1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 bfd_byte
*shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
273 return (char *) shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
295 (*_bfd_error_handler
)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
298 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
300 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_sym_name (bfd
*abfd
,
409 Elf_Internal_Shdr
*symtab_hdr
,
410 Elf_Internal_Sym
*isym
,
414 unsigned int iname
= isym
->st_name
;
415 unsigned int shindex
= symtab_hdr
->sh_link
;
417 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym
->st_shndx
< elf_numsections (abfd
)
420 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
422 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
423 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
426 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
429 else if (sym_sec
&& *name
== '\0')
430 name
= bfd_section_name (abfd
, sym_sec
);
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
439 typedef union elf_internal_group
{
440 Elf_Internal_Shdr
*shdr
;
442 } Elf_Internal_Group
;
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
448 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
450 Elf_Internal_Shdr
*hdr
;
451 unsigned char esym
[sizeof (Elf64_External_Sym
)];
452 Elf_External_Sym_Shndx eshndx
;
453 Elf_Internal_Sym isym
;
455 /* First we need to ensure the symbol table is available. */
456 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
459 /* Go read the symbol. */
460 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
461 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
462 &isym
, esym
, &eshndx
) == NULL
)
465 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
468 /* Set next_in_group list pointer, and group name for NEWSECT. */
471 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
473 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
475 /* If num_group is zero, read in all SHT_GROUP sections. The count
476 is set to -1 if there are no SHT_GROUP sections. */
479 unsigned int i
, shnum
;
481 /* First count the number of groups. If we have a SHT_GROUP
482 section with just a flag word (ie. sh_size is 4), ignore it. */
483 shnum
= elf_numsections (abfd
);
485 for (i
= 0; i
< shnum
; i
++)
487 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
488 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
494 num_group
= (unsigned) -1;
495 elf_tdata (abfd
)->num_group
= num_group
;
499 /* We keep a list of elf section headers for group sections,
500 so we can find them quickly. */
503 elf_tdata (abfd
)->num_group
= num_group
;
504 amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
505 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
506 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
510 for (i
= 0; i
< shnum
; i
++)
512 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
513 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
516 Elf_Internal_Group
*dest
;
518 /* Add to list of sections. */
519 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
522 /* Read the raw contents. */
523 BFD_ASSERT (sizeof (*dest
) >= 4);
524 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
525 shdr
->contents
= bfd_alloc (abfd
, amt
);
526 if (shdr
->contents
== NULL
527 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
528 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
532 /* Translate raw contents, a flag word followed by an
533 array of elf section indices all in target byte order,
534 to the flag word followed by an array of elf section
536 src
= shdr
->contents
+ shdr
->sh_size
;
537 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
544 idx
= H_GET_32 (abfd
, src
);
545 if (src
== shdr
->contents
)
548 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
549 shdr
->bfd_section
->flags
550 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
555 ((*_bfd_error_handler
)
556 (_("%B: invalid SHT_GROUP entry"), abfd
));
559 dest
->shdr
= elf_elfsections (abfd
)[idx
];
566 if (num_group
!= (unsigned) -1)
570 for (i
= 0; i
< num_group
; i
++)
572 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
573 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
574 unsigned int n_elt
= shdr
->sh_size
/ 4;
576 /* Look through this group's sections to see if current
577 section is a member. */
579 if ((++idx
)->shdr
== hdr
)
583 /* We are a member of this group. Go looking through
584 other members to see if any others are linked via
586 idx
= (Elf_Internal_Group
*) shdr
->contents
;
587 n_elt
= shdr
->sh_size
/ 4;
589 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
590 && elf_next_in_group (s
) != NULL
)
594 /* Snarf the group name from other member, and
595 insert current section in circular list. */
596 elf_group_name (newsect
) = elf_group_name (s
);
597 elf_next_in_group (newsect
) = elf_next_in_group (s
);
598 elf_next_in_group (s
) = newsect
;
604 gname
= group_signature (abfd
, shdr
);
607 elf_group_name (newsect
) = gname
;
609 /* Start a circular list with one element. */
610 elf_next_in_group (newsect
) = newsect
;
613 /* If the group section has been created, point to the
615 if (shdr
->bfd_section
!= NULL
)
616 elf_next_in_group (shdr
->bfd_section
) = newsect
;
624 if (elf_group_name (newsect
) == NULL
)
626 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
633 _bfd_elf_setup_group_pointers (bfd
*abfd
)
636 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
637 bfd_boolean result
= TRUE
;
639 if (num_group
== (unsigned) -1)
642 for (i
= 0; i
< num_group
; i
++)
644 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
645 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
646 unsigned int n_elt
= shdr
->sh_size
/ 4;
649 if ((++idx
)->shdr
->bfd_section
)
650 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
651 else if (idx
->shdr
->sh_type
== SHT_RELA
652 || idx
->shdr
->sh_type
== SHT_REL
)
653 /* We won't include relocation sections in section groups in
654 output object files. We adjust the group section size here
655 so that relocatable link will work correctly when
656 relocation sections are in section group in input object
658 shdr
->bfd_section
->size
-= 4;
661 /* There are some unknown sections in the group. */
662 (*_bfd_error_handler
)
663 (_("%B: unknown [%d] section `%s' in group [%s]"),
665 (unsigned int) idx
->shdr
->sh_type
,
666 bfd_elf_string_from_elf_section (abfd
,
667 (elf_elfheader (abfd
)
670 shdr
->bfd_section
->name
);
678 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
680 return elf_next_in_group (sec
) != NULL
;
683 /* Make a BFD section from an ELF section. We store a pointer to the
684 BFD section in the bfd_section field of the header. */
687 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
688 Elf_Internal_Shdr
*hdr
,
694 const struct elf_backend_data
*bed
;
696 if (hdr
->bfd_section
!= NULL
)
698 BFD_ASSERT (strcmp (name
,
699 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
703 newsect
= bfd_make_section_anyway (abfd
, name
);
707 hdr
->bfd_section
= newsect
;
708 elf_section_data (newsect
)->this_hdr
= *hdr
;
709 elf_section_data (newsect
)->this_idx
= shindex
;
711 /* Always use the real type/flags. */
712 elf_section_type (newsect
) = hdr
->sh_type
;
713 elf_section_flags (newsect
) = hdr
->sh_flags
;
715 newsect
->filepos
= hdr
->sh_offset
;
717 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
718 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
719 || ! bfd_set_section_alignment (abfd
, newsect
,
720 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
723 flags
= SEC_NO_FLAGS
;
724 if (hdr
->sh_type
!= SHT_NOBITS
)
725 flags
|= SEC_HAS_CONTENTS
;
726 if (hdr
->sh_type
== SHT_GROUP
)
727 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
728 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
731 if (hdr
->sh_type
!= SHT_NOBITS
)
734 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
735 flags
|= SEC_READONLY
;
736 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
738 else if ((flags
& SEC_LOAD
) != 0)
740 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
743 newsect
->entsize
= hdr
->sh_entsize
;
744 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
745 flags
|= SEC_STRINGS
;
747 if (hdr
->sh_flags
& SHF_GROUP
)
748 if (!setup_group (abfd
, hdr
, newsect
))
750 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
751 flags
|= SEC_THREAD_LOCAL
;
753 /* The debugging sections appear to be recognized only by name, not
756 static const char *debug_sec_names
[] =
765 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
766 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
770 flags
|= SEC_DEBUGGING
;
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect
) == NULL
)
781 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
783 bed
= get_elf_backend_data (abfd
);
784 if (bed
->elf_backend_section_flags
)
785 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
788 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
791 if ((flags
& SEC_ALLOC
) != 0)
793 Elf_Internal_Phdr
*phdr
;
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr
= elf_tdata (abfd
)->phdr
;
800 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
802 if (phdr
->p_paddr
!= 0)
805 if (i
< elf_elfheader (abfd
)->e_phnum
)
807 phdr
= elf_tdata (abfd
)->phdr
;
808 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr
->p_type
== PT_LOAD
823 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
824 && (hdr
->sh_offset
+ hdr
->sh_size
825 <= phdr
->p_offset
+ phdr
->p_memsz
)
826 && ((flags
& SEC_LOAD
) == 0
827 || (hdr
->sh_offset
+ hdr
->sh_size
828 <= phdr
->p_offset
+ phdr
->p_filesz
)))
830 if ((flags
& SEC_LOAD
) == 0)
831 newsect
->lma
= (phdr
->p_paddr
832 + hdr
->sh_addr
- phdr
->p_vaddr
);
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect
->lma
= (phdr
->p_paddr
842 + hdr
->sh_offset
- phdr
->p_offset
);
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr
->sh_addr
>= phdr
->p_vaddr
849 && (hdr
->sh_addr
+ hdr
->sh_size
850 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
875 struct elf_internal_shdr
*
876 bfd_elf_find_section (bfd
*abfd
, char *name
)
878 Elf_Internal_Shdr
**i_shdrp
;
883 i_shdrp
= elf_elfsections (abfd
);
886 shstrtab
= bfd_elf_get_str_section (abfd
,
887 elf_elfheader (abfd
)->e_shstrndx
);
888 if (shstrtab
!= NULL
)
890 max
= elf_numsections (abfd
);
891 for (i
= 1; i
< max
; i
++)
892 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
899 const char *const bfd_elf_section_type_names
[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
917 arelent
*reloc_entry
,
919 void *data ATTRIBUTE_UNUSED
,
920 asection
*input_section
,
922 char **error_message ATTRIBUTE_UNUSED
)
924 if (output_bfd
!= NULL
925 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
926 && (! reloc_entry
->howto
->partial_inplace
927 || reloc_entry
->addend
== 0))
929 reloc_entry
->address
+= input_section
->output_offset
;
933 return bfd_reloc_continue
;
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
939 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
942 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
943 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
946 /* Finish SHF_MERGE section merging. */
949 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
954 if (!is_elf_hash_table (info
->hash
))
957 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
958 if ((ibfd
->flags
& DYNAMIC
) == 0)
959 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
960 if ((sec
->flags
& SEC_MERGE
) != 0
961 && !bfd_is_abs_section (sec
->output_section
))
963 struct bfd_elf_section_data
*secdata
;
965 secdata
= elf_section_data (sec
);
966 if (! _bfd_add_merge_section (abfd
,
967 &elf_hash_table (info
)->merge_info
,
968 sec
, &secdata
->sec_info
))
970 else if (secdata
->sec_info
)
971 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
974 if (elf_hash_table (info
)->merge_info
!= NULL
)
975 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
976 merge_sections_remove_hook
);
981 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
983 sec
->output_section
= bfd_abs_section_ptr
;
984 sec
->output_offset
= sec
->vma
;
985 if (!is_elf_hash_table (info
->hash
))
988 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
991 /* Copy the program header and other data from one object module to
995 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
997 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1001 BFD_ASSERT (!elf_flags_init (obfd
)
1002 || (elf_elfheader (obfd
)->e_flags
1003 == elf_elfheader (ibfd
)->e_flags
));
1005 elf_gp (obfd
) = elf_gp (ibfd
);
1006 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1007 elf_flags_init (obfd
) = TRUE
;
1011 /* Print out the program headers. */
1014 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1017 Elf_Internal_Phdr
*p
;
1019 bfd_byte
*dynbuf
= NULL
;
1021 p
= elf_tdata (abfd
)->phdr
;
1026 fprintf (f
, _("\nProgram Header:\n"));
1027 c
= elf_elfheader (abfd
)->e_phnum
;
1028 for (i
= 0; i
< c
; i
++, p
++)
1035 case PT_NULL
: pt
= "NULL"; break;
1036 case PT_LOAD
: pt
= "LOAD"; break;
1037 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1038 case PT_INTERP
: pt
= "INTERP"; break;
1039 case PT_NOTE
: pt
= "NOTE"; break;
1040 case PT_SHLIB
: pt
= "SHLIB"; break;
1041 case PT_PHDR
: pt
= "PHDR"; break;
1042 case PT_TLS
: pt
= "TLS"; break;
1043 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1044 case PT_GNU_STACK
: pt
= "STACK"; break;
1045 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1046 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1048 fprintf (f
, "%8s off 0x", pt
);
1049 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1050 fprintf (f
, " vaddr 0x");
1051 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1052 fprintf (f
, " paddr 0x");
1053 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1054 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1055 fprintf (f
, " filesz 0x");
1056 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1057 fprintf (f
, " memsz 0x");
1058 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1059 fprintf (f
, " flags %c%c%c",
1060 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1061 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1062 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1063 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1064 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1069 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1073 unsigned long shlink
;
1074 bfd_byte
*extdyn
, *extdynend
;
1076 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1078 fprintf (f
, _("\nDynamic Section:\n"));
1080 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1083 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1086 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1088 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1089 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1092 extdynend
= extdyn
+ s
->size
;
1093 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1095 Elf_Internal_Dyn dyn
;
1098 bfd_boolean stringp
;
1100 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1102 if (dyn
.d_tag
== DT_NULL
)
1109 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1113 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1114 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1115 case DT_PLTGOT
: name
= "PLTGOT"; break;
1116 case DT_HASH
: name
= "HASH"; break;
1117 case DT_STRTAB
: name
= "STRTAB"; break;
1118 case DT_SYMTAB
: name
= "SYMTAB"; break;
1119 case DT_RELA
: name
= "RELA"; break;
1120 case DT_RELASZ
: name
= "RELASZ"; break;
1121 case DT_RELAENT
: name
= "RELAENT"; break;
1122 case DT_STRSZ
: name
= "STRSZ"; break;
1123 case DT_SYMENT
: name
= "SYMENT"; break;
1124 case DT_INIT
: name
= "INIT"; break;
1125 case DT_FINI
: name
= "FINI"; break;
1126 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1127 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1128 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1129 case DT_REL
: name
= "REL"; break;
1130 case DT_RELSZ
: name
= "RELSZ"; break;
1131 case DT_RELENT
: name
= "RELENT"; break;
1132 case DT_PLTREL
: name
= "PLTREL"; break;
1133 case DT_DEBUG
: name
= "DEBUG"; break;
1134 case DT_TEXTREL
: name
= "TEXTREL"; break;
1135 case DT_JMPREL
: name
= "JMPREL"; break;
1136 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1137 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1142 case DT_FLAGS
: name
= "FLAGS"; break;
1143 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1146 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1147 case DT_MOVEENT
: name
= "MOVEENT"; break;
1148 case DT_MOVESZ
: name
= "MOVESZ"; break;
1149 case DT_FEATURE
: name
= "FEATURE"; break;
1150 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1151 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1152 case DT_SYMINENT
: name
= "SYMINENT"; break;
1153 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1154 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1155 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1156 case DT_PLTPAD
: name
= "PLTPAD"; break;
1157 case DT_MOVETAB
: name
= "MOVETAB"; break;
1158 case DT_SYMINFO
: name
= "SYMINFO"; break;
1159 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1160 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1161 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1162 case DT_VERSYM
: name
= "VERSYM"; break;
1163 case DT_VERDEF
: name
= "VERDEF"; break;
1164 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1165 case DT_VERNEED
: name
= "VERNEED"; break;
1166 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1167 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1168 case DT_USED
: name
= "USED"; break;
1169 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1172 fprintf (f
, " %-11s ", name
);
1174 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1178 unsigned int tagv
= dyn
.d_un
.d_val
;
1180 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1183 fprintf (f
, "%s", string
);
1192 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1193 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1195 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1199 if (elf_dynverdef (abfd
) != 0)
1201 Elf_Internal_Verdef
*t
;
1203 fprintf (f
, _("\nVersion definitions:\n"));
1204 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1206 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1207 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1208 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1210 Elf_Internal_Verdaux
*a
;
1213 for (a
= t
->vd_auxptr
->vda_nextptr
;
1216 fprintf (f
, "%s ", a
->vda_nodename
);
1222 if (elf_dynverref (abfd
) != 0)
1224 Elf_Internal_Verneed
*t
;
1226 fprintf (f
, _("\nVersion References:\n"));
1227 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1229 Elf_Internal_Vernaux
*a
;
1231 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1232 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1233 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1234 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1246 /* Display ELF-specific fields of a symbol. */
1249 bfd_elf_print_symbol (bfd
*abfd
,
1252 bfd_print_symbol_type how
)
1257 case bfd_print_symbol_name
:
1258 fprintf (file
, "%s", symbol
->name
);
1260 case bfd_print_symbol_more
:
1261 fprintf (file
, "elf ");
1262 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1263 fprintf (file
, " %lx", (long) symbol
->flags
);
1265 case bfd_print_symbol_all
:
1267 const char *section_name
;
1268 const char *name
= NULL
;
1269 const struct elf_backend_data
*bed
;
1270 unsigned char st_other
;
1273 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1275 bed
= get_elf_backend_data (abfd
);
1276 if (bed
->elf_backend_print_symbol_all
)
1277 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1281 name
= symbol
->name
;
1282 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1285 fprintf (file
, " %s\t", section_name
);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol
->section
))
1291 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1293 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1294 bfd_fprintf_vma (abfd
, file
, val
);
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd
)->dynversym_section
!= 0
1298 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1299 || elf_tdata (abfd
)->dynverref_section
!= 0))
1301 unsigned int vernum
;
1302 const char *version_string
;
1304 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1307 version_string
= "";
1308 else if (vernum
== 1)
1309 version_string
= "Base";
1310 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1312 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1315 Elf_Internal_Verneed
*t
;
1317 version_string
= "";
1318 for (t
= elf_tdata (abfd
)->verref
;
1322 Elf_Internal_Vernaux
*a
;
1324 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1326 if (a
->vna_other
== vernum
)
1328 version_string
= a
->vna_nodename
;
1335 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1336 fprintf (file
, " %-11s", version_string
);
1341 fprintf (file
, " (%s)", version_string
);
1342 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1347 /* If the st_other field is not zero, print it. */
1348 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1353 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1354 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1355 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1357 /* Some other non-defined flags are also present, so print
1359 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1362 fprintf (file
, " %s", name
);
1368 /* Create an entry in an ELF linker hash table. */
1370 struct bfd_hash_entry
*
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1372 struct bfd_hash_table
*table
,
1375 /* Allocate the structure if it has not already been allocated by a
1379 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1384 /* Call the allocation method of the superclass. */
1385 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1388 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1389 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1391 /* Set local fields. */
1394 ret
->got
= ret
->plt
= htab
->init_refcount
;
1395 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1396 - offsetof (struct elf_link_hash_entry
, size
)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1412 struct elf_link_hash_entry
*dir
,
1413 struct elf_link_hash_entry
*ind
)
1416 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1421 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1422 dir
->ref_regular
|= ind
->ref_regular
;
