merge from gcc
[binutils.git] / gas / config / tc-ia64.c
blob2ac758660ddeab33442abe2d749cfff734f875e0
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 TODO:
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
50 #include "opcode/ia64.h"
52 #include "elf/ia64.h"
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
68 #define O_pseudo_fixup (O_max + 1)
70 enum special_section
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
85 enum reloc_func
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
106 enum reg_symbol
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MSR,
128 IND_PKR,
129 IND_PMC,
130 IND_PMD,
131 IND_RR,
132 /* The following pseudo-registers are used for unwind directives only: */
133 REG_PSP,
134 REG_PRIUNAT,
135 REG_NUM
138 enum dynreg_type
140 DYNREG_GR = 0, /* dynamic general purpose register */
141 DYNREG_FR, /* dynamic floating point register */
142 DYNREG_PR, /* dynamic predicate register */
143 DYNREG_NUM_TYPES
146 enum operand_match_result
148 OPERAND_MATCH,
149 OPERAND_OUT_OF_RANGE,
150 OPERAND_MISMATCH
153 /* On the ia64, we can't know the address of a text label until the
154 instructions are packed into a bundle. To handle this, we keep
155 track of the list of labels that appear in front of each
156 instruction. */
157 struct label_fix
159 struct label_fix *next;
160 struct symbol *sym;
161 bfd_boolean dw2_mark_labels;
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
206 /* ia64-specific option processing: */
208 const char *md_shortopts = "m:N:x::";
210 struct option md_longopts[] =
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
218 size_t md_longopts_size = sizeof (md_longopts);
220 static struct
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
228 /* If X_op is != O_absent, the registername for the instruction's
229 qualifying predicate. If NULL, p0 is assumed for instructions
230 that are predicatable. */
231 expressionS qp;
233 /* Optimize for which CPU. */
234 enum
236 itanium1,
237 itanium2
238 } tune;
240 /* What to do when hint.b is used. */
241 enum
243 hint_b_error,
244 hint_b_warning,
245 hint_b_ok
246 } hint_b;
248 unsigned int
249 manual_bundling : 1,
250 debug_dv: 1,
251 detect_dv: 1,
252 explicit_mode : 1, /* which mode we're in */
253 default_explicit_mode : 1, /* which mode is the default */
254 mode_explicitly_set : 1, /* was the current mode explicitly set? */
255 auto_align : 1,
256 keep_pending_output : 1;
258 /* What to do when something is wrong with unwind directives. */
259 enum
261 unwind_check_warning,
262 unwind_check_error
263 } unwind_check;
265 /* Each bundle consists of up to three instructions. We keep
266 track of four most recent instructions so we can correctly set
267 the end_of_insn_group for the last instruction in a bundle. */
268 int curr_slot;
269 int num_slots_in_use;
270 struct slot
272 unsigned int
273 end_of_insn_group : 1,
274 manual_bundling_on : 1,
275 manual_bundling_off : 1,
276 loc_directive_seen : 1;
277 signed char user_template; /* user-selected template, if any */
278 unsigned char qp_regno; /* qualifying predicate */
279 /* This duplicates a good fraction of "struct fix" but we
280 can't use a "struct fix" instead since we can't call
281 fix_new_exp() until we know the address of the instruction. */
282 int num_fixups;
283 struct insn_fix
285 bfd_reloc_code_real_type code;
286 enum ia64_opnd opnd; /* type of operand in need of fix */
287 unsigned int is_pcrel : 1; /* is operand pc-relative? */
288 expressionS expr; /* the value to be inserted */
290 fixup[2]; /* at most two fixups per insn */
291 struct ia64_opcode *idesc;
292 struct label_fix *label_fixups;
293 struct label_fix *tag_fixups;
294 struct unw_rec_list *unwind_record; /* Unwind directive. */
295 expressionS opnd[6];
296 char *src_file;
297 unsigned int src_line;
298 struct dwarf2_line_info debug_line;
300 slot[NUM_SLOTS];
302 segT last_text_seg;
304 struct dynreg
306 struct dynreg *next; /* next dynamic register */
307 const char *name;
308 unsigned short base; /* the base register number */
309 unsigned short num_regs; /* # of registers in this set */
311 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
313 flagword flags; /* ELF-header flags */
315 struct mem_offset {
316 unsigned hint:1; /* is this hint currently valid? */
317 bfd_vma offset; /* mem.offset offset */
318 bfd_vma base; /* mem.offset base */
319 } mem_offset;
321 int path; /* number of alt. entry points seen */
322 const char **entry_labels; /* labels of all alternate paths in
323 the current DV-checking block. */
324 int maxpaths; /* size currently allocated for
325 entry_labels */
327 int pointer_size; /* size in bytes of a pointer */
328 int pointer_size_shift; /* shift size of a pointer for alignment */
330 symbolS *indregsym[IND_RR - IND_CPUID + 1];
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
349 /* application registers: */
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_FCR 21
358 #define AR_EFLAG 24
359 #define AR_CSD 25
360 #define AR_SSD 26
361 #define AR_CFLG 27
362 #define AR_FSR 28
363 #define AR_FIR 29
364 #define AR_FDR 30
365 #define AR_CCV 32
366 #define AR_UNAT 36
367 #define AR_FPSR 40
368 #define AR_ITC 44
369 #define AR_PFS 64
370 #define AR_LC 65
371 #define AR_EC 66
373 static const struct
375 const char *name;
376 unsigned int regnum;
378 ar[] =
380 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
381 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
382 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
383 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
384 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
385 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
386 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
387 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
388 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
389 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
390 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
391 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
392 {"ar.pfs", AR_PFS}, {"ar.lc", AR_LC},
393 {"ar.ec", AR_EC},
396 /* control registers: */
398 #define CR_DCR 0
399 #define CR_ITM 1
400 #define CR_IVA 2
401 #define CR_PTA 8
402 #define CR_GPTA 9
403 #define CR_IPSR 16
404 #define CR_ISR 17
405 #define CR_IIP 19
406 #define CR_IFA 20
407 #define CR_ITIR 21
408 #define CR_IIPA 22
409 #define CR_IFS 23
410 #define CR_IIM 24
411 #define CR_IHA 25
412 #define CR_LID 64
413 #define CR_IVR 65
414 #define CR_TPR 66
415 #define CR_EOI 67
416 #define CR_IRR0 68
417 #define CR_IRR3 71
418 #define CR_ITV 72
419 #define CR_PMV 73
420 #define CR_CMCV 74
421 #define CR_LRR0 80
422 #define CR_LRR1 81
424 static const struct
426 const char *name;
427 unsigned int regnum;
429 cr[] =
431 {"cr.dcr", CR_DCR},
432 {"cr.itm", CR_ITM},
433 {"cr.iva", CR_IVA},
434 {"cr.pta", CR_PTA},
435 {"cr.gpta", CR_GPTA},
436 {"cr.ipsr", CR_IPSR},
437 {"cr.isr", CR_ISR},
438 {"cr.iip", CR_IIP},
439 {"cr.ifa", CR_IFA},
440 {"cr.itir", CR_ITIR},
441 {"cr.iipa", CR_IIPA},
442 {"cr.ifs", CR_IFS},
443 {"cr.iim", CR_IIM},
444 {"cr.iha", CR_IHA},
445 {"cr.lid", CR_LID},
446 {"cr.ivr", CR_IVR},
447 {"cr.tpr", CR_TPR},
448 {"cr.eoi", CR_EOI},
449 {"cr.irr0", CR_IRR0},
450 {"cr.irr1", CR_IRR0 + 1},
451 {"cr.irr2", CR_IRR0 + 2},
452 {"cr.irr3", CR_IRR3},
453 {"cr.itv", CR_ITV},
454 {"cr.pmv", CR_PMV},
455 {"cr.cmcv", CR_CMCV},
456 {"cr.lrr0", CR_LRR0},
457 {"cr.lrr1", CR_LRR1}
460 #define PSR_MFL 4
461 #define PSR_IC 13
462 #define PSR_DFL 18
463 #define PSR_CPL 32
465 static const struct const_desc
467 const char *name;
468 valueT value;
470 const_bits[] =
472 /* PSR constant masks: */
474 /* 0: reserved */
475 {"psr.be", ((valueT) 1) << 1},
476 {"psr.up", ((valueT) 1) << 2},
477 {"psr.ac", ((valueT) 1) << 3},
478 {"psr.mfl", ((valueT) 1) << 4},
479 {"psr.mfh", ((valueT) 1) << 5},
480 /* 6-12: reserved */
481 {"psr.ic", ((valueT) 1) << 13},
482 {"psr.i", ((valueT) 1) << 14},
483 {"psr.pk", ((valueT) 1) << 15},
484 /* 16: reserved */
485 {"psr.dt", ((valueT) 1) << 17},
486 {"psr.dfl", ((valueT) 1) << 18},
487 {"psr.dfh", ((valueT) 1) << 19},
488 {"psr.sp", ((valueT) 1) << 20},
489 {"psr.pp", ((valueT) 1) << 21},
490 {"psr.di", ((valueT) 1) << 22},
491 {"psr.si", ((valueT) 1) << 23},
492 {"psr.db", ((valueT) 1) << 24},
493 {"psr.lp", ((valueT) 1) << 25},
494 {"psr.tb", ((valueT) 1) << 26},
495 {"psr.rt", ((valueT) 1) << 27},
496 /* 28-31: reserved */
497 /* 32-33: cpl (current privilege level) */
498 {"psr.is", ((valueT) 1) << 34},
499 {"psr.mc", ((valueT) 1) << 35},
500 {"psr.it", ((valueT) 1) << 36},
501 {"psr.id", ((valueT) 1) << 37},
502 {"psr.da", ((valueT) 1) << 38},
503 {"psr.dd", ((valueT) 1) << 39},
504 {"psr.ss", ((valueT) 1) << 40},
505 /* 41-42: ri (restart instruction) */
506 {"psr.ed", ((valueT) 1) << 43},
507 {"psr.bn", ((valueT) 1) << 44},
510 /* indirect register-sets/memory: */
512 static const struct
514 const char *name;
515 unsigned int regnum;
517 indirect_reg[] =
519 { "CPUID", IND_CPUID },
520 { "cpuid", IND_CPUID },
521 { "dbr", IND_DBR },
522 { "dtr", IND_DTR },
523 { "itr", IND_ITR },
524 { "ibr", IND_IBR },
525 { "msr", IND_MSR },
526 { "pkr", IND_PKR },
527 { "pmc", IND_PMC },
528 { "pmd", IND_PMD },
529 { "rr", IND_RR },
532 /* Pseudo functions used to indicate relocation types (these functions
533 start with an at sign (@). */
534 static struct
536 const char *name;
537 enum pseudo_type
539 PSEUDO_FUNC_NONE,
540 PSEUDO_FUNC_RELOC,
541 PSEUDO_FUNC_CONST,
542 PSEUDO_FUNC_REG,
543 PSEUDO_FUNC_FLOAT
545 type;
546 union
548 unsigned long ival;
549 symbolS *sym;
553 pseudo_func[] =
555 /* reloc pseudo functions (these must come first!): */
556 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
557 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
558 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
559 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
560 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
561 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
562 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
563 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
564 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
565 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
566 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
567 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
568 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
569 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
570 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
571 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
572 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
574 /* mbtype4 constants: */
575 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
576 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
577 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
578 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
579 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
581 /* fclass constants: */
582 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
583 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
584 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
585 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
586 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
587 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
588 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
589 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
590 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
592 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
594 /* hint constants: */
595 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
597 /* unwind-related constants: */
598 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
599 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
600 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
601 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
602 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
603 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
604 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
606 /* unwind-related registers: */
607 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
610 /* 41-bit nop opcodes (one per unit): */
611 static const bfd_vma nop[IA64_NUM_UNITS] =
613 0x0000000000LL, /* NIL => break 0 */
614 0x0008000000LL, /* I-unit nop */
615 0x0008000000LL, /* M-unit nop */
616 0x4000000000LL, /* B-unit nop */
617 0x0008000000LL, /* F-unit nop */
618 0x0000000000LL, /* L-"unit" nop immediate */
619 0x0008000000LL, /* X-unit nop */
622 /* Can't be `const' as it's passed to input routines (which have the
623 habit of setting temporary sentinels. */
624 static char special_section_name[][20] =
626 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
627 {".IA_64.unwind"}, {".IA_64.unwind_info"},
628 {".init_array"}, {".fini_array"}
631 /* The best template for a particular sequence of up to three
632 instructions: */
633 #define N IA64_NUM_TYPES
634 static unsigned char best_template[N][N][N];
635 #undef N
637 /* Resource dependencies currently in effect */
638 static struct rsrc {
639 int depind; /* dependency index */
640 const struct ia64_dependency *dependency; /* actual dependency */
641 unsigned specific:1, /* is this a specific bit/regno? */
642 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
643 int index; /* specific regno/bit within dependency */
644 int note; /* optional qualifying note (0 if none) */
645 #define STATE_NONE 0
646 #define STATE_STOP 1
647 #define STATE_SRLZ 2
648 int insn_srlz; /* current insn serialization state */
649 int data_srlz; /* current data serialization state */
650 int qp_regno; /* qualifying predicate for this usage */
651 char *file; /* what file marked this dependency */
652 unsigned int line; /* what line marked this dependency */
653 struct mem_offset mem_offset; /* optional memory offset hint */
654 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
655 int path; /* corresponding code entry index */
656 } *regdeps = NULL;
657 static int regdepslen = 0;
658 static int regdepstotlen = 0;
659 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
660 static const char *dv_sem[] = { "none", "implied", "impliedf",
661 "data", "instr", "specific", "stop", "other" };
662 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
664 /* Current state of PR mutexation */
665 static struct qpmutex {
666 valueT prmask;
667 int path;
668 } *qp_mutexes = NULL; /* QP mutex bitmasks */
669 static int qp_mutexeslen = 0;
670 static int qp_mutexestotlen = 0;
671 static valueT qp_safe_across_calls = 0;
673 /* Current state of PR implications */
674 static struct qp_imply {
675 unsigned p1:6;
676 unsigned p2:6;
677 unsigned p2_branched:1;
678 int path;
679 } *qp_implies = NULL;
680 static int qp_implieslen = 0;
681 static int qp_impliestotlen = 0;
683 /* Keep track of static GR values so that indirect register usage can
684 sometimes be tracked. */
685 static struct gr {
686 unsigned known:1;
687 int path;
688 valueT value;
689 } gr_values[128] = {
692 #ifdef INT_MAX
693 INT_MAX,
694 #else
695 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
696 #endif
701 /* Remember the alignment frag. */
702 static fragS *align_frag;
704 /* These are the routines required to output the various types of
705 unwind records. */
707 /* A slot_number is a frag address plus the slot index (0-2). We use the
708 frag address here so that if there is a section switch in the middle of
709 a function, then instructions emitted to a different section are not
710 counted. Since there may be more than one frag for a function, this
711 means we also need to keep track of which frag this address belongs to
712 so we can compute inter-frag distances. This also nicely solves the
713 problem with nops emitted for align directives, which can't easily be
714 counted, but can easily be derived from frag sizes. */
716 typedef struct unw_rec_list {
717 unwind_record r;
718 unsigned long slot_number;
719 fragS *slot_frag;
720 struct unw_rec_list *next;
721 } unw_rec_list;
723 #define SLOT_NUM_NOT_SET (unsigned)-1
725 /* Linked list of saved prologue counts. A very poor
726 implementation of a map from label numbers to prologue counts. */
727 typedef struct label_prologue_count
729 struct label_prologue_count *next;
730 unsigned long label_number;
731 unsigned int prologue_count;
732 } label_prologue_count;
734 typedef struct proc_pending
736 symbolS *sym;
737 struct proc_pending *next;
738 } proc_pending;
740 static struct
742 /* Maintain a list of unwind entries for the current function. */
743 unw_rec_list *list;
744 unw_rec_list *tail;
746 /* Any unwind entires that should be attached to the current slot
747 that an insn is being constructed for. */
748 unw_rec_list *current_entry;
750 /* These are used to create the unwind table entry for this function. */
751 proc_pending proc_pending;
752 symbolS *info; /* pointer to unwind info */
753 symbolS *personality_routine;
754 segT saved_text_seg;
755 subsegT saved_text_subseg;
756 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
758 /* TRUE if processing unwind directives in a prologue region. */
759 unsigned int prologue : 1;
760 unsigned int prologue_mask : 4;
761 unsigned int prologue_gr : 7;
762 unsigned int body : 1;
763 unsigned int insn : 1;
764 unsigned int prologue_count; /* number of .prologues seen so far */
765 /* Prologue counts at previous .label_state directives. */
766 struct label_prologue_count * saved_prologue_counts;
768 /* List of split up .save-s. */
769 unw_p_record *pending_saves;
770 } unwind;
772 /* The input value is a negated offset from psp, and specifies an address
773 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
774 must add 16 and divide by 4 to get the encoded value. */
776 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
778 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
780 /* Forward declarations: */
781 static void set_section PARAMS ((char *name));
782 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
783 unsigned int, unsigned int));
784 static void dot_align (int);
785 static void dot_radix PARAMS ((int));
786 static void dot_special_section PARAMS ((int));
787 static void dot_proc PARAMS ((int));
788 static void dot_fframe PARAMS ((int));
789 static void dot_vframe PARAMS ((int));
790 static void dot_vframesp PARAMS ((int));
791 static void dot_save PARAMS ((int));
792 static void dot_restore PARAMS ((int));
793 static void dot_restorereg PARAMS ((int));
794 static void dot_handlerdata PARAMS ((int));
795 static void dot_unwentry PARAMS ((int));
796 static void dot_altrp PARAMS ((int));
797 static void dot_savemem PARAMS ((int));
798 static void dot_saveg PARAMS ((int));
799 static void dot_savef PARAMS ((int));
800 static void dot_saveb PARAMS ((int));
801 static void dot_savegf PARAMS ((int));
802 static void dot_spill PARAMS ((int));
803 static void dot_spillreg PARAMS ((int));
804 static void dot_spillmem PARAMS ((int));
805 static void dot_label_state PARAMS ((int));
806 static void dot_copy_state PARAMS ((int));
807 static void dot_unwabi PARAMS ((int));
808 static void dot_personality PARAMS ((int));
809 static void dot_body PARAMS ((int));
810 static void dot_prologue PARAMS ((int));
811 static void dot_endp PARAMS ((int));
812 static void dot_template PARAMS ((int));
813 static void dot_regstk PARAMS ((int));
814 static void dot_rot PARAMS ((int));
815 static void dot_byteorder PARAMS ((int));
816 static void dot_psr PARAMS ((int));
817 static void dot_alias PARAMS ((int));
818 static void dot_ln PARAMS ((int));
819 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
820 static void dot_xdata PARAMS ((int));
821 static void stmt_float_cons PARAMS ((int));
822 static void stmt_cons_ua PARAMS ((int));
823 static void dot_xfloat_cons PARAMS ((int));
824 static void dot_xstringer PARAMS ((int));
825 static void dot_xdata_ua PARAMS ((int));
826 static void dot_xfloat_cons_ua PARAMS ((int));
827 static void print_prmask PARAMS ((valueT mask));
828 static void dot_pred_rel PARAMS ((int));
829 static void dot_reg_val PARAMS ((int));
830 static void dot_serialize PARAMS ((int));
831 static void dot_dv_mode PARAMS ((int));
832 static void dot_entry PARAMS ((int));
833 static void dot_mem_offset PARAMS ((int));
834 static void add_unwind_entry PARAMS((unw_rec_list *, int));
835 static symbolS *declare_register PARAMS ((const char *name, unsigned int regnum));
836 static void declare_register_set PARAMS ((const char *, unsigned int, unsigned int));
837 static unsigned int operand_width PARAMS ((enum ia64_opnd));
838 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
839 int index,
840 expressionS *e));
841 static int parse_operand PARAMS ((expressionS *, int));
842 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
843 static void build_insn PARAMS ((struct slot *, bfd_vma *));
844 static void emit_one_bundle PARAMS ((void));
845 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
846 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
847 bfd_reloc_code_real_type r_type));
848 static void insn_group_break PARAMS ((int, int, int));
849 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
850 struct rsrc *, int depind, int path));
851 static void add_qp_mutex PARAMS((valueT mask));
852 static void add_qp_imply PARAMS((int p1, int p2));
853 static void clear_qp_branch_flag PARAMS((valueT mask));
854 static void clear_qp_mutex PARAMS((valueT mask));
855 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
856 static int has_suffix_p PARAMS((const char *, const char *));
857 static void clear_register_values PARAMS ((void));
858 static void print_dependency PARAMS ((const char *action, int depind));
859 static void instruction_serialization PARAMS ((void));
860 static void data_serialization PARAMS ((void));
861 static void remove_marked_resource PARAMS ((struct rsrc *));
862 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
863 static int is_taken_branch PARAMS ((struct ia64_opcode *));
864 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
865 static int depends_on PARAMS ((int, struct ia64_opcode *));
866 static int specify_resource PARAMS ((const struct ia64_dependency *,
867 struct ia64_opcode *, int, struct rsrc [], int, int));
868 static int check_dv PARAMS((struct ia64_opcode *idesc));
869 static void check_dependencies PARAMS((struct ia64_opcode *));
870 static void mark_resources PARAMS((struct ia64_opcode *));
871 static void update_dependencies PARAMS((struct ia64_opcode *));
872 static void note_register_values PARAMS((struct ia64_opcode *));
873 static int qp_mutex PARAMS ((int, int, int));
874 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
875 static void output_vbyte_mem PARAMS ((int, char *, char *));
876 static void count_output PARAMS ((int, char *, char *));
877 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
878 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
879 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
880 static void output_P1_format PARAMS ((vbyte_func, int));
881 static void output_P2_format PARAMS ((vbyte_func, int, int));
882 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
883 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
884 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
885 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
886 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
887 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
888 static void output_P9_format PARAMS ((vbyte_func, int, int));
889 static void output_P10_format PARAMS ((vbyte_func, int, int));
890 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
891 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
892 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
893 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
894 static char format_ab_reg PARAMS ((int, int));
895 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
896 unsigned long));
897 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
898 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
899 unsigned long));
900 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
901 static unw_rec_list *output_endp PARAMS ((void));
902 static unw_rec_list *output_prologue PARAMS ((void));
903 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
904 static unw_rec_list *output_body PARAMS ((void));
905 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
906 static unw_rec_list *output_mem_stack_v PARAMS ((void));
907 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
908 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_rp_when PARAMS ((void));
910 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
912 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
913 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
914 static unw_rec_list *output_pfs_when PARAMS ((void));
915 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_preds_when PARAMS ((void));
919 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
923 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
924 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
925 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
926 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
927 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
928 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
929 static unw_rec_list *output_unat_when PARAMS ((void));
930 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_lc_when PARAMS ((void));
934 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
935 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
936 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
937 static unw_rec_list *output_fpsr_when PARAMS ((void));
938 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
939 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
940 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
941 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
942 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
943 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
944 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
945 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
946 static unw_rec_list *output_bsp_when PARAMS ((void));
947 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
948 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
949 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
950 static unw_rec_list *output_bspstore_when PARAMS ((void));
951 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
952 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
953 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
954 static unw_rec_list *output_rnat_when PARAMS ((void));
955 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
956 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
957 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
958 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
959 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
960 static unw_rec_list *output_label_state PARAMS ((unsigned long));
961 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
962 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
963 unsigned int));
964 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
965 unsigned int));
966 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
967 unsigned int, unsigned int));
968 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
969 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
970 static int calc_record_size PARAMS ((unw_rec_list *));
971 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
972 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
973 unsigned long, fragS *,
974 int));
975 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
976 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
977 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
978 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
979 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
980 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
981 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
982 static void free_saved_prologue_counts PARAMS ((void));
984 /* Determine if application register REGNUM resides only in the integer
985 unit (as opposed to the memory unit). */
986 static int
987 ar_is_only_in_integer_unit (int reg)
989 reg -= REG_AR;
990 return reg >= 64 && reg <= 111;
993 /* Determine if application register REGNUM resides only in the memory
994 unit (as opposed to the integer unit). */
995 static int
996 ar_is_only_in_memory_unit (int reg)
998 reg -= REG_AR;
999 return reg >= 0 && reg <= 47;
1002 /* Switch to section NAME and create section if necessary. It's
1003 rather ugly that we have to manipulate input_line_pointer but I
1004 don't see any other way to accomplish the same thing without
1005 changing obj-elf.c (which may be the Right Thing, in the end). */
1006 static void
1007 set_section (name)
1008 char *name;
1010 char *saved_input_line_pointer;
1012 saved_input_line_pointer = input_line_pointer;
1013 input_line_pointer = name;
1014 obj_elf_section (0);
1015 input_line_pointer = saved_input_line_pointer;
1018 /* Map 's' to SHF_IA_64_SHORT. */
1021 ia64_elf_section_letter (letter, ptr_msg)
1022 int letter;
1023 char **ptr_msg;
1025 if (letter == 's')
1026 return SHF_IA_64_SHORT;
1027 else if (letter == 'o')
1028 return SHF_LINK_ORDER;
1030 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1031 return -1;
1034 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1036 flagword
1037 ia64_elf_section_flags (flags, attr, type)
1038 flagword flags;
1039 int attr, type ATTRIBUTE_UNUSED;
1041 if (attr & SHF_IA_64_SHORT)
1042 flags |= SEC_SMALL_DATA;
1043 return flags;
1047 ia64_elf_section_type (str, len)
1048 const char *str;
1049 size_t len;
1051 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1053 if (STREQ (ELF_STRING_ia64_unwind_info))
1054 return SHT_PROGBITS;
1056 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1057 return SHT_PROGBITS;
1059 if (STREQ (ELF_STRING_ia64_unwind))
1060 return SHT_IA_64_UNWIND;
1062 if (STREQ (ELF_STRING_ia64_unwind_once))
1063 return SHT_IA_64_UNWIND;
1065 if (STREQ ("unwind"))
1066 return SHT_IA_64_UNWIND;
1068 return -1;
1069 #undef STREQ
1072 static unsigned int
1073 set_regstack (ins, locs, outs, rots)
1074 unsigned int ins, locs, outs, rots;
1076 /* Size of frame. */
1077 unsigned int sof;
1079 sof = ins + locs + outs;
1080 if (sof > 96)
1082 as_bad ("Size of frame exceeds maximum of 96 registers");
1083 return 0;
1085 if (rots > sof)
1087 as_warn ("Size of rotating registers exceeds frame size");
1088 return 0;
1090 md.in.base = REG_GR + 32;
1091 md.loc.base = md.in.base + ins;
1092 md.out.base = md.loc.base + locs;
1094 md.in.num_regs = ins;
1095 md.loc.num_regs = locs;
1096 md.out.num_regs = outs;
1097 md.rot.num_regs = rots;
1098 return sof;
1101 void
1102 ia64_flush_insns ()
1104 struct label_fix *lfix;
1105 segT saved_seg;
1106 subsegT saved_subseg;
1107 unw_rec_list *ptr;
1108 bfd_boolean mark;
1110 if (!md.last_text_seg)
1111 return;
1113 saved_seg = now_seg;
1114 saved_subseg = now_subseg;
1116 subseg_set (md.last_text_seg, 0);
1118 while (md.num_slots_in_use > 0)
1119 emit_one_bundle (); /* force out queued instructions */
1121 /* In case there are labels following the last instruction, resolve
1122 those now. */
1123 mark = FALSE;
1124 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1126 symbol_set_value_now (lfix->sym);
1127 mark |= lfix->dw2_mark_labels;
1129 if (mark)
1131 dwarf2_where (&CURR_SLOT.debug_line);
1132 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1133 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1135 CURR_SLOT.label_fixups = 0;
1137 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1138 symbol_set_value_now (lfix->sym);
1139 CURR_SLOT.tag_fixups = 0;
1141 /* In case there are unwind directives following the last instruction,
1142 resolve those now. We only handle prologue, body, and endp directives
1143 here. Give an error for others. */
1144 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1146 switch (ptr->r.type)
1148 case prologue:
1149 case prologue_gr:
1150 case body:
1151 case endp:
1152 ptr->slot_number = (unsigned long) frag_more (0);
1153 ptr->slot_frag = frag_now;
1154 break;
1156 /* Allow any record which doesn't have a "t" field (i.e.,
1157 doesn't relate to a particular instruction). */
1158 case unwabi:
1159 case br_gr:
1160 case copy_state:
1161 case fr_mem:
1162 case frgr_mem:
1163 case gr_gr:
1164 case gr_mem:
1165 case label_state:
1166 case rp_br:
1167 case spill_base:
1168 case spill_mask:
1169 /* nothing */
1170 break;
1172 default:
1173 as_bad (_("Unwind directive not followed by an instruction."));
1174 break;
1177 unwind.current_entry = NULL;
1179 subseg_set (saved_seg, saved_subseg);
1181 if (md.qp.X_op == O_register)
1182 as_bad ("qualifying predicate not followed by instruction");
1185 static void
1186 ia64_do_align (int nbytes)
1188 char *saved_input_line_pointer = input_line_pointer;
1190 input_line_pointer = "";
1191 s_align_bytes (nbytes);
1192 input_line_pointer = saved_input_line_pointer;
1195 void
1196 ia64_cons_align (nbytes)
1197 int nbytes;
1199 if (md.auto_align)
1201 char *saved_input_line_pointer = input_line_pointer;
1202 input_line_pointer = "";
1203 s_align_bytes (nbytes);
1204 input_line_pointer = saved_input_line_pointer;
1208 /* Output COUNT bytes to a memory location. */
1209 static char *vbyte_mem_ptr = NULL;
1211 void
1212 output_vbyte_mem (count, ptr, comment)
1213 int count;
1214 char *ptr;
1215 char *comment ATTRIBUTE_UNUSED;
1217 int x;
1218 if (vbyte_mem_ptr == NULL)
1219 abort ();
1221 if (count == 0)
1222 return;
1223 for (x = 0; x < count; x++)
1224 *(vbyte_mem_ptr++) = ptr[x];
1227 /* Count the number of bytes required for records. */
1228 static int vbyte_count = 0;
1229 void
1230 count_output (count, ptr, comment)
1231 int count;
1232 char *ptr ATTRIBUTE_UNUSED;
1233 char *comment ATTRIBUTE_UNUSED;
1235 vbyte_count += count;
1238 static void
1239 output_R1_format (f, rtype, rlen)
1240 vbyte_func f;
1241 unw_record_type rtype;
1242 int rlen;
1244 int r = 0;
1245 char byte;
1246 if (rlen > 0x1f)
1248 output_R3_format (f, rtype, rlen);
1249 return;
1252 if (rtype == body)
1253 r = 1;
1254 else if (rtype != prologue)
1255 as_bad ("record type is not valid");
1257 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1258 (*f) (1, &byte, NULL);
1261 static void
1262 output_R2_format (f, mask, grsave, rlen)
1263 vbyte_func f;
1264 int mask, grsave;
1265 unsigned long rlen;
1267 char bytes[20];
1268 int count = 2;
1269 mask = (mask & 0x0f);
1270 grsave = (grsave & 0x7f);
1272 bytes[0] = (UNW_R2 | (mask >> 1));
1273 bytes[1] = (((mask & 0x01) << 7) | grsave);
1274 count += output_leb128 (bytes + 2, rlen, 0);
1275 (*f) (count, bytes, NULL);
1278 static void
1279 output_R3_format (f, rtype, rlen)
1280 vbyte_func f;
1281 unw_record_type rtype;
1282 unsigned long rlen;
1284 int r = 0, count;
1285 char bytes[20];
1286 if (rlen <= 0x1f)
1288 output_R1_format (f, rtype, rlen);
1289 return;
1292 if (rtype == body)
1293 r = 1;
1294 else if (rtype != prologue)
1295 as_bad ("record type is not valid");
1296 bytes[0] = (UNW_R3 | r);
1297 count = output_leb128 (bytes + 1, rlen, 0);
1298 (*f) (count + 1, bytes, NULL);
1301 static void
1302 output_P1_format (f, brmask)
1303 vbyte_func f;
1304 int brmask;
1306 char byte;
1307 byte = UNW_P1 | (brmask & 0x1f);
1308 (*f) (1, &byte, NULL);
1311 static void
1312 output_P2_format (f, brmask, gr)
1313 vbyte_func f;
1314 int brmask;
1315 int gr;
1317 char bytes[2];
1318 brmask = (brmask & 0x1f);
1319 bytes[0] = UNW_P2 | (brmask >> 1);
1320 bytes[1] = (((brmask & 1) << 7) | gr);
1321 (*f) (2, bytes, NULL);
1324 static void
1325 output_P3_format (f, rtype, reg)
1326 vbyte_func f;
1327 unw_record_type rtype;
1328 int reg;
1330 char bytes[2];
1331 int r = 0;
1332 reg = (reg & 0x7f);
1333 switch (rtype)
1335 case psp_gr:
1336 r = 0;
1337 break;
1338 case rp_gr:
1339 r = 1;
1340 break;
1341 case pfs_gr:
1342 r = 2;
1343 break;
1344 case preds_gr:
1345 r = 3;
1346 break;
1347 case unat_gr:
1348 r = 4;
1349 break;
1350 case lc_gr:
1351 r = 5;
1352 break;
1353 case rp_br:
1354 r = 6;
1355 break;
1356 case rnat_gr:
1357 r = 7;
1358 break;
1359 case bsp_gr:
1360 r = 8;
1361 break;
1362 case bspstore_gr:
1363 r = 9;
1364 break;
1365 case fpsr_gr:
1366 r = 10;
1367 break;
1368 case priunat_gr:
1369 r = 11;
1370 break;
1371 default:
1372 as_bad ("Invalid record type for P3 format.");
1374 bytes[0] = (UNW_P3 | (r >> 1));
1375 bytes[1] = (((r & 1) << 7) | reg);
1376 (*f) (2, bytes, NULL);
1379 static void
1380 output_P4_format (f, imask, imask_size)
1381 vbyte_func f;
1382 unsigned char *imask;
1383 unsigned long imask_size;
1385 imask[0] = UNW_P4;
1386 (*f) (imask_size, (char *) imask, NULL);
1389 static void
1390 output_P5_format (f, grmask, frmask)
1391 vbyte_func f;
1392 int grmask;
1393 unsigned long frmask;
1395 char bytes[4];
1396 grmask = (grmask & 0x0f);
1398 bytes[0] = UNW_P5;
1399 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1400 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1401 bytes[3] = (frmask & 0x000000ff);
1402 (*f) (4, bytes, NULL);
1405 static void
1406 output_P6_format (f, rtype, rmask)
1407 vbyte_func f;
1408 unw_record_type rtype;
1409 int rmask;
1411 char byte;
1412 int r = 0;
1414 if (rtype == gr_mem)
1415 r = 1;
1416 else if (rtype != fr_mem)
1417 as_bad ("Invalid record type for format P6");
1418 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1419 (*f) (1, &byte, NULL);
1422 static void
1423 output_P7_format (f, rtype, w1, w2)
1424 vbyte_func f;
1425 unw_record_type rtype;
1426 unsigned long w1;
1427 unsigned long w2;
1429 char bytes[20];
1430 int count = 1;
1431 int r = 0;
1432 count += output_leb128 (bytes + 1, w1, 0);
1433 switch (rtype)
1435 case mem_stack_f:
1436 r = 0;
1437 count += output_leb128 (bytes + count, w2 >> 4, 0);
1438 break;
1439 case mem_stack_v:
1440 r = 1;
1441 break;
1442 case spill_base:
1443 r = 2;
1444 break;
1445 case psp_sprel:
1446 r = 3;
1447 break;
1448 case rp_when:
1449 r = 4;
1450 break;
1451 case rp_psprel:
1452 r = 5;
1453 break;
1454 case pfs_when:
1455 r = 6;
1456 break;
1457 case pfs_psprel:
1458 r = 7;
1459 break;
1460 case preds_when:
1461 r = 8;
1462 break;
1463 case preds_psprel:
1464 r = 9;
1465 break;
1466 case lc_when:
1467 r = 10;
