1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "reloc-types.h"
37 class General_options
;
41 class Output_merge_base
;
43 class Relocatable_relocs
;
45 template<int size
, bool big_endian
>
47 template<int size
, bool big_endian
>
49 template<int size
, bool big_endian
>
50 class Sized_relobj_file
;
52 // An abtract class for data which has to go into the output file.
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
72 gold_assert(this->is_address_valid_
);
73 return this->address_
;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
82 gold_assert(this->is_data_size_valid_
);
83 return this->data_size_
;
86 // Get the current data size.
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_
; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
102 gold_assert(this->is_offset_valid_
);
103 return this->offset_
;
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
109 reset_address_and_file_offset()
111 this->is_address_valid_
= false;
112 this->is_offset_valid_
= false;
113 if (!this->is_data_size_fixed_
)
114 this->is_data_size_valid_
= false;
115 this->do_reset_address_and_file_offset();
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
124 // Return the required alignment.
127 { return this->do_addralign(); }
129 // Return whether this has a load address.
131 has_load_address() const
132 { return this->do_has_load_address(); }
134 // Return the load address.
137 { return this->do_load_address(); }
139 // Return whether this is an Output_section.
142 { return this->do_is_section(); }
144 // Return whether this is an Output_section of the specified type.
146 is_section_type(elfcpp::Elf_Word stt
) const
147 { return this->do_is_section_type(stt
); }
149 // Return whether this is an Output_section with the specified flag
152 is_section_flag_set(elfcpp::Elf_Xword shf
) const
153 { return this->do_is_section_flag_set(shf
); }
155 // Return the output section that this goes in, if there is one.
158 { return this->do_output_section(); }
160 const Output_section
*
161 output_section() const
162 { return this->do_output_section(); }
164 // Return the output section index, if there is an output section.
167 { return this->do_out_shndx(); }
169 // Set the output section index, if this is an output section.
171 set_out_shndx(unsigned int shndx
)
172 { this->do_set_out_shndx(shndx
); }
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
178 set_address_and_file_offset(uint64_t addr
, off_t off
)
180 this->set_address(addr
);
181 this->set_file_offset(off
);
182 this->finalize_data_size();
187 set_address(uint64_t addr
)
189 gold_assert(!this->is_address_valid_
);
190 this->address_
= addr
;
191 this->is_address_valid_
= true;
194 // Set the file offset.
196 set_file_offset(off_t off
)
198 gold_assert(!this->is_offset_valid_
);
200 this->is_offset_valid_
= true;
203 // Update the data size without finalizing it.
205 pre_finalize_data_size()
207 if (!this->is_data_size_valid_
)
209 // Tell the child class to update the data size.
210 this->update_data_size();
214 // Finalize the data size.
218 if (!this->is_data_size_valid_
)
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_
);
226 // Set the TLS offset. Called only for SHT_TLS sections.
228 set_tls_offset(uint64_t tls_base
)
229 { this->do_set_tls_offset(tls_base
); }
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
235 { return this->do_tls_offset(); }
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
240 write(Output_file
* file
)
241 { this->do_write(file
); }
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
247 { Output_data::allocated_sizes_are_fixed
= true; }
249 // Used to check that layout has been done.
252 { return Output_data::allocated_sizes_are_fixed
; }
254 // Note that a dynamic reloc has been applied to this data.
257 { this->has_dynamic_reloc_
= true; }
259 // Return whether a dynamic reloc has been applied.
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_
; }
264 // Whether the address is valid.
266 is_address_valid() const
267 { return this->is_address_valid_
; }
269 // Whether the file offset is valid.
271 is_offset_valid() const
272 { return this->is_offset_valid_
; }
274 // Whether the data size is valid.
276 is_data_size_valid() const
277 { return this->is_data_size_valid_
; }
279 // Print information to the map file.
281 print_to_mapfile(Mapfile
* mapfile
) const
282 { return this->do_print_to_mapfile(mapfile
); }
285 // Functions that child classes may or in some cases must implement.
287 // Write the data to the output file.
289 do_write(Output_file
*) = 0;
291 // Return the required alignment.
293 do_addralign() const = 0;
295 // Return whether this has a load address.
297 do_has_load_address() const
300 // Return the load address.
302 do_load_address() const
303 { gold_unreachable(); }
305 // Return whether this is an Output_section.
307 do_is_section() const
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
313 do_is_section_type(elfcpp::Elf_Word
) const
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
319 do_is_section_flag_set(elfcpp::Elf_Xword
) const
322 // Return the output section, if there is one.
323 virtual Output_section
*
327 virtual const Output_section
*
328 do_output_section() const
331 // Return the output section index, if there is an output section.
334 { gold_unreachable(); }
336 // Set the output section index, if this is an output section.
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
356 set_final_data_size()
357 { gold_unreachable(); }
359 // A hook for resetting the address and file offset.
361 do_reset_address_and_file_offset()
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_
&& !this->is_offset_valid_
; }
372 // Set the TLS offset. Called only for SHT_TLS sections.
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
380 do_tls_offset() const
381 { gold_unreachable(); }
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
386 do_print_to_mapfile(Mapfile
*) const
387 { gold_unreachable(); }
389 // Functions that child classes may call.
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
395 mark_address_invalid()
396 { this->is_address_valid_
= false; }
398 // Set the size of the data.
400 set_data_size(off_t data_size
)
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_
);
404 this->data_size_
= data_size
;
405 this->is_data_size_valid_
= true;
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
413 gold_assert(this->is_data_size_valid_
);
414 this->is_data_size_fixed_
= true;
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
420 current_data_size_for_child() const
421 { return this->data_size_
; }
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
426 set_current_data_size_for_child(off_t data_size
)
428 gold_assert(!this->is_data_size_valid_
);
429 this->data_size_
= data_size
;
432 // Return default alignment for the target size.
436 // Return default alignment for a specified size--32 or 64.
438 default_alignment_for_size(int size
);
441 Output_data(const Output_data
&);
442 Output_data
& operator=(const Output_data
&);
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
447 static bool allocated_sizes_are_fixed
;
449 // Memory address in output file.
451 // Size of data in output file.
453 // File offset of contents in output file.
455 // Whether address_ is valid.
456 bool is_address_valid_
: 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_
: 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_
: 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_
: 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_
: 1;
467 // Output the section headers.
469 class Output_section_headers
: public Output_data
472 Output_section_headers(const Layout
*,
473 const Layout::Segment_list
*,
474 const Layout::Section_list
*,
475 const Layout::Section_list
*,
477 const Output_section
*);
480 // Write the data to the file.
482 do_write(Output_file
*);
484 // Return the required alignment.
487 { return Output_data::default_alignment(); }
489 // Write to a map file.
491 do_print_to_mapfile(Mapfile
* mapfile
) const
492 { mapfile
->print_output_data(this, _("** section headers")); }
494 // Update the data size.
497 { this->set_data_size(this->do_size()); }
499 // Set final data size.
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
505 // Write the data to the file with the right size and endianness.
506 template<int size
, bool big_endian
>
508 do_sized_write(Output_file
*);
510 // Compute data size.
514 const Layout
* layout_
;
515 const Layout::Segment_list
* segment_list_
;
516 const Layout::Section_list
* section_list_
;
517 const Layout::Section_list
* unattached_section_list_
;
518 const Stringpool
* secnamepool_
;
519 const Output_section
* shstrtab_section_
;
522 // Output the segment headers.
524 class Output_segment_headers
: public Output_data
527 Output_segment_headers(const Layout::Segment_list
& segment_list
);
530 // Write the data to the file.
532 do_write(Output_file
*);
534 // Return the required alignment.
537 { return Output_data::default_alignment(); }
539 // Write to a map file.
541 do_print_to_mapfile(Mapfile
* mapfile
) const
542 { mapfile
->print_output_data(this, _("** segment headers")); }
544 // Set final data size.
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
550 // Write the data to the file with the right size and endianness.
551 template<int size
, bool big_endian
>
553 do_sized_write(Output_file
*);
555 // Compute the current size.
559 const Layout::Segment_list
& segment_list_
;
562 // Output the ELF file header.
564 class Output_file_header
: public Output_data
567 Output_file_header(const Target
*,
569 const Output_segment_headers
*);
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers
*,
574 const Output_section
* shstrtab
);
577 // Write the data to the file.
579 do_write(Output_file
*);
581 // Return the required alignment.
584 { return Output_data::default_alignment(); }
586 // Write to a map file.
588 do_print_to_mapfile(Mapfile
* mapfile
) const
589 { mapfile
->print_output_data(this, _("** file header")); }
591 // Set final data size.
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
597 // Write the data to the file with the right size and endianness.
598 template<int size
, bool big_endian
>
600 do_sized_write(Output_file
*);
602 // Return the value to use for the entry address.
604 typename
elfcpp::Elf_types
<size
>::Elf_Addr
607 // Compute the current data size.
611 const Target
* target_
;
612 const Symbol_table
* symtab_
;
613 const Output_segment_headers
* segment_header_
;
614 const Output_section_headers
* section_header_
;
615 const Output_section
* shstrtab_
;
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
623 class Output_section_data
: public Output_data
626 Output_section_data(off_t data_size
, uint64_t addralign
,
627 bool is_data_size_fixed
)
628 : Output_data(), output_section_(NULL
), addralign_(addralign
)
630 this->set_data_size(data_size
);
631 if (is_data_size_fixed
)
632 this->fix_data_size();
635 Output_section_data(uint64_t addralign
)
636 : Output_data(), output_section_(NULL
), addralign_(addralign
)
639 // Return the output section.
642 { return this->output_section_
; }
644 const Output_section
*
645 output_section() const
646 { return this->output_section_
; }
648 // Record the output section.
650 set_output_section(Output_section
* os
);
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
655 add_input_section(Relobj
* object
, unsigned int shndx
)
656 { return this->do_add_input_section(object
, shndx
); }
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
665 output_offset(const Relobj
* object
, unsigned int shndx
,
666 section_offset_type offset
,
667 section_offset_type
* poutput
) const
668 { return this->do_output_offset(object
, shndx
, offset
, poutput
); }
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
674 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const
675 { return this->do_is_merge_section_for(object
, shndx
); }
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
680 write_to_buffer(unsigned char* buffer
)
681 { this->do_write_to_buffer(buffer
); }
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
686 print_merge_stats(const char* section_name
)
687 { this->do_print_merge_stats(section_name
); }
690 // The child class must implement do_write.
692 // The child class may implement specific adjustments to the output
695 do_adjust_output_section(Output_section
*)
698 // May be implemented by child class. Return true if the section
701 do_add_input_section(Relobj
*, unsigned int)
702 { gold_unreachable(); }
704 // The child class may implement output_offset.
706 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
707 section_offset_type
*) const
710 // The child class may implement is_merge_section_for.
712 do_is_merge_section_for(const Relobj
*, unsigned int) const
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
722 // Print merge statistics.
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
727 // Return the required alignment.
730 { return this->addralign_
; }
732 // Return the output section.
735 { return this->output_section_
; }
737 const Output_section
*
738 do_output_section() const
739 { return this->output_section_
; }
741 // Return the section index of the output section.
743 do_out_shndx() const;
745 // Set the alignment.
747 set_addralign(uint64_t addralign
);
750 // The output section for this section.
751 Output_section
* output_section_
;
752 // The required alignment.
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
760 class Output_section_data_build
: public Output_section_data
763 Output_section_data_build(uint64_t addralign
)
764 : Output_section_data(addralign
)
767 Output_section_data_build(off_t data_size
, uint64_t addralign
)
768 : Output_section_data(data_size
, addralign
, false)
771 // Set the current data size.
773 set_current_data_size(off_t data_size
)
774 { this->set_current_data_size_for_child(data_size
); }
777 // Set the final data size.
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
783 // A simple case of Output_data in which we have constant data to
786 class Output_data_const
: public Output_section_data
789 Output_data_const(const std::string
& data
, uint64_t addralign
)
790 : Output_section_data(data
.size(), addralign
, true), data_(data
)
793 Output_data_const(const char* p
, off_t len
, uint64_t addralign
)
794 : Output_section_data(len
, addralign
, true), data_(p
, len
)
797 Output_data_const(const unsigned char* p
, off_t len
, uint64_t addralign
)
798 : Output_section_data(len
, addralign
, true),
799 data_(reinterpret_cast<const char*>(p
), len
)
803 // Write the data to the output file.
805 do_write(Output_file
*);
807 // Write the data to a buffer.
809 do_write_to_buffer(unsigned char* buffer
)
810 { memcpy(buffer
, this->data_
.data(), this->data_
.size()); }
812 // Write to a map file.
814 do_print_to_mapfile(Mapfile
* mapfile
) const
815 { mapfile
->print_output_data(this, _("** fill")); }
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
824 class Output_data_const_buffer
: public Output_section_data
827 Output_data_const_buffer(const unsigned char* p
, off_t len
,
828 uint64_t addralign
, const char* map_name
)
829 : Output_section_data(len
, addralign
, true),
830 p_(p
), map_name_(map_name
)
834 // Write the data the output file.
836 do_write(Output_file
*);
838 // Write the data to a buffer.
840 do_write_to_buffer(unsigned char* buffer
)
841 { memcpy(buffer
, this->p_
, this->data_size()); }
843 // Write to a map file.
845 do_print_to_mapfile(Mapfile
* mapfile
) const
846 { mapfile
->print_output_data(this, _(this->map_name_
)); }
849 // The data to output.
