PC_G0
:
7813 case elfcpp::R_ARM_SBREL32
:
7814 case elfcpp::R_ARM_THM_CALL
:
7815 case elfcpp::R_ARM_THM_PC8
:
7816 case elfcpp::R_ARM_BASE_PREL
:
7817 case elfcpp::R_ARM_PLT32
:
7818 case elfcpp::R_ARM_CALL
:
7819 case elfcpp::R_ARM_JUMP24
:
7820 case elfcpp::R_ARM_THM_JUMP24
:
7821 case elfcpp::R_ARM_SBREL31
:
7822 case elfcpp::R_ARM_PREL31
:
7823 case elfcpp::R_ARM_MOVW_PREL_NC
:
7824 case elfcpp::R_ARM_MOVT_PREL
:
7825 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
7826 case elfcpp::R_ARM_THM_MOVT_PREL
:
7827 case elfcpp::R_ARM_THM_JUMP19
:
7828 case elfcpp::R_ARM_THM_JUMP6
:
7829 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
7830 case elfcpp::R_ARM_THM_PC12
:
7831 case elfcpp::R_ARM_REL32_NOI
:
7832 case elfcpp::R_ARM_ALU_PC_G0_NC
:
7833 case elfcpp::R_ARM_ALU_PC_G0
:
7834 case elfcpp::R_ARM_ALU_PC_G1_NC
:
7835 case elfcpp::R_ARM_ALU_PC_G1
:
7836 case elfcpp::R_ARM_ALU_PC_G2
:
7837 case elfcpp::R_ARM_LDR_PC_G1
:
7838 case elfcpp::R_ARM_LDR_PC_G2
:
7839 case elfcpp::R_ARM_LDRS_PC_G0
:
7840 case elfcpp::R_ARM_LDRS_PC_G1
:
7841 case elfcpp::R_ARM_LDRS_PC_G2
:
7842 case elfcpp::R_ARM_LDC_PC_G0
:
7843 case elfcpp::R_ARM_LDC_PC_G1
:
7844 case elfcpp::R_ARM_LDC_PC_G2
:
7845 case elfcpp::R_ARM_ALU_SB_G0_NC
:
7846 case elfcpp::R_ARM_ALU_SB_G0
:
7847 case elfcpp::R_ARM_ALU_SB_G1_NC
:
7848 case elfcpp::R_ARM_ALU_SB_G1
:
7849 case elfcpp::R_ARM_ALU_SB_G2
:
7850 case elfcpp::R_ARM_LDR_SB_G0
:
7851 case elfcpp::R_ARM_LDR_SB_G1
:
7852 case elfcpp::R_ARM_LDR_SB_G2
:
7853 case elfcpp::R_ARM_LDRS_SB_G0
:
7854 case elfcpp::R_ARM_LDRS_SB_G1
:
7855 case elfcpp::R_ARM_LDRS_SB_G2
:
7856 case elfcpp::R_ARM_LDC_SB_G0
:
7857 case elfcpp::R_ARM_LDC_SB_G1
:
7858 case elfcpp::R_ARM_LDC_SB_G2
:
7859 case elfcpp::R_ARM_MOVW_BREL_NC
:
7860 case elfcpp::R_ARM_MOVT_BREL
:
7861 case elfcpp::R_ARM_MOVW_BREL
:
7862 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
7863 case elfcpp::R_ARM_THM_MOVT_BREL
:
7864 case elfcpp::R_ARM_THM_MOVW_BREL
:
7865 case elfcpp::R_ARM_THM_JUMP11
:
7866 case elfcpp::R_ARM_THM_JUMP8
:
7867 // We don't need to do anything for a relative addressing relocation
7868 // against a local symbol if it does not reference the GOT.
7871 case elfcpp::R_ARM_GOTOFF32
:
7872 case elfcpp::R_ARM_GOTOFF12
:
7873 // We need a GOT section:
7874 target
->got_section(symtab
, layout
);
7877 case elfcpp::R_ARM_GOT_BREL
:
7878 case elfcpp::R_ARM_GOT_PREL
:
7880 // The symbol requires a GOT entry.
7881 Arm_output_data_got
<big_endian
>* got
=
7882 target
->got_section(symtab
, layout
);
7883 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7884 if (got
->add_local(object
, r_sym
, GOT_TYPE_STANDARD
))
7886 // If we are generating a shared object, we need to add a
7887 // dynamic RELATIVE relocation for this symbol's GOT entry.
7888 if (parameters
->options().output_is_position_independent())
7890 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7891 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7892 rel_dyn
->add_local_relative(
7893 object
, r_sym
, elfcpp::R_ARM_RELATIVE
, got
,
7894 object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
));
7900 case elfcpp::R_ARM_TARGET1
:
7901 case elfcpp::R_ARM_TARGET2
:
7902 // This should have been mapped to another type already.
7904 case elfcpp::R_ARM_COPY
:
7905 case elfcpp::R_ARM_GLOB_DAT
:
7906 case elfcpp::R_ARM_JUMP_SLOT
:
7907 case elfcpp::R_ARM_RELATIVE
:
7908 // These are relocations which should only be seen by the
7909 // dynamic linker, and should never be seen here.
7910 gold_error(_("%s: unexpected reloc %u in object file"),
7911 object
->name().c_str(), r_type
);
7915 // These are initial TLS relocs, which are expected when
7917 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7918 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7919 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7920 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7921 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
7923 bool output_is_shared
= parameters
->options().shared();
7924 const tls::Tls_optimization optimized_type
7925 = Target_arm
<big_endian
>::optimize_tls_reloc(!output_is_shared
,
7929 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7930 if (optimized_type
== tls::TLSOPT_NONE
)
7932 // Create a pair of GOT entries for the module index and
7933 // dtv-relative offset.
7934 Arm_output_data_got
<big_endian
>* got
7935 = target
->got_section(symtab
, layout
);
7936 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7937 unsigned int shndx
= lsym
.get_st_shndx();
7939 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
, &is_ordinary
);
7942 object
->error(_("local symbol %u has bad shndx %u"),
7947 if (!parameters
->doing_static_link())
7948 got
->add_local_pair_with_rel(object
, r_sym
, shndx
,
7950 target
->rel_dyn_section(layout
),
7951 elfcpp::R_ARM_TLS_DTPMOD32
, 0);
7953 got
->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR
,
7957 // FIXME: TLS optimization not supported yet.
7961 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7962 if (optimized_type
== tls::TLSOPT_NONE
)
7964 // Create a GOT entry for the module index.
7965 target
->got_mod_index_entry(symtab
, layout
, object
);
7968 // FIXME: TLS optimization not supported yet.
7972 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7975 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7976 layout
->set_has_static_tls();
7977 if (optimized_type
== tls::TLSOPT_NONE
)
7979 // Create a GOT entry for the tp-relative offset.
7980 Arm_output_data_got
<big_endian
>* got
7981 = target
->got_section(symtab
, layout
);
7982 unsigned int r_sym
=
7983 elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7984 if (!parameters
->doing_static_link())
7985 got
->add_local_with_rel(object
, r_sym
, GOT_TYPE_TLS_OFFSET
,
7986 target
->rel_dyn_section(layout
),
7987 elfcpp::R_ARM_TLS_TPOFF32
);
7988 else if (!object
->local_has_got_offset(r_sym
,
7989 GOT_TYPE_TLS_OFFSET
))
7991 got
->add_local(object
, r_sym
, GOT_TYPE_TLS_OFFSET
);
7992 unsigned int got_offset
=
7993 object
->local_got_offset(r_sym
, GOT_TYPE_TLS_OFFSET
);
7994 got
->add_static_reloc(got_offset
,
7995 elfcpp::R_ARM_TLS_TPOFF32
, object
,
8000 // FIXME: TLS optimization not supported yet.
8004 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8005 layout
->set_has_static_tls();
8006 if (output_is_shared
)
8008 // We need to create a dynamic relocation.
8009 gold_assert(lsym
.get_st_type() != elfcpp::STT_SECTION
);
8010 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8011 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8012 rel_dyn
->add_local(object
, r_sym
, elfcpp::R_ARM_TLS_TPOFF32
,
8013 output_section
, data_shndx
,
8014 reloc
.get_r_offset());
8024 case elfcpp::R_ARM_PC24
:
8025 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
8026 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
8027 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
8029 unsupported_reloc_local(object
, r_type
);
8034 // Report an unsupported relocation against a global symbol.
8036 template<bool big_endian
>
8038 Target_arm
<big_endian
>::Scan::unsupported_reloc_global(
8039 Sized_relobj_file
<32, big_endian
>* object
,
8040 unsigned int r_type
,
8043 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8044 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
8047 template<bool big_endian
>
8049 Target_arm
<big_endian
>::Scan::possible_function_pointer_reloc(
8050 unsigned int r_type
)
8054 case elfcpp::R_ARM_PC24
:
8055 case elfcpp::R_ARM_THM_CALL
:
8056 case elfcpp::R_ARM_PLT32
:
8057 case elfcpp::R_ARM_CALL
:
8058 case elfcpp::R_ARM_JUMP24
:
8059 case elfcpp::R_ARM_THM_JUMP24
:
8060 case elfcpp::R_ARM_SBREL31
:
8061 case elfcpp::R_ARM_PREL31
:
8062 case elfcpp::R_ARM_THM_JUMP19
:
8063 case elfcpp::R_ARM_THM_JUMP6
:
8064 case elfcpp::R_ARM_THM_JUMP11
:
8065 case elfcpp::R_ARM_THM_JUMP8
:
8066 // All the relocations above are branches except SBREL31 and PREL31.
8070 // Be conservative and assume this is a function pointer.
8075 template<bool big_endian
>
8077 Target_arm
<big_endian
>::Scan::local_reloc_may_be_function_pointer(
8080 Target_arm
<big_endian
>* target
,
8081 Sized_relobj_file
<32, big_endian
>*,
8084 const elfcpp::Rel
<32, big_endian
>&,
8085 unsigned int r_type
,
8086 const elfcpp::Sym
<32, big_endian
>&)
8088 r_type
= target
->get_real_reloc_type(r_type
);
8089 return possible_function_pointer_reloc(r_type
);
8092 template<bool big_endian
>
8094 Target_arm
<big_endian
>::Scan::global_reloc_may_be_function_pointer(
8097 Target_arm
<big_endian
>* target
,
8098 Sized_relobj_file
<32, big_endian
>*,
8101 const elfcpp::Rel
<32, big_endian
>&,
8102 unsigned int r_type
,
8105 // GOT is not a function.
8106 if (strcmp(gsym
->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8109 r_type
= target
->get_real_reloc_type(r_type
);
8110 return possible_function_pointer_reloc(r_type
);
8113 // Scan a relocation for a global symbol.
8115 template<bool big_endian
>
8117 Target_arm
<big_endian
>::Scan::global(Symbol_table
* symtab
,
8120 Sized_relobj_file
<32, big_endian
>* object
,
8121 unsigned int data_shndx
,
8122 Output_section
* output_section
,
8123 const elfcpp::Rel
<32, big_endian
>& reloc
,
8124 unsigned int r_type
,
8127 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8128 // section. We check here to avoid creating a dynamic reloc against
8129 // _GLOBAL_OFFSET_TABLE_.
8130 if (!target
->has_got_section()
8131 && strcmp(gsym
->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8132 target
->got_section(symtab
, layout
);
8134 r_type
= get_real_reloc_type(r_type
);
8137 case elfcpp::R_ARM_NONE
:
8138 case elfcpp::R_ARM_V4BX
:
8139 case elfcpp::R_ARM_GNU_VTENTRY
:
8140 case elfcpp::R_ARM_GNU_VTINHERIT
:
8143 case elfcpp::R_ARM_ABS32
:
8144 case elfcpp::R_ARM_ABS16
:
8145 case elfcpp::R_ARM_ABS12
:
8146 case elfcpp::R_ARM_THM_ABS5
:
8147 case elfcpp::R_ARM_ABS8
:
8148 case elfcpp::R_ARM_BASE_ABS
:
8149 case elfcpp::R_ARM_MOVW_ABS_NC
:
8150 case elfcpp::R_ARM_MOVT_ABS
:
8151 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
8152 case elfcpp::R_ARM_THM_MOVT_ABS
:
8153 case elfcpp::R_ARM_ABS32_NOI
:
8154 // Absolute addressing relocations.
8156 // Make a PLT entry if necessary.
8157 if (this->symbol_needs_plt_entry(gsym
))
8159 target
->make_plt_entry(symtab
, layout
, gsym
);
8160 // Since this is not a PC-relative relocation, we may be
8161 // taking the address of a function. In that case we need to
8162 // set the entry in the dynamic symbol table to the address of
8164 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
8165 gsym
->set_needs_dynsym_value();
8167 // Make a dynamic relocation if necessary.
8168 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
8170 if (gsym
->may_need_copy_reloc())
8172 target
->copy_reloc(symtab
, layout
, object
,
8173 data_shndx
, output_section
, gsym
, reloc
);
8175 else if ((r_type
== elfcpp::R_ARM_ABS32
8176 || r_type
== elfcpp::R_ARM_ABS32_NOI
)
8177 && gsym
->can_use_relative_reloc(false))
8179 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8180 rel_dyn
->add_global_relative(gsym
, elfcpp::R_ARM_RELATIVE
,
8181 output_section
, object
,
8182 data_shndx
, reloc
.get_r_offset());
8186 check_non_pic(object
, r_type
);
8187 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8188 rel_dyn
->add_global(gsym
, r_type
, output_section
, object
,
8189 data_shndx
, reloc
.get_r_offset());
8195 case elfcpp::R_ARM_GOTOFF32
:
8196 case elfcpp::R_ARM_GOTOFF12
:
8197 // We need a GOT section.
8198 target
->got_section(symtab
, layout
);
8201 case elfcpp::R_ARM_REL32
:
8202 case elfcpp::R_ARM_LDR_PC_G0
:
8203 case elfcpp::R_ARM_SBREL32
:
8204 case elfcpp::R_ARM_THM_PC8
:
8205 case elfcpp::R_ARM_BASE_PREL
:
8206 case elfcpp::R_ARM_MOVW_PREL_NC
:
8207 case elfcpp::R_ARM_MOVT_PREL
:
8208 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
8209 case elfcpp::R_ARM_THM_MOVT_PREL
:
8210 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
8211 case elfcpp::R_ARM_THM_PC12
:
8212 case elfcpp::R_ARM_REL32_NOI
:
8213 case elfcpp::R_ARM_ALU_PC_G0_NC
:
8214 case elfcpp::R_ARM_ALU_PC_G0
:
8215 case elfcpp::R_ARM_ALU_PC_G1_NC
:
8216 case elfcpp::R_ARM_ALU_PC_G1
:
8217 case elfcpp::R_ARM_ALU_PC_G2
:
8218 case elfcpp::R_ARM_LDR_PC_G1
:
8219 case elfcpp::R_ARM_LDR_PC_G2
:
8220 case elfcpp::R_ARM_LDRS_PC_G0
:
8221 case elfcpp::R_ARM_LDRS_PC_G1
:
8222 case elfcpp::R_ARM_LDRS_PC_G2
:
8223 case elfcpp::R_ARM_LDC_PC_G0
:
8224 case elfcpp::R_ARM_LDC_PC_G1
:
8225 case elfcpp::R_ARM_LDC_PC_G2
:
8226 case elfcpp::R_ARM_ALU_SB_G0_NC
:
8227 case elfcpp::R_ARM_ALU_SB_G0
:
8228 case elfcpp::R_ARM_ALU_SB_G1_NC
:
8229 case elfcpp::R_ARM_ALU_SB_G1
:
8230 case elfcpp::R_ARM_ALU_SB_G2
:
8231 case elfcpp::R_ARM_LDR_SB_G0
:
8232 case elfcpp::R_ARM_LDR_SB_G1
:
8233 case elfcpp::R_ARM_LDR_SB_G2
:
8234 case elfcpp::R_ARM_LDRS_SB_G0
:
8235 case elfcpp::R_ARM_LDRS_SB_G1
:
8236 case elfcpp::R_ARM_LDRS_SB_G2
:
8237 case elfcpp::R_ARM_LDC_SB_G0
:
8238 case elfcpp::R_ARM_LDC_SB_G1
:
8239 case elfcpp::R_ARM_LDC_SB_G2
:
8240 case elfcpp::R_ARM_MOVW_BREL_NC
:
8241 case elfcpp::R_ARM_MOVT_BREL
:
8242 case elfcpp::R_ARM_MOVW_BREL
:
8243 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
8244 case elfcpp::R_ARM_THM_MOVT_BREL
:
8245 case elfcpp::R_ARM_THM_MOVW_BREL
:
8246 // Relative addressing relocations.
8248 // Make a dynamic relocation if necessary.
