1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
82 this->is_predefined_
= false;
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
89 demangle(const char* name
)
91 if (!parameters
->options().do_demangle())
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
97 if (demangled_name
== NULL
)
100 std::string
retval(demangled_name
);
101 free(demangled_name
);
106 Symbol::demangled_name() const
108 return demangle(this->name());
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 template<int size
, bool big_endian
>
115 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
116 const elfcpp::Sym
<size
, big_endian
>& sym
,
117 unsigned int st_shndx
, bool is_ordinary
)
119 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
120 sym
.get_st_visibility(), sym
.get_st_nonvis());
121 this->u_
.from_object
.object
= object
;
122 this->u_
.from_object
.shndx
= st_shndx
;
123 this->is_ordinary_shndx_
= is_ordinary
;
124 this->source_
= FROM_OBJECT
;
125 this->in_reg_
= !object
->is_dynamic();
126 this->in_dyn_
= object
->is_dynamic();
127 this->in_real_elf_
= object
->pluginobj() == NULL
;
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
134 Symbol::init_base_output_data(const char* name
, const char* version
,
135 Output_data
* od
, elfcpp::STT type
,
136 elfcpp::STB binding
, elfcpp::STV visibility
,
137 unsigned char nonvis
, bool offset_is_from_end
,
140 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
141 this->u_
.in_output_data
.output_data
= od
;
142 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
143 this->source_
= IN_OUTPUT_DATA
;
144 this->in_reg_
= true;
145 this->in_real_elf_
= true;
146 this->is_predefined_
= is_predefined
;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
153 Symbol::init_base_output_segment(const char* name
, const char* version
,
154 Output_segment
* os
, elfcpp::STT type
,
155 elfcpp::STB binding
, elfcpp::STV visibility
,
156 unsigned char nonvis
,
157 Segment_offset_base offset_base
,
160 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
161 this->u_
.in_output_segment
.output_segment
= os
;
162 this->u_
.in_output_segment
.offset_base
= offset_base
;
163 this->source_
= IN_OUTPUT_SEGMENT
;
164 this->in_reg_
= true;
165 this->in_real_elf_
= true;
166 this->is_predefined_
= is_predefined
;
169 // Initialize the fields in the base class Symbol for a symbol defined
173 Symbol::init_base_constant(const char* name
, const char* version
,
174 elfcpp::STT type
, elfcpp::STB binding
,
175 elfcpp::STV visibility
, unsigned char nonvis
,
178 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
179 this->source_
= IS_CONSTANT
;
180 this->in_reg_
= true;
181 this->in_real_elf_
= true;
182 this->is_predefined_
= is_predefined
;
185 // Initialize the fields in the base class Symbol for an undefined
189 Symbol::init_base_undefined(const char* name
, const char* version
,
190 elfcpp::STT type
, elfcpp::STB binding
,
191 elfcpp::STV visibility
, unsigned char nonvis
)
193 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
194 this->dynsym_index_
= -1U;
195 this->source_
= IS_UNDEFINED
;
196 this->in_reg_
= true;
197 this->in_real_elf_
= true;
200 // Allocate a common symbol in the base.
203 Symbol::allocate_base_common(Output_data
* od
)
205 gold_assert(this->is_common());
206 this->source_
= IN_OUTPUT_DATA
;
207 this->u_
.in_output_data
.output_data
= od
;
208 this->u_
.in_output_data
.offset_is_from_end
= false;
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214 template<bool big_endian
>
216 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
218 const elfcpp::Sym
<size
, big_endian
>& sym
,
219 unsigned int st_shndx
, bool is_ordinary
)
221 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
222 this->value_
= sym
.get_st_value();
223 this->symsize_
= sym
.get_st_size();
226 // Initialize the fields in Sized_symbol for a symbol defined in an
231 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
232 Output_data
* od
, Value_type value
,
233 Size_type symsize
, elfcpp::STT type
,
235 elfcpp::STV visibility
,
236 unsigned char nonvis
,
237 bool offset_is_from_end
,
240 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
241 nonvis
, offset_is_from_end
, is_predefined
);
242 this->value_
= value
;
243 this->symsize_
= symsize
;
246 // Initialize the fields in Sized_symbol for a symbol defined in an
251 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
252 Output_segment
* os
, Value_type value
,
253 Size_type symsize
, elfcpp::STT type
,
255 elfcpp::STV visibility
,
256 unsigned char nonvis
,
257 Segment_offset_base offset_base
,
260 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
261 nonvis
, offset_base
, is_predefined
);
262 this->value_
= value
;
263 this->symsize_
= symsize
;
266 // Initialize the fields in Sized_symbol for a symbol defined as a
271 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
272 Value_type value
, Size_type symsize
,
273 elfcpp::STT type
, elfcpp::STB binding
,
274 elfcpp::STV visibility
, unsigned char nonvis
,
277 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
,
279 this->value_
= value
;
280 this->symsize_
= symsize
;
283 // Initialize the fields in Sized_symbol for an undefined symbol.
287 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
288 elfcpp::STT type
, elfcpp::STB binding
,
289 elfcpp::STV visibility
, unsigned char nonvis
)
291 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
300 Symbol::versioned_name() const
302 gold_assert(this->version_
!= NULL
);
303 std::string ret
= this->name_
;
307 ret
+= this->version_
;
311 // Return true if SHNDX represents a common symbol.
314 Symbol::is_common_shndx(unsigned int shndx
)
316 return (shndx
== elfcpp::SHN_COMMON
317 || shndx
== parameters
->target().small_common_shndx()
318 || shndx
== parameters
->target().large_common_shndx());
321 // Allocate a common symbol.
325 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
327 this->allocate_base_common(od
);
328 this->value_
= value
;
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334 // Return true if this symbol should be added to the dynamic symbol
338 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
340 // If the symbol is only present on plugin files, the plugin decided we
342 if (!this->in_real_elf())
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters
->options().gc_sections()
353 && !parameters
->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
357 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
359 unsigned int shndx
= this->shndx(&is_ordinary
);
360 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
361 && !relobj
->is_section_included(shndx
)
362 && !symtab
->is_section_folded(relobj
, shndx
))
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters
->options().in_dynamic_list(this->name()))
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters
->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT
)
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters
->options().dynamic_list_cpp_new()
383 || parameters
->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name
= cplus_demangle(this->name(),
389 DMGL_ANSI
| DMGL_PARAMS
);
390 if (demangled_name
== NULL
)
392 // Not a C++ symbol, so it can't satisfy these flags
394 else if (parameters
->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name
, "operator new")
396 || strprefix(demangled_name
, "operator delete")))
398 free(demangled_name
);
401 else if (parameters
->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name
, "typeinfo name for")
403 || strprefix(demangled_name
, "typeinfo for")))
405 free(demangled_name
);
409 free(demangled_name
);
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
424 // Return true if the final value of this symbol is known at link
428 Symbol::final_value_is_known() const
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters
->options().output_is_position_independent()
433 || parameters
->options().relocatable())
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_
!= FROM_OBJECT
)
440 if (this->source_
!= IS_UNDEFINED
)
445 // If the symbol is from a dynamic object, then the final value
447 if (this->object()->is_dynamic())
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters
->doing_static_link();
463 // Return the output section where this symbol is defined.
466 Symbol::output_section() const
468 switch (this->source_
)
472 unsigned int shndx
= this->u_
.from_object
.shndx
;
473 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
475 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
476 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
477 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
478 return relobj
->output_section(shndx
);
484 return this->u_
.in_output_data
.output_data
->output_section();
486 case IN_OUTPUT_SEGMENT
:
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
501 Symbol::set_output_section(Output_section
* os
)
503 switch (this->source_
)
507 gold_assert(this->output_section() == os
);
510 this->source_
= IN_OUTPUT_DATA
;
511 this->u_
.in_output_data
.output_data
= os
;
512 this->u_
.in_output_data
.offset_is_from_end
= false;
514 case IN_OUTPUT_SEGMENT
:
521 // Class Symbol_table.
523 Symbol_table::Symbol_table(unsigned int count
,
524 const Version_script_info
& version_script
)
525 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
530 namepool_
.reserve(count
);
533 Symbol_table::~Symbol_table()
537 // The symbol table key equality function. This is called with
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
542 const Symbol_table_key
& k2
) const
544 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
548 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
550 return (parameters
->options().icf_enabled()
551 && this->icf_
->is_section_folded(obj
, shndx
));
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
558 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
560 for (options::String_set::const_iterator p
=
561 parameters
->options().undefined_begin();
562 p
!= parameters
->options().undefined_end();
565 const char* name
= p
->c_str();
566 Symbol
* sym
= this->lookup(name
);
567 gold_assert(sym
!= NULL
);
568 if (sym
->source() == Symbol::FROM_OBJECT
569 && !sym
->object()->is_dynamic())
571 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
573 unsigned int shndx
= sym
->shndx(&is_ordinary
);
576 gold_assert(this->gc_
!= NULL
);
577 this->gc_
->worklist().push(Section_id(obj
, shndx
));
582 for (Script_options::referenced_const_iterator p
=
583 layout
->script_options()->referenced_begin();
584 p
!= layout
->script_options()->referenced_end();
587 Symbol
* sym
= this->lookup(p
->c_str());
588 gold_assert(sym
!= NULL
);
589 if (sym
->source() == Symbol::FROM_OBJECT
590 && !sym
->object()->is_dynamic())
592 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
594 unsigned int shndx
= sym
->shndx(&is_ordinary
);
597 gold_assert(this->gc_
!= NULL
);
598 this->gc_
->worklist().push(Section_id(obj
, shndx
));
605 Symbol_table::gc_mark_symbol(Symbol
* sym
)
607 // Add the object and section to the work list.
