1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
269 Performing the final link
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocatable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
301 Information provided by the linker
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocatable object file.
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
325 Relocating the section contents
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocatable link, the
343 relocs themselves must also be modified and written out.
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
363 Writing the symbol table
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
409 static bfd_boolean generic_link_add_object_symbols
410 (bfd
*, struct bfd_link_info
*, bfd_boolean collect
);
411 static bfd_boolean generic_link_add_symbols
412 (bfd
*, struct bfd_link_info
*, bfd_boolean
);
413 static bfd_boolean generic_link_check_archive_element_no_collect
414 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
415 static bfd_boolean generic_link_check_archive_element_collect
416 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
417 static bfd_boolean generic_link_check_archive_element
418 (bfd
*, struct bfd_link_info
*, bfd_boolean
*, bfd_boolean
);
419 static bfd_boolean generic_link_add_symbol_list
420 (bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
422 static bfd_boolean generic_add_output_symbol
423 (bfd
*, size_t *psymalloc
, asymbol
*);
424 static bfd_boolean default_data_link_order
425 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*);
426 static bfd_boolean default_indirect_link_order
427 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*,
430 /* The link hash table structure is defined in bfdlink.h. It provides
431 a base hash table which the backend specific hash tables are built
434 /* Routine to create an entry in the link hash table. */
436 struct bfd_hash_entry
*
437 _bfd_link_hash_newfunc (struct bfd_hash_entry
*entry
,
438 struct bfd_hash_table
*table
,
441 /* Allocate the structure if it has not already been allocated by a
445 entry
= bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
450 /* Call the allocation method of the superclass. */
451 entry
= bfd_hash_newfunc (entry
, table
, string
);
454 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
456 /* Initialize the local fields. */
457 h
->type
= bfd_link_hash_new
;
458 memset (&h
->u
.undef
.next
, 0,
459 (sizeof (struct bfd_link_hash_entry
)
460 - offsetof (struct bfd_link_hash_entry
, u
.undef
.next
)));
466 /* Initialize a link hash table. The BFD argument is the one
467 responsible for creating this table. */
470 _bfd_link_hash_table_init
471 (struct bfd_link_hash_table
*table
,
473 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
474 struct bfd_hash_table
*,
477 table
->creator
= abfd
->xvec
;
478 table
->undefs
= NULL
;
479 table
->undefs_tail
= NULL
;
480 table
->type
= bfd_link_generic_hash_table
;
482 return bfd_hash_table_init (&table
->table
, newfunc
);
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
489 struct bfd_link_hash_entry
*
490 bfd_link_hash_lookup (struct bfd_link_hash_table
*table
,
496 struct bfd_link_hash_entry
*ret
;
498 ret
= ((struct bfd_link_hash_entry
*)
499 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
501 if (follow
&& ret
!= NULL
)
503 while (ret
->type
== bfd_link_hash_indirect
504 || ret
->type
== bfd_link_hash_warning
)
511 /* Look up a symbol in the main linker hash table if the symbol might
512 be wrapped. This should only be used for references to an
513 undefined symbol, not for definitions of a symbol. */
515 struct bfd_link_hash_entry
*
516 bfd_wrapped_link_hash_lookup (bfd
*abfd
,
517 struct bfd_link_info
*info
,
525 if (info
->wrap_hash
!= NULL
)
531 if (*l
== bfd_get_symbol_leading_char (abfd
) || *l
== info
->wrap_char
)
538 #define WRAP "__wrap_"
540 if (bfd_hash_lookup (info
->wrap_hash
, l
, FALSE
, FALSE
) != NULL
)
543 struct bfd_link_hash_entry
*h
;
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
548 amt