1423 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1424 dir
->non_got_ref
|= ind
->non_got_ref
;
1425 dir
->needs_plt
|= ind
->needs_plt
;
1426 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1428 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp
= dir
->got
.refcount
;
1434 if (tmp
< lowest_valid
)
1436 dir
->got
.refcount
= ind
->got
.refcount
;
1437 ind
->got
.refcount
= tmp
;
1440 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1442 tmp
= dir
->plt
.refcount
;
1443 if (tmp
< lowest_valid
)
1445 dir
->plt
.refcount
= ind
->plt
.refcount
;
1446 ind
->plt
.refcount
= tmp
;
1449 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1451 if (dir
->dynindx
== -1)
1453 dir
->dynindx
= ind
->dynindx
;
1454 dir
->dynstr_index
= ind
->dynstr_index
;
1456 ind
->dynstr_index
= 0;
1459 BFD_ASSERT (ind
->dynindx
== -1);
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1464 struct elf_link_hash_entry
*h
,
1465 bfd_boolean force_local
)
1467 h
->plt
= elf_hash_table (info
)->init_offset
;
1471 h
->forced_local
= 1;
1472 if (h
->dynindx
!= -1)
1475 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1481 /* Initialize an ELF linker hash table. */
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table
*table
,
1487 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1488 struct bfd_hash_table
*,
1493 table
->dynamic_sections_created
= FALSE
;
1494 table
->dynobj
= NULL
;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1498 table
->init_refcount
.refcount
-= 1;
1499 table
->init_offset
.offset
= -(bfd_vma
) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table
->dynsymcount
= 1;
1502 table
->dynstr
= NULL
;
1503 table
->bucketcount
= 0;
1504 table
->needed
= NULL
;
1506 table
->merge_info
= NULL
;
1507 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1508 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1509 table
->dynlocal
= NULL
;
1510 table
->runpath
= NULL
;
1511 table
->tls_sec
= NULL
;
1512 table
->tls_size
= 0;
1513 table
->loaded
= NULL
;
1514 table
->is_relocatable_executable
= FALSE
;
1516 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1517 table
->root
.type
= bfd_link_elf_hash_table
;
1522 /* Create an ELF linker hash table. */
1524 struct bfd_link_hash_table
*
1525 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1527 struct elf_link_hash_table
*ret
;
1528 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1530 ret
= bfd_malloc (amt
);
1534 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1543 /* This is a hook for the ELF emulation code in the generic linker to
1544 tell the backend linker what file name to use for the DT_NEEDED
1545 entry for a dynamic object. */
1548 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1550 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1551 && bfd_get_format (abfd
) == bfd_object
)
1552 elf_dt_name (abfd
) = name
;
1556 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1559 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd
) == bfd_object
)
1561 lib_class
= elf_dyn_lib_class (abfd
);
1568 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1570 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1571 && bfd_get_format (abfd
) == bfd_object
)
1572 elf_dyn_lib_class (abfd
) = lib_class
;
1575 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1576 the linker ELF emulation code. */
1578 struct bfd_link_needed_list
*
1579 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1580 struct bfd_link_info
*info
)
1582 if (! is_elf_hash_table (info
->hash
))
1584 return elf_hash_table (info
)->needed
;
1587 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1588 hook for the linker ELF emulation code. */
1590 struct bfd_link_needed_list
*
1591 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1592 struct bfd_link_info
*info
)
1594 if (! is_elf_hash_table (info
->hash
))
1596 return elf_hash_table (info
)->runpath
;
1599 /* Get the name actually used for a dynamic object for a link. This
1600 is the SONAME entry if there is one. Otherwise, it is the string
1601 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1604 bfd_elf_get_dt_soname (bfd
*abfd
)
1606 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1607 && bfd_get_format (abfd
) == bfd_object
)
1608 return elf_dt_name (abfd
);
1612 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1613 the ELF linker emulation code. */
1616 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1617 struct bfd_link_needed_list
**pneeded
)
1620 bfd_byte
*dynbuf
= NULL
;
1622 unsigned long shlink
;
1623 bfd_byte
*extdyn
, *extdynend
;
1625 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1629 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd
) != bfd_object
)
1633 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1634 if (s
== NULL
|| s
->size
== 0)
1637 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1640 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1644 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1646 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1647 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1650 extdynend
= extdyn
+ s
->size
;
1651 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1653 Elf_Internal_Dyn dyn
;
1655 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1657 if (dyn
.d_tag
== DT_NULL
)
1660 if (dyn
.d_tag
== DT_NEEDED
)
1663 struct bfd_link_needed_list
*l
;
1664 unsigned int tagv
= dyn
.d_un
.d_val
;
1667 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1672 l
= bfd_alloc (abfd
, amt
);
1693 /* Allocate an ELF string table--force the first byte to be zero. */
1695 struct bfd_strtab_hash
*
1696 _bfd_elf_stringtab_init (void)
1698 struct bfd_strtab_hash
*ret
;
1700 ret
= _bfd_stringtab_init ();
1705 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1706 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1707 if (loc
== (bfd_size_type
) -1)
1709 _bfd_stringtab_free (ret
);
1716 /* ELF .o/exec file reading */
1718 /* Create a new bfd section from an ELF section header. */
1721 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1723 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1724 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1725 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1728 name
= bfd_elf_string_from_elf_section (abfd
,
1729 elf_elfheader (abfd
)->e_shstrndx
,
1732 switch (hdr
->sh_type
)
1735 /* Inactive section. Throw it away. */
1738 case SHT_PROGBITS
: /* Normal section with contents. */
1739 case SHT_NOBITS
: /* .bss section. */
1740 case SHT_HASH
: /* .hash section. */
1741 case SHT_NOTE
: /* .note section. */
1742 case SHT_INIT_ARRAY
: /* .init_array section. */
1743 case SHT_FINI_ARRAY
: /* .fini_array section. */
1744 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1745 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1746 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1748 case SHT_DYNAMIC
: /* Dynamic linking information. */
1749 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1751 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1753 Elf_Internal_Shdr
*dynsymhdr
;
1755 /* The shared libraries distributed with hpux11 have a bogus
1756 sh_link field for the ".dynamic" section. Find the
1757 string table for the ".dynsym" section instead. */
1758 if (elf_dynsymtab (abfd
) != 0)
1760 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1761 hdr
->sh_link
= dynsymhdr
->sh_link
;
1765 unsigned int i
, num_sec
;
1767 num_sec
= elf_numsections (abfd
);
1768 for (i
= 1; i
< num_sec
; i
++)
1770 dynsymhdr
= elf_elfsections (abfd
)[i
];
1771 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1773 hdr
->sh_link
= dynsymhdr
->sh_link
;
1781 case SHT_SYMTAB
: /* A symbol table */
1782 if (elf_onesymtab (abfd
) == shindex
)
1785 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1786 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1787 elf_onesymtab (abfd
) = shindex
;
1788 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1789 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1790 abfd
->flags
|= HAS_SYMS
;
1792 /* Sometimes a shared object will map in the symbol table. If
1793 SHF_ALLOC is set, and this is a shared object, then we also
1794 treat this section as a BFD section. We can not base the
1795 decision purely on SHF_ALLOC, because that flag is sometimes
1796 set in a relocatable object file, which would confuse the
1798 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1799 && (abfd
->flags
& DYNAMIC
) != 0
1800 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1804 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1805 can't read symbols without that section loaded as well. It
1806 is most likely specified by the next section header. */
1807 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1809 unsigned int i
, num_sec
;
1811 num_sec
= elf_numsections (abfd
);
1812 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1814 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1815 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1816 && hdr2
->sh_link
== shindex
)
1820 for (i
= 1; i
< shindex
; i
++)
1822 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1823 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1824 && hdr2
->sh_link
== shindex
)
1828 return bfd_section_from_shdr (abfd
, i
);
1832 case SHT_DYNSYM
: /* A dynamic symbol table */
1833 if (elf_dynsymtab (abfd
) == shindex
)
1836 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1837 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1838 elf_dynsymtab (abfd
) = shindex
;
1839 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1840 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1841 abfd
->flags
|= HAS_SYMS
;
1843 /* Besides being a symbol table, we also treat this as a regular
1844 section, so that objcopy can handle it. */
1845 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1847 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1848 if (elf_symtab_shndx (abfd
) == shindex
)
1851 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1852 elf_symtab_shndx (abfd
) = shindex
;
1853 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1854 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1857 case SHT_STRTAB
: /* A string table */
1858 if (hdr
->bfd_section
!= NULL
)
1860 if (ehdr
->e_shstrndx
== shindex
)
1862 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1863 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1866 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1869 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1870 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1873 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1876 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1877 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1878 elf_elfsections (abfd
)[shindex
] = hdr
;
1879 /* We also treat this as a regular section, so that objcopy
1881 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1885 /* If the string table isn't one of the above, then treat it as a
1886 regular section. We need to scan all the headers to be sure,
1887 just in case this strtab section appeared before the above. */
1888 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1890 unsigned int i
, num_sec
;
1892 num_sec
= elf_numsections (abfd
);
1893 for (i
= 1; i
< num_sec
; i
++)
1895 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1896 if (hdr2
->sh_link
== shindex
)
1898 if (! bfd_section_from_shdr (abfd
, i
))
1900 if (elf_onesymtab (abfd
) == i
)
1902 if (elf_dynsymtab (abfd
) == i
)
1903 goto dynsymtab_strtab
;
1907 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1911 /* *These* do a lot of work -- but build no sections! */
1913 asection
*target_sect
;
1914 Elf_Internal_Shdr
*hdr2
;
1915 unsigned int num_sec
= elf_numsections (abfd
);
1917 /* Check for a bogus link to avoid crashing. */
1918 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1919 || hdr
->sh_link
>= num_sec
)
1921 ((*_bfd_error_handler
)
1922 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1923 abfd
, hdr
->sh_link
, name
, shindex
));
1924 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1928 /* For some incomprehensible reason Oracle distributes
1929 libraries for Solaris in which some of the objects have
1930 bogus sh_link fields. It would be nice if we could just
1931 reject them, but, unfortunately, some people need to use
1932 them. We scan through the section headers; if we find only
1933 one suitable symbol table, we clobber the sh_link to point
1934 to it. I hope this doesn't break anything. */
1935 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1936 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1942 for (scan
= 1; scan
< num_sec
; scan
++)
1944 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1945 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1956 hdr
->sh_link
= found
;
1959 /* Get the symbol table. */
1960 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1961 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1962 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1965 /* If this reloc section does not use the main symbol table we
1966 don't treat it as a reloc section. BFD can't adequately
1967 represent such a section, so at least for now, we don't
1968 try. We just present it as a normal section. We also
1969 can't use it as a reloc section if it points to the null
1971 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1972 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1975 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1977 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1978 if (target_sect
== NULL
)
1981 if ((target_sect
->flags
& SEC_RELOC
) == 0
1982 || target_sect
->reloc_count
== 0)
1983 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1987 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1988 amt
= sizeof (*hdr2
);
1989 hdr2
= bfd_alloc (abfd
, amt
);
1990 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1993 elf_elfsections (abfd
)[shindex
] = hdr2
;
1994 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1995 target_sect
->flags
|= SEC_RELOC
;
1996 target_sect
->relocation
= NULL
;
1997 target_sect
->rel_filepos
= hdr
->sh_offset
;
1998 /* In the section to which the relocations apply, mark whether
1999 its relocations are of the REL or RELA variety. */
2000 if (hdr
->sh_size
!= 0)
2001 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2002 abfd
->flags
|= HAS_RELOC
;
2007 case SHT_GNU_verdef
:
2008 elf_dynverdef (abfd
) = shindex
;
2009 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2010 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2013 case SHT_GNU_versym
:
2014 elf_dynversym (abfd
) = shindex
;
2015 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2016 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2019 case SHT_GNU_verneed
:
2020 elf_dynverref (abfd
) = shindex
;
2021 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2022 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2029 /* We need a BFD section for objcopy and relocatable linking,
2030 and it's handy to have the signature available as the section
2032 name
= group_signature (abfd
, hdr
);
2035 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2037 if (hdr
->contents
!= NULL
)
2039 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2040 unsigned int n_elt
= hdr
->sh_size
/ 4;
2043 if (idx
->flags
& GRP_COMDAT
)
2044 hdr
->bfd_section
->flags
2045 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2047 /* We try to keep the same section order as it comes in. */
2049 while (--n_elt
!= 0)
2050 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2051 && elf_next_in_group (s
) != NULL
)
2053 elf_next_in_group (hdr
->bfd_section
) = s
;
2060 /* Check for any processor-specific section types. */
2061 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2068 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2069 Return SEC for sections that have no elf section, and NULL on error. */
2072 bfd_section_from_r_symndx (bfd
*abfd
,
2073 struct sym_sec_cache
*cache
,
2075 unsigned long r_symndx
)
2077 Elf_Internal_Shdr
*symtab_hdr
;
2078 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2079 Elf_External_Sym_Shndx eshndx
;
2080 Elf_Internal_Sym isym
;
2081 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2083 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2084 return cache
->sec
[ent
];
2086 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2087 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2088 &isym
, esym
, &eshndx
) == NULL
)
2091 if (cache
->abfd
!= abfd
)
2093 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2096 cache
->indx
[ent
] = r_symndx
;
2097 cache
->sec
[ent
] = sec
;
2098 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2099 || isym
.st_shndx
> SHN_HIRESERVE
)
2102 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2104 cache
->sec
[ent
] = s
;
2106 return cache
->sec
[ent
];
2109 /* Given an ELF section number, retrieve the corresponding BFD
2113 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2115 if (index
>= elf_numsections (abfd
))
2117 return elf_elfsections (abfd
)[index
]->bfd_section
;
2120 static struct bfd_elf_special_section
const special_sections
[] =
2122 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2123 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2124 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2125 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2126 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2127 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2128 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2129 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2130 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2131 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2132 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2133 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2134 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2135 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2136 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2137 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2138 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2139 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2140 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2141 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2142 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2143 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2144 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2145 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2146 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2147 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2148 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2149 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2150 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2151 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2152 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2153 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2154 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2155 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2156 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2157 { ".note", 5, -1, SHT_NOTE
, 0 },
2158 { ".rela", 5, -1, SHT_RELA
, 0 },
2159 { ".rel", 4, -1, SHT_REL
, 0 },
2160 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2161 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2162 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2163 { NULL
, 0, 0, 0, 0 }
2166 static const struct bfd_elf_special_section
*
2167 get_special_section (const char *name
,
2168 const struct bfd_elf_special_section
*special_sections
,
2172 int len
= strlen (name
);
2174 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2177 int prefix_len
= special_sections
[i
].prefix_length
;
2179 if (len
< prefix_len
)
2181 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2184 suffix_len
= special_sections
[i
].suffix_length
;
2185 if (suffix_len
<= 0)
2187 if (name
[prefix_len
] != 0)
2189 if (suffix_len
== 0)
2191 if (name
[prefix_len
] != '.'
2192 && (suffix_len
== -2
2193 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2199 if (len
< prefix_len
+ suffix_len
)
2201 if (memcmp (name
+ len
- suffix_len
,
2202 special_sections
[i
].prefix
+ prefix_len
,
2206 return &special_sections
[i
];
2212 const struct bfd_elf_special_section
*
2213 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2215 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2216 const struct bfd_elf_special_section
*ssect
= NULL
;
2218 /* See if this is one of the special sections. */
2221 unsigned int rela
= bed
->default_use_rela_p
;
2223 if (bed
->special_sections
)
2224 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2227 ssect
= get_special_section (name
, special_sections
, rela
);
2234 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2236 struct bfd_elf_section_data
*sdata
;
2237 const struct bfd_elf_special_section
*ssect
;
2239 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2242 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2245 sec
->used_by_bfd
= sdata
;
2248 /* When we read a file, we don't need section type and flags.
2249 They will be overridden in _bfd_elf_make_section_from_shdr
2251 if (abfd
->direction
!= read_direction
)
2253 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2256 elf_section_type (sec
) = ssect
->type
;
2257 elf_section_flags (sec
) = ssect
->attr
;
2261 /* Indicate whether or not this section should use RELA relocations. */
2262 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2267 /* Create a new bfd section from an ELF program header.
2269 Since program segments have no names, we generate a synthetic name
2270 of the form segment<NUM>, where NUM is generally the index in the
2271 program header table. For segments that are split (see below) we
2272 generate the names segment<NUM>a and segment<NUM>b.
2274 Note that some program segments may have a file size that is different than
2275 (less than) the memory size. All this means is that at execution the
2276 system must allocate the amount of memory specified by the memory size,
2277 but only initialize it with the first "file size" bytes read from the
2278 file. This would occur for example, with program segments consisting
2279 of combined data+bss.
2281 To handle the above situation, this routine generates TWO bfd sections
2282 for the single program segment. The first has the length specified by
2283 the file size of the segment, and the second has the length specified
2284 by the difference between the two sizes. In effect, the segment is split
2285 into it's initialized and uninitialized parts.