608 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
610 unsigned int shndx
= sym
->shndx(&is_ordinary
);
611 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
613 gold_assert(this->gc_
!= NULL
);
614 this->gc_
->worklist().push(Section_id(obj
, shndx
));
618 // When doing garbage collection, keep symbols that have been seen in
621 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
623 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
624 && !sym
->object()->is_dynamic())
625 this->gc_mark_symbol(sym
);
628 // Make TO a symbol which forwards to FROM.
631 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
633 gold_assert(from
!= to
);
634 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
635 this->forwarders_
[from
] = to
;
636 from
->set_forwarder();
639 // Resolve the forwards from FROM, returning the real symbol.
642 Symbol_table::resolve_forwards(const Symbol
* from
) const
644 gold_assert(from
->is_forwarder());
645 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
646 this->forwarders_
.find(from
);
647 gold_assert(p
!= this->forwarders_
.end());
651 // Look up a symbol by name.
654 Symbol_table::lookup(const char* name
, const char* version
) const
656 Stringpool::Key name_key
;
657 name
= this->namepool_
.find(name
, &name_key
);
661 Stringpool::Key version_key
= 0;
664 version
= this->namepool_
.find(version
, &version_key
);
669 Symbol_table_key
key(name_key
, version_key
);
670 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
671 if (p
== this->table_
.end())
676 // Resolve a Symbol with another Symbol. This is only used in the
677 // unusual case where there are references to both an unversioned
678 // symbol and a symbol with a version, and we then discover that that
679 // version is the default version. Because this is unusual, we do
680 // this the slow way, by converting back to an ELF symbol.
682 template<int size
, bool big_endian
>
684 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
686 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
687 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
688 // We don't bother to set the st_name or the st_shndx field.
689 esym
.put_st_value(from
->value());
690 esym
.put_st_size(from
->symsize());
691 esym
.put_st_info(from
->binding(), from
->type());
692 esym
.put_st_other(from
->visibility(), from
->nonvis());
694 unsigned int shndx
= from
->shndx(&is_ordinary
);
695 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
701 if (parameters
->options().gc_sections())
702 this->gc_mark_dyn_syms(to
);
705 // Record that a symbol is forced to be local by a version script or
709 Symbol_table::force_local(Symbol
* sym
)
711 if (!sym
->is_defined() && !sym
->is_common())
713 if (sym
->is_forced_local())
715 // We already got this one.
718 sym
->set_is_forced_local();
719 this->forced_locals_
.push_back(sym
);
722 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
723 // is only called for undefined symbols, when at least one --wrap
727 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
729 // For some targets, we need to ignore a specific character when
730 // wrapping, and add it back later.
732 if (name
[0] == parameters
->target().wrap_char())
738 if (parameters
->options().is_wrap(name
))
740 // Turn NAME into __wrap_NAME.
747 // This will give us both the old and new name in NAMEPOOL_, but
748 // that is OK. Only the versions we need will wind up in the
749 // real string table in the output file.
750 return this->namepool_
.add(s
.c_str(), true, name_key
);
753 const char* const real_prefix
= "__real_";
754 const size_t real_prefix_length
= strlen(real_prefix
);
755 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
756 && parameters
->options().is_wrap(name
+ real_prefix_length
))
758 // Turn __real_NAME into NAME.
762 s
+= name
+ real_prefix_length
;
763 return this->namepool_
.add(s
.c_str(), true, name_key
);
769 // This is called when we see a symbol NAME/VERSION, and the symbol
770 // already exists in the symbol table, and VERSION is marked as being
771 // the default version. SYM is the NAME/VERSION symbol we just added.
772 // DEFAULT_IS_NEW is true if this is the first time we have seen the
773 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
775 template<int size
, bool big_endian
>
777 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
779 Symbol_table_type::iterator pdef
)
783 // This is the first time we have seen NAME/NULL. Make
784 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
787 sym
->set_is_default();
789 else if (pdef
->second
== sym
)
791 // NAME/NULL already points to NAME/VERSION. Don't mark the
792 // symbol as the default if it is not already the default.
796 // This is the unfortunate case where we already have entries
797 // for both NAME/VERSION and NAME/NULL. We now see a symbol
798 // NAME/VERSION where VERSION is the default version. We have
799 // already resolved this new symbol with the existing
800 // NAME/VERSION symbol.
802 // It's possible that NAME/NULL and NAME/VERSION are both
803 // defined in regular objects. This can only happen if one
804 // object file defines foo and another defines foo@@ver. This
805 // is somewhat obscure, but we call it a multiple definition
808 // It's possible that NAME/NULL actually has a version, in which
809 // case it won't be the same as VERSION. This happens with
810 // ver_test_7.so in the testsuite for the symbol t2_2. We see
811 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
812 // then see an unadorned t2_2 in an object file and give it
813 // version VER1 from the version script. This looks like a
814 // default definition for VER1, so it looks like we should merge
815 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
816 // not obvious that this is an error, either. So we just punt.
818 // If one of the symbols has non-default visibility, and the
819 // other is defined in a shared object, then they are different
822 // Otherwise, we just resolve the symbols as though they were
825 if (pdef
->second
->version() != NULL
)
826 gold_assert(pdef
->second
->version() != sym
->version());
827 else if (sym
->visibility() != elfcpp::STV_DEFAULT
828 && pdef
->second
->is_from_dynobj())
830 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
831 && sym
->is_from_dynobj())
835 const Sized_symbol
<size
>* symdef
;
836 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
837 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
838 this->make_forwarder(pdef
->second
, sym
);
840 sym
->set_is_default();
845 // Add one symbol from OBJECT to the symbol table. NAME is symbol
846 // name and VERSION is the version; both are canonicalized. DEF is
847 // whether this is the default version. ST_SHNDX is the symbol's
848 // section index; IS_ORDINARY is whether this is a normal section
849 // rather than a special code.
851 // If IS_DEFAULT_VERSION is true, then this is the definition of a
852 // default version of a symbol. That means that any lookup of
853 // NAME/NULL and any lookup of NAME/VERSION should always return the
854 // same symbol. This is obvious for references, but in particular we
855 // want to do this for definitions: overriding NAME/NULL should also
856 // override NAME/VERSION. If we don't do that, it would be very hard
857 // to override functions in a shared library which uses versioning.
859 // We implement this by simply making both entries in the hash table
860 // point to the same Symbol structure. That is easy enough if this is
861 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
862 // that we have seen both already, in which case they will both have
863 // independent entries in the symbol table. We can't simply change
864 // the symbol table entry, because we have pointers to the entries
865 // attached to the object files. So we mark the entry attached to the
866 // object file as a forwarder, and record it in the forwarders_ map.
867 // Note that entries in the hash table will never be marked as
870 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
871 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
872 // for a special section code. ST_SHNDX may be modified if the symbol
873 // is defined in a section being discarded.
875 template<int size
, bool big_endian
>
877 Symbol_table::add_from_object(Object
* object
,
879 Stringpool::Key name_key
,
881 Stringpool::Key version_key
,
882 bool is_default_version
,
883 const elfcpp::Sym
<size
, big_endian
>& sym
,
884 unsigned int st_shndx
,
886 unsigned int orig_st_shndx
)
888 // Print a message if this symbol is being traced.
889 if (parameters
->options().is_trace_symbol(name
))
891 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
892 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
894 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
897 // For an undefined symbol, we may need to adjust the name using
899 if (orig_st_shndx
== elfcpp::SHN_UNDEF
900 && parameters
->options().any_wrap())
902 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
903 if (wrap_name
!= name
)
905 // If we see a reference to malloc with version GLIBC_2.0,
906 // and we turn it into a reference to __wrap_malloc, then we
907 // discard the version number. Otherwise the user would be
908 // required to specify the correct version for
916 Symbol
* const snull
= NULL
;
917 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
918 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
921 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
922 std::make_pair(this->table_
.end(), false);
923 if (is_default_version
)
925 const Stringpool::Key vnull_key
= 0;
926 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
931 // ins.first: an iterator, which is a pointer to a pair.
932 // ins.first->first: the key (a pair of name and version).
933 // ins.first->second: the value (Symbol*).
934 // ins.second: true if new entry was inserted, false if not.
936 Sized_symbol
<size
>* ret
;
941 // We already have an entry for NAME/VERSION.
942 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
943 gold_assert(ret
!= NULL
);
945 was_undefined
= ret
->is_undefined();
946 was_common
= ret
->is_common();
948 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
950 if (parameters
->options().gc_sections())
951 this->gc_mark_dyn_syms(ret
);
953 if (is_default_version
)
954 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
959 // This is the first time we have seen NAME/VERSION.
960 gold_assert(ins
.first
->second
== NULL
);
962 if (is_default_version
&& !insdefault
.second
)
964 // We already have an entry for NAME/NULL. If we override
965 // it, then change it to NAME/VERSION.
966 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
968 was_undefined
= ret
->is_undefined();
969 was_common
= ret
->is_common();
971 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
973 if (parameters
->options().gc_sections())
974 this->gc_mark_dyn_syms(ret
);
975 ins
.first
->second
= ret
;
979 was_undefined
= false;
982 Sized_target
<size
, big_endian
>* target
=
983 parameters
->sized_target
<size
, big_endian
>();
984 if (!target
->has_make_symbol())
985 ret
= new Sized_symbol
<size
>();
988 ret
= target
->make_symbol();
991 // This means that we don't want a symbol table
993 if (!is_default_version
)
994 this->table_
.erase(ins
.first
);
997 this->table_
.erase(insdefault
.first
);
998 // Inserting INSDEFAULT invalidated INS.
999 this->table_
.erase(std::make_pair(name_key
,
1006 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
1008 ins
.first
->second
= ret
;
1009 if (is_default_version
)
1011 // This is the first time we have seen NAME/NULL. Point
1012 // it at the new entry for NAME/VERSION.