850 const unsigned char* p_
;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_
;
856 // A place holder for a fixed amount of data written out via some
859 class Output_data_fixed_space
: public Output_section_data
862 Output_data_fixed_space(off_t data_size
, uint64_t addralign
,
863 const char* map_name
)
864 : Output_section_data(data_size
, addralign
, true),
869 // Write out the data--the actual data must be written out
872 do_write(Output_file
*)
875 // Write to a map file.
877 do_print_to_mapfile(Mapfile
* mapfile
) const
878 { mapfile
->print_output_data(this, _(this->map_name_
)); }
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_
;
886 // A place holder for variable sized data written out via some other
889 class Output_data_space
: public Output_section_data_build
892 explicit Output_data_space(uint64_t addralign
, const char* map_name
)
893 : Output_section_data_build(addralign
),
897 explicit Output_data_space(off_t data_size
, uint64_t addralign
,
898 const char* map_name
)
899 : Output_section_data_build(data_size
, addralign
),
903 // Set the alignment.
905 set_space_alignment(uint64_t align
)
906 { this->set_addralign(align
); }
909 // Write out the data--the actual data must be written out
912 do_write(Output_file
*)
915 // Write to a map file.
917 do_print_to_mapfile(Mapfile
* mapfile
) const
918 { mapfile
->print_output_data(this, _(this->map_name_
)); }
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_
;
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
929 class Output_data_zero_fill
: public Output_section_data
932 Output_data_zero_fill(off_t data_size
, uint64_t addralign
)
933 : Output_section_data(data_size
, addralign
, true)
937 // There is no data to write out.
939 do_write(Output_file
*)
942 // Write to a map file.
944 do_print_to_mapfile(Mapfile
* mapfile
) const
945 { mapfile
->print_output_data(this, "** zero fill"); }
948 // A string table which goes into an output section.
950 class Output_data_strtab
: public Output_section_data
953 Output_data_strtab(Stringpool
* strtab
)
954 : Output_section_data(1), strtab_(strtab
)
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
962 { this->set_final_data_size(); }
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
967 set_final_data_size();
969 // Write out the data.
971 do_write(Output_file
*);
973 // Write the data to a buffer.
975 do_write_to_buffer(unsigned char* buffer
)
976 { this->strtab_
->write_to_buffer(buffer
, this->data_size()); }
978 // Write to a map file.
980 do_print_to_mapfile(Mapfile
* mapfile
) const
981 { mapfile
->print_output_data(this, _("** string table")); }
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
998 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1001 template<bool dynamic
, int size
, bool big_endian
>
1002 class Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1005 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1006 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1008 static const Address invalid_address
= static_cast<Address
>(0) - 1;
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1013 : local_sym_index_(INVALID_CODE
)
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1021 // A reloc against a global symbol.
1023 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1024 Address address
, bool is_relative
, bool is_symbolless
);
1026 Output_reloc(Symbol
* gsym
, unsigned int type
,
1027 Sized_relobj
<size
, big_endian
>* relobj
,
1028 unsigned int shndx
, Address address
, bool is_relative
,
1029 bool is_symbolless
);
1031 // A reloc against a local symbol or local section symbol.
1033 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1034 unsigned int local_sym_index
, unsigned int type
,
1035 Output_data
* od
, Address address
, bool is_relative
,
1036 bool is_symbolless
, bool is_section_symbol
);
1038 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1039 unsigned int local_sym_index
, unsigned int type
,
1040 unsigned int shndx
, Address address
, bool is_relative
,
1041 bool is_symbolless
, bool is_section_symbol
);
1043 // A reloc against the STT_SECTION symbol of an output section.
1045 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1048 Output_reloc(Output_section
* os
, unsigned int type
,
1049 Sized_relobj
<size
, big_endian
>* relobj
,
1050 unsigned int shndx
, Address address
);
1052 // An absolute relocation with no symbol.
1054 Output_reloc(unsigned int type
, Output_data
* od
, Address address
);
1056 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1057 unsigned int shndx
, Address address
);
1059 // A target specific relocation. The target will be called to get
1060 // the symbol index, passing ARG. The type and offset will be set
1061 // as for other relocation types.
1063 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1066 Output_reloc(unsigned int type
, void* arg
,
1067 Sized_relobj
<size
, big_endian
>* relobj
,
1068 unsigned int shndx
, Address address
);
1070 // Return the reloc type.
1073 { return this->type_
; }
1075 // Return whether this is a RELATIVE relocation.
1078 { return this->is_relative_
; }
1080 // Return whether this is a relocation which should not use
1081 // a symbol, but which obtains its addend from a symbol.
1083 is_symbolless() const
1084 { return this->is_symbolless_
; }
1086 // Return whether this is against a local section symbol.
1088 is_local_section_symbol() const
1090 return (this->local_sym_index_
!= GSYM_CODE
1091 && this->local_sym_index_
!= SECTION_CODE
1092 && this->local_sym_index_
!= INVALID_CODE
1093 && this->local_sym_index_
!= TARGET_CODE
1094 && this->is_section_symbol_
);
1097 // Return whether this is a target specific relocation.
1099 is_target_specific() const
1100 { return this->local_sym_index_
== TARGET_CODE
; }
1102 // Return the argument to pass to the target for a target specific
1107 gold_assert(this->local_sym_index_
== TARGET_CODE
);
1108 return this->u1_
.arg
;
1111 // For a local section symbol, return the offset of the input
1112 // section within the output section. ADDEND is the addend being
1113 // applied to the input section.
1115 local_section_offset(Addend addend
) const;
1117 // Get the value of the symbol referred to by a Rel relocation when
1118 // we are adding the given ADDEND.
1120 symbol_value(Addend addend
) const;
1122 // If this relocation is against an input section, return the
1123 // relocatable object containing the input section.
1124 Sized_relobj
<size
, big_endian
>*
1127 if (this->shndx_
== INVALID_CODE
)
1129 return this->u2_
.relobj
;
1132 // Write the reloc entry to an output view.
1134 write(unsigned char* pov
) const;
1136 // Write the offset and info fields to Write_rel.
1137 template<typename Write_rel
>
1138 void write_rel(Write_rel
*) const;
1140 // This is used when sorting dynamic relocs. Return -1 to sort this
1141 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1143 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1146 // Return whether this reloc should be sorted before the argument
1147 // when sorting dynamic relocs.
1149 sort_before(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>&
1151 { return this->compare(r2
) < 0; }
1154 // Record that we need a dynamic symbol index.
1156 set_needs_dynsym_index();
1158 // Return the symbol index.
1160 get_symbol_index() const;
1162 // Return the output address.
1164 get_address() const;
1166 // Codes for local_sym_index_.
1175 // Invalid uninitialized entry.
1181 // For a local symbol or local section symbol
1182 // (this->local_sym_index_ >= 0), the object. We will never
1183 // generate a relocation against a local symbol in a dynamic
1184 // object; that doesn't make sense. And our callers will always
1185 // be templatized, so we use Sized_relobj here.
1186 Sized_relobj
<size
, big_endian
>* relobj
;
1187 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1188 // symbol. If this is NULL, it indicates a relocation against the
1189 // undefined 0 symbol.
1191 // For a relocation against an output section
1192 // (this->local_sym_index_ == SECTION_CODE), the output section.
1194 // For a target specific relocation, an argument to pass to the
1200 // If this->shndx_ is not INVALID CODE, the object which holds the
1201 // input section being used to specify the reloc address.
1202 Sized_relobj
<size
, big_endian
>* relobj
;
1203 // If this->shndx_ is INVALID_CODE, the output data being used to
1204 // specify the reloc address. This may be NULL if the reloc
1205 // address is absolute.
1208 // The address offset within the input section or the Output_data.
1210 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1211 // relocation against an output section, or TARGET_CODE for a target
1212 // specific relocation, or INVALID_CODE for an uninitialized value.
1213 // Otherwise, for a local symbol (this->is_section_symbol_ is
1214 // false), the local symbol index. For a local section symbol
1215 // (this->is_section_symbol_ is true), the section index in the
1217 unsigned int local_sym_index_
;
1218 // The reloc type--a processor specific code.
1219 unsigned int type_
: 29;
1220 // True if the relocation is a RELATIVE relocation.
1221 bool is_relative_
: 1;
1222 // True if the relocation is one which should not use
1223 // a symbol, but which obtains its addend from a symbol.
1224 bool is_symbolless_
: 1;
1225 // True if the relocation is against a section symbol.
1226 bool is_section_symbol_
: 1;
1227 // If the reloc address is an input section in an object, the
1228 // section index. This is INVALID_CODE if the reloc address is
1229 // specified in some other way.
1230 unsigned int shndx_
;
1233 // The SHT_RELA version of Output_reloc<>. This is just derived from
1234 // the SHT_REL version of Output_reloc, but it adds an addend.
1236 template<bool dynamic
, int size
, bool big_endian
>
1237 class Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1240 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1241 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1243 // An uninitialized entry.
1248 // A reloc against a global symbol.
1250 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1251 Address address
, Addend addend
, bool is_relative
,
1253 : rel_(gsym
, type
, od
, address
, is_relative
, is_symbolless
),
1257 Output_reloc(Symbol
* gsym
, unsigned int type
,
1258 Sized_relobj
<size
, big_endian
>* relobj
,
1259 unsigned int shndx
, Address address
, Addend addend
,
1260 bool is_relative
, bool is_symbolless
)
1261 : rel_(gsym
, type
, relobj
, shndx
, address
, is_relative
,
1262 is_symbolless
), addend_(addend
)
1265 // A reloc against a local symbol.
1267 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1268 unsigned int local_sym_index
, unsigned int type
,
1269 Output_data
* od
, Address address
,
1270 Addend addend
, bool is_relative
,
1271 bool is_symbolless
, bool is_section_symbol
)
1272 : rel_(relobj
, local_sym_index
, type
, od
, address
, is_relative
,
1273 is_symbolless
, is_section_symbol
),
1277 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1278 unsigned int local_sym_index
, unsigned int type
,
1279 unsigned int shndx
, Address address
,
1280 Addend addend
, bool is_relative
,
1281 bool is_symbolless
, bool is_section_symbol
)
1282 : rel_(relobj
, local_sym_index
, type
, shndx
, address
, is_relative
,
1283 is_symbolless
, is_section_symbol
),
1287 // A reloc against the STT_SECTION symbol of an output section.
1289 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1290 Address address
, Addend addend
)
1291 : rel_(os
, type
, od
, address
), addend_(addend
)
1294 Output_reloc(Output_section
* os
, unsigned int type
,
1295 Sized_relobj
<size
, big_endian
>* relobj
,
1296 unsigned int shndx
, Address address
, Addend addend
)
1297 : rel_(os
, type
, relobj
, shndx
, address
), addend_(addend
)
1300 // An absolute relocation with no symbol.
1302 Output_reloc(unsigned int type
, Output_data
* od
, Address address
,
1304 : rel_(type
, od
, address
), addend_(addend
)
1307 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1308 unsigned int shndx
, Address address
, Addend addend
)
1309 : rel_(type
, relobj
, shndx
, address
), addend_(addend
)
1312 // A target specific relocation. The target will be called to get
1313 // the symbol index and the addend, passing ARG. The type and
1314 // offset will be set as for other relocation types.
1316 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1317 Address address
, Addend addend
)
1318 : rel_(type
, arg
, od
, address
), addend_(addend
)
1321 Output_reloc(unsigned int type
, void* arg
,
1322 Sized_relobj
<size
, big_endian
>* relobj
,
1323 unsigned int shndx
, Address address
, Addend addend
)
1324 : rel_(type
, arg
, relobj
, shndx
, address
), addend_(addend
)
1327 // Return whether this is a RELATIVE relocation.
1330 { return this->rel_
.is_relative(); }
1332 // Return whether this is a relocation which should not use
1333 // a symbol, but which obtains its addend from a symbol.
1335 is_symbolless() const
1336 { return this->rel_
.is_symbolless(); }
1338 // If this relocation is against an input section, return the
1339 // relocatable object containing the input section.
1340 Sized_relobj
<size
, big_endian
>*
1342 { return this->rel_
.get_relobj(); }
1344 // Write the reloc entry to an output view.
1346 write(unsigned char* pov
) const;
1348 // Return whether this reloc should be sorted before the argument
1349 // when sorting dynamic relocs.
1351 sort_before(const Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>&
1354 int i
= this->rel_
.compare(r2
.rel_
);
1360 return this->addend_
< r2
.addend_
;
1365 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
> rel_
;
1370 // Output_data_reloc_generic is a non-template base class for
1371 // Output_data_reloc_base. This gives the generic code a way to hold
1372 // a pointer to a reloc section.
1374 class Output_data_reloc_generic
: public Output_section_data_build
1377 Output_data_reloc_generic(int size
, bool sort_relocs
)
1378 : Output_section_data_build(Output_data::default_alignment_for_size(size
)),
1379 relative_reloc_count_(0), sort_relocs_(sort_relocs
)
1382 // Return the number of relative relocs in this section.
1384 relative_reloc_count() const
1385 { return this->relative_reloc_count_
; }
1387 // Whether we should sort the relocs.
1390 { return this->sort_relocs_
; }
1393 // Note that we've added another relative reloc.
1395 bump_relative_reloc_count()
1396 { ++this->relative_reloc_count_
; }
1399 // The number of relative relocs added to this section. This is to
1400 // support DT_RELCOUNT.
1401 size_t relative_reloc_count_
;
1402 // Whether to sort the relocations when writing them out, to make
1403 // the dynamic linker more efficient.
1407 // Output_data_reloc is used to manage a section containing relocs.