= strlen (l
) + sizeof WRAP
+ 1;
549 n
= bfd_malloc (amt
);
557 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
565 #define REAL "__real_"
568 && strncmp (l
, REAL
, sizeof REAL
- 1) == 0
569 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
570 FALSE
, FALSE
) != NULL
)
573 struct bfd_link_hash_entry
*h
;
575 /* This is a reference to __real_SYM, where SYM is being
576 wrapped. We want to replace all references to __real_SYM
577 with references to SYM. */
579 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
580 n
= bfd_malloc (amt
);
586 strcat (n
, l
+ sizeof REAL
- 1);
587 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
595 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
598 /* Traverse a generic link hash table. The only reason this is not a
599 macro is to do better type checking. This code presumes that an
600 argument passed as a struct bfd_hash_entry * may be caught as a
601 struct bfd_link_hash_entry * with no explicit cast required on the
605 bfd_link_hash_traverse
606 (struct bfd_link_hash_table
*table
,
607 bfd_boolean (*func
) (struct bfd_link_hash_entry
*, void *),
610 bfd_hash_traverse (&table
->table
,
611 (bfd_boolean (*) (struct bfd_hash_entry
*, void *)) func
,
615 /* Add a symbol to the linker hash table undefs list. */
618 bfd_link_add_undef (struct bfd_link_hash_table
*table
,
619 struct bfd_link_hash_entry
*h
)
621 BFD_ASSERT (h
->u
.undef
.next
== NULL
);
622 if (table
->undefs_tail
!= NULL
)
623 table
->undefs_tail
->u
.undef
.next
= h
;
624 if (table
->undefs
== NULL
)
626 table
->undefs_tail
= h
;
629 /* The undefs list was designed so that in normal use we don't need to
630 remove entries. However, if symbols on the list are changed from
631 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
632 bfd_link_hash_new for some reason, then they must be removed from the
633 list. Failure to do so might result in the linker attempting to add
634 the symbol to the list again at a later stage. */
637 bfd_link_repair_undef_list (struct bfd_link_hash_table
*table
)
639 struct bfd_link_hash_entry
**pun
;
641 pun
= &table
->undefs
;
644 struct bfd_link_hash_entry
*h
= *pun
;
646 if (h
->type
== bfd_link_hash_new
647 || h
->type
== bfd_link_hash_undefweak
)
649 *pun
= h
->u
.undef
.next
;
650 h
->u
.undef
.next
= NULL
;
651 if (h
== table
->undefs_tail
)
653 if (pun
== &table
->undefs
)
654 table
->undefs_tail
= NULL
;
656 /* pun points at an u.undef.next field. Go back to
657 the start of the link_hash_entry. */
658 table
->undefs_tail
= (struct bfd_link_hash_entry
*)
659 ((char *) pun
- ((char *) &h
->u
.undef
.next
- (char *) h
));
664 pun
= &h
->u
.undef
.next
;
668 /* Routine to create an entry in a generic link hash table. */
670 struct bfd_hash_entry
*
671 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry
*entry
,
672 struct bfd_hash_table
*table
,
675 /* Allocate the structure if it has not already been allocated by a
680 bfd_hash_allocate (table
, sizeof (struct generic_link_hash_entry
));
685 /* Call the allocation method of the superclass. */
686 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
689 struct generic_link_hash_entry
*ret
;
691 /* Set local fields. */
692 ret
= (struct generic_link_hash_entry
*) entry
;
693 ret
->written
= FALSE
;
700 /* Create a generic link hash table. */
702 struct bfd_link_hash_table
*
703 _bfd_generic_link_hash_table_create (bfd
*abfd
)
705 struct generic_link_hash_table
*ret
;
706 bfd_size_type amt
= sizeof (struct generic_link_hash_table
);
708 ret
= bfd_malloc (amt
);
711 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
712 _bfd_generic_link_hash_newfunc
))
721 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table
*hash
)
723 struct generic_link_hash_table
*ret
724 = (struct generic_link_hash_table
*) hash
;
726 bfd_hash_table_free (&ret
->root
.table
);
730 /* Grab the symbols for an object file when doing a generic link. We
731 store the symbols in the outsymbols field. We need to keep them
732 around for the entire link to ensure that we only read them once.