2290 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2291 Elf_Internal_Phdr
*hdr
,
2293 const char *typename
)
2301 split
= ((hdr
->p_memsz
> 0)
2302 && (hdr
->p_filesz
> 0)
2303 && (hdr
->p_memsz
> hdr
->p_filesz
));
2304 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2305 len
= strlen (namebuf
) + 1;
2306 name
= bfd_alloc (abfd
, len
);
2309 memcpy (name
, namebuf
, len
);
2310 newsect
= bfd_make_section (abfd
, name
);
2311 if (newsect
== NULL
)
2313 newsect
->vma
= hdr
->p_vaddr
;
2314 newsect
->lma
= hdr
->p_paddr
;
2315 newsect
->size
= hdr
->p_filesz
;
2316 newsect
->filepos
= hdr
->p_offset
;
2317 newsect
->flags
|= SEC_HAS_CONTENTS
;
2318 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2319 if (hdr
->p_type
== PT_LOAD
)
2321 newsect
->flags
|= SEC_ALLOC
;
2322 newsect
->flags
|= SEC_LOAD
;
2323 if (hdr
->p_flags
& PF_X
)
2325 /* FIXME: all we known is that it has execute PERMISSION,
2327 newsect
->flags
|= SEC_CODE
;
2330 if (!(hdr
->p_flags
& PF_W
))
2332 newsect
->flags
|= SEC_READONLY
;
2337 sprintf (namebuf
, "%s%db", typename
, index
);
2338 len
= strlen (namebuf
) + 1;
2339 name
= bfd_alloc (abfd
, len
);
2342 memcpy (name
, namebuf
, len
);
2343 newsect
= bfd_make_section (abfd
, name
);
2344 if (newsect
== NULL
)
2346 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2347 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2348 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2349 if (hdr
->p_type
== PT_LOAD
)
2351 newsect
->flags
|= SEC_ALLOC
;
2352 if (hdr
->p_flags
& PF_X
)
2353 newsect
->flags
|= SEC_CODE
;
2355 if (!(hdr
->p_flags
& PF_W
))
2356 newsect
->flags
|= SEC_READONLY
;
2363 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2365 const struct elf_backend_data
*bed
;
2367 switch (hdr
->p_type
)
2370 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2373 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2376 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2379 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2382 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2384 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2389 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2392 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2394 case PT_GNU_EH_FRAME
:
2395 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2399 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2402 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2405 /* Check for any processor-specific program segment types. */
2406 bed
= get_elf_backend_data (abfd
);
2407 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2411 /* Initialize REL_HDR, the section-header for new section, containing
2412 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2413 relocations; otherwise, we use REL relocations. */
2416 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2417 Elf_Internal_Shdr
*rel_hdr
,
2419 bfd_boolean use_rela_p
)
2422 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2423 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2425 name
= bfd_alloc (abfd
, amt
);
2428 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2430 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2432 if (rel_hdr
->sh_name
== (unsigned int) -1)
2434 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2435 rel_hdr
->sh_entsize
= (use_rela_p
2436 ? bed
->s
->sizeof_rela
2437 : bed
->s
->sizeof_rel
);
2438 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2439 rel_hdr
->sh_flags
= 0;
2440 rel_hdr
->sh_addr
= 0;
2441 rel_hdr
->sh_size
= 0;
2442 rel_hdr
->sh_offset
= 0;
2447 /* Set up an ELF internal section header for a section. */
2450 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2452 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2453 bfd_boolean
*failedptr
= failedptrarg
;
2454 Elf_Internal_Shdr
*this_hdr
;
2458 /* We already failed; just get out of the bfd_map_over_sections
2463 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2465 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2466 asect
->name
, FALSE
);
2467 if (this_hdr
->sh_name
== (unsigned int) -1)
2473 this_hdr
->sh_flags
= 0;
2475 if ((asect
->flags
& SEC_ALLOC
) != 0
2476 || asect
->user_set_vma
)
2477 this_hdr
->sh_addr
= asect
->vma
;
2479 this_hdr
->sh_addr
= 0;
2481 this_hdr
->sh_offset
= 0;
2482 this_hdr
->sh_size
= asect
->size
;
2483 this_hdr
->sh_link
= 0;
2484 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2485 /* The sh_entsize and sh_info fields may have been set already by
2486 copy_private_section_data. */
2488 this_hdr
->bfd_section
= asect
;
2489 this_hdr
->contents
= NULL
;
2491 /* If the section type is unspecified, we set it based on
2493 if (this_hdr
->sh_type
== SHT_NULL
)
2495 if ((asect
->flags
& SEC_GROUP
) != 0)
2497 /* We also need to mark SHF_GROUP here for relocatable
2499 struct bfd_link_order
*l
;
2502 for (l
= asect
->link_order_head
; l
!= NULL
; l
= l
->next
)
2503 if (l
->type
== bfd_indirect_link_order
2504 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2507 /* The name is not important. Anything will do. */
2508 elf_group_name (elt
->output_section
) = "G";
2509 elf_section_flags (elt
->output_section
) |= SHF_GROUP
;
2511 elt
= elf_next_in_group (elt
);
2512 /* During a relocatable link, the lists are
2515 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2517 this_hdr
->sh_type
= SHT_GROUP
;
2519 else if ((asect
->flags
& SEC_ALLOC
) != 0
2520 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2521 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2522 this_hdr
->sh_type
= SHT_NOBITS
;
2524 this_hdr
->sh_type
= SHT_PROGBITS
;
2527 switch (this_hdr
->sh_type
)
2533 case SHT_INIT_ARRAY
:
2534 case SHT_FINI_ARRAY
:
2535 case SHT_PREINIT_ARRAY
:
2542 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2546 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2550 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2554 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2555 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2559 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2560 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2563 case SHT_GNU_versym
:
2564 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2567 case SHT_GNU_verdef
:
2568 this_hdr
->sh_entsize
= 0;
2569 /* objcopy or strip will copy over sh_info, but may not set
2570 cverdefs. The linker will set cverdefs, but sh_info will be
2572 if (this_hdr
->sh_info
== 0)
2573 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2575 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2576 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2579 case SHT_GNU_verneed
:
2580 this_hdr
->sh_entsize
= 0;
2581 /* objcopy or strip will copy over sh_info, but may not set
2582 cverrefs. The linker will set cverrefs, but sh_info will be
2584 if (this_hdr
->sh_info
== 0)
2585 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2587 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2588 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2592 this_hdr
->sh_entsize
= 4;
2596 if ((asect
->flags
& SEC_ALLOC
) != 0)
2597 this_hdr
->sh_flags
|= SHF_ALLOC
;
2598 if ((asect
->flags
& SEC_READONLY
) == 0)
2599 this_hdr
->sh_flags
|= SHF_WRITE
;
2600 if ((asect
->flags
& SEC_CODE
) != 0)
2601 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2602 if ((asect
->flags
& SEC_MERGE
) != 0)
2604 this_hdr
->sh_flags
|= SHF_MERGE
;
2605 this_hdr
->sh_entsize
= asect
->entsize
;
2606 if ((asect
->flags
& SEC_STRINGS
) != 0)
2607 this_hdr
->sh_flags
|= SHF_STRINGS
;
2609 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2610 this_hdr
->sh_flags
|= SHF_GROUP
;
2611 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2613 this_hdr
->sh_flags
|= SHF_TLS
;
2614 if (asect
->size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2616 struct bfd_link_order
*o
;
2618 this_hdr
->sh_size
= 0;
2619 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2620 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2621 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2622 if (this_hdr
->sh_size
)
2623 this_hdr
->sh_type
= SHT_NOBITS
;
2627 /* Check for processor-specific section types. */
2628 if (bed
->elf_backend_fake_sections
2629 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2632 /* If the section has relocs, set up a section header for the
2633 SHT_REL[A] section. If two relocation sections are required for
2634 this section, it is up to the processor-specific back-end to
2635 create the other. */
2636 if ((asect
->flags
& SEC_RELOC
) != 0
2637 && !_bfd_elf_init_reloc_shdr (abfd
,
2638 &elf_section_data (asect
)->rel_hdr
,
2644 /* Fill in the contents of a SHT_GROUP section. */
2647 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2649 bfd_boolean
*failedptr
= failedptrarg
;
2650 unsigned long symindx
;
2651 asection
*elt
, *first
;
2653 struct bfd_link_order
*l
;
2656 /* Ignore linker created group section. See elfNN_ia64_object_p in
2658 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2663 if (elf_group_id (sec
) != NULL
)
2664 symindx
= elf_group_id (sec
)->udata
.i
;
2668 /* If called from the assembler, swap_out_syms will have set up
2669 elf_section_syms; If called for "ld -r", use target_index. */
2670 if (elf_section_syms (abfd
) != NULL
)
2671 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2673 symindx
= sec
->target_index
;
2675 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2677 /* The contents won't be allocated for "ld -r" or objcopy. */
2679 if (sec
->contents
== NULL
)
2682 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2684 /* Arrange for the section to be written out. */
2685 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2686 if (sec
->contents
== NULL
)
2693 loc
= sec
->contents
+ sec
->size
;
2695 /* Get the pointer to the first section in the group that gas
2696 squirreled away here. objcopy arranges for this to be set to the
2697 start of the input section group. */
2698 first
= elt
= elf_next_in_group (sec
);
2700 /* First element is a flag word. Rest of section is elf section
2701 indices for all the sections of the group. Write them backwards
2702 just to keep the group in the same order as given in .section
2703 directives, not that it matters. */
2712 s
= s
->output_section
;
2715 idx
= elf_section_data (s
)->this_idx
;
2716 H_PUT_32 (abfd
, idx
, loc
);
2717 elt
= elf_next_in_group (elt
);
2722 /* If this is a relocatable link, then the above did nothing because
2723 SEC is the output section. Look through the input sections
2725 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2726 if (l
->type
== bfd_indirect_link_order
2727 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2732 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2733 elt
= elf_next_in_group (elt
);
2734 /* During a relocatable link, the lists are circular. */
2736 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2738 if ((loc
-= 4) != sec
->contents
)
2741 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2744 /* Assign all ELF section numbers. The dummy first section is handled here
2745 too. The link/info pointers for the standard section types are filled
2746 in here too, while we're at it. */
2749 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2751 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2753 unsigned int section_number
, secn
;
2754 Elf_Internal_Shdr
**i_shdrp
;
2756 struct bfd_elf_section_data
*d
;
2760 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2762 /* SHT_GROUP sections are in relocatable files only. */
2763 if (link_info
== NULL
|| link_info
->relocatable
)
2767 /* Put SHT_GROUP sections first. */
2768 secp
= &abfd
->sections
;
2771 d
= elf_section_data (*secp
);
2773 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2775 if ((*secp
)->flags
& SEC_LINKER_CREATED
)
2777 /* Remove the linker created SHT_GROUP sections. */
2778 bfd_section_list_remove (abfd
, secp
);
2779 abfd
->section_count
--;
2784 if (section_number
== SHN_LORESERVE
)
2785 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2786 d
->this_idx
= section_number
++;
2790 secp
= &(*secp
)->next
;
2794 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2796 d
= elf_section_data (sec
);
2798 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2800 if (section_number
== SHN_LORESERVE
)
2801 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2802 d
->this_idx
= section_number
++;
2804 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2805 if ((sec
->flags
& SEC_RELOC
) == 0)
2809 if (section_number
== SHN_LORESERVE
)
2810 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2811 d
->rel_idx
= section_number
++;
2812 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2817 if (section_number
== SHN_LORESERVE
)
2818 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2819 d
->rel_idx2
= section_number
++;
2820 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2826 if (section_number
== SHN_LORESERVE
)
2827 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2828 t
->shstrtab_section
= section_number
++;
2829 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2830 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2832 if (bfd_get_symcount (abfd
) > 0)
2834 if (section_number
== SHN_LORESERVE
)
2835 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2836 t
->symtab_section
= section_number
++;
2837 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2838 if (section_number
> SHN_LORESERVE
- 2)
2840 if (section_number
== SHN_LORESERVE
)
2841 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2842 t
->symtab_shndx_section
= section_number
++;
2843 t
->symtab_shndx_hdr
.sh_name
2844 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2845 ".symtab_shndx", FALSE
);
2846 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2849 if (section_number
== SHN_LORESERVE
)
2850 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2851 t
->strtab_section
= section_number
++;
2852 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2855 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2856 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2858 elf_numsections (abfd
) = section_number
;
2859 elf_elfheader (abfd
)->e_shnum
= section_number
;
2860 if (section_number
> SHN_LORESERVE
)
2861 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2863 /* Set up the list of section header pointers, in agreement with the
2865 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2866 i_shdrp
= bfd_zalloc (abfd
, amt
);
2867 if (i_shdrp
== NULL
)
2870 amt
= sizeof (Elf_Internal_Shdr
);
2871 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2872 if (i_shdrp
[0] == NULL
)
2874 bfd_release (abfd
, i_shdrp
);
2878 elf_elfsections (abfd
) = i_shdrp
;
2880 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2881 if (bfd_get_symcount (abfd
) > 0)
2883 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2884 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2886 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2887 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2889 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2890 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2893 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2895 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2899 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2900 if (d
->rel_idx
!= 0)
2901 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2902 if (d
->rel_idx2
!= 0)
2903 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2905 /* Fill in the sh_link and sh_info fields while we're at it. */
2907 /* sh_link of a reloc section is the section index of the symbol
2908 table. sh_info is the section index of the section to which
2909 the relocation entries apply. */
2910 if (d
->rel_idx
!= 0)
2912 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2913 d
->rel_hdr
.sh_info
= d
->this_idx
;
2915 if (d
->rel_idx2
!= 0)
2917 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2918 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2921 /* We need to set up sh_link for SHF_LINK_ORDER. */
2922 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2924 s
= elf_linked_to_section (sec
);
2926 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2929 struct bfd_link_order
*p
;
2931 /* Find out what the corresponding section in output
2933 for (p
= sec
->link_order_head
; p
!= NULL
; p
= p
->next
)
2935 s
= p
->u
.indirect
.section
;
2936 if (p
->type
== bfd_indirect_link_order
2937 && (bfd_get_flavour (s
->owner
)
2938 == bfd_target_elf_flavour
))
2940 Elf_Internal_Shdr
** const elf_shdrp
2941 = elf_elfsections (s
->owner
);
2943 = _bfd_elf_section_from_bfd_section (s
->owner
, s
);
2944 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
2946 The Intel C compiler generates SHT_IA_64_UNWIND with
2947 SHF_LINK_ORDER. But it doesn't set the sh_link or
2948 sh_info fields. Hence we could get the situation
2949 where elfsec is 0. */
2952 const struct elf_backend_data
*bed
2953 = get_elf_backend_data (abfd
);
2954 if (bed
->link_order_error_handler
)
2955 bed
->link_order_error_handler
2956 (_("%B: warning: sh_link not set for section `%A'"),
2961 s
= elf_shdrp
[elfsec
]->bfd_section
;
2962 if (elf_discarded_section (s
))
2965 (*_bfd_error_handler
)
2966 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2967 abfd
, d
->this_hdr
.bfd_section
,
2969 /* Point to the kept section if it has
2970 the same size as the discarded
2972 kept
= _bfd_elf_check_kept_section (s
);
2975 bfd_set_error (bfd_error_bad_value
);
2980 s
= s
->output_section
;
2981 BFD_ASSERT (s
!= NULL
);
2982 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2990 switch (d
->this_hdr
.sh_type
)
2994 /* A reloc section which we are treating as a normal BFD
2995 section. sh_link is the section index of the symbol
2996 table. sh_info is the section index of the section to
2997 which the relocation entries apply. We assume that an
2998 allocated reloc section uses the dynamic symbol table.
2999 FIXME: How can we be sure? */
3000 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3002 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3004 /* We look up the section the relocs apply to by name. */
3006 if (d
->this_hdr
.sh_type
== SHT_REL
)
3010 s
= bfd_get_section_by_name (abfd
, name
);
3012 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3016 /* We assume that a section named .stab*str is a stabs
3017 string section. We look for a section with the same name
3018 but without the trailing ``str'', and set its sh_link
3019 field to point to this section. */
3020 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3021 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3026 len
= strlen (sec
->name
);
3027 alc
= bfd_malloc (len
- 2);
3030 memcpy (alc
, sec
->name
, len
- 3);
3031 alc
[len
- 3] = '\0';
3032 s
= bfd_get_section_by_name (abfd
, alc
);
3036 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3038 /* This is a .stab section. */
3039 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3040 elf_section_data (s
)->this_hdr
.sh_entsize
3041 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3048 case SHT_GNU_verneed
:
3049 case SHT_GNU_verdef
:
3050 /* sh_link is the section header index of the string table
3051 used for the dynamic entries, or the symbol table, or the
3053 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3055 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3058 case SHT_GNU_LIBLIST
:
3059 /* sh_link is the section header index of the prelink library
3061 used for the dynamic entries, or the symbol table, or the
3063 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3064 ? ".dynstr" : ".gnu.libstr");
3066 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3070 case SHT_GNU_versym
:
3071 /* sh_link is the section header index of the symbol table
3072 this hash table or version table is for. */
3073 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3075 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3079 d
->this_hdr
.sh_link
= t
->symtab_section
;
3083 for (secn
= 1; secn
< section_number
; ++secn
)
3084 if (i_shdrp
[secn
] == NULL
)
3085 i_shdrp
[secn
] = i_shdrp
[0];
3087 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3088 i_shdrp
[secn
]->sh_name
);
3092 /* Map symbol from it's internal number to the external number, moving
3093 all local symbols to be at the head of the list. */
3096 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3098 /* If the backend has a special mapping, use it. */
3099 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3100 if (bed
->elf_backend_sym_is_global
)
3101 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3103 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3104 || bfd_is_und_section (bfd_get_section (sym
))
3105 || bfd_is_com_section (bfd_get_section (sym
)));
3109 elf_map_symbols (bfd
*abfd
)
3111 unsigned int symcount
= bfd_get_symcount (abfd
);
3112 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3113 asymbol
**sect_syms
;
3114 unsigned int num_locals
= 0;
3115 unsigned int num_globals
= 0;
3116 unsigned int num_locals2
= 0;
3117 unsigned int num_globals2
= 0;
3125 fprintf (stderr
, "elf_map_symbols\n");
3129 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3131 if (max_index
< asect
->index
)
3132 max_index
= asect
->index
;
3136 amt
= max_index
* sizeof (asymbol
*);
3137 sect_syms
= bfd_zalloc (abfd
, amt
);
3138 if (sect_syms
== NULL
)
3140 elf_section_syms (abfd
) = sect_syms
;
3141 elf_num_section_syms (abfd
) = max_index
;
3143 /* Init sect_syms entries for any section symbols we have already
3144 decided to output. */
3145 for (idx
= 0; idx
< symcount
; idx
++)
3147 asymbol
*sym
= syms
[idx
];
3149 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3156 if (sec
->owner
!= NULL
)
3158 if (sec
->owner
!= abfd
)
3160 if (sec
->output_offset
!= 0)
3163 sec
= sec
->output_section
;
3165 /* Empty sections in the input files may have had a
3166 section symbol created for them. (See the comment
3167 near the end of _bfd_generic_link_output_symbols in
3168 linker.c). If the linker script discards such
3169 sections then we will reach this point. Since we know
3170 that we cannot avoid this case, we detect it and skip
3171 the abort and the assignment to the sect_syms array.
3172 To reproduce this particular case try running the
3173 linker testsuite test ld-scripts/weak.exp for an ELF
3174 port that uses the generic linker. */
3175 if (sec
->owner
== NULL
)
3178 BFD_ASSERT (sec
->owner
== abfd
);
3180 sect_syms
[sec
->index
] = syms
[idx
];
3185 /* Classify all of the symbols. */
3186 for (idx
= 0; idx
< symcount
; idx
++)
3188 if (!sym_is_global (abfd
, syms
[idx
]))
3194 /* We will be adding a section symbol for each BFD section. Most normal
3195 sections will already have a section symbol in outsymbols, but
3196 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3197 at least in that case. */
3198 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3200 if (sect_syms
[asect
->index
] == NULL
)
3202 if (!sym_is_global (abfd
, asect
->symbol
))
3209 /* Now sort the symbols so the local symbols are first. */
3210 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
3211 new_syms
= bfd_alloc (abfd
, amt
);
3213 if (new_syms
== NULL
)
3216 for (idx
= 0; idx
< symcount
; idx
++)
3218 asymbol
*sym
= syms
[idx
];
3221 if (!sym_is_global (abfd
, sym
))
3224 i
= num_locals
+ num_globals2
++;
3226 sym
->udata
.i
= i
+ 1;
3228 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3230 if (sect_syms
[asect
->index
] == NULL
)
3232 asymbol
*sym
= asect
->symbol
;
3235 sect_syms
[asect
->index
] = sym
;
3236 if (!sym_is_global (abfd
, sym
))
3239 i
= num_locals
+ num_globals2
++;
3241 sym
->udata
.i
= i
+ 1;
3245 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3247 elf_num_locals (abfd
) = num_locals
;
3248 elf_num_globals (abfd
) = num_globals
;
3252 /* Align to the maximum file alignment that could be required for any
3253 ELF data structure. */
3255 static inline file_ptr
3256 align_file_position (file_ptr off
, int align
)
3258 return (off
+ align
- 1) & ~(align
- 1);
3261 /* Assign a file position to a section, optionally aligning to the
3262 required section alignment. */
3265 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3273 al
= i_shdrp
->sh_addralign
;
3275 offset
= BFD_ALIGN (offset
, al
);
3277 i_shdrp
->sh_offset
= offset
;
3278 if (i_shdrp
->bfd_section
!= NULL
)
3279 i_shdrp
->bfd_section
->filepos
= offset
;
3280 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3281 offset
+= i_shdrp
->sh_size
;
3285 /* Compute the file positions we are going to put the sections at, and
3286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3287 is not NULL, this is being called by the ELF backend linker. */
3290 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3291 struct bfd_link_info
*link_info
)
3293 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3295 struct bfd_strtab_hash
*strtab
= NULL
;
3296 Elf_Internal_Shdr
*shstrtab_hdr
;
3298 if (abfd
->output_has_begun
)
3301 /* Do any elf backend specific processing first. */
3302 if (bed
->elf_backend_begin_write_processing
)
3303 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3305 if (! prep_headers (abfd
))
3308 /* Post process the headers if necessary. */
3309 if (bed
->elf_backend_post_process_headers
)
3310 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3313 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3317 if (!assign_section_numbers (abfd
, link_info
))
3320 /* The backend linker builds symbol table information itself. */
3321 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3323 /* Non-zero if doing a relocatable link. */
3324 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3326 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3330 if (link_info
== NULL
)
3332 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3337 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3338 /* sh_name was set in prep_headers. */
3339 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3340 shstrtab_hdr
->sh_flags
= 0;
3341 shstrtab_hdr
->sh_addr
= 0;
3342 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3343 shstrtab_hdr
->sh_entsize
= 0;
3344 shstrtab_hdr
->sh_link
= 0;
3345 shstrtab_hdr
->sh_info
= 0;
3346 /* sh_offset is set in assign_file_positions_except_relocs. */
3347 shstrtab_hdr
->sh_addralign
= 1;
3349 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3352 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3355 Elf_Internal_Shdr
*hdr
;
3357 off
= elf_tdata (abfd
)->next_file_pos
;
3359 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3360 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3362 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3363 if (hdr
->sh_size
!= 0)
3364 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3366 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3367 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3369 elf_tdata (abfd
)->next_file_pos
= off
;
3371 /* Now that we know where the .strtab section goes, write it
3373 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3374 || ! _bfd_stringtab_emit (abfd
, strtab
))
3376 _bfd_stringtab_free (strtab
);
3379 abfd
->output_has_begun
= TRUE
;
3384 /* Create a mapping from a set of sections to a program segment. */
3386 static struct elf_segment_map
*
3387 make_mapping (bfd
*abfd
,
3388 asection
**sections
,
3393 struct elf_segment_map
*m
;
3398 amt
= sizeof (struct elf_segment_map
);
3399 amt
+= (to
- from
- 1) * sizeof (asection
*);
3400 m
= bfd_zalloc (abfd
, amt
);
3404 m
->p_type
= PT_LOAD
;
3405 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3406 m
->sections
[i
- from
] = *hdrpp
;
3407 m
->count
= to
- from
;
3409 if (from
== 0 && phdr
)
3411 /* Include the headers in the first PT_LOAD segment. */
3412 m
->includes_filehdr
= 1;
3413 m
->includes_phdrs
= 1;
3419 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3422 struct elf_segment_map
*
3423 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3425 struct elf_segment_map
*m
;
3427 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3431 m
->p_type
= PT_DYNAMIC
;
3433 m
->sections
[0] = dynsec
;
3438 /* Set up a mapping from BFD sections to program segments. */
3441 map_sections_to_segments (bfd
*abfd
)
3443 asection
**sections
= NULL
;
3447 struct elf_segment_map
*mfirst
;
3448 struct elf_segment_map
**pm
;
3449 struct elf_segment_map
*m
;
3452 unsigned int phdr_index
;
3453 bfd_vma maxpagesize
;
3455 bfd_boolean phdr_in_segment
= TRUE
;
3456 bfd_boolean writable
;
3458 asection
*first_tls
= NULL
;
3459 asection
*dynsec
, *eh_frame_hdr
;
3462 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3465 if (bfd_count_sections (abfd
) == 0)
3468 /* Select the allocated sections, and sort them. */
3470 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3471 sections
= bfd_malloc (amt
);
3472 if (sections
== NULL
)
3476 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3478 if ((s
->flags
& SEC_ALLOC
) != 0)
3484 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3487 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3489 /* Build the mapping. */
3494 /* If we have a .interp section, then create a PT_PHDR segment for
3495 the program headers and a PT_INTERP segment for the .interp
3497 s
= bfd_get_section_by_name (abfd
, ".interp");
3498 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3500 amt
= sizeof (struct elf_segment_map
);
3501 m
= bfd_zalloc (abfd
, amt
);
3505 m
->p_type
= PT_PHDR
;
3506 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3507 m
->p_flags
= PF_R
| PF_X
;
3508 m
->p_flags_valid
= 1;
3509 m
->includes_phdrs
= 1;
3514 amt
= sizeof (struct elf_segment_map
);
3515 m
= bfd_zalloc (abfd
, amt
);
3519 m
->p_type
= PT_INTERP
;
3527 /* Look through the sections. We put sections in the same program
3528 segment when the start of the second section can be placed within
3529 a few bytes of the end of the first section. */
3533 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3535 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3537 && (dynsec
->flags
& SEC_LOAD
) == 0)
3540 /* Deal with -Ttext or something similar such that the first section
3541 is not adjacent to the program headers. This is an
3542 approximation, since at this point we don't know exactly how many
3543 program headers we will need. */
3546 bfd_size_type phdr_size
;
3548 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3550 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3551 if ((abfd
->flags
& D_PAGED
) == 0
3552 || sections
[0]->lma
< phdr_size
3553 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3554 phdr_in_segment
= FALSE
;
3557 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3560 bfd_boolean new_segment
;
3564 /* See if this section and the last one will fit in the same
3567 if (last_hdr
== NULL
)
3569 /* If we don't have a segment yet, then we don't need a new
3570 one (we build the last one after this loop). */
3571 new_segment
= FALSE
;
3573 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3575 /* If this section has a different relation between the
3576 virtual address and the load address, then we need a new
3580 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3581 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3583 /* If putting this section in this segment would force us to
3584 skip a page in the segment, then we need a new segment. */
3587 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3588 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3590 /* We don't want to put a loadable section after a
3591 nonloadable section in the same segment.