1468 break;
1469 case lc_psprel:
1470 r = 11;
1471 break;
1472 case unat_when:
1473 r = 12;
1474 break;
1475 case unat_psprel:
1476 r = 13;
1477 break;
1478 case fpsr_when:
1479 r = 14;
1480 break;
1481 case fpsr_psprel:
1482 r = 15;
1483 break;
1484 default:
1485 break;
1487 bytes[0] = (UNW_P7 | r);
1488 (*f) (count, bytes, NULL);
1491 static void
1492 output_P8_format (f, rtype, t)
1493 vbyte_func f;
1494 unw_record_type rtype;
1495 unsigned long t;
1497 char bytes[20];
1498 int r = 0;
1499 int count = 2;
1500 bytes[0] = UNW_P8;
1501 switch (rtype)
1503 case rp_sprel:
1504 r = 1;
1505 break;
1506 case pfs_sprel:
1507 r = 2;
1508 break;
1509 case preds_sprel:
1510 r = 3;
1511 break;
1512 case lc_sprel:
1513 r = 4;
1514 break;
1515 case unat_sprel:
1516 r = 5;
1517 break;
1518 case fpsr_sprel:
1519 r = 6;
1520 break;
1521 case bsp_when:
1522 r = 7;
1523 break;
1524 case bsp_psprel:
1525 r = 8;
1526 break;
1527 case bsp_sprel:
1528 r = 9;
1529 break;
1530 case bspstore_when:
1531 r = 10;
1532 break;
1533 case bspstore_psprel:
1534 r = 11;
1535 break;
1536 case bspstore_sprel:
1537 r = 12;
1538 break;
1539 case rnat_when:
1540 r = 13;
1541 break;
1542 case rnat_psprel:
1543 r = 14;
1544 break;
1545 case rnat_sprel:
1546 r = 15;
1547 break;
1548 case priunat_when_gr:
1549 r = 16;
1550 break;
1551 case priunat_psprel:
1552 r = 17;
1553 break;
1554 case priunat_sprel:
1555 r = 18;
1556 break;
1557 case priunat_when_mem:
1558 r = 19;
1559 break;
1560 default:
1561 break;
1563 bytes[1] = r;
1564 count += output_leb128 (bytes + 2, t, 0);
1565 (*f) (count, bytes, NULL);
1568 static void
1569 output_P9_format (f, grmask, gr)
1570 vbyte_func f;
1571 int grmask;
1572 int gr;
1574 char bytes[3];
1575 bytes[0] = UNW_P9;
1576 bytes[1] = (grmask & 0x0f);
1577 bytes[2] = (gr & 0x7f);
1578 (*f) (3, bytes, NULL);
1581 static void
1582 output_P10_format (f, abi, context)
1583 vbyte_func f;
1584 int abi;
1585 int context;
1587 char bytes[3];
1588 bytes[0] = UNW_P10;
1589 bytes[1] = (abi & 0xff);
1590 bytes[2] = (context & 0xff);
1591 (*f) (3, bytes, NULL);
1594 static void
1595 output_B1_format (f, rtype, label)
1596 vbyte_func f;
1597 unw_record_type rtype;
1598 unsigned long label;
1600 char byte;
1601 int r = 0;
1602 if (label > 0x1f)
1604 output_B4_format (f, rtype, label);
1605 return;
1607 if (rtype == copy_state)
1608 r = 1;
1609 else if (rtype != label_state)
1610 as_bad ("Invalid record type for format B1");
1612 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1613 (*f) (1, &byte, NULL);
1616 static void
1617 output_B2_format (f, ecount, t)
1618 vbyte_func f;
1619 unsigned long ecount;
1620 unsigned long t;
1622 char bytes[20];
1623 int count = 1;
1624 if (ecount > 0x1f)
1626 output_B3_format (f, ecount, t);
1627 return;
1629 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1630 count += output_leb128 (bytes + 1, t, 0);
1631 (*f) (count, bytes, NULL);
1634 static void
1635 output_B3_format (f, ecount, t)
1636 vbyte_func f;
1637 unsigned long ecount;
1638 unsigned long t;
1640 char bytes[20];
1641 int count = 1;
1642 if (ecount <= 0x1f)
1644 output_B2_format (f, ecount, t);
1645 return;
1647 bytes[0] = UNW_B3;
1648 count += output_leb128 (bytes + 1, t, 0);
1649 count += output_leb128 (bytes + count, ecount, 0);
1650 (*f) (count, bytes, NULL);
1653 static void
1654 output_B4_format (f, rtype, label)
1655 vbyte_func f;
1656 unw_record_type rtype;
1657 unsigned long label;
1659 char bytes[20];
1660 int r = 0;
1661 int count = 1;
1662 if (label <= 0x1f)
1664 output_B1_format (f, rtype, label);
1665 return;
1668 if (rtype == copy_state)
1669 r = 1;
1670 else if (rtype != label_state)
1671 as_bad ("Invalid record type for format B1");
1673 bytes[0] = (UNW_B4 | (r << 3));
1674 count += output_leb128 (bytes + 1, label, 0);
1675 (*f) (count, bytes, NULL);
1678 static char
1679 format_ab_reg (ab, reg)
1680 int ab;
1681 int reg;
1683 int ret;
1684 ab = (ab & 3);
1685 reg = (reg & 0x1f);
1686 ret = (ab << 5) | reg;
1687 return ret;
1690 static void
1691 output_X1_format (f, rtype, ab, reg, t, w1)
1692 vbyte_func f;
1693 unw_record_type rtype;
1694 int ab, reg;
1695 unsigned long t;
1696 unsigned long w1;
1698 char bytes[20];
1699 int r = 0;
1700 int count = 2;
1701 bytes[0] = UNW_X1;
1703 if (rtype == spill_sprel)
1704 r = 1;
1705 else if (rtype != spill_psprel)
1706 as_bad ("Invalid record type for format X1");
1707 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1708 count += output_leb128 (bytes + 2, t, 0);
1709 count += output_leb128 (bytes + count, w1, 0);
1710 (*f) (count, bytes, NULL);
1713 static void
1714 output_X2_format (f, ab, reg, x, y, treg, t)
1715 vbyte_func f;
1716 int ab, reg;
1717 int x, y, treg;
1718 unsigned long t;
1720 char bytes[20];
1721 int count = 3;
1722 bytes[0] = UNW_X2;
1723 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1724 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1725 count += output_leb128 (bytes + 3, t, 0);
1726 (*f) (count, bytes, NULL);
1729 static void
1730 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1731 vbyte_func f;
1732 unw_record_type rtype;
1733 int qp;
1734 int ab, reg;
1735 unsigned long t;
1736 unsigned long w1;
1738 char bytes[20];
1739 int r = 0;
1740 int count = 3;
1741 bytes[0] = UNW_X3;
1743 if (rtype == spill_sprel_p)
1744 r = 1;
1745 else if (rtype != spill_psprel_p)
1746 as_bad ("Invalid record type for format X3");
1747 bytes[1] = ((r << 7) | (qp & 0x3f));
1748 bytes[2] = format_ab_reg (ab, reg);
1749 count += output_leb128 (bytes + 3, t, 0);
1750 count += output_leb128 (bytes + count, w1, 0);
1751 (*f) (count, bytes, NULL);
1754 static void
1755 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1756 vbyte_func f;
1757 int qp;
1758 int ab, reg;
1759 int x, y, treg;
1760 unsigned long t;
1762 char bytes[20];
1763 int count = 4;
1764 bytes[0] = UNW_X4;
1765 bytes[1] = (qp & 0x3f);
1766 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1767 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1768 count += output_leb128 (bytes + 4, t, 0);
1769 (*f) (count, bytes, NULL);
1772 /* This function checks whether there are any outstanding .save-s and
1773 discards them if so. */
1775 static void
1776 check_pending_save (void)
1778 if (unwind.pending_saves)
1780 unw_rec_list *cur, *prev;
1782 as_warn ("Previous .save incomplete");
1783 for (cur = unwind.list, prev = NULL; cur; )
1784 if (&cur->r.record.p == unwind.pending_saves)
1786 if (prev)
1787 prev->next = cur->next;
1788 else
1789 unwind.list = cur->next;
1790 if (cur == unwind.tail)
1791 unwind.tail = prev;
1792 if (cur == unwind.current_entry)
1793 unwind.current_entry = cur->next;
1794 /* Don't free the first discarded record, it's being used as
1795 terminator for (currently) br_gr and gr_gr processing, and
1796 also prevents leaving a dangling pointer to it in its
1797 predecessor. */
1798 cur->r.record.p.grmask = 0;
1799 cur->r.record.p.brmask = 0;
1800 cur->r.record.p.frmask = 0;
1801 prev = cur->r.record.p.next;
1802 cur->r.record.p.next = NULL;
1803 cur = prev;
1804 break;
1806 else
1808 prev = cur;
1809 cur = cur->next;
1811 while (cur)
1813 prev = cur;
1814 cur = cur->r.record.p.next;
1815 free (prev);
1817 unwind.pending_saves = NULL;
1821 /* This function allocates a record list structure, and initializes fields. */
1823 static unw_rec_list *
1824 alloc_record (unw_record_type t)
1826 unw_rec_list *ptr;
1827 ptr = xmalloc (sizeof (*ptr));
1828 memset (ptr, 0, sizeof (*ptr));
1829 ptr->slot_number = SLOT_NUM_NOT_SET;
1830 ptr->r.type = t;
1831 return ptr;
1834 /* Dummy unwind record used for calculating the length of the last prologue or
1835 body region. */
1837 static unw_rec_list *
1838 output_endp ()
1840 unw_rec_list *ptr = alloc_record (endp);
1841 return ptr;
1844 static unw_rec_list *
1845 output_prologue ()
1847 unw_rec_list *ptr = alloc_record (prologue);
1848 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1849 return ptr;
1852 static unw_rec_list *
1853 output_prologue_gr (saved_mask, reg)
1854 unsigned int saved_mask;
1855 unsigned int reg;
1857 unw_rec_list *ptr = alloc_record (prologue_gr);
1858 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1859 ptr->r.record.r.grmask = saved_mask;
1860 ptr->r.record.r.grsave = reg;
1861 return ptr;
1864 static unw_rec_list *
1865 output_body ()
1867 unw_rec_list *ptr = alloc_record (body);
1868 return ptr;
1871 static unw_rec_list *
1872 output_mem_stack_f (size)
1873 unsigned int size;
1875 unw_rec_list *ptr = alloc_record (mem_stack_f);
1876 ptr->r.record.p.size = size;
1877 return ptr;
1880 static unw_rec_list *
1881 output_mem_stack_v ()
1883 unw_rec_list *ptr = alloc_record (mem_stack_v);
1884 return ptr;
1887 static unw_rec_list *
1888 output_psp_gr (gr)
1889 unsigned int gr;
1891 unw_rec_list *ptr = alloc_record (psp_gr);
1892 ptr->r.record.p.r.gr = gr;
1893 return ptr;
1896 static unw_rec_list *
1897 output_psp_sprel (offset)
1898 unsigned int offset;
1900 unw_rec_list *ptr = alloc_record (psp_sprel);
1901 ptr->r.record.p.off.sp = offset / 4;
1902 return ptr;
1905 static unw_rec_list *
1906 output_rp_when ()
1908 unw_rec_list *ptr = alloc_record (rp_when);
1909 return ptr;
1912 static unw_rec_list *
1913 output_rp_gr (gr)
1914 unsigned int gr;
1916 unw_rec_list *ptr = alloc_record (rp_gr);
1917 ptr->r.record.p.r.gr = gr;
1918 return ptr;
1921 static unw_rec_list *
1922 output_rp_br (br)
1923 unsigned int br;
1925 unw_rec_list *ptr = alloc_record (rp_br);
1926 ptr->r.record.p.r.br = br;
1927 return ptr;
1930 static unw_rec_list *
1931 output_rp_psprel (offset)
1932 unsigned int offset;
1934 unw_rec_list *ptr = alloc_record (rp_psprel);
1935 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1936 return ptr;
1939 static unw_rec_list *
1940 output_rp_sprel (offset)
1941 unsigned int offset;
1943 unw_rec_list *ptr = alloc_record (rp_sprel);
1944 ptr->r.record.p.off.sp = offset / 4;
1945 return ptr;
1948 static unw_rec_list *
1949 output_pfs_when ()
1951 unw_rec_list *ptr = alloc_record (pfs_when);
1952 return ptr;
1955 static unw_rec_list *
1956 output_pfs_gr (gr)
1957 unsigned int gr;
1959 unw_rec_list *ptr = alloc_record (pfs_gr);
1960 ptr->r.record.p.r.gr = gr;
1961 return ptr;
1964 static unw_rec_list *
1965 output_pfs_psprel (offset)
1966 unsigned int offset;
1968 unw_rec_list *ptr = alloc_record (pfs_psprel);
1969 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1970 return ptr;
1973 static unw_rec_list *
1974 output_pfs_sprel (offset)
1975 unsigned int offset;
1977 unw_rec_list *ptr = alloc_record (pfs_sprel);
1978 ptr->r.record.p.off.sp = offset / 4;
1979 return ptr;
1982 static unw_rec_list *
1983 output_preds_when ()
1985 unw_rec_list *ptr = alloc_record (preds_when);
1986 return ptr;
1989 static unw_rec_list *
1990 output_preds_gr (gr)
1991 unsigned int gr;
1993 unw_rec_list *ptr = alloc_record (preds_gr);
1994 ptr->r.record.p.r.gr = gr;
1995 return ptr;
1998 static unw_rec_list *
1999 output_preds_psprel (offset)
2000 unsigned int offset;
2002 unw_rec_list *ptr = alloc_record (preds_psprel);
2003 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2004 return ptr;
2007 static unw_rec_list *
2008 output_preds_sprel (offset)
2009 unsigned int offset;
2011 unw_rec_list *ptr = alloc_record (preds_sprel);
2012 ptr->r.record.p.off.sp = offset / 4;
2013 return ptr;
2016 static unw_rec_list *
2017 output_fr_mem (mask)
2018 unsigned int mask;
2020 unw_rec_list *ptr = alloc_record (fr_mem);
2021 unw_rec_list *cur = ptr;
2023 ptr->r.record.p.frmask = mask;
2024 unwind.pending_saves = &ptr->r.record.p;
2025 for (;;)
2027 unw_rec_list *prev = cur;
2029 /* Clear least significant set bit. */
2030 mask &= ~(mask & (~mask + 1));
2031 if (!mask)
2032 return ptr;
2033 cur = alloc_record (fr_mem);
2034 cur->r.record.p.frmask = mask;
2035 /* Retain only least significant bit. */
2036 prev->r.record.p.frmask ^= mask;
2037 prev->r.record.p.next = cur;
2041 static unw_rec_list *
2042 output_frgr_mem (gr_mask, fr_mask)
2043 unsigned int gr_mask;
2044 unsigned int fr_mask;
2046 unw_rec_list *ptr = alloc_record (frgr_mem);
2047 unw_rec_list *cur = ptr;
2049 unwind.pending_saves = &cur->r.record.p;
2050 cur->r.record.p.frmask = fr_mask;
2051 while (fr_mask)
2053 unw_rec_list *prev = cur;
2055 /* Clear least significant set bit. */
2056 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2057 if (!gr_mask && !fr_mask)
2058 return ptr;
2059 cur = alloc_record (frgr_mem);
2060 cur->r.record.p.frmask = fr_mask;
2061 /* Retain only least significant bit. */
2062 prev->r.record.p.frmask ^= fr_mask;
2063 prev->r.record.p.next = cur;
2065 cur->r.record.p.grmask = gr_mask;
2066 for (;;)
2068 unw_rec_list *prev = cur;
2070 /* Clear least significant set bit. */
2071 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2072 if (!gr_mask)
2073 return ptr;
2074 cur = alloc_record (frgr_mem);
2075 cur->r.record.p.grmask = gr_mask;
2076 /* Retain only least significant bit. */
2077 prev->r.record.p.grmask ^= gr_mask;
2078 prev->r.record.p.next = cur;
2082 static unw_rec_list *
2083 output_gr_gr (mask, reg)
2084 unsigned int mask;
2085 unsigned int reg;
2087 unw_rec_list *ptr = alloc_record (gr_gr);
2088 unw_rec_list *cur = ptr;
2090 ptr->r.record.p.grmask = mask;
2091 ptr->r.record.p.r.gr = reg;
2092 unwind.pending_saves = &ptr->r.record.p;
2093 for (;;)
2095 unw_rec_list *prev = cur;
2097 /* Clear least significant set bit. */
2098 mask &= ~(mask & (~mask + 1));
2099 if (!mask)
2100 return ptr;
2101 cur = alloc_record (gr_gr);
2102 cur->r.record.p.grmask = mask;
2103 /* Indicate this record shouldn't be output. */
2104 cur->r.record.p.r.gr = REG_NUM;
2105 /* Retain only least significant bit. */
2106 prev->r.record.p.grmask ^= mask;
2107 prev->r.record.p.next = cur;
2111 static unw_rec_list *
2112 output_gr_mem (mask)
2113 unsigned int mask;
2115 unw_rec_list *ptr = alloc_record (gr_mem);
2116 unw_rec_list *cur = ptr;
2118 ptr->r.record.p.grmask = mask;
2119 unwind.pending_saves = &ptr->r.record.p;
2120 for (;;)
2122 unw_rec_list *prev = cur;
2124 /* Clear least significant set bit. */
2125 mask &= ~(mask & (~mask + 1));
2126 if (!mask)
2127 return ptr;
2128 cur = alloc_record (gr_mem);
2129 cur->r.record.p.grmask = mask;
2130 /* Retain only least significant bit. */
2131 prev->r.record.p.grmask ^= mask;
2132 prev->r.record.p.next = cur;
2136 static unw_rec_list *
2137 output_br_mem (unsigned int mask)
2139 unw_rec_list *ptr = alloc_record (br_mem);
2140 unw_rec_list *cur = ptr;
2142 ptr->r.record.p.brmask = mask;
2143 unwind.pending_saves = &ptr->r.record.p;
2144 for (;;)
2146 unw_rec_list *prev = cur;
2148 /* Clear least significant set bit. */
2149 mask &= ~(mask & (~mask + 1));
2150 if (!mask)
2151 return ptr;
2152 cur = alloc_record (br_mem);
2153 cur->r.record.p.brmask = mask;
2154 /* Retain only least significant bit. */
2155 prev->r.record.p.brmask ^= mask;
2156 prev->r.record.p.next = cur;
2160 static unw_rec_list *
2161 output_br_gr (mask, reg)
2162 unsigned int mask;
2163 unsigned int reg;
2165 unw_rec_list *ptr = alloc_record (br_gr);
2166 unw_rec_list *cur = ptr;
2168 ptr->r.record.p.brmask = mask;
2169 ptr->r.record.p.r.gr = reg;
2170 unwind.pending_saves = &ptr->r.record.p;
2171 for (;;)
2173 unw_rec_list *prev = cur;
2175 /* Clear least significant set bit. */
2176 mask &= ~(mask & (~mask + 1));
2177 if (!mask)
2178 return ptr;
2179 cur = alloc_record (br_gr);
2180 cur->r.record.p.brmask = mask;
2181 /* Indicate this record shouldn't be output. */
2182 cur->r.record.p.r.gr = REG_NUM;
2183 /* Retain only least significant bit. */
2184 prev->r.record.p.brmask ^= mask;
2185 prev->r.record.p.next = cur;
2189 static unw_rec_list *
2190 output_spill_base (offset)
2191 unsigned int offset;
2193 unw_rec_list *ptr = alloc_record (spill_base);
2194 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2195 return ptr;
2198 static unw_rec_list *
2199 output_unat_when ()
2201 unw_rec_list *ptr = alloc_record (unat_when);
2202 return ptr;
2205 static unw_rec_list *
2206 output_unat_gr (gr)
2207 unsigned int gr;
2209 unw_rec_list *ptr = alloc_record (unat_gr);
2210 ptr->r.record.p.r.gr = gr;
2211 return ptr;
2214 static unw_rec_list *
2215 output_unat_psprel (offset)
2216 unsigned int offset;
2218 unw_rec_list *ptr = alloc_record (unat_psprel);
2219 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2220 return ptr;
2223 static unw_rec_list *
2224 output_unat_sprel (offset)
2225 unsigned int offset;
2227 unw_rec_list *ptr = alloc_record (unat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2232 static unw_rec_list *
2233 output_lc_when ()
2235 unw_rec_list *ptr = alloc_record (lc_when);
2236 return ptr;
2239 static unw_rec_list *
2240 output_lc_gr (gr)
2241 unsigned int gr;
2243 unw_rec_list *ptr = alloc_record (lc_gr);
2244 ptr->r.record.p.r.gr = gr;
2245 return ptr;
2248 static unw_rec_list *
2249 output_lc_psprel (offset)
2250 unsigned int offset;
2252 unw_rec_list *ptr = alloc_record (lc_psprel);
2253 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2254 return ptr;
2257 static unw_rec_list *
2258 output_lc_sprel (offset)
2259 unsigned int offset;
2261 unw_rec_list *ptr = alloc_record (lc_sprel);
2262 ptr->r.record.p.off.sp = offset / 4;
2263 return ptr;
2266 static unw_rec_list *
2267 output_fpsr_when ()
2269 unw_rec_list *ptr = alloc_record (fpsr_when);
2270 return ptr;
2273 static unw_rec_list *
2274 output_fpsr_gr (gr)
2275 unsigned int gr;
2277 unw_rec_list *ptr = alloc_record (fpsr_gr);
2278 ptr->r.record.p.r.gr = gr;
2279 return ptr;
2282 static unw_rec_list *
2283 output_fpsr_psprel (offset)
2284 unsigned int offset;
2286 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2287 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2288 return ptr;
2291 static unw_rec_list *
2292 output_fpsr_sprel (offset)
2293 unsigned int offset;
2295 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2296 ptr->r.record.p.off.sp = offset / 4;
2297 return ptr;
2300 static unw_rec_list *
2301 output_priunat_when_gr ()
2303 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2304 return ptr;
2307 static unw_rec_list *
2308 output_priunat_when_mem ()
2310 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2311 return ptr;
2314 static unw_rec_list *
2315 output_priunat_gr (gr)
2316 unsigned int gr;
2318 unw_rec_list *ptr = alloc_record (priunat_gr);
2319 ptr->r.record.p.r.gr = gr;
2320 return ptr;
2323 static unw_rec_list *
2324 output_priunat_psprel (offset)
2325 unsigned int offset;
2327 unw_rec_list *ptr = alloc_record (priunat_psprel);
2328 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2329 return ptr;
2332 static unw_rec_list *
2333 output_priunat_sprel (offset)
2334 unsigned int offset;
2336 unw_rec_list *ptr = alloc_record (priunat_sprel);
2337 ptr->r.record.p.off.sp = offset / 4;
2338 return ptr;
2341 static unw_rec_list *
2342 output_bsp_when ()
2344 unw_rec_list *ptr = alloc_record (bsp_when);
2345 return ptr;
2348 static unw_rec_list *
2349 output_bsp_gr (gr)
2350 unsigned int gr;
2352 unw_rec_list *ptr = alloc_record (bsp_gr);
2353 ptr->r.record.p.r.gr = gr;
2354 return ptr;
2357 static unw_rec_list *
2358 output_bsp_psprel (offset)
2359 unsigned int offset;
2361 unw_rec_list *ptr = alloc_record (bsp_psprel);
2362 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2363 return ptr;
2366 static unw_rec_list *
2367 output_bsp_sprel (offset)
2368 unsigned int offset;
2370 unw_rec_list *ptr = alloc_record (bsp_sprel);
2371 ptr->r.record.p.off.sp = offset / 4;
2372 return ptr;
2375 static unw_rec_list *
2376 output_bspstore_when ()
2378 unw_rec_list *ptr = alloc_record (bspstore_when);
2379 return ptr;
2382 static unw_rec_list *
2383 output_bspstore_gr (gr)
2384 unsigned int gr;
2386 unw_rec_list *ptr = alloc_record (bspstore_gr);
2387 ptr->r.record.p.r.gr = gr;
2388 return ptr;
2391 static unw_rec_list *
2392 output_bspstore_psprel (offset)
2393 unsigned int offset;
2395 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2396 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2397 return ptr;
2400 static unw_rec_list *
2401 output_bspstore_sprel (offset)
2402 unsigned int offset;
2404 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2405 ptr->r.record.p.off.sp = offset / 4;
2406 return ptr;
2409 static unw_rec_list *
2410 output_rnat_when ()
2412 unw_rec_list *ptr = alloc_record (rnat_when);
2413 return ptr;
2416 static unw_rec_list *
2417 output_rnat_gr (gr)
2418 unsigned int gr;
2420 unw_rec_list *ptr = alloc_record (rnat_gr);
2421 ptr->r.record.p.r.gr = gr;
2422 return ptr;
2425 static unw_rec_list *
2426 output_rnat_psprel (offset)
2427 unsigned int offset;
2429 unw_rec_list *ptr = alloc_record (rnat_psprel);
2430 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2431 return ptr;
2434 static unw_rec_list *
2435 output_rnat_sprel (offset)
2436 unsigned int offset;
2438 unw_rec_list *ptr = alloc_record (rnat_sprel);
2439 ptr->r.record.p.off.sp = offset / 4;
2440 return ptr;
2443 static unw_rec_list *
2444 output_unwabi (abi, context)
2445 unsigned long abi;
2446 unsigned long context;
2448 unw_rec_list *ptr = alloc_record (unwabi);
2449 ptr->r.record.p.abi = abi;
2450 ptr->r.record.p.context = context;
2451 return ptr;
2454 static unw_rec_list *
2455 output_epilogue (unsigned long ecount)
2457 unw_rec_list *ptr = alloc_record (epilogue);
2458 ptr->r.record.b.ecount = ecount;
2459 return ptr;
2462 static unw_rec_list *
2463 output_label_state (unsigned long label)
2465 unw_rec_list *ptr = alloc_record (label_state);
2466 ptr->r.record.b.label = label;
2467 return ptr;
2470 static unw_rec_list *
2471 output_copy_state (unsigned long label)
2473 unw_rec_list *ptr = alloc_record (copy_state);
2474 ptr->r.record.b.label = label;
2475 return ptr;
2478 static unw_rec_list *
2479 output_spill_psprel (ab, reg, offset, predicate)
2480 unsigned int ab;
2481 unsigned int reg;
2482 unsigned int offset;
2483 unsigned int predicate;
2485 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2486 ptr->r.record.x.ab = ab;
2487 ptr->r.record.x.reg = reg;
2488 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2489 ptr->r.record.x.qp = predicate;
2490 return ptr;
2493 static unw_rec_list *
2494 output_spill_sprel (ab, reg, offset, predicate)
2495 unsigned int ab;
2496 unsigned int reg;
2497 unsigned int offset;
2498 unsigned int predicate;
2500 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2501 ptr->r.record.x.ab = ab;
2502 ptr->r.record.x.reg = reg;
2503 ptr->r.record.x.where.spoff = offset / 4;
2504 ptr->r.record.x.qp = predicate;
2505 return ptr;
2508 static unw_rec_list *
2509 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2510 unsigned int ab;
2511 unsigned int reg;
2512 unsigned int targ_reg;
2513 unsigned int xy;
2514 unsigned int predicate;
2516 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2517 ptr->r.record.x.ab = ab;
2518 ptr->r.record.x.reg = reg;
2519 ptr->r.record.x.where.reg = targ_reg;
2520 ptr->r.record.x.xy = xy;
2521 ptr->r.record.x.qp = predicate;
2522 return ptr;
2525 /* Given a unw_rec_list process the correct format with the
2526 specified function. */
2528 static void
2529 process_one_record (ptr, f)
2530 unw_rec_list *ptr;
2531 vbyte_func f;
2533 unsigned int fr_mask, gr_mask;
2535 switch (ptr->r.type)
2537 /* This is a dummy record that takes up no space in the output. */
2538 case endp:
2539 break;
2541 case gr_mem:
2542 case fr_mem:
2543 case br_mem:
2544 case frgr_mem:
2545 /* These are taken care of by prologue/prologue_gr. */
2546 break;
2548 case prologue_gr:
2549 case prologue:
2550 if (ptr->r.type == prologue_gr)
2551 output_R2_format (f, ptr->r.record.r.grmask,
2552 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2553 else
2554 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2556 /* Output descriptor(s) for union of register spills (if any). */
2557 gr_mask = ptr->r.record.r.mask.gr_mem;
2558 fr_mask = ptr->r.record.r.mask.fr_mem;
2559 if (fr_mask)
2561 if ((fr_mask & ~0xfUL) == 0)
2562 output_P6_format (f, fr_mem, fr_mask);
2563 else
2565 output_P5_format (f, gr_mask, fr_mask);
2566 gr_mask = 0;
2569 if (gr_mask)
2570 output_P6_format (f, gr_mem, gr_mask);
2571 if (ptr->r.record.r.mask.br_mem)
2572 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2574 /* output imask descriptor if necessary: */
2575 if (ptr->r.record.r.mask.i)
2576 output_P4_format (f, ptr->r.record.r.mask.i,
2577 ptr->r.record.r.imask_size);
2578 break;
2580 case body:
2581 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2582 break;
2583 case mem_stack_f:
2584 case mem_stack_v:
2585 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2586 ptr->r.record.p.size);
2587 break;
2588 case psp_gr:
2589 case rp_gr:
2590 case pfs_gr:
2591 case preds_gr:
2592 case unat_gr:
2593 case lc_gr:
2594 case fpsr_gr:
2595 case priunat_gr:
2596 case bsp_gr:
2597 case bspstore_gr:
2598 case rnat_gr:
2599 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2600 break;
2601 case rp_br:
2602 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2603 break;
2604 case psp_sprel:
2605 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2606 break;
2607 case rp_when:
2608 case pfs_when:
2609 case preds_when:
2610 case unat_when:
2611 case lc_when:
2612 case fpsr_when:
2613 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2614 break;
2615 case rp_psprel:
2616 case pfs_psprel:
2617 case preds_psprel:
2618 case unat_psprel:
2619 case lc_psprel:
2620 case fpsr_psprel:
2621 case spill_base:
2622 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2623 break;
2624 case rp_sprel:
2625 case pfs_sprel:
2626 case preds_sprel:
2627 case unat_sprel:
2628 case lc_sprel:
2629 case fpsr_sprel:
2630 case priunat_sprel:
2631 case bsp_sprel:
2632 case bspstore_sprel:
2633 case rnat_sprel:
2634 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2635 break;
2636 case gr_gr:
2637 if (ptr->r.record.p.r.gr < REG_NUM)
2639 const unw_rec_list *cur = ptr;
2641 gr_mask = cur->r.record.p.grmask;
2642 while ((cur = cur->r.record.p.next) != NULL)
2643 gr_mask |= cur->r.record.p.grmask;
2644 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2646 break;
2647 case br_gr:
2648 if (ptr->r.record.p.r.gr < REG_NUM)
2650 const unw_rec_list *cur = ptr;
2652 gr_mask = cur->r.record.p.brmask;
2653 while ((cur = cur->r.record.p.next) != NULL)
2654 gr_mask |= cur->r.record.p.brmask;
2655 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2657 break;
2658 case spill_mask:
2659 as_bad ("spill_mask record unimplemented.");
2660 break;
2661 case priunat_when_gr:
2662 case priunat_when_mem:
2663 case bsp_when:
2664 case bspstore_when:
2665 case rnat_when:
2666 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2667 break;
2668 case priunat_psprel:
2669 case bsp_psprel:
2670 case bspstore_psprel:
2671 case rnat_psprel:
2672 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2673 break;
2674 case unwabi:
2675 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2676 break;
2677 case epilogue:
2678 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2679 break;
2680 case label_state:
2681 case copy_state:
2682 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2683 break;
2684 case spill_psprel:
2685 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2686 ptr->r.record.x.reg, ptr->r.record.x.t,
2687 ptr->r.record.x.where.pspoff);
2688 break;
2689 case spill_sprel:
2690 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2691 ptr->r.record.x.reg, ptr->r.record.x.t,
2692 ptr->r.record.x.where.spoff);
2693 break;
2694 case spill_reg:
2695 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2696 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2697 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2698 break;
2699 case spill_psprel_p:
2700 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2701 ptr->r.record.x.ab, ptr->r.record.x.reg,
2702 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2703 break;
2704 case spill_sprel_p:
2705 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2706 ptr->r.record.x.ab, ptr->r.record.x.reg,
2707 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2708 break;
2709 case spill_reg_p:
2710 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2711 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2712 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2713 ptr->r.record.x.t);
2714 break;
2715 default:
2716 as_bad ("record_type_not_valid");
2717 break;
2721 /* Given a unw_rec_list list, process all the records with
2722 the specified function. */
2723 static void
2724 process_unw_records (list, f)
2725 unw_rec_list *list;
2726 vbyte_func f;
2728 unw_rec_list *ptr;
2729 for (ptr = list; ptr; ptr = ptr->next)
2730 process_one_record (ptr, f);
2733 /* Determine the size of a record list in bytes. */
2734 static int
2735 calc_record_size (list)
2736 unw_rec_list *list;
2738 vbyte_count = 0;
2739 process_unw_records (list, count_output);
2740 return vbyte_count;
2743 /* Return the number of bits set in the input value.
2744 Perhaps this has a better place... */
2745 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2746 # define popcount __builtin_popcount
2747 #else
2748 static int
2749 popcount (unsigned x)
2751 static const unsigned char popcnt[16] =
2753 0, 1, 1, 2,
2754 1, 2, 2, 3,
2755 1, 2, 2, 3,
2756 2, 3, 3, 4
2759 if (x < NELEMS (popcnt))
2760 return popcnt[x];
2761 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2763 #endif
2765 /* Update IMASK bitmask to reflect the fact that one or more registers
2766 of type TYPE are saved starting at instruction with index T. If N
2767 bits are set in REGMASK, it is assumed that instructions T through
2768 T+N-1 save these registers.
2770 TYPE values:
2771 0: no save
2772 1: instruction saves next fp reg
2773 2: instruction saves next general reg
2774 3: instruction saves next branch reg */
2775 static void
2776 set_imask (region, regmask, t, type)
2777 unw_rec_list *region;
2778 unsigned long regmask;
2779 unsigned long t;
2780 unsigned int type;
2782 unsigned char *imask;
2783 unsigned long imask_size;
2784 unsigned int i;
2785 int pos;
2787 imask = region->r.record.r.mask.i;
2788 imask_size = region->r.record.r.imask_size;
2789 if (!imask)
2791 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2792 imask = xmalloc (imask_size);
2793 memset (imask, 0, imask_size);
2795 region->r.record.r.imask_size = imask_size;
2796 region->r.record.r.mask.i = imask;
2799 i = (t / 4) + 1;
2800 pos = 2 * (3 - t % 4);
2801 while (regmask)
2803 if (i >= imask_size)
2805 as_bad ("Ignoring attempt to spill beyond end of region");
2806 return;
2809 imask[i] |= (type & 0x3) << pos;
2811 regmask &= (regmask - 1);
2812 pos -= 2;
2813 if (pos < 0)
2815 pos = 0;
2816 ++i;
2821 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2822 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2823 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2824 for frag sizes. */
2826 unsigned long
2827 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2828 unsigned long slot_addr;
2829 fragS *slot_frag;
2830 unsigned long first_addr;
2831 fragS *first_frag;
2832 int before_relax;
2834 unsigned long index = 0;
2836 /* First time we are called, the initial address and frag are invalid. */
2837 if (first_addr == 0)
2838 return 0;
2840 /* If the two addresses are in different frags, then we need to add in
2841 the remaining size of this frag, and then the entire size of intermediate
2842 frags. */
2843 while (slot_frag != first_frag)
2845 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2847 if (! before_relax)
2849 /* We can get the final addresses only during and after
2850 relaxation. */
2851 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2852 index += 3 * ((first_frag->fr_next->fr_address
2853 - first_frag->fr_address
2854 - first_frag->fr_fix) >> 4);
2856 else
2857 /* We don't know what the final addresses will be. We try our
2858 best to estimate. */
2859 switch (first_frag->fr_type)
2861 default:
2862 break;
2864 case rs_space:
2865 as_fatal ("only constant space allocation is supported");
2866 break;
2868 case rs_align:
2869 case rs_align_code:
2870 case rs_align_test:
2871 /* Take alignment into account. Assume the worst case
2872 before relaxation. */
2873 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2874 break;
2876 case rs_org:
2877 if (first_frag->fr_symbol)
2879 as_fatal ("only constant offsets are supported");
2880 break;
2882 case rs_fill:
2883 index += 3 * (first_frag->fr_offset >> 4);
2884 break;
2887 /* Add in the full size of the frag converted to instruction slots. */
2888 index += 3 * (first_frag->fr_fix >> 4);
2889 /* Subtract away the initial part before first_addr. */
2890 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2891 + ((first_addr & 0x3) - (start_addr & 0x3)));
2893 /* Move to the beginning of the next frag. */
2894 first_frag = first_frag->fr_next;
2895 first_addr = (unsigned long) &first_frag->fr_literal;
2897 /* This can happen if there is section switching in the middle of a
2898 function, causing the frag chain for the function to be broken.
2899 It is too difficult to recover safely from this problem, so we just
2900 exit with an error. */
2901 if (first_frag == NULL)
2902 as_fatal ("Section switching in code is not supported.");
2905 /* Add in the used part of the last frag. */
2906 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2907 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2908 return index;
2911 /* Optimize unwind record directives. */
2913 static unw_rec_list *
2914 optimize_unw_records (list)
2915 unw_rec_list *list;
2917 if (!list)
2918 return NULL;
2920 /* If the only unwind record is ".prologue" or ".prologue" followed
2921 by ".body", then we can optimize the unwind directives away. */
2922 if (list->r.type == prologue
2923 && (list->next->r.type == endp
2924 || (list->next->r.type == body && list->next->next->r.type == endp)))
2925 return NULL;
2927 return list;
2930 /* Given a complete record list, process any records which have
2931 unresolved fields, (ie length counts for a prologue). After
2932 this has been run, all necessary information should be available
2933 within each record to generate an image. */
2935 static void
2936 fixup_unw_records (list, before_relax)
2937 unw_rec_list *list;
2938 int before_relax;
2940 unw_rec_list *ptr, *region = 0;
2941 unsigned long first_addr = 0, rlen = 0, t;
2942 fragS *first_frag = 0;
2944 for (ptr = list; ptr; ptr = ptr->next)
2946 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2947 as_bad (" Insn slot not set in unwind record.");
2948 t = slot_index (ptr->slot_number, ptr->slot_frag,
2949 first_addr, first_frag, before_relax);
2950 switch (ptr->r.type)
2952 case prologue:
2953 case prologue_gr:
2954 case body:
2956 unw_rec_list *last;
2957 int size;
2958 unsigned long last_addr = 0;
2959 fragS *last_frag = NULL;
2961 first_addr = ptr->slot_number;
2962 first_frag = ptr->slot_frag;
2963 /* Find either the next body/prologue start, or the end of
2964 the function, and determine the size of the region. */
2965 for (last = ptr->next; last != NULL; last = last->next)
2966 if (last->r.type == prologue || last->r.type == prologue_gr
2967 || last->r.type == body || last->r.type == endp)
2969 last_addr = last->slot_number;
2970 last_frag = last->slot_frag;
2971 break;
2973 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2974 before_relax);
2975 rlen = ptr->r.record.r.rlen = size;
2976 if (ptr->r.type == body)
2977 /* End of region. */
2978 region = 0;
2979 else
2980 region = ptr;
2981 break;
2983 case epilogue:
2984 if (t < rlen)
2985 ptr->r.record.b.t = rlen - 1 - t;
2986 else
2987 /* This happens when a memory-stack-less procedure uses a
2988 ".restore sp" directive at the end of a region to pop
2989 the frame state. */
2990 ptr->r.record.b.t = 0;
2991 break;
2993 case mem_stack_f:
2994 case mem_stack_v:
2995 case rp_when:
2996 case pfs_when:
2997 case preds_when:
2998 case unat_when:
2999 case lc_when:
3000 case fpsr_when:
3001 case priunat_when_gr:
3002 case priunat_when_mem:
3003 case bsp_when:
3004 case bspstore_when:
3005 case rnat_when:
3006 ptr->r.record.p.t = t;
3007 break;
3009 case spill_reg:
3010 case spill_sprel:
3011 case spill_psprel:
3012 case spill_reg_p:
3013 case spill_sprel_p:
3014 case spill_psprel_p:
3015 ptr->r.record.x.t = t;
3016 break;
3018 case frgr_mem:
3019 if (!region)
3021 as_bad ("frgr_mem record before region record!");
3022 return;
3024 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3025 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3026 set_imask (region, ptr->r.record.p.frmask, t, 1);
3027 set_imask (region, ptr->r.record.p.grmask, t, 2);
3028 break;
3029 case fr_mem:
3030 if (!region)
3032 as_bad ("fr_mem record before region record!");
3033 return;
3035 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3036 set_imask (region, ptr->r.record.p.frmask, t, 1);
3037 break;
3038 case gr_mem:
3039 if (!region)
3041 as_bad ("gr_mem record before region record!");
3042 return;
3044 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3045 set_imask (region, ptr->r.record.p.grmask, t, 2);
3046 break;
3047 case br_mem:
3048 if (!region)
3050 as_bad ("br_mem record before region record!");
3051 return;
3053 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3054 set_imask (region, ptr->r.record.p.brmask, t, 3);
3055 break;
3057 case gr_gr:
3058 if (!region)
3060 as_bad ("gr_gr record before region record!");
3061 return;
3063 set_imask (region, ptr->r.record.p.grmask, t, 2);
3064 break;
3065 case br_gr:
3066 if (!region)
3068 as_bad ("br_gr record before region record!");
3069 return;
3071 set_imask (region, ptr->r.record.p.brmask, t, 3);
3072 break;
3074 default:
3075 break;
3080 /* Estimate the size of a frag before relaxing. We only have one type of frag
3081 to handle here, which is the unwind info frag. */
3084 ia64_estimate_size_before_relax (fragS *frag,
3085 asection *segtype ATTRIBUTE_UNUSED)
3087 unw_rec_list *list;
3088 int len, size, pad;
3090 /* ??? This code is identical to the first part of ia64_convert_frag. */
3091 list = (unw_rec_list *) frag->fr_opcode;
3092 fixup_unw_records (list, 0);
3094 len = calc_record_size (list);
3095 /* pad to pointer-size boundary. */
3096 pad = len % md.pointer_size;
3097 if (pad != 0)
3098 len += md.pointer_size - pad;
3099 /* Add 8 for the header. */
3100 size = len + 8;
3101 /* Add a pointer for the personality offset. */
3102 if (frag->fr_offset)
3103 size += md.pointer_size;
3105 /* fr_var carries the max_chars that we created the fragment with.