1013 gold_assert(insdefault
.second
);
1014 insdefault
.first
->second
= ret
;
1018 if (is_default_version
)
1019 ret
->set_is_default();
1022 // Record every time we see a new undefined symbol, to speed up
1024 if (!was_undefined
&& ret
->is_undefined())
1026 ++this->saw_undefined_
;
1027 if (parameters
->options().has_plugins())
1028 parameters
->options().plugins()->new_undefined_symbol(ret
);
1031 // Keep track of common symbols, to speed up common symbol
1033 if (!was_common
&& ret
->is_common())
1035 if (ret
->type() == elfcpp::STT_TLS
)
1036 this->tls_commons_
.push_back(ret
);
1037 else if (!is_ordinary
1038 && st_shndx
== parameters
->target().small_common_shndx())
1039 this->small_commons_
.push_back(ret
);
1040 else if (!is_ordinary
1041 && st_shndx
== parameters
->target().large_common_shndx())
1042 this->large_commons_
.push_back(ret
);
1044 this->commons_
.push_back(ret
);
1047 // If we're not doing a relocatable link, then any symbol with
1048 // hidden or internal visibility is local.
1049 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1050 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1051 && (ret
->binding() == elfcpp::STB_GLOBAL
1052 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1053 || ret
->binding() == elfcpp::STB_WEAK
)
1054 && !parameters
->options().relocatable())
1055 this->force_local(ret
);
1060 // Add all the symbols in a relocatable object to the hash table.
1062 template<int size
, bool big_endian
>
1064 Symbol_table::add_from_relobj(
1065 Sized_relobj_file
<size
, big_endian
>* relobj
,
1066 const unsigned char* syms
,
1068 size_t symndx_offset
,
1069 const char* sym_names
,
1070 size_t sym_name_size
,
1071 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1076 gold_assert(size
== parameters
->target().get_size());
1078 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1080 const bool just_symbols
= relobj
->just_symbols();
1082 const unsigned char* p
= syms
;
1083 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1085 (*sympointers
)[i
] = NULL
;
1087 elfcpp::Sym
<size
, big_endian
> sym(p
);
1089 unsigned int st_name
= sym
.get_st_name();
1090 if (st_name
>= sym_name_size
)
1092 relobj
->error(_("bad global symbol name offset %u at %zu"),
1097 const char* name
= sym_names
+ st_name
;
1100 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1103 unsigned int orig_st_shndx
= st_shndx
;
1105 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1107 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1110 // A symbol defined in a section which we are not including must
1111 // be treated as an undefined symbol.
1112 bool is_defined_in_discarded_section
= false;
1113 if (st_shndx
!= elfcpp::SHN_UNDEF
1115 && !relobj
->is_section_included(st_shndx
)
1116 && !this->is_section_folded(relobj
, st_shndx
))
1118 st_shndx
= elfcpp::SHN_UNDEF
;
1119 is_defined_in_discarded_section
= true;
1122 // In an object file, an '@' in the name separates the symbol
1123 // name from the version name. If there are two '@' characters,
1124 // this is the default version.
1125 const char* ver
= strchr(name
, '@');
1126 Stringpool::Key ver_key
= 0;
1128 // IS_DEFAULT_VERSION: is the version default?
1129 // IS_FORCED_LOCAL: is the symbol forced local?
1130 bool is_default_version
= false;
1131 bool is_forced_local
= false;
1133 // FIXME: For incremental links, we don't store version information,
1134 // so we need to ignore version symbols for now.
1135 if (parameters
->incremental_update() && ver
!= NULL
)
1137 namelen
= ver
- name
;
1143 // The symbol name is of the form foo@VERSION or foo@@VERSION
1144 namelen
= ver
- name
;
1148 is_default_version
= true;
1151 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1153 // We don't want to assign a version to an undefined symbol,
1154 // even if it is listed in the version script. FIXME: What
1155 // about a common symbol?
1158 namelen
= strlen(name
);
1159 if (!this->version_script_
.empty()
1160 && st_shndx
!= elfcpp::SHN_UNDEF
)
1162 // The symbol name did not have a version, but the
1163 // version script may assign a version anyway.
1164 std::string version
;
1166 if (this->version_script_
.get_symbol_version(name
, &version
,
1170 is_forced_local
= true;
1171 else if (!version
.empty())
1173 ver
= this->namepool_
.add_with_length(version
.c_str(),
1177 is_default_version
= true;
1183 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1184 unsigned char symbuf
[sym_size
];
1185 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1188 memcpy(symbuf
, p
, sym_size
);
1189 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1190 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
1192 && relobj
->e_type() == elfcpp::ET_REL
)
1194 // Symbol values in relocatable object files are section
1195 // relative. This is normally what we want, but since here
1196 // we are converting the symbol to absolute we need to add
1197 // the section address. The section address in an object
1198 // file is normally zero, but people can use a linker
1199 // script to change it.
1200 sw
.put_st_value(sym
.get_st_value()
1201 + relobj
->section_address(orig_st_shndx
));
1203 st_shndx
= elfcpp::SHN_ABS
;
1204 is_ordinary
= false;
1208 // Fix up visibility if object has no-export set.
1209 if (relobj
->no_export()
1210 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1212 // We may have copied symbol already above.
1215 memcpy(symbuf
, p
, sym_size
);
1219 elfcpp::STV visibility
= sym2
.get_st_visibility();
1220 if (visibility
== elfcpp::STV_DEFAULT
1221 || visibility
== elfcpp::STV_PROTECTED
)
1223 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1224 unsigned char nonvis
= sym2
.get_st_nonvis();
1225 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1229 Stringpool::Key name_key
;
1230 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1233 Sized_symbol
<size
>* res
;
1234 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1235 is_default_version
, *psym
, st_shndx
,
1236 is_ordinary
, orig_st_shndx
);
1238 if (is_forced_local
)
1239 this->force_local(res
);
1241 // Do not treat this symbol as garbage if this symbol will be
1242 // exported to the dynamic symbol table. This is true when
1243 // building a shared library or using --export-dynamic and
1244 // the symbol is externally visible.
1245 if (parameters
->options().gc_sections()
1246 && res
->is_externally_visible()
1247 && !res
->is_from_dynobj()
1248 && (parameters
->options().shared()
1249 || parameters
->options().export_dynamic()))
1250 this->gc_mark_symbol(res
);
1252 if (is_defined_in_discarded_section
)
1253 res
->set_is_defined_in_discarded_section();
1255 (*sympointers
)[i
] = res
;
1259 // Add a symbol from a plugin-claimed file.
1261 template<int size
, bool big_endian
>
1263 Symbol_table::add_from_pluginobj(
1264 Sized_pluginobj
<size
, big_endian
>* obj
,
1267 elfcpp::Sym
<size
, big_endian
>* sym
)
1269 unsigned int st_shndx
= sym
->get_st_shndx();
1270 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1272 Stringpool::Key ver_key
= 0;
1273 bool is_default_version
= false;
1274 bool is_forced_local
= false;
1278 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1280 // We don't want to assign a version to an undefined symbol,
1281 // even if it is listed in the version script. FIXME: What
1282 // about a common symbol?
1285 if (!this->version_script_
.empty()
1286 && st_shndx
!= elfcpp::SHN_UNDEF
)
1288 // The symbol name did not have a version, but the
1289 // version script may assign a version anyway.
1290 std::string version
;
1292 if (this->version_script_
.get_symbol_version(name
, &version
,
1296 is_forced_local
= true;
1297 else if (!version
.empty())
1299 ver
= this->namepool_
.add_with_length(version
.c_str(),
1303 is_default_version
= true;
1309 Stringpool::Key name_key
;
1310 name
= this->namepool_
.add(name
, true, &name_key
);
1312 Sized_symbol
<size
>* res
;
1313 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1314 is_default_version
, *sym
, st_shndx
,
1315 is_ordinary
, st_shndx
);
1317 if (is_forced_local
)
1318 this->force_local(res
);
1323 // Add all the symbols in a dynamic object to the hash table.
1325 template<int size
, bool big_endian
>
1327 Symbol_table::add_from_dynobj(
1328 Sized_dynobj
<size
, big_endian
>* dynobj
,
1329 const unsigned char* syms
,
1331 const char* sym_names
,
1332 size_t sym_name_size
,
1333 const unsigned char* versym
,
1335 const std::vector
<const char*>* version_map
,
1336 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1341 gold_assert(size
== parameters
->target().get_size());
1343 if (dynobj
->just_symbols())
1345 gold_error(_("--just-symbols does not make sense with a shared object"));
1349 // FIXME: For incremental links, we don't store version information,
1350 // so we need to ignore version symbols for now.
1351 if (parameters
->incremental_update())
1354 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1356 dynobj
->error(_("too few symbol versions"));
1360 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1362 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1363 // weak aliases. This is necessary because if the dynamic object
1364 // provides the same variable under two names, one of which is a
1365 // weak definition, and the regular object refers to the weak
1366 // definition, we have to put both the weak definition and the
1367 // strong definition into the dynamic symbol table. Given a weak
1368 // definition, the only way that we can find the corresponding
1369 // strong definition, if any, is to search the symbol table.
1370 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1372 const unsigned char* p
= syms
;
1373 const unsigned char* vs
= versym
;
1374 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1376 elfcpp::Sym
<size
, big_endian
> sym(p
);
1378 if (sympointers
!= NULL
)
1379 (*sympointers
)[i
] = NULL
;
1381 // Ignore symbols with local binding or that have
1382 // internal or hidden visibility.
1383 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1384 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1385 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1388 // A protected symbol in a shared library must be treated as a
1389 // normal symbol when viewed from outside the shared library.
1390 // Implement this by overriding the visibility here.