733 If we read them multiple times, we might wind up with relocs and
734 the hash table pointing to different instances of the symbol
738 generic_link_read_symbols (bfd
*abfd
)
740 if (bfd_get_outsymbols (abfd
) == NULL
)
745 symsize
= bfd_get_symtab_upper_bound (abfd
);
748 bfd_get_outsymbols (abfd
) = bfd_alloc (abfd
, symsize
);
749 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
751 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
754 bfd_get_symcount (abfd
) = symcount
;
760 /* Generic function to add symbols to from an object file to the
761 global hash table. This version does not automatically collect
762 constructors by name. */
765 _bfd_generic_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
767 return generic_link_add_symbols (abfd
, info
, FALSE
);
770 /* Generic function to add symbols from an object file to the global
771 hash table. This version automatically collects constructors by
772 name, as the collect2 program does. It should be used for any
773 target which does not provide some other mechanism for setting up
774 constructors and destructors; these are approximately those targets
775 for which gcc uses collect2 and do not support stabs. */
778 _bfd_generic_link_add_symbols_collect (bfd
*abfd
, struct bfd_link_info
*info
)
780 return generic_link_add_symbols (abfd
, info
, TRUE
);
783 /* Indicate that we are only retrieving symbol values from this
784 section. We want the symbols to act as though the values in the
785 file are absolute. */
788 _bfd_generic_link_just_syms (asection
*sec
,
789 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
791 sec
->output_section
= bfd_abs_section_ptr
;
792 sec
->output_offset
= sec
->vma
;
795 /* Add symbols from an object file to the global hash table. */
798 generic_link_add_symbols (bfd
*abfd
,
799 struct bfd_link_info
*info
,
804 switch (bfd_get_format (abfd
))
807 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
810 ret
= (_bfd_generic_link_add_archive_symbols
813 ? generic_link_check_archive_element_collect
814 : generic_link_check_archive_element_no_collect
)));
817 bfd_set_error (bfd_error_wrong_format
);
824 /* Add symbols from an object file to the global hash table. */
827 generic_link_add_object_symbols (bfd
*abfd
,
828 struct bfd_link_info
*info
,
831 bfd_size_type symcount
;
832 struct bfd_symbol
**outsyms
;
834 if (! generic_link_read_symbols (abfd
))
836 symcount
= _bfd_generic_link_get_symcount (abfd
);
837 outsyms
= _bfd_generic_link_get_symbols (abfd
);
838 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
, collect
);
841 /* We build a hash table of all symbols defined in an archive. */
843 /* An archive symbol may be defined by multiple archive elements.
844 This linked list is used to hold the elements. */
848 struct archive_list
*next
;
852 /* An entry in an archive hash table. */
854 struct archive_hash_entry
856 struct bfd_hash_entry root
;
857 /* Where the symbol is defined. */
858 struct archive_list
*defs
;
861 /* An archive hash table itself. */
863 struct archive_hash_table
865 struct bfd_hash_table table
;
868 /* Create a new entry for an archive hash table. */
870 static struct bfd_hash_entry
*
871 archive_hash_newfunc (struct bfd_hash_entry
*entry
,
872 struct bfd_hash_table
*table
,
875 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
877 /* Allocate the structure if it has not already been allocated by a
880 ret
= bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
));
884 /* Call the allocation method of the superclass. */
885 ret
= ((struct archive_hash_entry
*)
886 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
890 /* Initialize the local fields. */
897 /* Initialize an archive hash table. */
900 archive_hash_table_init
901 (struct archive_hash_table
*table
,
902 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
903 struct bfd_hash_table
*,
906 return bfd_hash_table_init (&table
->table
, newfunc
);
909 /* Look up an entry in an archive hash table. */
911 #define archive_hash_lookup(t, string, create, copy) \
912 ((struct archive_hash_entry *) \
913 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
915 /* Allocate space in an archive hash table. */
917 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
919 /* Free an archive hash table. */
921 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
923 /* Generic function to add symbols from an archive file to the global
924 hash file. This function presumes that the archive symbol table
925 has already been read in (this is normally done by the
926 bfd_check_format entry point). It looks through the undefined and
927 common symbols and searches the archive symbol table for them. If
928 it finds an entry, it includes the associated object file in the
931 The old linker looked through the archive symbol table for
932 undefined symbols. We do it the other way around, looking through
933 undefined symbols for symbols defined in the archive. The
934 advantage of the newer scheme is that we only have to look through
935 the list of undefined symbols once, whereas the old method had to
936 re-search the symbol table each time a new object file was added.
938 The CHECKFN argument is used to see if an object file should be
939 included. CHECKFN should set *PNEEDED to TRUE if the object file
940 should be included, and must also call the bfd_link_info
941 add_archive_element callback function and handle adding the symbols
942 to the global hash table. CHECKFN should only return FALSE if some
943 sort of error occurs.