3106 We must, of course, have allocated enough memory earlier. */
3107 assert (frag->fr_var >= size);
3109 return frag->fr_fix + size;
3112 /* This function converts a rs_machine_dependent variant frag into a
3113 normal fill frag with the unwind image from the the record list. */
3114 void
3115 ia64_convert_frag (fragS *frag)
3117 unw_rec_list *list;
3118 int len, size, pad;
3119 valueT flag_value;
3121 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3122 list = (unw_rec_list *) frag->fr_opcode;
3123 fixup_unw_records (list, 0);
3125 len = calc_record_size (list);
3126 /* pad to pointer-size boundary. */
3127 pad = len % md.pointer_size;
3128 if (pad != 0)
3129 len += md.pointer_size - pad;
3130 /* Add 8 for the header. */
3131 size = len + 8;
3132 /* Add a pointer for the personality offset. */
3133 if (frag->fr_offset)
3134 size += md.pointer_size;
3136 /* fr_var carries the max_chars that we created the fragment with.
3137 We must, of course, have allocated enough memory earlier. */
3138 assert (frag->fr_var >= size);
3140 /* Initialize the header area. fr_offset is initialized with
3141 unwind.personality_routine. */
3142 if (frag->fr_offset)
3144 if (md.flags & EF_IA_64_ABI64)
3145 flag_value = (bfd_vma) 3 << 32;
3146 else
3147 /* 32-bit unwind info block. */
3148 flag_value = (bfd_vma) 0x1003 << 32;
3150 else
3151 flag_value = 0;
3153 md_number_to_chars (frag->fr_literal,
3154 (((bfd_vma) 1 << 48) /* Version. */
3155 | flag_value /* U & E handler flags. */
3156 | (len / md.pointer_size)), /* Length. */
3159 /* Skip the header. */
3160 vbyte_mem_ptr = frag->fr_literal + 8;
3161 process_unw_records (list, output_vbyte_mem);
3163 /* Fill the padding bytes with zeros. */
3164 if (pad != 0)
3165 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3166 md.pointer_size - pad);
3168 frag->fr_fix += size;
3169 frag->fr_type = rs_fill;
3170 frag->fr_var = 0;
3171 frag->fr_offset = 0;
3174 static int
3175 parse_predicate_and_operand (e, qp, po)
3176 expressionS * e;
3177 unsigned * qp;
3178 const char * po;
3180 int sep = parse_operand (e, ',');
3182 *qp = e->X_add_number - REG_P;
3183 if (e->X_op != O_register || *qp > 63)
3185 as_bad ("First operand to .%s must be a predicate", po);
3186 *qp = 0;
3188 else if (*qp == 0)
3189 as_warn ("Pointless use of p0 as first operand to .%s", po);
3190 if (sep == ',')
3191 sep = parse_operand (e, ',');
3192 else
3193 e->X_op = O_absent;
3194 return sep;
3197 static void
3198 convert_expr_to_ab_reg (e, ab, regp, po, n)
3199 const expressionS *e;
3200 unsigned int *ab;
3201 unsigned int *regp;
3202 const char * po;
3203 int n;
3205 unsigned int reg = e->X_add_number;
3207 *ab = *regp = 0; /* Anything valid is good here. */
3209 if (e->X_op != O_register)
3210 reg = REG_GR; /* Anything invalid is good here. */
3212 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3214 *ab = 0;
3215 *regp = reg - REG_GR;
3217 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3218 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3220 *ab = 1;
3221 *regp = reg - REG_FR;
3223 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3225 *ab = 2;
3226 *regp = reg - REG_BR;
3228 else
3230 *ab = 3;
3231 switch (reg)
3233 case REG_PR: *regp = 0; break;
3234 case REG_PSP: *regp = 1; break;
3235 case REG_PRIUNAT: *regp = 2; break;
3236 case REG_BR + 0: *regp = 3; break;
3237 case REG_AR + AR_BSP: *regp = 4; break;
3238 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3239 case REG_AR + AR_RNAT: *regp = 6; break;
3240 case REG_AR + AR_UNAT: *regp = 7; break;
3241 case REG_AR + AR_FPSR: *regp = 8; break;
3242 case REG_AR + AR_PFS: *regp = 9; break;
3243 case REG_AR + AR_LC: *regp = 10; break;
3245 default:
3246 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3247 break;
3252 static void
3253 convert_expr_to_xy_reg (e, xy, regp, po, n)
3254 const expressionS *e;
3255 unsigned int *xy;
3256 unsigned int *regp;
3257 const char * po;
3258 int n;
3260 unsigned int reg = e->X_add_number;
3262 *xy = *regp = 0; /* Anything valid is good here. */
3264 if (e->X_op != O_register)
3265 reg = REG_GR; /* Anything invalid is good here. */
3267 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3269 *xy = 0;
3270 *regp = reg - REG_GR;
3272 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3274 *xy = 1;
3275 *regp = reg - REG_FR;
3277 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3279 *xy = 2;
3280 *regp = reg - REG_BR;
3282 else
3283 as_bad ("Operand %d to .%s must be a writable register", n, po);
3286 static void
3287 dot_align (int arg)
3289 /* The current frag is an alignment frag. */
3290 align_frag = frag_now;
3291 s_align_bytes (arg);
3294 static void
3295 dot_radix (dummy)
3296 int dummy ATTRIBUTE_UNUSED;
3298 char *radix;
3299 int ch;
3301 SKIP_WHITESPACE ();
3303 if (is_it_end_of_statement ())
3304 return;
3305 radix = input_line_pointer;
3306 ch = get_symbol_end ();
3307 ia64_canonicalize_symbol_name (radix);
3308 if (strcasecmp (radix, "C"))
3309 as_bad ("Radix `%s' unsupported or invalid", radix);
3310 *input_line_pointer = ch;
3311 demand_empty_rest_of_line ();
3314 /* Helper function for .loc directives. If the assembler is not generating
3315 line number info, then we need to remember which instructions have a .loc
3316 directive, and only call dwarf2_gen_line_info for those instructions. */
3318 static void
3319 dot_loc (int x)
3321 CURR_SLOT.loc_directive_seen = 1;
3322 dwarf2_directive_loc (x);
3325 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3326 static void
3327 dot_special_section (which)
3328 int which;
3330 set_section ((char *) special_section_name[which]);
3333 /* Return -1 for warning and 0 for error. */
3335 static int
3336 unwind_diagnostic (const char * region, const char *directive)
3338 if (md.unwind_check == unwind_check_warning)
3340 as_warn (".%s outside of %s", directive, region);
3341 return -1;
3343 else
3345 as_bad (".%s outside of %s", directive, region);
3346 ignore_rest_of_line ();
3347 return 0;
3351 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3352 a procedure but the unwind directive check is set to warning, 0 if
3353 a directive isn't in a procedure and the unwind directive check is set
3354 to error. */
3356 static int
3357 in_procedure (const char *directive)
3359 if (unwind.proc_pending.sym
3360 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3361 return 1;
3362 return unwind_diagnostic ("procedure", directive);
3365 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3366 a prologue but the unwind directive check is set to warning, 0 if
3367 a directive isn't in a prologue and the unwind directive check is set
3368 to error. */
3370 static int
3371 in_prologue (const char *directive)
3373 int in = in_procedure (directive);
3375 if (in > 0 && !unwind.prologue)
3376 in = unwind_diagnostic ("prologue", directive);
3377 check_pending_save ();
3378 return in;
3381 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3382 a body but the unwind directive check is set to warning, 0 if
3383 a directive isn't in a body and the unwind directive check is set
3384 to error. */
3386 static int
3387 in_body (const char *directive)
3389 int in = in_procedure (directive);
3391 if (in > 0 && !unwind.body)
3392 in = unwind_diagnostic ("body region", directive);
3393 return in;
3396 static void
3397 add_unwind_entry (ptr, sep)
3398 unw_rec_list *ptr;
3399 int sep;
3401 if (ptr)
3403 if (unwind.tail)
3404 unwind.tail->next = ptr;
3405 else
3406 unwind.list = ptr;
3407 unwind.tail = ptr;
3409 /* The current entry can in fact be a chain of unwind entries. */
3410 if (unwind.current_entry == NULL)
3411 unwind.current_entry = ptr;
3414 /* The current entry can in fact be a chain of unwind entries. */
3415 if (unwind.current_entry == NULL)
3416 unwind.current_entry = ptr;
3418 if (sep == ',')
3420 /* Parse a tag permitted for the current directive. */
3421 int ch;
3423 SKIP_WHITESPACE ();
3424 ch = get_symbol_end ();
3425 /* FIXME: For now, just issue a warning that this isn't implemented. */
3427 static int warned;
3429 if (!warned)
3431 warned = 1;
3432 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3435 *input_line_pointer = ch;
3437 if (sep != NOT_A_CHAR)
3438 demand_empty_rest_of_line ();
3441 static void
3442 dot_fframe (dummy)
3443 int dummy ATTRIBUTE_UNUSED;
3445 expressionS e;
3446 int sep;
3448 if (!in_prologue ("fframe"))
3449 return;
3451 sep = parse_operand (&e, ',');
3453 if (e.X_op != O_constant)
3455 as_bad ("First operand to .fframe must be a constant");
3456 e.X_add_number = 0;
3458 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3461 static void
3462 dot_vframe (dummy)
3463 int dummy ATTRIBUTE_UNUSED;
3465 expressionS e;
3466 unsigned reg;
3467 int sep;
3469 if (!in_prologue ("vframe"))
3470 return;
3472 sep = parse_operand (&e, ',');
3473 reg = e.X_add_number - REG_GR;
3474 if (e.X_op != O_register || reg > 127)
3476 as_bad ("First operand to .vframe must be a general register");
3477 reg = 0;
3479 add_unwind_entry (output_mem_stack_v (), sep);
3480 if (! (unwind.prologue_mask & 2))
3481 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3482 else if (reg != unwind.prologue_gr
3483 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3484 as_warn ("Operand of .vframe contradicts .prologue");
3487 static void
3488 dot_vframesp (psp)
3489 int psp;
3491 expressionS e;
3492 int sep;
3494 if (psp)
3495 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3497 if (!in_prologue ("vframesp"))
3498 return;
3500 sep = parse_operand (&e, ',');
3501 if (e.X_op != O_constant)
3503 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3504 e.X_add_number = 0;
3506 add_unwind_entry (output_mem_stack_v (), sep);
3507 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3510 static void
3511 dot_save (dummy)
3512 int dummy ATTRIBUTE_UNUSED;
3514 expressionS e1, e2;
3515 unsigned reg1, reg2;
3516 int sep;
3518 if (!in_prologue ("save"))
3519 return;
3521 sep = parse_operand (&e1, ',');
3522 if (sep == ',')
3523 sep = parse_operand (&e2, ',');
3524 else
3525 e2.X_op = O_absent;
3527 reg1 = e1.X_add_number;
3528 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3529 if (e1.X_op != O_register)
3531 as_bad ("First operand to .save not a register");
3532 reg1 = REG_PR; /* Anything valid is good here. */
3534 reg2 = e2.X_add_number - REG_GR;
3535 if (e2.X_op != O_register || reg2 > 127)
3537 as_bad ("Second operand to .save not a valid register");
3538 reg2 = 0;
3540 switch (reg1)
3542 case REG_AR + AR_BSP:
3543 add_unwind_entry (output_bsp_when (), sep);
3544 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3545 break;
3546 case REG_AR + AR_BSPSTORE:
3547 add_unwind_entry (output_bspstore_when (), sep);
3548 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3549 break;
3550 case REG_AR + AR_RNAT:
3551 add_unwind_entry (output_rnat_when (), sep);
3552 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3553 break;
3554 case REG_AR + AR_UNAT:
3555 add_unwind_entry (output_unat_when (), sep);
3556 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3557 break;
3558 case REG_AR + AR_FPSR:
3559 add_unwind_entry (output_fpsr_when (), sep);
3560 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3561 break;
3562 case REG_AR + AR_PFS:
3563 add_unwind_entry (output_pfs_when (), sep);
3564 if (! (unwind.prologue_mask & 4))
3565 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3566 else if (reg2 != unwind.prologue_gr
3567 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3568 as_warn ("Second operand of .save contradicts .prologue");
3569 break;
3570 case REG_AR + AR_LC:
3571 add_unwind_entry (output_lc_when (), sep);
3572 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3573 break;
3574 case REG_BR:
3575 add_unwind_entry (output_rp_when (), sep);
3576 if (! (unwind.prologue_mask & 8))
3577 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3578 else if (reg2 != unwind.prologue_gr)
3579 as_warn ("Second operand of .save contradicts .prologue");
3580 break;
3581 case REG_PR:
3582 add_unwind_entry (output_preds_when (), sep);
3583 if (! (unwind.prologue_mask & 1))
3584 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3585 else if (reg2 != unwind.prologue_gr
3586 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3587 as_warn ("Second operand of .save contradicts .prologue");
3588 break;
3589 case REG_PRIUNAT:
3590 add_unwind_entry (output_priunat_when_gr (), sep);
3591 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3592 break;
3593 default:
3594 as_bad ("First operand to .save not a valid register");
3595 add_unwind_entry (NULL, sep);
3596 break;
3600 static void
3601 dot_restore (dummy)
3602 int dummy ATTRIBUTE_UNUSED;
3604 expressionS e1;
3605 unsigned long ecount; /* # of _additional_ regions to pop */
3606 int sep;
3608 if (!in_body ("restore"))
3609 return;
3611 sep = parse_operand (&e1, ',');
3612 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3613 as_bad ("First operand to .restore must be stack pointer (sp)");
3615 if (sep == ',')
3617 expressionS e2;
3619 sep = parse_operand (&e2, ',');
3620 if (e2.X_op != O_constant || e2.X_add_number < 0)
3622 as_bad ("Second operand to .restore must be a constant >= 0");
3623 e2.X_add_number = 0;
3625 ecount = e2.X_add_number;
3627 else
3628 ecount = unwind.prologue_count - 1;
3630 if (ecount >= unwind.prologue_count)
3632 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3633 ecount + 1, unwind.prologue_count);
3634 ecount = 0;
3637 add_unwind_entry (output_epilogue (ecount), sep);
3639 if (ecount < unwind.prologue_count)
3640 unwind.prologue_count -= ecount + 1;
3641 else
3642 unwind.prologue_count = 0;
3645 static void
3646 dot_restorereg (pred)
3647 int pred;
3649 unsigned int qp, ab, reg;
3650 expressionS e;
3651 int sep;
3652 const char * const po = pred ? "restorereg.p" : "restorereg";
3654 if (!in_procedure (po))
3655 return;
3657 if (pred)
3658 sep = parse_predicate_and_operand (&e, &qp, po);
3659 else
3661 sep = parse_operand (&e, ',');
3662 qp = 0;
3664 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3666 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3669 static char *special_linkonce_name[] =
3671 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3674 static void
3675 start_unwind_section (const segT text_seg, int sec_index)
3678 Use a slightly ugly scheme to derive the unwind section names from
3679 the text section name:
3681 text sect. unwind table sect.
3682 name: name: comments:
3683 ---------- ----------------- --------------------------------
3684 .text .IA_64.unwind
3685 .text.foo .IA_64.unwind.text.foo
3686 .foo .IA_64.unwind.foo
3687 .gnu.linkonce.t.foo
3688 .gnu.linkonce.ia64unw.foo
3689 _info .IA_64.unwind_info gas issues error message (ditto)
3690 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3692 This mapping is done so that:
3694 (a) An object file with unwind info only in .text will use
3695 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3696 This follows the letter of the ABI and also ensures backwards
3697 compatibility with older toolchains.
3699 (b) An object file with unwind info in multiple text sections
3700 will use separate unwind sections for each text section.
3701 This allows us to properly set the "sh_info" and "sh_link"
3702 fields in SHT_IA_64_UNWIND as required by the ABI and also
3703 lets GNU ld support programs with multiple segments
3704 containing unwind info (as might be the case for certain
3705 embedded applications).
3707 (c) An error is issued if there would be a name clash.
3710 const char *text_name, *sec_text_name;
3711 char *sec_name;
3712 const char *prefix = special_section_name [sec_index];
3713 const char *suffix;
3714 size_t prefix_len, suffix_len, sec_name_len;
3716 sec_text_name = segment_name (text_seg);
3717 text_name = sec_text_name;
3718 if (strncmp (text_name, "_info", 5) == 0)
3720 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3721 text_name);
3722 ignore_rest_of_line ();
3723 return;
3725 if (strcmp (text_name, ".text") == 0)
3726 text_name = "";
3728 /* Build the unwind section name by appending the (possibly stripped)
3729 text section name to the unwind prefix. */
3730 suffix = text_name;
3731 if (strncmp (text_name, ".gnu.linkonce.t.",
3732 sizeof (".gnu.linkonce.t.") - 1) == 0)
3734 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3735 suffix += sizeof (".gnu.linkonce.t.") - 1;
3738 prefix_len = strlen (prefix);
3739 suffix_len = strlen (suffix);
3740 sec_name_len = prefix_len + suffix_len;
3741 sec_name = alloca (sec_name_len + 1);
3742 memcpy (sec_name, prefix, prefix_len);
3743 memcpy (sec_name + prefix_len, suffix, suffix_len);
3744 sec_name [sec_name_len] = '\0';
3746 /* Handle COMDAT group. */
3747 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3748 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3750 char *section;
3751 size_t len, group_name_len;
3752 const char *group_name = elf_group_name (text_seg);
3754 if (group_name == NULL)
3756 as_bad ("Group section `%s' has no group signature",
3757 sec_text_name);
3758 ignore_rest_of_line ();
3759 return;
3761 /* We have to construct a fake section directive. */
3762 group_name_len = strlen (group_name);
3763 len = (sec_name_len
3764 + 16 /* ,"aG",@progbits, */
3765 + group_name_len /* ,group_name */
3766 + 7); /* ,comdat */
3768 section = alloca (len + 1);
3769 memcpy (section, sec_name, sec_name_len);
3770 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3771 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3772 memcpy (section + len - 7, ",comdat", 7);
3773 section [len] = '\0';
3774 set_section (section);
3776 else
3778 set_section (sec_name);
3779 bfd_set_section_flags (stdoutput, now_seg,
3780 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3783 elf_linked_to_section (now_seg) = text_seg;
3786 static void
3787 generate_unwind_image (const segT text_seg)
3789 int size, pad;
3790 unw_rec_list *list;
3792 /* Mark the end of the unwind info, so that we can compute the size of the
3793 last unwind region. */
3794 add_unwind_entry (output_endp (), NOT_A_CHAR);
3796 /* Force out pending instructions, to make sure all unwind records have
3797 a valid slot_number field. */
3798 ia64_flush_insns ();
3800 /* Generate the unwind record. */
3801 list = optimize_unw_records (unwind.list);
3802 fixup_unw_records (list, 1);
3803 size = calc_record_size (list);
3805 if (size > 0 || unwind.force_unwind_entry)
3807 unwind.force_unwind_entry = 0;
3808 /* pad to pointer-size boundary. */
3809 pad = size % md.pointer_size;
3810 if (pad != 0)
3811 size += md.pointer_size - pad;
3812 /* Add 8 for the header. */
3813 size += 8;
3814 /* Add a pointer for the personality offset. */
3815 if (unwind.personality_routine)
3816 size += md.pointer_size;
3819 /* If there are unwind records, switch sections, and output the info. */
3820 if (size != 0)
3822 expressionS exp;
3823 bfd_reloc_code_real_type reloc;
3825 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3827 /* Make sure the section has 4 byte alignment for ILP32 and
3828 8 byte alignment for LP64. */
3829 frag_align (md.pointer_size_shift, 0, 0);
3830 record_alignment (now_seg, md.pointer_size_shift);
3832 /* Set expression which points to start of unwind descriptor area. */
3833 unwind.info = expr_build_dot ();
3835 frag_var (rs_machine_dependent, size, size, 0, 0,
3836 (offsetT) (long) unwind.personality_routine,
3837 (char *) list);
3839 /* Add the personality address to the image. */
3840 if (unwind.personality_routine != 0)
3842 exp.X_op = O_symbol;
3843 exp.X_add_symbol = unwind.personality_routine;
3844 exp.X_add_number = 0;
3846 if (md.flags & EF_IA_64_BE)
3848 if (md.flags & EF_IA_64_ABI64)
3849 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3850 else
3851 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3853 else
3855 if (md.flags & EF_IA_64_ABI64)
3856 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3857 else
3858 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3861 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3862 md.pointer_size, &exp, 0, reloc);
3863 unwind.personality_routine = 0;
3867 free_saved_prologue_counts ();
3868 unwind.list = unwind.tail = unwind.current_entry = NULL;
3871 static void
3872 dot_handlerdata (dummy)
3873 int dummy ATTRIBUTE_UNUSED;
3875 if (!in_procedure ("handlerdata"))
3876 return;
3877 unwind.force_unwind_entry = 1;
3879 /* Remember which segment we're in so we can switch back after .endp */
3880 unwind.saved_text_seg = now_seg;
3881 unwind.saved_text_subseg = now_subseg;
3883 /* Generate unwind info into unwind-info section and then leave that
3884 section as the currently active one so dataXX directives go into
3885 the language specific data area of the unwind info block. */
3886 generate_unwind_image (now_seg);
3887 demand_empty_rest_of_line ();
3890 static void
3891 dot_unwentry (dummy)
3892 int dummy ATTRIBUTE_UNUSED;
3894 if (!in_procedure ("unwentry"))
3895 return;
3896 unwind.force_unwind_entry = 1;
3897 demand_empty_rest_of_line ();
3900 static void
3901 dot_altrp (dummy)
3902 int dummy ATTRIBUTE_UNUSED;
3904 expressionS e;
3905 unsigned reg;
3907 if (!in_prologue ("altrp"))
3908 return;
3910 parse_operand (&e, 0);
3911 reg = e.X_add_number - REG_BR;
3912 if (e.X_op != O_register || reg > 7)
3914 as_bad ("First operand to .altrp not a valid branch register");
3915 reg = 0;
3917 add_unwind_entry (output_rp_br (reg), 0);
3920 static void
3921 dot_savemem (psprel)
3922 int psprel;
3924 expressionS e1, e2;
3925 int sep;
3926 int reg1, val;
3927 const char * const po = psprel ? "savepsp" : "savesp";
3929 if (!in_prologue (po))
3930 return;
3932 sep = parse_operand (&e1, ',');
3933 if (sep == ',')
3934 sep = parse_operand (&e2, ',');
3935 else
3936 e2.X_op = O_absent;
3938 reg1 = e1.X_add_number;
3939 val = e2.X_add_number;
3941 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3942 if (e1.X_op != O_register)
3944 as_bad ("First operand to .%s not a register", po);
3945 reg1 = REG_PR; /* Anything valid is good here. */
3947 if (e2.X_op != O_constant)
3949 as_bad ("Second operand to .%s not a constant", po);
3950 val = 0;
3953 switch (reg1)
3955 case REG_AR + AR_BSP:
3956 add_unwind_entry (output_bsp_when (), sep);
3957 add_unwind_entry ((psprel
3958 ? output_bsp_psprel
3959 : output_bsp_sprel) (val), NOT_A_CHAR);
3960 break;
3961 case REG_AR + AR_BSPSTORE:
3962 add_unwind_entry (output_bspstore_when (), sep);
3963 add_unwind_entry ((psprel
3964 ? output_bspstore_psprel
3965 : output_bspstore_sprel) (val), NOT_A_CHAR);
3966 break;
3967 case REG_AR + AR_RNAT:
3968 add_unwind_entry (output_rnat_when (), sep);
3969 add_unwind_entry ((psprel
3970 ? output_rnat_psprel
3971 : output_rnat_sprel) (val), NOT_A_CHAR);
3972 break;
3973 case REG_AR + AR_UNAT:
3974 add_unwind_entry (output_unat_when (), sep);
3975 add_unwind_entry ((psprel
3976 ? output_unat_psprel
3977 : output_unat_sprel) (val), NOT_A_CHAR);
3978 break;
3979 case REG_AR + AR_FPSR:
3980 add_unwind_entry (output_fpsr_when (), sep);
3981 add_unwind_entry ((psprel
3982 ? output_fpsr_psprel
3983 : output_fpsr_sprel) (val), NOT_A_CHAR);
3984 break;
3985 case REG_AR + AR_PFS:
3986 add_unwind_entry (output_pfs_when (), sep);
3987 add_unwind_entry ((psprel
3988 ? output_pfs_psprel
3989 : output_pfs_sprel) (val), NOT_A_CHAR);
3990 break;
3991 case REG_AR + AR_LC:
3992 add_unwind_entry (output_lc_when (), sep);
3993 add_unwind_entry ((psprel
3994 ? output_lc_psprel
3995 : output_lc_sprel) (val), NOT_A_CHAR);
3996 break;
3997 case REG_BR:
3998 add_unwind_entry (output_rp_when (), sep);
3999 add_unwind_entry ((psprel
4000 ? output_rp_psprel
4001 : output_rp_sprel) (val), NOT_A_CHAR);
4002 break;
4003 case REG_PR:
4004 add_unwind_entry (output_preds_when (), sep);
4005 add_unwind_entry ((psprel
4006 ? output_preds_psprel
4007 : output_preds_sprel) (val), NOT_A_CHAR);
4008 break;
4009 case REG_PRIUNAT:
4010 add_unwind_entry (output_priunat_when_mem (), sep);
4011 add_unwind_entry ((psprel
4012 ? output_priunat_psprel
4013 : output_priunat_sprel) (val), NOT_A_CHAR);
4014 break;
4015 default:
4016 as_bad ("First operand to .%s not a valid register", po);
4017 add_unwind_entry (NULL, sep);
4018 break;
4022 static void
4023 dot_saveg (dummy)
4024 int dummy ATTRIBUTE_UNUSED;
4026 expressionS e;
4027 unsigned grmask;
4028 int sep;
4030 if (!in_prologue ("save.g"))
4031 return;
4033 sep = parse_operand (&e, ',');
4035 grmask = e.X_add_number;
4036 if (e.X_op != O_constant
4037 || e.X_add_number <= 0
4038 || e.X_add_number > 0xf)
4040 as_bad ("First operand to .save.g must be a positive 4-bit constant");
4041 grmask = 0;
4044 if (sep == ',')
4046 unsigned reg;
4047 int n = popcount (grmask);
4049 parse_operand (&e, 0);
4050 reg = e.X_add_number - REG_GR;
4051 if (e.X_op != O_register || reg > 127)
4053 as_bad ("Second operand to .save.g must be a general register");
4054 reg = 0;
4056 else if (reg > 128U - n)
4058 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
4059 reg = 0;
4061 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4063 else
4064 add_unwind_entry (output_gr_mem (grmask), 0);
4067 static void
4068 dot_savef (dummy)
4069 int dummy ATTRIBUTE_UNUSED;
4071 expressionS e;
4073 if (!in_prologue ("save.f"))
4074 return;
4076 parse_operand (&e, 0);
4078 if (e.X_op != O_constant
4079 || e.X_add_number <= 0
4080 || e.X_add_number > 0xfffff)
4082 as_bad ("Operand to .save.f must be a positive 20-bit constant");
4083 e.X_add_number = 0;
4085 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4088 static void
4089 dot_saveb (dummy)
4090 int dummy ATTRIBUTE_UNUSED;
4092 expressionS e;
4093 unsigned brmask;
4094 int sep;
4096 if (!in_prologue ("save.b"))
4097 return;
4099 sep = parse_operand (&e, ',');
4101 brmask = e.X_add_number;
4102 if (e.X_op != O_constant
4103 || e.X_add_number <= 0
4104 || e.X_add_number > 0x1f)
4106 as_bad ("First operand to .save.b must be a positive 5-bit constant");
4107 brmask = 0;
4110 if (sep == ',')
4112 unsigned reg;
4113 int n = popcount (brmask);
4115 parse_operand (&e, 0);
4116 reg = e.X_add_number - REG_GR;
4117 if (e.X_op != O_register || reg > 127)
4119 as_bad ("Second operand to .save.b must be a general register");
4120 reg = 0;
4122 else if (reg > 128U - n)
4124 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
4125 reg = 0;
4127 add_unwind_entry (output_br_gr (brmask, reg), 0);
4129 else
4130 add_unwind_entry (output_br_mem (brmask), 0);
4133 static void
4134 dot_savegf (dummy)
4135 int dummy ATTRIBUTE_UNUSED;
4137 expressionS e1, e2;
4139 if (!in_prologue ("save.gf"))
4140 return;
4142 if (parse_operand (&e1, ',') == ',')
4143 parse_operand (&e2, 0);
4144 else
4145 e2.X_op = O_absent;
4147 if (e1.X_op != O_constant
4148 || e1.X_add_number < 0
4149 || e1.X_add_number > 0xf)
4151 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
4152 e1.X_op = O_absent;
4153 e1.X_add_number = 0;
4155 if (e2.X_op != O_constant
4156 || e2.X_add_number < 0
4157 || e2.X_add_number > 0xfffff)
4159 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
4160 e2.X_op = O_absent;
4161 e2.X_add_number = 0;
4163 if (e1.X_op == O_constant
4164 && e2.X_op == O_constant
4165 && e1.X_add_number == 0
4166 && e2.X_add_number == 0)
4167 as_bad ("Operands to .save.gf may not be both zero");
4169 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4172 static void
4173 dot_spill (dummy)
4174 int dummy ATTRIBUTE_UNUSED;
4176 expressionS e;
4178 if (!in_prologue ("spill"))
4179 return;
4181 parse_operand (&e, 0);
4183 if (e.X_op != O_constant)
4185 as_bad ("Operand to .spill must be a constant");
4186 e.X_add_number = 0;
4188 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4191 static void
4192 dot_spillreg (pred)
4193 int pred;
4195 int sep;
4196 unsigned int qp, ab, xy, reg, treg;
4197 expressionS e;
4198 const char * const po = pred ? "spillreg.p" : "spillreg";
4200 if (!in_procedure (po))
4201 return;
4203 if (pred)
4204 sep = parse_predicate_and_operand (&e, &qp, po);
4205 else
4207 sep = parse_operand (&e, ',');
4208 qp = 0;
4210 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4212 if (sep == ',')
4213 sep = parse_operand (&e, ',');
4214 else
4215 e.X_op = O_absent;
4216 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4218 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4221 static void
4222 dot_spillmem (psprel)
4223 int psprel;
4225 expressionS e;
4226 int pred = (psprel < 0), sep;
4227 unsigned int qp, ab, reg;
4228 const char * po;
4230 if (pred)
4232 psprel = ~psprel;
4233 po = psprel ? "spillpsp.p" : "spillsp.p";
4235 else
4236 po = psprel ? "spillpsp" : "spillsp";
4238 if (!in_procedure (po))
4239 return;
4241 if (pred)
4242 sep = parse_predicate_and_operand (&e, &qp, po);
4243 else
4245 sep = parse_operand (&e, ',');
4246 qp = 0;
4248 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4250 if (sep == ',')
4251 sep = parse_operand (&e, ',');
4252 else
4253 e.X_op = O_absent;
4254 if (e.X_op != O_constant)
4256 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4257 e.X_add_number = 0;
4260 if (psprel)
4261 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4262 else
4263 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4266 static unsigned int
4267 get_saved_prologue_count (lbl)
4268 unsigned long lbl;
4270 label_prologue_count *lpc = unwind.saved_prologue_counts;
4272 while (lpc != NULL && lpc->label_number != lbl)
4273 lpc = lpc->next;
4275 if (lpc != NULL)
4276 return lpc->prologue_count;
4278 as_bad ("Missing .label_state %ld", lbl);
4279 return 1;
4282 static void
4283 save_prologue_count (lbl, count)
4284 unsigned long lbl;
4285 unsigned int count;
4287 label_prologue_count *lpc = unwind.saved_prologue_counts;
4289 while (lpc != NULL && lpc->label_number != lbl)
4290 lpc = lpc->next;
4292 if (lpc != NULL)
4293 lpc->prologue_count = count;
4294 else
4296 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4298 new_lpc->next = unwind.saved_prologue_counts;
4299 new_lpc->label_number = lbl;
4300 new_lpc->prologue_count = count;
4301 unwind.saved_prologue_counts = new_lpc;
4305 static void
4306 free_saved_prologue_counts ()
4308 label_prologue_count *lpc = unwind.saved_prologue_counts;
4309 label_prologue_count *next;
4311 while (lpc != NULL)
4313 next = lpc->next;
4314 free (lpc);
4315 lpc = next;
4318 unwind.saved_prologue_counts = NULL;
4321 static void
4322 dot_label_state (dummy)
4323 int dummy ATTRIBUTE_UNUSED;
4325 expressionS e;
4327 if (!in_body ("label_state"))
4328 return;
4330 parse_operand (&e, 0);
4331 if (e.X_op == O_constant)
4332 save_prologue_count (e.X_add_number, unwind.prologue_count);
4333 else
4335 as_bad ("Operand to .label_state must be a constant");
4336 e.X_add_number = 0;
4338 add_unwind_entry (output_label_state (e.X_add_number), 0);
4341 static void
4342 dot_copy_state (dummy)
4343 int dummy ATTRIBUTE_UNUSED;
4345 expressionS e;
4347 if (!in_body ("copy_state"))
4348 return;
4350 parse_operand (&e, 0);
4351 if (e.X_op == O_constant)
4352 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4353 else
4355 as_bad ("Operand to .copy_state must be a constant");
4356 e.X_add_number = 0;
4358 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4361 static void
4362 dot_unwabi (dummy)
4363 int dummy ATTRIBUTE_UNUSED;
4365 expressionS e1, e2;
4366 unsigned char sep;
4368 if (!in_prologue ("unwabi"))
4369 return;
4371 sep = parse_operand (&e1, ',');
4372 if (sep == ',')
4373 parse_operand (&e2, 0);
4374 else
4375 e2.X_op = O_absent;
4377 if (e1.X_op != O_constant)
4379 as_bad ("First operand to .unwabi must be a constant");
4380 e1.X_add_number = 0;
4383 if (e2.X_op != O_constant)
4385 as_bad ("Second operand to .unwabi must be a constant");
4386 e2.X_add_number = 0;
4389 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4392 static void
4393 dot_personality (dummy)
4394 int dummy ATTRIBUTE_UNUSED;
4396 char *name, *p, c;
4397 if (!in_procedure ("personality"))
4398 return;
4399 SKIP_WHITESPACE ();
4400 name = input_line_pointer;
4401 c = get_symbol_end ();
4402 p = input_line_pointer;
4403 unwind.personality_routine = symbol_find_or_make (name);
4404 unwind.force_unwind_entry = 1;
4405 *p = c;
4406 SKIP_WHITESPACE ();
4407 demand_empty_rest_of_line ();
4410 static void
4411 dot_proc (dummy)
4412 int dummy ATTRIBUTE_UNUSED;
4414 char *name, *p, c;
4415 symbolS *sym;
4416 proc_pending *pending, *last_pending;
4418 if (unwind.proc_pending.sym)
4420 (md.unwind_check == unwind_check_warning
4421 ? as_warn
4422 : as_bad) ("Missing .endp after previous .proc");
4423 while (unwind.proc_pending.next)
4425 pending = unwind.proc_pending.next;
4426 unwind.proc_pending.next = pending->next;
4427 free (pending);
4430 last_pending = NULL;
4432 /* Parse names of main and alternate entry points and mark them as
4433 function symbols: */
4434 while (1)
4436 SKIP_WHITESPACE ();
4437 name = input_line_pointer;
4438 c = get_symbol_end ();
4439 p = input_line_pointer;
4440 if (!*name)
4441 as_bad ("Empty argument of .proc");
4442 else
4444 sym = symbol_find_or_make (name);
4445 if (S_IS_DEFINED (sym))
4446 as_bad ("`%s' was already defined", name);
4447 else if (!last_pending)
4449 unwind.proc_pending.sym = sym;
4450 last_pending = &unwind.proc_pending;
4452 else
4454 pending = xmalloc (sizeof (*pending));
4455 pending->sym = sym;
4456 last_pending = last_pending->next = pending;
4458 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4460 *p = c;
4461 SKIP_WHITESPACE ();
4462 if (*input_line_pointer != ',')
4463 break;
4464 ++input_line_pointer;
4466 if (!last_pending)
4468 unwind.proc_pending.sym = expr_build_dot ();
4469 last_pending = &unwind.proc_pending;
4471 last_pending->next = NULL;
4472 demand_empty_rest_of_line ();
4473 ia64_do_align (16);
4475 unwind.prologue = 0;
4476 unwind.prologue_count = 0;
4477 unwind.body = 0;
4478 unwind.insn = 0;
4479 unwind.list = unwind.tail = unwind.current_entry = NULL;
4480 unwind.personality_routine = 0;
4483 static void
4484 dot_body (dummy)
4485 int dummy ATTRIBUTE_UNUSED;
4487 if (!in_procedure ("body"))
4488 return;
4489 if (!unwind.prologue && !unwind.body && unwind.insn)
4490 as_warn ("Initial .body should precede any instructions");
4491 check_pending_save ();
4493 unwind.prologue = 0;
4494 unwind.prologue_mask = 0;
4495 unwind.body = 1;
4497 add_unwind_entry (output_body (), 0);
4500 static void
4501 dot_prologue (dummy)
4502 int dummy ATTRIBUTE_UNUSED;
4504 unsigned mask = 0, grsave = 0;
4506 if (!in_procedure ("prologue"))
4507 return;
4508 if (unwind.prologue)
4510 as_bad (".prologue within prologue");
4511 ignore_rest_of_line ();
4512 return;
4514 if (!unwind.body && unwind.insn)
4515 as_warn ("Initial .prologue should precede any instructions");
4517 if (!is_it_end_of_statement ())