1408 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1409 // indicates whether this is a dynamic relocation or a normal
1410 // relocation. Output_data_reloc_base is a base class.
1411 // Output_data_reloc is the real class, which we specialize based on
1414 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1415 class Output_data_reloc_base
: public Output_data_reloc_generic
1418 typedef Output_reloc
<sh_type
, dynamic
, size
, big_endian
> Output_reloc_type
;
1419 typedef typename
Output_reloc_type::Address Address
;
1420 static const int reloc_size
=
1421 Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
;
1423 // Construct the section.
1424 Output_data_reloc_base(bool sort_relocs
)
1425 : Output_data_reloc_generic(size
, sort_relocs
)
1429 // Write out the data.
1431 do_write(Output_file
*);
1433 // Set the entry size and the link.
1435 do_adjust_output_section(Output_section
* os
);
1437 // Write to a map file.
1439 do_print_to_mapfile(Mapfile
* mapfile
) const
1441 mapfile
->print_output_data(this,
1443 ? _("** dynamic relocs")
1447 // Add a relocation entry.
1449 add(Output_data
* od
, const Output_reloc_type
& reloc
)
1451 this->relocs_
.push_back(reloc
);
1452 this->set_current_data_size(this->relocs_
.size() * reloc_size
);
1453 od
->add_dynamic_reloc();
1454 if (reloc
.is_relative())
1455 this->bump_relative_reloc_count();
1456 Sized_relobj
<size
, big_endian
>* relobj
= reloc
.get_relobj();
1458 relobj
->add_dyn_reloc(this->relocs_
.size() - 1);
1462 typedef std::vector
<Output_reloc_type
> Relocs
;
1464 // The class used to sort the relocations.
1465 struct Sort_relocs_comparison
1468 operator()(const Output_reloc_type
& r1
, const Output_reloc_type
& r2
) const
1469 { return r1
.sort_before(r2
); }
1472 // The relocations in this section.
1476 // The class which callers actually create.
1478 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1479 class Output_data_reloc
;
1481 // The SHT_REL version of Output_data_reloc.
1483 template<bool dynamic
, int size
, bool big_endian
>
1484 class Output_data_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1485 : public Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1488 typedef Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
,
1492 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1493 typedef typename
Output_reloc_type::Address Address
;
1495 Output_data_reloc(bool sr
)
1496 : Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>(sr
)
1499 // Add a reloc against a global symbol.
1502 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
, Address address
)
1503 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false, false)); }
1506 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1507 Sized_relobj
<size
, big_endian
>* relobj
,
1508 unsigned int shndx
, Address address
)
1509 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1512 // These are to simplify the Copy_relocs class.
1515 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
, Address address
,
1518 gold_assert(addend
== 0);
1519 this->add_global(gsym
, type
, od
, address
);
1523 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1524 Sized_relobj
<size
, big_endian
>* relobj
,
1525 unsigned int shndx
, Address address
, Address addend
)
1527 gold_assert(addend
== 0);
1528 this->add_global(gsym
, type
, od
, relobj
, shndx
, address
);
1531 // Add a RELATIVE reloc against a global symbol. The final relocation
1532 // will not reference the symbol.
1535 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1537 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, true, true)); }
1540 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1541 Sized_relobj
<size
, big_endian
>* relobj
,
1542 unsigned int shndx
, Address address
)
1544 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1548 // Add a global relocation which does not use a symbol for the relocation,
1549 // but which gets its addend from a symbol.
1552 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1553 Output_data
* od
, Address address
)
1554 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false, true)); }
1557 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1559 Sized_relobj
<size
, big_endian
>* relobj
,
1560 unsigned int shndx
, Address address
)
1562 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1566 // Add a reloc against a local symbol.
1569 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1570 unsigned int local_sym_index
, unsigned int type
,
1571 Output_data
* od
, Address address
)
1573 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1574 address
, false, false, false));
1578 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1579 unsigned int local_sym_index
, unsigned int type
,
1580 Output_data
* od
, unsigned int shndx
, Address address
)
1582 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1583 address
, false, false, false));
1586 // Add a RELATIVE reloc against a local symbol.
1589 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1590 unsigned int local_sym_index
, unsigned int type
,
1591 Output_data
* od
, Address address
)
1593 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1594 address
, true, true, false));
1598 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1599 unsigned int local_sym_index
, unsigned int type
,
1600 Output_data
* od
, unsigned int shndx
, Address address
)
1602 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1603 address
, true, true, false));
1606 // Add a local relocation which does not use a symbol for the relocation,
1607 // but which gets its addend from a symbol.
1610 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1611 unsigned int local_sym_index
, unsigned int type
,
1612 Output_data
* od
, Address address
)
1614 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1615 address
, false, true, false));
1619 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1620 unsigned int local_sym_index
, unsigned int type
,
1621 Output_data
* od
, unsigned int shndx
,
1624 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1625 address
, false, true, false));
1628 // Add a reloc against a local section symbol. This will be
1629 // converted into a reloc against the STT_SECTION symbol of the
1633 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1634 unsigned int input_shndx
, unsigned int type
,
1635 Output_data
* od
, Address address
)
1637 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
,
1638 address
, false, false, true));
1642 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1643 unsigned int input_shndx
, unsigned int type
,
1644 Output_data
* od
, unsigned int shndx
, Address address
)
1646 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
1647 address
, false, false, true));
1650 // A reloc against the STT_SECTION symbol of an output section.
1651 // OS is the Output_section that the relocation refers to; OD is
1652 // the Output_data object being relocated.
1655 add_output_section(Output_section
* os
, unsigned int type
,
1656 Output_data
* od
, Address address
)
1657 { this->add(od
, Output_reloc_type(os
, type
, od
, address
)); }
1660 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1661 Sized_relobj
<size
, big_endian
>* relobj
,
1662 unsigned int shndx
, Address address
)
1663 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
)); }
1665 // Add an absolute relocation.
1668 add_absolute(unsigned int type
, Output_data
* od
, Address address
)
1669 { this->add(od
, Output_reloc_type(type
, od
, address
)); }
1672 add_absolute(unsigned int type
, Output_data
* od
,
1673 Sized_relobj
<size
, big_endian
>* relobj
,
1674 unsigned int shndx
, Address address
)
1675 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
)); }
1677 // Add a target specific relocation. A target which calls this must
1678 // define the reloc_symbol_index and reloc_addend virtual functions.
1681 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1683 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
)); }
1686 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1687 Sized_relobj
<size
, big_endian
>* relobj
,
1688 unsigned int shndx
, Address address
)
1689 { this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
)); }
1692 // The SHT_RELA version of Output_data_reloc.
1694 template<bool dynamic
, int size
, bool big_endian
>
1695 class Output_data_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1696 : public Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1699 typedef Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
,
1703 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1704 typedef typename
Output_reloc_type::Address Address
;
1705 typedef typename
Output_reloc_type::Addend Addend
;
1707 Output_data_reloc(bool sr
)
1708 : Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>(sr
)
1711 // Add a reloc against a global symbol.
1714 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1715 Address address
, Addend addend
)
1716 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1720 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1721 Sized_relobj
<size
, big_endian
>* relobj
,
1722 unsigned int shndx
, Address address
,
1724 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1725 addend
, false, false)); }
1727 // Add a RELATIVE reloc against a global symbol. The final output
1728 // relocation will not reference the symbol, but we must keep the symbol
1729 // information long enough to set the addend of the relocation correctly
1730 // when it is written.
1733 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1734 Address address
, Addend addend
)
1735 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
, true,
1739 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1740 Sized_relobj
<size
, big_endian
>* relobj
,
1741 unsigned int shndx
, Address address
, Addend addend
)
1742 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1743 addend
, true, true)); }
1745 // Add a global relocation which does not use a symbol for the relocation,
1746 // but which gets its addend from a symbol.
1749 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1750 Address address
, Addend addend
)
1751 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1755 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1757 Sized_relobj
<size
, big_endian
>* relobj
,
1758 unsigned int shndx
, Address address
, Addend addend
)
1759 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1760 addend
, false, true)); }
1762 // Add a reloc against a local symbol.
1765 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1766 unsigned int local_sym_index
, unsigned int type
,
1767 Output_data
* od
, Address address
, Addend addend
)
1769 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1770 addend
, false, false, false));
1774 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1775 unsigned int local_sym_index
, unsigned int type
,
1776 Output_data
* od
, unsigned int shndx
, Address address
,
1779 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1780 address
, addend
, false, false, false));
1783 // Add a RELATIVE reloc against a local symbol.
1786 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1787 unsigned int local_sym_index
, unsigned int type
,
1788 Output_data
* od
, Address address
, Addend addend
)
1790 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1791 addend
, true, true, false));
1795 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1796 unsigned int local_sym_index
, unsigned int type
,
1797 Output_data
* od
, unsigned int shndx
, Address address
,
1800 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1801 address
, addend
, true, true, false));
1804 // Add a local relocation which does not use a symbol for the relocation,
1805 // but which gets it's addend from a symbol.
1808 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1809 unsigned int local_sym_index
, unsigned int type
,
1810 Output_data
* od
, Address address
, Addend addend
)
1812 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1813 addend
, false, true, false));
1817 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1818 unsigned int local_sym_index
, unsigned int type
,
1819 Output_data
* od
, unsigned int shndx
,
1820 Address address
, Addend addend
)
1822 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1823 address
, addend
, false, true, false));
1826 // Add a reloc against a local section symbol. This will be
1827 // converted into a reloc against the STT_SECTION symbol of the
1831 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1832 unsigned int input_shndx
, unsigned int type
,
1833 Output_data
* od
, Address address
, Addend addend
)
1835 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
, address
,
1836 addend
, false, false, true));
1840 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1841 unsigned int input_shndx
, unsigned int type
,
1842 Output_data
* od
, unsigned int shndx
, Address address
,
1845 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
1846 address
, addend
, false, false, true));
1849 // A reloc against the STT_SECTION symbol of an output section.
1852 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1853 Address address
, Addend addend
)
1854 { this->add(od
, Output_reloc_type(os
, type
, od
, address
, addend
)); }
1857 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1858 Sized_relobj
<size
, big_endian
>* relobj
,
1859 unsigned int shndx
, Address address
, Addend addend
)
1860 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
,
1863 // Add an absolute relocation.
1866 add_absolute(unsigned int type
, Output_data
* od
, Address address
,
1868 { this->add(od
, Output_reloc_type(type
, od
, address
, addend
)); }
1871 add_absolute(unsigned int type
, Output_data
* od
,
1872 Sized_relobj
<size
, big_endian
>* relobj
,
1873 unsigned int shndx
, Address address
, Addend addend
)
1874 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
, addend
)); }
1876 // Add a target specific relocation. A target which calls this must
1877 // define the reloc_symbol_index and reloc_addend virtual functions.
1880 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1881 Address address
, Addend addend
)
1882 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
, addend
)); }
1885 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1886 Sized_relobj
<size
, big_endian
>* relobj
,
1887 unsigned int shndx
, Address address
, Addend addend
)
1889 this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
,
1894 // Output_relocatable_relocs represents a relocation section in a
1895 // relocatable link. The actual data is written out in the target
1896 // hook relocate_for_relocatable. This just saves space for it.
1898 template<int sh_type
, int size
, bool big_endian
>
1899 class Output_relocatable_relocs
: public Output_section_data
1902 Output_relocatable_relocs(Relocatable_relocs
* rr
)
1903 : Output_section_data(Output_data::default_alignment_for_size(size
)),
1908 set_final_data_size();
1910 // Write out the data. There is nothing to do here.
1912 do_write(Output_file
*)
1915 // Write to a map file.
1917 do_print_to_mapfile(Mapfile
* mapfile
) const
1918 { mapfile
->print_output_data(this, _("** relocs")); }
1921 // The relocs associated with this input section.
1922 Relocatable_relocs
* rr_
;
1925 // Handle a GROUP section.
1927 template<int size
, bool big_endian
>
1928 class Output_data_group
: public Output_section_data
1931 // The constructor clears *INPUT_SHNDXES.
1932 Output_data_group(Sized_relobj_file
<size
, big_endian
>* relobj
,
1933 section_size_type entry_count
,
1934 elfcpp::Elf_Word flags
,
1935 std::vector
<unsigned int>* input_shndxes
);
1938 do_write(Output_file
*);
1940 // Write to a map file.
1942 do_print_to_mapfile(Mapfile
* mapfile
) const
1943 { mapfile
->print_output_data(this, _("** group")); }
1945 // Set final data size.
1947 set_final_data_size()
1948 { this->set_data_size((this->input_shndxes_
.size() + 1) * 4); }
1951 // The input object.
1952 Sized_relobj_file
<size
, big_endian
>* relobj_
;
1953 // The group flag word.
1954 elfcpp::Elf_Word flags_
;
1955 // The section indexes of the input sections in this group.
1956 std::vector
<unsigned int> input_shndxes_
;
1959 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1960 // for one symbol--either a global symbol or a local symbol in an
1961 // object. The target specific code adds entries to the GOT as
1964 template<int size
, bool big_endian
>
1965 class Output_data_got
: public Output_section_data_build
1968 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Valtype
;
1969 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, size
, big_endian
> Rel_dyn
;
1970 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
> Rela_dyn
;
1973 : Output_section_data_build(Output_data::default_alignment_for_size(size
)),
1974 entries_(), free_list_()
1977 Output_data_got(off_t data_size
)
1978 : Output_section_data_build(data_size
,
1979 Output_data::default_alignment_for_size(size
)),
1980 entries_(), free_list_()
1982 // For an incremental update, we have an existing GOT section.
1983 // Initialize the list of entries and the free list.