945 For some formats, such as a.out, it is possible to look through an
946 object file but not actually include it in the link. The
947 archive_pass field in a BFD is used to avoid checking the symbols
948 of an object files too many times. When an object is included in
949 the link, archive_pass is set to -1. If an object is scanned but
950 not included, archive_pass is set to the pass number. The pass
951 number is incremented each time a new object file is included. The
952 pass number is used because when a new object file is included it
953 may create new undefined symbols which cause a previously examined
954 object file to be included. */
957 _bfd_generic_link_add_archive_symbols
959 struct bfd_link_info
*info
,
960 bfd_boolean (*checkfn
) (bfd
*, struct bfd_link_info
*, bfd_boolean
*))
964 register carsym
*arsym
;
966 struct archive_hash_table arsym_hash
;
968 struct bfd_link_hash_entry
**pundef
;
970 if (! bfd_has_map (abfd
))
972 /* An empty archive is a special case. */
973 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
975 bfd_set_error (bfd_error_no_armap
);
979 arsyms
= bfd_ardata (abfd
)->symdefs
;
980 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
982 /* In order to quickly determine whether an symbol is defined in
983 this archive, we build a hash table of the symbols. */
984 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
))
986 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
988 struct archive_hash_entry
*arh
;
989 struct archive_list
*l
, **pp
;
991 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, TRUE
, FALSE
);
994 l
= ((struct archive_list
*)
995 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
999 for (pp
= &arh
->defs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1005 /* The archive_pass field in the archive itself is used to
1006 initialize PASS, sine we may search the same archive multiple
1008 pass
= abfd
->archive_pass
+ 1;
1010 /* New undefined symbols are added to the end of the list, so we
1011 only need to look through it once. */
1012 pundef
= &info
->hash
->undefs
;
1013 while (*pundef
!= NULL
)
1015 struct bfd_link_hash_entry
*h
;
1016 struct archive_hash_entry
*arh
;
1017 struct archive_list
*l
;
1021 /* When a symbol is defined, it is not necessarily removed from
1023 if (h
->type
!= bfd_link_hash_undefined
1024 && h
->type
!= bfd_link_hash_common
)
1026 /* Remove this entry from the list, for general cleanliness
1027 and because we are going to look through the list again
1028 if we search any more libraries. We can't remove the
1029 entry if it is the tail, because that would lose any
1030 entries we add to the list later on (it would also cause
1031 us to lose track of whether the symbol has been
1033 if (*pundef
!= info
->hash
->undefs_tail
)
1034 *pundef
= (*pundef
)->u
.undef
.next
;
1036 pundef
= &(*pundef
)->u
.undef
.next
;
1040 /* Look for this symbol in the archive symbol map. */
1041 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, FALSE
, FALSE
);
1044 /* If we haven't found the exact symbol we're looking for,
1045 let's look for its import thunk */
1046 if (info
->pei386_auto_import
)
1048 bfd_size_type amt
= strlen (h
->root
.string
) + 10;
1049 char *buf
= bfd_malloc (amt
);
1053 sprintf (buf
, "__imp_%s", h
->root
.string
);
1054 arh
= archive_hash_lookup (&arsym_hash
, buf
, FALSE
, FALSE
);
1059 pundef
= &(*pundef
)->u
.undef
.next
;
1063 /* Look at all the objects which define this symbol. */
1064 for (l
= arh
->defs
; l
!= NULL
; l
= l
->next
)
1069 /* If the symbol has gotten defined along the way, quit. */
1070 if (h
->type
!= bfd_link_hash_undefined
1071 && h
->type
!= bfd_link_hash_common
)
1074 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1075 if (element
== NULL
)
1078 /* If we've already included this element, or if we've
1079 already checked it on this pass, continue. */
1080 if (element
->archive_pass
== -1
1081 || element
->archive_pass
== pass
)
1084 /* If we can't figure this element out, just ignore it. */
1085 if (! bfd_check_format (element
, bfd_object
))
1087 element
->archive_pass
= -1;
1091 /* CHECKFN will see if this element should be included, and