3592 Consider .tbss sections as loadable for this purpose. */
3595 else if ((abfd
->flags
& D_PAGED
) == 0)
3597 /* If the file is not demand paged, which means that we
3598 don't require the sections to be correctly aligned in the
3599 file, then there is no other reason for a new segment. */
3600 new_segment
= FALSE
;
3603 && (hdr
->flags
& SEC_READONLY
) == 0
3604 && (((last_hdr
->lma
+ last_size
- 1)
3605 & ~(maxpagesize
- 1))
3606 != (hdr
->lma
& ~(maxpagesize
- 1))))
3608 /* We don't want to put a writable section in a read only
3609 segment, unless they are on the same page in memory
3610 anyhow. We already know that the last section does not
3611 bring us past the current section on the page, so the
3612 only case in which the new section is not on the same
3613 page as the previous section is when the previous section
3614 ends precisely on a page boundary. */
3619 /* Otherwise, we can use the same segment. */
3620 new_segment
= FALSE
;
3625 if ((hdr
->flags
& SEC_READONLY
) == 0)
3628 /* .tbss sections effectively have zero size. */
3629 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3630 last_size
= hdr
->size
;
3636 /* We need a new program segment. We must create a new program
3637 header holding all the sections from phdr_index until hdr. */
3639 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3646 if ((hdr
->flags
& SEC_READONLY
) == 0)
3652 /* .tbss sections effectively have zero size. */
3653 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3654 last_size
= hdr
->size
;
3658 phdr_in_segment
= FALSE
;
3661 /* Create a final PT_LOAD program segment. */
3662 if (last_hdr
!= NULL
)
3664 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3672 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3675 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3682 /* For each loadable .note section, add a PT_NOTE segment. We don't
3683 use bfd_get_section_by_name, because if we link together
3684 nonloadable .note sections and loadable .note sections, we will
3685 generate two .note sections in the output file. FIXME: Using
3686 names for section types is bogus anyhow. */
3687 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3689 if ((s
->flags
& SEC_LOAD
) != 0
3690 && strncmp (s
->name
, ".note", 5) == 0)
3692 amt
= sizeof (struct elf_segment_map
);
3693 m
= bfd_zalloc (abfd
, amt
);
3697 m
->p_type
= PT_NOTE
;
3704 if (s
->flags
& SEC_THREAD_LOCAL
)
3712 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3717 amt
= sizeof (struct elf_segment_map
);
3718 amt
+= (tls_count
- 1) * sizeof (asection
*);
3719 m
= bfd_zalloc (abfd
, amt
);
3724 m
->count
= tls_count
;
3725 /* Mandated PF_R. */
3727 m
->p_flags_valid
= 1;
3728 for (i
= 0; i
< tls_count
; ++i
)
3730 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3731 m
->sections
[i
] = first_tls
;
3732 first_tls
= first_tls
->next
;
3739 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3741 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3742 if (eh_frame_hdr
!= NULL
3743 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3745 amt
= sizeof (struct elf_segment_map
);
3746 m
= bfd_zalloc (abfd
, amt
);
3750 m
->p_type
= PT_GNU_EH_FRAME
;
3752 m
->sections
[0] = eh_frame_hdr
->output_section
;
3758 if (elf_tdata (abfd
)->stack_flags
)
3760 amt
= sizeof (struct elf_segment_map
);
3761 m
= bfd_zalloc (abfd
, amt
);
3765 m
->p_type
= PT_GNU_STACK
;
3766 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3767 m
->p_flags_valid
= 1;
3773 if (elf_tdata (abfd
)->relro
)
3775 amt
= sizeof (struct elf_segment_map
);
3776 m
= bfd_zalloc (abfd
, amt
);
3780 m
->p_type
= PT_GNU_RELRO
;
3782 m
->p_flags_valid
= 1;
3791 elf_tdata (abfd
)->segment_map
= mfirst
;
3795 if (sections
!= NULL
)
3800 /* Sort sections by address. */
3803 elf_sort_sections (const void *arg1
, const void *arg2
)
3805 const asection
*sec1
= *(const asection
**) arg1
;
3806 const asection
*sec2
= *(const asection
**) arg2
;
3807 bfd_size_type size1
, size2
;
3809 /* Sort by LMA first, since this is the address used to
3810 place the section into a segment. */
3811 if (sec1
->lma
< sec2
->lma
)
3813 else if (sec1
->lma
> sec2
->lma
)
3816 /* Then sort by VMA. Normally the LMA and the VMA will be
3817 the same, and this will do nothing. */
3818 if (sec1
->vma
< sec2
->vma
)
3820 else if (sec1
->vma
> sec2
->vma
)
3823 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3825 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3831 /* If the indicies are the same, do not return 0
3832 here, but continue to try the next comparison. */
3833 if (sec1
->target_index
- sec2
->target_index
!= 0)
3834 return sec1
->target_index
- sec2
->target_index
;
3839 else if (TOEND (sec2
))
3844 /* Sort by size, to put zero sized sections
3845 before others at the same address. */
3847 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3848 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3855 return sec1
->target_index
- sec2
->target_index
;
3858 /* Ian Lance Taylor writes:
3860 We shouldn't be using % with a negative signed number. That's just
3861 not good. We have to make sure either that the number is not
3862 negative, or that the number has an unsigned type. When the types
3863 are all the same size they wind up as unsigned. When file_ptr is a
3864 larger signed type, the arithmetic winds up as signed long long,
3867 What we're trying to say here is something like ``increase OFF by
3868 the least amount that will cause it to be equal to the VMA modulo
3870 /* In other words, something like:
3872 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3873 off_offset = off % bed->maxpagesize;
3874 if (vma_offset < off_offset)
3875 adjustment = vma_offset + bed->maxpagesize - off_offset;
3877 adjustment = vma_offset - off_offset;
3879 which can can be collapsed into the expression below. */
3882 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
3884 return ((vma
- off
) % maxpagesize
);
3887 /* Assign file positions to the sections based on the mapping from
3888 sections to segments. This function also sets up some fields in
3889 the file header, and writes out the program headers. */
3892 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
3894 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3896 struct elf_segment_map
*m
;
3898 Elf_Internal_Phdr
*phdrs
;
3900 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3901 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3902 Elf_Internal_Phdr
*p
;
3905 if (elf_tdata (abfd
)->segment_map
== NULL
)
3907 if (! map_sections_to_segments (abfd
))
3912 /* The placement algorithm assumes that non allocated sections are
3913 not in PT_LOAD segments. We ensure this here by removing such
3914 sections from the segment map. */
3915 for (m
= elf_tdata (abfd
)->segment_map
;
3919 unsigned int new_count
;
3922 if (m
->p_type
!= PT_LOAD
)
3926 for (i
= 0; i
< m
->count
; i
++)
3928 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3931 m
->sections
[new_count
] = m
->sections
[i
];
3937 if (new_count
!= m
->count
)
3938 m
->count
= new_count
;
3942 if (bed
->elf_backend_modify_segment_map
)
3944 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
3949 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3952 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3953 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3954 elf_elfheader (abfd
)->e_phnum
= count
;
3958 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
3962 /* If we already counted the number of program segments, make sure
3963 that we allocated enough space. This happens when SIZEOF_HEADERS
3964 is used in a linker script. */
3965 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3966 if (alloc
!= 0 && count
> alloc
)
3968 ((*_bfd_error_handler
)
3969 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3970 abfd
, alloc
, count
));
3971 bfd_set_error (bfd_error_bad_value
);
3978 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3979 phdrs
= bfd_alloc (abfd
, amt
);
3983 off
= bed
->s
->sizeof_ehdr
;
3984 off
+= alloc
* bed
->s
->sizeof_phdr
;
3991 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3998 /* If elf_segment_map is not from map_sections_to_segments, the
3999 sections may not be correctly ordered. NOTE: sorting should
4000 not be done to the PT_NOTE section of a corefile, which may
4001 contain several pseudo-sections artificially created by bfd.
4002 Sorting these pseudo-sections breaks things badly. */
4004 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4005 && m
->p_type
== PT_NOTE
))
4006 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4009 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4010 number of sections with contents contributing to both p_filesz
4011 and p_memsz, followed by a number of sections with no contents
4012 that just contribute to p_memsz. In this loop, OFF tracks next
4013 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4014 an adjustment we use for segments that have no file contents
4015 but need zero filled memory allocation. */
4017 p
->p_type
= m
->p_type
;
4018 p
->p_flags
= m
->p_flags
;
4020 if (p
->p_type
== PT_LOAD
4023 bfd_size_type align
;
4026 if ((abfd
->flags
& D_PAGED
) != 0)
4027 align
= bed
->maxpagesize
;
4030 unsigned int align_power
= 0;
4031 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4033 unsigned int secalign
;
4035 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4036 if (secalign
> align_power
)
4037 align_power
= secalign
;
4039 align
= (bfd_size_type
) 1 << align_power
;
4042 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4045 && !m
->includes_filehdr
4046 && !m
->includes_phdrs
4047 && (ufile_ptr
) off
>= align
)
4049 /* If the first section isn't loadable, the same holds for
4050 any other sections. Since the segment won't need file
4051 space, we can make p_offset overlap some prior segment.
4052 However, .tbss is special. If a segment starts with
4053 .tbss, we need to look at the next section to decide
4054 whether the segment has any loadable sections. */
4056 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4058 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4062 voff
= adjust
- align
;
4068 /* Make sure the .dynamic section is the first section in the
4069 PT_DYNAMIC segment. */
4070 else if (p
->p_type
== PT_DYNAMIC
4072 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4075 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4077 bfd_set_error (bfd_error_bad_value
);
4084 p
->p_vaddr
= m
->sections
[0]->vma
;
4086 if (m
->p_paddr_valid
)
4087 p
->p_paddr
= m
->p_paddr
;
4088 else if (m
->count
== 0)
4091 p
->p_paddr
= m
->sections
[0]->lma
;
4093 if (p
->p_type
== PT_LOAD
4094 && (abfd
->flags
& D_PAGED
) != 0)
4095 p
->p_align
= bed
->maxpagesize
;
4096 else if (m
->count
== 0)
4097 p
->p_align
= 1 << bed
->s
->log_file_align
;
4105 if (m
->includes_filehdr
)
4107 if (! m
->p_flags_valid
)
4110 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4111 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4114 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4116 if (p
->p_vaddr
< (bfd_vma
) off
)
4118 (*_bfd_error_handler
)
4119 (_("%B: Not enough room for program headers, try linking with -N"),
4121 bfd_set_error (bfd_error_bad_value
);
4126 if (! m
->p_paddr_valid
)
4129 if (p
->p_type
== PT_LOAD
)
4131 filehdr_vaddr
= p
->p_vaddr
;
4132 filehdr_paddr
= p
->p_paddr
;
4136 if (m
->includes_phdrs
)
4138 if (! m
->p_flags_valid
)
4141 if (m
->includes_filehdr
)
4143 if (p
->p_type
== PT_LOAD
)
4145 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4146 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4151 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4155 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4156 p
->p_vaddr
-= off
- p
->p_offset
;
4157 if (! m
->p_paddr_valid
)
4158 p
->p_paddr
-= off
- p
->p_offset
;
4161 if (p
->p_type
== PT_LOAD
)
4163 phdrs_vaddr
= p
->p_vaddr
;
4164 phdrs_paddr
= p
->p_paddr
;
4167 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4170 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4171 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4174 if (p
->p_type
== PT_LOAD
4175 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4177 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4178 p
->p_offset
= off
+ voff
;
4183 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4184 p
->p_filesz
+= adjust
;
4185 p
->p_memsz
+= adjust
;
4189 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4193 bfd_size_type align
;
4197 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4199 if (p
->p_type
== PT_LOAD
4200 || p
->p_type
== PT_TLS
)
4202 bfd_signed_vma adjust
;
4204 if ((flags
& SEC_LOAD
) != 0)
4206 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4209 (*_bfd_error_handler
)
4210 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4211 abfd
, sec
, (unsigned long) sec
->lma
);
4215 p
->p_filesz
+= adjust
;
4216 p
->p_memsz
+= adjust
;
4218 /* .tbss is special. It doesn't contribute to p_memsz of
4220 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4221 || p
->p_type
== PT_TLS
)
4223 /* The section VMA must equal the file position
4224 modulo the page size. */
4225 bfd_size_type page
= align
;
4226 if ((abfd
->flags
& D_PAGED
) != 0)
4227 page
= bed
->maxpagesize
;
4228 adjust
= vma_page_aligned_bias (sec
->vma
,
4229 p
->p_vaddr
+ p
->p_memsz
,
4231 p
->p_memsz
+= adjust
;
4235 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4237 /* The section at i == 0 is the one that actually contains
4243 p
->p_filesz
= sec
->size
;
4249 /* The rest are fake sections that shouldn't be written. */
4258 if (p
->p_type
== PT_LOAD
)
4261 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4262 1997, and the exact reason for it isn't clear. One
4263 plausible explanation is that it is to work around
4264 a problem we have with linker scripts using data
4265 statements in NOLOAD sections. I don't think it
4266 makes a great deal of sense to have such a section
4267 assigned to a PT_LOAD segment, but apparently
4268 people do this. The data statement results in a
4269 bfd_data_link_order being built, and these need
4270 section contents to write into. Eventually, we get
4271 to _bfd_elf_write_object_contents which writes any
4272 section with contents to the output. Make room
4273 here for the write, so that following segments are
4275 if ((flags
& SEC_LOAD
) != 0
4276 || (flags
& SEC_HAS_CONTENTS
) != 0)
4280 if ((flags
& SEC_LOAD
) != 0)
4282 p
->p_filesz
+= sec
->size
;
4283 p
->p_memsz
+= sec
->size
;
4285 /* PR ld/594: Sections in note segments which are not loaded
4286 contribute to the file size but not the in-memory size. */
4287 else if (p
->p_type
== PT_NOTE
4288 && (flags
& SEC_HAS_CONTENTS
) != 0)
4289 p
->p_filesz
+= sec
->size
;
4291 /* .tbss is special. It doesn't contribute to p_memsz of
4293 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4294 || p
->p_type
== PT_TLS
)
4295 p
->p_memsz
+= sec
->size
;
4297 if (p
->p_type
== PT_TLS
4299 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4301 struct bfd_link_order
*o
;
4302 bfd_vma tbss_size
= 0;
4304 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
4305 if (tbss_size
< o
->offset
+ o
->size
)
4306 tbss_size
= o
->offset
+ o
->size
;
4308 p
->p_memsz
+= tbss_size
;
4311 if (align
> p
->p_align
4312 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4316 if (! m
->p_flags_valid
)
4319 if ((flags
& SEC_CODE
) != 0)
4321 if ((flags
& SEC_READONLY
) == 0)
4327 /* Now that we have set the section file positions, we can set up
4328 the file positions for the non PT_LOAD segments. */
4329 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4333 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4335 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4336 /* If the section has not yet been assigned a file position,
4337 do so now. The ARM BPABI requires that .dynamic section
4338 not be marked SEC_ALLOC because it is not part of any
4339 PT_LOAD segment, so it will not be processed above. */
4340 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4343 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4346 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4348 off
= (_bfd_elf_assign_file_position_for_section
4349 (i_shdrpp
[i
], off
, TRUE
));
4350 p
->p_filesz
= m
->sections
[0]->size
;
4352 p
->p_offset
= m
->sections
[0]->filepos
;
4356 if (m
->includes_filehdr
)
4358 p
->p_vaddr
= filehdr_vaddr
;
4359 if (! m
->p_paddr_valid
)
4360 p
->p_paddr
= filehdr_paddr
;
4362 else if (m
->includes_phdrs
)
4364 p
->p_vaddr
= phdrs_vaddr
;
4365 if (! m
->p_paddr_valid
)
4366 p
->p_paddr
= phdrs_paddr
;
4368 else if (p
->p_type
== PT_GNU_RELRO
)
4370 Elf_Internal_Phdr
*lp
;
4372 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4374 if (lp
->p_type
== PT_LOAD
4375 && lp
->p_vaddr
<= link_info
->relro_end
4376 && lp
->p_vaddr
>= link_info
->relro_start
4377 && lp
->p_vaddr
+ lp
->p_filesz
4378 >= link_info
->relro_end
)
4382 if (lp
< phdrs
+ count
4383 && link_info
->relro_end
> lp
->p_vaddr
)
4385 p
->p_vaddr
= lp
->p_vaddr
;
4386 p
->p_paddr
= lp
->p_paddr
;
4387 p
->p_offset
= lp
->p_offset
;
4388 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4389 p
->p_memsz
= p
->p_filesz
;
4391 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4395 memset (p
, 0, sizeof *p
);
4396 p
->p_type
= PT_NULL
;
4402 /* Clear out any program headers we allocated but did not use. */
4403 for (; count
< alloc
; count
++, p
++)
4405 memset (p
, 0, sizeof *p
);
4406 p
->p_type
= PT_NULL
;
4409 elf_tdata (abfd
)->phdr
= phdrs
;
4411 elf_tdata (abfd
)->next_file_pos
= off
;
4413 /* Write out the program headers. */
4414 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4415 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4421 /* Get the size of the program header.