1391 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1392 unsigned char symbuf
[sym_size
];
1393 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1394 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1396 memcpy(symbuf
, p
, sym_size
);
1397 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1398 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1402 unsigned int st_name
= psym
->get_st_name();
1403 if (st_name
>= sym_name_size
)
1405 dynobj
->error(_("bad symbol name offset %u at %zu"),
1410 const char* name
= sym_names
+ st_name
;
1413 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1416 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1419 Sized_symbol
<size
>* res
;
1423 Stringpool::Key name_key
;
1424 name
= this->namepool_
.add(name
, true, &name_key
);
1425 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1426 false, *psym
, st_shndx
, is_ordinary
,
1431 // Read the version information.
1433 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1435 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1436 v
&= elfcpp::VERSYM_VERSION
;
1438 // The Sun documentation says that V can be VER_NDX_LOCAL,
1439 // or VER_NDX_GLOBAL, or a version index. The meaning of
1440 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1441 // The old GNU linker will happily generate VER_NDX_LOCAL
1442 // for an undefined symbol. I don't know what the Sun
1443 // linker will generate.
1445 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1446 && st_shndx
!= elfcpp::SHN_UNDEF
)
1448 // This symbol should not be visible outside the object.
1452 // At this point we are definitely going to add this symbol.
1453 Stringpool::Key name_key
;
1454 name
= this->namepool_
.add(name
, true, &name_key
);
1456 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1457 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1459 // This symbol does not have a version.
1460 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1461 false, *psym
, st_shndx
, is_ordinary
,
1466 if (v
>= version_map
->size())
1468 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1473 const char* version
= (*version_map
)[v
];
1474 if (version
== NULL
)
1476 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1481 Stringpool::Key version_key
;
1482 version
= this->namepool_
.add(version
, true, &version_key
);
1484 // If this is an absolute symbol, and the version name
1485 // and symbol name are the same, then this is the
1486 // version definition symbol. These symbols exist to
1487 // support using -u to pull in particular versions. We
1488 // do not want to record a version for them.
1489 if (st_shndx
== elfcpp::SHN_ABS
1491 && name_key
== version_key
)
1492 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1493 false, *psym
, st_shndx
, is_ordinary
,
1497 const bool is_default_version
=
1498 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1499 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1500 version_key
, is_default_version
,
1502 is_ordinary
, st_shndx
);
1507 // Note that it is possible that RES was overridden by an
1508 // earlier object, in which case it can't be aliased here.
1509 if (st_shndx
!= elfcpp::SHN_UNDEF
1511 && psym
->get_st_type() == elfcpp::STT_OBJECT
1512 && res
->source() == Symbol::FROM_OBJECT
1513 && res
->object() == dynobj
)
1514 object_symbols
.push_back(res
);
1516 if (sympointers
!= NULL
)
1517 (*sympointers
)[i
] = res
;
1520 this->record_weak_aliases(&object_symbols
);
1523 // Add a symbol from a incremental object file.
1525 template<int size
, bool big_endian
>
1527 Symbol_table::add_from_incrobj(
1531 elfcpp::Sym
<size
, big_endian
>* sym
)
1533 unsigned int st_shndx
= sym
->get_st_shndx();
1534 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1536 Stringpool::Key ver_key
= 0;
1537 bool is_default_version
= false;
1538 bool is_forced_local
= false;
1540 Stringpool::Key name_key
;
1541 name
= this->namepool_
.add(name
, true, &name_key
);
1543 Sized_symbol
<size
>* res
;
1544 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1545 is_default_version
, *sym
, st_shndx
,
1546 is_ordinary
, st_shndx
);
1548 if (is_forced_local
)
1549 this->force_local(res
);
1554 // This is used to sort weak aliases. We sort them first by section
1555 // index, then by offset, then by weak ahead of strong.
1558 class Weak_alias_sorter
1561 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1566 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1567 const Sized_symbol
<size
>* s2
) const
1570 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1571 gold_assert(is_ordinary
);
1572 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1573 gold_assert(is_ordinary
);
1574 if (s1_shndx
!= s2_shndx
)
1575 return s1_shndx
< s2_shndx
;
1577 if (s1
->value() != s2
->value())
1578 return s1
->value() < s2
->value();
1579 if (s1
->binding() != s2
->binding())
1581 if (s1
->binding() == elfcpp::STB_WEAK
)
1583 if (s2
->binding() == elfcpp::STB_WEAK
)
1586 return std::string(s1
->name()) < std::string(s2
->name());
1589 // SYMBOLS is a list of object symbols from a dynamic object. Look
1590 // for any weak aliases, and record them so that if we add the weak
1591 // alias to the dynamic symbol table, we also add the corresponding
1596 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1598 // Sort the vector by section index, then by offset, then by weak
1600 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1602 // Walk through the vector. For each weak definition, record
1604 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1606 p
!= symbols
->end();
1609 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1612 // Build a circular list of weak aliases. Each symbol points to
1613 // the next one in the circular list.
1615 Sized_symbol
<size
>* from_sym
= *p
;
1616 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1617 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1620 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1621 || (*q
)->value() != from_sym
->value())
1624 this->weak_aliases_
[from_sym
] = *q
;
1625 from_sym
->set_has_alias();
1631 this->weak_aliases_
[from_sym
] = *p
;
1632 from_sym
->set_has_alias();
1639 // Create and return a specially defined symbol. If ONLY_IF_REF is
1640 // true, then only create the symbol if there is a reference to it.
1641 // If this does not return NULL, it sets *POLDSYM to the existing
1642 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1643 // resolve the newly created symbol to the old one. This
1644 // canonicalizes *PNAME and *PVERSION.
1646 template<int size
, bool big_endian
>
1648 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1650 Sized_symbol
<size
>** poldsym
,
1651 bool* resolve_oldsym
)
1653 *resolve_oldsym
= false;
1655 // If the caller didn't give us a version, see if we get one from
1656 // the version script.
1658 bool is_default_version
= false;
1659 if (*pversion
== NULL
)
1662 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1664 if (is_global
&& !v
.empty())
1666 *pversion
= v
.c_str();
1667 // If we get the version from a version script, then we
1668 // are also the default version.
1669 is_default_version
= true;
1675 Sized_symbol
<size
>* sym
;
1677 bool add_to_table
= false;
1678 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1679 bool add_def_to_table
= false;
1680 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1684 oldsym
= this->lookup(*pname
, *pversion
);
1685 if (oldsym
== NULL
&& is_default_version
)
1686 oldsym
= this->lookup(*pname
, NULL
);
1687 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1690 *pname
= oldsym
->name();
1691 if (is_default_version
)
1692 *pversion
= this->namepool_
.add(*pversion
, true, NULL
);
1694 *pversion
= oldsym
->version();
1698 // Canonicalize NAME and VERSION.
1699 Stringpool::Key name_key
;
1700 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1702 Stringpool::Key version_key
= 0;
1703 if (*pversion
!= NULL
)
1704 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1706 Symbol
* const snull
= NULL
;
1707 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1708 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1712 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1713 std::make_pair(this->table_
.end(), false);
1714 if (is_default_version
)
1716 const Stringpool::Key vnull
= 0;
1718 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1725 // We already have a symbol table entry for NAME/VERSION.
1726 oldsym
= ins
.first
->second
;
1727 gold_assert(oldsym
!= NULL
);
1729 if (is_default_version
)
1731 Sized_symbol
<size
>* soldsym
=
1732 this->get_sized_symbol
<size
>(oldsym
);
1733 this->define_default_version
<size
, big_endian
>(soldsym
,
1740 // We haven't seen this symbol before.
1741 gold_assert(ins
.first
->second
== NULL
);
1743 add_to_table
= true;
1744 add_loc
= ins
.first
;
1746 if (is_default_version
&& !insdefault
.second
)
1748 // We are adding NAME/VERSION, and it is the default
1749 // version. We already have an entry for NAME/NULL.
1750 oldsym
= insdefault
.first
->second
;
1751 *resolve_oldsym
= true;
1757 if (is_default_version
)
1759 add_def_to_table
= true;
1760 add_def_loc
= insdefault
.first
;
1766 const Target
& target
= parameters
->target();
1767 if (!target
.has_make_symbol())
1768 sym
= new Sized_symbol
<size
>();
1771 Sized_target
<size
, big_endian
>* sized_target
=
1772 parameters
->sized_target
<size
, big_endian
>();
1773 sym
= sized_target
->make_symbol();
1779 add_loc
->second
= sym
;
1781 gold_assert(oldsym
!= NULL
);
1783 if (add_def_to_table
)
1784 add_def_loc
->second
= sym
;
1786 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1791 // Define a symbol based on an Output_data.
1794 Symbol_table::define_in_output_data(const char* name
,
1795 const char* version
,
1801 elfcpp::STB binding
,
1802 elfcpp::STV visibility
,
1803 unsigned char nonvis
,
1804 bool offset_is_from_end
,
1807 if (parameters
->target().get_size() == 32)
1809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1810 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1811 value
, symsize
, type
, binding
,
1819 else if (parameters
->target().get_size() == 64)
1821 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1822 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1823 value
, symsize
, type
, binding
,
1835 // Define a symbol in an Output_data, sized version.
1839 Symbol_table::do_define_in_output_data(
1841 const char* version
,
1844 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1845 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1847 elfcpp::STB binding
,
1848 elfcpp::STV visibility
,
1849 unsigned char nonvis
,
1850 bool offset_is_from_end
,
1853 Sized_symbol
<size
>* sym
;
1854 Sized_symbol
<size
>* oldsym
;
1855 bool resolve_oldsym
;
1857 if (parameters
->target().is_big_endian())
1859 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1860 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1861 only_if_ref
, &oldsym
,
1869 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1870 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1871 only_if_ref
, &oldsym
,
1881 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1882 visibility
, nonvis
, offset_is_from_end
,
1883 defined
== PREDEFINED
);
1887 if (binding
== elfcpp::STB_LOCAL
1888 || this->version_script_
.symbol_is_local(name
))
1889 this->force_local(sym
);
1890 else if (version
!= NULL
)
1891 sym
->set_is_default();
1895 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
1896 this->override_with_special(oldsym
, sym
);
1907 // Define a symbol based on an Output_segment.