4519 expressionS e;
4520 int n, sep = parse_operand (&e, ',');
4522 if (e.X_op != O_constant
4523 || e.X_add_number < 0
4524 || e.X_add_number > 0xf)
4525 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4526 else if (e.X_add_number == 0)
4527 as_warn ("Pointless use of zero first operand to .prologue");
4528 else
4529 mask = e.X_add_number;
4530 n = popcount (mask);
4532 if (sep == ',')
4533 parse_operand (&e, 0);
4534 else
4535 e.X_op = O_absent;
4536 if (e.X_op == O_constant
4537 && e.X_add_number >= 0
4538 && e.X_add_number < 128)
4540 if (md.unwind_check == unwind_check_error)
4541 as_warn ("Using a constant as second operand to .prologue is deprecated");
4542 grsave = e.X_add_number;
4544 else if (e.X_op != O_register
4545 || (grsave = e.X_add_number - REG_GR) > 127)
4547 as_bad ("Second operand to .prologue must be a general register");
4548 grsave = 0;
4550 else if (grsave > 128U - n)
4552 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4553 grsave = 0;
4558 if (mask)
4559 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4560 else
4561 add_unwind_entry (output_prologue (), 0);
4563 unwind.prologue = 1;
4564 unwind.prologue_mask = mask;
4565 unwind.prologue_gr = grsave;
4566 unwind.body = 0;
4567 ++unwind.prologue_count;
4570 static void
4571 dot_endp (dummy)
4572 int dummy ATTRIBUTE_UNUSED;
4574 expressionS e;
4575 int bytes_per_address;
4576 long where;
4577 segT saved_seg;
4578 subsegT saved_subseg;
4579 proc_pending *pending;
4580 int unwind_check = md.unwind_check;
4582 md.unwind_check = unwind_check_error;
4583 if (!in_procedure ("endp"))
4584 return;
4585 md.unwind_check = unwind_check;
4587 if (unwind.saved_text_seg)
4589 saved_seg = unwind.saved_text_seg;
4590 saved_subseg = unwind.saved_text_subseg;
4591 unwind.saved_text_seg = NULL;
4593 else
4595 saved_seg = now_seg;
4596 saved_subseg = now_subseg;
4599 insn_group_break (1, 0, 0);
4601 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4602 if (!unwind.info)
4603 generate_unwind_image (saved_seg);
4605 if (unwind.info || unwind.force_unwind_entry)
4607 symbolS *proc_end;
4609 subseg_set (md.last_text_seg, 0);
4610 proc_end = expr_build_dot ();
4612 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4614 /* Make sure that section has 4 byte alignment for ILP32 and
4615 8 byte alignment for LP64. */
4616 record_alignment (now_seg, md.pointer_size_shift);
4618 /* Need space for 3 pointers for procedure start, procedure end,
4619 and unwind info. */
4620 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4621 where = frag_now_fix () - (3 * md.pointer_size);
4622 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4624 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4625 e.X_op = O_pseudo_fixup;
4626 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4627 e.X_add_number = 0;
4628 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4629 && S_IS_DEFINED (unwind.proc_pending.sym))
4630 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4631 S_GET_VALUE (unwind.proc_pending.sym),
4632 symbol_get_frag (unwind.proc_pending.sym));
4633 else
4634 e.X_add_symbol = unwind.proc_pending.sym;
4635 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4637 e.X_op = O_pseudo_fixup;
4638 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4639 e.X_add_number = 0;
4640 e.X_add_symbol = proc_end;
4641 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4642 bytes_per_address, &e);
4644 if (unwind.info)
4646 e.X_op = O_pseudo_fixup;
4647 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4648 e.X_add_number = 0;
4649 e.X_add_symbol = unwind.info;
4650 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4651 bytes_per_address, &e);
4654 subseg_set (saved_seg, saved_subseg);
4656 /* Set symbol sizes. */
4657 pending = &unwind.proc_pending;
4658 if (S_GET_NAME (pending->sym))
4662 symbolS *sym = pending->sym;
4664 if (!S_IS_DEFINED (sym))
4665 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4666 else if (S_GET_SIZE (sym) == 0
4667 && symbol_get_obj (sym)->size == NULL)
4669 fragS *frag = symbol_get_frag (sym);
4671 if (frag)
4673 if (frag == frag_now && SEG_NORMAL (now_seg))
4674 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4675 else
4677 symbol_get_obj (sym)->size =
4678 (expressionS *) xmalloc (sizeof (expressionS));
4679 symbol_get_obj (sym)->size->X_op = O_subtract;
4680 symbol_get_obj (sym)->size->X_add_symbol
4681 = symbol_new (FAKE_LABEL_NAME, now_seg,
4682 frag_now_fix (), frag_now);
4683 symbol_get_obj (sym)->size->X_op_symbol = sym;
4684 symbol_get_obj (sym)->size->X_add_number = 0;
4688 } while ((pending = pending->next) != NULL);
4691 /* Parse names of main and alternate entry points. */
4692 while (1)
4694 char *name, *p, c;
4696 SKIP_WHITESPACE ();
4697 name = input_line_pointer;
4698 c = get_symbol_end ();
4699 p = input_line_pointer;
4700 if (!*name)
4701 (md.unwind_check == unwind_check_warning
4702 ? as_warn
4703 : as_bad) ("Empty argument of .endp");
4704 else
4706 symbolS *sym = symbol_find (name);
4708 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4710 if (sym == pending->sym)
4712 pending->sym = NULL;
4713 break;
4716 if (!sym || !pending)
4717 as_warn ("`%s' was not specified with previous .proc", name);
4719 *p = c;
4720 SKIP_WHITESPACE ();
4721 if (*input_line_pointer != ',')
4722 break;
4723 ++input_line_pointer;
4725 demand_empty_rest_of_line ();
4727 /* Deliberately only checking for the main entry point here; the
4728 language spec even says all arguments to .endp are ignored. */
4729 if (unwind.proc_pending.sym
4730 && S_GET_NAME (unwind.proc_pending.sym)
4731 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4732 as_warn ("`%s' should be an operand to this .endp",
4733 S_GET_NAME (unwind.proc_pending.sym));
4734 while (unwind.proc_pending.next)
4736 pending = unwind.proc_pending.next;
4737 unwind.proc_pending.next = pending->next;
4738 free (pending);
4740 unwind.proc_pending.sym = unwind.info = NULL;
4743 static void
4744 dot_template (template)
4745 int template;
4747 CURR_SLOT.user_template = template;
4750 static void
4751 dot_regstk (dummy)
4752 int dummy ATTRIBUTE_UNUSED;
4754 int ins, locs, outs, rots;
4756 if (is_it_end_of_statement ())
4757 ins = locs = outs = rots = 0;
4758 else
4760 ins = get_absolute_expression ();
4761 if (*input_line_pointer++ != ',')
4762 goto err;
4763 locs = get_absolute_expression ();
4764 if (*input_line_pointer++ != ',')
4765 goto err;
4766 outs = get_absolute_expression ();
4767 if (*input_line_pointer++ != ',')
4768 goto err;
4769 rots = get_absolute_expression ();
4771 set_regstack (ins, locs, outs, rots);
4772 return;
4774 err:
4775 as_bad ("Comma expected");
4776 ignore_rest_of_line ();
4779 static void
4780 dot_rot (type)
4781 int type;
4783 offsetT num_regs;
4784 valueT num_alloced = 0;
4785 struct dynreg **drpp, *dr;
4786 int ch, base_reg = 0;
4787 char *name, *start;
4788 size_t len;
4790 switch (type)
4792 case DYNREG_GR: base_reg = REG_GR + 32; break;
4793 case DYNREG_FR: base_reg = REG_FR + 32; break;
4794 case DYNREG_PR: base_reg = REG_P + 16; break;
4795 default: break;
4798 /* First, remove existing names from hash table. */
4799 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4801 hash_delete (md.dynreg_hash, dr->name);
4802 /* FIXME: Free dr->name. */
4803 dr->num_regs = 0;
4806 drpp = &md.dynreg[type];
4807 while (1)
4809 start = input_line_pointer;
4810 ch = get_symbol_end ();
4811 len = strlen (ia64_canonicalize_symbol_name (start));
4812 *input_line_pointer = ch;
4814 SKIP_WHITESPACE ();
4815 if (*input_line_pointer != '[')
4817 as_bad ("Expected '['");
4818 goto err;
4820 ++input_line_pointer; /* skip '[' */
4822 num_regs = get_absolute_expression ();
4824 if (*input_line_pointer++ != ']')
4826 as_bad ("Expected ']'");
4827 goto err;
4829 if (num_regs <= 0)
4831 as_bad ("Number of elements must be positive");
4832 goto err;
4834 SKIP_WHITESPACE ();
4836 num_alloced += num_regs;
4837 switch (type)
4839 case DYNREG_GR:
4840 if (num_alloced > md.rot.num_regs)
4842 as_bad ("Used more than the declared %d rotating registers",
4843 md.rot.num_regs);
4844 goto err;
4846 break;
4847 case DYNREG_FR:
4848 if (num_alloced > 96)
4850 as_bad ("Used more than the available 96 rotating registers");
4851 goto err;
4853 break;
4854 case DYNREG_PR:
4855 if (num_alloced > 48)
4857 as_bad ("Used more than the available 48 rotating registers");
4858 goto err;
4860 break;
4862 default:
4863 break;
4866 if (!*drpp)
4868 *drpp = obstack_alloc (&notes, sizeof (*dr));
4869 memset (*drpp, 0, sizeof (*dr));
4872 name = obstack_alloc (&notes, len + 1);
4873 memcpy (name, start, len);
4874 name[len] = '\0';
4876 dr = *drpp;
4877 dr->name = name;
4878 dr->num_regs = num_regs;
4879 dr->base = base_reg;
4880 drpp = &dr->next;
4881 base_reg += num_regs;
4883 if (hash_insert (md.dynreg_hash, name, dr))
4885 as_bad ("Attempt to redefine register set `%s'", name);
4886 obstack_free (&notes, name);
4887 goto err;
4890 if (*input_line_pointer != ',')
4891 break;
4892 ++input_line_pointer; /* skip comma */
4893 SKIP_WHITESPACE ();
4895 demand_empty_rest_of_line ();
4896 return;
4898 err:
4899 ignore_rest_of_line ();
4902 static void
4903 dot_byteorder (byteorder)
4904 int byteorder;
4906 segment_info_type *seginfo = seg_info (now_seg);
4908 if (byteorder == -1)
4910 if (seginfo->tc_segment_info_data.endian == 0)
4911 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4912 byteorder = seginfo->tc_segment_info_data.endian == 1;
4914 else
4915 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4917 if (target_big_endian != byteorder)
4919 target_big_endian = byteorder;
4920 if (target_big_endian)
4922 ia64_number_to_chars = number_to_chars_bigendian;
4923 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4925 else
4927 ia64_number_to_chars = number_to_chars_littleendian;
4928 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4933 static void
4934 dot_psr (dummy)
4935 int dummy ATTRIBUTE_UNUSED;
4937 char *option;
4938 int ch;
4940 while (1)
4942 option = input_line_pointer;
4943 ch = get_symbol_end ();
4944 if (strcmp (option, "lsb") == 0)
4945 md.flags &= ~EF_IA_64_BE;
4946 else if (strcmp (option, "msb") == 0)
4947 md.flags |= EF_IA_64_BE;
4948 else if (strcmp (option, "abi32") == 0)
4949 md.flags &= ~EF_IA_64_ABI64;
4950 else if (strcmp (option, "abi64") == 0)
4951 md.flags |= EF_IA_64_ABI64;
4952 else
4953 as_bad ("Unknown psr option `%s'", option);
4954 *input_line_pointer = ch;
4956 SKIP_WHITESPACE ();
4957 if (*input_line_pointer != ',')
4958 break;
4960 ++input_line_pointer;
4961 SKIP_WHITESPACE ();
4963 demand_empty_rest_of_line ();
4966 static void
4967 dot_ln (dummy)
4968 int dummy ATTRIBUTE_UNUSED;
4970 new_logical_line (0, get_absolute_expression ());
4971 demand_empty_rest_of_line ();
4974 static void
4975 cross_section (ref, cons, ua)
4976 int ref;
4977 void (*cons) PARAMS((int));
4978 int ua;
4980 char *start, *end;
4981 int saved_auto_align;
4982 unsigned int section_count;
4984 SKIP_WHITESPACE ();
4985 start = input_line_pointer;
4986 if (*start == '"')
4988 int len;
4989 char *name;
4991 name = demand_copy_C_string (&len);
4992 obstack_free(&notes, name);
4993 if (!name)
4995 ignore_rest_of_line ();
4996 return;
4999 else
5001 char c = get_symbol_end ();
5003 if (input_line_pointer == start)
5005 as_bad ("Missing section name");
5006 ignore_rest_of_line ();
5007 return;
5009 *input_line_pointer = c;
5011 end = input_line_pointer;
5012 SKIP_WHITESPACE ();
5013 if (*input_line_pointer != ',')
5015 as_bad ("Comma expected after section name");
5016 ignore_rest_of_line ();
5017 return;
5019 *end = '\0';
5020 end = input_line_pointer + 1; /* skip comma */
5021 input_line_pointer = start;
5022 md.keep_pending_output = 1;
5023 section_count = bfd_count_sections(stdoutput);
5024 obj_elf_section (0);
5025 if (section_count != bfd_count_sections(stdoutput))
5026 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
5027 input_line_pointer = end;
5028 saved_auto_align = md.auto_align;
5029 if (ua)
5030 md.auto_align = 0;
5031 (*cons) (ref);
5032 if (ua)
5033 md.auto_align = saved_auto_align;
5034 obj_elf_previous (0);
5035 md.keep_pending_output = 0;
5038 static void
5039 dot_xdata (size)
5040 int size;
5042 cross_section (size, cons, 0);
5045 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5047 static void
5048 stmt_float_cons (kind)
5049 int kind;
5051 size_t alignment;
5053 switch (kind)
5055 case 'd':
5056 alignment = 8;
5057 break;
5059 case 'x':
5060 case 'X':
5061 alignment = 16;
5062 break;
5064 case 'f':
5065 default:
5066 alignment = 4;
5067 break;
5069 ia64_do_align (alignment);
5070 float_cons (kind);
5073 static void
5074 stmt_cons_ua (size)
5075 int size;
5077 int saved_auto_align = md.auto_align;
5079 md.auto_align = 0;
5080 cons (size);
5081 md.auto_align = saved_auto_align;
5084 static void
5085 dot_xfloat_cons (kind)
5086 int kind;
5088 cross_section (kind, stmt_float_cons, 0);
5091 static void
5092 dot_xstringer (zero)
5093 int zero;
5095 cross_section (zero, stringer, 0);
5098 static void
5099 dot_xdata_ua (size)
5100 int size;
5102 cross_section (size, cons, 1);
5105 static void
5106 dot_xfloat_cons_ua (kind)
5107 int kind;
5109 cross_section (kind, float_cons, 1);
5112 /* .reg.val <regname>,value */
5114 static void
5115 dot_reg_val (dummy)
5116 int dummy ATTRIBUTE_UNUSED;
5118 expressionS reg;
5120 expression_and_evaluate (&reg);
5121 if (reg.X_op != O_register)
5123 as_bad (_("Register name expected"));
5124 ignore_rest_of_line ();
5126 else if (*input_line_pointer++ != ',')
5128 as_bad (_("Comma expected"));
5129 ignore_rest_of_line ();
5131 else
5133 valueT value = get_absolute_expression ();
5134 int regno = reg.X_add_number;
5135 if (regno <= REG_GR || regno > REG_GR + 127)
5136 as_warn (_("Register value annotation ignored"));
5137 else
5139 gr_values[regno - REG_GR].known = 1;
5140 gr_values[regno - REG_GR].value = value;
5141 gr_values[regno - REG_GR].path = md.path;
5144 demand_empty_rest_of_line ();
5148 .serialize.data
5149 .serialize.instruction
5151 static void
5152 dot_serialize (type)
5153 int type;
5155 insn_group_break (0, 0, 0);
5156 if (type)
5157 instruction_serialization ();
5158 else
5159 data_serialization ();
5160 insn_group_break (0, 0, 0);
5161 demand_empty_rest_of_line ();
5164 /* select dv checking mode
5165 .auto
5166 .explicit
5167 .default
5169 A stop is inserted when changing modes
5172 static void
5173 dot_dv_mode (type)
5174 int type;
5176 if (md.manual_bundling)
5177 as_warn (_("Directive invalid within a bundle"));
5179 if (type == 'E' || type == 'A')
5180 md.mode_explicitly_set = 0;
5181 else
5182 md.mode_explicitly_set = 1;
5184 md.detect_dv = 1;
5185 switch (type)
5187 case 'A':
5188 case 'a':
5189 if (md.explicit_mode)
5190 insn_group_break (1, 0, 0);
5191 md.explicit_mode = 0;
5192 break;
5193 case 'E':
5194 case 'e':
5195 if (!md.explicit_mode)
5196 insn_group_break (1, 0, 0);
5197 md.explicit_mode = 1;
5198 break;
5199 default:
5200 case 'd':
5201 if (md.explicit_mode != md.default_explicit_mode)
5202 insn_group_break (1, 0, 0);
5203 md.explicit_mode = md.default_explicit_mode;
5204 md.mode_explicitly_set = 0;
5205 break;
5209 static void
5210 print_prmask (mask)
5211 valueT mask;
5213 int regno;
5214 char *comma = "";
5215 for (regno = 0; regno < 64; regno++)
5217 if (mask & ((valueT) 1 << regno))
5219 fprintf (stderr, "%s p%d", comma, regno);
5220 comma = ",";
5226 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5227 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5228 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5229 .pred.safe_across_calls p1 [, p2 [,...]]
5232 static void
5233 dot_pred_rel (type)
5234 int type;
5236 valueT mask = 0;
5237 int count = 0;
5238 int p1 = -1, p2 = -1;
5240 if (type == 0)
5242 if (*input_line_pointer == '"')
5244 int len;
5245 char *form = demand_copy_C_string (&len);
5247 if (strcmp (form, "mutex") == 0)
5248 type = 'm';
5249 else if (strcmp (form, "clear") == 0)
5250 type = 'c';
5251 else if (strcmp (form, "imply") == 0)
5252 type = 'i';
5253 obstack_free (&notes, form);
5255 else if (*input_line_pointer == '@')
5257 char *form = ++input_line_pointer;
5258 char c = get_symbol_end();
5260 if (strcmp (form, "mutex") == 0)
5261 type = 'm';
5262 else if (strcmp (form, "clear") == 0)
5263 type = 'c';
5264 else if (strcmp (form, "imply") == 0)
5265 type = 'i';
5266 *input_line_pointer = c;
5268 else
5270 as_bad (_("Missing predicate relation type"));
5271 ignore_rest_of_line ();
5272 return;
5274 if (type == 0)
5276 as_bad (_("Unrecognized predicate relation type"));
5277 ignore_rest_of_line ();
5278 return;
5280 if (*input_line_pointer == ',')
5281 ++input_line_pointer;
5282 SKIP_WHITESPACE ();
5285 SKIP_WHITESPACE ();
5286 while (1)
5288 valueT bits = 1;
5289 int regno;
5290 expressionS pr, *pr1, *pr2;
5292 expression_and_evaluate (&pr);
5293 if (pr.X_op == O_register
5294 && pr.X_add_number >= REG_P
5295 && pr.X_add_number <= REG_P + 63)
5297 regno = pr.X_add_number - REG_P;
5298 bits <<= regno;
5299 count++;
5300 if (p1 == -1)
5301 p1 = regno;
5302 else if (p2 == -1)
5303 p2 = regno;
5305 else if (type != 'i'
5306 && pr.X_op == O_subtract
5307 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5308 && pr1->X_op == O_register
5309 && pr1->X_add_number >= REG_P
5310 && pr1->X_add_number <= REG_P + 63
5311 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5312 && pr2->X_op == O_register
5313 && pr2->X_add_number >= REG_P
5314 && pr2->X_add_number <= REG_P + 63)
5316 /* It's a range. */
5317 int stop;
5319 regno = pr1->X_add_number - REG_P;
5320 stop = pr2->X_add_number - REG_P;
5321 if (regno >= stop)
5323 as_bad (_("Bad register range"));
5324 ignore_rest_of_line ();
5325 return;
5327 bits = ((bits << stop) << 1) - (bits << regno);
5328 count += stop - regno + 1;
5330 else
5332 as_bad (_("Predicate register expected"));
5333 ignore_rest_of_line ();
5334 return;
5336 if (mask & bits)
5337 as_warn (_("Duplicate predicate register ignored"));
5338 mask |= bits;
5339 if (*input_line_pointer != ',')
5340 break;
5341 ++input_line_pointer;
5342 SKIP_WHITESPACE ();
5345 switch (type)
5347 case 'c':
5348 if (count == 0)
5349 mask = ~(valueT) 0;
5350 clear_qp_mutex (mask);
5351 clear_qp_implies (mask, (valueT) 0);
5352 break;
5353 case 'i':
5354 if (count != 2 || p1 == -1 || p2 == -1)
5355 as_bad (_("Predicate source and target required"));
5356 else if (p1 == 0 || p2 == 0)
5357 as_bad (_("Use of p0 is not valid in this context"));
5358 else
5359 add_qp_imply (p1, p2);
5360 break;
5361 case 'm':
5362 if (count < 2)
5364 as_bad (_("At least two PR arguments expected"));
5365 break;
5367 else if (mask & 1)
5369 as_bad (_("Use of p0 is not valid in this context"));
5370 break;
5372 add_qp_mutex (mask);
5373 break;
5374 case 's':
5375 /* note that we don't override any existing relations */
5376 if (count == 0)
5378 as_bad (_("At least one PR argument expected"));
5379 break;
5381 if (md.debug_dv)
5383 fprintf (stderr, "Safe across calls: ");
5384 print_prmask (mask);
5385 fprintf (stderr, "\n");
5387 qp_safe_across_calls = mask;
5388 break;
5390 demand_empty_rest_of_line ();
5393 /* .entry label [, label [, ...]]
5394 Hint to DV code that the given labels are to be considered entry points.
5395 Otherwise, only global labels are considered entry points. */
5397 static void
5398 dot_entry (dummy)
5399 int dummy ATTRIBUTE_UNUSED;
5401 const char *err;
5402 char *name;
5403 int c;
5404 symbolS *symbolP;
5408 name = input_line_pointer;
5409 c = get_symbol_end ();
5410 symbolP = symbol_find_or_make (name);
5412 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5413 if (err)
5414 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5415 name, err);
5417 *input_line_pointer = c;
5418 SKIP_WHITESPACE ();
5419 c = *input_line_pointer;
5420 if (c == ',')
5422 input_line_pointer++;
5423 SKIP_WHITESPACE ();
5424 if (*input_line_pointer == '\n')
5425 c = '\n';
5428 while (c == ',');
5430 demand_empty_rest_of_line ();
5433 /* .mem.offset offset, base
5434 "base" is used to distinguish between offsets from a different base. */
5436 static void
5437 dot_mem_offset (dummy)
5438 int dummy ATTRIBUTE_UNUSED;
5440 md.mem_offset.hint = 1;
5441 md.mem_offset.offset = get_absolute_expression ();
5442 if (*input_line_pointer != ',')
5444 as_bad (_("Comma expected"));
5445 ignore_rest_of_line ();
5446 return;
5448 ++input_line_pointer;
5449 md.mem_offset.base = get_absolute_expression ();
5450 demand_empty_rest_of_line ();
5453 /* ia64-specific pseudo-ops: */
5454 const pseudo_typeS md_pseudo_table[] =
5456 { "radix", dot_radix, 0 },
5457 { "lcomm", s_lcomm_bytes, 1 },
5458 { "loc", dot_loc, 0 },
5459 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5460 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5461 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5462 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5463 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5464 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5465 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5466 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5467 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5468 { "proc", dot_proc, 0 },
5469 { "body", dot_body, 0 },
5470 { "prologue", dot_prologue, 0 },
5471 { "endp", dot_endp, 0 },
5473 { "fframe", dot_fframe, 0 },
5474 { "vframe", dot_vframe, 0 },
5475 { "vframesp", dot_vframesp, 0 },
5476 { "vframepsp", dot_vframesp, 1 },
5477 { "save", dot_save, 0 },
5478 { "restore", dot_restore, 0 },
5479 { "restorereg", dot_restorereg, 0 },
5480 { "restorereg.p", dot_restorereg, 1 },
5481 { "handlerdata", dot_handlerdata, 0 },
5482 { "unwentry", dot_unwentry, 0 },
5483 { "altrp", dot_altrp, 0 },
5484 { "savesp", dot_savemem, 0 },
5485 { "savepsp", dot_savemem, 1 },
5486 { "save.g", dot_saveg, 0 },
5487 { "save.f", dot_savef, 0 },
5488 { "save.b", dot_saveb, 0 },
5489 { "save.gf", dot_savegf, 0 },
5490 { "spill", dot_spill, 0 },
5491 { "spillreg", dot_spillreg, 0 },
5492 { "spillsp", dot_spillmem, 0 },
5493 { "spillpsp", dot_spillmem, 1 },
5494 { "spillreg.p", dot_spillreg, 1 },
5495 { "spillsp.p", dot_spillmem, ~0 },
5496 { "spillpsp.p", dot_spillmem, ~1 },
5497 { "label_state", dot_label_state, 0 },
5498 { "copy_state", dot_copy_state, 0 },
5499 { "unwabi", dot_unwabi, 0 },
5500 { "personality", dot_personality, 0 },
5501 { "mii", dot_template, 0x0 },
5502 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5503 { "mlx", dot_template, 0x2 },
5504 { "mmi", dot_template, 0x4 },
5505 { "mfi", dot_template, 0x6 },
5506 { "mmf", dot_template, 0x7 },
5507 { "mib", dot_template, 0x8 },
5508 { "mbb", dot_template, 0x9 },
5509 { "bbb", dot_template, 0xb },
5510 { "mmb", dot_template, 0xc },
5511 { "mfb", dot_template, 0xe },
5512 { "align", dot_align, 0 },
5513 { "regstk", dot_regstk, 0 },
5514 { "rotr", dot_rot, DYNREG_GR },
5515 { "rotf", dot_rot, DYNREG_FR },
5516 { "rotp", dot_rot, DYNREG_PR },
5517 { "lsb", dot_byteorder, 0 },
5518 { "msb", dot_byteorder, 1 },
5519 { "psr", dot_psr, 0 },
5520 { "alias", dot_alias, 0 },
5521 { "secalias", dot_alias, 1 },
5522 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5524 { "xdata1", dot_xdata, 1 },
5525 { "xdata2", dot_xdata, 2 },
5526 { "xdata4", dot_xdata, 4 },
5527 { "xdata8", dot_xdata, 8 },
5528 { "xdata16", dot_xdata, 16 },
5529 { "xreal4", dot_xfloat_cons, 'f' },
5530 { "xreal8", dot_xfloat_cons, 'd' },
5531 { "xreal10", dot_xfloat_cons, 'x' },
5532 { "xreal16", dot_xfloat_cons, 'X' },
5533 { "xstring", dot_xstringer, 0 },
5534 { "xstringz", dot_xstringer, 1 },
5536 /* unaligned versions: */
5537 { "xdata2.ua", dot_xdata_ua, 2 },
5538 { "xdata4.ua", dot_xdata_ua, 4 },
5539 { "xdata8.ua", dot_xdata_ua, 8 },
5540 { "xdata16.ua", dot_xdata_ua, 16 },
5541 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5542 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5543 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5544 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5546 /* annotations/DV checking support */
5547 { "entry", dot_entry, 0 },
5548 { "mem.offset", dot_mem_offset, 0 },
5549 { "pred.rel", dot_pred_rel, 0 },
5550 { "pred.rel.clear", dot_pred_rel, 'c' },
5551 { "pred.rel.imply", dot_pred_rel, 'i' },
5552 { "pred.rel.mutex", dot_pred_rel, 'm' },
5553 { "pred.safe_across_calls", dot_pred_rel, 's' },
5554 { "reg.val", dot_reg_val, 0 },
5555 { "serialize.data", dot_serialize, 0 },
5556 { "serialize.instruction", dot_serialize, 1 },
5557 { "auto", dot_dv_mode, 'a' },
5558 { "explicit", dot_dv_mode, 'e' },
5559 { "default", dot_dv_mode, 'd' },
5561 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5562 IA-64 aligns data allocation pseudo-ops by default, so we have to
5563 tell it that these ones are supposed to be unaligned. Long term,
5564 should rewrite so that only IA-64 specific data allocation pseudo-ops
5565 are aligned by default. */
5566 {"2byte", stmt_cons_ua, 2},
5567 {"4byte", stmt_cons_ua, 4},
5568 {"8byte", stmt_cons_ua, 8},
5570 { NULL, 0, 0 }
5573 static const struct pseudo_opcode
5575 const char *name;
5576 void (*handler) (int);
5577 int arg;
5579 pseudo_opcode[] =
5581 /* these are more like pseudo-ops, but don't start with a dot */
5582 { "data1", cons, 1 },
5583 { "data2", cons, 2 },
5584 { "data4", cons, 4 },
5585 { "data8", cons, 8 },
5586 { "data16", cons, 16 },
5587 { "real4", stmt_float_cons, 'f' },
5588 { "real8", stmt_float_cons, 'd' },
5589 { "real10", stmt_float_cons, 'x' },
5590 { "real16", stmt_float_cons, 'X' },
5591 { "string", stringer, 0 },
5592 { "stringz", stringer, 1 },
5594 /* unaligned versions: */
5595 { "data2.ua", stmt_cons_ua, 2 },
5596 { "data4.ua", stmt_cons_ua, 4 },
5597 { "data8.ua", stmt_cons_ua, 8 },
5598 { "data16.ua", stmt_cons_ua, 16 },
5599 { "real4.ua", float_cons, 'f' },
5600 { "real8.ua", float_cons, 'd' },
5601 { "real10.ua", float_cons, 'x' },
5602 { "real16.ua", float_cons, 'X' },
5605 /* Declare a register by creating a symbol for it and entering it in
5606 the symbol table. */
5608 static symbolS *
5609 declare_register (name, regnum)
5610 const char *name;
5611 unsigned int regnum;
5613 const char *err;
5614 symbolS *sym;
5616 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5618 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5619 if (err)
5620 as_fatal ("Inserting \"%s\" into register table failed: %s",
5621 name, err);
5623 return sym;
5626 static void
5627 declare_register_set (prefix, num_regs, base_regnum)
5628 const char *prefix;
5629 unsigned int num_regs;
5630 unsigned int base_regnum;
5632 char name[8];
5633 unsigned int i;
5635 for (i = 0; i < num_regs; ++i)
5637 sprintf (name, "%s%u", prefix, i);
5638 declare_register (name, base_regnum + i);
5642 static unsigned int
5643 operand_width (opnd)
5644 enum ia64_opnd opnd;
5646 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5647 unsigned int bits = 0;
5648 int i;
5650 bits = 0;
5651 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5652 bits += odesc->field[i].bits;
5654 return bits;
5657 static enum operand_match_result
5658 operand_match (idesc, index, e)
5659 const struct ia64_opcode *idesc;
5660 int index;
5661 expressionS *e;
5663 enum ia64_opnd opnd = idesc->operands[index];
5664 int bits, relocatable = 0;
5665 struct insn_fix *fix;
5666 bfd_signed_vma val;
5668 switch (opnd)
5670 /* constants: */
5672 case IA64_OPND_AR_CCV:
5673 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5674 return OPERAND_MATCH;
5675 break;
5677 case IA64_OPND_AR_CSD:
5678 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5679 return OPERAND_MATCH;
5680 break;
5682 case IA64_OPND_AR_PFS:
5683 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5684 return OPERAND_MATCH;
5685 break;
5687 case IA64_OPND_GR0:
5688 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5689 return OPERAND_MATCH;
5690 break;
5692 case IA64_OPND_IP:
5693 if (e->X_op == O_register && e->X_add_number == REG_IP)
5694 return OPERAND_MATCH;
5695 break;
5697 case IA64_OPND_PR:
5698 if (e->X_op == O_register && e->X_add_number == REG_PR)
5699 return OPERAND_MATCH;
5700 break;
5702 case IA64_OPND_PR_ROT:
5703 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5704 return OPERAND_MATCH;
5705 break;
5707 case IA64_OPND_PSR:
5708 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5709 return OPERAND_MATCH;
5710 break;
5712 case IA64_OPND_PSR_L:
5713 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5714 return OPERAND_MATCH;
5715 break;
5717 case IA64_OPND_PSR_UM:
5718 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5719 return OPERAND_MATCH;
5720 break;
5722 case IA64_OPND_C1:
5723 if (e->X_op == O_constant)
5725 if (e->X_add_number == 1)
5726 return OPERAND_MATCH;
5727 else
5728 return OPERAND_OUT_OF_RANGE;
5730 break;
5732 case IA64_OPND_C8:
5733 if (e->X_op == O_constant)
5735 if (e->X_add_number == 8)
5736 return OPERAND_MATCH;
5737 else
5738 return OPERAND_OUT_OF_RANGE;
5740 break;
5742 case IA64_OPND_C16:
5743 if (e->X_op == O_constant)
5745 if (e->X_add_number == 16)
5746 return OPERAND_MATCH;
5747 else
5748 return OPERAND_OUT_OF_RANGE;
5750 break;
5752 /* register operands: */
5754 case IA64_OPND_AR3:
5755 if (e->X_op == O_register && e->X_add_number >= REG_AR
5756 && e->X_add_number < REG_AR + 128)
5757 return OPERAND_MATCH;
5758 break;
5760 case IA64_OPND_B1:
5761 case IA64_OPND_B2:
5762 if (e->X_op == O_register && e->X_add_number >= REG_BR
5763 && e->X_add_number < REG_BR + 8)
5764 return OPERAND_MATCH;
5765 break;
5767 case IA64_OPND_CR3:
5768 if (e->X_op == O_register && e->X_add_number >= REG_CR
5769 && e->X_add_number < REG_CR + 128)
5770 return OPERAND_MATCH;
5771 break;
5773 case IA64_OPND_F1:
5774 case IA64_OPND_F2:
5775 case IA64_OPND_F3:
5776 case IA64_OPND_F4:
5777 if (e->X_op == O_register && e->X_add_number >= REG_FR
5778 && e->X_add_number < REG_FR + 128)
5779 return OPERAND_MATCH;
5780 break;
5782 case IA64_OPND_P1:
5783 case IA64_OPND_P2:
5784 if (e->X_op == O_register && e->X_add_number >= REG_P
5785 && e->X_add_number < REG_P + 64)
5786 return OPERAND_MATCH;
5787 break;
5789 case IA64_OPND_R1:
5790 case IA64_OPND_R2:
5791 case IA64_OPND_R3:
5792 if (e->X_op == O_register && e->X_add_number >= REG_GR
5793 && e->X_add_number < REG_GR + 128)
5794 return OPERAND_MATCH;
5795 break;
5797 case IA64_OPND_R3_2:
5798 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5800 if (e->X_add_number < REG_GR + 4)
5801 return OPERAND_MATCH;
5802 else if (e->X_add_number < REG_GR + 128)
5803 return OPERAND_OUT_OF_RANGE;
5805 break;
5807 /* indirect operands: */
5808 case IA64_OPND_CPUID_R3:
5809 case IA64_OPND_DBR_R3:
5810 case IA64_OPND_DTR_R3:
5811 case IA64_OPND_ITR_R3:
5812 case IA64_OPND_IBR_R3:
5813 case IA64_OPND_MSR_R3:
5814 case IA64_OPND_PKR_R3:
5815 case IA64_OPND_PMC_R3:
5816 case IA64_OPND_PMD_R3:
5817 case IA64_OPND_RR_R3:
5818 if (e->X_op == O_index && e->X_op_symbol
5819 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5820 == opnd - IA64_OPND_CPUID_R3))
5821 return OPERAND_MATCH;
5822 break;
5824 case IA64_OPND_MR3:
5825 if (e->X_op == O_index && !e->X_op_symbol)
5826 return OPERAND_MATCH;
5827 break;
5829 /* immediate operands: */
5830 case IA64_OPND_CNT2a:
5831 case IA64_OPND_LEN4:
5832 case IA64_OPND_LEN6:
5833 bits = operand_width (idesc->operands[index]);
5834 if (e->X_op == O_constant)
5836 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5837 return OPERAND_MATCH;
5838 else
5839 return OPERAND_OUT_OF_RANGE;
5841 break;
5843 case IA64_OPND_CNT2b:
5844 if (e->X_op == O_constant)
5846 if ((bfd_vma) (e->X_add_number - 1) < 3)
5847 return OPERAND_MATCH;
5848 else
5849 return OPERAND_OUT_OF_RANGE;
5851 break;
5853 case IA64_OPND_CNT2c:
5854 val = e->X_add_number;
5855 if (e->X_op == O_constant)
5857 if ((val == 0 || val == 7 || val == 15 || val == 16))
5858 return OPERAND_MATCH;
5859 else
5860 return OPERAND_OUT_OF_RANGE;
5862 break;
5864 case IA64_OPND_SOR:
5865 /* SOR must be an integer multiple of 8 */
5866 if (e->X_op == O_constant && e->X_add_number & 0x7)
5867 return OPERAND_OUT_OF_RANGE;
5868 case IA64_OPND_SOF:
5869 case IA64_OPND_SOL:
5870 if (e->X_op == O_constant)
5872 if ((bfd_vma) e->X_add_number <= 96)
5873 return OPERAND_MATCH;
5874 else
5875 return OPERAND_OUT_OF_RANGE;
5877 break;
5879 case IA64_OPND_IMMU62:
5880 if (e->X_op == O_constant)
5882 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5883 return OPERAND_MATCH;
5884 else
5885 return OPERAND_OUT_OF_RANGE;
5887 else
5889 /* FIXME -- need 62-bit relocation type */
5890 as_bad (_("62-bit relocation not yet implemented"));
5892 break;
5894 case IA64_OPND_IMMU64:
5895 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5896 || e->X_op == O_subtract)
5898 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5899 fix->code = BFD_RELOC_IA64_IMM64;
5900 if (e->X_op != O_subtract)
5902 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5903 if (e->X_op == O_pseudo_fixup)
5904 e->X_op = O_symbol;
5907 fix->opnd = idesc->operands[index];
5908 fix->expr = *e;
5909 fix->is_pcrel = 0;
5910 ++CURR_SLOT.num_fixups;
5911 return OPERAND_MATCH;
5913 else if (e->X_op == O_constant)
5914 return OPERAND_MATCH;
5915 break;
5917 case IA64_OPND_CCNT5:
5918 case IA64_OPND_CNT5:
5919 case IA64_OPND_CNT6:
5920 case IA64_OPND_CPOS6a:
5921 case IA64_OPND_CPOS6b:
5922 case IA64_OPND_CPOS6c:
5923 case IA64_OPND_IMMU2:
5924 case IA64_OPND_IMMU7a:
5925 case IA64_OPND_IMMU7b:
5926 case IA64_OPND_IMMU21:
5927 case IA64_OPND_IMMU24:
5928 case IA64_OPND_MBTYPE4:
5929 case IA64_OPND_MHTYPE8:
5930 case IA64_OPND_POS6:
5931 bits = operand_width (idesc->operands[index]);
5932 if (e->X_op == O_constant)
5934 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5935 return OPERAND_MATCH;
5936 else
5937 return OPERAND_OUT_OF_RANGE;
5939 break;
5941 case IA64_OPND_IMMU9:
5942 bits = operand_width (idesc->operands[index]);
5943 if (e->X_op == O_constant)
5945 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5947 int lobits = e->X_add_number & 0x3;
5948 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5949 e->X_add_number |= (bfd_vma) 0x3;
5950 return OPERAND_MATCH;
5952 else
5953 return OPERAND_OUT_OF_RANGE;
5955 break;
5957 case IA64_OPND_IMM44:
5958 /* least 16 bits must be zero */
5959 if ((e->X_add_number & 0xffff) != 0)
5960 /* XXX technically, this is wrong: we should not be issuing warning
5961 messages until we're sure this instruction pattern is going to
5962 be used! */
5963 as_warn (_("lower 16 bits of mask ignored"));
5965 if (e->X_op == O_constant)
5967 if (((e->X_add_number >= 0
5968 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5969 || (e->X_add_number < 0
5970 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5972 /* sign-extend */
5973 if (e->X_add_number >= 0