4423 If this is called by the linker before any of the section VMA's are set, it
4424 can't calculate the correct value for a strange memory layout. This only
4425 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4426 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4427 data segment (exclusive of .interp and .dynamic).
4429 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4430 will be two segments. */
4432 static bfd_size_type
4433 get_program_header_size (bfd
*abfd
)
4437 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4439 /* We can't return a different result each time we're called. */
4440 if (elf_tdata (abfd
)->program_header_size
!= 0)
4441 return elf_tdata (abfd
)->program_header_size
;
4443 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4445 struct elf_segment_map
*m
;
4448 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4450 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4451 return elf_tdata (abfd
)->program_header_size
;
4454 /* Assume we will need exactly two PT_LOAD segments: one for text
4455 and one for data. */
4458 s
= bfd_get_section_by_name (abfd
, ".interp");
4459 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4461 /* If we have a loadable interpreter section, we need a
4462 PT_INTERP segment. In this case, assume we also need a
4463 PT_PHDR segment, although that may not be true for all
4468 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4470 /* We need a PT_DYNAMIC segment. */
4474 if (elf_tdata (abfd
)->eh_frame_hdr
)
4476 /* We need a PT_GNU_EH_FRAME segment. */
4480 if (elf_tdata (abfd
)->stack_flags
)
4482 /* We need a PT_GNU_STACK segment. */
4486 if (elf_tdata (abfd
)->relro
)
4488 /* We need a PT_GNU_RELRO segment. */
4492 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4494 if ((s
->flags
& SEC_LOAD
) != 0
4495 && strncmp (s
->name
, ".note", 5) == 0)
4497 /* We need a PT_NOTE segment. */
4502 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4504 if (s
->flags
& SEC_THREAD_LOCAL
)
4506 /* We need a PT_TLS segment. */
4512 /* Let the backend count up any program headers it might need. */
4513 if (bed
->elf_backend_additional_program_headers
)
4517 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4523 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4524 return elf_tdata (abfd
)->program_header_size
;
4527 /* Work out the file positions of all the sections. This is called by
4528 _bfd_elf_compute_section_file_positions. All the section sizes and
4529 VMAs must be known before this is called.
4531 Reloc sections come in two flavours: Those processed specially as
4532 "side-channel" data attached to a section to which they apply, and
4533 those that bfd doesn't process as relocations. The latter sort are
4534 stored in a normal bfd section by bfd_section_from_shdr. We don't
4535 consider the former sort here, unless they form part of the loadable
4536 image. Reloc sections not assigned here will be handled later by
4537 assign_file_positions_for_relocs.
4539 We also don't set the positions of the .symtab and .strtab here. */
4542 assign_file_positions_except_relocs (bfd
*abfd
,
4543 struct bfd_link_info
*link_info
)
4545 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4546 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4547 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4548 unsigned int num_sec
= elf_numsections (abfd
);
4550 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4552 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4553 && bfd_get_format (abfd
) != bfd_core
)
4555 Elf_Internal_Shdr
**hdrpp
;
4558 /* Start after the ELF header. */
4559 off
= i_ehdrp
->e_ehsize
;
4561 /* We are not creating an executable, which means that we are
4562 not creating a program header, and that the actual order of
4563 the sections in the file is unimportant. */
4564 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4566 Elf_Internal_Shdr
*hdr
;
4569 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4570 && hdr
->bfd_section
== NULL
)
4571 || i
== tdata
->symtab_section
4572 || i
== tdata
->symtab_shndx_section
4573 || i
== tdata
->strtab_section
)
4575 hdr
->sh_offset
= -1;
4578 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4580 if (i
== SHN_LORESERVE
- 1)
4582 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4583 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4590 Elf_Internal_Shdr
**hdrpp
;
4592 /* Assign file positions for the loaded sections based on the
4593 assignment of sections to segments. */
4594 if (! assign_file_positions_for_segments (abfd
, link_info
))
4597 /* Assign file positions for the other sections. */
4599 off
= elf_tdata (abfd
)->next_file_pos
;
4600 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4602 Elf_Internal_Shdr
*hdr
;
4605 if (hdr
->bfd_section
!= NULL
4606 && hdr
->bfd_section
->filepos
!= 0)
4607 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4608 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4610 ((*_bfd_error_handler
)
4611 (_("%B: warning: allocated section `%s' not in segment"),
4613 (hdr
->bfd_section
== NULL
4615 : hdr
->bfd_section
->name
)));
4616 if ((abfd
->flags
& D_PAGED
) != 0)
4617 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4620 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4622 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4625 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4626 && hdr
->bfd_section
== NULL
)
4627 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4628 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4629 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4630 hdr
->sh_offset
= -1;
4632 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4634 if (i
== SHN_LORESERVE
- 1)
4636 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4637 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4642 /* Place the section headers. */
4643 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4644 i_ehdrp
->e_shoff
= off
;
4645 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4647 elf_tdata (abfd
)->next_file_pos
= off
;
4653 prep_headers (bfd
*abfd
)
4655 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4656 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4657 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4658 struct elf_strtab_hash
*shstrtab
;
4659 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4661 i_ehdrp
= elf_elfheader (abfd
);
4662 i_shdrp
= elf_elfsections (abfd
);
4664 shstrtab
= _bfd_elf_strtab_init ();
4665 if (shstrtab
== NULL
)
4668 elf_shstrtab (abfd
) = shstrtab
;
4670 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4671 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4672 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4673 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4675 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4676 i_ehdrp
->e_ident
[EI_DATA
] =
4677 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4678 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4680 if ((abfd
->flags
& DYNAMIC
) != 0)
4681 i_ehdrp
->e_type
= ET_DYN
;
4682 else if ((abfd
->flags
& EXEC_P
) != 0)
4683 i_ehdrp
->e_type
= ET_EXEC
;
4684 else if (bfd_get_format (abfd
) == bfd_core
)
4685 i_ehdrp
->e_type
= ET_CORE
;
4687 i_ehdrp
->e_type
= ET_REL
;
4689 switch (bfd_get_arch (abfd
))
4691 case bfd_arch_unknown
:
4692 i_ehdrp
->e_machine
= EM_NONE
;
4695 /* There used to be a long list of cases here, each one setting
4696 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4697 in the corresponding bfd definition. To avoid duplication,
4698 the switch was removed. Machines that need special handling
4699 can generally do it in elf_backend_final_write_processing(),
4700 unless they need the information earlier than the final write.
4701 Such need can generally be supplied by replacing the tests for
4702 e_machine with the conditions used to determine it. */
4704 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4707 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4708 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4710 /* No program header, for now. */
4711 i_ehdrp
->e_phoff
= 0;
4712 i_ehdrp
->e_phentsize
= 0;
4713 i_ehdrp
->e_phnum
= 0;
4715 /* Each bfd section is section header entry. */
4716 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4717 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4719 /* If we're building an executable, we'll need a program header table. */
4720 if (abfd
->flags
& EXEC_P
)
4721 /* It all happens later. */
4725 i_ehdrp
->e_phentsize
= 0;
4727 i_ehdrp
->e_phoff
= 0;
4730 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4731 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4732 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4733 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4734 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4735 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4736 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4737 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4738 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4744 /* Assign file positions for all the reloc sections which are not part
4745 of the loadable file image. */
4748 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4751 unsigned int i
, num_sec
;
4752 Elf_Internal_Shdr
**shdrpp
;
4754 off
= elf_tdata (abfd
)->next_file_pos
;
4756 num_sec
= elf_numsections (abfd
);
4757 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4759 Elf_Internal_Shdr
*shdrp
;
4762 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4763 && shdrp
->sh_offset
== -1)
4764 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4767 elf_tdata (abfd
)->next_file_pos
= off
;
4771 _bfd_elf_write_object_contents (bfd
*abfd
)
4773 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4774 Elf_Internal_Ehdr
*i_ehdrp
;
4775 Elf_Internal_Shdr
**i_shdrp
;
4777 unsigned int count
, num_sec
;
4779 if (! abfd
->output_has_begun
4780 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4783 i_shdrp
= elf_elfsections (abfd
);
4784 i_ehdrp
= elf_elfheader (abfd
);
4787 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4791 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4793 /* After writing the headers, we need to write the sections too... */
4794 num_sec
= elf_numsections (abfd
);
4795 for (count
= 1; count
< num_sec
; count
++)
4797 if (bed
->elf_backend_section_processing
)
4798 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4799 if (i_shdrp
[count
]->contents
)
4801 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4803 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4804 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4807 if (count
== SHN_LORESERVE
- 1)
4808 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4811 /* Write out the section header names. */
4812 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4813 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4816 if (bed
->elf_backend_final_write_processing
)
4817 (*bed
->elf_backend_final_write_processing
) (abfd
,
4818 elf_tdata (abfd
)->linker
);
4820 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4824 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4826 /* Hopefully this can be done just like an object file. */
4827 return _bfd_elf_write_object_contents (abfd
);
4830 /* Given a section, search the header to find them. */
4833 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4835 const struct elf_backend_data
*bed
;
4838 if (elf_section_data (asect
) != NULL
4839 && elf_section_data (asect
)->this_idx
!= 0)
4840 return elf_section_data (asect
)->this_idx
;
4842 if (bfd_is_abs_section (asect
))
4844 else if (bfd_is_com_section (asect
))
4846 else if (bfd_is_und_section (asect
))
4851 bed
= get_elf_backend_data (abfd
);
4852 if (bed
->elf_backend_section_from_bfd_section
)
4856 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4861 bfd_set_error (bfd_error_nonrepresentable_section
);
4866 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4870 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4872 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4874 flagword flags
= asym_ptr
->flags
;
4876 /* When gas creates relocations against local labels, it creates its
4877 own symbol for the section, but does put the symbol into the
4878 symbol chain, so udata is 0. When the linker is generating
4879 relocatable output, this section symbol may be for one of the
4880 input sections rather than the output section. */
4881 if (asym_ptr
->udata
.i
== 0
4882 && (flags
& BSF_SECTION_SYM
)
4883 && asym_ptr
->section
)
4887 if (asym_ptr
->section
->output_section
!= NULL
)
4888 indx
= asym_ptr
->section
->output_section
->index
;
4890 indx
= asym_ptr
->section
->index
;
4891 if (indx
< elf_num_section_syms (abfd
)
4892 && elf_section_syms (abfd
)[indx
] != NULL
)
4893 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4896 idx
= asym_ptr
->udata
.i
;
4900 /* This case can occur when using --strip-symbol on a symbol
4901 which is used in a relocation entry. */
4902 (*_bfd_error_handler
)
4903 (_("%B: symbol `%s' required but not present"),
4904 abfd
, bfd_asymbol_name (asym_ptr
));
4905 bfd_set_error (bfd_error_no_symbols
);
4912 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4913 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4914 elf_symbol_flags (flags
));
4922 /* Copy private BFD data. This copies any program header information. */
4925 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4927 Elf_Internal_Ehdr
*iehdr
;
4928 struct elf_segment_map
*map
;
4929 struct elf_segment_map
*map_first
;
4930 struct elf_segment_map
**pointer_to_map
;
4931 Elf_Internal_Phdr
*segment
;
4934 unsigned int num_segments
;
4935 bfd_boolean phdr_included
= FALSE
;
4936 bfd_vma maxpagesize
;
4937 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4938 unsigned int phdr_adjust_num
= 0;
4939 const struct elf_backend_data
*bed
;
4941 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4942 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4945 if (elf_tdata (ibfd
)->phdr
== NULL
)
4948 bed
= get_elf_backend_data (ibfd
);
4949 iehdr
= elf_elfheader (ibfd
);
4952 pointer_to_map
= &map_first
;
4954 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4955 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4957 /* Returns the end address of the segment + 1. */
4958 #define SEGMENT_END(segment, start) \
4959 (start + (segment->p_memsz > segment->p_filesz \
4960 ? segment->p_memsz : segment->p_filesz))
4962 #define SECTION_SIZE(section, segment) \
4963 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4964 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4965 ? section->size : 0)
4967 /* Returns TRUE if the given section is contained within
4968 the given segment. VMA addresses are compared. */
4969 #define IS_CONTAINED_BY_VMA(section, segment) \
4970 (section->vma >= segment->p_vaddr \
4971 && (section->vma + SECTION_SIZE (section, segment) \
4972 <= (SEGMENT_END (segment, segment->p_vaddr))))
4974 /* Returns TRUE if the given section is contained within
4975 the given segment. LMA addresses are compared. */
4976 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4977 (section->lma >= base \
4978 && (section->lma + SECTION_SIZE (section, segment) \
4979 <= SEGMENT_END (segment, base)))
4981 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4982 #define IS_COREFILE_NOTE(p, s) \
4983 (p->p_type == PT_NOTE \
4984 && bfd_get_format (ibfd) == bfd_core \
4985 && s->vma == 0 && s->lma == 0 \
4986 && (bfd_vma) s->filepos >= p->p_offset \
4987 && ((bfd_vma) s->filepos + s->size \
4988 <= p->p_offset + p->p_filesz))
4990 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4991 linker, which generates a PT_INTERP section with p_vaddr and
4992 p_memsz set to 0. */
4993 #define IS_SOLARIS_PT_INTERP(p, s) \
4995 && p->p_paddr == 0 \
4996 && p->p_memsz == 0 \
4997 && p->p_filesz > 0 \
4998 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5000 && (bfd_vma) s->filepos >= p->p_offset \
5001 && ((bfd_vma) s->filepos + s->size \
5002 <= p->p_offset + p->p_filesz))
5004 /* Decide if the given section should be included in the given segment.
5005 A section will be included if:
5006 1. It is within the address space of the segment -- we use the LMA
5007 if that is set for the segment and the VMA otherwise,
5008 2. It is an allocated segment,
5009 3. There is an output section associated with it,
5010 4. The section has not already been allocated to a previous segment.
5011 5. PT_GNU_STACK segments do not include any sections.
5012 6. PT_TLS segment includes only SHF_TLS sections.
5013 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5014 8. PT_DYNAMIC should not contain empty sections at the beginning
5015 (with the possible exception of .dynamic). */
5016 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5017 ((((segment->p_paddr \
5018 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5019 : IS_CONTAINED_BY_VMA (section, segment)) \
5020 && (section->flags & SEC_ALLOC) != 0) \
5021 || IS_COREFILE_NOTE (segment, section)) \
5022 && section->output_section != NULL \
5023 && segment->p_type != PT_GNU_STACK \
5024 && (segment->p_type != PT_TLS \
5025 || (section->flags & SEC_THREAD_LOCAL)) \
5026 && (segment->p_type == PT_LOAD \
5027 || segment->p_type == PT_TLS \
5028 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5029 && (segment->p_type != PT_DYNAMIC \
5030 || SECTION_SIZE (section, segment) > 0 \
5031 || (segment->p_paddr \
5032 ? segment->p_paddr != section->lma \
5033 : segment->p_vaddr != section->vma) \
5034 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5036 && ! section->segment_mark)
5038 /* Returns TRUE iff seg1 starts after the end of seg2. */
5039 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5040 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5042 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5043 their VMA address ranges and their LMA address ranges overlap.
5044 It is possible to have overlapping VMA ranges without overlapping LMA
5045 ranges. RedBoot images for example can have both .data and .bss mapped
5046 to the same VMA range, but with the .data section mapped to a different
5048 #define SEGMENT_OVERLAPS(seg1, seg2) \
5049 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5050 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5051 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5052 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5054 /* Initialise the segment mark field. */
5055 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5056 section
->segment_mark
= FALSE
;
5058 /* Scan through the segments specified in the program header
5059 of the input BFD. For this first scan we look for overlaps
5060 in the loadable segments. These can be created by weird
5061 parameters to objcopy. Also, fix some solaris weirdness. */
5062 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5067 Elf_Internal_Phdr
*segment2
;
5069 if (segment
->p_type
== PT_INTERP
)
5070 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5071 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5073 /* Mininal change so that the normal section to segment
5074 assignment code will work. */
5075 segment
->p_vaddr
= section
->vma
;
5079 if (segment
->p_type
!= PT_LOAD
)
5082 /* Determine if this segment overlaps any previous segments. */
5083 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5085 bfd_signed_vma extra_length
;
5087 if (segment2
->p_type
!= PT_LOAD
5088 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5091 /* Merge the two segments together. */
5092 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5094 /* Extend SEGMENT2 to include SEGMENT and then delete
5097 SEGMENT_END (segment
, segment
->p_vaddr
)
5098 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5100 if (extra_length
> 0)
5102 segment2
->p_memsz
+= extra_length
;
5103 segment2
->p_filesz
+= extra_length
;
5106 segment
->p_type
= PT_NULL
;
5108 /* Since we have deleted P we must restart the outer loop. */
5110 segment
= elf_tdata (ibfd
)->phdr
;
5115 /* Extend SEGMENT to include SEGMENT2 and then delete
5118 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5119 - SEGMENT_END (segment
, segment
->p_vaddr
);
5121 if (extra_length
> 0)
5123 segment
->p_memsz
+= extra_length
;
5124 segment
->p_filesz
+= extra_length
;
5127 segment2
->p_type
= PT_NULL
;
5132 /* The second scan attempts to assign sections to segments. */
5133 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5137 unsigned int section_count
;
5138 asection
** sections
;
5139 asection
* output_section
;
5141 bfd_vma matching_lma
;
5142 bfd_vma suggested_lma
;
5146 if (segment
->p_type
== PT_NULL
)
5149 /* Compute how many sections might be placed into this segment. */
5150 for (section
= ibfd
->sections
, section_count
= 0;
5152 section
= section
->next
)
5153 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5156 /* Allocate a segment map big enough to contain
5157 all of the sections we have selected. */
5158 amt
= sizeof (struct elf_segment_map
);
5159 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5160 map
= bfd_alloc (obfd
, amt
);
5164 /* Initialise the fields of the segment map. Default to
5165 using the physical address of the segment in the input BFD. */
5167 map
->p_type
= segment
->p_type
;
5168 map
->p_flags
= segment
->p_flags
;
5169 map
->p_flags_valid
= 1;
5170 map
->p_paddr
= segment
->p_paddr
;
5171 map
->p_paddr_valid
= 1;
5173 /* Determine if this segment contains the ELF file header
5174 and if it contains the program headers themselves. */
5175 map
->includes_filehdr
= (segment
->p_offset
== 0
5176 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5178 map
->includes_phdrs
= 0;
5180 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5182 map
->includes_phdrs
=
5183 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5184 && (segment
->p_offset
+ segment
->p_filesz
5185 >= ((bfd_vma
) iehdr
->e_phoff
5186 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5188 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5189 phdr_included
= TRUE
;
5192 if (section_count
== 0)
5194 /* Special segments, such as the PT_PHDR segment, may contain
5195 no sections, but ordinary, loadable segments should contain
5196 something. They are allowed by the ELF spec however, so only
5197 a warning is produced. */
5198 if (segment
->p_type
== PT_LOAD
)
5199 (*_bfd_error_handler
)
5200 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5204 *pointer_to_map
= map
;
5205 pointer_to_map
= &map
->next
;
5210 /* Now scan the sections in the input BFD again and attempt
5211 to add their corresponding output sections to the segment map.