1092 go ahead and include it if appropriate. */
1093 if (! (*checkfn
) (element
, info
, &needed
))
1097 element
->archive_pass
= pass
;
1100 element
->archive_pass
= -1;
1102 /* Increment the pass count to show that we may need to
1103 recheck object files which were already checked. */
1108 pundef
= &(*pundef
)->u
.undef
.next
;
1111 archive_hash_table_free (&arsym_hash
);
1113 /* Save PASS in case we are called again. */
1114 abfd
->archive_pass
= pass
;
1119 archive_hash_table_free (&arsym_hash
);
1123 /* See if we should include an archive element. This version is used
1124 when we do not want to automatically collect constructors based on
1125 the symbol name, presumably because we have some other mechanism
1126 for finding them. */
1129 generic_link_check_archive_element_no_collect (
1131 struct bfd_link_info
*info
,
1132 bfd_boolean
*pneeded
)
1134 return generic_link_check_archive_element (abfd
, info
, pneeded
, FALSE
);
1137 /* See if we should include an archive element. This version is used
1138 when we want to automatically collect constructors based on the
1139 symbol name, as collect2 does. */
1142 generic_link_check_archive_element_collect (bfd
*abfd
,
1143 struct bfd_link_info
*info
,
1144 bfd_boolean
*pneeded
)
1146 return generic_link_check_archive_element (abfd
, info
, pneeded
, TRUE
);
1149 /* See if we should include an archive element. Optionally collect
1153 generic_link_check_archive_element (bfd
*abfd
,
1154 struct bfd_link_info
*info
,
1155 bfd_boolean
*pneeded
,
1156 bfd_boolean collect
)
1158 asymbol
**pp
, **ppend
;
1162 if (! generic_link_read_symbols (abfd
))
1165 pp
= _bfd_generic_link_get_symbols (abfd
);
1166 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1167 for (; pp
< ppend
; pp
++)
1170 struct bfd_link_hash_entry
*h
;
1174 /* We are only interested in globally visible symbols. */
1175 if (! bfd_is_com_section (p
->section
)
1176 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1179 /* We are only interested if we know something about this
1180 symbol, and it is undefined or common. An undefined weak
1181 symbol (type bfd_link_hash_undefweak) is not considered to be
1182 a reference when pulling files out of an archive. See the
1183 SVR4 ABI, p. 4-27. */
1184 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), FALSE
,
1187 || (h
->type
!= bfd_link_hash_undefined
1188 && h
->type
!= bfd_link_hash_common
))
1191 /* P is a symbol we are looking for. */
1193 if (! bfd_is_com_section (p
->section
))
1195 bfd_size_type symcount
;
1198 /* This object file defines this symbol, so pull it in. */
1199 if (! (*info
->callbacks
->add_archive_element
) (info
, abfd
,
1200 bfd_asymbol_name (p
)))
1202 symcount
= _bfd_generic_link_get_symcount (abfd
);
1203 symbols
= _bfd_generic_link_get_symbols (abfd
);
1204 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1211 /* P is a common symbol. */
1213 if (h
->type
== bfd_link_hash_undefined
)
1219 symbfd
= h
->u
.undef
.abfd
;
1222 /* This symbol was created as undefined from outside
1223 BFD. We assume that we should link in the object
1224 file. This is for the -u option in the linker. */
1225 if (! (*info
->callbacks
->add_archive_element
)
1226 (info
, abfd
, bfd_asymbol_name (p
)))
1232 /* Turn the symbol into a common symbol but do not link in
1233 the object file. This is how a.out works. Object
1234 formats that require different semantics must implement
1235 this function differently. This symbol is already on the
1236 undefs list. We add the section to a common section
1237 attached to symbfd to ensure that it is in a BFD which
1238 will be linked in. */
1239 h
->type
= bfd_link_hash_common
;
1241 bfd_hash_allocate (&info
->hash
->table
,
1242 sizeof (struct bfd_link_hash_common_entry
));
1243 if (h
->u
.c
.p
== NULL
)
1246 size
= bfd_asymbol_value (p
);
1249 power
= bfd_log2 (size
);
1252 h
->u
.c
.p
->alignment_power
= power
;
1254 if (p
->section
== bfd_com_section_ptr
)
1255 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1257 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1259 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1263 /* Adjust the size of the common symbol if necessary. This