1984 this->entries_
.resize(data_size
/ (size
/ 8));
1985 this->free_list_
.init(data_size
, false);
1988 // Add an entry for a global symbol to the GOT. Return true if this
1989 // is a new GOT entry, false if the symbol was already in the GOT.
1991 add_global(Symbol
* gsym
, unsigned int got_type
);
1993 // Like add_global, but use the PLT offset of the global symbol if
1996 add_global_plt(Symbol
* gsym
, unsigned int got_type
);
1998 // Add an entry for a global symbol to the GOT, and add a dynamic
1999 // relocation of type R_TYPE for the GOT entry.
2001 add_global_with_rel(Symbol
* gsym
, unsigned int got_type
,
2002 Rel_dyn
* rel_dyn
, unsigned int r_type
);
2005 add_global_with_rela(Symbol
* gsym
, unsigned int got_type
,
2006 Rela_dyn
* rela_dyn
, unsigned int r_type
);
2008 // Add a pair of entries for a global symbol to the GOT, and add
2009 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2011 add_global_pair_with_rel(Symbol
* gsym
, unsigned int got_type
,
2012 Rel_dyn
* rel_dyn
, unsigned int r_type_1
,
2013 unsigned int r_type_2
);
2016 add_global_pair_with_rela(Symbol
* gsym
, unsigned int got_type
,
2017 Rela_dyn
* rela_dyn
, unsigned int r_type_1
,
2018 unsigned int r_type_2
);
2020 // Add an entry for a local symbol to the GOT. This returns true if
2021 // this is a new GOT entry, false if the symbol already has a GOT
2024 add_local(Sized_relobj_file
<size
, big_endian
>* object
, unsigned int sym_index
,
2025 unsigned int got_type
);
2027 // Like add_local, but use the PLT offset of the local symbol if it
2030 add_local_plt(Sized_relobj_file
<size
, big_endian
>* object
,
2031 unsigned int sym_index
,
2032 unsigned int got_type
);
2034 // Add an entry for a local symbol to the GOT, and add a dynamic
2035 // relocation of type R_TYPE for the GOT entry.
2037 add_local_with_rel(Sized_relobj_file
<size
, big_endian
>* object
,
2038 unsigned int sym_index
, unsigned int got_type
,
2039 Rel_dyn
* rel_dyn
, unsigned int r_type
);
2042 add_local_with_rela(Sized_relobj_file
<size
, big_endian
>* object
,
2043 unsigned int sym_index
, unsigned int got_type
,
2044 Rela_dyn
* rela_dyn
, unsigned int r_type
);
2046 // Add a pair of entries for a local symbol to the GOT, and add
2047 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2049 add_local_pair_with_rel(Sized_relobj_file
<size
, big_endian
>* object
,
2050 unsigned int sym_index
, unsigned int shndx
,
2051 unsigned int got_type
, Rel_dyn
* rel_dyn
,
2052 unsigned int r_type_1
, unsigned int r_type_2
);
2055 add_local_pair_with_rela(Sized_relobj_file
<size
, big_endian
>* object
,
2056 unsigned int sym_index
, unsigned int shndx
,
2057 unsigned int got_type
, Rela_dyn
* rela_dyn
,
2058 unsigned int r_type_1
, unsigned int r_type_2
);
2060 // Add a constant to the GOT. This returns the offset of the new
2061 // entry from the start of the GOT.
2063 add_constant(Valtype constant
)
2065 unsigned int got_offset
= this->add_got_entry(Got_entry(constant
));
2069 // Reserve a slot in the GOT.
2071 reserve_slot(unsigned int i
)
2072 { this->free_list_
.remove(i
* size
/ 8, (i
+ 1) * size
/ 8); }
2074 // Reserve a slot in the GOT for a local symbol.
2076 reserve_local(unsigned int i
, Sized_relobj
<size
, big_endian
>* object
,
2077 unsigned int sym_index
, unsigned int got_type
);
2079 // Reserve a slot in the GOT for a global symbol.
2081 reserve_global(unsigned int i
, Symbol
* gsym
, unsigned int got_type
);
2084 // Write out the GOT table.
2086 do_write(Output_file
*);
2088 // Write to a map file.
2090 do_print_to_mapfile(Mapfile
* mapfile
) const
2091 { mapfile
->print_output_data(this, _("** GOT")); }
2094 // This POD class holds a single GOT entry.
2098 // Create a zero entry.
2100 : local_sym_index_(RESERVED_CODE
), use_plt_offset_(false)
2101 { this->u_
.constant
= 0; }
2103 // Create a global symbol entry.
2104 Got_entry(Symbol
* gsym
, bool use_plt_offset
)
2105 : local_sym_index_(GSYM_CODE
), use_plt_offset_(use_plt_offset
)
2106 { this->u_
.gsym
= gsym
; }
2108 // Create a local symbol entry.
2109 Got_entry(Sized_relobj_file
<size
, big_endian
>* object
,
2110 unsigned int local_sym_index
, bool use_plt_offset
)
2111 : local_sym_index_(local_sym_index
), use_plt_offset_(use_plt_offset
)
2113 gold_assert(local_sym_index
!= GSYM_CODE
2114 && local_sym_index
!= CONSTANT_CODE
2115 && local_sym_index
!= RESERVED_CODE
2116 && local_sym_index
== this->local_sym_index_
);
2117 this->u_
.object
= object
;
2120 // Create a constant entry. The constant is a host value--it will
2121 // be swapped, if necessary, when it is written out.
2122 explicit Got_entry(Valtype constant
)
2123 : local_sym_index_(CONSTANT_CODE
), use_plt_offset_(false)
2124 { this->u_
.constant
= constant
; }
2126 // Write the GOT entry to an output view.
2128 write(unsigned char* pov
) const;
2133 GSYM_CODE
= 0x7fffffff,
2134 CONSTANT_CODE
= 0x7ffffffe,
2135 RESERVED_CODE
= 0x7ffffffd
2140 // For a local symbol, the object.
2141 Sized_relobj_file
<size
, big_endian
>* object
;
2142 // For a global symbol, the symbol.
2144 // For a constant, the constant.
2147 // For a local symbol, the local symbol index. This is GSYM_CODE
2148 // for a global symbol, or CONSTANT_CODE for a constant.
2149 unsigned int local_sym_index_
: 31;
2150 // Whether to use the PLT offset of the symbol if it has one.
2151 bool use_plt_offset_
: 1;
2154 typedef std::vector
<Got_entry
> Got_entries
;
2156 // Create a new GOT entry and return its offset.
2158 add_got_entry(Got_entry got_entry
);
2160 // Create a pair of new GOT entries and return the offset of the first.
2162 add_got_entry_pair(Got_entry got_entry_1
, Got_entry got_entry_2
);
2164 // Return the offset into the GOT of GOT entry I.
2166 got_offset(unsigned int i
) const
2167 { return i
* (size
/ 8); }
2169 // Return the offset into the GOT of the last entry added.
2171 last_got_offset() const
2172 { return this->got_offset(this->entries_
.size() - 1); }
2174 // Set the size of the section.
2177 { this->set_current_data_size(this->got_offset(this->entries_
.size())); }
2179 // The list of GOT entries.
2180 Got_entries entries_
;
2182 // List of available regions within the section, for incremental
2184 Free_list free_list_
;
2187 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2190 class Output_data_dynamic
: public Output_section_data
2193 Output_data_dynamic(Stringpool
* pool
)
2194 : Output_section_data(Output_data::default_alignment()),
2195 entries_(), pool_(pool
)
2198 // Add a new dynamic entry with a fixed numeric value.
2200 add_constant(elfcpp::DT tag
, unsigned int val
)
2201 { this->add_entry(Dynamic_entry(tag
, val
)); }
2203 // Add a new dynamic entry with the address of output data.
2205 add_section_address(elfcpp::DT tag
, const Output_data
* od
)
2206 { this->add_entry(Dynamic_entry(tag
, od
, false)); }
2208 // Add a new dynamic entry with the address of output data
2209 // plus a constant offset.
2211 add_section_plus_offset(elfcpp::DT tag
, const Output_data
* od
,
2212 unsigned int offset
)
2213 { this->add_entry(Dynamic_entry(tag
, od
, offset
)); }
2215 // Add a new dynamic entry with the size of output data.
2217 add_section_size(elfcpp::DT tag
, const Output_data
* od
)
2218 { this->add_entry(Dynamic_entry(tag
, od
, true)); }
2220 // Add a new dynamic entry with the total size of two output datas.
2222 add_section_size(elfcpp::DT tag
, const Output_data
* od
,
2223 const Output_data
* od2
)
2224 { this->add_entry(Dynamic_entry(tag
, od
, od2
)); }
2226 // Add a new dynamic entry with the address of a symbol.
2228 add_symbol(elfcpp::DT tag
, const Symbol
* sym
)
2229 { this->add_entry(Dynamic_entry(tag
, sym
)); }
2231 // Add a new dynamic entry with a string.
2233 add_string(elfcpp::DT tag
, const char* str
)
2234 { this->add_entry(Dynamic_entry(tag
, this->pool_
->add(str
, true, NULL
))); }
2237 add_string(elfcpp::DT tag
, const std::string
& str
)
2238 { this->add_string(tag
, str
.c_str()); }
2241 // Adjust the output section to set the entry size.
2243 do_adjust_output_section(Output_section
*);
2245 // Set the final data size.
2247 set_final_data_size();
2249 // Write out the dynamic entries.
2251 do_write(Output_file
*);
2253 // Write to a map file.
2255 do_print_to_mapfile(Mapfile
* mapfile
) const
2256 { mapfile
->print_output_data(this, _("** dynamic")); }
2259 // This POD class holds a single dynamic entry.
2263 // Create an entry with a fixed numeric value.
2264 Dynamic_entry(elfcpp::DT tag
, unsigned int val
)
2265 : tag_(tag
), offset_(DYNAMIC_NUMBER
)
2266 { this->u_
.val
= val
; }
2268 // Create an entry with the size or address of a section.
2269 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, bool section_size
)
2271 offset_(section_size
2272 ? DYNAMIC_SECTION_SIZE
2273 : DYNAMIC_SECTION_ADDRESS
)
2279 // Create an entry with the size of two sections.
2280 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, const Output_data
* od2
)
2282 offset_(DYNAMIC_SECTION_SIZE
)
2288 // Create an entry with the address of a section plus a constant offset.
2289 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, unsigned int offset
)
2292 { this->u_
.od
= od
; }
2294 // Create an entry with the address of a symbol.
2295 Dynamic_entry(elfcpp::DT tag
, const Symbol
* sym
)
2296 : tag_(tag
), offset_(DYNAMIC_SYMBOL
)
2297 { this->u_
.sym
= sym
; }
2299 // Create an entry with a string.
2300 Dynamic_entry(elfcpp::DT tag
, const char* str
)
2301 : tag_(tag
), offset_(DYNAMIC_STRING
)
2302 { this->u_
.str
= str
; }
2304 // Return the tag of this entry.
2307 { return this->tag_
; }
2309 // Write the dynamic entry to an output view.
2310 template<int size
, bool big_endian
>
2312 write(unsigned char* pov
, const Stringpool
*) const;
2315 // Classification is encoded in the OFFSET field.
2319 DYNAMIC_SECTION_ADDRESS
= 0,
2321 DYNAMIC_NUMBER
= -1U,
2323 DYNAMIC_SECTION_SIZE
= -2U,
2325 DYNAMIC_SYMBOL
= -3U,
2327 DYNAMIC_STRING
= -4U
2328 // Any other value indicates a section address plus OFFSET.
2333 // For DYNAMIC_NUMBER.
2335 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2336 const Output_data
* od
;
2337 // For DYNAMIC_SYMBOL.
2339 // For DYNAMIC_STRING.
2342 // For DYNAMIC_SYMBOL with two sections.
2343 const Output_data
* od2
;
2346 // The type of entry (Classification) or offset within a section.
2347 unsigned int offset_
;
2350 // Add an entry to the list.
2352 add_entry(const Dynamic_entry
& entry
)
2353 { this->entries_
.push_back(entry
); }
2355 // Sized version of write function.
2356 template<int size
, bool big_endian
>
2358 sized_write(Output_file
* of
);
2360 // The type of the list of entries.
2361 typedef std::vector
<Dynamic_entry
> Dynamic_entries
;
2364 Dynamic_entries entries_
;
2365 // The pool used for strings.
2369 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2370 // which may be required if the object file has more than
2371 // SHN_LORESERVE sections.
2373 class Output_symtab_xindex
: public Output_section_data
2376 Output_symtab_xindex(size_t symcount
)
2377 : Output_section_data(symcount
* 4, 4, true),
2381 // Add an entry: symbol number SYMNDX has section SHNDX.
2383 add(unsigned int symndx
, unsigned int shndx
)
2384 { this->entries_
.push_back(std::make_pair(symndx
, shndx
)); }
2388 do_write(Output_file
*);
2390 // Write to a map file.
2392 do_print_to_mapfile(Mapfile
* mapfile
) const
2393 { mapfile
->print_output_data(this, _("** symtab xindex")); }
2396 template<bool big_endian
>
2398 endian_do_write(unsigned char*);
2400 // It is likely that most symbols will not require entries. Rather
2401 // than keep a vector for all symbols, we keep pairs of symbol index
2402 // and section index.
2403 typedef std::vector
<std::pair
<unsigned int, unsigned int> > Xindex_entries
;
2405 // The entries we need.
2406 Xindex_entries entries_
;
2409 // A relaxed input section.