5212 The problem here is how to handle an output section which has
5213 been moved (ie had its LMA changed). There are four possibilities:
5215 1. None of the sections have been moved.
5216 In this case we can continue to use the segment LMA from the
5219 2. All of the sections have been moved by the same amount.
5220 In this case we can change the segment's LMA to match the LMA
5221 of the first section.
5223 3. Some of the sections have been moved, others have not.
5224 In this case those sections which have not been moved can be
5225 placed in the current segment which will have to have its size,
5226 and possibly its LMA changed, and a new segment or segments will
5227 have to be created to contain the other sections.
5229 4. The sections have been moved, but not by the same amount.
5230 In this case we can change the segment's LMA to match the LMA
5231 of the first section and we will have to create a new segment
5232 or segments to contain the other sections.
5234 In order to save time, we allocate an array to hold the section
5235 pointers that we are interested in. As these sections get assigned
5236 to a segment, they are removed from this array. */
5238 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5239 to work around this long long bug. */
5240 amt
= section_count
* sizeof (asection
*);
5241 sections
= bfd_malloc (amt
);
5242 if (sections
== NULL
)
5245 /* Step One: Scan for segment vs section LMA conflicts.
5246 Also add the sections to the section array allocated above.
5247 Also add the sections to the current segment. In the common
5248 case, where the sections have not been moved, this means that
5249 we have completely filled the segment, and there is nothing
5255 for (j
= 0, section
= ibfd
->sections
;
5257 section
= section
->next
)
5259 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5261 output_section
= section
->output_section
;
5263 sections
[j
++] = section
;
5265 /* The Solaris native linker always sets p_paddr to 0.
5266 We try to catch that case here, and set it to the
5267 correct value. Note - some backends require that
5268 p_paddr be left as zero. */
5269 if (segment
->p_paddr
== 0
5270 && segment
->p_vaddr
!= 0
5271 && (! bed
->want_p_paddr_set_to_zero
)
5273 && output_section
->lma
!= 0
5274 && (output_section
->vma
== (segment
->p_vaddr
5275 + (map
->includes_filehdr
5278 + (map
->includes_phdrs
5280 * iehdr
->e_phentsize
)
5282 map
->p_paddr
= segment
->p_vaddr
;
5284 /* Match up the physical address of the segment with the
5285 LMA address of the output section. */
5286 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5287 || IS_COREFILE_NOTE (segment
, section
)
5288 || (bed
->want_p_paddr_set_to_zero
&&
5289 IS_CONTAINED_BY_VMA (output_section
, segment
))
5292 if (matching_lma
== 0)
5293 matching_lma
= output_section
->lma
;
5295 /* We assume that if the section fits within the segment
5296 then it does not overlap any other section within that
5298 map
->sections
[isec
++] = output_section
;
5300 else if (suggested_lma
== 0)
5301 suggested_lma
= output_section
->lma
;
5305 BFD_ASSERT (j
== section_count
);
5307 /* Step Two: Adjust the physical address of the current segment,
5309 if (isec
== section_count
)
5311 /* All of the sections fitted within the segment as currently
5312 specified. This is the default case. Add the segment to
5313 the list of built segments and carry on to process the next
5314 program header in the input BFD. */
5315 map
->count
= section_count
;
5316 *pointer_to_map
= map
;
5317 pointer_to_map
= &map
->next
;
5324 if (matching_lma
!= 0)
5326 /* At least one section fits inside the current segment.
5327 Keep it, but modify its physical address to match the
5328 LMA of the first section that fitted. */
5329 map
->p_paddr
= matching_lma
;
5333 /* None of the sections fitted inside the current segment.
5334 Change the current segment's physical address to match
5335 the LMA of the first section. */
5336 map
->p_paddr
= suggested_lma
;
5339 /* Offset the segment physical address from the lma
5340 to allow for space taken up by elf headers. */
5341 if (map
->includes_filehdr
)
5342 map
->p_paddr
-= iehdr
->e_ehsize
;
5344 if (map
->includes_phdrs
)
5346 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5348 /* iehdr->e_phnum is just an estimate of the number
5349 of program headers that we will need. Make a note
5350 here of the number we used and the segment we chose
5351 to hold these headers, so that we can adjust the
5352 offset when we know the correct value. */
5353 phdr_adjust_num
= iehdr
->e_phnum
;
5354 phdr_adjust_seg
= map
;
5358 /* Step Three: Loop over the sections again, this time assigning
5359 those that fit to the current segment and removing them from the
5360 sections array; but making sure not to leave large gaps. Once all
5361 possible sections have been assigned to the current segment it is
5362 added to the list of built segments and if sections still remain
5363 to be assigned, a new segment is constructed before repeating
5371 /* Fill the current segment with sections that fit. */
5372 for (j
= 0; j
< section_count
; j
++)
5374 section
= sections
[j
];
5376 if (section
== NULL
)
5379 output_section
= section
->output_section
;
5381 BFD_ASSERT (output_section
!= NULL
);
5383 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5384 || IS_COREFILE_NOTE (segment
, section
))
5386 if (map
->count
== 0)
5388 /* If the first section in a segment does not start at
5389 the beginning of the segment, then something is
5391 if (output_section
->lma
!=
5393 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5394 + (map
->includes_phdrs
5395 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5401 asection
* prev_sec
;
5403 prev_sec
= map
->sections
[map
->count
- 1];
5405 /* If the gap between the end of the previous section
5406 and the start of this section is more than
5407 maxpagesize then we need to start a new segment. */
5408 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5410 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5411 || ((prev_sec
->lma
+ prev_sec
->size
)
5412 > output_section
->lma
))
5414 if (suggested_lma
== 0)
5415 suggested_lma
= output_section
->lma
;
5421 map
->sections
[map
->count
++] = output_section
;
5424 section
->segment_mark
= TRUE
;
5426 else if (suggested_lma
== 0)
5427 suggested_lma
= output_section
->lma
;
5430 BFD_ASSERT (map
->count
> 0);
5432 /* Add the current segment to the list of built segments. */
5433 *pointer_to_map
= map
;
5434 pointer_to_map
= &map
->next
;
5436 if (isec
< section_count
)
5438 /* We still have not allocated all of the sections to
5439 segments. Create a new segment here, initialise it
5440 and carry on looping. */
5441 amt
= sizeof (struct elf_segment_map
);
5442 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5443 map
= bfd_alloc (obfd
, amt
);
5450 /* Initialise the fields of the segment map. Set the physical
5451 physical address to the LMA of the first section that has
5452 not yet been assigned. */
5454 map
->p_type
= segment
->p_type
;
5455 map
->p_flags
= segment
->p_flags
;
5456 map
->p_flags_valid
= 1;
5457 map
->p_paddr
= suggested_lma
;
5458 map
->p_paddr_valid
= 1;
5459 map
->includes_filehdr
= 0;
5460 map
->includes_phdrs
= 0;
5463 while (isec
< section_count
);
5468 /* The Solaris linker creates program headers in which all the
5469 p_paddr fields are zero. When we try to objcopy or strip such a
5470 file, we get confused. Check for this case, and if we find it
5471 reset the p_paddr_valid fields. */
5472 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5473 if (map
->p_paddr
!= 0)
5476 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5477 map
->p_paddr_valid
= 0;
5479 elf_tdata (obfd
)->segment_map
= map_first
;
5481 /* If we had to estimate the number of program headers that were
5482 going to be needed, then check our estimate now and adjust
5483 the offset if necessary. */
5484 if (phdr_adjust_seg
!= NULL
)
5488 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5491 if (count
> phdr_adjust_num
)
5492 phdr_adjust_seg
->p_paddr
5493 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5498 #undef IS_CONTAINED_BY_VMA
5499 #undef IS_CONTAINED_BY_LMA
5500 #undef IS_COREFILE_NOTE
5501 #undef IS_SOLARIS_PT_INTERP
5502 #undef INCLUDE_SECTION_IN_SEGMENT
5503 #undef SEGMENT_AFTER_SEGMENT
5504 #undef SEGMENT_OVERLAPS
5508 /* Copy private section information. This copies over the entsize
5509 field, and sometimes the info field. */
5512 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5517 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5519 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5520 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5523 ihdr
= &elf_section_data (isec
)->this_hdr
;
5524 ohdr
= &elf_section_data (osec
)->this_hdr
;
5526 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5528 if (ihdr
->sh_type
== SHT_SYMTAB
5529 || ihdr
->sh_type
== SHT_DYNSYM
5530 || ihdr
->sh_type
== SHT_GNU_verneed
5531 || ihdr
->sh_type
== SHT_GNU_verdef
)
5532 ohdr
->sh_info
= ihdr
->sh_info
;
5534 /* Set things up for objcopy. The output SHT_GROUP section will
5535 have its elf_next_in_group pointing back to the input group
5536 members. Ignore linker created group section. See
5537 elfNN_ia64_object_p in elfxx-ia64.c. */
5538 if (elf_sec_group (isec
) == NULL
5539 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5541 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5542 elf_group_name (osec
) = elf_group_name (isec
);
5545 osec
->use_rela_p
= isec
->use_rela_p
;
5550 /* Copy private header information. */
5553 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5555 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5556 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5559 /* Copy over private BFD data if it has not already been copied.
5560 This must be done here, rather than in the copy_private_bfd_data
5561 entry point, because the latter is called after the section
5562 contents have been set, which means that the program headers have
5563 already been worked out. */
5564 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5566 if (! copy_private_bfd_data (ibfd
, obfd
))
5573 /* Copy private symbol information. If this symbol is in a section
5574 which we did not map into a BFD section, try to map the section
5575 index correctly. We use special macro definitions for the mapped
5576 section indices; these definitions are interpreted by the
5577 swap_out_syms function. */
5579 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5580 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5581 #define MAP_STRTAB (SHN_HIOS + 3)
5582 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5583 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5586 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5591 elf_symbol_type
*isym
, *osym
;
5593 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5594 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5597 isym
= elf_symbol_from (ibfd
, isymarg
);
5598 osym
= elf_symbol_from (obfd
, osymarg
);
5602 && bfd_is_abs_section (isym
->symbol
.section
))
5606 shndx
= isym
->internal_elf_sym
.st_shndx
;
5607 if (shndx
== elf_onesymtab (ibfd
))
5608 shndx
= MAP_ONESYMTAB
;
5609 else if (shndx
== elf_dynsymtab (ibfd
))
5610 shndx
= MAP_DYNSYMTAB
;
5611 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5613 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5614 shndx
= MAP_SHSTRTAB
;
5615 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5616 shndx
= MAP_SYM_SHNDX
;
5617 osym
->internal_elf_sym
.st_shndx
= shndx
;
5623 /* Swap out the symbols. */
5626 swap_out_syms (bfd
*abfd
,
5627 struct bfd_strtab_hash
**sttp
,
5630 const struct elf_backend_data
*bed
;
5633 struct bfd_strtab_hash
*stt
;
5634 Elf_Internal_Shdr
*symtab_hdr
;
5635 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5636 Elf_Internal_Shdr
*symstrtab_hdr
;
5637 bfd_byte
*outbound_syms
;
5638 bfd_byte
*outbound_shndx
;
5641 bfd_boolean name_local_sections
;
5643 if (!elf_map_symbols (abfd
))
5646 /* Dump out the symtabs. */
5647 stt
= _bfd_elf_stringtab_init ();
5651 bed
= get_elf_backend_data (abfd
);
5652 symcount
= bfd_get_symcount (abfd
);
5653 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5654 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5655 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5656 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5657 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5658 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5660 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5661 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5663 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5664 outbound_syms
= bfd_alloc (abfd
, amt
);
5665 if (outbound_syms
== NULL
)
5667 _bfd_stringtab_free (stt
);
5670 symtab_hdr
->contents
= outbound_syms
;
5672 outbound_shndx
= NULL
;
5673 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5674 if (symtab_shndx_hdr
->sh_name
!= 0)
5676 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5677 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5678 if (outbound_shndx
== NULL
)
5680 _bfd_stringtab_free (stt
);
5684 symtab_shndx_hdr
->contents
= outbound_shndx
;
5685 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5686 symtab_shndx_hdr
->sh_size
= amt
;
5687 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5688 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5691 /* Now generate the data (for "contents"). */
5693 /* Fill in zeroth symbol and swap it out. */
5694 Elf_Internal_Sym sym
;
5700 sym
.st_shndx
= SHN_UNDEF
;
5701 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5702 outbound_syms
+= bed
->s
->sizeof_sym
;
5703 if (outbound_shndx
!= NULL
)
5704 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5708 = (bed
->elf_backend_name_local_section_symbols
5709 && bed
->elf_backend_name_local_section_symbols (abfd
));
5711 syms
= bfd_get_outsymbols (abfd
);
5712 for (idx
= 0; idx
< symcount
; idx
++)
5714 Elf_Internal_Sym sym
;
5715 bfd_vma value
= syms
[idx
]->value
;
5716 elf_symbol_type
*type_ptr
;
5717 flagword flags
= syms
[idx
]->flags
;
5720 if (!name_local_sections
5721 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5723 /* Local section symbols have no name. */
5728 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5731 if (sym
.st_name
== (unsigned long) -1)
5733 _bfd_stringtab_free (stt
);
5738 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5740 if ((flags
& BSF_SECTION_SYM
) == 0
5741 && bfd_is_com_section (syms
[idx
]->section
))
5743 /* ELF common symbols put the alignment into the `value' field,
5744 and the size into the `size' field. This is backwards from
5745 how BFD handles it, so reverse it here. */
5746 sym
.st_size
= value
;
5747 if (type_ptr
== NULL
5748 || type_ptr
->internal_elf_sym
.st_value
== 0)
5749 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5751 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5752 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5753 (abfd
, syms
[idx
]->section
);
5757 asection
*sec
= syms
[idx
]->section
;
5760 if (sec
->output_section
)
5762 value
+= sec
->output_offset
;
5763 sec
= sec
->output_section
;
5766 /* Don't add in the section vma for relocatable output. */
5767 if (! relocatable_p
)
5769 sym
.st_value
= value
;
5770 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5772 if (bfd_is_abs_section (sec
)
5774 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5776 /* This symbol is in a real ELF section which we did
5777 not create as a BFD section. Undo the mapping done
5778 by copy_private_symbol_data. */
5779 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5783 shndx
= elf_onesymtab (abfd
);
5786 shndx
= elf_dynsymtab (abfd
);
5789 shndx
= elf_tdata (abfd
)->strtab_section
;
5792 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5795 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5803 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5809 /* Writing this would be a hell of a lot easier if
5810 we had some decent documentation on bfd, and
5811 knew what to expect of the library, and what to
5812 demand of applications. For example, it
5813 appears that `objcopy' might not set the
5814 section of a symbol to be a section that is
5815 actually in the output file. */
5816 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5819 _bfd_error_handler (_("\
5820 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5821 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5823 bfd_set_error (bfd_error_invalid_operation
);
5824 _bfd_stringtab_free (stt
);
5828 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5829 BFD_ASSERT (shndx
!= -1);
5833 sym
.st_shndx
= shndx
;
5836 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5838 else if ((flags
& BSF_FUNCTION
) != 0)
5840 else if ((flags
& BSF_OBJECT
) != 0)
5845 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5848 /* Processor-specific types. */
5849 if (type_ptr
!= NULL
5850 && bed
->elf_backend_get_symbol_type
)
5851 type
= ((*bed
->elf_backend_get_symbol_type
)
5852 (&type_ptr
->internal_elf_sym
, type
));
5854 if (flags
& BSF_SECTION_SYM
)
5856 if (flags
& BSF_GLOBAL
)
5857 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5859 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5861 else if (bfd_is_com_section (syms
[idx
]->section
))
5862 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5863 else if (bfd_is_und_section (syms
[idx
]->section
))
5864 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5868 else if (flags
& BSF_FILE
)
5869 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5872 int bind
= STB_LOCAL
;
5874 if (flags
& BSF_LOCAL
)
5876 else if (flags
& BSF_WEAK
)
5878 else if (flags
& BSF_GLOBAL
)
5881 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5884 if (type_ptr
!= NULL
)
5885 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5889 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5890 outbound_syms
+= bed
->s
->sizeof_sym
;
5891 if (outbound_shndx
!= NULL
)
5892 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5896 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5897 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5899 symstrtab_hdr
->sh_flags
= 0;
5900 symstrtab_hdr
->sh_addr
= 0;
5901 symstrtab_hdr
->sh_entsize
= 0;
5902 symstrtab_hdr
->sh_link
= 0;
5903 symstrtab_hdr
->sh_info
= 0;
5904 symstrtab_hdr
->sh_addralign
= 1;
5909 /* Return the number of bytes required to hold the symtab vector.