8249 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
8251 if (target
->may_need_copy_reloc(gsym
))
8253 target
->copy_reloc(symtab
, layout
, object
,
8254 data_shndx
, output_section
, gsym
, reloc
);
8258 check_non_pic(object
, r_type
);
8259 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8260 rel_dyn
->add_global(gsym
, r_type
, output_section
, object
,
8261 data_shndx
, reloc
.get_r_offset());
8267 case elfcpp::R_ARM_THM_CALL
:
8268 case elfcpp::R_ARM_PLT32
:
8269 case elfcpp::R_ARM_CALL
:
8270 case elfcpp::R_ARM_JUMP24
:
8271 case elfcpp::R_ARM_THM_JUMP24
:
8272 case elfcpp::R_ARM_SBREL31
:
8273 case elfcpp::R_ARM_PREL31
:
8274 case elfcpp::R_ARM_THM_JUMP19
:
8275 case elfcpp::R_ARM_THM_JUMP6
:
8276 case elfcpp::R_ARM_THM_JUMP11
:
8277 case elfcpp::R_ARM_THM_JUMP8
:
8278 // All the relocation above are branches except for the PREL31 ones.
8279 // A PREL31 relocation can point to a personality function in a shared
8280 // library. In that case we want to use a PLT because we want to
8281 // call the personality routine and the dynamic linkers we care about
8282 // do not support dynamic PREL31 relocations. An REL31 relocation may
8283 // point to a function whose unwinding behaviour is being described but
8284 // we will not mistakenly generate a PLT for that because we should use
8285 // a local section symbol.
8287 // If the symbol is fully resolved, this is just a relative
8288 // local reloc. Otherwise we need a PLT entry.
8289 if (gsym
->final_value_is_known())
8291 // If building a shared library, we can also skip the PLT entry
8292 // if the symbol is defined in the output file and is protected
8294 if (gsym
->is_defined()
8295 && !gsym
->is_from_dynobj()
8296 && !gsym
->is_preemptible())
8298 target
->make_plt_entry(symtab
, layout
, gsym
);
8301 case elfcpp::R_ARM_GOT_BREL
:
8302 case elfcpp::R_ARM_GOT_ABS
:
8303 case elfcpp::R_ARM_GOT_PREL
:
8305 // The symbol requires a GOT entry.
8306 Arm_output_data_got
<big_endian
>* got
=
8307 target
->got_section(symtab
, layout
);
8308 if (gsym
->final_value_is_known())
8309 got
->add_global(gsym
, GOT_TYPE_STANDARD
);
8312 // If this symbol is not fully resolved, we need to add a
8313 // GOT entry with a dynamic relocation.
8314 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8315 if (gsym
->is_from_dynobj()
8316 || gsym
->is_undefined()
8317 || gsym
->is_preemptible())
8318 got
->add_global_with_rel(gsym
, GOT_TYPE_STANDARD
,
8319 rel_dyn
, elfcpp::R_ARM_GLOB_DAT
);
8322 if (got
->add_global(gsym
, GOT_TYPE_STANDARD
))
8323 rel_dyn
->add_global_relative(
8324 gsym
, elfcpp::R_ARM_RELATIVE
, got
,
8325 gsym
->got_offset(GOT_TYPE_STANDARD
));
8331 case elfcpp::R_ARM_TARGET1
:
8332 case elfcpp::R_ARM_TARGET2
:
8333 // These should have been mapped to other types already.
8335 case elfcpp::R_ARM_COPY
:
8336 case elfcpp::R_ARM_GLOB_DAT
:
8337 case elfcpp::R_ARM_JUMP_SLOT
:
8338 case elfcpp::R_ARM_RELATIVE
:
8339 // These are relocations which should only be seen by the
8340 // dynamic linker, and should never be seen here.
8341 gold_error(_("%s: unexpected reloc %u in object file"),
8342 object
->name().c_str(), r_type
);
8345 // These are initial tls relocs, which are expected when
8347 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8348 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8349 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8350 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8351 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8353 const bool is_final
= gsym
->final_value_is_known();
8354 const tls::Tls_optimization optimized_type
8355 = Target_arm
<big_endian
>::optimize_tls_reloc(is_final
, r_type
);
8358 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8359 if (optimized_type
== tls::TLSOPT_NONE
)
8361 // Create a pair of GOT entries for the module index and
8362 // dtv-relative offset.
8363 Arm_output_data_got
<big_endian
>* got
8364 = target
->got_section(symtab
, layout
);
8365 if (!parameters
->doing_static_link())
8366 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_PAIR
,
8367 target
->rel_dyn_section(layout
),
8368 elfcpp::R_ARM_TLS_DTPMOD32
,
8369 elfcpp::R_ARM_TLS_DTPOFF32
);
8371 got
->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR
, gsym
);
8374 // FIXME: TLS optimization not supported yet.
8378 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8379 if (optimized_type
== tls::TLSOPT_NONE
)
8381 // Create a GOT entry for the module index.
8382 target
->got_mod_index_entry(symtab
, layout
, object
);
8385 // FIXME: TLS optimization not supported yet.
8389 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8392 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8393 layout
->set_has_static_tls();
8394 if (optimized_type
== tls::TLSOPT_NONE
)
8396 // Create a GOT entry for the tp-relative offset.
8397 Arm_output_data_got
<big_endian
>* got
8398 = target
->got_section(symtab
, layout
);
8399 if (!parameters
->doing_static_link())
8400 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
8401 target
->rel_dyn_section(layout
),
8402 elfcpp::R_ARM_TLS_TPOFF32
);
8403 else if (!gsym
->has_got_offset(GOT_TYPE_TLS_OFFSET
))
8405 got
->add_global(gsym
, GOT_TYPE_TLS_OFFSET
);
8406 unsigned int got_offset
=
8407 gsym
->got_offset(GOT_TYPE_TLS_OFFSET
);
8408 got
->add_static_reloc(got_offset
,
8409 elfcpp::R_ARM_TLS_TPOFF32
, gsym
);
8413 // FIXME: TLS optimization not supported yet.
8417 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8418 layout
->set_has_static_tls();
8419 if (parameters
->options().shared())
8421 // We need to create a dynamic relocation.
8422 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8423 rel_dyn
->add_global(gsym
, elfcpp::R_ARM_TLS_TPOFF32
,
8424 output_section
, object
,
8425 data_shndx
, reloc
.get_r_offset());
8435 case elfcpp::R_ARM_PC24
:
8436 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
8437 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
8438 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
8440 unsupported_reloc_global(object
, r_type
, gsym
);
8445 // Process relocations for gc.
8447 template<bool big_endian
>
8449 Target_arm
<big_endian
>::gc_process_relocs(
8450 Symbol_table
* symtab
,
8452 Sized_relobj_file
<32, big_endian
>* object
,
8453 unsigned int data_shndx
,
8455 const unsigned char* prelocs
,
8457 Output_section
* output_section
,
8458 bool needs_special_offset_handling
,
8459 size_t local_symbol_count
,
8460 const unsigned char* plocal_symbols
)
8462 typedef Target_arm
<big_endian
> Arm
;
8463 typedef typename Target_arm
<big_endian
>::Scan Scan
;
8465 gold::gc_process_relocs
<32, big_endian
, Arm
, elfcpp::SHT_REL
, Scan
,
8466 typename
Target_arm::Relocatable_size_for_reloc
>(
8475 needs_special_offset_handling
,
8480 // Scan relocations for a section.
8482 template<bool big_endian
>
8484 Target_arm
<big_endian
>::scan_relocs(Symbol_table
* symtab
,
8486 Sized_relobj_file
<32, big_endian
>* object
,
8487 unsigned int data_shndx
,
8488 unsigned int sh_type
,
8489 const unsigned char* prelocs
,
8491 Output_section
* output_section
,
8492 bool needs_special_offset_handling
,
8493 size_t local_symbol_count
,
8494 const unsigned char* plocal_symbols
)
8496 typedef typename Target_arm
<big_endian
>::Scan Scan
;
8497 if (sh_type
== elfcpp::SHT_RELA
)
8499 gold_error(_("%s: unsupported RELA reloc section"),
8500 object
->name().c_str());
8504 gold::scan_relocs
<32, big_endian
, Target_arm
, elfcpp::SHT_REL
, Scan
>(
8513 needs_special_offset_handling
,
8518 // Finalize the sections.
8520 template<bool big_endian
>
8522 Target_arm
<big_endian
>::do_finalize_sections(
8524 const Input_objects
* input_objects
,
8525 Symbol_table
* symtab
)
8527 bool merged_any_attributes
= false;
8528 // Merge processor-specific flags.
8529 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
8530 p
!= input_objects
->relobj_end();
8533 Arm_relobj
<big_endian
>* arm_relobj
=
8534 Arm_relobj
<big_endian
>::as_arm_relobj(*p
);
8535 if (arm_relobj
->merge_flags_and_attributes())
8537 this->merge_processor_specific_flags(
8539 arm_relobj
->processor_specific_flags());
8540 this->merge_object_attributes(arm_relobj
->name().c_str(),
8541 arm_relobj
->attributes_section_data());
8542 merged_any_attributes
= true;
8546 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
8547 p
!= input_objects
->dynobj_end();
8550 Arm_dynobj
<big_endian
>* arm_dynobj
=
8551 Arm_dynobj
<big_endian
>::as_arm_dynobj(*p
);
8552 this->merge_processor_specific_flags(
8554 arm_dynobj
->processor_specific_flags());
8555 this->merge_object_attributes(arm_dynobj
->name().c_str(),
8556 arm_dynobj
->attributes_section_data());
8557 merged_any_attributes
= true;
8560 // Create an empty uninitialized attribute section if we still don't have it
8561 // at this moment. This happens if there is no attributes sections in all
8563 if (this->attributes_section_data_
== NULL
)
8564 this->attributes_section_data_
= new Attributes_section_data(NULL
, 0);
8566 const Object_attribute
* cpu_arch_attr
=
8567 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
8568 // Check if we need to use Cortex-A8 workaround.
8569 if (parameters
->options().user_set_fix_cortex_a8())
8570 this->fix_cortex_a8_
= parameters
->options().fix_cortex_a8();
8573 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8574 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8576 const Object_attribute
* cpu_arch_profile_attr
=
8577 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
);
8578 this->fix_cortex_a8_
=
8579 (cpu_arch_attr
->int_value() == elfcpp::TAG_CPU_ARCH_V7
8580 && (cpu_arch_profile_attr
->int_value() == 'A'
8581 || cpu_arch_profile_attr
->int_value() == 0));
8584 // Check if we can use V4BX interworking.
8585 // The V4BX interworking stub contains BX instruction,
8586 // which is not specified for some profiles.
8587 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8588 && !this->may_use_v4t_interworking())
8589 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8590 "the target profile does not support BX instruction"));
8592 // Fill in some more dynamic tags.
8593 const Reloc_section
* rel_plt
= (this->plt_
== NULL
8595 : this->plt_
->rel_plt());
8596 layout
->add_target_dynamic_tags(true, this->got_plt_
, rel_plt
,
8597 this->rel_dyn_
, true, false);
8599 // Emit any relocs we saved in an attempt to avoid generating COPY
8601 if (this->copy_relocs_
.any_saved_relocs())
8602 this->copy_relocs_
.emit(this->rel_dyn_section(layout
));
8604 // Handle the .ARM.exidx section.
8605 Output_section
* exidx_section
= layout
->find_output_section(".ARM.exidx");
8607 if (!parameters
->options().relocatable())
8609 if (exidx_section
!= NULL
8610 && exidx_section
->type() == elfcpp::SHT_ARM_EXIDX
)
8612 // Create __exidx_start and __exidx_end symbols.
8613 symtab
->define_in_output_data("__exidx_start", NULL
,
8614 Symbol_table::PREDEFINED
,
8615 exidx_section
, 0, 0, elfcpp::STT_OBJECT
,
8616 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
,
8618 symtab
->define_in_output_data("__exidx_end", NULL
,
8619 Symbol_table::PREDEFINED
,
8620 exidx_section
, 0, 0, elfcpp::STT_OBJECT
,
8621 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
,
8624 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8625 // the .ARM.exidx section.
8626 if (!layout
->script_options()->saw_phdrs_clause())
8628 gold_assert(layout
->find_output_segment(elfcpp::PT_ARM_EXIDX
, 0,
8631 Output_segment
* exidx_segment
=
8632 layout
->make_output_segment(elfcpp::PT_ARM_EXIDX
, elfcpp::PF_R
);
8633 exidx_segment
->add_output_section_to_nonload(exidx_section
,
8639 symtab
->define_as_constant("__exidx_start", NULL
,
8640 Symbol_table::PREDEFINED
,
8641 0, 0, elfcpp::STT_OBJECT
,
8642 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
, 0,
8644 symtab
->define_as_constant("__exidx_end", NULL
,
8645 Symbol_table::PREDEFINED
,
8646 0, 0, elfcpp::STT_OBJECT
,
8647 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
, 0,
8652 // Create an .ARM.attributes section if we have merged any attributes
8654 if (merged_any_attributes
)
8656 Output_attributes_section_data
* attributes_section
=
8657 new Output_attributes_section_data(*this->attributes_section_data_
);
8658 layout
->add_output_section_data(".ARM.attributes",
8659 elfcpp::SHT_ARM_ATTRIBUTES
, 0,
8660 attributes_section
, ORDER_INVALID
,
8664 // Fix up links in section EXIDX headers.
8665 for (Layout::Section_list::const_iterator p
= layout
->section_list().begin();
8666 p
!= layout
->section_list().end();
8668 if ((*p
)->type() == elfcpp::SHT_ARM_EXIDX
)
8670 Arm_output_section
<big_endian
>* os
=
8671 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
8672 os
->set_exidx_section_link();
8676 // Return whether a direct absolute static relocation needs to be applied.
8677 // In cases where Scan::local() or Scan::global() has created
8678 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8679 // of the relocation is carried in the data, and we must not
8680 // apply the static relocation.
8682 template<bool big_endian
>
8684 Target_arm
<big_endian
>::Relocate::should_apply_static_reloc(
8685 const Sized_symbol
<32>* gsym
,
8686 unsigned int r_type
,
8688 Output_section
* output_section
)
8690 // If the output section is not allocated, then we didn't call
8691 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8693 if ((output_section
->flags() & elfcpp::SHF_ALLOC
) == 0)
8696 int ref_flags
= Scan::get_reference_flags(r_type
);
8698 // For local symbols, we will have created a non-RELATIVE dynamic
8699 // relocation only if (a) the output is position independent,
8700 // (b) the relocation is absolute (not pc- or segment-relative), and
8701 // (c) the relocation is not 32 bits wide.
8703 return !(parameters
->options().output_is_position_independent()
8704 && (ref_flags
& Symbol::ABSOLUTE_REF
)
8707 // For global symbols, we use the same helper routines used in the
8708 // scan pass. If we did not create a dynamic relocation, or if we
8709 // created a RELATIVE dynamic relocation, we should apply the static
8711 bool has_dyn
= gsym
->needs_dynamic_reloc(ref_flags
);
8712 bool is_rel
= (ref_flags
& Symbol::ABSOLUTE_REF
)
8713 && gsym
->can_use_relative_reloc(ref_flags
8714 & Symbol::FUNCTION_CALL
);
8715 return !has_dyn
|| is_rel
;
8718 // Perform a relocation.
8720 template<bool big_endian
>
8722 Target_arm
<big_endian
>::Relocate::relocate(
8723 const Relocate_info
<32, big_endian
>* relinfo
,
8725 Output_section
* output_section
,
8727 const elfcpp::Rel
<32, big_endian
>& rel
,
8728 unsigned int r_type
,
8729 const Sized_symbol
<32>* gsym
,
8730 const Symbol_value
<32>* psymval
,
8731 unsigned char* view
,
8732 Arm_address address
,
8733 section_size_type view_size
)
8735 typedef Arm_relocate_functions
<big_endian
> Arm_relocate_functions
;
8737 r_type
= get_real_reloc_type(r_type
);
8738 const Arm_reloc_property
* reloc_property
=
8739 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
8740 if (reloc_property
== NULL
)
8742 std::string reloc_name
=
8743 arm_reloc_property_table
->reloc_name_in_error_message(r_type
);
8744 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
8745 _("cannot relocate %s in object file"),
8746 reloc_name
.c_str());
8750 const Arm_relobj
<big_endian
>* object
=
8751 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
8753 // If the final branch target of a relocation is THUMB instruction, this
8754 // is 1. Otherwise it is 0.
8755 Arm_address thumb_bit
= 0;
8756 Symbol_value
<32> symval
;
8757 bool is_weakly_undefined_without_plt
= false;
8758 bool have_got_offset
= false;
8759 unsigned int got_offset
= 0;
8761 // If the relocation uses the GOT entry of a symbol instead of the symbol
8762 // itself, we don't care about whether the symbol is defined or what kind
8764 if (reloc_property
->uses_got_entry())
8766 // Get the GOT offset.
8767 // The GOT pointer points to the end of the GOT section.
8768 // We need to subtract the size of the GOT section to get
8769 // the actual offset to use in the relocation.
8770 // TODO: We should move GOT offset computing code in TLS relocations
8774 case elfcpp::R_ARM_GOT_BREL
:
8775 case elfcpp::R_ARM_GOT_PREL
:
8778 gold_assert(gsym
->has_got_offset(GOT_TYPE_STANDARD
));
8779 got_offset
= (gsym
->got_offset(GOT_TYPE_STANDARD
)
8780 - target
->got_size());
8784 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
8785 gold_assert(object
->local_has_got_offset(r_sym
,
8786 GOT_TYPE_STANDARD
));
8787 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
)
8788 - target
->got_size());
8790 have_got_offset
= true;
8797 else if (relnum
!= Target_arm
<big_endian
>::fake_relnum_for_stubs
)
8801 // This is a global symbol. Determine if we use PLT and if the
8802 // final target is THUMB.