2410 class Output_relaxed_input_section
: public Output_section_data_build
2413 // We would like to call relobj->section_addralign(shndx) to get the
2414 // alignment but we do not want the constructor to fail. So callers
2415 // are repsonsible for ensuring that.
2416 Output_relaxed_input_section(Relobj
* relobj
, unsigned int shndx
,
2418 : Output_section_data_build(addralign
), relobj_(relobj
), shndx_(shndx
)
2421 // Return the Relobj of this relaxed input section.
2424 { return this->relobj_
; }
2426 // Return the section index of this relaxed input section.
2429 { return this->shndx_
; }
2433 unsigned int shndx_
;
2436 // This class describes properties of merge data sections. It is used
2437 // as a key type for maps.
2438 class Merge_section_properties
2441 Merge_section_properties(bool is_string
, uint64_t entsize
,
2443 : is_string_(is_string
), entsize_(entsize
), addralign_(addralign
)
2446 // Whether this equals to another Merge_section_properties MSP.
2448 eq(const Merge_section_properties
& msp
) const
2450 return ((this->is_string_
== msp
.is_string_
)
2451 && (this->entsize_
== msp
.entsize_
)
2452 && (this->addralign_
== msp
.addralign_
));
2455 // Compute a hash value for this using 64-bit FNV-1a hash.
2459 uint64_t h
= 14695981039346656037ULL; // FNV offset basis.
2460 uint64_t prime
= 1099511628211ULL;
2461 h
= (h
^ static_cast<uint64_t>(this->is_string_
)) * prime
;
2462 h
= (h
^ static_cast<uint64_t>(this->entsize_
)) * prime
;
2463 h
= (h
^ static_cast<uint64_t>(this->addralign_
)) * prime
;
2467 // Functors for associative containers.
2471 operator()(const Merge_section_properties
& msp1
,
2472 const Merge_section_properties
& msp2
) const
2473 { return msp1
.eq(msp2
); }
2479 operator()(const Merge_section_properties
& msp
) const
2480 { return msp
.hash_value(); }
2484 // Whether this merge data section is for strings.
2486 // Entsize of this merge data section.
2488 // Address alignment.
2489 uint64_t addralign_
;
2492 // This class is used to speed up look up of special input sections in an
2495 class Output_section_lookup_maps
2498 Output_section_lookup_maps()
2499 : is_valid_(true), merge_sections_by_properties_(),
2500 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2503 // Whether the maps are valid.
2506 { return this->is_valid_
; }
2508 // Invalidate the maps.
2511 { this->is_valid_
= false; }
2517 this->merge_sections_by_properties_
.clear();
2518 this->merge_sections_by_id_
.clear();
2519 this->relaxed_input_sections_by_id_
.clear();
2520 // A cleared map is valid.
2521 this->is_valid_
= true;
2524 // Find a merge section by merge section properties. Return NULL if none
2527 find_merge_section(const Merge_section_properties
& msp
) const
2529 gold_assert(this->is_valid_
);
2530 Merge_sections_by_properties::const_iterator p
=
2531 this->merge_sections_by_properties_
.find(msp
);
2532 return p
!= this->merge_sections_by_properties_
.end() ? p
->second
: NULL
;
2535 // Find a merge section by section ID of a merge input section. Return NULL
2536 // if none is found.
2538 find_merge_section(const Object
* object
, unsigned int shndx
) const
2540 gold_assert(this->is_valid_
);
2541 Merge_sections_by_id::const_iterator p
=
2542 this->merge_sections_by_id_
.find(Const_section_id(object
, shndx
));
2543 return p
!= this->merge_sections_by_id_
.end() ? p
->second
: NULL
;
2546 // Add a merge section pointed by POMB with properties MSP.
2548 add_merge_section(const Merge_section_properties
& msp
,
2549 Output_merge_base
* pomb
)
2551 std::pair
<Merge_section_properties
, Output_merge_base
*> value(msp
, pomb
);
2552 std::pair
<Merge_sections_by_properties::iterator
, bool> result
=
2553 this->merge_sections_by_properties_
.insert(value
);
2554 gold_assert(result
.second
);
2557 // Add a mapping from a merged input section in OBJECT with index SHNDX
2558 // to a merge output section pointed by POMB.
2560 add_merge_input_section(const Object
* object
, unsigned int shndx
,
2561 Output_merge_base
* pomb
)
2563 Const_section_id
csid(object
, shndx
);
2564 std::pair
<Const_section_id
, Output_merge_base
*> value(csid
, pomb
);
2565 std::pair
<Merge_sections_by_id::iterator
, bool> result
=
2566 this->merge_sections_by_id_
.insert(value
);
2567 gold_assert(result
.second
);
2570 // Find a relaxed input section of OBJECT with index SHNDX.
2571 Output_relaxed_input_section
*
2572 find_relaxed_input_section(const Object
* object
, unsigned int shndx
) const
2574 gold_assert(this->is_valid_
);
2575 Relaxed_input_sections_by_id::const_iterator p
=
2576 this->relaxed_input_sections_by_id_
.find(Const_section_id(object
, shndx
));
2577 return p
!= this->relaxed_input_sections_by_id_
.end() ? p
->second
: NULL
;
2580 // Add a relaxed input section pointed by POMB and whose original input
2581 // section is in OBJECT with index SHNDX.
2583 add_relaxed_input_section(const Relobj
* relobj
, unsigned int shndx
,
2584 Output_relaxed_input_section
* poris
)
2586 Const_section_id
csid(relobj
, shndx
);
2587 std::pair
<Const_section_id
, Output_relaxed_input_section
*>
2589 std::pair
<Relaxed_input_sections_by_id::iterator
, bool> result
=
2590 this->relaxed_input_sections_by_id_
.insert(value
);
2591 gold_assert(result
.second
);
2595 typedef Unordered_map
<Const_section_id
, Output_merge_base
*,
2596 Const_section_id_hash
>
2597 Merge_sections_by_id
;
2599 typedef Unordered_map
<Merge_section_properties
, Output_merge_base
*,
2600 Merge_section_properties::hash
,
2601 Merge_section_properties::equal_to
>
2602 Merge_sections_by_properties
;
2604 typedef Unordered_map
<Const_section_id
, Output_relaxed_input_section
*,
2605 Const_section_id_hash
>
2606 Relaxed_input_sections_by_id
;
2608 // Whether this is valid
2610 // Merge sections by merge section properties.
2611 Merge_sections_by_properties merge_sections_by_properties_
;
2612 // Merge sections by section IDs.
2613 Merge_sections_by_id merge_sections_by_id_
;
2614 // Relaxed sections by section IDs.
2615 Relaxed_input_sections_by_id relaxed_input_sections_by_id_
;
2618 // An output section. We don't expect to have too many output
2619 // sections, so we don't bother to do a template on the size.
2621 class Output_section
: public Output_data
2624 // Create an output section, giving the name, type, and flags.
2625 Output_section(const char* name
, elfcpp::Elf_Word
, elfcpp::Elf_Xword
);
2626 virtual ~Output_section();
2628 // Add a new input section SHNDX, named NAME, with header SHDR, from
2629 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2630 // which applies to this section, or 0 if none, or -1 if more than
2631 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2632 // in a linker script; in that case we need to keep track of input
2633 // sections associated with an output section. Return the offset
2634 // within the output section.
2635 template<int size
, bool big_endian
>
2637 add_input_section(Layout
* layout
, Sized_relobj_file
<size
, big_endian
>* object
,
2638 unsigned int shndx
, const char* name
,
2639 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2640 unsigned int reloc_shndx
, bool have_sections_script
);
2642 // Add generated data POSD to this output section.
2644 add_output_section_data(Output_section_data
* posd
);
2646 // Add a relaxed input section PORIS called NAME to this output section
2649 add_relaxed_input_section(Layout
* layout
,
2650 Output_relaxed_input_section
* poris
,
2651 const std::string
& name
);
2653 // Return the section name.
2656 { return this->name_
; }
2658 // Return the section type.
2661 { return this->type_
; }
2663 // Return the section flags.
2666 { return this->flags_
; }
2668 // Update the output section flags based on input section flags.
2670 update_flags_for_input_section(elfcpp::Elf_Xword flags
);
2672 // Return the entsize field.
2675 { return this->entsize_
; }
2677 // Set the entsize field.
2679 set_entsize(uint64_t v
);
2681 // Set the load address.
2683 set_load_address(uint64_t load_address
)
2685 this->load_address_
= load_address
;
2686 this->has_load_address_
= true;
2689 // Set the link field to the output section index of a section.
2691 set_link_section(const Output_data
* od
)
2693 gold_assert(this->link_
== 0
2694 && !this->should_link_to_symtab_
2695 && !this->should_link_to_dynsym_
);
2696 this->link_section_
= od
;
2699 // Set the link field to a constant.
2701 set_link(unsigned int v
)
2703 gold_assert(this->link_section_
== NULL
2704 && !this->should_link_to_symtab_
2705 && !this->should_link_to_dynsym_
);
2709 // Record that this section should link to the normal symbol table.
2711 set_should_link_to_symtab()
2713 gold_assert(this->link_section_
== NULL
2715 && !this->should_link_to_dynsym_
);
2716 this->should_link_to_symtab_
= true;
2719 // Record that this section should link to the dynamic symbol table.
2721 set_should_link_to_dynsym()
2723 gold_assert(this->link_section_
== NULL
2725 && !this->should_link_to_symtab_
);
2726 this->should_link_to_dynsym_
= true;
2729 // Return the info field.
2733 gold_assert(this->info_section_
== NULL
2734 && this->info_symndx_
== NULL
);
2738 // Set the info field to the output section index of a section.
2740 set_info_section(const Output_section
* os
)
2742 gold_assert((this->info_section_
== NULL
2743 || (this->info_section_
== os
2744 && this->info_uses_section_index_
))
2745 && this->info_symndx_
== NULL
2746 && this->info_
== 0);
2747 this->info_section_
= os
;
2748 this->info_uses_section_index_
= true;
2751 // Set the info field to the symbol table index of a symbol.
2753 set_info_symndx(const Symbol
* sym
)
2755 gold_assert(this->info_section_
== NULL
2756 && (this->info_symndx_
== NULL
2757 || this->info_symndx_
== sym
)
2758 && this->info_
== 0);
2759 this->info_symndx_
= sym
;
2762 // Set the info field to the symbol table index of a section symbol.
2764 set_info_section_symndx(const Output_section
* os
)
2766 gold_assert((this->info_section_
== NULL
2767 || (this->info_section_
== os
2768 && !this->info_uses_section_index_
))
2769 && this->info_symndx_
== NULL
2770 && this->info_
== 0);
2771 this->info_section_
= os
;
2772 this->info_uses_section_index_
= false;
2775 // Set the info field to a constant.
2777 set_info(unsigned int v
)
2779 gold_assert(this->info_section_
== NULL
2780 && this->info_symndx_
== NULL
2781 && (this->info_
== 0
2782 || this->info_
== v
));
2786 // Set the addralign field.
2788 set_addralign(uint64_t v
)
2789 { this->addralign_
= v
; }
2791 // Whether the output section index has been set.
2793 has_out_shndx() const
2794 { return this->out_shndx_
!= -1U; }
2796 // Indicate that we need a symtab index.
2798 set_needs_symtab_index()
2799 { this->needs_symtab_index_
= true; }
2801 // Return whether we need a symtab index.
2803 needs_symtab_index() const
2804 { return this->needs_symtab_index_
; }
2806 // Get the symtab index.
2808 symtab_index() const
2810 gold_assert(this->symtab_index_
!= 0);
2811 return this->symtab_index_
;
2814 // Set the symtab index.
2816 set_symtab_index(unsigned int index
)
2818 gold_assert(index
!= 0);
2819 this->symtab_index_
= index
;
2822 // Indicate that we need a dynsym index.
2824 set_needs_dynsym_index()
2825 { this->needs_dynsym_index_
= true; }
2827 // Return whether we need a dynsym index.
2829 needs_dynsym_index() const
2830 { return this->needs_dynsym_index_
; }
2832 // Get the dynsym index.
2834 dynsym_index() const
2836 gold_assert(this->dynsym_index_
!= 0);
2837 return this->dynsym_index_
;
2840 // Set the dynsym index.
2842 set_dynsym_index(unsigned int index
)
2844 gold_assert(index
!= 0);
2845 this->dynsym_index_
= index
;
2848 // Return whether the input sections sections attachd to this output
2849 // section may require sorting. This is used to handle constructor
2850 // priorities compatibly with GNU ld.
2852 may_sort_attached_input_sections() const
2853 { return this->may_sort_attached_input_sections_
; }
2855 // Record that the input sections attached to this output section
2856 // may require sorting.
2858 set_may_sort_attached_input_sections()
2859 { this->may_sort_attached_input_sections_
= true; }
2861 // Returns true if input sections must be sorted according to the
2862 // order in which their name appear in the --section-ordering-file.
2864 input_section_order_specified()
2865 { return this->input_section_order_specified_
; }
2867 // Record that input sections must be sorted as some of their names
2868 // match the patterns specified through --section-ordering-file.
2870 set_input_section_order_specified()
2871 { this->input_section_order_specified_
= true; }
2873 // Return whether the input sections attached to this output section
2874 // require sorting. This is used to handle constructor priorities
2875 // compatibly with GNU ld.
2877 must_sort_attached_input_sections() const
2878 { return this->must_sort_attached_input_sections_
; }
2880 // Record that the input sections attached to this output section
2883 set_must_sort_attached_input_sections()
2884 { this->must_sort_attached_input_sections_
= true; }
2886 // Get the order in which this section appears in the PT_LOAD output
2888 Output_section_order
2890 { return this->order_
; }
2892 // Set the order for this section.