5974 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5976 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5978 return OPERAND_MATCH;
5980 else
5981 return OPERAND_OUT_OF_RANGE;
5983 break;
5985 case IA64_OPND_IMM17:
5986 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5987 if (e->X_op == O_constant)
5989 if (((e->X_add_number >= 0
5990 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5991 || (e->X_add_number < 0
5992 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5994 /* sign-extend */
5995 if (e->X_add_number >= 0
5996 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5998 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
6000 return OPERAND_MATCH;
6002 else
6003 return OPERAND_OUT_OF_RANGE;
6005 break;
6007 case IA64_OPND_IMM14:
6008 case IA64_OPND_IMM22:
6009 relocatable = 1;
6010 case IA64_OPND_IMM1:
6011 case IA64_OPND_IMM8:
6012 case IA64_OPND_IMM8U4:
6013 case IA64_OPND_IMM8M1:
6014 case IA64_OPND_IMM8M1U4:
6015 case IA64_OPND_IMM8M1U8:
6016 case IA64_OPND_IMM9a:
6017 case IA64_OPND_IMM9b:
6018 bits = operand_width (idesc->operands[index]);
6019 if (relocatable && (e->X_op == O_symbol
6020 || e->X_op == O_subtract
6021 || e->X_op == O_pseudo_fixup))
6023 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6025 if (idesc->operands[index] == IA64_OPND_IMM14)
6026 fix->code = BFD_RELOC_IA64_IMM14;
6027 else
6028 fix->code = BFD_RELOC_IA64_IMM22;
6030 if (e->X_op != O_subtract)
6032 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6033 if (e->X_op == O_pseudo_fixup)
6034 e->X_op = O_symbol;
6037 fix->opnd = idesc->operands[index];
6038 fix->expr = *e;
6039 fix->is_pcrel = 0;
6040 ++CURR_SLOT.num_fixups;
6041 return OPERAND_MATCH;
6043 else if (e->X_op != O_constant
6044 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6045 return OPERAND_MISMATCH;
6047 if (opnd == IA64_OPND_IMM8M1U4)
6049 /* Zero is not valid for unsigned compares that take an adjusted
6050 constant immediate range. */
6051 if (e->X_add_number == 0)
6052 return OPERAND_OUT_OF_RANGE;
6054 /* Sign-extend 32-bit unsigned numbers, so that the following range
6055 checks will work. */
6056 val = e->X_add_number;
6057 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6058 && ((val & ((bfd_vma) 1 << 31)) != 0))
6059 val = ((val << 32) >> 32);
6061 /* Check for 0x100000000. This is valid because
6062 0x100000000-1 is the same as ((uint32_t) -1). */
6063 if (val == ((bfd_signed_vma) 1 << 32))
6064 return OPERAND_MATCH;
6066 val = val - 1;
6068 else if (opnd == IA64_OPND_IMM8M1U8)
6070 /* Zero is not valid for unsigned compares that take an adjusted
6071 constant immediate range. */
6072 if (e->X_add_number == 0)
6073 return OPERAND_OUT_OF_RANGE;
6075 /* Check for 0x10000000000000000. */
6076 if (e->X_op == O_big)
6078 if (generic_bignum[0] == 0
6079 && generic_bignum[1] == 0
6080 && generic_bignum[2] == 0
6081 && generic_bignum[3] == 0
6082 && generic_bignum[4] == 1)
6083 return OPERAND_MATCH;
6084 else
6085 return OPERAND_OUT_OF_RANGE;
6087 else
6088 val = e->X_add_number - 1;
6090 else if (opnd == IA64_OPND_IMM8M1)
6091 val = e->X_add_number - 1;
6092 else if (opnd == IA64_OPND_IMM8U4)
6094 /* Sign-extend 32-bit unsigned numbers, so that the following range
6095 checks will work. */
6096 val = e->X_add_number;
6097 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6098 && ((val & ((bfd_vma) 1 << 31)) != 0))
6099 val = ((val << 32) >> 32);
6101 else
6102 val = e->X_add_number;
6104 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6105 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6106 return OPERAND_MATCH;
6107 else
6108 return OPERAND_OUT_OF_RANGE;
6110 case IA64_OPND_INC3:
6111 /* +/- 1, 4, 8, 16 */
6112 val = e->X_add_number;
6113 if (val < 0)
6114 val = -val;
6115 if (e->X_op == O_constant)
6117 if ((val == 1 || val == 4 || val == 8 || val == 16))
6118 return OPERAND_MATCH;
6119 else
6120 return OPERAND_OUT_OF_RANGE;
6122 break;
6124 case IA64_OPND_TGT25:
6125 case IA64_OPND_TGT25b:
6126 case IA64_OPND_TGT25c:
6127 case IA64_OPND_TGT64:
6128 if (e->X_op == O_symbol)
6130 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6131 if (opnd == IA64_OPND_TGT25)
6132 fix->code = BFD_RELOC_IA64_PCREL21F;
6133 else if (opnd == IA64_OPND_TGT25b)
6134 fix->code = BFD_RELOC_IA64_PCREL21M;
6135 else if (opnd == IA64_OPND_TGT25c)
6136 fix->code = BFD_RELOC_IA64_PCREL21B;
6137 else if (opnd == IA64_OPND_TGT64)
6138 fix->code = BFD_RELOC_IA64_PCREL60B;
6139 else
6140 abort ();
6142 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6143 fix->opnd = idesc->operands[index];
6144 fix->expr = *e;
6145 fix->is_pcrel = 1;
6146 ++CURR_SLOT.num_fixups;
6147 return OPERAND_MATCH;
6149 case IA64_OPND_TAG13:
6150 case IA64_OPND_TAG13b:
6151 switch (e->X_op)
6153 case O_constant:
6154 return OPERAND_MATCH;
6156 case O_symbol:
6157 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6158 /* There are no external relocs for TAG13/TAG13b fields, so we
6159 create a dummy reloc. This will not live past md_apply_fix. */
6160 fix->code = BFD_RELOC_UNUSED;
6161 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6162 fix->opnd = idesc->operands[index];
6163 fix->expr = *e;
6164 fix->is_pcrel = 1;
6165 ++CURR_SLOT.num_fixups;
6166 return OPERAND_MATCH;
6168 default:
6169 break;
6171 break;
6173 case IA64_OPND_LDXMOV:
6174 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6175 fix->code = BFD_RELOC_IA64_LDXMOV;
6176 fix->opnd = idesc->operands[index];
6177 fix->expr = *e;
6178 fix->is_pcrel = 0;
6179 ++CURR_SLOT.num_fixups;
6180 return OPERAND_MATCH;
6182 default:
6183 break;
6185 return OPERAND_MISMATCH;
6188 static int
6189 parse_operand (e, more)
6190 expressionS *e;
6191 int more;
6193 int sep = '\0';
6195 memset (e, 0, sizeof (*e));
6196 e->X_op = O_absent;
6197 SKIP_WHITESPACE ();
6198 expression_and_evaluate (e);
6199 sep = *input_line_pointer;
6200 if (more && (sep == ',' || sep == more))
6201 ++input_line_pointer;
6202 return sep;
6205 /* Returns the next entry in the opcode table that matches the one in
6206 IDESC, and frees the entry in IDESC. If no matching entry is
6207 found, NULL is returned instead. */
6209 static struct ia64_opcode *
6210 get_next_opcode (struct ia64_opcode *idesc)
6212 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6213 ia64_free_opcode (idesc);
6214 return next;
6217 /* Parse the operands for the opcode and find the opcode variant that
6218 matches the specified operands, or NULL if no match is possible. */
6220 static struct ia64_opcode *
6221 parse_operands (idesc)
6222 struct ia64_opcode *idesc;
6224 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6225 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6226 int reg1, reg2;
6227 char reg_class;
6228 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6229 enum operand_match_result result;
6230 char mnemonic[129];
6231 char *first_arg = 0, *end, *saved_input_pointer;
6232 unsigned int sof;
6234 assert (strlen (idesc->name) <= 128);
6236 strcpy (mnemonic, idesc->name);
6237 if (idesc->operands[2] == IA64_OPND_SOF
6238 || idesc->operands[1] == IA64_OPND_SOF)
6240 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6241 can't parse the first operand until we have parsed the
6242 remaining operands of the "alloc" instruction. */
6243 SKIP_WHITESPACE ();
6244 first_arg = input_line_pointer;
6245 end = strchr (input_line_pointer, '=');
6246 if (!end)
6248 as_bad ("Expected separator `='");
6249 return 0;
6251 input_line_pointer = end + 1;
6252 ++i;
6253 ++num_outputs;
6256 for (; ; ++i)
6258 if (i < NELEMS (CURR_SLOT.opnd))
6260 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6261 if (CURR_SLOT.opnd[i].X_op == O_absent)
6262 break;
6264 else
6266 expressionS dummy;
6268 sep = parse_operand (&dummy, '=');
6269 if (dummy.X_op == O_absent)
6270 break;
6273 ++num_operands;
6275 if (sep != '=' && sep != ',')
6276 break;
6278 if (sep == '=')
6280 if (num_outputs > 0)
6281 as_bad ("Duplicate equal sign (=) in instruction");
6282 else
6283 num_outputs = i + 1;
6286 if (sep != '\0')
6288 as_bad ("Illegal operand separator `%c'", sep);
6289 return 0;
6292 if (idesc->operands[2] == IA64_OPND_SOF
6293 || idesc->operands[1] == IA64_OPND_SOF)
6295 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6296 Note, however, that due to that mapping operand numbers in error
6297 messages for any of the constant operands will not be correct. */
6298 know (strcmp (idesc->name, "alloc") == 0);
6299 /* The first operand hasn't been parsed/initialized, yet (but
6300 num_operands intentionally doesn't account for that). */
6301 i = num_operands > 4 ? 2 : 1;
6302 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6303 ? CURR_SLOT.opnd[n].X_add_number \
6304 : 0)
6305 sof = set_regstack (FORCE_CONST(i),
6306 FORCE_CONST(i + 1),
6307 FORCE_CONST(i + 2),
6308 FORCE_CONST(i + 3));
6309 #undef FORCE_CONST
6311 /* now we can parse the first arg: */
6312 saved_input_pointer = input_line_pointer;
6313 input_line_pointer = first_arg;
6314 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6315 if (sep != '=')
6316 --num_outputs; /* force error */
6317 input_line_pointer = saved_input_pointer;
6319 CURR_SLOT.opnd[i].X_add_number = sof;
6320 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6321 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6322 CURR_SLOT.opnd[i + 1].X_add_number
6323 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6324 else
6325 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6326 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6329 highest_unmatched_operand = -4;
6330 curr_out_of_range_pos = -1;
6331 error_pos = 0;
6332 for (; idesc; idesc = get_next_opcode (idesc))
6334 if (num_outputs != idesc->num_outputs)
6335 continue; /* mismatch in # of outputs */
6336 if (highest_unmatched_operand < 0)
6337 highest_unmatched_operand |= 1;
6338 if (num_operands > NELEMS (idesc->operands)
6339 || (num_operands < NELEMS (idesc->operands)
6340 && idesc->operands[num_operands])
6341 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6342 continue; /* mismatch in number of arguments */
6343 if (highest_unmatched_operand < 0)
6344 highest_unmatched_operand |= 2;
6346 CURR_SLOT.num_fixups = 0;
6348 /* Try to match all operands. If we see an out-of-range operand,
6349 then continue trying to match the rest of the operands, since if
6350 the rest match, then this idesc will give the best error message. */
6352 out_of_range_pos = -1;
6353 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6355 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6356 if (result != OPERAND_MATCH)
6358 if (result != OPERAND_OUT_OF_RANGE)
6359 break;
6360 if (out_of_range_pos < 0)
6361 /* remember position of the first out-of-range operand: */
6362 out_of_range_pos = i;
6366 /* If we did not match all operands, or if at least one operand was
6367 out-of-range, then this idesc does not match. Keep track of which
6368 idesc matched the most operands before failing. If we have two
6369 idescs that failed at the same position, and one had an out-of-range
6370 operand, then prefer the out-of-range operand. Thus if we have
6371 "add r0=0x1000000,r1" we get an error saying the constant is out
6372 of range instead of an error saying that the constant should have been
6373 a register. */
6375 if (i != num_operands || out_of_range_pos >= 0)
6377 if (i > highest_unmatched_operand
6378 || (i == highest_unmatched_operand
6379 && out_of_range_pos > curr_out_of_range_pos))
6381 highest_unmatched_operand = i;
6382 if (out_of_range_pos >= 0)
6384 expected_operand = idesc->operands[out_of_range_pos];
6385 error_pos = out_of_range_pos;
6387 else
6389 expected_operand = idesc->operands[i];
6390 error_pos = i;
6392 curr_out_of_range_pos = out_of_range_pos;
6394 continue;
6397 break;
6399 if (!idesc)
6401 if (expected_operand)
6402 as_bad ("Operand %u of `%s' should be %s",
6403 error_pos + 1, mnemonic,
6404 elf64_ia64_operands[expected_operand].desc);
6405 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6406 as_bad ("Wrong number of output operands");
6407 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6408 as_bad ("Wrong number of input operands");
6409 else
6410 as_bad ("Operand mismatch");
6411 return 0;
6414 /* Check that the instruction doesn't use
6415 - r0, f0, or f1 as output operands
6416 - the same predicate twice as output operands
6417 - r0 as address of a base update load or store
6418 - the same GR as output and address of a base update load
6419 - two even- or two odd-numbered FRs as output operands of a floating
6420 point parallel load.
6421 At most two (conflicting) output (or output-like) operands can exist,
6422 (floating point parallel loads have three outputs, but the base register,
6423 if updated, cannot conflict with the actual outputs). */
6424 reg2 = reg1 = -1;
6425 for (i = 0; i < num_operands; ++i)
6427 int regno = 0;
6429 reg_class = 0;
6430 switch (idesc->operands[i])
6432 case IA64_OPND_R1:
6433 case IA64_OPND_R2:
6434 case IA64_OPND_R3:
6435 if (i < num_outputs)
6437 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6438 reg_class = 'r';
6439 else if (reg1 < 0)
6440 reg1 = CURR_SLOT.opnd[i].X_add_number;
6441 else if (reg2 < 0)
6442 reg2 = CURR_SLOT.opnd[i].X_add_number;
6444 break;
6445 case IA64_OPND_P1:
6446 case IA64_OPND_P2:
6447 if (i < num_outputs)
6449 if (reg1 < 0)
6450 reg1 = CURR_SLOT.opnd[i].X_add_number;
6451 else if (reg2 < 0)
6452 reg2 = CURR_SLOT.opnd[i].X_add_number;
6454 break;
6455 case IA64_OPND_F1:
6456 case IA64_OPND_F2:
6457 case IA64_OPND_F3:
6458 case IA64_OPND_F4:
6459 if (i < num_outputs)
6461 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6462 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6464 reg_class = 'f';
6465 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6467 else if (reg1 < 0)
6468 reg1 = CURR_SLOT.opnd[i].X_add_number;
6469 else if (reg2 < 0)
6470 reg2 = CURR_SLOT.opnd[i].X_add_number;
6472 break;
6473 case IA64_OPND_MR3:
6474 if (idesc->flags & IA64_OPCODE_POSTINC)
6476 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6477 reg_class = 'm';
6478 else if (reg1 < 0)
6479 reg1 = CURR_SLOT.opnd[i].X_add_number;
6480 else if (reg2 < 0)
6481 reg2 = CURR_SLOT.opnd[i].X_add_number;
6483 break;
6484 default:
6485 break;
6487 switch (reg_class)
6489 case 0:
6490 break;
6491 default:
6492 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6493 break;
6494 case 'm':
6495 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6496 break;
6499 if (reg1 == reg2)
6501 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6503 reg1 -= REG_GR;
6504 reg_class = 'r';
6506 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6508 reg1 -= REG_P;
6509 reg_class = 'p';
6511 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6513 reg1 -= REG_FR;
6514 reg_class = 'f';
6516 else
6517 reg_class = 0;
6518 if (reg_class)
6519 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6521 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6522 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6523 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6524 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6525 && ! ((reg1 ^ reg2) & 1))
6526 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6527 reg1 - REG_FR, reg2 - REG_FR);
6528 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6529 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6530 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6531 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6532 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6533 reg1 - REG_FR, reg2 - REG_FR);
6534 return idesc;
6537 static void
6538 build_insn (slot, insnp)
6539 struct slot *slot;
6540 bfd_vma *insnp;
6542 const struct ia64_operand *odesc, *o2desc;
6543 struct ia64_opcode *idesc = slot->idesc;
6544 bfd_vma insn;
6545 bfd_signed_vma val;
6546 const char *err;
6547 int i;
6549 insn = idesc->opcode | slot->qp_regno;
6551 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6553 if (slot->opnd[i].X_op == O_register
6554 || slot->opnd[i].X_op == O_constant
6555 || slot->opnd[i].X_op == O_index)
6556 val = slot->opnd[i].X_add_number;
6557 else if (slot->opnd[i].X_op == O_big)
6559 /* This must be the value 0x10000000000000000. */
6560 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6561 val = 0;
6563 else
6564 val = 0;
6566 switch (idesc->operands[i])
6568 case IA64_OPND_IMMU64:
6569 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6570 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6571 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6572 | (((val >> 63) & 0x1) << 36));
6573 continue;
6575 case IA64_OPND_IMMU62:
6576 val &= 0x3fffffffffffffffULL;
6577 if (val != slot->opnd[i].X_add_number)
6578 as_warn (_("Value truncated to 62 bits"));
6579 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6580 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6581 continue;
6583 case IA64_OPND_TGT64:
6584 val >>= 4;
6585 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6586 insn |= ((((val >> 59) & 0x1) << 36)
6587 | (((val >> 0) & 0xfffff) << 13));
6588 continue;
6590 case IA64_OPND_AR3:
6591 val -= REG_AR;
6592 break;
6594 case IA64_OPND_B1:
6595 case IA64_OPND_B2:
6596 val -= REG_BR;
6597 break;
6599 case IA64_OPND_CR3:
6600 val -= REG_CR;
6601 break;
6603 case IA64_OPND_F1:
6604 case IA64_OPND_F2:
6605 case IA64_OPND_F3:
6606 case IA64_OPND_F4:
6607 val -= REG_FR;
6608 break;
6610 case IA64_OPND_P1:
6611 case IA64_OPND_P2:
6612 val -= REG_P;
6613 break;
6615 case IA64_OPND_R1:
6616 case IA64_OPND_R2:
6617 case IA64_OPND_R3:
6618 case IA64_OPND_R3_2:
6619 case IA64_OPND_CPUID_R3:
6620 case IA64_OPND_DBR_R3:
6621 case IA64_OPND_DTR_R3:
6622 case IA64_OPND_ITR_R3:
6623 case IA64_OPND_IBR_R3:
6624 case IA64_OPND_MR3:
6625 case IA64_OPND_MSR_R3:
6626 case IA64_OPND_PKR_R3:
6627 case IA64_OPND_PMC_R3:
6628 case IA64_OPND_PMD_R3:
6629 case IA64_OPND_RR_R3:
6630 val -= REG_GR;
6631 break;
6633 default:
6634 break;
6637 odesc = elf64_ia64_operands + idesc->operands[i];
6638 err = (*odesc->insert) (odesc, val, &insn);
6639 if (err)
6640 as_bad_where (slot->src_file, slot->src_line,
6641 "Bad operand value: %s", err);
6642 if (idesc->flags & IA64_OPCODE_PSEUDO)
6644 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6645 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6647 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6648 (*o2desc->insert) (o2desc, val, &insn);
6650 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6651 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6652 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6654 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6655 (*o2desc->insert) (o2desc, 64 - val, &insn);
6659 *insnp = insn;
6662 static void
6663 emit_one_bundle ()
6665 int manual_bundling_off = 0, manual_bundling = 0;
6666 enum ia64_unit required_unit, insn_unit = 0;
6667 enum ia64_insn_type type[3], insn_type;
6668 unsigned int template, orig_template;
6669 bfd_vma insn[3] = { -1, -1, -1 };
6670 struct ia64_opcode *idesc;
6671 int end_of_insn_group = 0, user_template = -1;
6672 int n, i, j, first, curr, last_slot;
6673 bfd_vma t0 = 0, t1 = 0;
6674 struct label_fix *lfix;
6675 bfd_boolean mark_label;
6676 struct insn_fix *ifix;
6677 char mnemonic[16];
6678 fixS *fix;
6679 char *f;
6680 int addr_mod;
6682 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6683 know (first >= 0 & first < NUM_SLOTS);
6684 n = MIN (3, md.num_slots_in_use);
6686 /* Determine template: user user_template if specified, best match
6687 otherwise: */
6689 if (md.slot[first].user_template >= 0)
6690 user_template = template = md.slot[first].user_template;
6691 else
6693 /* Auto select appropriate template. */
6694 memset (type, 0, sizeof (type));
6695 curr = first;
6696 for (i = 0; i < n; ++i)
6698 if (md.slot[curr].label_fixups && i != 0)
6699 break;
6700 type[i] = md.slot[curr].idesc->type;
6701 curr = (curr + 1) % NUM_SLOTS;
6703 template = best_template[type[0]][type[1]][type[2]];
6706 /* initialize instructions with appropriate nops: */
6707 for (i = 0; i < 3; ++i)
6708 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6710 f = frag_more (16);
6712 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6713 from the start of the frag. */
6714 addr_mod = frag_now_fix () & 15;
6715 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6716 as_bad (_("instruction address is not a multiple of 16"));
6717 frag_now->insn_addr = addr_mod;
6718 frag_now->has_code = 1;
6720 /* now fill in slots with as many insns as possible: */
6721 curr = first;
6722 idesc = md.slot[curr].idesc;
6723 end_of_insn_group = 0;
6724 last_slot = -1;
6725 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6727 /* If we have unwind records, we may need to update some now. */
6728 unw_rec_list *ptr = md.slot[curr].unwind_record;
6729 unw_rec_list *end_ptr = NULL;
6731 if (ptr)
6733 /* Find the last prologue/body record in the list for the current
6734 insn, and set the slot number for all records up to that point.
6735 This needs to be done now, because prologue/body records refer to
6736 the current point, not the point after the instruction has been
6737 issued. This matters because there may have been nops emitted
6738 meanwhile. Any non-prologue non-body record followed by a
6739 prologue/body record must also refer to the current point. */
6740 unw_rec_list *last_ptr;
6742 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6743 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6744 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6745 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6746 || ptr->r.type == body)
6747 last_ptr = ptr;
6748 if (last_ptr)
6750 /* Make last_ptr point one after the last prologue/body
6751 record. */
6752 last_ptr = last_ptr->next;
6753 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6754 ptr = ptr->next)
6756 ptr->slot_number = (unsigned long) f + i;
6757 ptr->slot_frag = frag_now;
6759 /* Remove the initialized records, so that we won't accidentally
6760 update them again if we insert a nop and continue. */
6761 md.slot[curr].unwind_record = last_ptr;
6765 manual_bundling_off = md.slot[curr].manual_bundling_off;
6766 if (md.slot[curr].manual_bundling_on)
6768 if (curr == first)
6769 manual_bundling = 1;
6770 else
6771 break; /* Need to start a new bundle. */
6774 /* If this instruction specifies a template, then it must be the first
6775 instruction of a bundle. */
6776 if (curr != first && md.slot[curr].user_template >= 0)
6777 break;
6779 if (idesc->flags & IA64_OPCODE_SLOT2)
6781 if (manual_bundling && !manual_bundling_off)
6783 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6784 "`%s' must be last in bundle", idesc->name);
6785 if (i < 2)
6786 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6788 i = 2;
6790 if (idesc->flags & IA64_OPCODE_LAST)
6792 int required_slot;
6793 unsigned int required_template;
6795 /* If we need a stop bit after an M slot, our only choice is
6796 template 5 (M;;MI). If we need a stop bit after a B
6797 slot, our only choice is to place it at the end of the
6798 bundle, because the only available templates are MIB,
6799 MBB, BBB, MMB, and MFB. We don't handle anything other
6800 than M and B slots because these are the only kind of
6801 instructions that can have the IA64_OPCODE_LAST bit set. */
6802 required_template = template;
6803 switch (idesc->type)
6805 case IA64_TYPE_M:
6806 required_slot = 0;
6807 required_template = 5;
6808 break;
6810 case IA64_TYPE_B:
6811 required_slot = 2;
6812 break;
6814 default:
6815 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6816 "Internal error: don't know how to force %s to end"
6817 "of instruction group", idesc->name);
6818 required_slot = i;
6819 break;
6821 if (manual_bundling
6822 && (i > required_slot
6823 || (required_slot == 2 && !manual_bundling_off)
6824 || (user_template >= 0
6825 /* Changing from MMI to M;MI is OK. */
6826 && (template ^ required_template) > 1)))
6828 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6829 "`%s' must be last in instruction group",
6830 idesc->name);
6831 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6832 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6834 if (required_slot < i)
6835 /* Can't fit this instruction. */
6836 break;
6838 i = required_slot;
6839 if (required_template != template)
6841 /* If we switch the template, we need to reset the NOPs
6842 after slot i. The slot-types of the instructions ahead
6843 of i never change, so we don't need to worry about
6844 changing NOPs in front of this slot. */
6845 for (j = i; j < 3; ++j)
6846 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6848 template = required_template;
6850 if (curr != first && md.slot[curr].label_fixups)
6852 if (manual_bundling)
6854 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6855 "Label must be first in a bundle");
6856 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6858 /* This insn must go into the first slot of a bundle. */
6859 break;
6862 if (end_of_insn_group && md.num_slots_in_use >= 1)
6864 /* We need an instruction group boundary in the middle of a
6865 bundle. See if we can switch to an other template with
6866 an appropriate boundary. */
6868 orig_template = template;
6869 if (i == 1 && (user_template == 4
6870 || (user_template < 0
6871 && (ia64_templ_desc[template].exec_unit[0]
6872 == IA64_UNIT_M))))
6874 template = 5;
6875 end_of_insn_group = 0;
6877 else if (i == 2 && (user_template == 0
6878 || (user_template < 0
6879 && (ia64_templ_desc[template].exec_unit[1]
6880 == IA64_UNIT_I)))
6881 /* This test makes sure we don't switch the template if
6882 the next instruction is one that needs to be first in
6883 an instruction group. Since all those instructions are
6884 in the M group, there is no way such an instruction can
6885 fit in this bundle even if we switch the template. The
6886 reason we have to check for this is that otherwise we
6887 may end up generating "MI;;I M.." which has the deadly
6888 effect that the second M instruction is no longer the
6889 first in the group! --davidm 99/12/16 */
6890 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6892 template = 1;
6893 end_of_insn_group = 0;
6895 else if (i == 1
6896 && user_template == 0
6897 && !(idesc->flags & IA64_OPCODE_FIRST))
6898 /* Use the next slot. */
6899 continue;
6900 else if (curr != first)
6901 /* can't fit this insn */
6902 break;
6904 if (template != orig_template)
6905 /* if we switch the template, we need to reset the NOPs
6906 after slot i. The slot-types of the instructions ahead
6907 of i never change, so we don't need to worry about
6908 changing NOPs in front of this slot. */
6909 for (j = i; j < 3; ++j)
6910 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6912 required_unit = ia64_templ_desc[template].exec_unit[i];
6914 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6915 if (idesc->type == IA64_TYPE_DYN)
6917 enum ia64_opnd opnd1, opnd2;
6919 if ((strcmp (idesc->name, "nop") == 0)
6920 || (strcmp (idesc->name, "break") == 0))
6921 insn_unit = required_unit;
6922 else if (strcmp (idesc->name, "hint") == 0)
6924 insn_unit = required_unit;
6925 if (required_unit == IA64_UNIT_B)
6927 switch (md.hint_b)
6929 case hint_b_ok:
6930 break;
6931 case hint_b_warning:
6932 as_warn ("hint in B unit may be treated as nop");
6933 break;
6934 case hint_b_error:
6935 /* When manual bundling is off and there is no
6936 user template, we choose a different unit so
6937 that hint won't go into the current slot. We
6938 will fill the current bundle with nops and
6939 try to put hint into the next bundle. */
6940 if (!manual_bundling && user_template < 0)
6941 insn_unit = IA64_UNIT_I;
6942 else
6943 as_bad ("hint in B unit can't be used");
6944 break;
6948 else if (strcmp (idesc->name, "chk.s") == 0
6949 || strcmp (idesc->name, "mov") == 0)
6951 insn_unit = IA64_UNIT_M;
6952 if (required_unit == IA64_UNIT_I
6953 || (required_unit == IA64_UNIT_F && template == 6))
6954 insn_unit = IA64_UNIT_I;
6956 else
6957 as_fatal ("emit_one_bundle: unexpected dynamic op");
6959 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6960 opnd1 = idesc->operands[0];
6961 opnd2 = idesc->operands[1];
6962 ia64_free_opcode (idesc);
6963 idesc = ia64_find_opcode (mnemonic);
6964 /* moves to/from ARs have collisions */
6965 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6967 while (idesc != NULL
6968 && (idesc->operands[0] != opnd1
6969 || idesc->operands[1] != opnd2))
6970 idesc = get_next_opcode (idesc);
6972 md.slot[curr].idesc = idesc;
6974 else
6976 insn_type = idesc->type;
6977 insn_unit = IA64_UNIT_NIL;
6978 switch (insn_type)
6980 case IA64_TYPE_A:
6981 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6982 insn_unit = required_unit;
6983 break;
6984 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6985 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6986 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6987 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6988 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6989 default: break;
6993 if (insn_unit != required_unit)
6994 continue; /* Try next slot. */
6996 /* Now is a good time to fix up the labels for this insn. */
6997 mark_label = FALSE;
6998 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
7000 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
7001 symbol_set_frag (lfix->sym, frag_now);
7002 mark_label |= lfix->dw2_mark_labels;
7004 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
7006 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
7007 symbol_set_frag (lfix->sym, frag_now);
7010 if (debug_type == DEBUG_DWARF2
7011 || md.slot[curr].loc_directive_seen
7012 || mark_label)
7014 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7016 md.slot[curr].loc_directive_seen = 0;
7017 if (mark_label)
7018 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7020 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7023 build_insn (md.slot + curr, insn + i);
7025 ptr = md.slot[curr].unwind_record;
7026 if (ptr)
7028 /* Set slot numbers for all remaining unwind records belonging to the
7029 current insn. There can not be any prologue/body unwind records
7030 here. */
7031 for (; ptr != end_ptr; ptr = ptr->next)
7033 ptr->slot_number = (unsigned long) f + i;
7034 ptr->slot_frag = frag_now;
7036 md.slot[curr].unwind_record = NULL;
7039 if (required_unit == IA64_UNIT_L)
7041 know (i == 1);
7042 /* skip one slot for long/X-unit instructions */
7043 ++i;
7045 --md.num_slots_in_use;
7046 last_slot = i;
7048 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7050 ifix = md.slot[curr].fixup + j;
7051 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7052 &ifix->expr, ifix->is_pcrel, ifix->code);
7053 fix->tc_fix_data.opnd = ifix->opnd;
7054 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
7055 fix->fx_file = md.slot[curr].src_file;
7056 fix->fx_line = md.slot[curr].src_line;
7059 end_of_insn_group = md.slot[curr].end_of_insn_group;
7061 /* clear slot: */
7062 ia64_free_opcode (md.slot[curr].idesc);
7063 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7064 md.slot[curr].user_template = -1;
7066 if (manual_bundling_off)
7068 manual_bundling = 0;
7069 break;
7071 curr = (curr + 1) % NUM_SLOTS;
7072 idesc = md.slot[curr].idesc;
7075 /* A user template was specified, but the first following instruction did
7076 not fit. This can happen with or without manual bundling. */
7077 if (md.num_slots_in_use > 0 && last_slot < 0)
7079 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7080 "`%s' does not fit into %s template",
7081 idesc->name, ia64_templ_desc[template].name);
7082 /* Drop first insn so we don't livelock. */
7083 --md.num_slots_in_use;
7084 know (curr == first);
7085 ia64_free_opcode (md.slot[curr].idesc);
7086 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7087 md.slot[curr].user_template = -1;
7089 else if (manual_bundling > 0)
7091 if (md.num_slots_in_use > 0)
7093 if (last_slot >= 2)
7094 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7095 "`%s' does not fit into bundle", idesc->name);
7096 else
7098 const char *where;
7100 if (template == 2)
7101 where = "X slot";
7102 else if (last_slot == 0)
7103 where = "slots 2 or 3";
7104 else
7105 where = "slot 3";
7106 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7107 "`%s' can't go in %s of %s template",
7108 idesc->name, where, ia64_templ_desc[template].name);
7111 else
7112 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7113 "Missing '}' at end of file");
7116 know (md.num_slots_in_use < NUM_SLOTS);
7118 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7119 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7121 number_to_chars_littleendian (f + 0, t0, 8);
7122 number_to_chars_littleendian (f + 8, t1, 8);
7126 md_parse_option (c, arg)
7127 int c;
7128 char *arg;
7131 switch (c)
7133 /* Switches from the Intel assembler. */
7134 case 'm':
7135 if (strcmp (arg, "ilp64") == 0
7136 || strcmp (arg, "lp64") == 0
7137 || strcmp (arg, "p64") == 0)
7139 md.flags |= EF_IA_64_ABI64;
7141 else if (strcmp (arg, "ilp32") == 0)
7143 md.flags &= ~EF_IA_64_ABI64;
7145 else if (strcmp (arg, "le") == 0)
7147 md.flags &= ~EF_IA_64_BE;
7148 default_big_endian = 0;
7150 else if (strcmp (arg, "be") == 0)
7152 md.flags |= EF_IA_64_BE;
7153 default_big_endian = 1;
7155 else if (strncmp (arg, "unwind-check=", 13) == 0)
7157 arg += 13;
7158 if (strcmp (arg, "warning") == 0)
7159 md.unwind_check = unwind_check_warning;
7160 else if (strcmp (arg, "error") == 0)
7161 md.unwind_check = unwind_check_error;
7162 else
7163 return 0;
7165 else if (strncmp (arg, "hint.b=", 7) == 0)
7167 arg += 7;
7168 if (strcmp (arg, "ok") == 0)
7169 md.hint_b = hint_b_ok;
7170 else if (strcmp (arg, "warning") == 0)
7171 md.hint_b = hint_b_warning;
7172 else if (strcmp (arg, "error") == 0)
7173 md.hint_b = hint_b_error;
7174 else
7175 return 0;
7177 else if (strncmp (arg, "tune=", 5) == 0)
7179 arg += 5;
7180 if (strcmp (arg, "itanium1") == 0)
7181 md.tune = itanium1;
7182 else if (strcmp (arg, "itanium2") == 0)
7183 md.tune = itanium2;
7184 else
7185 return 0;
7187 else
7188 return 0;
7189 break;
7191 case 'N':
7192 if (strcmp (arg, "so") == 0)
7194 /* Suppress signon message. */
7196 else if (strcmp (arg, "pi") == 0)
7198 /* Reject privileged instructions. FIXME */
7200 else if (strcmp (arg, "us") == 0)
7202 /* Allow union of signed and unsigned range. FIXME */
7204 else if (strcmp (arg, "close_fcalls") == 0)
7206 /* Do not resolve global function calls. */
7208 else
7209 return 0;
7210 break;
7212 case 'C':
7213 /* temp[="prefix"] Insert temporary labels into the object file
7214 symbol table prefixed by "prefix".