5911 Note that we base it on the count plus 1, since we will null terminate
5912 the vector allocated based on this size. However, the ELF symbol table
5913 always has a dummy entry as symbol #0, so it ends up even. */
5916 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5920 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5922 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5923 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5925 symtab_size
-= sizeof (asymbol
*);
5931 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5935 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5937 if (elf_dynsymtab (abfd
) == 0)
5939 bfd_set_error (bfd_error_invalid_operation
);
5943 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5944 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5946 symtab_size
-= sizeof (asymbol
*);
5952 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5955 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5958 /* Canonicalize the relocs. */
5961 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5968 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5970 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5973 tblptr
= section
->relocation
;
5974 for (i
= 0; i
< section
->reloc_count
; i
++)
5975 *relptr
++ = tblptr
++;
5979 return section
->reloc_count
;
5983 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5985 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5986 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5989 bfd_get_symcount (abfd
) = symcount
;
5994 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5995 asymbol
**allocation
)
5997 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5998 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6001 bfd_get_dynamic_symcount (abfd
) = symcount
;
6005 /* Return the size required for the dynamic reloc entries. Any loadable
6006 section that was actually installed in the BFD, and has type SHT_REL
6007 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6008 dynamic reloc section. */
6011 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6016 if (elf_dynsymtab (abfd
) == 0)
6018 bfd_set_error (bfd_error_invalid_operation
);
6022 ret
= sizeof (arelent
*);
6023 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6024 if ((s
->flags
& SEC_LOAD
) != 0
6025 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6026 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6027 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6028 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6029 * sizeof (arelent
*));
6034 /* Canonicalize the dynamic relocation entries. Note that we return the
6035 dynamic relocations as a single block, although they are actually
6036 associated with particular sections; the interface, which was
6037 designed for SunOS style shared libraries, expects that there is only
6038 one set of dynamic relocs. Any loadable section that was actually
6039 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6040 dynamic symbol table, is considered to be a dynamic reloc section. */
6043 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6047 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6051 if (elf_dynsymtab (abfd
) == 0)
6053 bfd_set_error (bfd_error_invalid_operation
);
6057 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6059 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6061 if ((s
->flags
& SEC_LOAD
) != 0
6062 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6063 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6064 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6069 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6071 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6073 for (i
= 0; i
< count
; i
++)
6084 /* Read in the version information. */
6087 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6089 bfd_byte
*contents
= NULL
;
6091 unsigned int freeidx
= 0;
6093 if (elf_dynverref (abfd
) != 0)
6095 Elf_Internal_Shdr
*hdr
;
6096 Elf_External_Verneed
*everneed
;
6097 Elf_Internal_Verneed
*iverneed
;
6100 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6102 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
6103 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
6104 if (elf_tdata (abfd
)->verref
== NULL
)
6107 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6109 contents
= bfd_malloc (hdr
->sh_size
);
6110 if (contents
== NULL
)
6112 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6113 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6116 everneed
= (Elf_External_Verneed
*) contents
;
6117 iverneed
= elf_tdata (abfd
)->verref
;
6118 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6120 Elf_External_Vernaux
*evernaux
;
6121 Elf_Internal_Vernaux
*ivernaux
;
6124 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6126 iverneed
->vn_bfd
= abfd
;
6128 iverneed
->vn_filename
=
6129 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6131 if (iverneed
->vn_filename
== NULL
)
6134 amt
= iverneed
->vn_cnt
;
6135 amt
*= sizeof (Elf_Internal_Vernaux
);
6136 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
6138 evernaux
= ((Elf_External_Vernaux
*)
6139 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6140 ivernaux
= iverneed
->vn_auxptr
;
6141 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6143 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6145 ivernaux
->vna_nodename
=
6146 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6147 ivernaux
->vna_name
);
6148 if (ivernaux
->vna_nodename
== NULL
)
6151 if (j
+ 1 < iverneed
->vn_cnt
)
6152 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6154 ivernaux
->vna_nextptr
= NULL
;
6156 evernaux
= ((Elf_External_Vernaux
*)
6157 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6159 if (ivernaux
->vna_other
> freeidx
)
6160 freeidx
= ivernaux
->vna_other
;
6163 if (i
+ 1 < hdr
->sh_info
)
6164 iverneed
->vn_nextref
= iverneed
+ 1;
6166 iverneed
->vn_nextref
= NULL
;
6168 everneed
= ((Elf_External_Verneed
*)
6169 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6176 if (elf_dynverdef (abfd
) != 0)
6178 Elf_Internal_Shdr
*hdr
;
6179 Elf_External_Verdef
*everdef
;
6180 Elf_Internal_Verdef
*iverdef
;
6181 Elf_Internal_Verdef
*iverdefarr
;
6182 Elf_Internal_Verdef iverdefmem
;
6184 unsigned int maxidx
;
6186 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6188 contents
= bfd_malloc (hdr
->sh_size
);
6189 if (contents
== NULL
)
6191 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6192 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6195 /* We know the number of entries in the section but not the maximum
6196 index. Therefore we have to run through all entries and find
6198 everdef
= (Elf_External_Verdef
*) contents
;
6200 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6202 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6204 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6205 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6207 everdef
= ((Elf_External_Verdef
*)
6208 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6211 if (default_imported_symver
)
6213 if (freeidx
> maxidx
)
6218 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
6219 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6220 if (elf_tdata (abfd
)->verdef
== NULL
)
6223 elf_tdata (abfd
)->cverdefs
= maxidx
;
6225 everdef
= (Elf_External_Verdef
*) contents
;
6226 iverdefarr
= elf_tdata (abfd
)->verdef
;
6227 for (i
= 0; i
< hdr
->sh_info
; i
++)
6229 Elf_External_Verdaux
*everdaux
;
6230 Elf_Internal_Verdaux
*iverdaux
;
6233 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6235 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6236 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6238 iverdef
->vd_bfd
= abfd
;
6240 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
6241 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6242 if (iverdef
->vd_auxptr
== NULL
)
6245 everdaux
= ((Elf_External_Verdaux
*)
6246 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6247 iverdaux
= iverdef
->vd_auxptr
;
6248 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6250 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6252 iverdaux
->vda_nodename
=
6253 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6254 iverdaux
->vda_name
);
6255 if (iverdaux
->vda_nodename
== NULL
)
6258 if (j
+ 1 < iverdef
->vd_cnt
)
6259 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6261 iverdaux
->vda_nextptr
= NULL
;
6263 everdaux
= ((Elf_External_Verdaux
*)
6264 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6267 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6269 if (i
+ 1 < hdr
->sh_info
)
6270 iverdef
->vd_nextdef
= iverdef
+ 1;
6272 iverdef
->vd_nextdef
= NULL
;
6274 everdef
= ((Elf_External_Verdef
*)
6275 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6281 else if (default_imported_symver
)
6288 amt
= (bfd_size_type
) freeidx
* sizeof (Elf_Internal_Verdef
);
6289 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6290 if (elf_tdata (abfd
)->verdef
== NULL
)
6293 elf_tdata (abfd
)->cverdefs
= freeidx
;
6296 /* Create a default version based on the soname. */
6297 if (default_imported_symver
)
6299 Elf_Internal_Verdef
*iverdef
;
6300 Elf_Internal_Verdaux
*iverdaux
;
6302 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6304 iverdef
->vd_version
= VER_DEF_CURRENT
;
6305 iverdef
->vd_flags
= 0;
6306 iverdef
->vd_ndx
= freeidx
;
6307 iverdef
->vd_cnt
= 1;
6309 iverdef
->vd_bfd
= abfd
;
6311 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6312 if (iverdef
->vd_nodename
== NULL
)
6314 iverdef
->vd_nextdef
= NULL
;
6315 amt
= (bfd_size_type
) sizeof (Elf_Internal_Verdaux
);
6316 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6318 iverdaux
= iverdef
->vd_auxptr
;
6319 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6320 iverdaux
->vda_nextptr
= NULL
;
6326 if (contents
!= NULL
)
6332 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6334 elf_symbol_type
*newsym
;
6335 bfd_size_type amt
= sizeof (elf_symbol_type
);
6337 newsym
= bfd_zalloc (abfd
, amt
);
6342 newsym
->symbol
.the_bfd
= abfd
;
6343 return &newsym
->symbol
;
6348 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6352 bfd_symbol_info (symbol
, ret
);
6355 /* Return whether a symbol name implies a local symbol. Most targets
6356 use this function for the is_local_label_name entry point, but some
6360 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6363 /* Normal local symbols start with ``.L''. */
6364 if (name
[0] == '.' && name
[1] == 'L')
6367 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6368 DWARF debugging symbols starting with ``..''. */
6369 if (name
[0] == '.' && name
[1] == '.')
6372 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6373 emitting DWARF debugging output. I suspect this is actually a
6374 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6375 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6376 underscore to be emitted on some ELF targets). For ease of use,
6377 we treat such symbols as local. */
6378 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6385 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6386 asymbol
*symbol ATTRIBUTE_UNUSED
)
6393 _bfd_elf_set_arch_mach (bfd
*abfd
,
6394 enum bfd_architecture arch
,
6395 unsigned long machine
)
6397 /* If this isn't the right architecture for this backend, and this
6398 isn't the generic backend, fail. */
6399 if (arch
!= get_elf_backend_data (abfd
)->arch
6400 && arch
!= bfd_arch_unknown
6401 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6404 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6407 /* Find the function to a particular section and offset,
6408 for error reporting. */
6411 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6415 const char **filename_ptr
,
6416 const char **functionname_ptr
)
6418 const char *filename
;
6419 asymbol
*func
, *file
;
6422 /* ??? Given multiple file symbols, it is impossible to reliably
6423 choose the right file name for global symbols. File symbols are
6424 local symbols, and thus all file symbols must sort before any
6425 global symbols. The ELF spec may be interpreted to say that a
6426 file symbol must sort before other local symbols, but currently
6427 ld -r doesn't do this. So, for ld -r output, it is possible to
6428 make a better choice of file name for local symbols by ignoring
6429 file symbols appearing after a given local symbol. */
6430 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6436 state
= nothing_seen
;
6438 for (p
= symbols
; *p
!= NULL
; p
++)
6442 q
= (elf_symbol_type
*) *p
;
6444 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6450 if (state
== symbol_seen
)
6451 state
= file_after_symbol_seen
;
6457 if (bfd_get_section (&q
->symbol
) == section
6458 && q
->symbol
.value
>= low_func
6459 && q
->symbol
.value
<= offset
)
6461 func
= (asymbol
*) q
;
6462 low_func
= q
->symbol
.value
;
6465 else if (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) != STB_LOCAL
6466 && state
== file_after_symbol_seen
)
6469 filename
= bfd_asymbol_name (file
);
6473 if (state
== nothing_seen
)
6474 state
= symbol_seen
;
6481 *filename_ptr
= filename
;
6482 if (functionname_ptr
)
6483 *functionname_ptr
= bfd_asymbol_name (func
);
6488 /* Find the nearest line to a particular section and offset,
6489 for error reporting. */
6492 _bfd_elf_find_nearest_line (bfd
*abfd
,
6496 const char **filename_ptr
,
6497 const char **functionname_ptr
,
6498 unsigned int *line_ptr
)
6502 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6503 filename_ptr
, functionname_ptr
,
6506 if (!*functionname_ptr
)
6507 elf_find_function (abfd
, section
, symbols
, offset
,
6508 *filename_ptr
? NULL
: filename_ptr
,
6514 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6515 filename_ptr
, functionname_ptr
,
6517 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6519 if (!*functionname_ptr
)
6520 elf_find_function (abfd
, section
, symbols
, offset
,
6521 *filename_ptr
? NULL
: filename_ptr
,
6527 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6528 &found
, filename_ptr
,
6529 functionname_ptr
, line_ptr
,
6530 &elf_tdata (abfd
)->line_info
))
6532 if (found
&& (*functionname_ptr
|| *line_ptr
))
6535 if (symbols
== NULL
)
6538 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6539 filename_ptr
, functionname_ptr
))
6547 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6551 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6553 ret
+= get_program_header_size (abfd
);
6558 _bfd_elf_set_section_contents (bfd
*abfd
,
6560 const void *location
,
6562 bfd_size_type count
)
6564 Elf_Internal_Shdr
*hdr
;
6567 if (! abfd
->output_has_begun
6568 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6571 hdr
= &elf_section_data (section
)->this_hdr
;
6572 pos
= hdr
->sh_offset
+ offset
;
6573 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6574 || bfd_bwrite (location
, count
, abfd
) != count
)
6581 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6582 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6583 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6588 /* Try to convert a non-ELF reloc into an ELF one. */
6591 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6593 /* Check whether we really have an ELF howto. */
6595 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6597 bfd_reloc_code_real_type code
;
6598 reloc_howto_type
*howto
;
6600 /* Alien reloc: Try to determine its type to replace it with an
6601 equivalent ELF reloc. */
6603 if (areloc
->howto
->pc_relative
)
6605 switch (areloc
->howto
->bitsize
)
6608 code
= BFD_RELOC_8_PCREL
;
6611 code
= BFD_RELOC_12_PCREL
;
6614 code
= BFD_RELOC_16_PCREL
;
6617 code
= BFD_RELOC_24_PCREL
;
6620 code
= BFD_RELOC_32_PCREL
;
6623 code
= BFD_RELOC_64_PCREL
;
6629 howto
= bfd_reloc_type_lookup (abfd
, code
);
6631 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6633 if (howto
->pcrel_offset
)
6634 areloc
->addend
+= areloc
->address
;
6636 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6641 switch (areloc
->howto
->bitsize
)
6647 code
= BFD_RELOC_14
;
6650 code
= BFD_RELOC_16
;
6653 code
= BFD_RELOC_26
;
6656 code
= BFD_RELOC_32
;
6659 code
= BFD_RELOC_64
;
6665 howto
= bfd_reloc_type_lookup (abfd
, code
);
6669 areloc
->howto
= howto
;
6677 (*_bfd_error_handler
)
6678 (_("%B: unsupported relocation type %s"),
6679 abfd
, areloc
->howto
->name
);
6680 bfd_set_error (bfd_error_bad_value
);
6685 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6687 if (bfd_get_format (abfd
) == bfd_object
)
6689 if (elf_shstrtab (abfd
) != NULL
)
6690 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6693 return _bfd_generic_close_and_cleanup (abfd
);
6696 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6697 in the relocation's offset. Thus we cannot allow any sort of sanity
6698 range-checking to interfere. There is nothing else to do in processing
6701 bfd_reloc_status_type
6702 _bfd_elf_rel_vtable_reloc_fn
6703 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6704 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6705 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6706 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6708 return bfd_reloc_ok
;
6711 /* Elf core file support. Much of this only works on native
6712 toolchains, since we rely on knowing the
6713 machine-dependent procfs structure in order to pick
6714 out details about the corefile. */
6716 #ifdef HAVE_SYS_PROCFS_H
6717 # include <sys/procfs.h>
6720 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6723 elfcore_make_pid (bfd
*abfd
)
6725 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6726 + (elf_tdata (abfd
)->core_pid
));
6729 /* If there isn't a section called NAME, make one, using
6730 data from SECT. Note, this function will generate a
6731 reference to NAME, so you shouldn't deallocate or
6735 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6739 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6742 sect2
= bfd_make_section (abfd
, name
);
6746 sect2
->size
= sect
->size
;
6747 sect2
->filepos
= sect
->filepos
;
6748 sect2
->flags
= sect
->flags
;
6749 sect2
->alignment_power
= sect
->alignment_power
;
6753 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6754 actually creates up to two pseudosections:
6755 - For the single-threaded case, a section named NAME, unless
6756 such a section already exists.
6757 - For the multi-threaded case, a section named "NAME/PID", where
6758 PID is elfcore_make_pid (abfd).
6759 Both pseudosections have identical contents. */
6761 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6767 char *threaded_name
;
6771 /* Build the section name. */
6773 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6774 len
= strlen (buf
) + 1;
6775 threaded_name
= bfd_alloc (abfd
, len
);
6776 if (threaded_name
== NULL
)
6778 memcpy (threaded_name
, buf
, len
);
6780 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6784 sect
->filepos
= filepos
;
6785 sect
->flags
= SEC_HAS_CONTENTS
;
6786 sect
->alignment_power
= 2;
6788 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6791 /* prstatus_t exists on:
6793 linux 2.[01] + glibc
6797 #if defined (HAVE_PRSTATUS_T)
6800 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6805 if (note
->descsz
== sizeof (prstatus_t
))
6809 size
= sizeof (prstat
.pr_reg
);
6810 offset
= offsetof (prstatus_t
, pr_reg
);
6811 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6813 /* Do not overwrite the core signal if it
6814 has already been set by another thread. */
6815 if (elf_tdata (abfd
)->core_signal
== 0)
6816 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6817 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6819 /* pr_who exists on:
6822 pr_who doesn't exist on:
6825 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6826 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6829 #if defined (HAVE_PRSTATUS32_T)
6830 else if (note
->descsz
== sizeof (prstatus32_t
))
6832 /* 64-bit host, 32-bit corefile */
6833 prstatus32_t prstat
;
6835 size
= sizeof (prstat
.pr_reg
);
6836 offset
= offsetof (prstatus32_t
, pr_reg
);
6837 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6839 /* Do not overwrite the core signal if it
6840 has already been set by another thread. */
6841 if (elf_tdata (abfd
)->core_signal
== 0)
6842 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6843 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6845 /* pr_who exists on:
6848 pr_who doesn't exist on:
6851 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6852 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6855 #endif /* HAVE_PRSTATUS32_T */
6858 /* Fail - we don't know how to handle any other
6859 note size (ie. data object type). */
6863 /* Make a ".reg/999" section and a ".reg" section. */
6864 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6865 size
, note
->descpos
+ offset
);
6867 #endif /* defined (HAVE_PRSTATUS_T) */
6869 /* Create a pseudosection containing the exact contents of NOTE. */
6871 elfcore_make_note_pseudosection (bfd
*abfd
,
6873 Elf_Internal_Note
*note
)
6875 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6876 note
->descsz
, note
->descpos
);
6879 /* There isn't a consistent prfpregset_t across platforms,
6880 but it doesn't matter, because we don't have to pick this
6881 data structure apart. */
6884 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6886 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6889 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6890 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6894 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6896 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6899 #if defined (HAVE_PRPSINFO_T)
6900 typedef prpsinfo_t elfcore_psinfo_t
;
6901 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6902 typedef prpsinfo32_t elfcore_psinfo32_t
;
6906 #if defined (HAVE_PSINFO_T)
6907 typedef psinfo_t elfcore_psinfo_t
;
6908 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6909 typedef psinfo32_t elfcore_psinfo32_t
;
6913 /* return a malloc'ed copy of a string at START which is at
6914 most MAX bytes long, possibly without a terminating '\0'.