8803 if (gsym
->use_plt_offset(Scan::get_reference_flags(r_type
)))
8805 // This uses a PLT, change the symbol value.
8806 symval
.set_output_value(target
->plt_section()->address()
8807 + gsym
->plt_offset());
8810 else if (gsym
->is_weak_undefined())
8812 // This is a weakly undefined symbol and we do not use PLT
8813 // for this relocation. A branch targeting this symbol will
8814 // be converted into an NOP.
8815 is_weakly_undefined_without_plt
= true;
8817 else if (gsym
->is_undefined() && reloc_property
->uses_symbol())
8819 // This relocation uses the symbol value but the symbol is
8820 // undefined. Exit early and have the caller reporting an
8826 // Set thumb bit if symbol:
8827 // -Has type STT_ARM_TFUNC or
8828 // -Has type STT_FUNC, is defined and with LSB in value set.
8830 (((gsym
->type() == elfcpp::STT_ARM_TFUNC
)
8831 || (gsym
->type() == elfcpp::STT_FUNC
8832 && !gsym
->is_undefined()
8833 && ((psymval
->value(object
, 0) & 1) != 0)))
8840 // This is a local symbol. Determine if the final target is THUMB.
8841 // We saved this information when all the local symbols were read.
8842 elfcpp::Elf_types
<32>::Elf_WXword r_info
= rel
.get_r_info();
8843 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
8844 thumb_bit
= object
->local_symbol_is_thumb_function(r_sym
) ? 1 : 0;
8849 // This is a fake relocation synthesized for a stub. It does not have
8850 // a real symbol. We just look at the LSB of the symbol value to
8851 // determine if the target is THUMB or not.
8852 thumb_bit
= ((psymval
->value(object
, 0) & 1) != 0);
8855 // Strip LSB if this points to a THUMB target.
8857 && reloc_property
->uses_thumb_bit()
8858 && ((psymval
->value(object
, 0) & 1) != 0))
8860 Arm_address stripped_value
=
8861 psymval
->value(object
, 0) & ~static_cast<Arm_address
>(1);
8862 symval
.set_output_value(stripped_value
);
8866 // To look up relocation stubs, we need to pass the symbol table index of
8868 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
8870 // Get the addressing origin of the output segment defining the
8871 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8872 Arm_address sym_origin
= 0;
8873 if (reloc_property
->uses_symbol_base())
8875 if (r_type
== elfcpp::R_ARM_BASE_ABS
&& gsym
== NULL
)
8876 // R_ARM_BASE_ABS with the NULL symbol will give the
8877 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8878 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8879 sym_origin
= target
->got_plt_section()->address();
8880 else if (gsym
== NULL
)
8882 else if (gsym
->source() == Symbol::IN_OUTPUT_SEGMENT
)
8883 sym_origin
= gsym
->output_segment()->vaddr();
8884 else if (gsym
->source() == Symbol::IN_OUTPUT_DATA
)
8885 sym_origin
= gsym
->output_data()->address();
8887 // TODO: Assumes the segment base to be zero for the global symbols
8888 // till the proper support for the segment-base-relative addressing
8889 // will be implemented. This is consistent with GNU ld.
8892 // For relative addressing relocation, find out the relative address base.
8893 Arm_address relative_address_base
= 0;
8894 switch(reloc_property
->relative_address_base())
8896 case Arm_reloc_property::RAB_NONE
:
8897 // Relocations with relative address bases RAB_TLS and RAB_tp are
8898 // handled by relocate_tls. So we do not need to do anything here.
8899 case Arm_reloc_property::RAB_TLS
:
8900 case Arm_reloc_property::RAB_tp
:
8902 case Arm_reloc_property::RAB_B_S
:
8903 relative_address_base
= sym_origin
;
8905 case Arm_reloc_property::RAB_GOT_ORG
:
8906 relative_address_base
= target
->got_plt_section()->address();
8908 case Arm_reloc_property::RAB_P
:
8909 relative_address_base
= address
;
8911 case Arm_reloc_property::RAB_Pa
:
8912 relative_address_base
= address
& 0xfffffffcU
;
8918 typename
Arm_relocate_functions::Status reloc_status
=
8919 Arm_relocate_functions::STATUS_OKAY
;
8920 bool check_overflow
= reloc_property
->checks_overflow();
8923 case elfcpp::R_ARM_NONE
:
8926 case elfcpp::R_ARM_ABS8
:
8927 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8928 reloc_status
= Arm_relocate_functions::abs8(view
, object
, psymval
);
8931 case elfcpp::R_ARM_ABS12
:
8932 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8933 reloc_status
= Arm_relocate_functions::abs12(view
, object
, psymval
);
8936 case elfcpp::R_ARM_ABS16
:
8937 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8938 reloc_status
= Arm_relocate_functions::abs16(view
, object
, psymval
);
8941 case elfcpp::R_ARM_ABS32
:
8942 if (should_apply_static_reloc(gsym
, r_type
, true, output_section
))
8943 reloc_status
= Arm_relocate_functions::abs32(view
, object
, psymval
,
8947 case elfcpp::R_ARM_ABS32_NOI
:
8948 if (should_apply_static_reloc(gsym
, r_type
, true, output_section
))
8949 // No thumb bit for this relocation: (S + A)
8950 reloc_status
= Arm_relocate_functions::abs32(view
, object
, psymval
,
8954 case elfcpp::R_ARM_MOVW_ABS_NC
:
8955 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8956 reloc_status
= Arm_relocate_functions::movw(view
, object
, psymval
,
8961 case elfcpp::R_ARM_MOVT_ABS
:
8962 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8963 reloc_status
= Arm_relocate_functions::movt(view
, object
, psymval
, 0);
8966 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
8967 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8968 reloc_status
= Arm_relocate_functions::thm_movw(view
, object
, psymval
,
8969 0, thumb_bit
, false);
8972 case elfcpp::R_ARM_THM_MOVT_ABS
:
8973 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
8974 reloc_status
= Arm_relocate_functions::thm_movt(view
, object
,
8978 case elfcpp::R_ARM_MOVW_PREL_NC
:
8979 case elfcpp::R_ARM_MOVW_BREL_NC
:
8980 case elfcpp::R_ARM_MOVW_BREL
:
8982 Arm_relocate_functions::movw(view
, object
, psymval
,
8983 relative_address_base
, thumb_bit
,
8987 case elfcpp::R_ARM_MOVT_PREL
:
8988 case elfcpp::R_ARM_MOVT_BREL
:
8990 Arm_relocate_functions::movt(view
, object
, psymval
,
8991 relative_address_base
);
8994 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
8995 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
8996 case elfcpp::R_ARM_THM_MOVW_BREL
:
8998 Arm_relocate_functions::thm_movw(view
, object
, psymval
,
8999 relative_address_base
,
9000 thumb_bit
, check_overflow
);
9003 case elfcpp::R_ARM_THM_MOVT_PREL
:
9004 case elfcpp::R_ARM_THM_MOVT_BREL
:
9006 Arm_relocate_functions::thm_movt(view
, object
, psymval
,
9007 relative_address_base
);
9010 case elfcpp::R_ARM_REL32
:
9011 reloc_status
= Arm_relocate_functions::rel32(view
, object
, psymval
,
9012 address
, thumb_bit
);
9015 case elfcpp::R_ARM_THM_ABS5
:
9016 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9017 reloc_status
= Arm_relocate_functions::thm_abs5(view
, object
, psymval
);
9020 // Thumb long branches.
9021 case elfcpp::R_ARM_THM_CALL
:
9022 case elfcpp::R_ARM_THM_XPC22
:
9023 case elfcpp::R_ARM_THM_JUMP24
:
9025 Arm_relocate_functions::thumb_branch_common(
9026 r_type
, relinfo
, view
, gsym
, object
, r_sym
, psymval
, address
,
9027 thumb_bit
, is_weakly_undefined_without_plt
);
9030 case elfcpp::R_ARM_GOTOFF32
:
9032 Arm_address got_origin
;
9033 got_origin
= target
->got_plt_section()->address();
9034 reloc_status
= Arm_relocate_functions::rel32(view
, object
, psymval
,
9035 got_origin
, thumb_bit
);
9039 case elfcpp::R_ARM_BASE_PREL
:
9040 gold_assert(gsym
!= NULL
);
9042 Arm_relocate_functions::base_prel(view
, sym_origin
, address
);
9045 case elfcpp::R_ARM_BASE_ABS
:
9046 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9047 reloc_status
= Arm_relocate_functions::base_abs(view
, sym_origin
);
9050 case elfcpp::R_ARM_GOT_BREL
:
9051 gold_assert(have_got_offset
);
9052 reloc_status
= Arm_relocate_functions::got_brel(view
, got_offset
);
9055 case elfcpp::R_ARM_GOT_PREL
:
9056 gold_assert(have_got_offset
);
9057 // Get the address origin for GOT PLT, which is allocated right
9058 // after the GOT section, to calculate an absolute address of
9059 // the symbol GOT entry (got_origin + got_offset).
9060 Arm_address got_origin
;
9061 got_origin
= target
->got_plt_section()->address();
9062 reloc_status
= Arm_relocate_functions::got_prel(view
,
9063 got_origin
+ got_offset
,
9067 case elfcpp::R_ARM_PLT32
:
9068 case elfcpp::R_ARM_CALL
:
9069 case elfcpp::R_ARM_JUMP24
:
9070 case elfcpp::R_ARM_XPC25
:
9071 gold_assert(gsym
== NULL
9072 || gsym
->has_plt_offset()
9073 || gsym
->final_value_is_known()
9074 || (gsym
->is_defined()
9075 && !gsym
->is_from_dynobj()
9076 && !gsym
->is_preemptible()));
9078 Arm_relocate_functions::arm_branch_common(
9079 r_type
, relinfo
, view
, gsym
, object
, r_sym
, psymval
, address
,
9080 thumb_bit
, is_weakly_undefined_without_plt
);
9083 case elfcpp::R_ARM_THM_JUMP19
:
9085 Arm_relocate_functions::thm_jump19(view
, object
, psymval
, address
,
9089 case elfcpp::R_ARM_THM_JUMP6
:
9091 Arm_relocate_functions::thm_jump6(view
, object
, psymval
, address
);
9094 case elfcpp::R_ARM_THM_JUMP8
:
9096 Arm_relocate_functions::thm_jump8(view
, object
, psymval
, address
);
9099 case elfcpp::R_ARM_THM_JUMP11
:
9101 Arm_relocate_functions::thm_jump11(view
, object
, psymval
, address
);
9104 case elfcpp::R_ARM_PREL31
:
9105 reloc_status
= Arm_relocate_functions::prel31(view
, object
, psymval
,
9106 address
, thumb_bit
);
9109 case elfcpp::R_ARM_V4BX
:
9110 if (target
->fix_v4bx() > General_options::FIX_V4BX_NONE
)
9112 const bool is_v4bx_interworking
=
9113 (target
->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
);
9115 Arm_relocate_functions::v4bx(relinfo
, view
, object
, address
,
9116 is_v4bx_interworking
);
9120 case elfcpp::R_ARM_THM_PC8
:
9122 Arm_relocate_functions::thm_pc8(view
, object
, psymval
, address
);
9125 case elfcpp::R_ARM_THM_PC12
:
9127 Arm_relocate_functions::thm_pc12(view
, object
, psymval
, address
);
9130 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
9132 Arm_relocate_functions::thm_alu11(view
, object
, psymval
, address
,
9136 case elfcpp::R_ARM_ALU_PC_G0_NC
:
9137 case elfcpp::R_ARM_ALU_PC_G0
:
9138 case elfcpp::R_ARM_ALU_PC_G1_NC
:
9139 case elfcpp::R_ARM_ALU_PC_G1
:
9140 case elfcpp::R_ARM_ALU_PC_G2
:
9141 case elfcpp::R_ARM_ALU_SB_G0_NC
:
9142 case elfcpp::R_ARM_ALU_SB_G0
:
9143 case elfcpp::R_ARM_ALU_SB_G1_NC
:
9144 case elfcpp::R_ARM_ALU_SB_G1
:
9145 case elfcpp::R_ARM_ALU_SB_G2
:
9147 Arm_relocate_functions::arm_grp_alu(view
, object
, psymval
,
9148 reloc_property
->group_index(),
9149 relative_address_base
,
9150 thumb_bit
, check_overflow
);
9153 case elfcpp::R_ARM_LDR_PC_G0
:
9154 case elfcpp::R_ARM_LDR_PC_G1
:
9155 case elfcpp::R_ARM_LDR_PC_G2
:
9156 case elfcpp::R_ARM_LDR_SB_G0
:
9157 case elfcpp::R_ARM_LDR_SB_G1
:
9158 case elfcpp::R_ARM_LDR_SB_G2
:
9160 Arm_relocate_functions::arm_grp_ldr(view
, object
, psymval
,
9161 reloc_property
->group_index(),
9162 relative_address_base
);
9165 case elfcpp::R_ARM_LDRS_PC_G0
:
9166 case elfcpp::R_ARM_LDRS_PC_G1
:
9167 case elfcpp::R_ARM_LDRS_PC_G2
:
9168 case elfcpp::R_ARM_LDRS_SB_G0
:
9169 case elfcpp::R_ARM_LDRS_SB_G1
:
9170 case elfcpp::R_ARM_LDRS_SB_G2
:
9172 Arm_relocate_functions::arm_grp_ldrs(view
, object
, psymval
,
9173 reloc_property
->group_index(),
9174 relative_address_base
);
9177 case elfcpp::R_ARM_LDC_PC_G0
:
9178 case elfcpp::R_ARM_LDC_PC_G1
:
9179 case elfcpp::R_ARM_LDC_PC_G2
:
9180 case elfcpp::R_ARM_LDC_SB_G0
:
9181 case elfcpp::R_ARM_LDC_SB_G1
:
9182 case elfcpp::R_ARM_LDC_SB_G2
:
9184 Arm_relocate_functions::arm_grp_ldc(view
, object
, psymval
,
9185 reloc_property
->group_index(),
9186 relative_address_base
);
9189 // These are initial tls relocs, which are expected when
9191 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
9192 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
9193 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
9194 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
9195 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
9197 this->relocate_tls(relinfo
, target
, relnum
, rel
, r_type
, gsym
, psymval
,
9198 view
, address
, view_size
);
9201 // The known and unknown unsupported and/or deprecated relocations.
9202 case elfcpp::R_ARM_PC24
:
9203 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
9204 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
9205 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
9207 // Just silently leave the method. We should get an appropriate error
9208 // message in the scan methods.
9212 // Report any errors.
9213 switch (reloc_status
)
9215 case Arm_relocate_functions::STATUS_OKAY
:
9217 case Arm_relocate_functions::STATUS_OVERFLOW
:
9218 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
9219 _("relocation overflow in %s"),
9220 reloc_property
->name().c_str());
9222 case Arm_relocate_functions::STATUS_BAD_RELOC
:
9223 gold_error_at_location(
9227 _("unexpected opcode while processing relocation %s"),
9228 reloc_property
->name().c_str());
9237 // Perform a TLS relocation.
9239 template<bool big_endian
>
9240 inline typename Arm_relocate_functions
<big_endian
>::Status
9241 Target_arm
<big_endian
>::Relocate::relocate_tls(
9242 const Relocate_info
<32, big_endian
>* relinfo
,
9243 Target_arm
<big_endian
>* target
,
9245 const elfcpp::Rel
<32, big_endian
>& rel
,
9246 unsigned int r_type
,
9247 const Sized_symbol
<32>* gsym
,
9248 const Symbol_value
<32>* psymval
,
9249 unsigned char* view
,
9250 elfcpp::Elf_types
<32>::Elf_Addr address
,
9251 section_size_type
/*view_size*/ )
9253 typedef Arm_relocate_functions
<big_endian
> ArmRelocFuncs
;
9254 typedef Relocate_functions
<32, big_endian
> RelocFuncs
;
9255 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
9257 const Sized_relobj_file
<32, big_endian
>* object
= relinfo
->object
;
9259 elfcpp::Elf_types
<32>::Elf_Addr value
= psymval
->value(object
, 0);
9261 const bool is_final
= (gsym
== NULL
9262 ? !parameters
->options().shared()
9263 : gsym
->final_value_is_known());
9264 const tls::Tls_optimization optimized_type
9265 = Target_arm
<big_endian
>::optimize_tls_reloc(is_final
, r_type
);
9268 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
9270 unsigned int got_type
= GOT_TYPE_TLS_PAIR
;
9271 unsigned int got_offset
;
9274 gold_assert(gsym
->has_got_offset(got_type
));
9275 got_offset
= gsym
->got_offset(got_type
) - target
->got_size();
9279 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
9280 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
9281 got_offset
= (object
->local_got_offset(r_sym
, got_type
)
9282 - target
->got_size());
9284 if (optimized_type
== tls::TLSOPT_NONE
)
9286 Arm_address got_entry
=
9287 target
->got_plt_section()->address() + got_offset
;
9289 // Relocate the field with the PC relative offset of the pair of
9291 RelocFuncs::pcrel32_unaligned(view
, got_entry
, address
);
9292 return ArmRelocFuncs::STATUS_OKAY
;
9297 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
9298 if (optimized_type
== tls::TLSOPT_NONE
)
9300 // Relocate the field with the offset of the GOT entry for
9301 // the module index.