7215 Default prefix is ":temp:".
7217 break;
7219 case 'a':
7220 /* indirect=<tgt> Assume unannotated indirect branches behavior
7221 according to <tgt> --
7222 exit: branch out from the current context (default)
7223 labels: all labels in context may be branch targets
7225 if (strncmp (arg, "indirect=", 9) != 0)
7226 return 0;
7227 break;
7229 case 'x':
7230 /* -X conflicts with an ignored option, use -x instead */
7231 md.detect_dv = 1;
7232 if (!arg || strcmp (arg, "explicit") == 0)
7234 /* set default mode to explicit */
7235 md.default_explicit_mode = 1;
7236 break;
7238 else if (strcmp (arg, "auto") == 0)
7240 md.default_explicit_mode = 0;
7242 else if (strcmp (arg, "none") == 0)
7244 md.detect_dv = 0;
7246 else if (strcmp (arg, "debug") == 0)
7248 md.debug_dv = 1;
7250 else if (strcmp (arg, "debugx") == 0)
7252 md.default_explicit_mode = 1;
7253 md.debug_dv = 1;
7255 else if (strcmp (arg, "debugn") == 0)
7257 md.debug_dv = 1;
7258 md.detect_dv = 0;
7260 else
7262 as_bad (_("Unrecognized option '-x%s'"), arg);
7264 break;
7266 case 'S':
7267 /* nops Print nops statistics. */
7268 break;
7270 /* GNU specific switches for gcc. */
7271 case OPTION_MCONSTANT_GP:
7272 md.flags |= EF_IA_64_CONS_GP;
7273 break;
7275 case OPTION_MAUTO_PIC:
7276 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7277 break;
7279 default:
7280 return 0;
7283 return 1;
7286 void
7287 md_show_usage (stream)
7288 FILE *stream;
7290 fputs (_("\
7291 IA-64 options:\n\
7292 --mconstant-gp mark output file as using the constant-GP model\n\
7293 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7294 --mauto-pic mark output file as using the constant-GP model\n\
7295 without function descriptors (sets ELF header flag\n\
7296 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7297 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7298 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7299 -mtune=[itanium1|itanium2]\n\
7300 tune for a specific CPU (default -mtune=itanium2)\n\
7301 -munwind-check=[warning|error]\n\
7302 unwind directive check (default -munwind-check=warning)\n\
7303 -mhint.b=[ok|warning|error]\n\
7304 hint.b check (default -mhint.b=error)\n\
7305 -x | -xexplicit turn on dependency violation checking\n\
7306 -xauto automagically remove dependency violations (default)\n\
7307 -xnone turn off dependency violation checking\n\
7308 -xdebug debug dependency violation checker\n\
7309 -xdebugn debug dependency violation checker but turn off\n\
7310 dependency violation checking\n\
7311 -xdebugx debug dependency violation checker and turn on\n\
7312 dependency violation checking\n"),
7313 stream);
7316 void
7317 ia64_after_parse_args ()
7319 if (debug_type == DEBUG_STABS)
7320 as_fatal (_("--gstabs is not supported for ia64"));
7323 /* Return true if TYPE fits in TEMPL at SLOT. */
7325 static int
7326 match (int templ, int type, int slot)
7328 enum ia64_unit unit;
7329 int result;
7331 unit = ia64_templ_desc[templ].exec_unit[slot];
7332 switch (type)
7334 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7335 case IA64_TYPE_A:
7336 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7337 break;
7338 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7339 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7340 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7341 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7342 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7343 default: result = 0; break;
7345 return result;
7348 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7349 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7350 type M or I would fit in TEMPL at SLOT. */
7352 static inline int
7353 extra_goodness (int templ, int slot)
7355 switch (md.tune)
7357 case itanium1:
7358 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7359 return 2;
7360 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7361 return 1;
7362 else
7363 return 0;
7364 break;
7365 case itanium2:
7366 if (match (templ, IA64_TYPE_M, slot)
7367 || match (templ, IA64_TYPE_I, slot))
7368 /* Favor M- and I-unit NOPs. We definitely want to avoid
7369 F-unit and B-unit may cause split-issue or less-than-optimal
7370 branch-prediction. */
7371 return 2;
7372 else
7373 return 0;
7374 break;
7375 default:
7376 abort ();
7377 return 0;
7381 /* This function is called once, at assembler startup time. It sets
7382 up all the tables, etc. that the MD part of the assembler will need
7383 that can be determined before arguments are parsed. */
7384 void
7385 md_begin ()
7387 int i, j, k, t, goodness, best, ok;
7388 const char *err;
7389 char name[8];
7391 md.auto_align = 1;
7392 md.explicit_mode = md.default_explicit_mode;
7394 bfd_set_section_alignment (stdoutput, text_section, 4);
7396 /* Make sure function pointers get initialized. */
7397 target_big_endian = -1;
7398 dot_byteorder (default_big_endian);
7400 alias_hash = hash_new ();
7401 alias_name_hash = hash_new ();
7402 secalias_hash = hash_new ();
7403 secalias_name_hash = hash_new ();
7405 pseudo_func[FUNC_DTP_MODULE].u.sym =
7406 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7407 &zero_address_frag);
7409 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7410 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7411 &zero_address_frag);
7413 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7414 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7415 &zero_address_frag);
7417 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7418 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7419 &zero_address_frag);
7421 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7422 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7423 &zero_address_frag);
7425 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7426 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7427 &zero_address_frag);
7429 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7430 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7431 &zero_address_frag);
7433 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7434 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7435 &zero_address_frag);
7437 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7438 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7439 &zero_address_frag);
7441 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7442 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7443 &zero_address_frag);
7445 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7446 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7447 &zero_address_frag);
7449 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7450 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7451 &zero_address_frag);
7453 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7454 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7455 &zero_address_frag);
7457 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7458 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7459 &zero_address_frag);
7461 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7462 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7463 &zero_address_frag);
7465 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7466 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7467 &zero_address_frag);
7469 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7470 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7471 &zero_address_frag);
7473 if (md.tune != itanium1)
7475 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7476 le_nop[0] = 0x8;
7477 le_nop_stop[0] = 0x9;
7480 /* Compute the table of best templates. We compute goodness as a
7481 base 4 value, in which each match counts for 3. Match-failures
7482 result in NOPs and we use extra_goodness() to pick the execution
7483 units that are best suited for issuing the NOP. */
7484 for (i = 0; i < IA64_NUM_TYPES; ++i)
7485 for (j = 0; j < IA64_NUM_TYPES; ++j)
7486 for (k = 0; k < IA64_NUM_TYPES; ++k)
7488 best = 0;
7489 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7491 goodness = 0;
7492 if (match (t, i, 0))
7494 if (match (t, j, 1))
7496 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7497 goodness = 3 + 3 + 3;
7498 else
7499 goodness = 3 + 3 + extra_goodness (t, 2);
7501 else if (match (t, j, 2))
7502 goodness = 3 + 3 + extra_goodness (t, 1);
7503 else
7505 goodness = 3;
7506 goodness += extra_goodness (t, 1);
7507 goodness += extra_goodness (t, 2);
7510 else if (match (t, i, 1))
7512 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7513 goodness = 3 + 3;
7514 else
7515 goodness = 3 + extra_goodness (t, 2);
7517 else if (match (t, i, 2))
7518 goodness = 3 + extra_goodness (t, 1);
7520 if (goodness > best)
7522 best = goodness;
7523 best_template[i][j][k] = t;
7528 #ifdef DEBUG_TEMPLATES
7529 /* For debugging changes to the best_template calculations. We don't care
7530 about combinations with invalid instructions, so start the loops at 1. */
7531 for (i = 0; i < IA64_NUM_TYPES; ++i)
7532 for (j = 0; j < IA64_NUM_TYPES; ++j)
7533 for (k = 0; k < IA64_NUM_TYPES; ++k)
7535 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7536 'x', 'd' };
7537 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7538 type_letter[k],
7539 ia64_templ_desc[best_template[i][j][k]].name);
7541 #endif
7543 for (i = 0; i < NUM_SLOTS; ++i)
7544 md.slot[i].user_template = -1;
7546 md.pseudo_hash = hash_new ();
7547 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7549 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7550 (void *) (pseudo_opcode + i));
7551 if (err)
7552 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7553 pseudo_opcode[i].name, err);
7556 md.reg_hash = hash_new ();
7557 md.dynreg_hash = hash_new ();
7558 md.const_hash = hash_new ();
7559 md.entry_hash = hash_new ();
7561 /* general registers: */
7562 declare_register_set ("r", 128, REG_GR);
7563 declare_register ("gp", REG_GR + 1);
7564 declare_register ("sp", REG_GR + 12);
7565 declare_register ("tp", REG_GR + 13);
7566 declare_register_set ("ret", 4, REG_GR + 8);
7568 /* floating point registers: */
7569 declare_register_set ("f", 128, REG_FR);
7570 declare_register_set ("farg", 8, REG_FR + 8);
7571 declare_register_set ("fret", 8, REG_FR + 8);
7573 /* branch registers: */
7574 declare_register_set ("b", 8, REG_BR);
7575 declare_register ("rp", REG_BR + 0);
7577 /* predicate registers: */
7578 declare_register_set ("p", 64, REG_P);
7579 declare_register ("pr", REG_PR);
7580 declare_register ("pr.rot", REG_PR_ROT);
7582 /* application registers: */
7583 declare_register_set ("ar", 128, REG_AR);
7584 for (i = 0; i < NELEMS (ar); ++i)
7585 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7587 /* control registers: */
7588 declare_register_set ("cr", 128, REG_CR);
7589 for (i = 0; i < NELEMS (cr); ++i)
7590 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7592 declare_register ("ip", REG_IP);
7593 declare_register ("cfm", REG_CFM);
7594 declare_register ("psr", REG_PSR);
7595 declare_register ("psr.l", REG_PSR_L);
7596 declare_register ("psr.um", REG_PSR_UM);
7598 for (i = 0; i < NELEMS (indirect_reg); ++i)
7600 unsigned int regnum = indirect_reg[i].regnum;
7602 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7605 /* pseudo-registers used to specify unwind info: */
7606 declare_register ("psp", REG_PSP);
7608 for (i = 0; i < NELEMS (const_bits); ++i)
7610 err = hash_insert (md.const_hash, const_bits[i].name,
7611 (PTR) (const_bits + i));
7612 if (err)
7613 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7614 name, err);
7617 /* Set the architecture and machine depending on defaults and command line
7618 options. */
7619 if (md.flags & EF_IA_64_ABI64)
7620 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7621 else
7622 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7624 if (! ok)
7625 as_warn (_("Could not set architecture and machine"));
7627 /* Set the pointer size and pointer shift size depending on md.flags */
7629 if (md.flags & EF_IA_64_ABI64)
7631 md.pointer_size = 8; /* pointers are 8 bytes */
7632 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7634 else
7636 md.pointer_size = 4; /* pointers are 4 bytes */
7637 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7640 md.mem_offset.hint = 0;
7641 md.path = 0;
7642 md.maxpaths = 0;
7643 md.entry_labels = NULL;
7646 /* Set the default options in md. Cannot do this in md_begin because
7647 that is called after md_parse_option which is where we set the
7648 options in md based on command line options. */
7650 void
7651 ia64_init (argc, argv)
7652 int argc ATTRIBUTE_UNUSED;
7653 char **argv ATTRIBUTE_UNUSED;
7655 md.flags = MD_FLAGS_DEFAULT;
7656 md.detect_dv = 1;
7657 /* FIXME: We should change it to unwind_check_error someday. */
7658 md.unwind_check = unwind_check_warning;
7659 md.hint_b = hint_b_error;
7660 md.tune = itanium2;
7663 /* Return a string for the target object file format. */
7665 const char *
7666 ia64_target_format ()
7668 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7670 if (md.flags & EF_IA_64_BE)
7672 if (md.flags & EF_IA_64_ABI64)
7673 #if defined(TE_AIX50)
7674 return "elf64-ia64-aix-big";
7675 #elif defined(TE_HPUX)
7676 return "elf64-ia64-hpux-big";
7677 #else
7678 return "elf64-ia64-big";
7679 #endif
7680 else
7681 #if defined(TE_AIX50)
7682 return "elf32-ia64-aix-big";
7683 #elif defined(TE_HPUX)
7684 return "elf32-ia64-hpux-big";
7685 #else
7686 return "elf32-ia64-big";
7687 #endif
7689 else
7691 if (md.flags & EF_IA_64_ABI64)
7692 #ifdef TE_AIX50
7693 return "elf64-ia64-aix-little";
7694 #else
7695 return "elf64-ia64-little";
7696 #endif
7697 else
7698 #ifdef TE_AIX50
7699 return "elf32-ia64-aix-little";
7700 #else
7701 return "elf32-ia64-little";
7702 #endif
7705 else
7706 return "unknown-format";
7709 void
7710 ia64_end_of_source ()
7712 /* terminate insn group upon reaching end of file: */
7713 insn_group_break (1, 0, 0);
7715 /* emits slots we haven't written yet: */
7716 ia64_flush_insns ();
7718 bfd_set_private_flags (stdoutput, md.flags);
7720 md.mem_offset.hint = 0;
7723 void
7724 ia64_start_line ()
7726 static int first;
7728 if (!first) {
7729 /* Make sure we don't reference input_line_pointer[-1] when that's
7730 not valid. */
7731 first = 1;
7732 return;
7735 if (md.qp.X_op == O_register)
7736 as_bad ("qualifying predicate not followed by instruction");
7737 md.qp.X_op = O_absent;
7739 if (ignore_input ())
7740 return;
7742 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7744 if (md.detect_dv && !md.explicit_mode)
7746 static int warned;
7748 if (!warned)
7750 warned = 1;
7751 as_warn (_("Explicit stops are ignored in auto mode"));
7754 else
7755 insn_group_break (1, 0, 0);
7757 else if (input_line_pointer[-1] == '{')
7759 if (md.manual_bundling)
7760 as_warn ("Found '{' when manual bundling is already turned on");
7761 else
7762 CURR_SLOT.manual_bundling_on = 1;
7763 md.manual_bundling = 1;
7765 /* Bundling is only acceptable in explicit mode
7766 or when in default automatic mode. */
7767 if (md.detect_dv && !md.explicit_mode)
7769 if (!md.mode_explicitly_set
7770 && !md.default_explicit_mode)
7771 dot_dv_mode ('E');
7772 else
7773 as_warn (_("Found '{' after explicit switch to automatic mode"));
7776 else if (input_line_pointer[-1] == '}')
7778 if (!md.manual_bundling)
7779 as_warn ("Found '}' when manual bundling is off");
7780 else
7781 PREV_SLOT.manual_bundling_off = 1;
7782 md.manual_bundling = 0;
7784 /* switch back to automatic mode, if applicable */
7785 if (md.detect_dv
7786 && md.explicit_mode
7787 && !md.mode_explicitly_set
7788 && !md.default_explicit_mode)
7789 dot_dv_mode ('A');
7793 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7794 labels. */
7795 static int defining_tag = 0;
7798 ia64_unrecognized_line (ch)
7799 int ch;
7801 switch (ch)
7803 case '(':
7804 expression_and_evaluate (&md.qp);
7805 if (*input_line_pointer++ != ')')
7807 as_bad ("Expected ')'");
7808 return 0;
7810 if (md.qp.X_op != O_register)
7812 as_bad ("Qualifying predicate expected");
7813 return 0;
7815 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7817 as_bad ("Predicate register expected");
7818 return 0;
7820 return 1;
7822 case '[':
7824 char *s;
7825 char c;
7826 symbolS *tag;
7827 int temp;
7829 if (md.qp.X_op == O_register)
7831 as_bad ("Tag must come before qualifying predicate.");
7832 return 0;
7835 /* This implements just enough of read_a_source_file in read.c to
7836 recognize labels. */
7837 if (is_name_beginner (*input_line_pointer))
7839 s = input_line_pointer;
7840 c = get_symbol_end ();
7842 else if (LOCAL_LABELS_FB
7843 && ISDIGIT (*input_line_pointer))
7845 temp = 0;
7846 while (ISDIGIT (*input_line_pointer))
7847 temp = (temp * 10) + *input_line_pointer++ - '0';
7848 fb_label_instance_inc (temp);
7849 s = fb_label_name (temp, 0);
7850 c = *input_line_pointer;
7852 else
7854 s = NULL;
7855 c = '\0';
7857 if (c != ':')
7859 /* Put ':' back for error messages' sake. */
7860 *input_line_pointer++ = ':';
7861 as_bad ("Expected ':'");
7862 return 0;
7865 defining_tag = 1;
7866 tag = colon (s);
7867 defining_tag = 0;
7868 /* Put ':' back for error messages' sake. */
7869 *input_line_pointer++ = ':';
7870 if (*input_line_pointer++ != ']')
7872 as_bad ("Expected ']'");
7873 return 0;
7875 if (! tag)
7877 as_bad ("Tag name expected");
7878 return 0;
7880 return 1;
7883 default:
7884 break;
7887 /* Not a valid line. */
7888 return 0;
7891 void
7892 ia64_frob_label (sym)
7893 struct symbol *sym;
7895 struct label_fix *fix;
7897 /* Tags need special handling since they are not bundle breaks like
7898 labels. */
7899 if (defining_tag)
7901 fix = obstack_alloc (&notes, sizeof (*fix));
7902 fix->sym = sym;
7903 fix->next = CURR_SLOT.tag_fixups;
7904 fix->dw2_mark_labels = FALSE;
7905 CURR_SLOT.tag_fixups = fix;
7907 return;
7910 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7912 md.last_text_seg = now_seg;
7913 fix = obstack_alloc (&notes, sizeof (*fix));
7914 fix->sym = sym;
7915 fix->next = CURR_SLOT.label_fixups;
7916 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7917 CURR_SLOT.label_fixups = fix;
7919 /* Keep track of how many code entry points we've seen. */
7920 if (md.path == md.maxpaths)
7922 md.maxpaths += 20;
7923 md.entry_labels = (const char **)
7924 xrealloc ((void *) md.entry_labels,
7925 md.maxpaths * sizeof (char *));
7927 md.entry_labels[md.path++] = S_GET_NAME (sym);
7931 #ifdef TE_HPUX
7932 /* The HP-UX linker will give unresolved symbol errors for symbols
7933 that are declared but unused. This routine removes declared,
7934 unused symbols from an object. */
7936 ia64_frob_symbol (sym)
7937 struct symbol *sym;
7939 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7940 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7941 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7942 && ! S_IS_EXTERNAL (sym)))
7943 return 1;
7944 return 0;
7946 #endif
7948 void
7949 ia64_flush_pending_output ()
7951 if (!md.keep_pending_output
7952 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7954 /* ??? This causes many unnecessary stop bits to be emitted.
7955 Unfortunately, it isn't clear if it is safe to remove this. */
7956 insn_group_break (1, 0, 0);
7957 ia64_flush_insns ();
7961 /* Do ia64-specific expression optimization. All that's done here is
7962 to transform index expressions that are either due to the indexing
7963 of rotating registers or due to the indexing of indirect register
7964 sets. */
7966 ia64_optimize_expr (l, op, r)
7967 expressionS *l;
7968 operatorT op;
7969 expressionS *r;
7971 if (op != O_index)
7972 return 0;
7973 resolve_expression (l);
7974 if (l->X_op == O_register)
7976 unsigned num_regs = l->X_add_number >> 16;
7978 resolve_expression (r);
7979 if (num_regs)
7981 /* Left side is a .rotX-allocated register. */
7982 if (r->X_op != O_constant)
7984 as_bad ("Rotating register index must be a non-negative constant");
7985 r->X_add_number = 0;
7987 else if ((valueT) r->X_add_number >= num_regs)
7989 as_bad ("Index out of range 0..%u", num_regs - 1);
7990 r->X_add_number = 0;
7992 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7993 return 1;
7995 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
7997 if (r->X_op != O_register
7998 || r->X_add_number < REG_GR
7999 || r->X_add_number > REG_GR + 127)
8001 as_bad ("Indirect register index must be a general register");
8002 r->X_add_number = REG_GR;
8004 l->X_op = O_index;
8005 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
8006 l->X_add_number = r->X_add_number;
8007 return 1;
8010 as_bad ("Index can only be applied to rotating or indirect registers");
8011 /* Fall back to some register use of which has as little as possible
8012 side effects, to minimize subsequent error messages. */
8013 l->X_op = O_register;
8014 l->X_add_number = REG_GR + 3;
8015 return 1;
8019 ia64_parse_name (name, e, nextcharP)
8020 char *name;
8021 expressionS *e;
8022 char *nextcharP;
8024 struct const_desc *cdesc;
8025 struct dynreg *dr = 0;
8026 unsigned int idx;
8027 struct symbol *sym;
8028 char *end;
8030 if (*name == '@')
8032 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8034 /* Find what relocation pseudo-function we're dealing with. */
8035 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8036 if (pseudo_func[idx].name
8037 && pseudo_func[idx].name[0] == name[1]
8038 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8040 pseudo_type = pseudo_func[idx].type;
8041 break;
8043 switch (pseudo_type)
8045 case PSEUDO_FUNC_RELOC:
8046 end = input_line_pointer;
8047 if (*nextcharP != '(')
8049 as_bad ("Expected '('");
8050 break;
8052 /* Skip '('. */
8053 ++input_line_pointer;
8054 expression (e);
8055 if (*input_line_pointer != ')')
8057 as_bad ("Missing ')'");
8058 goto done;
8060 /* Skip ')'. */
8061 ++input_line_pointer;
8062 if (e->X_op != O_symbol)
8064 if (e->X_op != O_pseudo_fixup)
8066 as_bad ("Not a symbolic expression");
8067 goto done;
8069 if (idx != FUNC_LT_RELATIVE)
8071 as_bad ("Illegal combination of relocation functions");
8072 goto done;
8074 switch (S_GET_VALUE (e->X_op_symbol))
8076 case FUNC_FPTR_RELATIVE:
8077 idx = FUNC_LT_FPTR_RELATIVE; break;
8078 case FUNC_DTP_MODULE:
8079 idx = FUNC_LT_DTP_MODULE; break;
8080 case FUNC_DTP_RELATIVE:
8081 idx = FUNC_LT_DTP_RELATIVE; break;
8082 case FUNC_TP_RELATIVE:
8083 idx = FUNC_LT_TP_RELATIVE; break;
8084 default:
8085 as_bad ("Illegal combination of relocation functions");
8086 goto done;
8089 /* Make sure gas doesn't get rid of local symbols that are used
8090 in relocs. */
8091 e->X_op = O_pseudo_fixup;
8092 e->X_op_symbol = pseudo_func[idx].u.sym;
8093 done:
8094 *nextcharP = *input_line_pointer;
8095 break;
8097 case PSEUDO_FUNC_CONST:
8098 e->X_op = O_constant;
8099 e->X_add_number = pseudo_func[idx].u.ival;
8100 break;
8102 case PSEUDO_FUNC_REG:
8103 e->X_op = O_register;
8104 e->X_add_number = pseudo_func[idx].u.ival;
8105 break;
8107 default:
8108 return 0;
8110 return 1;
8113 /* first see if NAME is a known register name: */
8114 sym = hash_find (md.reg_hash, name);
8115 if (sym)
8117 e->X_op = O_register;
8118 e->X_add_number = S_GET_VALUE (sym);
8119 return 1;
8122 cdesc = hash_find (md.const_hash, name);
8123 if (cdesc)
8125 e->X_op = O_constant;
8126 e->X_add_number = cdesc->value;
8127 return 1;
8130 /* check for inN, locN, or outN: */
8131 idx = 0;
8132 switch (name[0])
8134 case 'i':
8135 if (name[1] == 'n' && ISDIGIT (name[2]))
8137 dr = &md.in;
8138 idx = 2;
8140 break;
8142 case 'l':
8143 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8145 dr = &md.loc;
8146 idx = 3;
8148 break;
8150 case 'o':
8151 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8153 dr = &md.out;
8154 idx = 3;
8156 break;
8158 default:
8159 break;
8162 /* Ignore register numbers with leading zeroes, except zero itself. */
8163 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8165 unsigned long regnum;
8167 /* The name is inN, locN, or outN; parse the register number. */
8168 regnum = strtoul (name + idx, &end, 10);
8169 if (end > name + idx && *end == '\0' && regnum < 96)
8171 if (regnum >= dr->num_regs)
8173 if (!dr->num_regs)
8174 as_bad ("No current frame");
8175 else
8176 as_bad ("Register number out of range 0..%u",
8177 dr->num_regs - 1);
8178 regnum = 0;
8180 e->X_op = O_register;
8181 e->X_add_number = dr->base + regnum;
8182 return 1;
8186 end = alloca (strlen (name) + 1);
8187 strcpy (end, name);
8188 name = ia64_canonicalize_symbol_name (end);
8189 if ((dr = hash_find (md.dynreg_hash, name)))
8191 /* We've got ourselves the name of a rotating register set.
8192 Store the base register number in the low 16 bits of
8193 X_add_number and the size of the register set in the top 16
8194 bits. */
8195 e->X_op = O_register;
8196 e->X_add_number = dr->base | (dr->num_regs << 16);
8197 return 1;
8199 return 0;
8202 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8204 char *
8205 ia64_canonicalize_symbol_name (name)
8206 char *name;
8208 size_t len = strlen (name), full = len;
8210 while (len > 0 && name[len - 1] == '#')
8211 --len;
8212 if (len <= 0)
8214 if (full > 0)
8215 as_bad ("Standalone `#' is illegal");
8217 else if (len < full - 1)
8218 as_warn ("Redundant `#' suffix operators");
8219 name[len] = '\0';
8220 return name;
8223 /* Return true if idesc is a conditional branch instruction. This excludes
8224 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8225 because they always read/write resources regardless of the value of the
8226 qualifying predicate. br.ia must always use p0, and hence is always
8227 taken. Thus this function returns true for branches which can fall
8228 through, and which use no resources if they do fall through. */
8230 static int
8231 is_conditional_branch (idesc)
8232 struct ia64_opcode *idesc;
8234 /* br is a conditional branch. Everything that starts with br. except
8235 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8236 Everything that starts with brl is a conditional branch. */
8237 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8238 && (idesc->name[2] == '\0'
8239 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8240 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8241 || idesc->name[2] == 'l'
8242 /* br.cond, br.call, br.clr */
8243 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8244 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8245 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8248 /* Return whether the given opcode is a taken branch. If there's any doubt,
8249 returns zero. */
8251 static int
8252 is_taken_branch (idesc)
8253 struct ia64_opcode *idesc;
8255 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8256 || strncmp (idesc->name, "br.ia", 5) == 0);
8259 /* Return whether the given opcode is an interruption or rfi. If there's any
8260 doubt, returns zero. */
8262 static int
8263 is_interruption_or_rfi (idesc)
8264 struct ia64_opcode *idesc;
8266 if (strcmp (idesc->name, "rfi") == 0)
8267 return 1;
8268 return 0;
8271 /* Returns the index of the given dependency in the opcode's list of chks, or
8272 -1 if there is no dependency. */
8274 static int
8275 depends_on (depind, idesc)
8276 int depind;
8277 struct ia64_opcode *idesc;
8279 int i;
8280 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8281 for (i = 0; i < dep->nchks; i++)
8283 if (depind == DEP (dep->chks[i]))
8284 return i;
8286 return -1;
8289 /* Determine a set of specific resources used for a particular resource
8290 class. Returns the number of specific resources identified For those
8291 cases which are not determinable statically, the resource returned is
8292 marked nonspecific.
8294 Meanings of value in 'NOTE':
8295 1) only read/write when the register number is explicitly encoded in the
8296 insn.
8297 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8298 accesses CFM when qualifying predicate is in the rotating region.
8299 3) general register value is used to specify an indirect register; not
8300 determinable statically.
8301 4) only read the given resource when bits 7:0 of the indirect index
8302 register value does not match the register number of the resource; not
8303 determinable statically.
8304 5) all rules are implementation specific.
8305 6) only when both the index specified by the reader and the index specified
8306 by the writer have the same value in bits 63:61; not determinable
8307 statically.
8308 7) only access the specified resource when the corresponding mask bit is
8310 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8311 only read when these insns reference FR2-31
8312 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8313 written when these insns write FR32-127
8314 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8315 instruction
8316 11) The target predicates are written independently of PR[qp], but source
8317 registers are only read if PR[qp] is true. Since the state of PR[qp]
8318 cannot statically be determined, all source registers are marked used.
8319 12) This insn only reads the specified predicate register when that
8320 register is the PR[qp].
8321 13) This reference to ld-c only applies to teh GR whose value is loaded
8322 with data returned from memory, not the post-incremented address register.
8323 14) The RSE resource includes the implementation-specific RSE internal
8324 state resources. At least one (and possibly more) of these resources are
8325 read by each instruction listed in IC:rse-readers. At least one (and
8326 possibly more) of these resources are written by each insn listed in
8327 IC:rse-writers.
8328 15+16) Represents reserved instructions, which the assembler does not
8329 generate.
8331 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8332 this code; there are no dependency violations based on memory access.
8335 #define MAX_SPECS 256
8336 #define DV_CHK 1
8337 #define DV_REG 0
8339 static int
8340 specify_resource (dep, idesc, type, specs, note, path)
8341 const struct ia64_dependency *dep;
8342 struct ia64_opcode *idesc;
8343 int type; /* is this a DV chk or a DV reg? */
8344 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8345 int note; /* resource note for this insn's usage */
8346 int path; /* which execution path to examine */
8348 int count = 0;
8349 int i;
8350 int rsrc_write = 0;
8351 struct rsrc tmpl;
8353 if (dep->mode == IA64_DV_WAW
8354 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8355 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8356 rsrc_write = 1;
8358 /* template for any resources we identify */
8359 tmpl.dependency = dep;
8360 tmpl.note = note;
8361 tmpl.insn_srlz = tmpl.data_srlz = 0;
8362 tmpl.qp_regno = CURR_SLOT.qp_regno;
8363 tmpl.link_to_qp_branch = 1;
8364 tmpl.mem_offset.hint = 0;
8365 tmpl.mem_offset.offset = 0;
8366 tmpl.mem_offset.base = 0;
8367 tmpl.specific = 1;
8368 tmpl.index = -1;
8369 tmpl.cmp_type = CMP_NONE;
8370 tmpl.depind = 0;
8371 tmpl.file = NULL;
8372 tmpl.line = 0;
8373 tmpl.path = 0;
8375 #define UNHANDLED \
8376 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8377 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8378 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8380 /* we don't need to track these */
8381 if (dep->semantics == IA64_DVS_NONE)
8382 return 0;
8384 switch (dep->specifier)
8386 case IA64_RS_AR_K:
8387 if (note == 1)
8389 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8391 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8392 if (regno >= 0 && regno <= 7)
8394 specs[count] = tmpl;
8395 specs[count++].index = regno;
8399 else if (note == 0)
8401 for (i = 0; i < 8; i++)
8403 specs[count] = tmpl;
8404 specs[count++].index = i;
8407 else
8409 UNHANDLED;
8411 break;
8413 case IA64_RS_AR_UNAT:
8414 /* This is a mov =AR or mov AR= instruction. */
8415 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8417 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8418 if (regno == AR_UNAT)
8420 specs[count++] = tmpl;
8423 else
8425 /* This is a spill/fill, or other instruction that modifies the
8426 unat register. */
8428 /* Unless we can determine the specific bits used, mark the whole
8429 thing; bits 8:3 of the memory address indicate the bit used in
8430 UNAT. The .mem.offset hint may be used to eliminate a small
8431 subset of conflicts. */
8432 specs[count] = tmpl;
8433 if (md.mem_offset.hint)
8435 if (md.debug_dv)
8436 fprintf (stderr, " Using hint for spill/fill\n");
8437 /* The index isn't actually used, just set it to something
8438 approximating the bit index. */
8439 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8440 specs[count].mem_offset.hint = 1;
8441 specs[count].mem_offset.offset = md.mem_offset.offset;
8442 specs[count++].mem_offset.base = md.mem_offset.base;
8444 else
8446 specs[count++].specific = 0;
8449 break;
8451 case IA64_RS_AR:
8452 if (note == 1)
8454 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8456 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8457 if ((regno >= 8 && regno <= 15)
8458 || (regno >= 20 && regno <= 23)
8459 || (regno >= 31 && regno <= 39)
8460 || (regno >= 41 && regno <= 47)
8461 || (regno >= 67 && regno <= 111))
8463 specs[count] = tmpl;
8464 specs[count++].index = regno;
8468 else
8470 UNHANDLED;
8472 break;
8474 case IA64_RS_ARb:
8475 if (note == 1)
8477 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8479 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8480 if ((regno >= 48 && regno <= 63)
8481 || (regno >= 112 && regno <= 127))
8483 specs[count] = tmpl;
8484 specs[count++].index = regno;
8488 else if (note == 0)
8490 for (i = 48; i < 64; i++)
8492 specs[count] = tmpl;
8493 specs[count++].index = i;
8495 for (i = 112; i < 128; i++)
8497 specs[count] = tmpl;
8498 specs[count++].index = i;
8501 else
8503 UNHANDLED;
8505 break;
8507 case IA64_RS_BR:
8508 if (note != 1)
8510 UNHANDLED;
8512 else
8514 if (rsrc_write)
8516 for (i = 0; i < idesc->num_outputs; i++)
8517 if (idesc->operands[i] == IA64_OPND_B1
8518 || idesc->operands[i] == IA64_OPND_B2)
8520 specs[count] = tmpl;
8521 specs[count++].index =
8522 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8525 else
8527 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8528 if (idesc->operands[i] == IA64_OPND_B1
8529 || idesc->operands[i] == IA64_OPND_B2)
8531 specs[count] = tmpl;
8532 specs[count++].index =
8533 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8537 break;
8539 case IA64_RS_CPUID: /* four or more registers */
8540 if (note == 3)
8542 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8544 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8545 if (regno >= 0 && regno < NELEMS (gr_values)
8546 && KNOWN (regno))
8548 specs[count] = tmpl;
8549 specs[count++].index = gr_values[regno].value & 0xFF;
8551 else
8553 specs[count] = tmpl;
8554 specs[count++].specific = 0;
8558 else
8560 UNHANDLED;
8562 break;
8564 case IA64_RS_DBR: /* four or more registers */
8565 if (note == 3)
8567 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8569 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8570 if (regno >= 0 && regno < NELEMS (gr_values)
8571 && KNOWN (regno))
8573 specs[count] = tmpl;
8574 specs[count++].index = gr_values[regno].value & 0xFF;
8576 else
8578 specs[count] = tmpl;
8579 specs[count++].specific = 0;
8583 else if (note == 0 && !rsrc_write)
8585 specs[count] = tmpl;
8586 specs[count++].specific = 0;
8588 else
8590 UNHANDLED;
8592 break;
8594 case IA64_RS_IBR: /* four or more registers */
8595 if (note == 3)
8597 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8599 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8600 if (regno >= 0 && regno < NELEMS (gr_values)
8601 && KNOWN (regno))
8603 specs[count] = tmpl;
8604 specs[count++].index = gr_values[regno].value & 0xFF;
8606 else
8608 specs[count] = tmpl;
8609 specs[count++].specific = 0;
8613 else
8615 UNHANDLED;
8617 break;
8619 case IA64_RS_MSR:
8620 if (note == 5)
8622 /* These are implementation specific. Force all references to
8623 conflict with all other references. */
8624 specs[count] = tmpl;
8625 specs[count++].specific = 0;
8627 else
8629 UNHANDLED;
8631 break;
8633 case IA64_RS_PKR: /* 16 or more registers */
8634 if (note == 3 || note == 4)
8636 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8638 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8639 if (regno >= 0 && regno < NELEMS (gr_values)
8640 && KNOWN (regno))
8642 if (note == 3)
8644 specs[count] = tmpl;
8645 specs[count++].index = gr_values[regno].value & 0xFF;
8647 else
8648 for (i = 0; i < NELEMS (gr_values); i++)
8650 /* Uses all registers *except* the one in R3. */
8651 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8653 specs[count] = tmpl;
8654 specs[count++].index = i;
8658 else
8660 specs[count] = tmpl;
8661 specs[count++].specific = 0;
8665 else if (note == 0)
8667 /* probe et al. */
8668 specs[count] = tmpl;
8669 specs[count++].specific = 0;
8671 break;
8673 case IA64_RS_PMC: /* four or more registers */
8674 if (note == 3)
8676 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8677 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8680 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8681 ? 1 : !rsrc_write);
8682 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8683 if (regno >= 0 && regno < NELEMS (gr_values)
8684 && KNOWN (regno))
8686 specs[count] = tmpl;
8687 specs[count++].index = gr_values[regno].value & 0xFF;
8689 else
8691 specs[count] = tmpl;
8692 specs[count++].specific = 0;
8696 else
8698 UNHANDLED;
8700 break;
8702 case IA64_RS_PMD: /* four or more registers */
8703 if (note == 3)
8705 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8707 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8708 if (regno >= 0 && regno < NELEMS (gr_values)
8709 && KNOWN (regno))
8711 specs[count] = tmpl;
8712 specs[count++].index = gr_values[regno].value & 0xFF;
8714 else
8716 specs[count] = tmpl;
8717 specs[count++].specific = 0;
8721 else
8723 UNHANDLED;
8725 break;
8727 case IA64_RS_RR: /* eight registers */
8728 if (note == 6)
8730 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8732 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8733 if (regno >= 0 && regno < NELEMS (gr_values)
8734 && KNOWN (regno))
8736 specs[count] = tmpl;
8737 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8739 else
8741 specs[count] = tmpl;
8742 specs[count++].specific = 0;
8746 else if (note == 0 && !rsrc_write)
8748 specs[count] = tmpl;
8749 specs[count++].specific = 0;
8751 else
8753 UNHANDLED;
8755 break;
8757 case IA64_RS_CR_IRR:
8758 if (note == 0)
8760 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8761 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8762 if (rsrc_write
8763 && idesc->operands[1] == IA64_OPND_CR3
8764 && regno == CR_IVR)
8766 for (i = 0; i < 4; i++)
8768 specs[count] = tmpl;
8769 specs[count++].index = CR_IRR0 + i;
8773 else if (note == 1)
8775 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8776 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8777 && regno >= CR_IRR0
8778 && regno <= CR_IRR3)
8780 specs[count] = tmpl;
8781 specs[count++].index = regno;
8784 else
8786 UNHANDLED;
8788 break;
8790 case IA64_RS_CR_LRR:
8791 if (note != 1)
8793 UNHANDLED;
8795 else
8797 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8798 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8799 && (regno == CR_LRR0 || regno == CR_LRR1))
8801 specs[count] = tmpl;
8802 specs[count++].index = regno;
8805 break;
8807 case IA64_RS_CR:
8808 if (note == 1)
8810 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8812 specs[count] = tmpl;
8813 specs[count++].index =
8814 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8817 else