1910 Symbol_table::define_in_output_segment(const char* name
,
1911 const char* version
,
1917 elfcpp::STB binding
,
1918 elfcpp::STV visibility
,
1919 unsigned char nonvis
,
1920 Symbol::Segment_offset_base offset_base
,
1923 if (parameters
->target().get_size() == 32)
1925 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1926 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1927 value
, symsize
, type
,
1928 binding
, visibility
, nonvis
,
1929 offset_base
, only_if_ref
);
1934 else if (parameters
->target().get_size() == 64)
1936 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1937 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1938 value
, symsize
, type
,
1939 binding
, visibility
, nonvis
,
1940 offset_base
, only_if_ref
);
1949 // Define a symbol in an Output_segment, sized version.
1953 Symbol_table::do_define_in_output_segment(
1955 const char* version
,
1958 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1959 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1961 elfcpp::STB binding
,
1962 elfcpp::STV visibility
,
1963 unsigned char nonvis
,
1964 Symbol::Segment_offset_base offset_base
,
1967 Sized_symbol
<size
>* sym
;
1968 Sized_symbol
<size
>* oldsym
;
1969 bool resolve_oldsym
;
1971 if (parameters
->target().is_big_endian())
1973 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1974 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1975 only_if_ref
, &oldsym
,
1983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1984 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1985 only_if_ref
, &oldsym
,
1995 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1996 visibility
, nonvis
, offset_base
,
1997 defined
== PREDEFINED
);
2001 if (binding
== elfcpp::STB_LOCAL
2002 || this->version_script_
.symbol_is_local(name
))
2003 this->force_local(sym
);
2004 else if (version
!= NULL
)
2005 sym
->set_is_default();
2009 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2010 this->override_with_special(oldsym
, sym
);
2021 // Define a special symbol with a constant value. It is a multiple
2022 // definition error if this symbol is already defined.
2025 Symbol_table::define_as_constant(const char* name
,
2026 const char* version
,
2031 elfcpp::STB binding
,
2032 elfcpp::STV visibility
,
2033 unsigned char nonvis
,
2035 bool force_override
)
2037 if (parameters
->target().get_size() == 32)
2039 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2040 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2041 symsize
, type
, binding
,
2042 visibility
, nonvis
, only_if_ref
,
2048 else if (parameters
->target().get_size() == 64)
2050 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2051 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2052 symsize
, type
, binding
,
2053 visibility
, nonvis
, only_if_ref
,
2063 // Define a symbol as a constant, sized version.
2067 Symbol_table::do_define_as_constant(
2069 const char* version
,
2071 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2072 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2074 elfcpp::STB binding
,
2075 elfcpp::STV visibility
,
2076 unsigned char nonvis
,
2078 bool force_override
)
2080 Sized_symbol
<size
>* sym
;
2081 Sized_symbol
<size
>* oldsym
;
2082 bool resolve_oldsym
;
2084 if (parameters
->target().is_big_endian())
2086 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2087 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2088 only_if_ref
, &oldsym
,
2096 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2097 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2098 only_if_ref
, &oldsym
,
2108 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2109 nonvis
, defined
== PREDEFINED
);
2113 // Version symbols are absolute symbols with name == version.
2114 // We don't want to force them to be local.
2115 if ((version
== NULL
2118 && (binding
== elfcpp::STB_LOCAL
2119 || this->version_script_
.symbol_is_local(name
)))
2120 this->force_local(sym
);
2121 else if (version
!= NULL
2122 && (name
!= version
|| value
!= 0))
2123 sym
->set_is_default();
2128 || Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2129 this->override_with_special(oldsym
, sym
);
2140 // Define a set of symbols in output sections.
2143 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2144 const Define_symbol_in_section
* p
,
2147 for (int i
= 0; i
< count
; ++i
, ++p
)
2149 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2151 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2152 p
->size
, p
->type
, p
->binding
,
2153 p
->visibility
, p
->nonvis
,
2154 p
->offset_is_from_end
,
2155 only_if_ref
|| p
->only_if_ref
);
2157 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2158 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2159 only_if_ref
|| p
->only_if_ref
,
2164 // Define a set of symbols in output segments.
2167 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2168 const Define_symbol_in_segment
* p
,
2171 for (int i
= 0; i
< count
; ++i
, ++p
)
2173 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2174 p
->segment_flags_set
,
2175 p
->segment_flags_clear
);
2177 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2178 p
->size
, p
->type
, p
->binding
,
2179 p
->visibility
, p
->nonvis
,
2181 only_if_ref
|| p
->only_if_ref
);
2183 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2184 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2185 only_if_ref
|| p
->only_if_ref
,
2190 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2191 // symbol should be defined--typically a .dyn.bss section. VALUE is
2192 // the offset within POSD.
2196 Symbol_table::define_with_copy_reloc(
2197 Sized_symbol
<size
>* csym
,
2199 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2201 gold_assert(csym
->is_from_dynobj());
2202 gold_assert(!csym
->is_copied_from_dynobj());
2203 Object
* object
= csym
->object();
2204 gold_assert(object
->is_dynamic());
2205 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2207 // Our copied variable has to override any variable in a shared
2209 elfcpp::STB binding
= csym
->binding();
2210 if (binding
== elfcpp::STB_WEAK
)
2211 binding
= elfcpp::STB_GLOBAL
;
2213 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2214 posd
, value
, csym
->symsize(),
2215 csym
->type(), binding
,
2216 csym
->visibility(), csym
->nonvis(),
2219 csym
->set_is_copied_from_dynobj();
2220 csym
->set_needs_dynsym_entry();
2222 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2224 // We have now defined all aliases, but we have not entered them all
2225 // in the copied_symbol_dynobjs_ map.
2226 if (csym
->has_alias())
2231 sym
= this->weak_aliases_
[sym
];
2234 gold_assert(sym
->output_data() == posd
);
2236 sym
->set_is_copied_from_dynobj();
2237 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2242 // SYM is defined using a COPY reloc. Return the dynamic object where
2243 // the original definition was found.
2246 Symbol_table::get_copy_source(const Symbol
* sym
) const
2248 gold_assert(sym
->is_copied_from_dynobj());
2249 Copied_symbol_dynobjs::const_iterator p
=
2250 this->copied_symbol_dynobjs_
.find(sym
);
2251 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2255 // Add any undefined symbols named on the command line.
2258 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2260 if (parameters
->options().any_undefined()
2261 || layout
->script_options()->any_unreferenced())
2263 if (parameters
->target().get_size() == 32)
2265 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2266 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2271 else if (parameters
->target().get_size() == 64)
2273 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2274 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2286 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2288 for (options::String_set::const_iterator p
=
2289 parameters
->options().undefined_begin();
2290 p
!= parameters
->options().undefined_end();
2292 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2294 for (Script_options::referenced_const_iterator p
=
2295 layout
->script_options()->referenced_begin();
2296 p
!= layout
->script_options()->referenced_end();
2298 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2303 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2305 if (this->lookup(name
) != NULL
)
2308 const char* version
= NULL
;
2310 Sized_symbol
<size
>* sym
;
2311 Sized_symbol
<size
>* oldsym
;
2312 bool resolve_oldsym
;
2313 if (parameters
->target().is_big_endian())
2315 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2316 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2325 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2326 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2334 gold_assert(oldsym
== NULL
);
2336 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2337 elfcpp::STV_DEFAULT
, 0);
2338 ++this->saw_undefined_
;
2341 // Set the dynamic symbol indexes. INDEX is the index of the first
2342 // global dynamic symbol. Pointers to the symbols are stored into the
2343 // vector SYMS. The names are added to DYNPOOL. This returns an
2344 // updated dynamic symbol index.
2347 Symbol_table::set_dynsym_indexes(unsigned int index
,
2348 std::vector
<Symbol
*>* syms
,
2349 Stringpool
* dynpool
,
2352 for (Symbol_table_type::iterator p
= this->table_
.begin();
2353 p
!= this->table_
.end();
2356 Symbol
* sym
= p
->second
;
2358 // Note that SYM may already have a dynamic symbol index, since
2359 // some symbols appear more than once in the symbol table, with
2360 // and without a version.
2362 if (!sym
->should_add_dynsym_entry(this))
2363 sym
->set_dynsym_index(-1U);
2364 else if (!sym
->has_dynsym_index())
2366 sym
->set_dynsym_index(index
);
2368 syms
->push_back(sym
);
2369 dynpool
->add(sym
->name(), false, NULL
);
2371 // Record any version information.
2372 if (sym
->version() != NULL
)
2373 versions
->record_version(this, dynpool
, sym
);
2375 // If the symbol is defined in a dynamic object and is
2376 // referenced in a regular object, then mark the dynamic
2377 // object as needed. This is used to implement --as-needed.
2378 if (sym
->is_from_dynobj() && sym
->in_reg())
2379 sym
->object()->set_is_needed();
2383 // Finish up the versions. In some cases this may add new dynamic
2385 index
= versions
->finalize(this, index
, syms
);
2390 // Set the final values for all the symbols. The index of the first
2391 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2392 // file offset OFF. Add their names to POOL. Return the new file
2393 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2396 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2397 size_t dyncount
, Stringpool
* pool
,
2398 unsigned int* plocal_symcount
)
2402 gold_assert(*plocal_symcount
!= 0);
2403 this->first_global_index_
= *plocal_symcount
;
2405 this->dynamic_offset_
= dynoff
;
2406 this->first_dynamic_global_index_
= dyn_global_index
;
2407 this->dynamic_count_
= dyncount
;
2409 if (parameters
->target().get_size() == 32)
2411 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2412 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2417 else if (parameters
->target().get_size() == 64)
2419 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2420 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2428 // Now that we have the final symbol table, we can reliably note
2429 // which symbols should get warnings.