9302 unsigned int got_offset
;
9303 got_offset
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
)
9304 - target
->got_size());
9305 Arm_address got_entry
=
9306 target
->got_plt_section()->address() + got_offset
;
9308 // Relocate the field with the PC relative offset of the pair of
9310 RelocFuncs::pcrel32_unaligned(view
, got_entry
, address
);
9311 return ArmRelocFuncs::STATUS_OKAY
;
9315 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
9316 RelocFuncs::rel32_unaligned(view
, value
);
9317 return ArmRelocFuncs::STATUS_OKAY
;
9319 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
9320 if (optimized_type
== tls::TLSOPT_NONE
)
9322 // Relocate the field with the offset of the GOT entry for
9323 // the tp-relative offset of the symbol.
9324 unsigned int got_type
= GOT_TYPE_TLS_OFFSET
;
9325 unsigned int got_offset
;
9328 gold_assert(gsym
->has_got_offset(got_type
));
9329 got_offset
= gsym
->got_offset(got_type
);
9333 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
9334 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
9335 got_offset
= object
->local_got_offset(r_sym
, got_type
);
9338 // All GOT offsets are relative to the end of the GOT.
9339 got_offset
-= target
->got_size();
9341 Arm_address got_entry
=
9342 target
->got_plt_section()->address() + got_offset
;
9344 // Relocate the field with the PC relative offset of the GOT entry.
9345 RelocFuncs::pcrel32_unaligned(view
, got_entry
, address
);
9346 return ArmRelocFuncs::STATUS_OKAY
;
9350 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
9351 // If we're creating a shared library, a dynamic relocation will
9352 // have been created for this location, so do not apply it now.
9353 if (!parameters
->options().shared())
9355 gold_assert(tls_segment
!= NULL
);
9357 // $tp points to the TCB, which is followed by the TLS, so we
9358 // need to add TCB size to the offset.
9359 Arm_address aligned_tcb_size
=
9360 align_address(ARM_TCB_SIZE
, tls_segment
->maximum_alignment());
9361 RelocFuncs::rel32_unaligned(view
, value
+ aligned_tcb_size
);
9364 return ArmRelocFuncs::STATUS_OKAY
;
9370 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
9371 _("unsupported reloc %u"),
9373 return ArmRelocFuncs::STATUS_BAD_RELOC
;
9376 // Relocate section data.
9378 template<bool big_endian
>
9380 Target_arm
<big_endian
>::relocate_section(
9381 const Relocate_info
<32, big_endian
>* relinfo
,
9382 unsigned int sh_type
,
9383 const unsigned char* prelocs
,
9385 Output_section
* output_section
,
9386 bool needs_special_offset_handling
,
9387 unsigned char* view
,
9388 Arm_address address
,
9389 section_size_type view_size
,
9390 const Reloc_symbol_changes
* reloc_symbol_changes
)
9392 typedef typename Target_arm
<big_endian
>::Relocate Arm_relocate
;
9393 gold_assert(sh_type
== elfcpp::SHT_REL
);
9395 // See if we are relocating a relaxed input section. If so, the view
9396 // covers the whole output section and we need to adjust accordingly.
9397 if (needs_special_offset_handling
)
9399 const Output_relaxed_input_section
* poris
=
9400 output_section
->find_relaxed_input_section(relinfo
->object
,
9401 relinfo
->data_shndx
);
9404 Arm_address section_address
= poris
->address();
9405 section_size_type section_size
= poris
->data_size();
9407 gold_assert((section_address
>= address
)
9408 && ((section_address
+ section_size
)
9409 <= (address
+ view_size
)));
9411 off_t offset
= section_address
- address
;
9414 view_size
= section_size
;
9418 gold::relocate_section
<32, big_endian
, Target_arm
, elfcpp::SHT_REL
,
9425 needs_special_offset_handling
,
9429 reloc_symbol_changes
);
9432 // Return the size of a relocation while scanning during a relocatable
9435 template<bool big_endian
>
9437 Target_arm
<big_endian
>::Relocatable_size_for_reloc::get_size_for_reloc(
9438 unsigned int r_type
,
9441 r_type
= get_real_reloc_type(r_type
);
9442 const Arm_reloc_property
* arp
=
9443 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
9448 std::string reloc_name
=
9449 arm_reloc_property_table
->reloc_name_in_error_message(r_type
);
9450 gold_error(_("%s: unexpected %s in object file"),
9451 object
->name().c_str(), reloc_name
.c_str());
9456 // Scan the relocs during a relocatable link.
9458 template<bool big_endian
>
9460 Target_arm
<big_endian
>::scan_relocatable_relocs(
9461 Symbol_table
* symtab
,
9463 Sized_relobj_file
<32, big_endian
>* object
,
9464 unsigned int data_shndx
,
9465 unsigned int sh_type
,
9466 const unsigned char* prelocs
,
9468 Output_section
* output_section
,
9469 bool needs_special_offset_handling
,
9470 size_t local_symbol_count
,
9471 const unsigned char* plocal_symbols
,
9472 Relocatable_relocs
* rr
)
9474 gold_assert(sh_type
== elfcpp::SHT_REL
);
9476 typedef Arm_scan_relocatable_relocs
<big_endian
, elfcpp::SHT_REL
,
9477 Relocatable_size_for_reloc
> Scan_relocatable_relocs
;
9479 gold::scan_relocatable_relocs
<32, big_endian
, elfcpp::SHT_REL
,
9480 Scan_relocatable_relocs
>(
9488 needs_special_offset_handling
,
9494 // Relocate a section during a relocatable link.
9496 template<bool big_endian
>
9498 Target_arm
<big_endian
>::relocate_for_relocatable(
9499 const Relocate_info
<32, big_endian
>* relinfo
,
9500 unsigned int sh_type
,
9501 const unsigned char* prelocs
,
9503 Output_section
* output_section
,
9504 off_t offset_in_output_section
,
9505 const Relocatable_relocs
* rr
,
9506 unsigned char* view
,
9507 Arm_address view_address
,
9508 section_size_type view_size
,
9509 unsigned char* reloc_view
,
9510 section_size_type reloc_view_size
)
9512 gold_assert(sh_type
== elfcpp::SHT_REL
);
9514 gold::relocate_for_relocatable
<32, big_endian
, elfcpp::SHT_REL
>(
9519 offset_in_output_section
,
9528 // Perform target-specific processing in a relocatable link. This is
9529 // only used if we use the relocation strategy RELOC_SPECIAL.
9531 template<bool big_endian
>
9533 Target_arm
<big_endian
>::relocate_special_relocatable(
9534 const Relocate_info
<32, big_endian
>* relinfo
,
9535 unsigned int sh_type
,
9536 const unsigned char* preloc_in
,
9538 Output_section
* output_section
,
9539 off_t offset_in_output_section
,
9540 unsigned char* view
,
9541 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
9543 unsigned char* preloc_out
)
9545 // We can only handle REL type relocation sections.
9546 gold_assert(sh_type
== elfcpp::SHT_REL
);
9548 typedef typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc Reltype
;
9549 typedef typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc_write
9551 const Arm_address invalid_address
= static_cast<Arm_address
>(0) - 1;
9553 const Arm_relobj
<big_endian
>* object
=
9554 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
9555 const unsigned int local_count
= object
->local_symbol_count();
9557 Reltype
reloc(preloc_in
);
9558 Reltype_write
reloc_write(preloc_out
);
9560 elfcpp::Elf_types
<32>::Elf_WXword r_info
= reloc
.get_r_info();
9561 const unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
9562 const unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
9564 const Arm_reloc_property
* arp
=
9565 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
9566 gold_assert(arp
!= NULL
);
9568 // Get the new symbol index.
9569 // We only use RELOC_SPECIAL strategy in local relocations.
9570 gold_assert(r_sym
< local_count
);
9572 // We are adjusting a section symbol. We need to find
9573 // the symbol table index of the section symbol for
9574 // the output section corresponding to input section
9575 // in which this symbol is defined.
9577 unsigned int shndx
= object
->local_symbol_input_shndx(r_sym
, &is_ordinary
);
9578 gold_assert(is_ordinary
);
9579 Output_section
* os
= object
->output_section(shndx
);
9580 gold_assert(os
!= NULL
);
9581 gold_assert(os
->needs_symtab_index());
9582 unsigned int new_symndx
= os
->symtab_index();
9584 // Get the new offset--the location in the output section where
9585 // this relocation should be applied.
9587 Arm_address offset
= reloc
.get_r_offset();
9588 Arm_address new_offset
;
9589 if (offset_in_output_section
!= invalid_address
)
9590 new_offset
= offset
+ offset_in_output_section
;
9593 section_offset_type sot_offset
=
9594 convert_types
<section_offset_type
, Arm_address
>(offset
);
9595 section_offset_type new_sot_offset
=
9596 output_section
->output_offset(object
, relinfo
->data_shndx
,
9598 gold_assert(new_sot_offset
!= -1);
9599 new_offset
= new_sot_offset
;
9602 // In an object file, r_offset is an offset within the section.
9603 // In an executable or dynamic object, generated by
9604 // --emit-relocs, r_offset is an absolute address.
9605 if (!parameters
->options().relocatable())
9607 new_offset
+= view_address
;
9608 if (offset_in_output_section
!= invalid_address
)
9609 new_offset
-= offset_in_output_section
;
9612 reloc_write
.put_r_offset(new_offset
);
9613 reloc_write
.put_r_info(elfcpp::elf_r_info
<32>(new_symndx
, r_type
));
9615 // Handle the reloc addend.
9616 // The relocation uses a section symbol in the input file.
9617 // We are adjusting it to use a section symbol in the output
9618 // file. The input section symbol refers to some address in
9619 // the input section. We need the relocation in the output
9620 // file to refer to that same address. This adjustment to
9621 // the addend is the same calculation we use for a simple
9622 // absolute relocation for the input section symbol.
9624 const Symbol_value
<32>* psymval
= object
->local_symbol(r_sym
);
9626 // Handle THUMB bit.
9627 Symbol_value
<32> symval
;
9628 Arm_address thumb_bit
=
9629 object
->local_symbol_is_thumb_function(r_sym
) ? 1 : 0;
9631 && arp
->uses_thumb_bit()
9632 && ((psymval
->value(object
, 0) & 1) != 0))
9634 Arm_address stripped_value
=
9635 psymval
->value(object
, 0) & ~static_cast<Arm_address
>(1);
9636 symval
.set_output_value(stripped_value
);
9640 unsigned char* paddend
= view
+ offset
;
9641 typename Arm_relocate_functions
<big_endian
>::Status reloc_status
=
9642 Arm_relocate_functions
<big_endian
>::STATUS_OKAY
;
9645 case elfcpp::R_ARM_ABS8
:
9646 reloc_status
= Arm_relocate_functions
<big_endian
>::abs8(paddend
, object
,
9650 case elfcpp::R_ARM_ABS12
:
9651 reloc_status
= Arm_relocate_functions
<big_endian
>::abs12(paddend
, object
,
9655 case elfcpp::R_ARM_ABS16
:
9656 reloc_status
= Arm_relocate_functions
<big_endian
>::abs16(paddend
, object
,
9660 case elfcpp::R_ARM_THM_ABS5
:
9661 reloc_status
= Arm_relocate_functions
<big_endian
>::thm_abs5(paddend
,
9666 case elfcpp::R_ARM_MOVW_ABS_NC
:
9667 case elfcpp::R_ARM_MOVW_PREL_NC
:
9668 case elfcpp::R_ARM_MOVW_BREL_NC
:
9669 case elfcpp::R_ARM_MOVW_BREL
:
9670 reloc_status
= Arm_relocate_functions
<big_endian
>::movw(
9671 paddend
, object
, psymval
, 0, thumb_bit
, arp
->checks_overflow());
9674 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
9675 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
9676 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
9677 case elfcpp::R_ARM_THM_MOVW_BREL
:
9678 reloc_status
= Arm_relocate_functions
<big_endian
>::thm_movw(
9679 paddend
, object
, psymval
, 0, thumb_bit
, arp
->checks_overflow());
9682 case elfcpp::R_ARM_THM_CALL
:
9683 case elfcpp::R_ARM_THM_XPC22
:
9684 case elfcpp::R_ARM_THM_JUMP24
:
9686 Arm_relocate_functions
<big_endian
>::thumb_branch_common(
9687 r_type
, relinfo
, paddend
, NULL
, object
, 0, psymval
, 0, thumb_bit
,
9691 case elfcpp::R_ARM_PLT32
:
9692 case elfcpp::R_ARM_CALL
:
9693 case elfcpp::R_ARM_JUMP24
:
9694 case elfcpp::R_ARM_XPC25
:
9696 Arm_relocate_functions
<big_endian
>::arm_branch_common(
9697 r_type
, relinfo
, paddend
, NULL
, object
, 0, psymval
, 0, thumb_bit
,
9701 case elfcpp::R_ARM_THM_JUMP19
:
9703 Arm_relocate_functions
<big_endian
>::thm_jump19(paddend
, object
,
9704 psymval
, 0, thumb_bit
);
9707 case elfcpp::R_ARM_THM_JUMP6
:
9709 Arm_relocate_functions
<big_endian
>::thm_jump6(paddend
, object
, psymval
,
9713 case elfcpp::R_ARM_THM_JUMP8
:
9715 Arm_relocate_functions
<big_endian
>::thm_jump8(paddend
, object
, psymval
,
9719 case elfcpp::R_ARM_THM_JUMP11
:
9721 Arm_relocate_functions
<big_endian
>::thm_jump11(paddend
, object
, psymval
,
9725 case elfcpp::R_ARM_PREL31
:
9727 Arm_relocate_functions
<big_endian
>::prel31(paddend
, object
, psymval
, 0,
9731 case elfcpp::R_ARM_THM_PC8
:
9733 Arm_relocate_functions
<big_endian
>::thm_pc8(paddend
, object
, psymval
,
9737 case elfcpp::R_ARM_THM_PC12
:
9739 Arm_relocate_functions
<big_endian
>::thm_pc12(paddend
, object
, psymval
,
9743 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
9745 Arm_relocate_functions
<big_endian
>::thm_alu11(paddend
, object
, psymval
,
9749 // These relocation truncate relocation results so we cannot handle them
9750 // in a relocatable link.
9751 case elfcpp::R_ARM_MOVT_ABS
:
9752 case elfcpp::R_ARM_THM_MOVT_ABS
:
9753 case elfcpp::R_ARM_MOVT_PREL
:
9754 case elfcpp::R_ARM_MOVT_BREL
:
9755 case elfcpp::R_ARM_THM_MOVT_PREL
:
9756 case elfcpp::R_ARM_THM_MOVT_BREL
:
9757 case elfcpp::R_ARM_ALU_PC_G0_NC
:
9758 case elfcpp::R_ARM_ALU_PC_G0
:
9759 case elfcpp::R_ARM_ALU_PC_G1_NC
:
9760 case elfcpp::R_ARM_ALU_PC_G1
:
9761 case elfcpp::R_ARM_ALU_PC_G2
:
9762 case elfcpp::R_ARM_ALU_SB_G0_NC
:
9763 case elfcpp::R_ARM_ALU_SB_G0
:
9764 case elfcpp::R_ARM_ALU_SB_G1_NC
:
9765 case elfcpp::R_ARM_ALU_SB_G1
:
9766 case elfcpp::R_ARM_ALU_SB_G2
:
9767 case elfcpp::R_ARM_LDR_PC_G0
:
9768 case elfcpp::R_ARM_LDR_PC_G1
:
9769 case elfcpp::R_ARM_LDR_PC_G2
:
9770 case elfcpp::R_ARM_LDR_SB_G0
:
9771 case elfcpp::R_ARM_LDR_SB_G1
:
9772 case elfcpp::R_ARM_LDR_SB_G2
:
9773 case elfcpp::R_ARM_LDRS_PC_G0
:
9774 case elfcpp::R_ARM_LDRS_PC_G1
:
9775 case elfcpp::R_ARM_LDRS_PC_G2
:
9776 case elfcpp::R_ARM_LDRS_SB_G0
:
9777 case elfcpp::R_ARM_LDRS_SB_G1
:
9778 case elfcpp::R_ARM_LDRS_SB_G2
:
9779 case elfcpp::R_ARM_LDC_PC_G0
:
9780 case elfcpp::R_ARM_LDC_PC_G1
:
9781 case elfcpp::R_ARM_LDC_PC_G2
:
9782 case elfcpp::R_ARM_LDC_SB_G0
:
9783 case elfcpp::R_ARM_LDC_SB_G1
:
9784 case elfcpp::R_ARM_LDC_SB_G2
:
9785 gold_error(_("cannot handle %s in a relocatable link"),
9786 arp
->name().c_str());
9793 // Report any errors.
9794 switch (reloc_status
)
9796 case Arm_relocate_functions
<big_endian
>::STATUS_OKAY
:
9798 case Arm_relocate_functions
<big_endian
>::STATUS_OVERFLOW
:
9799 gold_error_at_location(relinfo
, relnum
, reloc
.get_r_offset(),
9800 _("relocation overflow in %s"),
9801 arp
->name().c_str());
9803 case Arm_relocate_functions
<big_endian
>::STATUS_BAD_RELOC
:
9804 gold_error_at_location(relinfo
, relnum
, reloc
.get_r_offset(),
9805 _("unexpected opcode while processing relocation %s"),
9806 arp
->name().c_str());
9813 // Return the value to use for a dynamic symbol which requires special
9814 // treatment. This is how we support equality comparisons of function
9815 // pointers across shared library boundaries, as described in the
9816 // processor specific ABI supplement.