2894 set_order(Output_section_order order
)
2895 { this->order_
= order
; }
2897 // Return whether this section holds relro data--data which has
2898 // dynamic relocations but which may be marked read-only after the
2899 // dynamic relocations have been completed.
2902 { return this->is_relro_
; }
2904 // Record that this section holds relro data.
2907 { this->is_relro_
= true; }
2909 // Record that this section does not hold relro data.
2912 { this->is_relro_
= false; }
2914 // True if this is a small section: a section which holds small
2917 is_small_section() const
2918 { return this->is_small_section_
; }
2920 // Record that this is a small section.
2922 set_is_small_section()
2923 { this->is_small_section_
= true; }
2925 // True if this is a large section: a section which holds large
2928 is_large_section() const
2929 { return this->is_large_section_
; }
2931 // Record that this is a large section.
2933 set_is_large_section()
2934 { this->is_large_section_
= true; }
2936 // True if this is a large data (not BSS) section.
2938 is_large_data_section()
2939 { return this->is_large_section_
&& this->type_
!= elfcpp::SHT_NOBITS
; }
2941 // Return whether this section should be written after all the input
2942 // sections are complete.
2944 after_input_sections() const
2945 { return this->after_input_sections_
; }
2947 // Record that this section should be written after all the input
2948 // sections are complete.
2950 set_after_input_sections()
2951 { this->after_input_sections_
= true; }
2953 // Return whether this section requires postprocessing after all
2954 // relocations have been applied.
2956 requires_postprocessing() const
2957 { return this->requires_postprocessing_
; }
2959 // If a section requires postprocessing, return the buffer to use.
2961 postprocessing_buffer() const
2963 gold_assert(this->postprocessing_buffer_
!= NULL
);
2964 return this->postprocessing_buffer_
;
2967 // If a section requires postprocessing, create the buffer to use.
2969 create_postprocessing_buffer();
2971 // If a section requires postprocessing, this is the size of the
2972 // buffer to which relocations should be applied.
2974 postprocessing_buffer_size() const
2975 { return this->current_data_size_for_child(); }
2977 // Modify the section name. This is only permitted for an
2978 // unallocated section, and only before the size has been finalized.
2979 // Otherwise the name will not get into Layout::namepool_.
2981 set_name(const char* newname
)
2983 gold_assert((this->flags_
& elfcpp::SHF_ALLOC
) == 0);
2984 gold_assert(!this->is_data_size_valid());
2985 this->name_
= newname
;
2988 // Return whether the offset OFFSET in the input section SHNDX in
2989 // object OBJECT is being included in the link.
2991 is_input_address_mapped(const Relobj
* object
, unsigned int shndx
,
2992 off_t offset
) const;
2994 // Return the offset within the output section of OFFSET relative to
2995 // the start of input section SHNDX in object OBJECT.
2997 output_offset(const Relobj
* object
, unsigned int shndx
,
2998 section_offset_type offset
) const;
3000 // Return the output virtual address of OFFSET relative to the start
3001 // of input section SHNDX in object OBJECT.
3003 output_address(const Relobj
* object
, unsigned int shndx
,
3004 off_t offset
) const;
3006 // Look for the merged section for input section SHNDX in object
3007 // OBJECT. If found, return true, and set *ADDR to the address of
3008 // the start of the merged section. This is not necessary the
3009 // output offset corresponding to input offset 0 in the section,
3010 // since the section may be mapped arbitrarily.
3012 find_starting_output_address(const Relobj
* object
, unsigned int shndx
,
3013 uint64_t* addr
) const;
3015 // Record that this output section was found in the SECTIONS clause
3016 // of a linker script.
3018 set_found_in_sections_clause()
3019 { this->found_in_sections_clause_
= true; }
3021 // Return whether this output section was found in the SECTIONS
3022 // clause of a linker script.
3024 found_in_sections_clause() const
3025 { return this->found_in_sections_clause_
; }
3027 // Write the section header into *OPHDR.
3028 template<int size
, bool big_endian
>
3030 write_header(const Layout
*, const Stringpool
*,
3031 elfcpp::Shdr_write
<size
, big_endian
>*) const;
3033 // The next few calls are for linker script support.
3035 // In some cases we need to keep a list of the input sections
3036 // associated with this output section. We only need the list if we
3037 // might have to change the offsets of the input section within the
3038 // output section after we add the input section. The ordinary
3039 // input sections will be written out when we process the object
3040 // file, and as such we don't need to track them here. We do need
3041 // to track Output_section_data objects here. We store instances of
3042 // this structure in a std::vector, so it must be a POD. There can
3043 // be many instances of this structure, so we use a union to save
3049 : shndx_(0), p2align_(0)
3051 this->u1_
.data_size
= 0;
3052 this->u2_
.object
= NULL
;
3055 // For an ordinary input section.
3056 Input_section(Relobj
* object
, unsigned int shndx
, off_t data_size
,
3059 p2align_(ffsll(static_cast<long long>(addralign
))),
3060 section_order_index_(0)
3062 gold_assert(shndx
!= OUTPUT_SECTION_CODE
3063 && shndx
!= MERGE_DATA_SECTION_CODE
3064 && shndx
!= MERGE_STRING_SECTION_CODE
3065 && shndx
!= RELAXED_INPUT_SECTION_CODE
);
3066 this->u1_
.data_size
= data_size
;
3067 this->u2_
.object
= object
;
3070 // For a non-merge output section.
3071 Input_section(Output_section_data
* posd
)
3072 : shndx_(OUTPUT_SECTION_CODE
), p2align_(0),
3073 section_order_index_(0)
3075 this->u1_
.data_size
= 0;
3076 this->u2_
.posd
= posd
;
3079 // For a merge section.
3080 Input_section(Output_section_data
* posd
, bool is_string
, uint64_t entsize
)
3082 ? MERGE_STRING_SECTION_CODE
3083 : MERGE_DATA_SECTION_CODE
),
3085 section_order_index_(0)
3087 this->u1_
.entsize
= entsize
;
3088 this->u2_
.posd
= posd
;
3091 // For a relaxed input section.
3092 Input_section(Output_relaxed_input_section
* psection
)
3093 : shndx_(RELAXED_INPUT_SECTION_CODE
), p2align_(0),
3094 section_order_index_(0)
3096 this->u1_
.data_size
= 0;
3097 this->u2_
.poris
= psection
;
3101 section_order_index() const
3103 return this->section_order_index_
;
3107 set_section_order_index(unsigned int number
)
3109 this->section_order_index_
= number
;
3112 // The required alignment.
3116 if (this->p2align_
!= 0)
3117 return static_cast<uint64_t>(1) << (this->p2align_
- 1);
3118 else if (!this->is_input_section())
3119 return this->u2_
.posd
->addralign();
3124 // Set the required alignment, which must be either 0 or a power of 2.
3125 // For input sections that are sub-classes of Output_section_data, a
3126 // alignment of zero means asking the underlying object for alignment.
3128 set_addralign(uint64_t addralign
)
3134 gold_assert((addralign
& (addralign
- 1)) == 0);
3135 this->p2align_
= ffsll(static_cast<long long>(addralign
));
3139 // Return the current required size, without finalization.
3141 current_data_size() const;
3143 // Return the required size.
3147 // Whether this is an input section.
3149 is_input_section() const
3151 return (this->shndx_
!= OUTPUT_SECTION_CODE
3152 && this->shndx_
!= MERGE_DATA_SECTION_CODE
3153 && this->shndx_
!= MERGE_STRING_SECTION_CODE
3154 && this->shndx_
!= RELAXED_INPUT_SECTION_CODE
);
3157 // Return whether this is a merge section which matches the
3160 is_merge_section(bool is_string
, uint64_t entsize
,
3161 uint64_t addralign
) const
3163 return (this->shndx_
== (is_string
3164 ? MERGE_STRING_SECTION_CODE
3165 : MERGE_DATA_SECTION_CODE
)
3166 && this->u1_
.entsize
== entsize
3167 && this->addralign() == addralign
);
3170 // Return whether this is a merge section for some input section.
3172 is_merge_section() const
3174 return (this->shndx_
== MERGE_DATA_SECTION_CODE
3175 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3178 // Return whether this is a relaxed input section.
3180 is_relaxed_input_section() const
3181 { return this->shndx_
== RELAXED_INPUT_SECTION_CODE
; }
3183 // Return whether this is a generic Output_section_data.
3185 is_output_section_data() const
3187 return this->shndx_
== OUTPUT_SECTION_CODE
;
3190 // Return the object for an input section.
3194 // Return the input section index for an input section.
3198 // For non-input-sections, return the associated Output_section_data
3200 Output_section_data
*
3201 output_section_data() const
3203 gold_assert(!this->is_input_section());
3204 return this->u2_
.posd
;
3207 // For a merge section, return the Output_merge_base pointer.
3209 output_merge_base() const
3211 gold_assert(this->is_merge_section());
3212 return this->u2_
.pomb
;
3215 // Return the Output_relaxed_input_section object.
3216 Output_relaxed_input_section
*
3217 relaxed_input_section() const
3219 gold_assert(this->is_relaxed_input_section());
3220 return this->u2_
.poris
;
3223 // Set the output section.
3225 set_output_section(Output_section
* os
)
3227 gold_assert(!this->is_input_section());
3228 Output_section_data
* posd
=
3229 this->is_relaxed_input_section() ? this->u2_
.poris
: this->u2_
.posd
;
3230 posd
->set_output_section(os
);
3233 // Set the address and file offset. This is called during
3234 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3235 // the enclosing section.
3237 set_address_and_file_offset(uint64_t address
, off_t file_offset
,
3238 off_t section_file_offset
);
3240 // Reset the address and file offset.
3242 reset_address_and_file_offset();
3244 // Finalize the data size.
3246 finalize_data_size();
3248 // Add an input section, for SHF_MERGE sections.
3250 add_input_section(Relobj
* object
, unsigned int shndx
)
3252 gold_assert(this->shndx_
== MERGE_DATA_SECTION_CODE
3253 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3254 return this->u2_
.posd
->add_input_section(object
, shndx
);
3257 // Given an input OBJECT, an input section index SHNDX within that
3258 // object, and an OFFSET relative to the start of that input
3259 // section, return whether or not the output offset is known. If
3260 // this function returns true, it sets *POUTPUT to the offset in
3261 // the output section, relative to the start of the input section
3262 // in the output section. *POUTPUT may be different from OFFSET
3263 // for a merged section.
3265 output_offset(const Relobj
* object
, unsigned int shndx
,
3266 section_offset_type offset
,
3267 section_offset_type
* poutput
) const;
3269 // Return whether this is the merge section for the input section
3272 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const;
3274 // Write out the data. This does nothing for an input section.
3276 write(Output_file
*);
3278 // Write the data to a buffer. This does nothing for an input
3281 write_to_buffer(unsigned char*);
3283 // Print to a map file.
3285 print_to_mapfile(Mapfile
*) const;
3287 // Print statistics about merge sections to stderr.
3289 print_merge_stats(const char* section_name
)
3291 if (this->shndx_
== MERGE_DATA_SECTION_CODE
3292 || this->shndx_
== MERGE_STRING_SECTION_CODE
)
3293 this->u2_
.posd
->print_merge_stats(section_name
);
3297 // Code values which appear in shndx_. If the value is not one of
3298 // these codes, it is the input section index in the object file.
3301 // An Output_section_data.
3302 OUTPUT_SECTION_CODE
= -1U,
3303 // An Output_section_data for an SHF_MERGE section with
3304 // SHF_STRINGS not set.
3305 MERGE_DATA_SECTION_CODE
= -2U,
3306 // An Output_section_data for an SHF_MERGE section with
3308 MERGE_STRING_SECTION_CODE
= -3U,
3309 // An Output_section_data for a relaxed input section.
3310 RELAXED_INPUT_SECTION_CODE
= -4U
3313 // For an ordinary input section, this is the section index in the
3314 // input file. For an Output_section_data, this is
3315 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3316 // MERGE_STRING_SECTION_CODE.
3317 unsigned int shndx_
;
3318 // The required alignment, stored as a power of 2.
3319 unsigned int p2align_
;
3322 // For an ordinary input section, the section size.
3324 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3325 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3331 // For an ordinary input section, the object which holds the
3334 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3335 // MERGE_STRING_SECTION_CODE, the data.
3336 Output_section_data
* posd
;
3337 Output_merge_base
* pomb
;
3338 // For RELAXED_INPUT_SECTION_CODE, the data.
3339 Output_relaxed_input_section
* poris
;
3341 // The line number of the pattern it matches in the --section-ordering-file
3342 // file. It is 0 if does not match any pattern.
3343 unsigned int section_order_index_
;
3346 // Store the list of input sections for this Output_section into the
3347 // list passed in. This removes the input sections, leaving only
3348 // any Output_section_data elements. This returns the size of those
3349 // Output_section_data elements. ADDRESS is the address of this
3350 // output section. FILL is the fill value to use, in case there are
3351 // any spaces between the remaining Output_section_data elements.
3353 get_input_sections(uint64_t address
, const std::string
& fill
,
3354 std::list
<Input_section
>*);
3356 // Add a script input section. A script input section can either be
3357 // a plain input section or a sub-class of Output_section_data.
3359 add_script_input_section(const Input_section
& input_section
);
3361 // Set the current size of the output section.
3363 set_current_data_size(off_t size
)
3364 { this->set_current_data_size_for_child(size
); }
3366 // End of linker script support.