6915 the copy will always have a terminating '\0'. */
6918 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6921 char *end
= memchr (start
, '\0', max
);
6929 dups
= bfd_alloc (abfd
, len
+ 1);
6933 memcpy (dups
, start
, len
);
6939 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6941 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6943 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6945 elfcore_psinfo_t psinfo
;
6947 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6949 elf_tdata (abfd
)->core_program
6950 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6951 sizeof (psinfo
.pr_fname
));
6953 elf_tdata (abfd
)->core_command
6954 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6955 sizeof (psinfo
.pr_psargs
));
6957 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6958 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6960 /* 64-bit host, 32-bit corefile */
6961 elfcore_psinfo32_t psinfo
;
6963 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6965 elf_tdata (abfd
)->core_program
6966 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6967 sizeof (psinfo
.pr_fname
));
6969 elf_tdata (abfd
)->core_command
6970 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6971 sizeof (psinfo
.pr_psargs
));
6977 /* Fail - we don't know how to handle any other
6978 note size (ie. data object type). */
6982 /* Note that for some reason, a spurious space is tacked
6983 onto the end of the args in some (at least one anyway)
6984 implementations, so strip it off if it exists. */
6987 char *command
= elf_tdata (abfd
)->core_command
;
6988 int n
= strlen (command
);
6990 if (0 < n
&& command
[n
- 1] == ' ')
6991 command
[n
- 1] = '\0';
6996 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6998 #if defined (HAVE_PSTATUS_T)
7000 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7002 if (note
->descsz
== sizeof (pstatus_t
)
7003 #if defined (HAVE_PXSTATUS_T)
7004 || note
->descsz
== sizeof (pxstatus_t
)
7010 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7012 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7014 #if defined (HAVE_PSTATUS32_T)
7015 else if (note
->descsz
== sizeof (pstatus32_t
))
7017 /* 64-bit host, 32-bit corefile */
7020 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7022 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7025 /* Could grab some more details from the "representative"
7026 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7027 NT_LWPSTATUS note, presumably. */
7031 #endif /* defined (HAVE_PSTATUS_T) */
7033 #if defined (HAVE_LWPSTATUS_T)
7035 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7037 lwpstatus_t lwpstat
;
7043 if (note
->descsz
!= sizeof (lwpstat
)
7044 #if defined (HAVE_LWPXSTATUS_T)
7045 && note
->descsz
!= sizeof (lwpxstatus_t
)
7050 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7052 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7053 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7055 /* Make a ".reg/999" section. */
7057 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7058 len
= strlen (buf
) + 1;
7059 name
= bfd_alloc (abfd
, len
);
7062 memcpy (name
, buf
, len
);
7064 sect
= bfd_make_section_anyway (abfd
, name
);
7068 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7069 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7070 sect
->filepos
= note
->descpos
7071 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7074 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7075 sect
->size
= sizeof (lwpstat
.pr_reg
);
7076 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7079 sect
->flags
= SEC_HAS_CONTENTS
;
7080 sect
->alignment_power
= 2;
7082 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7085 /* Make a ".reg2/999" section */
7087 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7088 len
= strlen (buf
) + 1;
7089 name
= bfd_alloc (abfd
, len
);
7092 memcpy (name
, buf
, len
);
7094 sect
= bfd_make_section_anyway (abfd
, name
);
7098 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7099 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7100 sect
->filepos
= note
->descpos
7101 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7104 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7105 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7106 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7109 sect
->flags
= SEC_HAS_CONTENTS
;
7110 sect
->alignment_power
= 2;
7112 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7114 #endif /* defined (HAVE_LWPSTATUS_T) */
7116 #if defined (HAVE_WIN32_PSTATUS_T)
7118 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7124 win32_pstatus_t pstatus
;
7126 if (note
->descsz
< sizeof (pstatus
))
7129 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7131 switch (pstatus
.data_type
)
7133 case NOTE_INFO_PROCESS
:
7134 /* FIXME: need to add ->core_command. */
7135 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7136 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7139 case NOTE_INFO_THREAD
:
7140 /* Make a ".reg/999" section. */
7141 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7143 len
= strlen (buf
) + 1;
7144 name
= bfd_alloc (abfd
, len
);
7148 memcpy (name
, buf
, len
);
7150 sect
= bfd_make_section_anyway (abfd
, name
);
7154 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7155 sect
->filepos
= (note
->descpos
7156 + offsetof (struct win32_pstatus
,
7157 data
.thread_info
.thread_context
));
7158 sect
->flags
= SEC_HAS_CONTENTS
;
7159 sect
->alignment_power
= 2;
7161 if (pstatus
.data
.thread_info
.is_active_thread
)
7162 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7166 case NOTE_INFO_MODULE
:
7167 /* Make a ".module/xxxxxxxx" section. */
7168 sprintf (buf
, ".module/%08lx",
7169 (long) pstatus
.data
.module_info
.base_address
);
7171 len
= strlen (buf
) + 1;
7172 name
= bfd_alloc (abfd
, len
);
7176 memcpy (name
, buf
, len
);
7178 sect
= bfd_make_section_anyway (abfd
, name
);
7183 sect
->size
= note
->descsz
;
7184 sect
->filepos
= note
->descpos
;
7185 sect
->flags
= SEC_HAS_CONTENTS
;
7186 sect
->alignment_power
= 2;
7195 #endif /* HAVE_WIN32_PSTATUS_T */
7198 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7200 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7208 if (bed
->elf_backend_grok_prstatus
)
7209 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7211 #if defined (HAVE_PRSTATUS_T)
7212 return elfcore_grok_prstatus (abfd
, note
);
7217 #if defined (HAVE_PSTATUS_T)
7219 return elfcore_grok_pstatus (abfd
, note
);
7222 #if defined (HAVE_LWPSTATUS_T)
7224 return elfcore_grok_lwpstatus (abfd
, note
);
7227 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7228 return elfcore_grok_prfpreg (abfd
, note
);
7230 #if defined (HAVE_WIN32_PSTATUS_T)
7231 case NT_WIN32PSTATUS
:
7232 return elfcore_grok_win32pstatus (abfd
, note
);
7235 case NT_PRXFPREG
: /* Linux SSE extension */
7236 if (note
->namesz
== 6
7237 && strcmp (note
->namedata
, "LINUX") == 0)
7238 return elfcore_grok_prxfpreg (abfd
, note
);
7244 if (bed
->elf_backend_grok_psinfo
)
7245 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7247 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7248 return elfcore_grok_psinfo (abfd
, note
);
7255 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7259 sect
->size
= note
->descsz
;
7260 sect
->filepos
= note
->descpos
;
7261 sect
->flags
= SEC_HAS_CONTENTS
;
7262 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7270 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7274 cp
= strchr (note
->namedata
, '@');
7277 *lwpidp
= atoi(cp
+ 1);
7284 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7287 /* Signal number at offset 0x08. */
7288 elf_tdata (abfd
)->core_signal
7289 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7291 /* Process ID at offset 0x50. */
7292 elf_tdata (abfd
)->core_pid
7293 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7295 /* Command name at 0x7c (max 32 bytes, including nul). */
7296 elf_tdata (abfd
)->core_command
7297 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7299 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7304 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7308 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7309 elf_tdata (abfd
)->core_lwpid
= lwp
;
7311 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7313 /* NetBSD-specific core "procinfo". Note that we expect to
7314 find this note before any of the others, which is fine,
7315 since the kernel writes this note out first when it
7316 creates a core file. */
7318 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7321 /* As of Jan 2002 there are no other machine-independent notes
7322 defined for NetBSD core files. If the note type is less
7323 than the start of the machine-dependent note types, we don't
7326 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7330 switch (bfd_get_arch (abfd
))
7332 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7333 PT_GETFPREGS == mach+2. */
7335 case bfd_arch_alpha
:
7336 case bfd_arch_sparc
:
7339 case NT_NETBSDCORE_FIRSTMACH
+0:
7340 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7342 case NT_NETBSDCORE_FIRSTMACH
+2:
7343 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7349 /* On all other arch's, PT_GETREGS == mach+1 and
7350 PT_GETFPREGS == mach+3. */
7355 case NT_NETBSDCORE_FIRSTMACH
+1:
7356 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7358 case NT_NETBSDCORE_FIRSTMACH
+3:
7359 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7369 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7371 void *ddata
= note
->descdata
;
7378 /* nto_procfs_status 'pid' field is at offset 0. */
7379 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7381 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7382 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7384 /* nto_procfs_status 'flags' field is at offset 8. */
7385 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7387 /* nto_procfs_status 'what' field is at offset 14. */
7388 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7390 elf_tdata (abfd
)->core_signal
= sig
;
7391 elf_tdata (abfd
)->core_lwpid
= *tid
;
7394 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7395 do not come from signals so we make sure we set the current
7396 thread just in case. */
7397 if (flags
& 0x00000080)
7398 elf_tdata (abfd
)->core_lwpid
= *tid
;
7400 /* Make a ".qnx_core_status/%d" section. */
7401 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7403 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7408 sect
= bfd_make_section_anyway (abfd
, name
);
7412 sect
->size
= note
->descsz
;
7413 sect
->filepos
= note
->descpos
;
7414 sect
->flags
= SEC_HAS_CONTENTS
;
7415 sect
->alignment_power
= 2;
7417 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7421 elfcore_grok_nto_regs (bfd
*abfd
,
7422 Elf_Internal_Note
*note
,
7430 /* Make a "(base)/%d" section. */
7431 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7433 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7438 sect
= bfd_make_section_anyway (abfd
, name
);
7442 sect
->size
= note
->descsz
;
7443 sect
->filepos
= note
->descpos
;
7444 sect
->flags
= SEC_HAS_CONTENTS
;
7445 sect
->alignment_power
= 2;
7447 /* This is the current thread. */
7448 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7449 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7454 #define BFD_QNT_CORE_INFO 7
7455 #define BFD_QNT_CORE_STATUS 8
7456 #define BFD_QNT_CORE_GREG 9
7457 #define BFD_QNT_CORE_FPREG 10
7460 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7462 /* Every GREG section has a STATUS section before it. Store the
7463 tid from the previous call to pass down to the next gregs
7465 static pid_t tid
= 1;
7469 case BFD_QNT_CORE_INFO
:
7470 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7471 case BFD_QNT_CORE_STATUS
:
7472 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7473 case BFD_QNT_CORE_GREG
:
7474 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7475 case BFD_QNT_CORE_FPREG
:
7476 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7482 /* Function: elfcore_write_note
7489 size of data for note
7492 End of buffer containing note. */
7495 elfcore_write_note (bfd
*abfd
,
7503 Elf_External_Note
*xnp
;
7513 const struct elf_backend_data
*bed
;
7515 namesz
= strlen (name
) + 1;
7516 bed
= get_elf_backend_data (abfd
);
7517 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7520 newspace
= 12 + namesz
+ pad
+ size
;
7522 p
= realloc (buf
, *bufsiz
+ newspace
);
7524 *bufsiz
+= newspace
;
7525 xnp
= (Elf_External_Note
*) dest
;
7526 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7527 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7528 H_PUT_32 (abfd
, type
, xnp
->type
);
7532 memcpy (dest
, name
, namesz
);
7540 memcpy (dest
, input
, size
);
7544 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7546 elfcore_write_prpsinfo (bfd
*abfd
,
7553 char *note_name
= "CORE";
7555 #if defined (HAVE_PSINFO_T)
7557 note_type
= NT_PSINFO
;
7560 note_type
= NT_PRPSINFO
;
7563 memset (&data
, 0, sizeof (data
));
7564 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7565 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7566 return elfcore_write_note (abfd
, buf
, bufsiz
,
7567 note_name
, note_type
, &data
, sizeof (data
));
7569 #endif /* PSINFO_T or PRPSINFO_T */
7571 #if defined (HAVE_PRSTATUS_T)
7573 elfcore_write_prstatus (bfd
*abfd
,
7581 char *note_name
= "CORE";
7583 memset (&prstat
, 0, sizeof (prstat
));
7584 prstat
.pr_pid
= pid
;
7585 prstat
.pr_cursig
= cursig
;
7586 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7587 return elfcore_write_note (abfd
, buf
, bufsiz
,
7588 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7590 #endif /* HAVE_PRSTATUS_T */
7592 #if defined (HAVE_LWPSTATUS_T)
7594 elfcore_write_lwpstatus (bfd
*abfd
,
7601 lwpstatus_t lwpstat
;
7602 char *note_name
= "CORE";
7604 memset (&lwpstat
, 0, sizeof (lwpstat
));
7605 lwpstat
.pr_lwpid
= pid
>> 16;
7606 lwpstat
.pr_cursig
= cursig
;
7607 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7608 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7609 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7611 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7612 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7614 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7615 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7618 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7619 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7621 #endif /* HAVE_LWPSTATUS_T */
7623 #if defined (HAVE_PSTATUS_T)
7625 elfcore_write_pstatus (bfd
*abfd
,
7633 char *note_name
= "CORE";
7635 memset (&pstat
, 0, sizeof (pstat
));
7636 pstat
.pr_pid
= pid
& 0xffff;
7637 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7638 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7641 #endif /* HAVE_PSTATUS_T */
7644 elfcore_write_prfpreg (bfd
*abfd
,
7650 char *note_name
= "CORE";
7651 return elfcore_write_note (abfd
, buf
, bufsiz
,
7652 note_name
, NT_FPREGSET
, fpregs
, size
);
7656 elfcore_write_prxfpreg (bfd
*abfd
,
7659 const void *xfpregs
,
7662 char *note_name
= "LINUX";
7663 return elfcore_write_note (abfd
, buf
, bufsiz
,
7664 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7668 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7676 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7679 buf
= bfd_malloc (size
);
7683 if (bfd_bread (buf
, size
, abfd
) != size
)
7691 while (p
< buf
+ size
)
7693 /* FIXME: bad alignment assumption. */
7694 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7695 Elf_Internal_Note in
;
7697 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7699 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7700 in
.namedata
= xnp
->name
;
7702 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7703 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7704 in
.descpos
= offset
+ (in
.descdata
- buf
);
7706 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7708 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7711 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7713 if (! elfcore_grok_nto_note (abfd
, &in
))
7718 if (! elfcore_grok_note (abfd
, &in
))
7722 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7729 /* Providing external access to the ELF program header table. */
7731 /* Return an upper bound on the number of bytes required to store a
7732 copy of ABFD's program header table entries. Return -1 if an error
7733 occurs; bfd_get_error will return an appropriate code. */
7736 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7738 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7740 bfd_set_error (bfd_error_wrong_format
);
7744 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7747 /* Copy ABFD's program header table entries to *PHDRS. The entries
7748 will be stored as an array of Elf_Internal_Phdr structures, as
7749 defined in include/elf/internal.h. To find out how large the
7750 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7752 Return the number of program header table entries read, or -1 if an
7753 error occurs; bfd_get_error will return an appropriate code. */
7756 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7760 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7762 bfd_set_error (bfd_error_wrong_format
);
7766 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7767 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7768 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7774 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7777 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7779 i_ehdrp
= elf_elfheader (abfd
);
7780 if (i_ehdrp
== NULL
)
7781 sprintf_vma (buf
, value
);
7784 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7786 #if BFD_HOST_64BIT_LONG
7787 sprintf (buf
, "%016lx", value
);
7789 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7790 _bfd_int64_low (value
));
7794 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7797 sprintf_vma (buf
, value
);
7802 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7805 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7807 i_ehdrp
= elf_elfheader (abfd
);
7808 if (i_ehdrp
== NULL
)
7809 fprintf_vma ((FILE *) stream
, value
);
7812 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7814 #if BFD_HOST_64BIT_LONG
7815 fprintf ((FILE *) stream
, "%016lx", value
);
7817 fprintf ((FILE *) stream
, "%08lx%08lx",
7818 _bfd_int64_high (value
), _bfd_int64_low (value
));
7822 fprintf ((FILE *) stream
, "%08lx",
7823 (unsigned long) (value
& 0xffffffff));
7826 fprintf_vma ((FILE *) stream
, value
);
7830 enum elf_reloc_type_class
7831 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7833 return reloc_class_normal
;
7836 /* For RELA architectures, return the relocation value for a
7837 relocation against a local symbol. */
7840 _bfd_elf_rela_local_sym (bfd
*abfd
,
7841 Elf_Internal_Sym
*sym
,
7843 Elf_Internal_Rela
*rel
)
7845 asection
*sec
= *psec
;
7848 relocation
= (sec
->output_section
->vma
7849 + sec
->output_offset
7851 if ((sec
->flags
& SEC_MERGE
)
7852 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7853 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7856 _bfd_merged_section_offset (abfd
, psec
,
7857 elf_section_data (sec
)->sec_info
,
7858 sym
->st_value
+ rel
->r_addend
);
7861 /* If we have changed the section, and our original section is
7862 marked with SEC_EXCLUDE, it means that the original
7863 SEC_MERGE section has been completely subsumed in some
7864 other SEC_MERGE section. In this case, we need to leave
7865 some info around for --emit-relocs. */
7866 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7867 sec
->kept_section
= *psec
;
7870 rel
->r_addend
-= relocation
;
7871 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
7877 _bfd_elf_rel_local_sym (bfd
*abfd
,
7878 Elf_Internal_Sym
*sym
,
7882 asection
*sec
= *psec
;
7884 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7885 return sym
->st_value
+ addend
;
7887 return _bfd_merged_section_offset (abfd
, psec
,
7888 elf_section_data (sec
)->sec_info
,
7889 sym
->st_value
+ addend
);
7893 _bfd_elf_section_offset (bfd
*abfd
,
7894 struct bfd_link_info
*info
,
7898 switch (sec
->sec_info_type
)
7900 case ELF_INFO_TYPE_STABS
:
7901 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
7903 case ELF_INFO_TYPE_EH_FRAME
:
7904 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
7910 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7911 reconstruct an ELF file by reading the segments out of remote memory
7912 based on the ELF file header at EHDR_VMA and the ELF program headers it
7913 points to. If not null, *LOADBASEP is filled in with the difference
7914 between the VMAs from which the segments were read, and the VMAs the
7915 file headers (and hence BFD's idea of each section's VMA) put them at.
7917 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7918 remote memory at target address VMA into the local buffer at MYADDR; it
7919 should return zero on success or an `errno' code on failure. TEMPL must
7920 be a BFD for an ELF target with the word size and byte order found in
7921 the remote memory. */
7924 bfd_elf_bfd_from_remote_memory
7928 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
7930 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7931 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
7935 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
7936 long symcount ATTRIBUTE_UNUSED
,
7937 asymbol
**syms ATTRIBUTE_UNUSED
,
7942 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7945 const char *relplt_name
;
7946 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7950 Elf_Internal_Shdr
*hdr
;
7956 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
7959 if (dynsymcount
<= 0)
7962 if (!bed
->plt_sym_val
)
7965 relplt_name
= bed
->relplt_name
;
7966 if (relplt_name
== NULL
)
7967 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
7968 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
7972 hdr
= &elf_section_data (relplt
)->this_hdr
;
7973 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
7974 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
7977 plt
= bfd_get_section_by_name (abfd
, ".plt");
7981 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7982 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
7985 count
= relplt
->size
/ hdr
->sh_entsize
;
7986 size
= count
* sizeof (asymbol
);
7987 p
= relplt
->relocation
;
7988 for (i
= 0; i
< count
; i
++, s
++, p
++)
7989 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
7991 s
= *ret
= bfd_malloc (size
);
7995 names
= (char *) (s
+ count
);
7996 p
= relplt
->relocation
;
7998 for (i
= 0; i
< count
; i
++, s
++, p
++)
8003 addr
= bed
->plt_sym_val (i
, plt
, p
);
8004 if (addr
== (bfd_vma
) -1)
8007 *s
= **p
->sym_ptr_ptr
;
8009 s
->value
= addr
- plt
->vma
;
8011 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8012 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8014 memcpy (names
, "@plt", sizeof ("@plt"));
8015 names
+= sizeof ("@plt");
8022 /* Sort symbol by binding and section. We want to put definitions
8023 sorted by section at the beginning. */
8026 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8028 const Elf_Internal_Sym
*s1
;
8029 const Elf_Internal_Sym
*s2
;
8032 /* Make sure that undefined symbols are at the end. */
8033 s1
= (const Elf_Internal_Sym
*) arg1
;
8034 if (s1
->st_shndx
== SHN_UNDEF
)
8036 s2
= (const Elf_Internal_Sym
*) arg2
;
8037 if (s2
->st_shndx
== SHN_UNDEF
)
8040 /* Sorted by section index. */
8041 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8045 /* Sorted by binding. */
8046 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8051 Elf_Internal_Sym
*sym
;
8056 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8058 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8059 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8060 return strcmp (s1
->name
, s2
->name
);
8063 /* Check if 2 sections define the same set of local and global
8067 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8070 const struct elf_backend_data
*bed1
, *bed2
;
8071 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8072 bfd_size_type symcount1
, symcount2
;
8073 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8074 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8075 Elf_Internal_Sym
*isymend
;
8076 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8077 bfd_size_type count1
, count2
, i
;
8084 /* If both are .gnu.linkonce sections, they have to have the same
8086 if (strncmp (sec1
->name
, ".gnu.linkonce",
8087 sizeof ".gnu.linkonce" - 1) == 0
8088 && strncmp (sec2
->name
, ".gnu.linkonce",
8089 sizeof ".gnu.linkonce" - 1) == 0)
8090 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8091 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8093 /* Both sections have to be in ELF. */
8094 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8095 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8098 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8101 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8102 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8104 /* If both are members of section groups, they have to have the
8106 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8110 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8111 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8112 if (shndx1
== -1 || shndx2
== -1)
8115 bed1
= get_elf_backend_data (bfd1
);
8116 bed2
= get_elf_backend_data (bfd2
);
8117 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8118 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8119 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8120 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8122 if (symcount1
== 0 || symcount2
== 0)
8125 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8127 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8131 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8134 /* Sort symbols by binding and section. Global definitions are at
8136 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8137 elf_sort_elf_symbol
);
8138 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8139 elf_sort_elf_symbol
);
8141 /* Count definitions in the section. */
8143 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8144 isym
< isymend
; isym
++)
8146 if (isym
->st_shndx
== (unsigned int) shndx1
)
8153 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8158 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8159 isym
< isymend
; isym
++)
8161 if (isym
->st_shndx
== (unsigned int) shndx2
)
8168 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8172 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8175 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8176 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8178 if (symtable1
== NULL
|| symtable2
== NULL
)
8182 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8183 isym
< isymend
; isym
++)
8186 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8193 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8194 isym
< isymend
; isym
++)
8197 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8203 /* Sort symbol by name. */
8204 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8205 elf_sym_name_compare
);
8206 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8207 elf_sym_name_compare
);
8209 for (i
= 0; i
< count1
; i
++)
8210 /* Two symbols must have the same binding, type and name. */
8211 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8212 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8213 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)