9818 template<bool big_endian
>
9820 Target_arm
<big_endian
>::do_dynsym_value(const Symbol
* gsym
) const
9822 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
9823 return this->plt_section()->address() + gsym
->plt_offset();
9826 // Map platform-specific relocs to real relocs
9828 template<bool big_endian
>
9830 Target_arm
<big_endian
>::get_real_reloc_type(unsigned int r_type
)
9834 case elfcpp::R_ARM_TARGET1
:
9835 // This is either R_ARM_ABS32 or R_ARM_REL32;
9836 return elfcpp::R_ARM_ABS32
;
9838 case elfcpp::R_ARM_TARGET2
:
9839 // This can be any reloc type but usually is R_ARM_GOT_PREL
9840 return elfcpp::R_ARM_GOT_PREL
;
9847 // Whether if two EABI versions V1 and V2 are compatible.
9849 template<bool big_endian
>
9851 Target_arm
<big_endian
>::are_eabi_versions_compatible(
9852 elfcpp::Elf_Word v1
,
9853 elfcpp::Elf_Word v2
)
9855 // v4 and v5 are the same spec before and after it was released,
9856 // so allow mixing them.
9857 if ((v1
== elfcpp::EF_ARM_EABI_UNKNOWN
|| v2
== elfcpp::EF_ARM_EABI_UNKNOWN
)
9858 || (v1
== elfcpp::EF_ARM_EABI_VER4
&& v2
== elfcpp::EF_ARM_EABI_VER5
)
9859 || (v1
== elfcpp::EF_ARM_EABI_VER5
&& v2
== elfcpp::EF_ARM_EABI_VER4
))
9865 // Combine FLAGS from an input object called NAME and the processor-specific
9866 // flags in the ELF header of the output. Much of this is adapted from the
9867 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9868 // in bfd/elf32-arm.c.
9870 template<bool big_endian
>
9872 Target_arm
<big_endian
>::merge_processor_specific_flags(
9873 const std::string
& name
,
9874 elfcpp::Elf_Word flags
)
9876 if (this->are_processor_specific_flags_set())
9878 elfcpp::Elf_Word out_flags
= this->processor_specific_flags();
9880 // Nothing to merge if flags equal to those in output.
9881 if (flags
== out_flags
)
9884 // Complain about various flag mismatches.
9885 elfcpp::Elf_Word version1
= elfcpp::arm_eabi_version(flags
);
9886 elfcpp::Elf_Word version2
= elfcpp::arm_eabi_version(out_flags
);
9887 if (!this->are_eabi_versions_compatible(version1
, version2
)
9888 && parameters
->options().warn_mismatch())
9889 gold_error(_("Source object %s has EABI version %d but output has "
9890 "EABI version %d."),
9892 (flags
& elfcpp::EF_ARM_EABIMASK
) >> 24,
9893 (out_flags
& elfcpp::EF_ARM_EABIMASK
) >> 24);
9897 // If the input is the default architecture and had the default
9898 // flags then do not bother setting the flags for the output
9899 // architecture, instead allow future merges to do this. If no
9900 // future merges ever set these flags then they will retain their
9901 // uninitialised values, which surprise surprise, correspond
9902 // to the default values.
9906 // This is the first time, just copy the flags.
9907 // We only copy the EABI version for now.
9908 this->set_processor_specific_flags(flags
& elfcpp::EF_ARM_EABIMASK
);
9912 // Adjust ELF file header.
9913 template<bool big_endian
>
9915 Target_arm
<big_endian
>::do_adjust_elf_header(
9916 unsigned char* view
,
9919 gold_assert(len
== elfcpp::Elf_sizes
<32>::ehdr_size
);
9921 elfcpp::Ehdr
<32, big_endian
> ehdr(view
);
9922 unsigned char e_ident
[elfcpp::EI_NIDENT
];
9923 memcpy(e_ident
, ehdr
.get_e_ident(), elfcpp::EI_NIDENT
);
9925 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9926 == elfcpp::EF_ARM_EABI_UNKNOWN
)
9927 e_ident
[elfcpp::EI_OSABI
] = elfcpp::ELFOSABI_ARM
;
9929 e_ident
[elfcpp::EI_OSABI
] = 0;
9930 e_ident
[elfcpp::EI_ABIVERSION
] = 0;
9932 // FIXME: Do EF_ARM_BE8 adjustment.
9934 elfcpp::Ehdr_write
<32, big_endian
> oehdr(view
);
9935 oehdr
.put_e_ident(e_ident
);
9938 // do_make_elf_object to override the same function in the base class.
9939 // We need to use a target-specific sub-class of
9940 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9941 // Hence we need to have our own ELF object creation.
9943 template<bool big_endian
>
9945 Target_arm
<big_endian
>::do_make_elf_object(
9946 const std::string
& name
,
9947 Input_file
* input_file
,
9948 off_t offset
, const elfcpp::Ehdr
<32, big_endian
>& ehdr
)
9950 int et
= ehdr
.get_e_type();
9951 // ET_EXEC files are valid input for --just-symbols/-R,
9952 // and we treat them as relocatable objects.
9953 if (et
== elfcpp::ET_REL
9954 || (et
== elfcpp::ET_EXEC
&& input_file
->just_symbols()))
9956 Arm_relobj
<big_endian
>* obj
=
9957 new Arm_relobj
<big_endian
>(name
, input_file
, offset
, ehdr
);
9961 else if (et
== elfcpp::ET_DYN
)
9963 Sized_dynobj
<32, big_endian
>* obj
=
9964 new Arm_dynobj
<big_endian
>(name
, input_file
, offset
, ehdr
);
9970 gold_error(_("%s: unsupported ELF file type %d"),
9976 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9977 // Returns -1 if no architecture could be read.
9978 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9980 template<bool big_endian
>
9982 Target_arm
<big_endian
>::get_secondary_compatible_arch(
9983 const Attributes_section_data
* pasd
)
9985 const Object_attribute
* known_attributes
=
9986 pasd
->known_attributes(Object_attribute::OBJ_ATTR_PROC
);
9988 // Note: the tag and its argument below are uleb128 values, though
9989 // currently-defined values fit in one byte for each.
9990 const std::string
& sv
=
9991 known_attributes
[elfcpp::Tag_also_compatible_with
].string_value();
9993 && sv
.data()[0] == elfcpp::Tag_CPU_arch
9994 && (sv
.data()[1] & 128) != 128)
9995 return sv
.data()[1];
9997 // This tag is "safely ignorable", so don't complain if it looks funny.
10001 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10002 // The tag is removed if ARCH is -1.
10003 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10005 template<bool big_endian
>
10007 Target_arm
<big_endian
>::set_secondary_compatible_arch(
10008 Attributes_section_data
* pasd
,
10011 Object_attribute
* known_attributes
=
10012 pasd
->known_attributes(Object_attribute::OBJ_ATTR_PROC
);
10016 known_attributes
[elfcpp::Tag_also_compatible_with
].set_string_value("");
10020 // Note: the tag and its argument below are uleb128 values, though
10021 // currently-defined values fit in one byte for each.
10023 sv
[0] = elfcpp::Tag_CPU_arch
;
10024 gold_assert(arch
!= 0);
10028 known_attributes
[elfcpp::Tag_also_compatible_with
].set_string_value(sv
);
10031 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10033 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10035 template<bool big_endian
>
10037 Target_arm
<big_endian
>::tag_cpu_arch_combine(
10040 int* secondary_compat_out
,
10042 int secondary_compat
)
10044 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10045 static const int v6t2
[] =
10047 T(V6T2
), // PRE_V4.
10057 static const int v6k
[] =
10070 static const int v7
[] =
10084 static const int v6_m
[] =
10099 static const int v6s_m
[] =
10115 static const int v7e_m
[] =
10122 T(V7E_M
), // V5TEJ.
10129 T(V7E_M
), // V6S_M.
10132 static const int v4t_plus_v6_m
[] =
10139 T(V5TEJ
), // V5TEJ.
10146 T(V6S_M
), // V6S_M.
10147 T(V7E_M
), // V7E_M.
10148 T(V4T_PLUS_V6_M
) // V4T plus V6_M.
10150 static const int* comb
[] =
10158 // Pseudo-architecture.
10162 // Check we've not got a higher architecture than we know about.
10164 if (oldtag
> elfcpp::MAX_TAG_CPU_ARCH
|| newtag
> elfcpp::MAX_TAG_CPU_ARCH
)
10166 gold_error(_("%s: unknown CPU architecture"), name
);
10170 // Override old tag if we have a Tag_also_compatible_with on the output.
10172 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
10173 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
10174 oldtag
= T(V4T_PLUS_V6_M
);
10176 // And override the new tag if we have a Tag_also_compatible_with on the
10179 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
10180 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
10181 newtag
= T(V4T_PLUS_V6_M
);
10183 // Architectures before V6KZ add features monotonically.
10184 int tagh
= std::max(oldtag
, newtag
);
10185 if (tagh
<= elfcpp::TAG_CPU_ARCH_V6KZ
)
10188 int tagl
= std::min(oldtag
, newtag
);
10189 int result
= comb
[tagh
- T(V6T2
)][tagl
];
10191 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10192 // as the canonical version.
10193 if (result
== T(V4T_PLUS_V6_M
))
10196 *secondary_compat_out
= T(V6_M
);
10199 *secondary_compat_out
= -1;
10203 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10204 name
, oldtag
, newtag
);
10212 // Helper to print AEABI enum tag value.
10214 template<bool big_endian
>
10216 Target_arm
<big_endian
>::aeabi_enum_name(unsigned int value
)
10218 static const char* aeabi_enum_names
[] =
10219 { "", "variable-size", "32-bit", "" };
10220 const size_t aeabi_enum_names_size
=
10221 sizeof(aeabi_enum_names
) / sizeof(aeabi_enum_names
[0]);
10223 if (value
< aeabi_enum_names_size
)
10224 return std::string(aeabi_enum_names
[value
]);
10228 sprintf(buffer
, "<unknown value %u>", value
);
10229 return std::string(buffer
);
10233 // Return the string value to store in TAG_CPU_name.
10235 template<bool big_endian
>
10237 Target_arm
<big_endian
>::tag_cpu_name_value(unsigned int value
)
10239 static const char* name_table
[] = {
10240 // These aren't real CPU names, but we can't guess
10241 // that from the architecture version alone.
10257 const size_t name_table_size
= sizeof(name_table
) / sizeof(name_table
[0]);
10259 if (value
< name_table_size
)
10260 return std::string(name_table
[value
]);
10264 sprintf(buffer
, "<unknown CPU value %u>", value
);
10265 return std::string(buffer
);
10269 // Merge object attributes from input file called NAME with those of the
10270 // output. The input object attributes are in the object pointed by PASD.
10272 template<bool big_endian
>
10274 Target_arm
<big_endian
>::merge_object_attributes(
10276 const Attributes_section_data
* pasd
)
10278 // Return if there is no attributes section data.
10282 // If output has no object attributes, just copy.
10283 const int vendor
= Object_attribute::OBJ_ATTR_PROC
;
10284 if (this->attributes_section_data_
== NULL
)
10286 this->attributes_section_data_
= new Attributes_section_data(*pasd
);
10287 Object_attribute
* out_attr
=
10288 this->attributes_section_data_
->known_attributes(vendor
);
10290 // We do not output objects with Tag_MPextension_use_legacy - we move
10291 // the attribute's value to Tag_MPextension_use. */
10292 if (out_attr
[elfcpp::Tag_MPextension_use_legacy
].int_value() != 0)
10294 if (out_attr
[elfcpp::Tag_MPextension_use
].int_value() != 0
10295 && out_attr
[elfcpp::Tag_MPextension_use_legacy
].int_value()
10296 != out_attr
[elfcpp::Tag_MPextension_use
].int_value())
10298 gold_error(_("%s has both the current and legacy "
10299 "Tag_MPextension_use attributes"),
10303 out_attr
[elfcpp::Tag_MPextension_use
] =
10304 out_attr
[elfcpp::Tag_MPextension_use_legacy
];
10305 out_attr
[elfcpp::Tag_MPextension_use_legacy
].set_type(0);
10306 out_attr
[elfcpp::Tag_MPextension_use_legacy
].set_int_value(0);
10312 const Object_attribute
* in_attr
= pasd
->known_attributes(vendor
);
10313 Object_attribute
* out_attr
=
10314 this->attributes_section_data_
->known_attributes(vendor
);
10316 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10317 if (in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value()
10318 != out_attr
[elfcpp::Tag_ABI_VFP_args
].int_value())
10320 // Ignore mismatches if the object doesn't use floating point. */
10321 if (out_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value() == 0)
10322 out_attr
[elfcpp::Tag_ABI_VFP_args
].set_int_value(
10323 in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value());
10324 else if (in_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value() != 0
10325 && parameters
->options().warn_mismatch())
10326 gold_error(_("%s uses VFP register arguments, output does not"),
10330 for (int i
= 4; i
< Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES
; ++i
)
10332 // Merge this attribute with existing attributes.
10335 case elfcpp::Tag_CPU_raw_name
:
10336 case elfcpp::Tag_CPU_name
:
10337 // These are merged after Tag_CPU_arch.
10340 case elfcpp::Tag_ABI_optimization_goals
:
10341 case elfcpp::Tag_ABI_FP_optimization_goals
:
10342 // Use the first value seen.
10345 case elfcpp::Tag_CPU_arch
:
10347 unsigned int saved_out_attr
= out_attr
->int_value();
10348 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10349 int secondary_compat
=
10350 this->get_secondary_compatible_arch(pasd
);
10351 int secondary_compat_out
=
10352 this->get_secondary_compatible_arch(
10353 this->attributes_section_data_
);
10354 out_attr
[i
].set_int_value(
10355 tag_cpu_arch_combine(name
, out_attr
[i
].int_value(),
10356 &secondary_compat_out
,
10357 in_attr
[i
].int_value(),
10358 secondary_compat
));
10359 this->set_secondary_compatible_arch(this->attributes_section_data_
,
10360 secondary_compat_out
);
10362 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10363 if (out_attr
[i
].int_value() == saved_out_attr
)
10364 ; // Leave the names alone.
10365 else if (out_attr
[i
].int_value() == in_attr
[i
].int_value())
10367 // The output architecture has been changed to match the
10368 // input architecture. Use the input names.
10369 out_attr
[elfcpp::Tag_CPU_name
].set_string_value(
10370 in_attr
[elfcpp::Tag_CPU_name
].string_value());
10371 out_attr
[elfcpp::Tag_CPU_raw_name
].set_string_value(
10372 in_attr
[elfcpp::Tag_CPU_raw_name
].string_value());
10376 out_attr
[elfcpp::Tag_CPU_name
].set_string_value("");
10377 out_attr
[elfcpp::Tag_CPU_raw_name
].set_string_value("");
10380 // If we still don't have a value for Tag_CPU_name,
10381 // make one up now. Tag_CPU_raw_name remains blank.
10382 if (out_attr
[elfcpp::Tag_CPU_name
].string_value() == "")
10384 const std::string cpu_name
=
10385 this->tag_cpu_name_value(out_attr
[i
].int_value());
10386 // FIXME: If we see an unknown CPU, this will be set
10387 // to "<unknown CPU n>", where n is the attribute value.
10388 // This is different from BFD, which leaves the name alone.
10389 out_attr
[elfcpp::Tag_CPU_name
].set_string_value(cpu_name
);
10394 case elfcpp::Tag_ARM_ISA_use
:
10395 case elfcpp::Tag_THUMB_ISA_use
:
10396 case elfcpp::Tag_WMMX_arch
:
10397 case elfcpp::Tag_Advanced_SIMD_arch
:
10398 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10399 case elfcpp::Tag_ABI_FP_rounding
:
10400 case elfcpp::Tag_ABI_FP_exceptions
:
10401 case elfcpp::Tag_ABI_FP_user_exceptions
:
10402 case elfcpp::Tag_ABI_FP_number_model
:
10403 case elfcpp::Tag_VFP_HP_extension
:
10404 case elfcpp::Tag_CPU_unaligned_access
:
10405 case elfcpp::Tag_T2EE_use
:
10406 case elfcpp::Tag_Virtualization_use
:
10407 case elfcpp::Tag_MPextension_use
:
10408 // Use the largest value specified.
10409 if (in_attr
[i
].int_value() > out_attr
[i
].int_value())
10410 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10413 case elfcpp::Tag_ABI_align8_preserved
:
10414 case elfcpp::Tag_ABI_PCS_RO_data
:
10415 // Use the smallest value specified.
10416 if (in_attr
[i
].int_value() < out_attr
[i
].int_value())
10417 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10420 case elfcpp::Tag_ABI_align8_needed
:
10421 if ((in_attr
[i
].int_value() > 0 || out_attr
[i
].int_value() > 0)
10422 && (in_attr
[elfcpp::Tag_ABI_align8_preserved
].int_value() == 0
10423 || (out_attr
[elfcpp::Tag_ABI_align8_preserved
].int_value()
10426 // This error message should be enabled once all non-conforming
10427 // binaries in the toolchain have had the attributes set
10429 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10433 case elfcpp::Tag_ABI_FP_denormal
:
10434 case elfcpp::Tag_ABI_PCS_GOT_use
:
10436 // These tags have 0 = don't care, 1 = strong requirement,
10437 // 2 = weak requirement.