3368 // Save states before doing section layout.
3369 // This is used for relaxation.
3373 // Restore states prior to section layout.
3381 // Convert existing input sections to relaxed input sections.
3383 convert_input_sections_to_relaxed_sections(
3384 const std::vector
<Output_relaxed_input_section
*>& sections
);
3386 // Find a relaxed input section to an input section in OBJECT
3387 // with index SHNDX. Return NULL if none is found.
3388 const Output_relaxed_input_section
*
3389 find_relaxed_input_section(const Relobj
* object
, unsigned int shndx
) const;
3391 // Whether section offsets need adjustment due to relaxation.
3393 section_offsets_need_adjustment() const
3394 { return this->section_offsets_need_adjustment_
; }
3396 // Set section_offsets_need_adjustment to be true.
3398 set_section_offsets_need_adjustment()
3399 { this->section_offsets_need_adjustment_
= true; }
3401 // Adjust section offsets of input sections in this. This is
3402 // requires if relaxation caused some input sections to change sizes.
3404 adjust_section_offsets();
3406 // Whether this is a NOLOAD section.
3409 { return this->is_noload_
; }
3414 { this->is_noload_
= true; }
3416 // Print merge statistics to stderr.
3418 print_merge_stats();
3420 // Set a fixed layout for the section. Used for incremental update links.
3422 set_fixed_layout(uint64_t sh_addr
, off_t sh_offset
, off_t sh_size
,
3423 uint64_t sh_addralign
);
3425 // Return TRUE if the section has a fixed layout.
3427 has_fixed_layout() const
3428 { return this->has_fixed_layout_
; }
3430 // Reserve space within the fixed layout for the section. Used for
3431 // incremental update links.
3433 reserve(uint64_t sh_offset
, uint64_t sh_size
);
3435 // Allocate space from the free list for the section. Used for
3436 // incremental update links.
3438 allocate(off_t len
, uint64_t addralign
);
3441 // Return the output section--i.e., the object itself.
3446 const Output_section
*
3447 do_output_section() const
3450 // Return the section index in the output file.
3452 do_out_shndx() const
3454 gold_assert(this->out_shndx_
!= -1U);
3455 return this->out_shndx_
;
3458 // Set the output section index.
3460 do_set_out_shndx(unsigned int shndx
)
3462 gold_assert(this->out_shndx_
== -1U || this->out_shndx_
== shndx
);
3463 this->out_shndx_
= shndx
;
3466 // Update the data size of the Output_section. For a typical
3467 // Output_section, there is nothing to do, but if there are any
3468 // Output_section_data objects we need to do a trial layout
3473 // Set the final data size of the Output_section. For a typical
3474 // Output_section, there is nothing to do, but if there are any
3475 // Output_section_data objects we need to set their final addresses
3478 set_final_data_size();
3480 // Reset the address and file offset.
3482 do_reset_address_and_file_offset();
3484 // Return true if address and file offset already have reset values. In
3485 // other words, calling reset_address_and_file_offset will not change them.
3487 do_address_and_file_offset_have_reset_values() const;
3489 // Write the data to the file. For a typical Output_section, this
3490 // does nothing: the data is written out by calling Object::Relocate
3491 // on each input object. But if there are any Output_section_data
3492 // objects we do need to write them out here.
3494 do_write(Output_file
*);
3496 // Return the address alignment--function required by parent class.
3498 do_addralign() const
3499 { return this->addralign_
; }
3501 // Return whether there is a load address.
3503 do_has_load_address() const
3504 { return this->has_load_address_
; }
3506 // Return the load address.
3508 do_load_address() const
3510 gold_assert(this->has_load_address_
);
3511 return this->load_address_
;
3514 // Return whether this is an Output_section.
3516 do_is_section() const
3519 // Return whether this is a section of the specified type.
3521 do_is_section_type(elfcpp::Elf_Word type
) const
3522 { return this->type_
== type
; }
3524 // Return whether the specified section flag is set.
3526 do_is_section_flag_set(elfcpp::Elf_Xword flag
) const
3527 { return (this->flags_
& flag
) != 0; }
3529 // Set the TLS offset. Called only for SHT_TLS sections.
3531 do_set_tls_offset(uint64_t tls_base
);
3533 // Return the TLS offset, relative to the base of the TLS segment.
3534 // Valid only for SHT_TLS sections.
3536 do_tls_offset() const
3537 { return this->tls_offset_
; }
3539 // This may be implemented by a child class.
3541 do_finalize_name(Layout
*)
3544 // Print to the map file.
3546 do_print_to_mapfile(Mapfile
*) const;
3548 // Record that this section requires postprocessing after all
3549 // relocations have been applied. This is called by a child class.
3551 set_requires_postprocessing()
3553 this->requires_postprocessing_
= true;
3554 this->after_input_sections_
= true;
3557 // Write all the data of an Output_section into the postprocessing
3560 write_to_postprocessing_buffer();
3562 typedef std::vector
<Input_section
> Input_section_list
;
3564 // Allow a child class to access the input sections.
3565 const Input_section_list
&
3566 input_sections() const
3567 { return this->input_sections_
; }
3569 // Whether this always keeps an input section list
3571 always_keeps_input_sections() const
3572 { return this->always_keeps_input_sections_
; }
3574 // Always keep an input section list.
3576 set_always_keeps_input_sections()
3578 gold_assert(this->current_data_size_for_child() == 0);
3579 this->always_keeps_input_sections_
= true;
3583 // We only save enough information to undo the effects of section layout.
3584 class Checkpoint_output_section
3587 Checkpoint_output_section(uint64_t addralign
, elfcpp::Elf_Xword flags
,
3588 const Input_section_list
& input_sections
,
3589 off_t first_input_offset
,
3590 bool attached_input_sections_are_sorted
)
3591 : addralign_(addralign
), flags_(flags
),
3592 input_sections_(input_sections
),
3593 input_sections_size_(input_sections_
.size()),
3594 input_sections_copy_(), first_input_offset_(first_input_offset
),
3595 attached_input_sections_are_sorted_(attached_input_sections_are_sorted
)
3599 ~Checkpoint_output_section()
3602 // Return the address alignment.
3605 { return this->addralign_
; }
3607 // Return the section flags.
3610 { return this->flags_
; }
3612 // Return a reference to the input section list copy.
3615 { return &this->input_sections_copy_
; }
3617 // Return the size of input_sections at the time when checkpoint is
3620 input_sections_size() const
3621 { return this->input_sections_size_
; }
3623 // Whether input sections are copied.
3625 input_sections_saved() const
3626 { return this->input_sections_copy_
.size() == this->input_sections_size_
; }
3629 first_input_offset() const
3630 { return this->first_input_offset_
; }
3633 attached_input_sections_are_sorted() const
3634 { return this->attached_input_sections_are_sorted_
; }
3636 // Save input sections.
3638 save_input_sections()
3640 this->input_sections_copy_
.reserve(this->input_sections_size_
);
3641 this->input_sections_copy_
.clear();
3642 Input_section_list::const_iterator p
= this->input_sections_
.begin();
3643 gold_assert(this->input_sections_size_
>= this->input_sections_
.size());
3644 for(size_t i
= 0; i
< this->input_sections_size_
; i
++, ++p
)
3645 this->input_sections_copy_
.push_back(*p
);
3649 // The section alignment.
3650 uint64_t addralign_
;
3651 // The section flags.
3652 elfcpp::Elf_Xword flags_
;
3653 // Reference to the input sections to be checkpointed.
3654 const Input_section_list
& input_sections_
;
3655 // Size of the checkpointed portion of input_sections_;
3656 size_t input_sections_size_
;
3657 // Copy of input sections.
3658 Input_section_list input_sections_copy_
;
3659 // The offset of the first entry in input_sections_.
3660 off_t first_input_offset_
;
3661 // True if the input sections attached to this output section have
3662 // already been sorted.
3663 bool attached_input_sections_are_sorted_
;
3666 // This class is used to sort the input sections.
3667 class Input_section_sort_entry
;
3669 // This is the sort comparison function for ctors and dtors.
3670 struct Input_section_sort_compare
3673 operator()(const Input_section_sort_entry
&,
3674 const Input_section_sort_entry
&) const;
3677 // This is the sort comparison function for .init_array and .fini_array.
3678 struct Input_section_sort_init_fini_compare
3681 operator()(const Input_section_sort_entry
&,
3682 const Input_section_sort_entry
&) const;
3685 // This is the sort comparison function when a section order is specified
3686 // from an input file.
3687 struct Input_section_sort_section_order_index_compare
3690 operator()(const Input_section_sort_entry
&,
3691 const Input_section_sort_entry
&) const;
3694 // Fill data. This is used to fill in data between input sections.
3695 // It is also used for data statements (BYTE, WORD, etc.) in linker
3696 // scripts. When we have to keep track of the input sections, we
3697 // can use an Output_data_const, but we don't want to have to keep
3698 // track of input sections just to implement fills.
3702 Fill(off_t section_offset
, off_t length
)
3703 : section_offset_(section_offset
),
3704 length_(convert_to_section_size_type(length
))
3707 // Return section offset.
3709 section_offset() const
3710 { return this->section_offset_
; }
3712 // Return fill length.
3715 { return this->length_
; }
3718 // The offset within the output section.
3719 off_t section_offset_
;
3720 // The length of the space to fill.
3721 section_size_type length_
;
3724 typedef std::vector
<Fill
> Fill_list
;
3726 // Map used during relaxation of existing sections. This map
3727 // a section id an input section list index. We assume that
3728 // Input_section_list is a vector.
3729 typedef Unordered_map
<Section_id
, size_t, Section_id_hash
> Relaxation_map
;
3731 // Add a new output section by Input_section.
3733 add_output_section_data(Input_section
*);
3735 // Add an SHF_MERGE input section. Returns true if the section was
3736 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3737 // stores information about the merged input sections.
3739 add_merge_input_section(Relobj
* object
, unsigned int shndx
, uint64_t flags
,
3740 uint64_t entsize
, uint64_t addralign
,
3741 bool keeps_input_sections
);
3743 // Add an output SHF_MERGE section POSD to this output section.
3744 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3745 // ENTSIZE is the entity size. This returns the entry added to
3748 add_output_merge_section(Output_section_data
* posd
, bool is_string
,
3751 // Sort the attached input sections.
3753 sort_attached_input_sections();
3755 // Find the merge section into which an input section with index SHNDX in
3756 // OBJECT has been added. Return NULL if none found.
3757 Output_section_data
*
3758 find_merge_section(const Relobj
* object
, unsigned int shndx
) const;
3760 // Build a relaxation map.
3762 build_relaxation_map(
3763 const Input_section_list
& input_sections
,
3765 Relaxation_map
* map
) const;
3767 // Convert input sections in an input section list into relaxed sections.
3769 convert_input_sections_in_list_to_relaxed_sections(
3770 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
3771 const Relaxation_map
& map
,
3772 Input_section_list
* input_sections
);
3774 // Build the lookup maps for merge and relaxed input sections.
3776 build_lookup_maps() const;
3778 // Most of these fields are only valid after layout.
3780 // The name of the section. This will point into a Stringpool.
3782 // The section address is in the parent class.
3783 // The section alignment.
3784 uint64_t addralign_
;
3785 // The section entry size.
3787 // The load address. This is only used when using a linker script
3788 // with a SECTIONS clause. The has_load_address_ field indicates
3789 // whether this field is valid.
3790 uint64_t load_address_
;
3791 // The file offset is in the parent class.
3792 // Set the section link field to the index of this section.
3793 const Output_data
* link_section_
;
3794 // If link_section_ is NULL, this is the link field.
3796 // Set the section info field to the index of this section.
3797 const Output_section
* info_section_
;
3798 // If info_section_ is NULL, set the info field to the symbol table
3799 // index of this symbol.
3800 const Symbol
* info_symndx_
;
3801 // If info_section_ and info_symndx_ are NULL, this is the section
3804 // The section type.
3805 const elfcpp::Elf_Word type_
;
3806 // The section flags.
3807 elfcpp::Elf_Xword flags_
;
3808 // The order of this section in the output segment.
3809 Output_section_order order_
;
3810 // The section index.
3811 unsigned int out_shndx_
;
3812 // If there is a STT_SECTION for this output section in the normal
3813 // symbol table, this is the symbol index. This starts out as zero.
3814 // It is initialized in Layout::finalize() to be the index, or -1U
3815 // if there isn't one.
3816 unsigned int symtab_index_
;
3817 // If there is a STT_SECTION for this output section in the dynamic
3818 // symbol table, this is the symbol index. This starts out as zero.
3819 // It is initialized in Layout::finalize() to be the index, or -1U
3820 // if there isn't one.
3821 unsigned int dynsym_index_
;
3822 // The input sections. This will be empty in cases where we don't
3823 // need to keep track of them.
3824 Input_section_list input_sections_
;
3825 // The offset of the first entry in input_sections_.
3826 off_t first_input_offset_
;
3827 // The fill data. This is separate from input_sections_ because we
3828 // often will need fill sections without needing to keep track of
3831 // If the section requires postprocessing, this buffer holds the
3832 // section contents during relocation.
3833 unsigned char* postprocessing_buffer_
;
3834 // Whether this output section needs a STT_SECTION symbol in the
3835 // normal symbol table. This will be true if there is a relocation
3837 bool needs_symtab_index_
: 1;
3838 // Whether this output section needs a STT_SECTION symbol in the
3839 // dynamic symbol table. This will be true if there is a dynamic
3840 // relocation which needs it.