2430 this->warnings_
.note_warnings(this);
2435 // SYM is going into the symbol table at *PINDEX. Add the name to
2436 // POOL, update *PINDEX and *POFF.
2440 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2441 unsigned int* pindex
, off_t
* poff
)
2443 sym
->set_symtab_index(*pindex
);
2444 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2445 pool
->add(sym
->name(), false, NULL
);
2447 pool
->add(sym
->versioned_name(), true, NULL
);
2449 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2452 // Set the final value for all the symbols. This is called after
2453 // Layout::finalize, so all the output sections have their final
2458 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2459 unsigned int* plocal_symcount
)
2461 off
= align_address(off
, size
>> 3);
2462 this->offset_
= off
;
2464 unsigned int index
= *plocal_symcount
;
2465 const unsigned int orig_index
= index
;
2467 // First do all the symbols which have been forced to be local, as
2468 // they must appear before all global symbols.
2469 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2470 p
!= this->forced_locals_
.end();
2474 gold_assert(sym
->is_forced_local());
2475 if (this->sized_finalize_symbol
<size
>(sym
))
2477 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2482 // Now do all the remaining symbols.
2483 for (Symbol_table_type::iterator p
= this->table_
.begin();
2484 p
!= this->table_
.end();
2487 Symbol
* sym
= p
->second
;
2488 if (this->sized_finalize_symbol
<size
>(sym
))
2489 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2492 this->output_count_
= index
- orig_index
;
2497 // Compute the final value of SYM and store status in location PSTATUS.
2498 // During relaxation, this may be called multiple times for a symbol to
2499 // compute its would-be final value in each relaxation pass.
2502 typename Sized_symbol
<size
>::Value_type
2503 Symbol_table::compute_final_value(
2504 const Sized_symbol
<size
>* sym
,
2505 Compute_final_value_status
* pstatus
) const
2507 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2510 switch (sym
->source())
2512 case Symbol::FROM_OBJECT
:
2515 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2518 && shndx
!= elfcpp::SHN_ABS
2519 && !Symbol::is_common_shndx(shndx
))
2521 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2525 Object
* symobj
= sym
->object();
2526 if (symobj
->is_dynamic())
2529 shndx
= elfcpp::SHN_UNDEF
;
2531 else if (symobj
->pluginobj() != NULL
)
2534 shndx
= elfcpp::SHN_UNDEF
;
2536 else if (shndx
== elfcpp::SHN_UNDEF
)
2538 else if (!is_ordinary
2539 && (shndx
== elfcpp::SHN_ABS
2540 || Symbol::is_common_shndx(shndx
)))
2541 value
= sym
->value();
2544 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2545 Output_section
* os
= relobj
->output_section(shndx
);
2547 if (this->is_section_folded(relobj
, shndx
))
2549 gold_assert(os
== NULL
);
2550 // Get the os of the section it is folded onto.
2551 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2553 gold_assert(folded
.first
!= NULL
);
2554 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2555 unsigned folded_shndx
= folded
.second
;
2557 os
= folded_obj
->output_section(folded_shndx
);
2558 gold_assert(os
!= NULL
);
2560 // Replace (relobj, shndx) with canonical ICF input section.
2561 shndx
= folded_shndx
;
2562 relobj
= folded_obj
;
2565 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2568 bool static_or_reloc
= (parameters
->doing_static_link() ||
2569 parameters
->options().relocatable());
2570 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2572 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2576 if (secoff64
== -1ULL)
2578 // The section needs special handling (e.g., a merge section).
2580 value
= os
->output_address(relobj
, shndx
, sym
->value());
2585 convert_types
<Value_type
, uint64_t>(secoff64
);
2586 if (sym
->type() == elfcpp::STT_TLS
)
2587 value
= sym
->value() + os
->tls_offset() + secoff
;
2589 value
= sym
->value() + os
->address() + secoff
;
2595 case Symbol::IN_OUTPUT_DATA
:
2597 Output_data
* od
= sym
->output_data();
2598 value
= sym
->value();
2599 if (sym
->type() != elfcpp::STT_TLS
)
2600 value
+= od
->address();
2603 Output_section
* os
= od
->output_section();
2604 gold_assert(os
!= NULL
);
2605 value
+= os
->tls_offset() + (od
->address() - os
->address());
2607 if (sym
->offset_is_from_end())
2608 value
+= od
->data_size();
2612 case Symbol::IN_OUTPUT_SEGMENT
:
2614 Output_segment
* os
= sym
->output_segment();
2615 value
= sym
->value();
2616 if (sym
->type() != elfcpp::STT_TLS
)
2617 value
+= os
->vaddr();
2618 switch (sym
->offset_base())
2620 case Symbol::SEGMENT_START
:
2622 case Symbol::SEGMENT_END
:
2623 value
+= os
->memsz();
2625 case Symbol::SEGMENT_BSS
:
2626 value
+= os
->filesz();
2634 case Symbol::IS_CONSTANT
:
2635 value
= sym
->value();
2638 case Symbol::IS_UNDEFINED
:
2650 // Finalize the symbol SYM. This returns true if the symbol should be
2651 // added to the symbol table, false otherwise.
2655 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2657 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2659 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2661 // The default version of a symbol may appear twice in the symbol
2662 // table. We only need to finalize it once.
2663 if (sym
->has_symtab_index())
2668 gold_assert(!sym
->has_symtab_index());
2669 sym
->set_symtab_index(-1U);
2670 gold_assert(sym
->dynsym_index() == -1U);
2674 // If the symbol is only present on plugin files, the plugin decided we
2676 if (!sym
->in_real_elf())
2678 gold_assert(!sym
->has_symtab_index());
2679 sym
->set_symtab_index(-1U);
2683 // Compute final symbol value.
2684 Compute_final_value_status status
;
2685 Value_type value
= this->compute_final_value(sym
, &status
);
2691 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2694 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2695 gold_error(_("%s: unsupported symbol section 0x%x"),
2696 sym
->demangled_name().c_str(), shndx
);
2699 case CFVS_NO_OUTPUT_SECTION
:
2700 sym
->set_symtab_index(-1U);
2706 sym
->set_value(value
);
2708 if (parameters
->options().strip_all()
2709 || !parameters
->options().should_retain_symbol(sym
->name()))
2711 sym
->set_symtab_index(-1U);
2718 // Write out the global symbols.
2721 Symbol_table::write_globals(const Stringpool
* sympool
,
2722 const Stringpool
* dynpool
,
2723 Output_symtab_xindex
* symtab_xindex
,
2724 Output_symtab_xindex
* dynsym_xindex
,
2725 Output_file
* of
) const
2727 switch (parameters
->size_and_endianness())
2729 #ifdef HAVE_TARGET_32_LITTLE
2730 case Parameters::TARGET_32_LITTLE
:
2731 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2735 #ifdef HAVE_TARGET_32_BIG
2736 case Parameters::TARGET_32_BIG
:
2737 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2741 #ifdef HAVE_TARGET_64_LITTLE
2742 case Parameters::TARGET_64_LITTLE
:
2743 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2747 #ifdef HAVE_TARGET_64_BIG
2748 case Parameters::TARGET_64_BIG
:
2749 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2758 // Write out the global symbols.
2760 template<int size
, bool big_endian
>
2762 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2763 const Stringpool
* dynpool
,
2764 Output_symtab_xindex
* symtab_xindex
,
2765 Output_symtab_xindex
* dynsym_xindex
,
2766 Output_file
* of
) const
2768 const Target
& target
= parameters
->target();
2770 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2772 const unsigned int output_count
= this->output_count_
;
2773 const section_size_type oview_size
= output_count
* sym_size
;
2774 const unsigned int first_global_index
= this->first_global_index_
;
2775 unsigned char* psyms
;
2776 if (this->offset_
== 0 || output_count
== 0)
2779 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2781 const unsigned int dynamic_count
= this->dynamic_count_
;
2782 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2783 const unsigned int first_dynamic_global_index
=
2784 this->first_dynamic_global_index_
;
2785 unsigned char* dynamic_view
;
2786 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2787 dynamic_view
= NULL
;
2789 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2791 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2792 p
!= this->table_
.end();
2795 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2797 // Possibly warn about unresolved symbols in shared libraries.
2798 this->warn_about_undefined_dynobj_symbol(sym
);
2800 unsigned int sym_index
= sym
->symtab_index();
2801 unsigned int dynsym_index
;
2802 if (dynamic_view
== NULL
)
2805 dynsym_index
= sym
->dynsym_index();
2807 if (sym_index
== -1U && dynsym_index
== -1U)
2809 // This symbol is not included in the output file.
2814 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2815 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2816 elfcpp::STB binding
= sym
->binding();
2818 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2819 if (binding
== elfcpp::STB_GNU_UNIQUE
2820 && !parameters
->options().gnu_unique())
2821 binding
= elfcpp::STB_GLOBAL
;
2823 switch (sym
->source())
2825 case Symbol::FROM_OBJECT
:
2828 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2831 && in_shndx
!= elfcpp::SHN_ABS
2832 && !Symbol::is_common_shndx(in_shndx
))
2834 gold_error(_("%s: unsupported symbol section 0x%x"),
2835 sym
->demangled_name().c_str(), in_shndx
);
2840 Object
* symobj
= sym
->object();
2841 if (symobj
->is_dynamic())
2843 if (sym
->needs_dynsym_value())
2844 dynsym_value
= target
.dynsym_value(sym
);
2845 shndx
= elfcpp::SHN_UNDEF
;
2846 if (sym
->is_undef_binding_weak())
2847 binding
= elfcpp::STB_WEAK
;
2849 binding
= elfcpp::STB_GLOBAL
;
2851 else if (symobj
->pluginobj() != NULL
)
2852 shndx
= elfcpp::SHN_UNDEF
;
2853 else if (in_shndx
== elfcpp::SHN_UNDEF
2855 && (in_shndx
== elfcpp::SHN_ABS
2856 || Symbol::is_common_shndx(in_shndx
))))
2860 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2861 Output_section
* os
= relobj
->output_section(in_shndx
);
2862 if (this->is_section_folded(relobj
, in_shndx
))
2864 // This global symbol must be written out even though
2866 // Get the os of the section it is folded onto.