10438 static const int order_021
[3] = {0, 2, 1};
10440 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10441 // value if greater than 2 (for future-proofing).
10442 if ((in_attr
[i
].int_value() > 2
10443 && in_attr
[i
].int_value() > out_attr
[i
].int_value())
10444 || (in_attr
[i
].int_value() <= 2
10445 && out_attr
[i
].int_value() <= 2
10446 && (order_021
[in_attr
[i
].int_value()]
10447 > order_021
[out_attr
[i
].int_value()])))
10448 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10452 case elfcpp::Tag_CPU_arch_profile
:
10453 if (out_attr
[i
].int_value() != in_attr
[i
].int_value())
10455 // 0 will merge with anything.
10456 // 'A' and 'S' merge to 'A'.
10457 // 'R' and 'S' merge to 'R'.
10458 // 'M' and 'A|R|S' is an error.
10459 if (out_attr
[i
].int_value() == 0
10460 || (out_attr
[i
].int_value() == 'S'
10461 && (in_attr
[i
].int_value() == 'A'
10462 || in_attr
[i
].int_value() == 'R')))
10463 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10464 else if (in_attr
[i
].int_value() == 0
10465 || (in_attr
[i
].int_value() == 'S'
10466 && (out_attr
[i
].int_value() == 'A'
10467 || out_attr
[i
].int_value() == 'R')))
10469 else if (parameters
->options().warn_mismatch())
10472 (_("conflicting architecture profiles %c/%c"),
10473 in_attr
[i
].int_value() ? in_attr
[i
].int_value() : '0',
10474 out_attr
[i
].int_value() ? out_attr
[i
].int_value() : '0');
10478 case elfcpp::Tag_VFP_arch
:
10480 static const struct
10484 } vfp_versions
[7] =
10495 // Values greater than 6 aren't defined, so just pick the
10497 if (in_attr
[i
].int_value() > 6
10498 && in_attr
[i
].int_value() > out_attr
[i
].int_value())
10500 *out_attr
= *in_attr
;
10503 // The output uses the superset of input features
10504 // (ISA version) and registers.
10505 int ver
= std::max(vfp_versions
[in_attr
[i
].int_value()].ver
,
10506 vfp_versions
[out_attr
[i
].int_value()].ver
);
10507 int regs
= std::max(vfp_versions
[in_attr
[i
].int_value()].regs
,
10508 vfp_versions
[out_attr
[i
].int_value()].regs
);
10509 // This assumes all possible supersets are also a valid
10512 for (newval
= 6; newval
> 0; newval
--)
10514 if (regs
== vfp_versions
[newval
].regs
10515 && ver
== vfp_versions
[newval
].ver
)
10518 out_attr
[i
].set_int_value(newval
);
10521 case elfcpp::Tag_PCS_config
:
10522 if (out_attr
[i
].int_value() == 0)
10523 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10524 else if (in_attr
[i
].int_value() != 0
10525 && out_attr
[i
].int_value() != 0
10526 && parameters
->options().warn_mismatch())
10528 // It's sometimes ok to mix different configs, so this is only
10530 gold_warning(_("%s: conflicting platform configuration"), name
);
10533 case elfcpp::Tag_ABI_PCS_R9_use
:
10534 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
10535 && out_attr
[i
].int_value() != elfcpp::AEABI_R9_unused
10536 && in_attr
[i
].int_value() != elfcpp::AEABI_R9_unused
10537 && parameters
->options().warn_mismatch())
10539 gold_error(_("%s: conflicting use of R9"), name
);
10541 if (out_attr
[i
].int_value() == elfcpp::AEABI_R9_unused
)
10542 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10544 case elfcpp::Tag_ABI_PCS_RW_data
:
10545 if (in_attr
[i
].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10546 && (in_attr
[elfcpp::Tag_ABI_PCS_R9_use
].int_value()
10547 != elfcpp::AEABI_R9_SB
)
10548 && (out_attr
[elfcpp::Tag_ABI_PCS_R9_use
].int_value()
10549 != elfcpp::AEABI_R9_unused
)
10550 && parameters
->options().warn_mismatch())
10552 gold_error(_("%s: SB relative addressing conflicts with use "
10556 // Use the smallest value specified.
10557 if (in_attr
[i
].int_value() < out_attr
[i
].int_value())
10558 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10560 case elfcpp::Tag_ABI_PCS_wchar_t
:
10561 if (out_attr
[i
].int_value()
10562 && in_attr
[i
].int_value()
10563 && out_attr
[i
].int_value() != in_attr
[i
].int_value()
10564 && parameters
->options().warn_mismatch()
10565 && parameters
->options().wchar_size_warning())
10567 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10568 "use %u-byte wchar_t; use of wchar_t values "
10569 "across objects may fail"),
10570 name
, in_attr
[i
].int_value(),
10571 out_attr
[i
].int_value());
10573 else if (in_attr
[i
].int_value() && !out_attr
[i
].int_value())
10574 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10576 case elfcpp::Tag_ABI_enum_size
:
10577 if (in_attr
[i
].int_value() != elfcpp::AEABI_enum_unused
)
10579 if (out_attr
[i
].int_value() == elfcpp::AEABI_enum_unused
10580 || out_attr
[i
].int_value() == elfcpp::AEABI_enum_forced_wide
)
10582 // The existing object is compatible with anything.
10583 // Use whatever requirements the new object has.
10584 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10586 else if (in_attr
[i
].int_value() != elfcpp::AEABI_enum_forced_wide
10587 && out_attr
[i
].int_value() != in_attr
[i
].int_value()
10588 && parameters
->options().warn_mismatch()
10589 && parameters
->options().enum_size_warning())
10591 unsigned int in_value
= in_attr
[i
].int_value();
10592 unsigned int out_value
= out_attr
[i
].int_value();
10593 gold_warning(_("%s uses %s enums yet the output is to use "
10594 "%s enums; use of enum values across objects "
10597 this->aeabi_enum_name(in_value
).c_str(),
10598 this->aeabi_enum_name(out_value
).c_str());
10602 case elfcpp::Tag_ABI_VFP_args
:
10605 case elfcpp::Tag_ABI_WMMX_args
:
10606 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
10607 && parameters
->options().warn_mismatch())
10609 gold_error(_("%s uses iWMMXt register arguments, output does "
10614 case Object_attribute::Tag_compatibility
:
10615 // Merged in target-independent code.
10617 case elfcpp::Tag_ABI_HardFP_use
:
10618 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10619 if ((in_attr
[i
].int_value() == 1 && out_attr
[i
].int_value() == 2)
10620 || (in_attr
[i
].int_value() == 2 && out_attr
[i
].int_value() == 1))
10621 out_attr
[i
].set_int_value(3);
10622 else if (in_attr
[i
].int_value() > out_attr
[i
].int_value())
10623 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10625 case elfcpp::Tag_ABI_FP_16bit_format
:
10626 if (in_attr
[i
].int_value() != 0 && out_attr
[i
].int_value() != 0)
10628 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
10629 && parameters
->options().warn_mismatch())
10630 gold_error(_("fp16 format mismatch between %s and output"),
10633 if (in_attr
[i
].int_value() != 0)
10634 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10637 case elfcpp::Tag_DIV_use
:
10638 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10639 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10640 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10641 // CPU. We will merge as follows: If the input attribute's value
10642 // is one then the output attribute's value remains unchanged. If
10643 // the input attribute's value is zero or two then if the output
10644 // attribute's value is one the output value is set to the input
10645 // value, otherwise the output value must be the same as the
10647 if (in_attr
[i
].int_value() != 1 && out_attr
[i
].int_value() != 1)
10649 if (in_attr
[i
].int_value() != out_attr
[i
].int_value())
10651 gold_error(_("DIV usage mismatch between %s and output"),
10656 if (in_attr
[i
].int_value() != 1)
10657 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
10661 case elfcpp::Tag_MPextension_use_legacy
:
10662 // We don't output objects with Tag_MPextension_use_legacy - we
10663 // move the value to Tag_MPextension_use.
10664 if (in_attr
[i
].int_value() != 0
10665 && in_attr
[elfcpp::Tag_MPextension_use
].int_value() != 0)
10667 if (in_attr
[elfcpp::Tag_MPextension_use
].int_value()
10668 != in_attr
[i
].int_value())
10670 gold_error(_("%s has has both the current and legacy "
10671 "Tag_MPextension_use attributes"),
10676 if (in_attr
[i
].int_value()
10677 > out_attr
[elfcpp::Tag_MPextension_use
].int_value())
10678 out_attr
[elfcpp::Tag_MPextension_use
] = in_attr
[i
];
10682 case elfcpp::Tag_nodefaults
:
10683 // This tag is set if it exists, but the value is unused (and is
10684 // typically zero). We don't actually need to do anything here -
10685 // the merge happens automatically when the type flags are merged
10688 case elfcpp::Tag_also_compatible_with
:
10689 // Already done in Tag_CPU_arch.
10691 case elfcpp::Tag_conformance
:
10692 // Keep the attribute if it matches. Throw it away otherwise.
10693 // No attribute means no claim to conform.
10694 if (in_attr
[i
].string_value() != out_attr
[i
].string_value())
10695 out_attr
[i
].set_string_value("");
10700 const char* err_object
= NULL
;
10702 // The "known_obj_attributes" table does contain some undefined
10703 // attributes. Ensure that there are unused.
10704 if (out_attr
[i
].int_value() != 0
10705 || out_attr
[i
].string_value() != "")
10706 err_object
= "output";
10707 else if (in_attr
[i
].int_value() != 0
10708 || in_attr
[i
].string_value() != "")
10711 if (err_object
!= NULL
10712 && parameters
->options().warn_mismatch())
10714 // Attribute numbers >=64 (mod 128) can be safely ignored.
10715 if ((i
& 127) < 64)
10716 gold_error(_("%s: unknown mandatory EABI object attribute "
10720 gold_warning(_("%s: unknown EABI object attribute %d"),
10724 // Only pass on attributes that match in both inputs.
10725 if (!in_attr
[i
].matches(out_attr
[i
]))
10727 out_attr
[i
].set_int_value(0);
10728 out_attr
[i
].set_string_value("");
10733 // If out_attr was copied from in_attr then it won't have a type yet.
10734 if (in_attr
[i
].type() && !out_attr
[i
].type())
10735 out_attr
[i
].set_type(in_attr
[i
].type());
10738 // Merge Tag_compatibility attributes and any common GNU ones.
10739 this->attributes_section_data_
->merge(name
, pasd
);
10741 // Check for any attributes not known on ARM.
10742 typedef Vendor_object_attributes::Other_attributes Other_attributes
;
10743 const Other_attributes
* in_other_attributes
= pasd
->other_attributes(vendor
);
10744 Other_attributes::const_iterator in_iter
= in_other_attributes
->begin();
10745 Other_attributes
* out_other_attributes
=
10746 this->attributes_section_data_
->other_attributes(vendor
);
10747 Other_attributes::iterator out_iter
= out_other_attributes
->begin();
10749 while (in_iter
!= in_other_attributes
->end()
10750 || out_iter
!= out_other_attributes
->end())
10752 const char* err_object
= NULL
;
10755 // The tags for each list are in numerical order.
10756 // If the tags are equal, then merge.
10757 if (out_iter
!= out_other_attributes
->end()
10758 && (in_iter
== in_other_attributes
->end()
10759 || in_iter
->first
> out_iter
->first
))
10761 // This attribute only exists in output. We can't merge, and we
10762 // don't know what the tag means, so delete it.
10763 err_object
= "output";
10764 err_tag
= out_iter
->first
;
10765 int saved_tag
= out_iter
->first
;
10766 delete out_iter
->second
;
10767 out_other_attributes
->erase(out_iter
);
10768 out_iter
= out_other_attributes
->upper_bound(saved_tag
);
10770 else if (in_iter
!= in_other_attributes
->end()
10771 && (out_iter
!= out_other_attributes
->end()
10772 || in_iter
->first
< out_iter
->first
))
10774 // This attribute only exists in input. We can't merge, and we
10775 // don't know what the tag means, so ignore it.
10777 err_tag
= in_iter
->first
;
10780 else // The tags are equal.
10782 // As present, all attributes in the list are unknown, and
10783 // therefore can't be merged meaningfully.
10784 err_object
= "output";
10785 err_tag
= out_iter
->first
;
10787 // Only pass on attributes that match in both inputs.
10788 if (!in_iter
->second
->matches(*(out_iter
->second
)))
10790 // No match. Delete the attribute.
10791 int saved_tag
= out_iter
->first
;
10792 delete out_iter
->second
;
10793 out_other_attributes
->erase(out_iter
);
10794 out_iter
= out_other_attributes
->upper_bound(saved_tag
);
10798 // Matched. Keep the attribute and move to the next.
10804 if (err_object
&& parameters
->options().warn_mismatch())
10806 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10807 if ((err_tag
& 127) < 64)
10809 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10810 err_object
, err_tag
);
10814 gold_warning(_("%s: unknown EABI object attribute %d"),
10815 err_object
, err_tag
);
10821 // Stub-generation methods for Target_arm.
10823 // Make a new Arm_input_section object.
10825 template<bool big_endian
>
10826 Arm_input_section
<big_endian
>*
10827 Target_arm
<big_endian
>::new_arm_input_section(
10829 unsigned int shndx
)
10831 Section_id
sid(relobj
, shndx
);
10833 Arm_input_section
<big_endian
>* arm_input_section
=
10834 new Arm_input_section
<big_endian
>(relobj
, shndx
);
10835 arm_input_section
->init();
10837 // Register new Arm_input_section in map for look-up.
10838 std::pair
<typename
Arm_input_section_map::iterator
, bool> ins
=
10839 this->arm_input_section_map_
.insert(std::make_pair(sid
, arm_input_section
));
10841 // Make sure that it we have not created another Arm_input_section
10842 // for this input section already.
10843 gold_assert(ins
.second
);
10845 return arm_input_section
;
10848 // Find the Arm_input_section object corresponding to the SHNDX-th input
10849 // section of RELOBJ.
10851 template<bool big_endian
>
10852 Arm_input_section
<big_endian
>*
10853 Target_arm
<big_endian
>::find_arm_input_section(
10855 unsigned int shndx
) const
10857 Section_id
sid(relobj
, shndx
);
10858 typename
Arm_input_section_map::const_iterator p
=
10859 this->arm_input_section_map_
.find(sid
);
10860 return (p
!= this->arm_input_section_map_
.end()) ? p
->second
: NULL
;
10863 // Make a new stub table.
10865 template<bool big_endian
>
10866 Stub_table
<big_endian
>*
10867 Target_arm
<big_endian
>::new_stub_table(Arm_input_section
<big_endian
>* owner
)
10869 Stub_table
<big_endian
>* stub_table
=
10870 new Stub_table
<big_endian
>(owner
);
10871 this->stub_tables_
.push_back(stub_table
);
10873 stub_table
->set_address(owner
->address() + owner
->data_size());
10874 stub_table
->set_file_offset(owner
->offset() + owner
->data_size());
10875 stub_table
->finalize_data_size();
10880 // Scan a relocation for stub generation.
10882 template<bool big_endian
>
10884 Target_arm
<big_endian
>::scan_reloc_for_stub(
10885 const Relocate_info
<32, big_endian
>* relinfo
,
10886 unsigned int r_type
,
10887 const Sized_symbol
<32>* gsym
,
10888 unsigned int r_sym
,
10889 const Symbol_value
<32>* psymval
,
10890 elfcpp::Elf_types
<32>::Elf_Swxword addend
,
10891 Arm_address address
)
10893 typedef typename Target_arm
<big_endian
>::Relocate Relocate
;
10895 const Arm_relobj
<big_endian
>* arm_relobj
=
10896 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
10898 bool target_is_thumb
;
10899 Symbol_value
<32> symval
;
10902 // This is a global symbol. Determine if we use PLT and if the
10903 // final target is THUMB.
10904 if (gsym
->use_plt_offset(Scan::get_reference_flags(r_type
)))
10906 // This uses a PLT, change the symbol value.
10907 symval
.set_output_value(this->plt_section()->address()
10908 + gsym
->plt_offset());
10910 target_is_thumb
= false;
10912 else if (gsym
->is_undefined())
10913 // There is no need to generate a stub symbol is undefined.
10918 ((gsym
->type() == elfcpp::STT_ARM_TFUNC
)
10919 || (gsym
->type() == elfcpp::STT_FUNC
10920 && !gsym
->is_undefined()
10921 && ((psymval
->value(arm_relobj
, 0) & 1) != 0)));
10926 // This is a local symbol. Determine if the final target is THUMB.
10927 target_is_thumb
= arm_relobj
->local_symbol_is_thumb_function(r_sym
);
10930 // Strip LSB if this points to a THUMB target.