3841 bool needs_dynsym_index_
: 1;
3842 // Whether the link field of this output section should point to the
3843 // normal symbol table.
3844 bool should_link_to_symtab_
: 1;
3845 // Whether the link field of this output section should point to the
3846 // dynamic symbol table.
3847 bool should_link_to_dynsym_
: 1;
3848 // Whether this section should be written after all the input
3849 // sections are complete.
3850 bool after_input_sections_
: 1;
3851 // Whether this section requires post processing after all
3852 // relocations have been applied.
3853 bool requires_postprocessing_
: 1;
3854 // Whether an input section was mapped to this output section
3855 // because of a SECTIONS clause in a linker script.
3856 bool found_in_sections_clause_
: 1;
3857 // Whether this section has an explicitly specified load address.
3858 bool has_load_address_
: 1;
3859 // True if the info_section_ field means the section index of the
3860 // section, false if it means the symbol index of the corresponding
3862 bool info_uses_section_index_
: 1;
3863 // True if input sections attached to this output section have to be
3864 // sorted according to a specified order.
3865 bool input_section_order_specified_
: 1;
3866 // True if the input sections attached to this output section may
3868 bool may_sort_attached_input_sections_
: 1;
3869 // True if the input sections attached to this output section must
3871 bool must_sort_attached_input_sections_
: 1;
3872 // True if the input sections attached to this output section have
3873 // already been sorted.
3874 bool attached_input_sections_are_sorted_
: 1;
3875 // True if this section holds relro data.
3877 // True if this is a small section.
3878 bool is_small_section_
: 1;
3879 // True if this is a large section.
3880 bool is_large_section_
: 1;
3881 // Whether code-fills are generated at write.
3882 bool generate_code_fills_at_write_
: 1;
3883 // Whether the entry size field should be zero.
3884 bool is_entsize_zero_
: 1;
3885 // Whether section offsets need adjustment due to relaxation.
3886 bool section_offsets_need_adjustment_
: 1;
3887 // Whether this is a NOLOAD section.
3888 bool is_noload_
: 1;
3889 // Whether this always keeps input section.
3890 bool always_keeps_input_sections_
: 1;
3891 // Whether this section has a fixed layout, for incremental update links.
3892 bool has_fixed_layout_
: 1;
3893 // For SHT_TLS sections, the offset of this section relative to the base
3894 // of the TLS segment.
3895 uint64_t tls_offset_
;
3896 // Saved checkpoint.
3897 Checkpoint_output_section
* checkpoint_
;
3898 // Fast lookup maps for merged and relaxed input sections.
3899 Output_section_lookup_maps
* lookup_maps_
;
3900 // List of available regions within the section, for incremental
3902 Free_list free_list_
;
3905 // An output segment. PT_LOAD segments are built from collections of
3906 // output sections. Other segments typically point within PT_LOAD
3907 // segments, and are built directly as needed.
3909 // NOTE: We want to use the copy constructor for this class. During
3910 // relaxation, we may try built the segments multiple times. We do
3911 // that by copying the original segment list before lay-out, doing
3912 // a trial lay-out and roll-back to the saved copied if we need to
3913 // to the lay-out again.
3915 class Output_segment
3918 // Create an output segment, specifying the type and flags.
3919 Output_segment(elfcpp::Elf_Word
, elfcpp::Elf_Word
);
3921 // Return the virtual address.
3924 { return this->vaddr_
; }
3926 // Return the physical address.
3929 { return this->paddr_
; }
3931 // Return the segment type.
3934 { return this->type_
; }
3936 // Return the segment flags.
3939 { return this->flags_
; }
3941 // Return the memory size.
3944 { return this->memsz_
; }
3946 // Return the file size.
3949 { return this->filesz_
; }
3951 // Return the file offset.
3954 { return this->offset_
; }
3956 // Whether this is a segment created to hold large data sections.
3958 is_large_data_segment() const
3959 { return this->is_large_data_segment_
; }
3961 // Record that this is a segment created to hold large data
3964 set_is_large_data_segment()
3965 { this->is_large_data_segment_
= true; }
3967 // Return the maximum alignment of the Output_data.
3969 maximum_alignment();
3971 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
3972 // the segment flags to use.
3974 add_output_section_to_load(Layout
* layout
, Output_section
* os
,
3975 elfcpp::Elf_Word seg_flags
);
3977 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
3978 // is the segment flags to use.
3980 add_output_section_to_nonload(Output_section
* os
,
3981 elfcpp::Elf_Word seg_flags
);
3983 // Remove an Output_section from this segment. It is an error if it
3986 remove_output_section(Output_section
* os
);
3988 // Add an Output_data (which need not be an Output_section) to the
3989 // start of this segment.
3991 add_initial_output_data(Output_data
*);
3993 // Return true if this segment has any sections which hold actual
3994 // data, rather than being a BSS section.
3996 has_any_data_sections() const;
3998 // Whether this segment has a dynamic relocs.
4000 has_dynamic_reloc() const;
4002 // Return the address of the first section.
4004 first_section_load_address() const;
4006 // Return whether the addresses have been set already.
4008 are_addresses_set() const
4009 { return this->are_addresses_set_
; }
4011 // Set the addresses.
4013 set_addresses(uint64_t vaddr
, uint64_t paddr
)
4015 this->vaddr_
= vaddr
;
4016 this->paddr_
= paddr
;
4017 this->are_addresses_set_
= true;
4020 // Update the flags for the flags of an output section added to this
4023 update_flags_for_output_section(elfcpp::Elf_Xword flags
)
4025 // The ELF ABI specifies that a PT_TLS segment should always have
4026 // PF_R as the flags.
4027 if (this->type() != elfcpp::PT_TLS
)
4028 this->flags_
|= flags
;
4031 // Set the segment flags. This is only used if we have a PHDRS
4032 // clause which explicitly specifies the flags.
4034 set_flags(elfcpp::Elf_Word flags
)
4035 { this->flags_
= flags
; }
4037 // Set the address of the segment to ADDR and the offset to *POFF
4038 // and set the addresses and offsets of all contained output
4039 // sections accordingly. Set the section indexes of all contained
4040 // output sections starting with *PSHNDX. If RESET is true, first
4041 // reset the addresses of the contained sections. Return the
4042 // address of the immediately following segment. Update *POFF and
4043 // *PSHNDX. This should only be called for a PT_LOAD segment.
4045 set_section_addresses(Layout
*, bool reset
, uint64_t addr
,
4046 unsigned int* increase_relro
, bool* has_relro
,
4047 off_t
* poff
, unsigned int* pshndx
);
4049 // Set the minimum alignment of this segment. This may be adjusted
4050 // upward based on the section alignments.
4052 set_minimum_p_align(uint64_t align
)
4054 if (align
> this->min_p_align_
)
4055 this->min_p_align_
= align
;
4058 // Set the offset of this segment based on the section. This should
4059 // only be called for a non-PT_LOAD segment.
4061 set_offset(unsigned int increase
);
4063 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4067 // Return the number of output sections.
4069 output_section_count() const;
4071 // Return the section attached to the list segment with the lowest
4072 // load address. This is used when handling a PHDRS clause in a
4075 section_with_lowest_load_address() const;
4077 // Write the segment header into *OPHDR.
4078 template<int size
, bool big_endian
>
4080 write_header(elfcpp::Phdr_write
<size
, big_endian
>*);
4082 // Write the section headers of associated sections into V.
4083 template<int size
, bool big_endian
>
4085 write_section_headers(const Layout
*, const Stringpool
*, unsigned char* v
,
4086 unsigned int* pshndx
) const;
4088 // Print the output sections in the map file.
4090 print_sections_to_mapfile(Mapfile
*) const;
4093 typedef std::vector
<Output_data
*> Output_data_list
;
4095 // Find the maximum alignment in an Output_data_list.
4097 maximum_alignment_list(const Output_data_list
*);
4099 // Return whether the first data section is a relro section.
4101 is_first_section_relro() const;
4103 // Set the section addresses in an Output_data_list.
4105 set_section_list_addresses(Layout
*, bool reset
, Output_data_list
*,
4106 uint64_t addr
, off_t
* poff
, unsigned int* pshndx
,
4109 // Return the number of Output_sections in an Output_data_list.
4111 output_section_count_list(const Output_data_list
*) const;
4113 // Return whether an Output_data_list has a dynamic reloc.
4115 has_dynamic_reloc_list(const Output_data_list
*) const;
4117 // Find the section with the lowest load address in an
4118 // Output_data_list.
4120 lowest_load_address_in_list(const Output_data_list
* pdl
,
4121 Output_section
** found
,
4122 uint64_t* found_lma
) const;
4124 // Find the first and last entries by address.
4126 find_first_and_last_list(const Output_data_list
* pdl
,
4127 const Output_data
** pfirst
,
4128 const Output_data
** plast
) const;
4130 // Write the section headers in the list into V.
4131 template<int size
, bool big_endian
>
4133 write_section_headers_list(const Layout
*, const Stringpool
*,
4134 const Output_data_list
*, unsigned char* v
,
4135 unsigned int* pshdx
) const;
4137 // Print a section list to the mapfile.
4139 print_section_list_to_mapfile(Mapfile
*, const Output_data_list
*) const;
4141 // NOTE: We want to use the copy constructor. Currently, shallow copy
4142 // works for us so we do not need to write our own copy constructor.
4144 // The list of output data attached to this segment.
4145 Output_data_list output_lists_
[ORDER_MAX
];
4146 // The segment virtual address.
4148 // The segment physical address.
4150 // The size of the segment in memory.
4152 // The maximum section alignment. The is_max_align_known_ field
4153 // indicates whether this has been finalized.
4154 uint64_t max_align_
;
4155 // The required minimum value for the p_align field. This is used
4156 // for PT_LOAD segments. Note that this does not mean that
4157 // addresses should be aligned to this value; it means the p_paddr
4158 // and p_vaddr fields must be congruent modulo this value. For
4159 // non-PT_LOAD segments, the dynamic linker works more efficiently
4160 // if the p_align field has the more conventional value, although it
4161 // can align as needed.
4162 uint64_t min_p_align_
;
4163 // The offset of the segment data within the file.
4165 // The size of the segment data in the file.
4167 // The segment type;
4168 elfcpp::Elf_Word type_
;
4169 // The segment flags.
4170 elfcpp::Elf_Word flags_
;
4171 // Whether we have finalized max_align_.
4172 bool is_max_align_known_
: 1;
4173 // Whether vaddr and paddr were set by a linker script.
4174 bool are_addresses_set_
: 1;
4175 // Whether this segment holds large data sections.
4176 bool is_large_data_segment_
: 1;
4179 // This class represents the output file.
4184 Output_file(const char* name
);
4186 // Indicate that this is a temporary file which should not be
4190 { this->is_temporary_
= true; }
4192 // Try to open an existing file. Returns false if the file doesn't
4193 // exist, has a size of 0 or can't be mmaped. This method is
4194 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4195 // that file as the base for incremental linking.
4197 open_base_file(const char* base_name
, bool writable
);
4199 // Open the output file. FILE_SIZE is the final size of the file.
4200 // If the file already exists, it is deleted/truncated. This method
4201 // is thread-unsafe.
4203 open(off_t file_size
);
4205 // Resize the output file. This method is thread-unsafe.
4207 resize(off_t file_size
);
4209 // Close the output file (flushing all buffered data) and make sure
4210 // there are no errors. This method is thread-unsafe.
4214 // Return the size of this file.
4217 { return this->file_size_
; }
4219 // Return the name of this file.
4222 { return this->name_
; }
4224 // We currently always use mmap which makes the view handling quite
4225 // simple. In the future we may support other approaches.
4227 // Write data to the output file.
4229 write(off_t offset
, const void* data
, size_t len
)
4230 { memcpy(this->base_
+ offset
, data
, len
); }
4232 // Get a buffer to use to write to the file, given the offset into
4233 // the file and the size.
4235 get_output_view(off_t start
, size_t size
)
4237 gold_assert(start
>= 0
4238 && start
+ static_cast<off_t
>(size
) <= this->file_size_
);
4239 return this->base_
+ start
;
4242 // VIEW must have been returned by get_output_view. Write the
4243 // buffer to the file, passing in the offset and the size.
4245 write_output_view(off_t
, size_t, unsigned char*)
4248 // Get a read/write buffer. This is used when we want to write part
4249 // of the file, read it in, and write it again.
4251 get_input_output_view(off_t start
, size_t size
)
4252 { return this->get_output_view(start
, size
); }
4254 // Write a read/write buffer back to the file.
4256 write_input_output_view(off_t
, size_t, unsigned char*)
4259 // Get a read buffer. This is used when we just want to read part
4260 // of the file back it in.
4261 const unsigned char*
4262 get_input_view(off_t start
, size_t size
)
4263 { return this->get_output_view(start
, size
); }
4265 // Release a read bfufer.
4267 free_input_view(off_t
, size_t, const unsigned char*)
4271 // Map the file into memory or, if that fails, allocate anonymous
4276 // Allocate anonymous memory for the file.
4280 // Map the file into memory.
4282 map_no_anonymous(bool);
4284 // Unmap the file from memory (and flush to disk buffers).
4294 // Base of file mapped into memory.
4295 unsigned char* base_
;
4296 // True iff base_ points to a memory buffer rather than an output file.
4297 bool map_is_anonymous_
;
4298 // True if base_ was allocated using new rather than mmap.
4299 bool map_is_allocated_
;
4300 // True if this is a temporary file which should not be output.
4304 } // End namespace gold.
4306 #endif // !defined(GOLD_OUTPUT_H)