2868 this->icf_
->get_folded_section(relobj
, in_shndx
);
2869 gold_assert(folded
.first
!=NULL
);
2870 Relobj
* folded_obj
=
2871 reinterpret_cast<Relobj
*>(folded
.first
);
2872 os
= folded_obj
->output_section(folded
.second
);
2873 gold_assert(os
!= NULL
);
2875 gold_assert(os
!= NULL
);
2876 shndx
= os
->out_shndx();
2878 if (shndx
>= elfcpp::SHN_LORESERVE
)
2880 if (sym_index
!= -1U)
2881 symtab_xindex
->add(sym_index
, shndx
);
2882 if (dynsym_index
!= -1U)
2883 dynsym_xindex
->add(dynsym_index
, shndx
);
2884 shndx
= elfcpp::SHN_XINDEX
;
2887 // In object files symbol values are section
2889 if (parameters
->options().relocatable())
2890 sym_value
-= os
->address();
2896 case Symbol::IN_OUTPUT_DATA
:
2897 shndx
= sym
->output_data()->out_shndx();
2898 if (shndx
>= elfcpp::SHN_LORESERVE
)
2900 if (sym_index
!= -1U)
2901 symtab_xindex
->add(sym_index
, shndx
);
2902 if (dynsym_index
!= -1U)
2903 dynsym_xindex
->add(dynsym_index
, shndx
);
2904 shndx
= elfcpp::SHN_XINDEX
;
2908 case Symbol::IN_OUTPUT_SEGMENT
:
2909 shndx
= elfcpp::SHN_ABS
;
2912 case Symbol::IS_CONSTANT
:
2913 shndx
= elfcpp::SHN_ABS
;
2916 case Symbol::IS_UNDEFINED
:
2917 shndx
= elfcpp::SHN_UNDEF
;
2924 if (sym_index
!= -1U)
2926 sym_index
-= first_global_index
;
2927 gold_assert(sym_index
< output_count
);
2928 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2929 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2930 binding
, sympool
, ps
);
2933 if (dynsym_index
!= -1U)
2935 dynsym_index
-= first_dynamic_global_index
;
2936 gold_assert(dynsym_index
< dynamic_count
);
2937 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2938 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2939 binding
, dynpool
, pd
);
2943 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2944 if (dynamic_view
!= NULL
)
2945 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2948 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2949 // strtab holding the name.
2951 template<int size
, bool big_endian
>
2953 Symbol_table::sized_write_symbol(
2954 Sized_symbol
<size
>* sym
,
2955 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2957 elfcpp::STB binding
,
2958 const Stringpool
* pool
,
2959 unsigned char* p
) const
2961 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2962 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2963 osym
.put_st_name(pool
->get_offset(sym
->name()));
2965 osym
.put_st_name(pool
->get_offset(sym
->versioned_name()));
2966 osym
.put_st_value(value
);
2967 // Use a symbol size of zero for undefined symbols from shared libraries.
2968 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2969 osym
.put_st_size(0);
2971 osym
.put_st_size(sym
->symsize());
2972 elfcpp::STT type
= sym
->type();
2973 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2974 if (type
== elfcpp::STT_GNU_IFUNC
2975 && sym
->is_from_dynobj())
2976 type
= elfcpp::STT_FUNC
;
2977 // A version script may have overridden the default binding.
2978 if (sym
->is_forced_local())
2979 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
2981 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
2982 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2983 osym
.put_st_shndx(shndx
);
2986 // Check for unresolved symbols in shared libraries. This is
2987 // controlled by the --allow-shlib-undefined option.
2989 // We only warn about libraries for which we have seen all the
2990 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2991 // which were not seen in this link. If we didn't see a DT_NEEDED
2992 // entry, we aren't going to be able to reliably report whether the
2993 // symbol is undefined.
2995 // We also don't warn about libraries found in a system library
2996 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2997 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2998 // can have undefined references satisfied by ld-linux.so.
3001 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
3004 if (sym
->source() == Symbol::FROM_OBJECT
3005 && sym
->object()->is_dynamic()
3006 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
3007 && sym
->binding() != elfcpp::STB_WEAK
3008 && !parameters
->options().allow_shlib_undefined()
3009 && !parameters
->target().is_defined_by_abi(sym
)
3010 && !sym
->object()->is_in_system_directory())
3012 // A very ugly cast.
3013 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
3014 if (!dynobj
->has_unknown_needed_entries())
3015 gold_undefined_symbol(sym
);
3019 // Write out a section symbol. Return the update offset.
3022 Symbol_table::write_section_symbol(const Output_section
* os
,
3023 Output_symtab_xindex
* symtab_xindex
,
3027 switch (parameters
->size_and_endianness())
3029 #ifdef HAVE_TARGET_32_LITTLE
3030 case Parameters::TARGET_32_LITTLE
:
3031 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
3035 #ifdef HAVE_TARGET_32_BIG
3036 case Parameters::TARGET_32_BIG
:
3037 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
3041 #ifdef HAVE_TARGET_64_LITTLE
3042 case Parameters::TARGET_64_LITTLE
:
3043 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
3047 #ifdef HAVE_TARGET_64_BIG
3048 case Parameters::TARGET_64_BIG
:
3049 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3058 // Write out a section symbol, specialized for size and endianness.
3060 template<int size
, bool big_endian
>
3062 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3063 Output_symtab_xindex
* symtab_xindex
,
3067 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3069 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3071 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3072 osym
.put_st_name(0);
3073 if (parameters
->options().relocatable())
3074 osym
.put_st_value(0);
3076 osym
.put_st_value(os
->address());
3077 osym
.put_st_size(0);
3078 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3079 elfcpp::STT_SECTION
));
3080 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3082 unsigned int shndx
= os
->out_shndx();
3083 if (shndx
>= elfcpp::SHN_LORESERVE
)
3085 symtab_xindex
->add(os
->symtab_index(), shndx
);
3086 shndx
= elfcpp::SHN_XINDEX
;
3088 osym
.put_st_shndx(shndx
);
3090 of
->write_output_view(offset
, sym_size
, pov
);
3093 // Print statistical information to stderr. This is used for --stats.
3096 Symbol_table::print_stats() const
3098 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3099 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3100 program_name
, this->table_
.size(), this->table_
.bucket_count());
3102 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3103 program_name
, this->table_
.size());
3105 this->namepool_
.print_stats("symbol table stringpool");
3108 // We check for ODR violations by looking for symbols with the same
3109 // name for which the debugging information reports that they were
3110 // defined in disjoint source locations. When comparing the source
3111 // location, we consider instances with the same base filename to be
3112 // the same. This is because different object files/shared libraries
3113 // can include the same header file using different paths, and
3114 // different optimization settings can make the line number appear to
3115 // be a couple lines off, and we don't want to report an ODR violation
3118 // This struct is used to compare line information, as returned by
3119 // Dwarf_line_info::one_addr2line. It implements a < comparison
3120 // operator used with std::sort.
3122 struct Odr_violation_compare
3125 operator()(const std::string
& s1
, const std::string
& s2
) const
3127 // Inputs should be of the form "dirname/filename:linenum" where
3128 // "dirname/" is optional. We want to compare just the filename:linenum.
3130 // Find the last '/' in each string.
3131 std::string::size_type s1begin
= s1
.rfind('/');
3132 std::string::size_type s2begin
= s2
.rfind('/');
3133 // If there was no '/' in a string, start at the beginning.
3134 if (s1begin
== std::string::npos
)
3136 if (s2begin
== std::string::npos
)
3138 return s1
.compare(s1begin
, std::string::npos
,
3139 s2
, s2begin
, std::string::npos
) < 0;
3143 // Returns all of the lines attached to LOC, not just the one the
3144 // instruction actually came from.
3145 std::vector
<std::string
>
3146 Symbol_table::linenos_from_loc(const Task
* task
,
3147 const Symbol_location
& loc
)
3149 // We need to lock the object in order to read it. This
3150 // means that we have to run in a singleton Task. If we
3151 // want to run this in a general Task for better
3152 // performance, we will need one Task for object, plus
3153 // appropriate locking to ensure that we don't conflict with
3154 // other uses of the object. Also note, one_addr2line is not
3155 // currently thread-safe.
3156 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3158 std::vector
<std::string
> result
;
3159 // 16 is the size of the object-cache that one_addr2line should use.
3160 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3161 loc
.object
, loc
.shndx
, loc
.offset
, 16, &result
);
3162 if (!canonical_result
.empty())
3163 result
.push_back(canonical_result
);
3167 // OutputIterator that records if it was ever assigned to. This
3168 // allows it to be used with std::set_intersection() to check for
3169 // intersection rather than computing the intersection.
3170 struct Check_intersection
3172 Check_intersection()
3176 bool had_intersection() const
3177 { return this->value_
; }
3179 Check_intersection
& operator++()
3182 Check_intersection
& operator*()
3185 template<typename T
>
3186 Check_intersection
& operator=(const T
&)
3188 this->value_
= true;
3196 // Check candidate_odr_violations_ to find symbols with the same name
3197 // but apparently different definitions (different source-file/line-no
3198 // for each line assigned to the first instruction).