10931 const Arm_reloc_property
* reloc_property
=
10932 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
10933 gold_assert(reloc_property
!= NULL
);
10934 if (target_is_thumb
10935 && reloc_property
->uses_thumb_bit()
10936 && ((psymval
->value(arm_relobj
, 0) & 1) != 0))
10938 Arm_address stripped_value
=
10939 psymval
->value(arm_relobj
, 0) & ~static_cast<Arm_address
>(1);
10940 symval
.set_output_value(stripped_value
);
10944 // Get the symbol value.
10945 Symbol_value
<32>::Value value
= psymval
->value(arm_relobj
, 0);
10947 // Owing to pipelining, the PC relative branches below actually skip
10948 // two instructions when the branch offset is 0.
10949 Arm_address destination
;
10952 case elfcpp::R_ARM_CALL
:
10953 case elfcpp::R_ARM_JUMP24
:
10954 case elfcpp::R_ARM_PLT32
:
10956 destination
= value
+ addend
+ 8;
10958 case elfcpp::R_ARM_THM_CALL
:
10959 case elfcpp::R_ARM_THM_XPC22
:
10960 case elfcpp::R_ARM_THM_JUMP24
:
10961 case elfcpp::R_ARM_THM_JUMP19
:
10963 destination
= value
+ addend
+ 4;
10966 gold_unreachable();
10969 Reloc_stub
* stub
= NULL
;
10970 Stub_type stub_type
=
10971 Reloc_stub::stub_type_for_reloc(r_type
, address
, destination
,
10973 if (stub_type
!= arm_stub_none
)
10975 // Try looking up an existing stub from a stub table.
10976 Stub_table
<big_endian
>* stub_table
=
10977 arm_relobj
->stub_table(relinfo
->data_shndx
);
10978 gold_assert(stub_table
!= NULL
);
10980 // Locate stub by destination.
10981 Reloc_stub::Key
stub_key(stub_type
, gsym
, arm_relobj
, r_sym
, addend
);
10983 // Create a stub if there is not one already
10984 stub
= stub_table
->find_reloc_stub(stub_key
);
10987 // create a new stub and add it to stub table.
10988 stub
= this->stub_factory().make_reloc_stub(stub_type
);
10989 stub_table
->add_reloc_stub(stub
, stub_key
);
10992 // Record the destination address.
10993 stub
->set_destination_address(destination
10994 | (target_is_thumb
? 1 : 0));
10997 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10998 if (this->fix_cortex_a8_
10999 && (r_type
== elfcpp::R_ARM_THM_JUMP24
11000 || r_type
== elfcpp::R_ARM_THM_JUMP19
11001 || r_type
== elfcpp::R_ARM_THM_CALL
11002 || r_type
== elfcpp::R_ARM_THM_XPC22
)
11003 && (address
& 0xfffU
) == 0xffeU
)
11005 // Found a candidate. Note we haven't checked the destination is
11006 // within 4K here: if we do so (and don't create a record) we can't
11007 // tell that a branch should have been relocated when scanning later.
11008 this->cortex_a8_relocs_info_
[address
] =
11009 new Cortex_a8_reloc(stub
, r_type
,
11010 destination
| (target_is_thumb
? 1 : 0));
11014 // This function scans a relocation sections for stub generation.
11015 // The template parameter Relocate must be a class type which provides
11016 // a single function, relocate(), which implements the machine
11017 // specific part of a relocation.
11019 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11020 // SHT_REL or SHT_RELA.
11022 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11023 // of relocs. OUTPUT_SECTION is the output section.
11024 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11025 // mapped to output offsets.
11027 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11028 // VIEW_SIZE is the size. These refer to the input section, unless
11029 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11030 // the output section.
11032 template<bool big_endian
>
11033 template<int sh_type
>
11035 Target_arm
<big_endian
>::scan_reloc_section_for_stubs(
11036 const Relocate_info
<32, big_endian
>* relinfo
,
11037 const unsigned char* prelocs
,
11038 size_t reloc_count
,
11039 Output_section
* output_section
,
11040 bool needs_special_offset_handling
,
11041 const unsigned char* view
,
11042 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
11045 typedef typename Reloc_types
<sh_type
, 32, big_endian
>::Reloc Reltype
;
11046 const int reloc_size
=
11047 Reloc_types
<sh_type
, 32, big_endian
>::reloc_size
;
11049 Arm_relobj
<big_endian
>* arm_object
=
11050 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
11051 unsigned int local_count
= arm_object
->local_symbol_count();
11053 Comdat_behavior comdat_behavior
= CB_UNDETERMINED
;
11055 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
11057 Reltype
reloc(prelocs
);
11059 typename
elfcpp::Elf_types
<32>::Elf_WXword r_info
= reloc
.get_r_info();
11060 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
11061 unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
11063 r_type
= this->get_real_reloc_type(r_type
);
11065 // Only a few relocation types need stubs.
11066 if ((r_type
!= elfcpp::R_ARM_CALL
)
11067 && (r_type
!= elfcpp::R_ARM_JUMP24
)
11068 && (r_type
!= elfcpp::R_ARM_PLT32
)
11069 && (r_type
!= elfcpp::R_ARM_THM_CALL
)
11070 && (r_type
!= elfcpp::R_ARM_THM_XPC22
)
11071 && (r_type
!= elfcpp::R_ARM_THM_JUMP24
)
11072 && (r_type
!= elfcpp::R_ARM_THM_JUMP19
)
11073 && (r_type
!= elfcpp::R_ARM_V4BX
))
11076 section_offset_type offset
=
11077 convert_to_section_size_type(reloc
.get_r_offset());
11079 if (needs_special_offset_handling
)
11081 offset
= output_section
->output_offset(relinfo
->object
,
11082 relinfo
->data_shndx
,
11088 // Create a v4bx stub if --fix-v4bx-interworking is used.
11089 if (r_type
== elfcpp::R_ARM_V4BX
)
11091 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
)
11093 // Get the BX instruction.
11094 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
11095 const Valtype
* wv
=
11096 reinterpret_cast<const Valtype
*>(view
+ offset
);
11097 elfcpp::Elf_types
<32>::Elf_Swxword insn
=
11098 elfcpp::Swap
<32, big_endian
>::readval(wv
);
11099 const uint32_t reg
= (insn
& 0xf);
11103 // Try looking up an existing stub from a stub table.
11104 Stub_table
<big_endian
>* stub_table
=
11105 arm_object
->stub_table(relinfo
->data_shndx
);
11106 gold_assert(stub_table
!= NULL
);
11108 if (stub_table
->find_arm_v4bx_stub(reg
) == NULL
)
11110 // create a new stub and add it to stub table.
11111 Arm_v4bx_stub
* stub
=
11112 this->stub_factory().make_arm_v4bx_stub(reg
);
11113 gold_assert(stub
!= NULL
);
11114 stub_table
->add_arm_v4bx_stub(stub
);
11122 Stub_addend_reader
<sh_type
, big_endian
> stub_addend_reader
;
11123 elfcpp::Elf_types
<32>::Elf_Swxword addend
=
11124 stub_addend_reader(r_type
, view
+ offset
, reloc
);
11126 const Sized_symbol
<32>* sym
;
11128 Symbol_value
<32> symval
;
11129 const Symbol_value
<32> *psymval
;
11130 bool is_defined_in_discarded_section
;
11131 unsigned int shndx
;
11132 if (r_sym
< local_count
)
11135 psymval
= arm_object
->local_symbol(r_sym
);
11137 // If the local symbol belongs to a section we are discarding,
11138 // and that section is a debug section, try to find the
11139 // corresponding kept section and map this symbol to its
11140 // counterpart in the kept section. The symbol must not
11141 // correspond to a section we are folding.
11143 shndx
= psymval
->input_shndx(&is_ordinary
);
11144 is_defined_in_discarded_section
=
11146 && shndx
!= elfcpp::SHN_UNDEF
11147 && !arm_object
->is_section_included(shndx
)
11148 && !relinfo
->symtab
->is_section_folded(arm_object
, shndx
));
11150 // We need to compute the would-be final value of this local
11152 if (!is_defined_in_discarded_section
)
11154 typedef Sized_relobj_file
<32, big_endian
> ObjType
;
11155 typename
ObjType::Compute_final_local_value_status status
=
11156 arm_object
->compute_final_local_value(r_sym
, psymval
, &symval
,
11158 if (status
== ObjType::CFLV_OK
)
11160 // Currently we cannot handle a branch to a target in
11161 // a merged section. If this is the case, issue an error
11162 // and also free the merge symbol value.
11163 if (!symval
.has_output_value())
11165 const std::string
& section_name
=
11166 arm_object
->section_name(shndx
);
11167 arm_object
->error(_("cannot handle branch to local %u "
11168 "in a merged section %s"),
11169 r_sym
, section_name
.c_str());
11175 // We cannot determine the final value.
11182 const Symbol
* gsym
;
11183 gsym
= arm_object
->global_symbol(r_sym
);
11184 gold_assert(gsym
!= NULL
);
11185 if (gsym
->is_forwarder())
11186 gsym
= relinfo
->symtab
->resolve_forwards(gsym
);
11188 sym
= static_cast<const Sized_symbol
<32>*>(gsym
);
11189 if (sym
->has_symtab_index() && sym
->symtab_index() != -1U)
11190 symval
.set_output_symtab_index(sym
->symtab_index());
11192 symval
.set_no_output_symtab_entry();
11194 // We need to compute the would-be final value of this global
11196 const Symbol_table
* symtab
= relinfo
->symtab
;
11197 const Sized_symbol
<32>* sized_symbol
=
11198 symtab
->get_sized_symbol
<32>(gsym
);
11199 Symbol_table::Compute_final_value_status status
;
11200 Arm_address value
=
11201 symtab
->compute_final_value
<32>(sized_symbol
, &status
);
11203 // Skip this if the symbol has not output section.
11204 if (status
== Symbol_table::CFVS_NO_OUTPUT_SECTION
)
11206 symval
.set_output_value(value
);
11208 if (gsym
->type() == elfcpp::STT_TLS
)
11209 symval
.set_is_tls_symbol();
11210 else if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
11211 symval
.set_is_ifunc_symbol();
11214 is_defined_in_discarded_section
=
11215 (gsym
->is_defined_in_discarded_section()
11216 && gsym
->is_undefined());
11220 Symbol_value
<32> symval2
;
11221 if (is_defined_in_discarded_section
)
11223 if (comdat_behavior
== CB_UNDETERMINED
)
11225 std::string name
= arm_object
->section_name(relinfo
->data_shndx
);
11226 comdat_behavior
= get_comdat_behavior(name
.c_str());
11228 if (comdat_behavior
== CB_PRETEND
)
11230 // FIXME: This case does not work for global symbols.
11231 // We have no place to store the original section index.
11232 // Fortunately this does not matter for comdat sections,
11233 // only for sections explicitly discarded by a linker
11236 typename
elfcpp::Elf_types
<32>::Elf_Addr value
=
11237 arm_object
->map_to_kept_section(shndx
, &found
);
11239 symval2
.set_output_value(value
+ psymval
->input_value());
11241 symval2
.set_output_value(0);
11245 if (comdat_behavior
== CB_WARNING
)
11246 gold_warning_at_location(relinfo
, i
, offset
,
11247 _("relocation refers to discarded "
11249 symval2
.set_output_value(0);
11251 symval2
.set_no_output_symtab_entry();
11252 psymval
= &symval2
;
11255 // If symbol is a section symbol, we don't know the actual type of
11256 // destination. Give up.
11257 if (psymval
->is_section_symbol())
11260 this->scan_reloc_for_stub(relinfo
, r_type
, sym
, r_sym
, psymval
,
11261 addend
, view_address
+ offset
);
11265 // Scan an input section for stub generation.
11267 template<bool big_endian
>
11269 Target_arm
<big_endian
>::scan_section_for_stubs(
11270 const Relocate_info
<32, big_endian
>* relinfo
,
11271 unsigned int sh_type
,
11272 const unsigned char* prelocs
,
11273 size_t reloc_count
,
11274 Output_section
* output_section
,
11275 bool needs_special_offset_handling
,
11276 const unsigned char* view
,
11277 Arm_address view_address
,
11278 section_size_type view_size
)
11280 if (sh_type
== elfcpp::SHT_REL
)
11281 this->scan_reloc_section_for_stubs
<elfcpp::SHT_REL
>(
11286 needs_special_offset_handling
,
11290 else if (sh_type
== elfcpp::SHT_RELA
)
11291 // We do not support RELA type relocations yet. This is provided for
11293 this->scan_reloc_section_for_stubs
<elfcpp::SHT_RELA
>(
11298 needs_special_offset_handling
,
11303 gold_unreachable();
11306 // Group input sections for stub generation.
11308 // We group input sections in an output section so that the total size,
11309 // including any padding space due to alignment is smaller than GROUP_SIZE
11310 // unless the only input section in group is bigger than GROUP_SIZE already.
11311 // Then an ARM stub table is created to follow the last input section
11312 // in group. For each group an ARM stub table is created an is placed
11313 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11314 // extend the group after the stub table.
11316 template<bool big_endian
>
11318 Target_arm
<big_endian
>::group_sections(
11320 section_size_type group_size
,
11321 bool stubs_always_after_branch
,
11324 // Group input sections and insert stub table
11325 Layout::Section_list section_list
;
11326 layout
->get_allocated_sections(§ion_list
);
11327 for (Layout::Section_list::const_iterator p
= section_list
.begin();
11328 p
!= section_list
.end();
11331 Arm_output_section
<big_endian
>* output_section
=
11332 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
11333 output_section
->group_sections(group_size
, stubs_always_after_branch
,
11338 // Relaxation hook. This is where we do stub generation.
11340 template<bool big_endian
>
11342 Target_arm
<big_endian
>::do_relax(
11344 const Input_objects
* input_objects
,
11345 Symbol_table
* symtab
,
11349 // No need to generate stubs if this is a relocatable link.
11350 gold_assert(!parameters
->options().relocatable());
11352 // If this is the first pass, we need to group input sections into
11354 bool done_exidx_fixup
= false;
11355 typedef typename
Stub_table_list::iterator Stub_table_iterator
;
11358 // Determine the stub group size. The group size is the absolute
11359 // value of the parameter --stub-group-size. If --stub-group-size
11360 // is passed a negative value, we restrict stubs to be always after
11361 // the stubbed branches.
11362 int32_t stub_group_size_param
=
11363 parameters
->options().stub_group_size();
11364 bool stubs_always_after_branch
= stub_group_size_param
< 0;
11365 section_size_type stub_group_size
= abs(stub_group_size_param
);
11367 if (stub_group_size
== 1)
11370 // Thumb branch range is +-4MB has to be used as the default
11371 // maximum size (a given section can contain both ARM and Thumb
11372 // code, so the worst case has to be taken into account). If we are
11373 // fixing cortex-a8 errata, the branch range has to be even smaller,
11374 // since wide conditional branch has a range of +-1MB only.
11376 // This value is 48K less than that, which allows for 4096
11377 // 12-byte stubs. If we exceed that, then we will fail to link.
11378 // The user will have to relink with an explicit group size
11380 stub_group_size
= 4145152;
11383 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11384 // page as the first half of a 32-bit branch straddling two 4K pages.
11385 // This is a crude way of enforcing that. In addition, long conditional
11386 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11387 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11388 // cortex-A8 stubs from long conditional branches.
11389 if (this->fix_cortex_a8_
)
11391 stubs_always_after_branch
= true;
11392 const section_size_type cortex_a8_group_size
= 1024 * (1024 - 12);
11393 stub_group_size
= std::max(stub_group_size
, cortex_a8_group_size
);
11396 group_sections(layout
, stub_group_size
, stubs_always_after_branch
, task
);
11398 // Also fix .ARM.exidx section coverage.
11399 Arm_output_section
<big_endian
>* exidx_output_section
= NULL
;
11400 for (Layout::Section_list::const_iterator p
=
11401 layout
->section_list().begin();
11402 p
!= layout
->section_list().end();
11404 if ((*p
)->type() == elfcpp::SHT_ARM_EXIDX
)
11406 if (exidx_output_section
== NULL
)
11407 exidx_output_section
=
11408 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
11410 // We cannot handle this now.
11411 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11412 "non-relocatable link"),
11413 exidx_output_section
->name(),
11417 if (exidx_output_section
!= NULL
)
11419 this->fix_exidx_coverage(layout
, input_objects
, exidx_output_section
,
11421 done_exidx_fixup
= true;
11426 // If this is not the first pass, addresses and file offsets have
11427 // been reset at this point, set them here.
11428 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
11429 sp
!= this->stub_tables_
.end();
11432 Arm_input_section
<big_endian
>* owner
= (*sp
)->owner();
11433 off_t off
= align_address(owner
->original_size(),
11434 (*sp
)->addralign());
11435 (*sp
)->set_address_and_file_offset(owner
->address() + off
,
11436 owner
->offset() + off
);
11440 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11441 // beginning of each relaxation pass, just blow away all the stubs.
11442 // Alternatively, we could selectively remove only the stubs and reloc
11443 // information for code sections that have moved since the last pass.
11444 // That would require more book-keeping.
11445 if (this->fix_cortex_a8_
)
11447 // Clear all Cortex-A8 reloc information.
11448 for (typename
Cortex_a8_relocs_info::const_iterator p
=
11449 this->cortex_a8_relocs_info_
.begin();
11450 p
!= this->cortex_a8_relocs_info_
.end();
11453 this->cortex_a8_relocs_info_
.clear();
11455 // Remove all Cortex-A8 stubs.