8819 UNHANDLED;
8821 break;
8823 case IA64_RS_FR:
8824 case IA64_RS_FRb:
8825 if (note != 1)
8827 UNHANDLED;
8829 else if (rsrc_write)
8831 if (dep->specifier == IA64_RS_FRb
8832 && idesc->operands[0] == IA64_OPND_F1)
8834 specs[count] = tmpl;
8835 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8838 else
8840 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8842 if (idesc->operands[i] == IA64_OPND_F2
8843 || idesc->operands[i] == IA64_OPND_F3
8844 || idesc->operands[i] == IA64_OPND_F4)
8846 specs[count] = tmpl;
8847 specs[count++].index =
8848 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8852 break;
8854 case IA64_RS_GR:
8855 if (note == 13)
8857 /* This reference applies only to the GR whose value is loaded with
8858 data returned from memory. */
8859 specs[count] = tmpl;
8860 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8862 else if (note == 1)
8864 if (rsrc_write)
8866 for (i = 0; i < idesc->num_outputs; i++)
8867 if (idesc->operands[i] == IA64_OPND_R1
8868 || idesc->operands[i] == IA64_OPND_R2
8869 || idesc->operands[i] == IA64_OPND_R3)
8871 specs[count] = tmpl;
8872 specs[count++].index =
8873 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8875 if (idesc->flags & IA64_OPCODE_POSTINC)
8876 for (i = 0; i < NELEMS (idesc->operands); i++)
8877 if (idesc->operands[i] == IA64_OPND_MR3)
8879 specs[count] = tmpl;
8880 specs[count++].index =
8881 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8884 else
8886 /* Look for anything that reads a GR. */
8887 for (i = 0; i < NELEMS (idesc->operands); i++)
8889 if (idesc->operands[i] == IA64_OPND_MR3
8890 || idesc->operands[i] == IA64_OPND_CPUID_R3
8891 || idesc->operands[i] == IA64_OPND_DBR_R3
8892 || idesc->operands[i] == IA64_OPND_IBR_R3
8893 || idesc->operands[i] == IA64_OPND_MSR_R3
8894 || idesc->operands[i] == IA64_OPND_PKR_R3
8895 || idesc->operands[i] == IA64_OPND_PMC_R3
8896 || idesc->operands[i] == IA64_OPND_PMD_R3
8897 || idesc->operands[i] == IA64_OPND_RR_R3
8898 || ((i >= idesc->num_outputs)
8899 && (idesc->operands[i] == IA64_OPND_R1
8900 || idesc->operands[i] == IA64_OPND_R2
8901 || idesc->operands[i] == IA64_OPND_R3
8902 /* addl source register. */
8903 || idesc->operands[i] == IA64_OPND_R3_2)))
8905 specs[count] = tmpl;
8906 specs[count++].index =
8907 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8912 else
8914 UNHANDLED;
8916 break;
8918 /* This is the same as IA64_RS_PRr, except that the register range is
8919 from 1 - 15, and there are no rotating register reads/writes here. */
8920 case IA64_RS_PR:
8921 if (note == 0)
8923 for (i = 1; i < 16; i++)
8925 specs[count] = tmpl;
8926 specs[count++].index = i;
8929 else if (note == 7)
8931 valueT mask = 0;
8932 /* Mark only those registers indicated by the mask. */
8933 if (rsrc_write)
8935 mask = CURR_SLOT.opnd[2].X_add_number;
8936 for (i = 1; i < 16; i++)
8937 if (mask & ((valueT) 1 << i))
8939 specs[count] = tmpl;
8940 specs[count++].index = i;
8943 else
8945 UNHANDLED;
8948 else if (note == 11) /* note 11 implies note 1 as well */
8950 if (rsrc_write)
8952 for (i = 0; i < idesc->num_outputs; i++)
8954 if (idesc->operands[i] == IA64_OPND_P1
8955 || idesc->operands[i] == IA64_OPND_P2)
8957 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8958 if (regno >= 1 && regno < 16)
8960 specs[count] = tmpl;
8961 specs[count++].index = regno;
8966 else
8968 UNHANDLED;
8971 else if (note == 12)
8973 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8975 specs[count] = tmpl;
8976 specs[count++].index = CURR_SLOT.qp_regno;
8979 else if (note == 1)
8981 if (rsrc_write)
8983 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8984 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8985 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8986 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8988 if ((idesc->operands[0] == IA64_OPND_P1
8989 || idesc->operands[0] == IA64_OPND_P2)
8990 && p1 >= 1 && p1 < 16)
8992 specs[count] = tmpl;
8993 specs[count].cmp_type =
8994 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8995 specs[count++].index = p1;
8997 if ((idesc->operands[1] == IA64_OPND_P1
8998 || idesc->operands[1] == IA64_OPND_P2)
8999 && p2 >= 1 && p2 < 16)
9001 specs[count] = tmpl;
9002 specs[count].cmp_type =
9003 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9004 specs[count++].index = p2;
9007 else
9009 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9011 specs[count] = tmpl;
9012 specs[count++].index = CURR_SLOT.qp_regno;
9014 if (idesc->operands[1] == IA64_OPND_PR)
9016 for (i = 1; i < 16; i++)
9018 specs[count] = tmpl;
9019 specs[count++].index = i;
9024 else
9026 UNHANDLED;
9028 break;
9030 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9031 simplified cases of this. */
9032 case IA64_RS_PRr:
9033 if (note == 0)
9035 for (i = 16; i < 63; i++)
9037 specs[count] = tmpl;
9038 specs[count++].index = i;
9041 else if (note == 7)
9043 valueT mask = 0;
9044 /* Mark only those registers indicated by the mask. */
9045 if (rsrc_write
9046 && idesc->operands[0] == IA64_OPND_PR)
9048 mask = CURR_SLOT.opnd[2].X_add_number;
9049 if (mask & ((valueT) 1 << 16))
9050 for (i = 16; i < 63; i++)
9052 specs[count] = tmpl;
9053 specs[count++].index = i;
9056 else if (rsrc_write
9057 && idesc->operands[0] == IA64_OPND_PR_ROT)
9059 for (i = 16; i < 63; i++)
9061 specs[count] = tmpl;
9062 specs[count++].index = i;
9065 else
9067 UNHANDLED;
9070 else if (note == 11) /* note 11 implies note 1 as well */
9072 if (rsrc_write)
9074 for (i = 0; i < idesc->num_outputs; i++)
9076 if (idesc->operands[i] == IA64_OPND_P1
9077 || idesc->operands[i] == IA64_OPND_P2)
9079 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9080 if (regno >= 16 && regno < 63)
9082 specs[count] = tmpl;
9083 specs[count++].index = regno;
9088 else
9090 UNHANDLED;
9093 else if (note == 12)
9095 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9097 specs[count] = tmpl;
9098 specs[count++].index = CURR_SLOT.qp_regno;
9101 else if (note == 1)
9103 if (rsrc_write)
9105 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9106 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9107 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9108 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9110 if ((idesc->operands[0] == IA64_OPND_P1
9111 || idesc->operands[0] == IA64_OPND_P2)
9112 && p1 >= 16 && p1 < 63)
9114 specs[count] = tmpl;
9115 specs[count].cmp_type =
9116 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9117 specs[count++].index = p1;
9119 if ((idesc->operands[1] == IA64_OPND_P1
9120 || idesc->operands[1] == IA64_OPND_P2)
9121 && p2 >= 16 && p2 < 63)
9123 specs[count] = tmpl;
9124 specs[count].cmp_type =
9125 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9126 specs[count++].index = p2;
9129 else
9131 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9133 specs[count] = tmpl;
9134 specs[count++].index = CURR_SLOT.qp_regno;
9136 if (idesc->operands[1] == IA64_OPND_PR)
9138 for (i = 16; i < 63; i++)
9140 specs[count] = tmpl;
9141 specs[count++].index = i;
9146 else
9148 UNHANDLED;
9150 break;
9152 case IA64_RS_PSR:
9153 /* Verify that the instruction is using the PSR bit indicated in
9154 dep->regindex. */
9155 if (note == 0)
9157 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9159 if (dep->regindex < 6)
9161 specs[count++] = tmpl;
9164 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9166 if (dep->regindex < 32
9167 || dep->regindex == 35
9168 || dep->regindex == 36
9169 || (!rsrc_write && dep->regindex == PSR_CPL))
9171 specs[count++] = tmpl;
9174 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9176 if (dep->regindex < 32
9177 || dep->regindex == 35
9178 || dep->regindex == 36
9179 || (rsrc_write && dep->regindex == PSR_CPL))
9181 specs[count++] = tmpl;
9184 else
9186 /* Several PSR bits have very specific dependencies. */
9187 switch (dep->regindex)
9189 default:
9190 specs[count++] = tmpl;
9191 break;
9192 case PSR_IC:
9193 if (rsrc_write)
9195 specs[count++] = tmpl;
9197 else
9199 /* Only certain CR accesses use PSR.ic */
9200 if (idesc->operands[0] == IA64_OPND_CR3
9201 || idesc->operands[1] == IA64_OPND_CR3)
9203 int index =
9204 ((idesc->operands[0] == IA64_OPND_CR3)
9205 ? 0 : 1);
9206 int regno =
9207 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9209 switch (regno)
9211 default:
9212 break;
9213 case CR_ITIR:
9214 case CR_IFS:
9215 case CR_IIM:
9216 case CR_IIP:
9217 case CR_IPSR:
9218 case CR_ISR:
9219 case CR_IFA:
9220 case CR_IHA:
9221 case CR_IIPA:
9222 specs[count++] = tmpl;
9223 break;
9227 break;
9228 case PSR_CPL:
9229 if (rsrc_write)
9231 specs[count++] = tmpl;
9233 else
9235 /* Only some AR accesses use cpl */
9236 if (idesc->operands[0] == IA64_OPND_AR3
9237 || idesc->operands[1] == IA64_OPND_AR3)
9239 int index =
9240 ((idesc->operands[0] == IA64_OPND_AR3)
9241 ? 0 : 1);
9242 int regno =
9243 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9245 if (regno == AR_ITC
9246 || (index == 0
9247 && (regno == AR_ITC
9248 || regno == AR_RSC
9249 || (regno >= AR_K0
9250 && regno <= AR_K7))))
9252 specs[count++] = tmpl;
9255 else
9257 specs[count++] = tmpl;
9259 break;
9264 else if (note == 7)
9266 valueT mask = 0;
9267 if (idesc->operands[0] == IA64_OPND_IMMU24)
9269 mask = CURR_SLOT.opnd[0].X_add_number;
9271 else
9273 UNHANDLED;
9275 if (mask & ((valueT) 1 << dep->regindex))
9277 specs[count++] = tmpl;
9280 else if (note == 8)
9282 int min = dep->regindex == PSR_DFL ? 2 : 32;
9283 int max = dep->regindex == PSR_DFL ? 31 : 127;
9284 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9285 for (i = 0; i < NELEMS (idesc->operands); i++)
9287 if (idesc->operands[i] == IA64_OPND_F1
9288 || idesc->operands[i] == IA64_OPND_F2
9289 || idesc->operands[i] == IA64_OPND_F3
9290 || idesc->operands[i] == IA64_OPND_F4)
9292 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9293 if (reg >= min && reg <= max)
9295 specs[count++] = tmpl;
9300 else if (note == 9)
9302 int min = dep->regindex == PSR_MFL ? 2 : 32;
9303 int max = dep->regindex == PSR_MFL ? 31 : 127;
9304 /* mfh is read on writes to FR32-127; mfl is read on writes to
9305 FR2-31 */
9306 for (i = 0; i < idesc->num_outputs; i++)
9308 if (idesc->operands[i] == IA64_OPND_F1)
9310 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9311 if (reg >= min && reg <= max)
9313 specs[count++] = tmpl;
9318 else if (note == 10)
9320 for (i = 0; i < NELEMS (idesc->operands); i++)
9322 if (idesc->operands[i] == IA64_OPND_R1
9323 || idesc->operands[i] == IA64_OPND_R2
9324 || idesc->operands[i] == IA64_OPND_R3)
9326 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9327 if (regno >= 16 && regno <= 31)
9329 specs[count++] = tmpl;
9334 else
9336 UNHANDLED;
9338 break;
9340 case IA64_RS_AR_FPSR:
9341 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9343 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9344 if (regno == AR_FPSR)
9346 specs[count++] = tmpl;
9349 else
9351 specs[count++] = tmpl;
9353 break;
9355 case IA64_RS_ARX:
9356 /* Handle all AR[REG] resources */
9357 if (note == 0 || note == 1)
9359 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9360 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9361 && regno == dep->regindex)
9363 specs[count++] = tmpl;
9365 /* other AR[REG] resources may be affected by AR accesses */
9366 else if (idesc->operands[0] == IA64_OPND_AR3)
9368 /* AR[] writes */
9369 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9370 switch (dep->regindex)
9372 default:
9373 break;
9374 case AR_BSP:
9375 case AR_RNAT:
9376 if (regno == AR_BSPSTORE)
9378 specs[count++] = tmpl;
9380 case AR_RSC:
9381 if (!rsrc_write &&
9382 (regno == AR_BSPSTORE
9383 || regno == AR_RNAT))
9385 specs[count++] = tmpl;
9387 break;
9390 else if (idesc->operands[1] == IA64_OPND_AR3)
9392 /* AR[] reads */
9393 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9394 switch (dep->regindex)
9396 default:
9397 break;
9398 case AR_RSC:
9399 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9401 specs[count++] = tmpl;
9403 break;
9406 else
9408 specs[count++] = tmpl;
9411 else
9413 UNHANDLED;
9415 break;
9417 case IA64_RS_CRX:
9418 /* Handle all CR[REG] resources */
9419 if (note == 0 || note == 1)
9421 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9423 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9424 if (regno == dep->regindex)
9426 specs[count++] = tmpl;
9428 else if (!rsrc_write)
9430 /* Reads from CR[IVR] affect other resources. */
9431 if (regno == CR_IVR)
9433 if ((dep->regindex >= CR_IRR0
9434 && dep->regindex <= CR_IRR3)
9435 || dep->regindex == CR_TPR)
9437 specs[count++] = tmpl;
9442 else
9444 specs[count++] = tmpl;
9447 else
9449 UNHANDLED;
9451 break;
9453 case IA64_RS_INSERVICE:
9454 /* look for write of EOI (67) or read of IVR (65) */
9455 if ((idesc->operands[0] == IA64_OPND_CR3
9456 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9457 || (idesc->operands[1] == IA64_OPND_CR3
9458 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9460 specs[count++] = tmpl;
9462 break;
9464 case IA64_RS_GR0:
9465 if (note == 1)
9467 specs[count++] = tmpl;
9469 else
9471 UNHANDLED;
9473 break;
9475 case IA64_RS_CFM:
9476 if (note != 2)
9478 specs[count++] = tmpl;
9480 else
9482 /* Check if any of the registers accessed are in the rotating region.
9483 mov to/from pr accesses CFM only when qp_regno is in the rotating
9484 region */
9485 for (i = 0; i < NELEMS (idesc->operands); i++)
9487 if (idesc->operands[i] == IA64_OPND_R1
9488 || idesc->operands[i] == IA64_OPND_R2
9489 || idesc->operands[i] == IA64_OPND_R3)
9491 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9492 /* Assumes that md.rot.num_regs is always valid */
9493 if (md.rot.num_regs > 0
9494 && num > 31
9495 && num < 31 + md.rot.num_regs)
9497 specs[count] = tmpl;
9498 specs[count++].specific = 0;
9501 else if (idesc->operands[i] == IA64_OPND_F1
9502 || idesc->operands[i] == IA64_OPND_F2
9503 || idesc->operands[i] == IA64_OPND_F3
9504 || idesc->operands[i] == IA64_OPND_F4)
9506 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9507 if (num > 31)
9509 specs[count] = tmpl;
9510 specs[count++].specific = 0;
9513 else if (idesc->operands[i] == IA64_OPND_P1
9514 || idesc->operands[i] == IA64_OPND_P2)
9516 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9517 if (num > 15)
9519 specs[count] = tmpl;
9520 specs[count++].specific = 0;
9524 if (CURR_SLOT.qp_regno > 15)
9526 specs[count] = tmpl;
9527 specs[count++].specific = 0;
9530 break;
9532 /* This is the same as IA64_RS_PRr, except simplified to account for
9533 the fact that there is only one register. */
9534 case IA64_RS_PR63:
9535 if (note == 0)
9537 specs[count++] = tmpl;
9539 else if (note == 7)
9541 valueT mask = 0;
9542 if (idesc->operands[2] == IA64_OPND_IMM17)
9543 mask = CURR_SLOT.opnd[2].X_add_number;
9544 if (mask & ((valueT) 1 << 63))
9545 specs[count++] = tmpl;
9547 else if (note == 11)
9549 if ((idesc->operands[0] == IA64_OPND_P1
9550 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9551 || (idesc->operands[1] == IA64_OPND_P2
9552 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9554 specs[count++] = tmpl;
9557 else if (note == 12)
9559 if (CURR_SLOT.qp_regno == 63)
9561 specs[count++] = tmpl;
9564 else if (note == 1)
9566 if (rsrc_write)
9568 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9569 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9570 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9571 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9573 if (p1 == 63
9574 && (idesc->operands[0] == IA64_OPND_P1
9575 || idesc->operands[0] == IA64_OPND_P2))
9577 specs[count] = tmpl;
9578 specs[count++].cmp_type =
9579 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9581 if (p2 == 63
9582 && (idesc->operands[1] == IA64_OPND_P1
9583 || idesc->operands[1] == IA64_OPND_P2))
9585 specs[count] = tmpl;
9586 specs[count++].cmp_type =
9587 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9590 else
9592 if (CURR_SLOT.qp_regno == 63)
9594 specs[count++] = tmpl;
9598 else
9600 UNHANDLED;
9602 break;
9604 case IA64_RS_RSE:
9605 /* FIXME we can identify some individual RSE written resources, but RSE
9606 read resources have not yet been completely identified, so for now
9607 treat RSE as a single resource */
9608 if (strncmp (idesc->name, "mov", 3) == 0)
9610 if (rsrc_write)
9612 if (idesc->operands[0] == IA64_OPND_AR3
9613 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9615 specs[count++] = tmpl;
9618 else
9620 if (idesc->operands[0] == IA64_OPND_AR3)
9622 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9623 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9625 specs[count++] = tmpl;
9628 else if (idesc->operands[1] == IA64_OPND_AR3)
9630 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9631 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9632 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9634 specs[count++] = tmpl;
9639 else
9641 specs[count++] = tmpl;
9643 break;
9645 case IA64_RS_ANY:
9646 /* FIXME -- do any of these need to be non-specific? */
9647 specs[count++] = tmpl;
9648 break;
9650 default:
9651 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9652 break;
9655 return count;
9658 /* Clear branch flags on marked resources. This breaks the link between the
9659 QP of the marking instruction and a subsequent branch on the same QP. */
9661 static void
9662 clear_qp_branch_flag (mask)
9663 valueT mask;
9665 int i;
9666 for (i = 0; i < regdepslen; i++)
9668 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9669 if ((bit & mask) != 0)
9671 regdeps[i].link_to_qp_branch = 0;
9676 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9677 any mutexes which contain one of the PRs and create new ones when
9678 needed. */
9680 static int
9681 update_qp_mutex (valueT mask)
9683 int i;
9684 int add = 0;
9686 i = 0;
9687 while (i < qp_mutexeslen)
9689 if ((qp_mutexes[i].prmask & mask) != 0)
9691 /* If it destroys and creates the same mutex, do nothing. */
9692 if (qp_mutexes[i].prmask == mask
9693 && qp_mutexes[i].path == md.path)
9695 i++;
9696 add = -1;
9698 else
9700 int keep = 0;
9702 if (md.debug_dv)
9704 fprintf (stderr, " Clearing mutex relation");
9705 print_prmask (qp_mutexes[i].prmask);
9706 fprintf (stderr, "\n");
9709 /* Deal with the old mutex with more than 3+ PRs only if
9710 the new mutex on the same execution path with it.
9712 FIXME: The 3+ mutex support is incomplete.
9713 dot_pred_rel () may be a better place to fix it. */
9714 if (qp_mutexes[i].path == md.path)
9716 /* If it is a proper subset of the mutex, create a
9717 new mutex. */
9718 if (add == 0
9719 && (qp_mutexes[i].prmask & mask) == mask)
9720 add = 1;
9722 qp_mutexes[i].prmask &= ~mask;
9723 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9725 /* Modify the mutex if there are more than one
9726 PR left. */
9727 keep = 1;
9728 i++;
9732 if (keep == 0)
9733 /* Remove the mutex. */
9734 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9737 else
9738 ++i;
9741 if (add == 1)
9742 add_qp_mutex (mask);
9744 return add;
9747 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9749 Any changes to a PR clears the mutex relations which include that PR. */
9751 static void
9752 clear_qp_mutex (mask)
9753 valueT mask;
9755 int i;
9757 i = 0;
9758 while (i < qp_mutexeslen)
9760 if ((qp_mutexes[i].prmask & mask) != 0)
9762 if (md.debug_dv)
9764 fprintf (stderr, " Clearing mutex relation");
9765 print_prmask (qp_mutexes[i].prmask);
9766 fprintf (stderr, "\n");
9768 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9770 else
9771 ++i;
9775 /* Clear implies relations which contain PRs in the given masks.
9776 P1_MASK indicates the source of the implies relation, while P2_MASK
9777 indicates the implied PR. */
9779 static void
9780 clear_qp_implies (p1_mask, p2_mask)
9781 valueT p1_mask;
9782 valueT p2_mask;
9784 int i;
9786 i = 0;
9787 while (i < qp_implieslen)
9789 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9790 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9792 if (md.debug_dv)
9793 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9794 qp_implies[i].p1, qp_implies[i].p2);
9795 qp_implies[i] = qp_implies[--qp_implieslen];
9797 else
9798 ++i;
9802 /* Add the PRs specified to the list of implied relations. */
9804 static void
9805 add_qp_imply (p1, p2)
9806 int p1, p2;
9808 valueT mask;
9809 valueT bit;
9810 int i;
9812 /* p0 is not meaningful here. */
9813 if (p1 == 0 || p2 == 0)
9814 abort ();
9816 if (p1 == p2)
9817 return;
9819 /* If it exists already, ignore it. */
9820 for (i = 0; i < qp_implieslen; i++)
9822 if (qp_implies[i].p1 == p1
9823 && qp_implies[i].p2 == p2
9824 && qp_implies[i].path == md.path
9825 && !qp_implies[i].p2_branched)
9826 return;
9829 if (qp_implieslen == qp_impliestotlen)
9831 qp_impliestotlen += 20;
9832 qp_implies = (struct qp_imply *)
9833 xrealloc ((void *) qp_implies,
9834 qp_impliestotlen * sizeof (struct qp_imply));
9836 if (md.debug_dv)
9837 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9838 qp_implies[qp_implieslen].p1 = p1;
9839 qp_implies[qp_implieslen].p2 = p2;
9840 qp_implies[qp_implieslen].path = md.path;
9841 qp_implies[qp_implieslen++].p2_branched = 0;
9843 /* Add in the implied transitive relations; for everything that p2 implies,
9844 make p1 imply that, too; for everything that implies p1, make it imply p2
9845 as well. */
9846 for (i = 0; i < qp_implieslen; i++)
9848 if (qp_implies[i].p1 == p2)
9849 add_qp_imply (p1, qp_implies[i].p2);
9850 if (qp_implies[i].p2 == p1)
9851 add_qp_imply (qp_implies[i].p1, p2);
9853 /* Add in mutex relations implied by this implies relation; for each mutex
9854 relation containing p2, duplicate it and replace p2 with p1. */
9855 bit = (valueT) 1 << p1;
9856 mask = (valueT) 1 << p2;
9857 for (i = 0; i < qp_mutexeslen; i++)
9859 if (qp_mutexes[i].prmask & mask)
9860 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9864 /* Add the PRs specified in the mask to the mutex list; this means that only
9865 one of the PRs can be true at any time. PR0 should never be included in
9866 the mask. */
9868 static void
9869 add_qp_mutex (mask)
9870 valueT mask;
9872 if (mask & 0x1)
9873 abort ();
9875 if (qp_mutexeslen == qp_mutexestotlen)
9877 qp_mutexestotlen += 20;
9878 qp_mutexes = (struct qpmutex *)
9879 xrealloc ((void *) qp_mutexes,
9880 qp_mutexestotlen * sizeof (struct qpmutex));
9882 if (md.debug_dv)
9884 fprintf (stderr, " Registering mutex on");
9885 print_prmask (mask);
9886 fprintf (stderr, "\n");
9888 qp_mutexes[qp_mutexeslen].path = md.path;
9889 qp_mutexes[qp_mutexeslen++].prmask = mask;
9892 static int
9893 has_suffix_p (name, suffix)
9894 const char *name;
9895 const char *suffix;
9897 size_t namelen = strlen (name);
9898 size_t sufflen = strlen (suffix);
9900 if (namelen <= sufflen)
9901 return 0;
9902 return strcmp (name + namelen - sufflen, suffix) == 0;
9905 static void
9906 clear_register_values ()
9908 int i;
9909 if (md.debug_dv)
9910 fprintf (stderr, " Clearing register values\n");
9911 for (i = 1; i < NELEMS (gr_values); i++)
9912 gr_values[i].known = 0;
9915 /* Keep track of register values/changes which affect DV tracking.
9917 optimization note: should add a flag to classes of insns where otherwise we
9918 have to examine a group of strings to identify them. */
9920 static void
9921 note_register_values (idesc)
9922 struct ia64_opcode *idesc;
9924 valueT qp_changemask = 0;
9925 int i;
9927 /* Invalidate values for registers being written to. */
9928 for (i = 0; i < idesc->num_outputs; i++)
9930 if (idesc->operands[i] == IA64_OPND_R1
9931 || idesc->operands[i] == IA64_OPND_R2
9932 || idesc->operands[i] == IA64_OPND_R3)
9934 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9935 if (regno > 0 && regno < NELEMS (gr_values))
9936 gr_values[regno].known = 0;
9938 else if (idesc->operands[i] == IA64_OPND_R3_2)
9940 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9941 if (regno > 0 && regno < 4)
9942 gr_values[regno].known = 0;
9944 else if (idesc->operands[i] == IA64_OPND_P1
9945 || idesc->operands[i] == IA64_OPND_P2)
9947 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9948 qp_changemask |= (valueT) 1 << regno;
9950 else if (idesc->operands[i] == IA64_OPND_PR)
9952 if (idesc->operands[2] & (valueT) 0x10000)
9953 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9954 else
9955 qp_changemask = idesc->operands[2];
9956 break;
9958 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9960 if (idesc->operands[1] & ((valueT) 1 << 43))
9961 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9962 else
9963 qp_changemask = idesc->operands[1];
9964 qp_changemask &= ~(valueT) 0xFFFF;
9965 break;
9969 /* Always clear qp branch flags on any PR change. */
9970 /* FIXME there may be exceptions for certain compares. */
9971 clear_qp_branch_flag (qp_changemask);
9973 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9974 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9976 qp_changemask |= ~(valueT) 0xFFFF;
9977 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9979 for (i = 32; i < 32 + md.rot.num_regs; i++)
9980 gr_values[i].known = 0;
9982 clear_qp_mutex (qp_changemask);
9983 clear_qp_implies (qp_changemask, qp_changemask);
9985 /* After a call, all register values are undefined, except those marked
9986 as "safe". */
9987 else if (strncmp (idesc->name, "br.call", 6) == 0
9988 || strncmp (idesc->name, "brl.call", 7) == 0)
9990 /* FIXME keep GR values which are marked as "safe_across_calls" */
9991 clear_register_values ();
9992 clear_qp_mutex (~qp_safe_across_calls);
9993 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9994 clear_qp_branch_flag (~qp_safe_across_calls);
9996 else if (is_interruption_or_rfi (idesc)
9997 || is_taken_branch (idesc))
9999 clear_register_values ();
10000 clear_qp_mutex (~(valueT) 0);
10001 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10003 /* Look for mutex and implies relations. */
10004 else if ((idesc->operands[0] == IA64_OPND_P1
10005 || idesc->operands[0] == IA64_OPND_P2)
10006 && (idesc->operands[1] == IA64_OPND_P1
10007 || idesc->operands[1] == IA64_OPND_P2))
10009 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10010 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10011 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10012 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10014 /* If both PRs are PR0, we can't really do anything. */
10015 if (p1 == 0 && p2 == 0)
10017 if (md.debug_dv)
10018 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10020 /* In general, clear mutexes and implies which include P1 or P2,
10021 with the following exceptions. */
10022 else if (has_suffix_p (idesc->name, ".or.andcm")
10023 || has_suffix_p (idesc->name, ".and.orcm"))
10025 clear_qp_implies (p2mask, p1mask);
10027 else if (has_suffix_p (idesc->name, ".andcm")
10028 || has_suffix_p (idesc->name, ".and"))
10030 clear_qp_implies (0, p1mask | p2mask);
10032 else if (has_suffix_p (idesc->name, ".orcm")
10033 || has_suffix_p (idesc->name, ".or"))
10035 clear_qp_mutex (p1mask | p2mask);
10036 clear_qp_implies (p1mask | p2mask, 0);
10038 else
10040 int added = 0;
10042 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10044 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10045 if (p1 == 0 || p2 == 0)
10046 clear_qp_mutex (p1mask | p2mask);
10047 else
10048 added = update_qp_mutex (p1mask | p2mask);
10050 if (CURR_SLOT.qp_regno == 0
10051 || has_suffix_p (idesc->name, ".unc"))
10053 if (added == 0 && p1 && p2)
10054 add_qp_mutex (p1mask | p2mask);
10055 if (CURR_SLOT.qp_regno != 0)
10057 if (p1)
10058 add_qp_imply (p1, CURR_SLOT.qp_regno);
10059 if (p2)
10060 add_qp_imply (p2, CURR_SLOT.qp_regno);
10065 /* Look for mov imm insns into GRs. */
10066 else if (idesc->operands[0] == IA64_OPND_R1
10067 && (idesc->operands[1] == IA64_OPND_IMM22
10068 || idesc->operands[1] == IA64_OPND_IMMU64)
10069 && CURR_SLOT.opnd[1].X_op == O_constant
10070 && (strcmp (idesc->name, "mov") == 0
10071 || strcmp (idesc->name, "movl") == 0))
10073 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10074 if (regno > 0 && regno < NELEMS (gr_values))
10076 gr_values[regno].known = 1;
10077 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10078 gr_values[regno].path = md.path;
10079 if (md.debug_dv)
10081 fprintf (stderr, " Know gr%d = ", regno);
10082 fprintf_vma (stderr, gr_values[regno].value);
10083 fputs ("\n", stderr);
10087 /* Look for dep.z imm insns. */
10088 else if (idesc->operands[0] == IA64_OPND_R1
10089 && idesc->operands[1] == IA64_OPND_IMM8
10090 && strcmp (idesc->name, "dep.z") == 0)
10092 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10093 if (regno > 0 && regno < NELEMS (gr_values))
10095 valueT value = CURR_SLOT.opnd[1].X_add_number;
10097 if (CURR_SLOT.opnd[3].X_add_number < 64)
10098 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10099 value <<= CURR_SLOT.opnd[2].X_add_number;
10100 gr_values[regno].known = 1;
10101 gr_values[regno].value = value;
10102 gr_values[regno].path = md.path;
10103 if (md.debug_dv)
10105 fprintf (stderr, " Know gr%d = ", regno);
10106 fprintf_vma (stderr, gr_values[regno].value);
10107 fputs ("\n", stderr);
10111 else
10113 clear_qp_mutex (qp_changemask);
10114 clear_qp_implies (qp_changemask, qp_changemask);
10118 /* Return whether the given predicate registers are currently mutex. */
10120 static int
10121 qp_mutex (p1, p2, path)
10122 int p1;
10123 int p2;
10124 int path;
10126 int i;
10127 valueT mask;
10129 if (p1 != p2)
10131 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10132 for (i = 0; i < qp_mutexeslen; i++)
10134 if (qp_mutexes[i].path >= path
10135 && (qp_mutexes[i].prmask & mask) == mask)
10136 return 1;
10139 return 0;
10142 /* Return whether the given resource is in the given insn's list of chks
10143 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10144 conflict. */
10146 static int
10147 resources_match (rs, idesc, note, qp_regno, path)
10148 struct rsrc *rs;
10149 struct ia64_opcode *idesc;
10150 int note;
10151 int qp_regno;
10152 int path;
10154 struct rsrc specs[MAX_SPECS];
10155 int count;
10157 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10158 we don't need to check. One exception is note 11, which indicates that
10159 target predicates are written regardless of PR[qp]. */
10160 if (qp_mutex (rs->qp_regno, qp_regno, path)
10161 && note != 11)
10162 return 0;
10164 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10165 while (count-- > 0)
10167 /* UNAT checking is a bit more specific than other resources */
10168 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10169 && specs[count].mem_offset.hint
10170 && rs->mem_offset.hint)
10172 if (rs->mem_offset.base == specs[count].mem_offset.base)
10174 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10175 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10176 return 1;
10177 else
10178 continue;
10182 /* Skip apparent PR write conflicts where both writes are an AND or both
10183 writes are an OR. */
10184 if (rs->dependency->specifier == IA64_RS_PR
10185 || rs->dependency->specifier == IA64_RS_PRr
10186 || rs->dependency->specifier == IA64_RS_PR63)
10188 if (specs[count].cmp_type != CMP_NONE
10189 && specs[count].cmp_type == rs->cmp_type)
10191 if (md.debug_dv)
10192 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10193 dv_mode[rs->dependency->mode],
10194 rs->dependency->specifier != IA64_RS_PR63 ?
10195 specs[count].index : 63);
10196 continue;
10198 if (md.debug_dv)
10199 fprintf (stderr,
10200 " %s on parallel compare conflict %s vs %s on PR%d\n",
10201 dv_mode[rs->dependency->mode],
10202 dv_cmp_type[rs->cmp_type],
10203 dv_cmp_type[specs[count].cmp_type],
10204 rs->dependency->specifier != IA64_RS_PR63 ?
10205 specs[count].index : 63);
10209 /* If either resource is not specific, conservatively assume a conflict
10211 if (!specs[count].specific || !rs->specific)
10212 return 2;
10213 else if (specs[count].index == rs->index)
10214 return 1;
10217 return 0;
10220 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10221 insert a stop to create the break. Update all resource dependencies
10222 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10223 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10224 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10225 instruction. */
10227 static void
10228 insn_group_break (insert_stop, qp_regno, save_current)
10229 int insert_stop;
10230 int qp_regno;
10231 int save_current;
10233 int i;
10235 if (insert_stop && md.num_slots_in_use > 0)
10236 PREV_SLOT.end_of_insn_group = 1;
10238 if (md.debug_dv)
10240 fprintf (stderr, " Insn group break%s",
10241 (insert_stop ? " (w/stop)" : ""));
10242 if (qp_regno != 0)
10243 fprintf (stderr, " effective for QP=%d", qp_regno);
10244 fprintf (stderr, "\n");
10247 i = 0;
10248 while (i < regdepslen)
10250 const struct ia64_dependency *dep = regdeps[i].dependency;
10252 if (qp_regno != 0
10253 && regdeps[i].qp_regno != qp_regno)
10255 ++i;
10256 continue;
10259 if (save_current
10260 && CURR_SLOT.src_file == regdeps[i].file
10261 && CURR_SLOT.src_line == regdeps[i].line)
10263 ++i;
10264 continue;
10267 /* clear dependencies which are automatically cleared by a stop, or
10268 those that have reached the appropriate state of insn serialization */
10269 if (dep->semantics == IA64_DVS_IMPLIED
10270 || dep->semantics == IA64_DVS_IMPLIEDF
10271 || regdeps[i].insn_srlz == STATE_SRLZ)
10273 print_dependency ("Removing", i);
10274 regdeps[i] = regdeps[--regdepslen];
10276 else
10278 if (dep->semantics == IA64_DVS_DATA
10279 || dep->semantics == IA64_DVS_INSTR
10280 || dep->semantics == IA64_DVS_SPECIFIC)
10282 if (regdeps[i].insn_srlz == STATE_NONE)
10283 regdeps[i].insn_srlz = STATE_STOP;
10284 if (regdeps[i].data_srlz == STATE_NONE)
10285 regdeps[i].data_srlz = STATE_STOP;
10287 ++i;
10292 /* Add the given resource usage spec to the list of active dependencies. */
10294 static void
10295 mark_resource (idesc, dep, spec, depind, path)
10296 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10297 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10298 struct rsrc *spec;
10299 int depind;
10300 int path;
10302 if (regdepslen == regdepstotlen)
10304 regdepstotlen += 20;
10305 regdeps = (struct rsrc *)
10306 xrealloc ((void *) regdeps,
10307 regdepstotlen * sizeof (struct rsrc));
10310 regdeps[regdepslen] = *spec;
10311 regdeps[regdepslen].depind = depind;
10312 regdeps[regdepslen].path = path;
10313 regdeps[regdepslen].file = CURR_SLOT.src_file;
10314 regdeps[regdepslen].line = CURR_SLOT.src_line;
10316 print_dependency ("Adding", regdepslen);
10318 ++regdepslen;
10321 static void
10322 print_dependency (action, depind)
10323 const char *action;
10324 int depind;
10326 if (md.debug_dv)
10328 fprintf (stderr, " %s %s '%s'",
10329 action, dv_mode[(regdeps[depind].dependency)->mode],
10330 (regdeps[depind].dependency)->name);
10331 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10332 fprintf (stderr, " (%d)", regdeps[depind].index);
10333 if (regdeps[depind].mem_offset.hint)
10335 fputs (" ", stderr);
10336 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10337 fputs ("+", stderr);
10338 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10340 fprintf (stderr, "\n");
10344 static void
10345 instruction_serialization ()
10347 int i;
10348 if (md.debug_dv)
10349 fprintf (stderr, " Instruction serialization\n");
10350 for (i = 0; i < regdepslen; i++)
10351 if (regdeps[i].insn_srlz == STATE_STOP)
10352 regdeps[i].insn_srlz = STATE_SRLZ;
10355 static void
10356 data_serialization ()
10358 int i = 0;
10359 if (md.debug_dv)
10360 fprintf (stderr, " Data serialization\n");
10361 while (i < regdepslen)
10363 if (regdeps[i].data_srlz == STATE_STOP
10364 /* Note: as of 991210, all "other" dependencies are cleared by a
10365 data serialization. This might change with new tables */
10366 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10368 print_dependency ("Removing", i);
10369 regdeps[i] = regdeps[--regdepslen];
10371 else
10372 ++i;
10376 /* Insert stops and serializations as needed to avoid DVs. */
10378 static void
10379 remove_marked_resource (rs)
10380 struct rsrc *rs;
10382 switch (rs->dependency->semantics)
10384 case IA64_DVS_SPECIFIC:
10385 if (md.debug_dv)
10386 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10387 /* ...fall through... */
10388 case IA64_DVS_INSTR:
10389 if (md.debug_dv)
10390 fprintf (stderr, "Inserting instr serialization\n");
10391 if (rs->insn_srlz < STATE_STOP)
10392 insn_group_break (1, 0, 0);
10393 if (rs->insn_srlz < STATE_SRLZ)
10395 struct slot oldslot = CURR_SLOT;
10396 /* Manually jam a srlz.i insn into the stream */
10397 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10398 CURR_SLOT.user_template = -1;
10399 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10400 instruction_serialization ();
10401 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10402 if (++md.num_slots_in_use >= NUM_SLOTS)
10403 emit_one_bundle ();
10404 CURR_SLOT = oldslot;
10406 insn_group_break (1, 0, 0);
10407 break;
10408 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10409 "other" types of DV are eliminated
10410 by a data serialization */
10411 case IA64_DVS_DATA:
10412 if (md.debug_dv)
10413 fprintf (stderr, "Inserting data serialization\n");
10414 if (rs->data_srlz < STATE_STOP)
10415 insn_group_break (1, 0, 0);
10417 struct slot oldslot = CURR_SLOT;
10418 /* Manually jam a srlz.d insn into the stream */
10419 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10420 CURR_SLOT.user_template = -1;
10421 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10422 data_serialization ();
10423 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10424 if (++md.num_slots_in_use >= NUM_SLOTS)
10425 emit_one_bundle ();
10426 CURR_SLOT = oldslot;
10428 break;
10429 case IA64_DVS_IMPLIED:
10430 case IA64_DVS_IMPLIEDF:
10431 if (md.debug_dv)
10432 fprintf (stderr, "Inserting stop\n");
10433 insn_group_break (1, 0, 0);
10434 break;
10435 default:
10436 break;
10440 /* Check the resources used by the given opcode against the current dependency
10441 list.
10443 The check is run once for each execution path encountered. In this case,
10444 a unique execution path is the sequence of instructions following a code
10445 entry point, e.g. the following has three execution paths, one starting
10446 at L0, one at L1, and one at L2.
10448 L0: nop
10449 L1: add
10450 L2: add
10451 br.ret
10454 static void
10455 check_dependencies (idesc)
10456 struct ia64_opcode *idesc;
10458 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10459 int path;
10460 int i;
10462 /* Note that the number of marked resources may change within the
10463 loop if in auto mode. */
10464 i = 0;
10465 while (i < regdepslen)
10467 struct rsrc *rs = &regdeps[i];
10468 const struct ia64_dependency *dep = rs->dependency;
10469 int chkind;
10470 int note;
10471 int start_over = 0;
10473 if (dep->semantics == IA64_DVS_NONE
10474 || (chkind = depends_on (rs->depind, idesc)) == -1)
10476 ++i;
10477 continue;
10480 note = NOTE (opdeps->chks[chkind]);
10482 /* Check this resource against each execution path seen thus far. */
10483 for (path = 0; path <= md.path; path++)
10485 int matchtype;
10487 /* If the dependency wasn't on the path being checked, ignore it. */
10488 if (rs->path < path)
10489 continue;
10491 /* If the QP for this insn implies a QP which has branched, don't
10492 bother checking. Ed. NOTE: I don't think this check is terribly
10493 useful; what's the point of generating code which will only be
10494 reached if its QP is zero?