3201 Symbol_table::detect_odr_violations(const Task
* task
,
3202 const char* output_file_name
) const
3204 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3205 it
!= candidate_odr_violations_
.end();
3208 const char* const symbol_name
= it
->first
;
3210 std::string first_object_name
;
3211 std::vector
<std::string
> first_object_linenos
;
3213 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3214 locs
= it
->second
.begin();
3215 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3216 locs_end
= it
->second
.end();
3217 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3219 // Save the line numbers from the first definition to
3220 // compare to the other definitions. Ideally, we'd compare
3221 // every definition to every other, but we don't want to
3222 // take O(N^2) time to do this. This shortcut may cause
3223 // false negatives that appear or disappear depending on the
3224 // link order, but it won't cause false positives.
3225 first_object_name
= locs
->object
->name();
3226 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3229 // Sort by Odr_violation_compare to make std::set_intersection work.
3230 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3231 Odr_violation_compare());
3233 for (; locs
!= locs_end
; ++locs
)
3235 std::vector
<std::string
> linenos
=
3236 this->linenos_from_loc(task
, *locs
);
3237 // linenos will be empty if we couldn't parse the debug info.
3238 if (linenos
.empty())
3240 // Sort by Odr_violation_compare to make std::set_intersection work.
3241 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3243 Check_intersection intersection_result
=
3244 std::set_intersection(first_object_linenos
.begin(),
3245 first_object_linenos
.end(),
3248 Check_intersection(),
3249 Odr_violation_compare());
3250 if (!intersection_result
.had_intersection())
3252 gold_warning(_("while linking %s: symbol '%s' defined in "
3253 "multiple places (possible ODR violation):"),
3254 output_file_name
, demangle(symbol_name
).c_str());
3255 // This only prints one location from each definition,
3256 // which may not be the location we expect to intersect
3257 // with another definition. We could print the whole
3258 // set of locations, but that seems too verbose.
3259 gold_assert(!first_object_linenos
.empty());
3260 gold_assert(!linenos
.empty());
3261 fprintf(stderr
, _(" %s from %s\n"),
3262 first_object_linenos
[0].c_str(),
3263 first_object_name
.c_str());
3264 fprintf(stderr
, _(" %s from %s\n"),
3266 locs
->object
->name().c_str());
3267 // Only print one broken pair, to avoid needing to
3268 // compare against a list of the disjoint definition
3269 // locations we've found so far. (If we kept comparing
3270 // against just the first one, we'd get a lot of
3271 // redundant complaints about the second definition
3277 // We only call one_addr2line() in this function, so we can clear its cache.
3278 Dwarf_line_info::clear_addr2line_cache();
3281 // Warnings functions.
3283 // Add a new warning.
3286 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3287 const std::string
& warning
)
3289 name
= symtab
->canonicalize_name(name
);
3290 this->warnings_
[name
].set(obj
, warning
);
3293 // Look through the warnings and mark the symbols for which we should
3294 // warn. This is called during Layout::finalize when we know the
3295 // sources for all the symbols.
3298 Warnings::note_warnings(Symbol_table
* symtab
)
3300 for (Warning_table::iterator p
= this->warnings_
.begin();
3301 p
!= this->warnings_
.end();
3304 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3306 && sym
->source() == Symbol::FROM_OBJECT
3307 && sym
->object() == p
->second
.object
)
3308 sym
->set_has_warning();
3312 // Issue a warning. This is called when we see a relocation against a
3313 // symbol for which has a warning.
3315 template<int size
, bool big_endian
>
3317 Warnings::issue_warning(const Symbol
* sym
,
3318 const Relocate_info
<size
, big_endian
>* relinfo
,
3319 size_t relnum
, off_t reloffset
) const
3321 gold_assert(sym
->has_warning());
3323 // We don't want to issue a warning for a relocation against the
3324 // symbol in the same object file in which the symbol is defined.
3325 if (sym
->object() == relinfo
->object
)
3328 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3329 gold_assert(p
!= this->warnings_
.end());
3330 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3331 "%s", p
->second
.text
.c_str());
3334 // Instantiate the templates we need. We could use the configure
3335 // script to restrict this to only the ones needed for implemented
3338 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3341 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3344 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3347 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3350 #ifdef HAVE_TARGET_32_LITTLE
3353 Symbol_table::add_from_relobj
<32, false>(
3354 Sized_relobj_file
<32, false>* relobj
,
3355 const unsigned char* syms
,
3357 size_t symndx_offset
,
3358 const char* sym_names
,
3359 size_t sym_name_size
,
3360 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3364 #ifdef HAVE_TARGET_32_BIG
3367 Symbol_table::add_from_relobj
<32, true>(
3368 Sized_relobj_file
<32, true>* relobj
,
3369 const unsigned char* syms
,
3371 size_t symndx_offset
,
3372 const char* sym_names
,
3373 size_t sym_name_size
,
3374 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3378 #ifdef HAVE_TARGET_64_LITTLE
3381 Symbol_table::add_from_relobj
<64, false>(
3382 Sized_relobj_file
<64, false>* relobj
,
3383 const unsigned char* syms
,
3385 size_t symndx_offset
,
3386 const char* sym_names
,
3387 size_t sym_name_size
,
3388 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3392 #ifdef HAVE_TARGET_64_BIG
3395 Symbol_table::add_from_relobj
<64, true>(
3396 Sized_relobj_file
<64, true>* relobj
,
3397 const unsigned char* syms
,
3399 size_t symndx_offset
,
3400 const char* sym_names
,
3401 size_t sym_name_size
,
3402 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3406 #ifdef HAVE_TARGET_32_LITTLE
3409 Symbol_table::add_from_pluginobj
<32, false>(
3410 Sized_pluginobj
<32, false>* obj
,
3413 elfcpp::Sym
<32, false>* sym
);
3416 #ifdef HAVE_TARGET_32_BIG
3419 Symbol_table::add_from_pluginobj
<32, true>(
3420 Sized_pluginobj
<32, true>* obj
,
3423 elfcpp::Sym
<32, true>* sym
);
3426 #ifdef HAVE_TARGET_64_LITTLE
3429 Symbol_table::add_from_pluginobj
<64, false>(
3430 Sized_pluginobj
<64, false>* obj
,
3433 elfcpp::Sym
<64, false>* sym
);
3436 #ifdef HAVE_TARGET_64_BIG
3439 Symbol_table::add_from_pluginobj
<64, true>(
3440 Sized_pluginobj
<64, true>* obj
,
3443 elfcpp::Sym
<64, true>* sym
);
3446 #ifdef HAVE_TARGET_32_LITTLE
3449 Symbol_table::add_from_dynobj
<32, false>(
3450 Sized_dynobj
<32, false>* dynobj
,
3451 const unsigned char* syms
,
3453 const char* sym_names
,
3454 size_t sym_name_size
,
3455 const unsigned char* versym
,
3457 const std::vector
<const char*>* version_map
,
3458 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3462 #ifdef HAVE_TARGET_32_BIG
3465 Symbol_table::add_from_dynobj
<32, true>(
3466 Sized_dynobj
<32, true>* dynobj
,
3467 const unsigned char* syms
,
3469 const char* sym_names
,
3470 size_t sym_name_size
,
3471 const unsigned char* versym
,
3473 const std::vector
<const char*>* version_map
,
3474 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3478 #ifdef HAVE_TARGET_64_LITTLE
3481 Symbol_table::add_from_dynobj
<64, false>(
3482 Sized_dynobj
<64, false>* dynobj
,
3483 const unsigned char* syms
,
3485 const char* sym_names
,
3486 size_t sym_name_size
,
3487 const unsigned char* versym
,
3489 const std::vector
<const char*>* version_map
,
3490 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3494 #ifdef HAVE_TARGET_64_BIG
3497 Symbol_table::add_from_dynobj
<64, true>(
3498 Sized_dynobj
<64, true>* dynobj
,
3499 const unsigned char* syms
,
3501 const char* sym_names
,
3502 size_t sym_name_size
,
3503 const unsigned char* versym
,
3505 const std::vector
<const char*>* version_map
,
3506 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3510 #ifdef HAVE_TARGET_32_LITTLE
3513 Symbol_table::add_from_incrobj(
3517 elfcpp::Sym
<32, false>* sym
);
3520 #ifdef HAVE_TARGET_32_BIG
3523 Symbol_table::add_from_incrobj(
3527 elfcpp::Sym
<32, true>* sym
);
3530 #ifdef HAVE_TARGET_64_LITTLE
3533 Symbol_table::add_from_incrobj(
3537 elfcpp::Sym
<64, false>* sym
);
3540 #ifdef HAVE_TARGET_64_BIG
3543 Symbol_table::add_from_incrobj(
3547 elfcpp::Sym
<64, true>* sym
);
3550 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3553 Symbol_table::define_with_copy_reloc
<32>(
3554 Sized_symbol
<32>* sym
,
3556 elfcpp::Elf_types
<32>::Elf_Addr value
);
3559 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3562 Symbol_table::define_with_copy_reloc
<64>(
3563 Sized_symbol
<64>* sym
,
3565 elfcpp::Elf_types
<64>::Elf_Addr value
);
3568 #ifdef HAVE_TARGET_32_LITTLE
3571 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3572 const Relocate_info
<32, false>* relinfo
,
3573 size_t relnum
, off_t reloffset
) const;
3576 #ifdef HAVE_TARGET_32_BIG
3579 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3580 const Relocate_info
<32, true>* relinfo
,
3581 size_t relnum
, off_t reloffset
) const;
3584 #ifdef HAVE_TARGET_64_LITTLE
3587 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3588 const Relocate_info
<64, false>* relinfo
,
3589 size_t relnum
, off_t reloffset
) const;
3592 #ifdef HAVE_TARGET_64_BIG
3595 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3596 const Relocate_info
<64, true>* relinfo
,
3597 size_t relnum
, off_t reloffset
) const;
3600 } // End namespace gold.