11456 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
11457 sp
!= this->stub_tables_
.end();
11459 (*sp
)->remove_all_cortex_a8_stubs();
11462 // Scan relocs for relocation stubs
11463 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
11464 op
!= input_objects
->relobj_end();
11467 Arm_relobj
<big_endian
>* arm_relobj
=
11468 Arm_relobj
<big_endian
>::as_arm_relobj(*op
);
11469 // Lock the object so we can read from it. This is only called
11470 // single-threaded from Layout::finalize, so it is OK to lock.
11471 Task_lock_obj
<Object
> tl(task
, arm_relobj
);
11472 arm_relobj
->scan_sections_for_stubs(this, symtab
, layout
);
11475 // Check all stub tables to see if any of them have their data sizes
11476 // or addresses alignments changed. These are the only things that
11478 bool any_stub_table_changed
= false;
11479 Unordered_set
<const Output_section
*> sections_needing_adjustment
;
11480 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
11481 (sp
!= this->stub_tables_
.end()) && !any_stub_table_changed
;
11484 if ((*sp
)->update_data_size_and_addralign())
11486 // Update data size of stub table owner.
11487 Arm_input_section
<big_endian
>* owner
= (*sp
)->owner();
11488 uint64_t address
= owner
->address();
11489 off_t offset
= owner
->offset();
11490 owner
->reset_address_and_file_offset();
11491 owner
->set_address_and_file_offset(address
, offset
);
11493 sections_needing_adjustment
.insert(owner
->output_section());
11494 any_stub_table_changed
= true;
11498 // Output_section_data::output_section() returns a const pointer but we
11499 // need to update output sections, so we record all output sections needing
11500 // update above and scan the sections here to find out what sections need
11502 for (Layout::Section_list::const_iterator p
= layout
->section_list().begin();
11503 p
!= layout
->section_list().end();
11506 if (sections_needing_adjustment
.find(*p
)
11507 != sections_needing_adjustment
.end())
11508 (*p
)->set_section_offsets_need_adjustment();
11511 // Stop relaxation if no EXIDX fix-up and no stub table change.
11512 bool continue_relaxation
= done_exidx_fixup
|| any_stub_table_changed
;
11514 // Finalize the stubs in the last relaxation pass.
11515 if (!continue_relaxation
)
11517 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
11518 (sp
!= this->stub_tables_
.end()) && !any_stub_table_changed
;
11520 (*sp
)->finalize_stubs();
11522 // Update output local symbol counts of objects if necessary.
11523 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
11524 op
!= input_objects
->relobj_end();
11527 Arm_relobj
<big_endian
>* arm_relobj
=
11528 Arm_relobj
<big_endian
>::as_arm_relobj(*op
);
11530 // Update output local symbol counts. We need to discard local
11531 // symbols defined in parts of input sections that are discarded by
11533 if (arm_relobj
->output_local_symbol_count_needs_update())
11535 // We need to lock the object's file to update it.
11536 Task_lock_obj
<Object
> tl(task
, arm_relobj
);
11537 arm_relobj
->update_output_local_symbol_count();
11542 return continue_relaxation
;
11545 // Relocate a stub.
11547 template<bool big_endian
>
11549 Target_arm
<big_endian
>::relocate_stub(
11551 const Relocate_info
<32, big_endian
>* relinfo
,
11552 Output_section
* output_section
,
11553 unsigned char* view
,
11554 Arm_address address
,
11555 section_size_type view_size
)
11558 const Stub_template
* stub_template
= stub
->stub_template();
11559 for (size_t i
= 0; i
< stub_template
->reloc_count(); i
++)
11561 size_t reloc_insn_index
= stub_template
->reloc_insn_index(i
);
11562 const Insn_template
* insn
= &stub_template
->insns()[reloc_insn_index
];
11564 unsigned int r_type
= insn
->r_type();
11565 section_size_type reloc_offset
= stub_template
->reloc_offset(i
);
11566 section_size_type reloc_size
= insn
->size();
11567 gold_assert(reloc_offset
+ reloc_size
<= view_size
);
11569 // This is the address of the stub destination.
11570 Arm_address target
= stub
->reloc_target(i
) + insn
->reloc_addend();
11571 Symbol_value
<32> symval
;
11572 symval
.set_output_value(target
);
11574 // Synthesize a fake reloc just in case. We don't have a symbol so
11576 unsigned char reloc_buffer
[elfcpp::Elf_sizes
<32>::rel_size
];
11577 memset(reloc_buffer
, 0, sizeof(reloc_buffer
));
11578 elfcpp::Rel_write
<32, big_endian
> reloc_write(reloc_buffer
);
11579 reloc_write
.put_r_offset(reloc_offset
);
11580 reloc_write
.put_r_info(elfcpp::elf_r_info
<32>(0, r_type
));
11581 elfcpp::Rel
<32, big_endian
> rel(reloc_buffer
);
11583 relocate
.relocate(relinfo
, this, output_section
,
11584 this->fake_relnum_for_stubs
, rel
, r_type
,
11585 NULL
, &symval
, view
+ reloc_offset
,
11586 address
+ reloc_offset
, reloc_size
);
11590 // Determine whether an object attribute tag takes an integer, a
11593 template<bool big_endian
>
11595 Target_arm
<big_endian
>::do_attribute_arg_type(int tag
) const
11597 if (tag
== Object_attribute::Tag_compatibility
)
11598 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11599 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL
);
11600 else if (tag
== elfcpp::Tag_nodefaults
)
11601 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11602 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT
);
11603 else if (tag
== elfcpp::Tag_CPU_raw_name
|| tag
== elfcpp::Tag_CPU_name
)
11604 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL
;
11606 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL
;
11608 return ((tag
& 1) != 0
11609 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11610 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL
);
11613 // Reorder attributes.
11615 // The ABI defines that Tag_conformance should be emitted first, and that
11616 // Tag_nodefaults should be second (if either is defined). This sets those
11617 // two positions, and bumps up the position of all the remaining tags to
11620 template<bool big_endian
>
11622 Target_arm
<big_endian
>::do_attributes_order(int num
) const
11624 // Reorder the known object attributes in output. We want to move
11625 // Tag_conformance to position 4 and Tag_conformance to position 5
11626 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11628 return elfcpp::Tag_conformance
;
11630 return elfcpp::Tag_nodefaults
;
11631 if ((num
- 2) < elfcpp::Tag_nodefaults
)
11633 if ((num
- 1) < elfcpp::Tag_conformance
)
11638 // Scan a span of THUMB code for Cortex-A8 erratum.
11640 template<bool big_endian
>
11642 Target_arm
<big_endian
>::scan_span_for_cortex_a8_erratum(
11643 Arm_relobj
<big_endian
>* arm_relobj
,
11644 unsigned int shndx
,
11645 section_size_type span_start
,
11646 section_size_type span_end
,
11647 const unsigned char* view
,
11648 Arm_address address
)
11650 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11652 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11653 // The branch target is in the same 4KB region as the
11654 // first half of the branch.
11655 // The instruction before the branch is a 32-bit
11656 // length non-branch instruction.
11657 section_size_type i
= span_start
;
11658 bool last_was_32bit
= false;
11659 bool last_was_branch
= false;
11660 while (i
< span_end
)
11662 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
11663 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
+ i
);
11664 uint32_t insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
11665 bool is_blx
= false, is_b
= false;
11666 bool is_bl
= false, is_bcc
= false;
11668 bool insn_32bit
= (insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000;
11671 // Load the rest of the insn (in manual-friendly order).
11672 insn
= (insn
<< 16) | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
11674 // Encoding T4: B<c>.W.
11675 is_b
= (insn
& 0xf800d000U
) == 0xf0009000U
;
11676 // Encoding T1: BL<c>.W.
11677 is_bl
= (insn
& 0xf800d000U
) == 0xf000d000U
;
11678 // Encoding T2: BLX<c>.W.
11679 is_blx
= (insn
& 0xf800d000U
) == 0xf000c000U
;
11680 // Encoding T3: B<c>.W (not permitted in IT block).
11681 is_bcc
= ((insn
& 0xf800d000U
) == 0xf0008000U
11682 && (insn
& 0x07f00000U
) != 0x03800000U
);
11685 bool is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
11687 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11688 // page boundary and it follows 32-bit non-branch instruction,
11689 // we need to work around.
11690 if (is_32bit_branch
11691 && ((address
+ i
) & 0xfffU
) == 0xffeU
11693 && !last_was_branch
)
11695 // Check to see if there is a relocation stub for this branch.
11696 bool force_target_arm
= false;
11697 bool force_target_thumb
= false;
11698 const Cortex_a8_reloc
* cortex_a8_reloc
= NULL
;
11699 Cortex_a8_relocs_info::const_iterator p
=
11700 this->cortex_a8_relocs_info_
.find(address
+ i
);
11702 if (p
!= this->cortex_a8_relocs_info_
.end())
11704 cortex_a8_reloc
= p
->second
;
11705 bool target_is_thumb
= (cortex_a8_reloc
->destination() & 1) != 0;
11707 if (cortex_a8_reloc
->r_type() == elfcpp::R_ARM_THM_CALL
11708 && !target_is_thumb
)
11709 force_target_arm
= true;
11710 else if (cortex_a8_reloc
->r_type() == elfcpp::R_ARM_THM_CALL
11711 && target_is_thumb
)
11712 force_target_thumb
= true;
11716 Stub_type stub_type
= arm_stub_none
;
11718 // Check if we have an offending branch instruction.
11719 uint16_t upper_insn
= (insn
>> 16) & 0xffffU
;
11720 uint16_t lower_insn
= insn
& 0xffffU
;
11721 typedef struct Arm_relocate_functions
<big_endian
> RelocFuncs
;
11723 if (cortex_a8_reloc
!= NULL
11724 && cortex_a8_reloc
->reloc_stub() != NULL
)
11725 // We've already made a stub for this instruction, e.g.
11726 // it's a long branch or a Thumb->ARM stub. Assume that
11727 // stub will suffice to work around the A8 erratum (see
11728 // setting of always_after_branch above).
11732 offset
= RelocFuncs::thumb32_cond_branch_offset(upper_insn
,
11734 stub_type
= arm_stub_a8_veneer_b_cond
;
11736 else if (is_b
|| is_bl
|| is_blx
)
11738 offset
= RelocFuncs::thumb32_branch_offset(upper_insn
,
11743 stub_type
= (is_blx
11744 ? arm_stub_a8_veneer_blx
11746 ? arm_stub_a8_veneer_bl
11747 : arm_stub_a8_veneer_b
));
11750 if (stub_type
!= arm_stub_none
)
11752 Arm_address pc_for_insn
= address
+ i
+ 4;
11754 // The original instruction is a BL, but the target is
11755 // an ARM instruction. If we were not making a stub,
11756 // the BL would have been converted to a BLX. Use the
11757 // BLX stub instead in that case.
11758 if (this->may_use_v5t_interworking() && force_target_arm
11759 && stub_type
== arm_stub_a8_veneer_bl
)
11761 stub_type
= arm_stub_a8_veneer_blx
;
11765 // Conversely, if the original instruction was
11766 // BLX but the target is Thumb mode, use the BL stub.
11767 else if (force_target_thumb
11768 && stub_type
== arm_stub_a8_veneer_blx
)
11770 stub_type
= arm_stub_a8_veneer_bl
;
11778 // If we found a relocation, use the proper destination,
11779 // not the offset in the (unrelocated) instruction.
11780 // Note this is always done if we switched the stub type above.
11781 if (cortex_a8_reloc
!= NULL
)
11782 offset
= (off_t
) (cortex_a8_reloc
->destination() - pc_for_insn
);
11784 Arm_address target
= (pc_for_insn
+ offset
) | (is_blx
? 0 : 1);
11786 // Add a new stub if destination address in in the same page.
11787 if (((address
+ i
) & ~0xfffU
) == (target
& ~0xfffU
))
11789 Cortex_a8_stub
* stub
=
11790 this->stub_factory_
.make_cortex_a8_stub(stub_type
,
11794 Stub_table
<big_endian
>* stub_table
=
11795 arm_relobj
->stub_table(shndx
);
11796 gold_assert(stub_table
!= NULL
);
11797 stub_table
->add_cortex_a8_stub(address
+ i
, stub
);
11802 i
+= insn_32bit
? 4 : 2;
11803 last_was_32bit
= insn_32bit
;
11804 last_was_branch
= is_32bit_branch
;
11808 // Apply the Cortex-A8 workaround.
11810 template<bool big_endian
>
11812 Target_arm
<big_endian
>::apply_cortex_a8_workaround(
11813 const Cortex_a8_stub
* stub
,
11814 Arm_address stub_address
,
11815 unsigned char* insn_view
,
11816 Arm_address insn_address
)
11818 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
11819 Valtype
* wv
= reinterpret_cast<Valtype
*>(insn_view
);
11820 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
11821 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
11822 off_t branch_offset
= stub_address
- (insn_address
+ 4);
11824 typedef struct Arm_relocate_functions
<big_endian
> RelocFuncs
;
11825 switch (stub
->stub_template()->type())
11827 case arm_stub_a8_veneer_b_cond
:
11828 // For a conditional branch, we re-write it to be an unconditional
11829 // branch to the stub. We use the THUMB-2 encoding here.
11830 upper_insn
= 0xf000U
;
11831 lower_insn
= 0xb800U
;
11833 case arm_stub_a8_veneer_b
:
11834 case arm_stub_a8_veneer_bl
:
11835 case arm_stub_a8_veneer_blx
:
11836 if ((lower_insn
& 0x5000U
) == 0x4000U
)
11837 // For a BLX instruction, make sure that the relocation is
11838 // rounded up to a word boundary. This follows the semantics of
11839 // the instruction which specifies that bit 1 of the target
11840 // address will come from bit 1 of the base address.
11841 branch_offset
= (branch_offset
+ 2) & ~3;
11843 // Put BRANCH_OFFSET back into the insn.
11844 gold_assert(!Bits
<25>::has_overflow32(branch_offset
));
11845 upper_insn
= RelocFuncs::thumb32_branch_upper(upper_insn
, branch_offset
);
11846 lower_insn
= RelocFuncs::thumb32_branch_lower(lower_insn
, branch_offset
);
11850 gold_unreachable();
11853 // Put the relocated value back in the object file:
11854 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
11855 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
11858 template<bool big_endian
>
11859 class Target_selector_arm
: public Target_selector
11862 Target_selector_arm()
11863 : Target_selector(elfcpp::EM_ARM
, 32, big_endian
,
11864 (big_endian
? "elf32-bigarm" : "elf32-littlearm"),
11865 (big_endian
? "armelfb" : "armelf"))
11869 do_instantiate_target()
11870 { return new Target_arm
<big_endian
>(); }
11873 // Fix .ARM.exidx section coverage.
11875 template<bool big_endian
>
11877 Target_arm
<big_endian
>::fix_exidx_coverage(
11879 const Input_objects
* input_objects
,
11880 Arm_output_section
<big_endian
>* exidx_section
,
11881 Symbol_table
* symtab
,
11884 // We need to look at all the input sections in output in ascending
11885 // order of of output address. We do that by building a sorted list
11886 // of output sections by addresses. Then we looks at the output sections
11887 // in order. The input sections in an output section are already sorted
11888 // by addresses within the output section.
11890 typedef std::set
<Output_section
*, output_section_address_less_than
>
11891 Sorted_output_section_list
;
11892 Sorted_output_section_list sorted_output_sections
;
11894 // Find out all the output sections of input sections pointed by
11895 // EXIDX input sections.
11896 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
11897 p
!= input_objects
->relobj_end();
11900 Arm_relobj
<big_endian
>* arm_relobj
=
11901 Arm_relobj
<big_endian
>::as_arm_relobj(*p
);
11902 std::vector
<unsigned int> shndx_list
;
11903 arm_relobj
->get_exidx_shndx_list(&shndx_list
);
11904 for (size_t i
= 0; i
< shndx_list
.size(); ++i
)
11906 const Arm_exidx_input_section
* exidx_input_section
=
11907 arm_relobj
->exidx_input_section_by_shndx(shndx_list
[i
]);
11908 gold_assert(exidx_input_section
!= NULL
);
11909 if (!exidx_input_section
->has_errors())
11911 unsigned int text_shndx
= exidx_input_section
->link();
11912 Output_section
* os
= arm_relobj
->output_section(text_shndx
);
11913 if (os
!= NULL
&& (os
->flags() & elfcpp::SHF_ALLOC
) != 0)
11914 sorted_output_sections
.insert(os
);
11919 // Go over the output sections in ascending order of output addresses.
11920 typedef typename Arm_output_section
<big_endian
>::Text_section_list
11922 Text_section_list sorted_text_sections
;
11923 for (typename
Sorted_output_section_list::iterator p
=
11924 sorted_output_sections
.begin();
11925 p
!= sorted_output_sections
.end();
11928 Arm_output_section
<big_endian
>* arm_output_section
=
11929 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
11930 arm_output_section
->append_text_sections_to_list(&sorted_text_sections
);
11933 exidx_section
->fix_exidx_coverage(layout
, sorted_text_sections
, symtab
,
11934 merge_exidx_entries(), task
);
11937 Target_selector_arm
<false> target_selector_arm
;
11938 Target_selector_arm
<true> target_selector_armbe
;
11940 } // End anonymous namespace.