10495 This code was specifically inserted to handle the following code,
10496 based on notes from Intel's DV checking code, where p1 implies p2.
10498 mov r4 = 2
10499 (p2) br.cond L
10500 (p1) mov r4 = 7
10502 if (CURR_SLOT.qp_regno != 0)
10504 int skip = 0;
10505 int implies;
10506 for (implies = 0; implies < qp_implieslen; implies++)
10508 if (qp_implies[implies].path >= path
10509 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10510 && qp_implies[implies].p2_branched)
10512 skip = 1;
10513 break;
10516 if (skip)
10517 continue;
10520 if ((matchtype = resources_match (rs, idesc, note,
10521 CURR_SLOT.qp_regno, path)) != 0)
10523 char msg[1024];
10524 char pathmsg[256] = "";
10525 char indexmsg[256] = "";
10526 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10528 if (path != 0)
10529 sprintf (pathmsg, " when entry is at label '%s'",
10530 md.entry_labels[path - 1]);
10531 if (matchtype == 1 && rs->index >= 0)
10532 sprintf (indexmsg, ", specific resource number is %d",
10533 rs->index);
10534 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10535 idesc->name,
10536 (certain ? "violates" : "may violate"),
10537 dv_mode[dep->mode], dep->name,
10538 dv_sem[dep->semantics],
10539 pathmsg, indexmsg);
10541 if (md.explicit_mode)
10543 as_warn ("%s", msg);
10544 if (path < md.path)
10545 as_warn (_("Only the first path encountering the conflict "
10546 "is reported"));
10547 as_warn_where (rs->file, rs->line,
10548 _("This is the location of the "
10549 "conflicting usage"));
10550 /* Don't bother checking other paths, to avoid duplicating
10551 the same warning */
10552 break;
10554 else
10556 if (md.debug_dv)
10557 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10559 remove_marked_resource (rs);
10561 /* since the set of dependencies has changed, start over */
10562 /* FIXME -- since we're removing dvs as we go, we
10563 probably don't really need to start over... */
10564 start_over = 1;
10565 break;
10569 if (start_over)
10570 i = 0;
10571 else
10572 ++i;
10576 /* Register new dependencies based on the given opcode. */
10578 static void
10579 mark_resources (idesc)
10580 struct ia64_opcode *idesc;
10582 int i;
10583 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10584 int add_only_qp_reads = 0;
10586 /* A conditional branch only uses its resources if it is taken; if it is
10587 taken, we stop following that path. The other branch types effectively
10588 *always* write their resources. If it's not taken, register only QP
10589 reads. */
10590 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10592 add_only_qp_reads = 1;
10595 if (md.debug_dv)
10596 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10598 for (i = 0; i < opdeps->nregs; i++)
10600 const struct ia64_dependency *dep;
10601 struct rsrc specs[MAX_SPECS];
10602 int note;
10603 int path;
10604 int count;
10606 dep = ia64_find_dependency (opdeps->regs[i]);
10607 note = NOTE (opdeps->regs[i]);
10609 if (add_only_qp_reads
10610 && !(dep->mode == IA64_DV_WAR
10611 && (dep->specifier == IA64_RS_PR
10612 || dep->specifier == IA64_RS_PRr
10613 || dep->specifier == IA64_RS_PR63)))
10614 continue;
10616 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10618 while (count-- > 0)
10620 mark_resource (idesc, dep, &specs[count],
10621 DEP (opdeps->regs[i]), md.path);
10624 /* The execution path may affect register values, which may in turn
10625 affect which indirect-access resources are accessed. */
10626 switch (dep->specifier)
10628 default:
10629 break;
10630 case IA64_RS_CPUID:
10631 case IA64_RS_DBR:
10632 case IA64_RS_IBR:
10633 case IA64_RS_MSR:
10634 case IA64_RS_PKR:
10635 case IA64_RS_PMC:
10636 case IA64_RS_PMD:
10637 case IA64_RS_RR:
10638 for (path = 0; path < md.path; path++)
10640 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10641 while (count-- > 0)
10642 mark_resource (idesc, dep, &specs[count],
10643 DEP (opdeps->regs[i]), path);
10645 break;
10650 /* Remove dependencies when they no longer apply. */
10652 static void
10653 update_dependencies (idesc)
10654 struct ia64_opcode *idesc;
10656 int i;
10658 if (strcmp (idesc->name, "srlz.i") == 0)
10660 instruction_serialization ();
10662 else if (strcmp (idesc->name, "srlz.d") == 0)
10664 data_serialization ();
10666 else if (is_interruption_or_rfi (idesc)
10667 || is_taken_branch (idesc))
10669 /* Although technically the taken branch doesn't clear dependencies
10670 which require a srlz.[id], we don't follow the branch; the next
10671 instruction is assumed to start with a clean slate. */
10672 regdepslen = 0;
10673 md.path = 0;
10675 else if (is_conditional_branch (idesc)
10676 && CURR_SLOT.qp_regno != 0)
10678 int is_call = strstr (idesc->name, ".call") != NULL;
10680 for (i = 0; i < qp_implieslen; i++)
10682 /* If the conditional branch's predicate is implied by the predicate
10683 in an existing dependency, remove that dependency. */
10684 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10686 int depind = 0;
10687 /* Note that this implied predicate takes a branch so that if
10688 a later insn generates a DV but its predicate implies this
10689 one, we can avoid the false DV warning. */
10690 qp_implies[i].p2_branched = 1;
10691 while (depind < regdepslen)
10693 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10695 print_dependency ("Removing", depind);
10696 regdeps[depind] = regdeps[--regdepslen];
10698 else
10699 ++depind;
10703 /* Any marked resources which have this same predicate should be
10704 cleared, provided that the QP hasn't been modified between the
10705 marking instruction and the branch. */
10706 if (is_call)
10708 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10710 else
10712 i = 0;
10713 while (i < regdepslen)
10715 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10716 && regdeps[i].link_to_qp_branch
10717 && (regdeps[i].file != CURR_SLOT.src_file
10718 || regdeps[i].line != CURR_SLOT.src_line))
10720 /* Treat like a taken branch */
10721 print_dependency ("Removing", i);
10722 regdeps[i] = regdeps[--regdepslen];
10724 else
10725 ++i;
10731 /* Examine the current instruction for dependency violations. */
10733 static int
10734 check_dv (idesc)
10735 struct ia64_opcode *idesc;
10737 if (md.debug_dv)
10739 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10740 idesc->name, CURR_SLOT.src_line,
10741 idesc->dependencies->nchks,
10742 idesc->dependencies->nregs);
10745 /* Look through the list of currently marked resources; if the current
10746 instruction has the dependency in its chks list which uses that resource,
10747 check against the specific resources used. */
10748 check_dependencies (idesc);
10750 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10751 then add them to the list of marked resources. */
10752 mark_resources (idesc);
10754 /* There are several types of dependency semantics, and each has its own
10755 requirements for being cleared
10757 Instruction serialization (insns separated by interruption, rfi, or
10758 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10760 Data serialization (instruction serialization, or writer + srlz.d +
10761 reader, where writer and srlz.d are in separate groups) clears
10762 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10763 always be the case).
10765 Instruction group break (groups separated by stop, taken branch,
10766 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10768 update_dependencies (idesc);
10770 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10771 warning. Keep track of as many as possible that are useful. */
10772 note_register_values (idesc);
10774 /* We don't need or want this anymore. */
10775 md.mem_offset.hint = 0;
10777 return 0;
10780 /* Translate one line of assembly. Pseudo ops and labels do not show
10781 here. */
10782 void
10783 md_assemble (str)
10784 char *str;
10786 char *saved_input_line_pointer, *mnemonic;
10787 const struct pseudo_opcode *pdesc;
10788 struct ia64_opcode *idesc;
10789 unsigned char qp_regno;
10790 unsigned int flags;
10791 int ch;
10793 saved_input_line_pointer = input_line_pointer;
10794 input_line_pointer = str;
10796 /* extract the opcode (mnemonic): */
10798 mnemonic = input_line_pointer;
10799 ch = get_symbol_end ();
10800 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10801 if (pdesc)
10803 *input_line_pointer = ch;
10804 (*pdesc->handler) (pdesc->arg);
10805 goto done;
10808 /* Find the instruction descriptor matching the arguments. */
10810 idesc = ia64_find_opcode (mnemonic);
10811 *input_line_pointer = ch;
10812 if (!idesc)
10814 as_bad ("Unknown opcode `%s'", mnemonic);
10815 goto done;
10818 idesc = parse_operands (idesc);
10819 if (!idesc)
10820 goto done;
10822 /* Handle the dynamic ops we can handle now: */
10823 if (idesc->type == IA64_TYPE_DYN)
10825 if (strcmp (idesc->name, "add") == 0)
10827 if (CURR_SLOT.opnd[2].X_op == O_register
10828 && CURR_SLOT.opnd[2].X_add_number < 4)
10829 mnemonic = "addl";
10830 else
10831 mnemonic = "adds";
10832 ia64_free_opcode (idesc);
10833 idesc = ia64_find_opcode (mnemonic);
10835 else if (strcmp (idesc->name, "mov") == 0)
10837 enum ia64_opnd opnd1, opnd2;
10838 int rop;
10840 opnd1 = idesc->operands[0];
10841 opnd2 = idesc->operands[1];
10842 if (opnd1 == IA64_OPND_AR3)
10843 rop = 0;
10844 else if (opnd2 == IA64_OPND_AR3)
10845 rop = 1;
10846 else
10847 abort ();
10848 if (CURR_SLOT.opnd[rop].X_op == O_register)
10850 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10851 mnemonic = "mov.i";
10852 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10853 mnemonic = "mov.m";
10854 else
10855 rop = -1;
10857 else
10858 abort ();
10859 if (rop >= 0)
10861 ia64_free_opcode (idesc);
10862 idesc = ia64_find_opcode (mnemonic);
10863 while (idesc != NULL
10864 && (idesc->operands[0] != opnd1
10865 || idesc->operands[1] != opnd2))
10866 idesc = get_next_opcode (idesc);
10870 else if (strcmp (idesc->name, "mov.i") == 0
10871 || strcmp (idesc->name, "mov.m") == 0)
10873 enum ia64_opnd opnd1, opnd2;
10874 int rop;
10876 opnd1 = idesc->operands[0];
10877 opnd2 = idesc->operands[1];
10878 if (opnd1 == IA64_OPND_AR3)
10879 rop = 0;
10880 else if (opnd2 == IA64_OPND_AR3)
10881 rop = 1;
10882 else
10883 abort ();
10884 if (CURR_SLOT.opnd[rop].X_op == O_register)
10886 char unit = 'a';
10887 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10888 unit = 'i';
10889 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10890 unit = 'm';
10891 if (unit != 'a' && unit != idesc->name [4])
10892 as_bad ("AR %d can only be accessed by %c-unit",
10893 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10894 TOUPPER (unit));
10897 else if (strcmp (idesc->name, "hint.b") == 0)
10899 switch (md.hint_b)
10901 case hint_b_ok:
10902 break;
10903 case hint_b_warning:
10904 as_warn ("hint.b may be treated as nop");
10905 break;
10906 case hint_b_error:
10907 as_bad ("hint.b shouldn't be used");
10908 break;
10912 qp_regno = 0;
10913 if (md.qp.X_op == O_register)
10915 qp_regno = md.qp.X_add_number - REG_P;
10916 md.qp.X_op = O_absent;
10919 flags = idesc->flags;
10921 if ((flags & IA64_OPCODE_FIRST) != 0)
10923 /* The alignment frag has to end with a stop bit only if the
10924 next instruction after the alignment directive has to be
10925 the first instruction in an instruction group. */
10926 if (align_frag)
10928 while (align_frag->fr_type != rs_align_code)
10930 align_frag = align_frag->fr_next;
10931 if (!align_frag)
10932 break;
10934 /* align_frag can be NULL if there are directives in
10935 between. */
10936 if (align_frag && align_frag->fr_next == frag_now)
10937 align_frag->tc_frag_data = 1;
10940 insn_group_break (1, 0, 0);
10942 align_frag = NULL;
10944 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10946 as_bad ("`%s' cannot be predicated", idesc->name);
10947 goto done;
10950 /* Build the instruction. */
10951 CURR_SLOT.qp_regno = qp_regno;
10952 CURR_SLOT.idesc = idesc;
10953 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10954 dwarf2_where (&CURR_SLOT.debug_line);
10956 /* Add unwind entries, if there are any. */
10957 if (unwind.current_entry)
10959 CURR_SLOT.unwind_record = unwind.current_entry;
10960 unwind.current_entry = NULL;
10962 if (unwind.pending_saves)
10964 if (unwind.pending_saves->next)
10966 /* Attach the next pending save to the next slot so that its
10967 slot number will get set correctly. */
10968 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10969 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10971 else
10972 unwind.pending_saves = NULL;
10974 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10975 unwind.insn = 1;
10977 /* Check for dependency violations. */
10978 if (md.detect_dv)
10979 check_dv (idesc);
10981 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10982 if (++md.num_slots_in_use >= NUM_SLOTS)
10983 emit_one_bundle ();
10985 if ((flags & IA64_OPCODE_LAST) != 0)
10986 insn_group_break (1, 0, 0);
10988 md.last_text_seg = now_seg;
10990 done:
10991 input_line_pointer = saved_input_line_pointer;
10994 /* Called when symbol NAME cannot be found in the symbol table.
10995 Should be used for dynamic valued symbols only. */
10997 symbolS *
10998 md_undefined_symbol (name)
10999 char *name ATTRIBUTE_UNUSED;
11001 return 0;
11004 /* Called for any expression that can not be recognized. When the
11005 function is called, `input_line_pointer' will point to the start of
11006 the expression. */
11008 void
11009 md_operand (e)
11010 expressionS *e;
11012 switch (*input_line_pointer)
11014 case '[':
11015 ++input_line_pointer;
11016 expression_and_evaluate (e);
11017 if (*input_line_pointer != ']')
11019 as_bad ("Closing bracket missing");
11020 goto err;
11022 else
11024 if (e->X_op != O_register
11025 || e->X_add_number < REG_GR
11026 || e->X_add_number > REG_GR + 127)
11028 as_bad ("Index must be a general register");
11029 e->X_add_number = REG_GR;
11032 ++input_line_pointer;
11033 e->X_op = O_index;
11035 break;
11037 default:
11038 break;
11040 return;
11042 err:
11043 ignore_rest_of_line ();
11046 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11047 a section symbol plus some offset. For relocs involving @fptr(),
11048 directives we don't want such adjustments since we need to have the
11049 original symbol's name in the reloc. */
11051 ia64_fix_adjustable (fix)
11052 fixS *fix;
11054 /* Prevent all adjustments to global symbols */
11055 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11056 return 0;
11058 switch (fix->fx_r_type)
11060 case BFD_RELOC_IA64_FPTR64I:
11061 case BFD_RELOC_IA64_FPTR32MSB:
11062 case BFD_RELOC_IA64_FPTR32LSB:
11063 case BFD_RELOC_IA64_FPTR64MSB:
11064 case BFD_RELOC_IA64_FPTR64LSB:
11065 case BFD_RELOC_IA64_LTOFF_FPTR22:
11066 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11067 return 0;
11068 default:
11069 break;
11072 return 1;
11076 ia64_force_relocation (fix)
11077 fixS *fix;
11079 switch (fix->fx_r_type)
11081 case BFD_RELOC_IA64_FPTR64I:
11082 case BFD_RELOC_IA64_FPTR32MSB:
11083 case BFD_RELOC_IA64_FPTR32LSB:
11084 case BFD_RELOC_IA64_FPTR64MSB:
11085 case BFD_RELOC_IA64_FPTR64LSB:
11087 case BFD_RELOC_IA64_LTOFF22:
11088 case BFD_RELOC_IA64_LTOFF64I:
11089 case BFD_RELOC_IA64_LTOFF_FPTR22:
11090 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11091 case BFD_RELOC_IA64_PLTOFF22:
11092 case BFD_RELOC_IA64_PLTOFF64I:
11093 case BFD_RELOC_IA64_PLTOFF64MSB:
11094 case BFD_RELOC_IA64_PLTOFF64LSB:
11096 case BFD_RELOC_IA64_LTOFF22X:
11097 case BFD_RELOC_IA64_LDXMOV:
11098 return 1;
11100 default:
11101 break;
11104 return generic_force_reloc (fix);
11107 /* Decide from what point a pc-relative relocation is relative to,
11108 relative to the pc-relative fixup. Er, relatively speaking. */
11109 long
11110 ia64_pcrel_from_section (fix, sec)
11111 fixS *fix;
11112 segT sec;
11114 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11116 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11117 off &= ~0xfUL;
11119 return off;
11123 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11124 void
11125 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11127 expressionS expr;
11129 expr.X_op = O_pseudo_fixup;
11130 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11131 expr.X_add_number = 0;
11132 expr.X_add_symbol = symbol;
11133 emit_expr (&expr, size);
11136 /* This is called whenever some data item (not an instruction) needs a
11137 fixup. We pick the right reloc code depending on the byteorder
11138 currently in effect. */
11139 void
11140 ia64_cons_fix_new (f, where, nbytes, exp)
11141 fragS *f;
11142 int where;
11143 int nbytes;
11144 expressionS *exp;
11146 bfd_reloc_code_real_type code;
11147 fixS *fix;
11149 switch (nbytes)
11151 /* There are no reloc for 8 and 16 bit quantities, but we allow
11152 them here since they will work fine as long as the expression
11153 is fully defined at the end of the pass over the source file. */
11154 case 1: code = BFD_RELOC_8; break;
11155 case 2: code = BFD_RELOC_16; break;
11156 case 4:
11157 if (target_big_endian)
11158 code = BFD_RELOC_IA64_DIR32MSB;
11159 else
11160 code = BFD_RELOC_IA64_DIR32LSB;
11161 break;
11163 case 8:
11164 /* In 32-bit mode, data8 could mean function descriptors too. */
11165 if (exp->X_op == O_pseudo_fixup
11166 && exp->X_op_symbol
11167 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11168 && !(md.flags & EF_IA_64_ABI64))
11170 if (target_big_endian)
11171 code = BFD_RELOC_IA64_IPLTMSB;
11172 else
11173 code = BFD_RELOC_IA64_IPLTLSB;
11174 exp->X_op = O_symbol;
11175 break;
11177 else
11179 if (target_big_endian)
11180 code = BFD_RELOC_IA64_DIR64MSB;
11181 else
11182 code = BFD_RELOC_IA64_DIR64LSB;
11183 break;
11186 case 16:
11187 if (exp->X_op == O_pseudo_fixup
11188 && exp->X_op_symbol
11189 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11191 if (target_big_endian)
11192 code = BFD_RELOC_IA64_IPLTMSB;
11193 else
11194 code = BFD_RELOC_IA64_IPLTLSB;
11195 exp->X_op = O_symbol;
11196 break;
11198 /* FALLTHRU */
11200 default:
11201 as_bad ("Unsupported fixup size %d", nbytes);
11202 ignore_rest_of_line ();
11203 return;
11206 if (exp->X_op == O_pseudo_fixup)
11208 exp->X_op = O_symbol;
11209 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11210 /* ??? If code unchanged, unsupported. */
11213 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11214 /* We need to store the byte order in effect in case we're going
11215 to fix an 8 or 16 bit relocation (for which there no real
11216 relocs available). See md_apply_fix(). */
11217 fix->tc_fix_data.bigendian = target_big_endian;
11220 /* Return the actual relocation we wish to associate with the pseudo
11221 reloc described by SYM and R_TYPE. SYM should be one of the
11222 symbols in the pseudo_func array, or NULL. */
11224 static bfd_reloc_code_real_type
11225 ia64_gen_real_reloc_type (sym, r_type)
11226 struct symbol *sym;
11227 bfd_reloc_code_real_type r_type;
11229 bfd_reloc_code_real_type new = 0;
11230 const char *type = NULL, *suffix = "";
11232 if (sym == NULL)
11234 return r_type;
11237 switch (S_GET_VALUE (sym))
11239 case FUNC_FPTR_RELATIVE:
11240 switch (r_type)
11242 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11243 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11244 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11245 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11246 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11247 default: type = "FPTR"; break;
11249 break;
11251 case FUNC_GP_RELATIVE:
11252 switch (r_type)
11254 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11255 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11256 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11257 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11258 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11259 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11260 default: type = "GPREL"; break;
11262 break;
11264 case FUNC_LT_RELATIVE:
11265 switch (r_type)
11267 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11268 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11269 default: type = "LTOFF"; break;
11271 break;
11273 case FUNC_LT_RELATIVE_X:
11274 switch (r_type)
11276 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11277 default: type = "LTOFF"; suffix = "X"; break;
11279 break;
11281 case FUNC_PC_RELATIVE:
11282 switch (r_type)
11284 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11285 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11286 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11287 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11288 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11289 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11290 default: type = "PCREL"; break;
11292 break;
11294 case FUNC_PLT_RELATIVE:
11295 switch (r_type)
11297 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11298 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11299 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11300 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11301 default: type = "PLTOFF"; break;
11303 break;
11305 case FUNC_SEC_RELATIVE:
11306 switch (r_type)
11308 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11309 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11310 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11311 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11312 default: type = "SECREL"; break;
11314 break;
11316 case FUNC_SEG_RELATIVE:
11317 switch (r_type)
11319 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11320 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11321 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11322 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11323 default: type = "SEGREL"; break;
11325 break;
11327 case FUNC_LTV_RELATIVE:
11328 switch (r_type)
11330 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11331 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11332 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11333 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11334 default: type = "LTV"; break;
11336 break;
11338 case FUNC_LT_FPTR_RELATIVE:
11339 switch (r_type)
11341 case BFD_RELOC_IA64_IMM22:
11342 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11343 case BFD_RELOC_IA64_IMM64:
11344 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11345 case BFD_RELOC_IA64_DIR32MSB:
11346 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11347 case BFD_RELOC_IA64_DIR32LSB:
11348 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11349 case BFD_RELOC_IA64_DIR64MSB:
11350 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11351 case BFD_RELOC_IA64_DIR64LSB:
11352 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11353 default:
11354 type = "LTOFF_FPTR"; break;
11356 break;
11358 case FUNC_TP_RELATIVE:
11359 switch (r_type)
11361 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11362 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11363 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11364 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11365 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11366 default: type = "TPREL"; break;
11368 break;
11370 case FUNC_LT_TP_RELATIVE:
11371 switch (r_type)
11373 case BFD_RELOC_IA64_IMM22:
11374 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11375 default:
11376 type = "LTOFF_TPREL"; break;
11378 break;
11380 case FUNC_DTP_MODULE:
11381 switch (r_type)
11383 case BFD_RELOC_IA64_DIR64MSB:
11384 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11385 case BFD_RELOC_IA64_DIR64LSB:
11386 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11387 default:
11388 type = "DTPMOD"; break;
11390 break;
11392 case FUNC_LT_DTP_MODULE:
11393 switch (r_type)
11395 case BFD_RELOC_IA64_IMM22:
11396 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11397 default:
11398 type = "LTOFF_DTPMOD"; break;
11400 break;
11402 case FUNC_DTP_RELATIVE:
11403 switch (r_type)
11405 case BFD_RELOC_IA64_DIR32MSB:
11406 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11407 case BFD_RELOC_IA64_DIR32LSB:
11408 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11409 case BFD_RELOC_IA64_DIR64MSB:
11410 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11411 case BFD_RELOC_IA64_DIR64LSB:
11412 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11413 case BFD_RELOC_IA64_IMM14:
11414 new = BFD_RELOC_IA64_DTPREL14; break;
11415 case BFD_RELOC_IA64_IMM22:
11416 new = BFD_RELOC_IA64_DTPREL22; break;
11417 case BFD_RELOC_IA64_IMM64:
11418 new = BFD_RELOC_IA64_DTPREL64I; break;
11419 default:
11420 type = "DTPREL"; break;
11422 break;
11424 case FUNC_LT_DTP_RELATIVE:
11425 switch (r_type)
11427 case BFD_RELOC_IA64_IMM22:
11428 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11429 default:
11430 type = "LTOFF_DTPREL"; break;
11432 break;
11434 case FUNC_IPLT_RELOC:
11435 switch (r_type)
11437 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11438 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11439 default: type = "IPLT"; break;
11441 break;
11443 default:
11444 abort ();
11447 if (new)
11448 return new;
11449 else
11451 int width;
11453 if (!type)
11454 abort ();
11455 switch (r_type)
11457 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11458 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11459 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11460 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11461 case BFD_RELOC_UNUSED: width = 13; break;
11462 case BFD_RELOC_IA64_IMM14: width = 14; break;
11463 case BFD_RELOC_IA64_IMM22: width = 22; break;
11464 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11465 default: abort ();
11468 /* This should be an error, but since previously there wasn't any
11469 diagnostic here, dont't make it fail because of this for now. */
11470 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11471 return r_type;
11475 /* Here is where generate the appropriate reloc for pseudo relocation
11476 functions. */
11477 void
11478 ia64_validate_fix (fix)
11479 fixS *fix;
11481 switch (fix->fx_r_type)
11483 case BFD_RELOC_IA64_FPTR64I:
11484 case BFD_RELOC_IA64_FPTR32MSB:
11485 case BFD_RELOC_IA64_FPTR64LSB:
11486 case BFD_RELOC_IA64_LTOFF_FPTR22:
11487 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11488 if (fix->fx_offset != 0)
11489 as_bad_where (fix->fx_file, fix->fx_line,
11490 "No addend allowed in @fptr() relocation");
11491 break;
11492 default:
11493 break;
11497 static void
11498 fix_insn (fix, odesc, value)
11499 fixS *fix;
11500 const struct ia64_operand *odesc;
11501 valueT value;
11503 bfd_vma insn[3], t0, t1, control_bits;
11504 const char *err;
11505 char *fixpos;
11506 long slot;
11508 slot = fix->fx_where & 0x3;
11509 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11511 /* Bundles are always in little-endian byte order */
11512 t0 = bfd_getl64 (fixpos);
11513 t1 = bfd_getl64 (fixpos + 8);
11514 control_bits = t0 & 0x1f;
11515 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11516 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11517 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11519 err = NULL;
11520 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11522 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11523 insn[2] |= (((value & 0x7f) << 13)
11524 | (((value >> 7) & 0x1ff) << 27)
11525 | (((value >> 16) & 0x1f) << 22)
11526 | (((value >> 21) & 0x1) << 21)
11527 | (((value >> 63) & 0x1) << 36));
11529 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11531 if (value & ~0x3fffffffffffffffULL)
11532 err = "integer operand out of range";
11533 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11534 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11536 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11538 value >>= 4;
11539 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11540 insn[2] |= ((((value >> 59) & 0x1) << 36)
11541 | (((value >> 0) & 0xfffff) << 13));
11543 else
11544 err = (*odesc->insert) (odesc, value, insn + slot);
11546 if (err)
11547 as_bad_where (fix->fx_file, fix->fx_line, err);
11549 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11550 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11551 number_to_chars_littleendian (fixpos + 0, t0, 8);
11552 number_to_chars_littleendian (fixpos + 8, t1, 8);
11555 /* Attempt to simplify or even eliminate a fixup. The return value is
11556 ignored; perhaps it was once meaningful, but now it is historical.
11557 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11559 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11560 (if possible). */
11562 void
11563 md_apply_fix (fix, valP, seg)
11564 fixS *fix;
11565 valueT *valP;
11566 segT seg ATTRIBUTE_UNUSED;
11568 char *fixpos;
11569 valueT value = *valP;
11571 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11573 if (fix->fx_pcrel)
11575 switch (fix->fx_r_type)
11577 case BFD_RELOC_IA64_PCREL21B: break;
11578 case BFD_RELOC_IA64_PCREL21BI: break;
11579 case BFD_RELOC_IA64_PCREL21F: break;
11580 case BFD_RELOC_IA64_PCREL21M: break;
11581 case BFD_RELOC_IA64_PCREL60B: break;
11582 case BFD_RELOC_IA64_PCREL22: break;
11583 case BFD_RELOC_IA64_PCREL64I: break;
11584 case BFD_RELOC_IA64_PCREL32MSB: break;
11585 case BFD_RELOC_IA64_PCREL32LSB: break;
11586 case BFD_RELOC_IA64_PCREL64MSB: break;
11587 case BFD_RELOC_IA64_PCREL64LSB: break;
11588 default:
11589 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11590 fix->fx_r_type);
11591 break;
11594 if (fix->fx_addsy)
11596 switch (fix->fx_r_type)
11598 case BFD_RELOC_UNUSED:
11599 /* This must be a TAG13 or TAG13b operand. There are no external
11600 relocs defined for them, so we must give an error. */
11601 as_bad_where (fix->fx_file, fix->fx_line,
11602 "%s must have a constant value",
11603 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11604 fix->fx_done = 1;
11605 return;
11607 case BFD_RELOC_IA64_TPREL14:
11608 case BFD_RELOC_IA64_TPREL22:
11609 case BFD_RELOC_IA64_TPREL64I:
11610 case BFD_RELOC_IA64_LTOFF_TPREL22:
11611 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11612 case BFD_RELOC_IA64_DTPREL14:
11613 case BFD_RELOC_IA64_DTPREL22:
11614 case BFD_RELOC_IA64_DTPREL64I:
11615 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11616 S_SET_THREAD_LOCAL (fix->fx_addsy);
11617 break;
11619 default:
11620 break;
11623 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11625 if (fix->tc_fix_data.bigendian)
11626 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11627 else
11628 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11629 fix->fx_done = 1;
11631 else
11633 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11634 fix->fx_done = 1;
11638 /* Generate the BFD reloc to be stuck in the object file from the
11639 fixup used internally in the assembler. */
11641 arelent *
11642 tc_gen_reloc (sec, fixp)
11643 asection *sec ATTRIBUTE_UNUSED;
11644 fixS *fixp;
11646 arelent *reloc;
11648 reloc = xmalloc (sizeof (*reloc));
11649 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11650 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11651 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11652 reloc->addend = fixp->fx_offset;
11653 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11655 if (!reloc->howto)
11657 as_bad_where (fixp->fx_file, fixp->fx_line,
11658 "Cannot represent %s relocation in object file",
11659 bfd_get_reloc_code_name (fixp->fx_r_type));
11661 return reloc;
11664 /* Turn a string in input_line_pointer into a floating point constant
11665 of type TYPE, and store the appropriate bytes in *LIT. The number
11666 of LITTLENUMS emitted is stored in *SIZE. An error message is
11667 returned, or NULL on OK. */
11669 #define MAX_LITTLENUMS 5
11671 char *
11672 md_atof (type, lit, size)
11673 int type;
11674 char *lit;
11675 int *size;
11677 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11678 char *t;
11679 int prec;
11681 switch (type)
11683 /* IEEE floats */
11684 case 'f':
11685 case 'F':
11686 case 's':
11687 case 'S':
11688 prec = 2;
11689 break;
11691 case 'd':
11692 case 'D':
11693 case 'r':
11694 case 'R':
11695 prec = 4;
11696 break;
11698 case 'x':
11699 case 'X':
11700 case 'p':
11701 case 'P':
11702 prec = 5;
11703 break;
11705 default:
11706 *size = 0;
11707 return "Bad call to MD_ATOF()";
11709 t = atof_ieee (input_line_pointer, type, words);
11710 if (t)
11711 input_line_pointer = t;
11713 (*ia64_float_to_chars) (lit, words, prec);
11715 if (type == 'X')
11717 /* It is 10 byte floating point with 6 byte padding. */
11718 memset (&lit [10], 0, 6);
11719 *size = 8 * sizeof (LITTLENUM_TYPE);
11721 else
11722 *size = prec * sizeof (LITTLENUM_TYPE);
11724 return 0;
11727 /* Handle ia64 specific semantics of the align directive. */
11729 void
11730 ia64_md_do_align (n, fill, len, max)
11731 int n ATTRIBUTE_UNUSED;
11732 const char *fill ATTRIBUTE_UNUSED;
11733 int len ATTRIBUTE_UNUSED;
11734 int max ATTRIBUTE_UNUSED;
11736 if (subseg_text_p (now_seg))
11737 ia64_flush_insns ();
11740 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11741 of an rs_align_code fragment. */
11743 void
11744 ia64_handle_align (fragp)
11745 fragS *fragp;
11747 int bytes;
11748 char *p;
11749 const unsigned char *nop;
11751 if (fragp->fr_type != rs_align_code)
11752 return;
11754 /* Check if this frag has to end with a stop bit. */
11755 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11757 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11758 p = fragp->fr_literal + fragp->fr_fix;
11760 /* If no paddings are needed, we check if we need a stop bit. */
11761 if (!bytes && fragp->tc_frag_data)
11763 if (fragp->fr_fix < 16)
11764 #if 1
11765 /* FIXME: It won't work with
11766 .align 16
11767 alloc r32=ar.pfs,1,2,4,0
11770 #else
11771 as_bad_where (fragp->fr_file, fragp->fr_line,
11772 _("Can't add stop bit to mark end of instruction group"));
11773 #endif
11774 else
11775 /* Bundles are always in little-endian byte order. Make sure
11776 the previous bundle has the stop bit. */
11777 *(p - 16) |= 1;
11780 /* Make sure we are on a 16-byte boundary, in case someone has been
11781 putting data into a text section. */
11782 if (bytes & 15)
11784 int fix = bytes & 15;
11785 memset (p, 0, fix);
11786 p += fix;
11787 bytes -= fix;
11788 fragp->fr_fix += fix;
11791 /* Instruction bundles are always little-endian. */
11792 memcpy (p, nop, 16);
11793 fragp->fr_var = 16;
11796 static void
11797 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11798 int prec)
11800 while (prec--)
11802 number_to_chars_bigendian (lit, (long) (*words++),
11803 sizeof (LITTLENUM_TYPE));
11804 lit += sizeof (LITTLENUM_TYPE);
11808 static void
11809 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11810 int prec)
11812 while (prec--)
11814 number_to_chars_littleendian (lit, (long) (words[prec]),
11815 sizeof (LITTLENUM_TYPE));
11816 lit += sizeof (LITTLENUM_TYPE);
11820 void
11821 ia64_elf_section_change_hook (void)
11823 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11824 && elf_linked_to_section (now_seg) == NULL)
11825 elf_linked_to_section (now_seg) = text_section;
11826 dot_byteorder (-1);
11829 /* Check if a label should be made global. */
11830 void
11831 ia64_check_label (symbolS *label)
11833 if (*input_line_pointer == ':')
11835 S_SET_EXTERNAL (label);
11836 input_line_pointer++;
11840 /* Used to remember where .alias and .secalias directives are seen. We
11841 will rename symbol and section names when we are about to output
11842 the relocatable file. */
11843 struct alias
11845 char *file; /* The file where the directive is seen. */
11846 unsigned int line; /* The line number the directive is at. */
11847 const char *name; /* The orignale name of the symbol. */
11850 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11851 .secalias. Otherwise, it is .alias. */
11852 static void
11853 dot_alias (int section)
11855 char *name, *alias;
11856 char delim;
11857 char *end_name;
11858 int len;
11859 const char *error_string;
11860 struct alias *h;
11861 const char *a;
11862 struct hash_control *ahash, *nhash;
11863 const char *kind;
11865 name = input_line_pointer;
11866 delim = get_symbol_end ();
11867 end_name = input_line_pointer;
11868 *end_name = delim;
11870 if (name == end_name)
11872 as_bad (_("expected symbol name"));
11873 ignore_rest_of_line ();
11874 return;
11877 SKIP_WHITESPACE ();
11879 if (*input_line_pointer != ',')
11881 *end_name = 0;
11882 as_bad (_("expected comma after \"%s\""), name);
11883 *end_name = delim;
11884 ignore_rest_of_line ();
11885 return;
11888 input_line_pointer++;
11889 *end_name = 0;
11890 ia64_canonicalize_symbol_name (name);
11892 /* We call demand_copy_C_string to check if alias string is valid.
11893 There should be a closing `"' and no `\0' in the string. */
11894 alias = demand_copy_C_string (&len);
11895 if (alias == NULL)
11897 ignore_rest_of_line ();
11898 return;
11901 /* Make a copy of name string. */
11902 len = strlen (name) + 1;
11903 obstack_grow (&notes, name, len);
11904 name = obstack_finish (&notes);
11906 if (section)
11908 kind = "section";
11909 ahash = secalias_hash;
11910 nhash = secalias_name_hash;
11912 else
11914 kind = "symbol";
11915 ahash = alias_hash;
11916 nhash = alias_name_hash;
11919 /* Check if alias has been used before. */
11920 h = (struct alias *) hash_find (ahash, alias);
11921 if (h)
11923 if (strcmp (h->name, name))
11924 as_bad (_("`%s' is already the alias of %s `%s'"),
11925 alias, kind, h->name);
11926 goto out;
11929 /* Check if name already has an alias. */
11930 a = (const char *) hash_find (nhash, name);
11931 if (a)
11933 if (strcmp (a, alias))
11934 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11935 goto out;
11938 h = (struct alias *) xmalloc (sizeof (struct alias));
11939 as_where (&h->file, &h->line);
11940 h->name = name;
11942 error_string = hash_jam (ahash, alias, (PTR) h);
11943 if (error_string)
11945 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11946 alias, kind, error_string);
11947 goto out;
11950 error_string = hash_jam (nhash, name, (PTR) alias);
11951 if (error_string)
11953 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11954 alias, kind, error_string);
11955 out:
11956 obstack_free (&notes, name);
11957 obstack_free (&notes, alias);
11960 demand_empty_rest_of_line ();
11963 /* It renames the original symbol name to its alias. */
11964 static void
11965 do_alias (const char *alias, PTR value)
11967 struct alias *h = (struct alias *) value;
11968 symbolS *sym = symbol_find (h->name);
11970 if (sym == NULL)
11971 as_warn_where (h->file, h->line,
11972 _("symbol `%s' aliased to `%s' is not used"),
11973 h->name, alias);
11974 else
11975 S_SET_NAME (sym, (char *) alias);
11978 /* Called from write_object_file. */
11979 void
11980 ia64_adjust_symtab (void)
11982 hash_traverse (alias_hash, do_alias);
11985 /* It renames the original section name to its alias. */
11986 static void
11987 do_secalias (const char *alias, PTR value)
11989 struct alias *h = (struct alias *) value;
11990 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11992 if (sec == NULL)
11993 as_warn_where (h->file, h->line,
11994 _("section `%s' aliased to `%s' is not used"),
11995 h->name, alias);
11996 else
11997 sec->name = alias;
12000 /* Called from write_object_file. */
12001 void
12002 ia64_frob_file (void)
12004 hash_traverse (secalias_hash, do_secalias);