1264 is how a.out works. Object formats that require
1265 different semantics must implement this function
1267 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1268 h
->u
.c
.size
= bfd_asymbol_value (p
);
1272 /* This archive element is not needed. */
1276 /* Add the symbols from an object file to the global hash table. ABFD
1277 is the object file. INFO is the linker information. SYMBOL_COUNT
1278 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1279 is TRUE if constructors should be automatically collected by name
1280 as is done by collect2. */
1283 generic_link_add_symbol_list (bfd
*abfd
,
1284 struct bfd_link_info
*info
,
1285 bfd_size_type symbol_count
,
1287 bfd_boolean collect
)
1289 asymbol
**pp
, **ppend
;
1292 ppend
= symbols
+ symbol_count
;
1293 for (; pp
< ppend
; pp
++)
1299 if ((p
->flags
& (BSF_INDIRECT
1304 || bfd_is_und_section (bfd_get_section (p
))
1305 || bfd_is_com_section (bfd_get_section (p
))
1306 || bfd_is_ind_section (bfd_get_section (p
)))
1310 struct generic_link_hash_entry
*h
;
1311 struct bfd_link_hash_entry
*bh
;
1313 name
= bfd_asymbol_name (p
);
1314 if (((p
->flags
& BSF_INDIRECT
) != 0
1315 || bfd_is_ind_section (p
->section
))
1319 string
= bfd_asymbol_name (*pp
);
1321 else if ((p
->flags
& BSF_WARNING
) != 0
1324 /* The name of P is actually the warning string, and the
1325 next symbol is the one to warn about. */
1328 name
= bfd_asymbol_name (*pp
);
1334 if (! (_bfd_generic_link_add_one_symbol
1335 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1336 p
->value
, string
, FALSE
, collect
, &bh
)))
1338 h
= (struct generic_link_hash_entry
*) bh
;
1340 /* If this is a constructor symbol, and the linker didn't do
1341 anything with it, then we want to just pass the symbol
1342 through to the output file. This will happen when
1344 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1345 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1351 /* Save the BFD symbol so that we don't lose any backend
1352 specific information that may be attached to it. We only
1353 want this one if it gives more information than the
1354 existing one; we don't want to replace a defined symbol
1355 with an undefined one. This routine may be called with a
1356 hash table other than the generic hash table, so we only
1357 do this if we are certain that the hash table is a
1359 if (info
->hash
->creator
== abfd
->xvec
)
1362 || (! bfd_is_und_section (bfd_get_section (p
))
1363 && (! bfd_is_com_section (bfd_get_section (p
))
1364 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1367 /* BSF_OLD_COMMON is a hack to support COFF reloc
1368 reading, and it should go away when the COFF
1369 linker is switched to the new version. */
1370 if (bfd_is_com_section (bfd_get_section (p
)))
1371 p
->flags
|= BSF_OLD_COMMON
;
1375 /* Store a back pointer from the symbol to the hash
1376 table entry for the benefit of relaxation code until
1377 it gets rewritten to not use asymbol structures.
1378 Setting this is also used to check whether these
1379 symbols were set up by the generic linker. */
1387 /* We use a state table to deal with adding symbols from an object
1388 file. The first index into the state table describes the symbol
1389 from the object file. The second index into the state table is the
1390 type of the symbol in the hash table. */
1392 /* The symbol from the object file is turned into one of these row
1397 UNDEF_ROW
, /* Undefined. */
1398 UNDEFW_ROW
, /* Weak undefined. */
1399 DEF_ROW
, /* Defined. */
1400 DEFW_ROW
, /* Weak defined. */
1401 COMMON_ROW
, /* Common. */
1402 INDR_ROW
, /* Indirect. */
1403 WARN_ROW
, /* Warning. */
1404 SET_ROW
/* Member of set. */
1407 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1410 /* The actions to take in the state table. */
1415 UND
, /* Mark symbol undefined. */
1416 WEAK
, /* Mark symbol weak undefined. */
1417 DEF
, /* Mark symbol defined. */
1418 DEFW
, /* Mark symbol weak defined. */
1419 COM
, /* Mark symbol common. */
1420 REF
, /* Mark defined symbol referenced. */
1421 CREF
, /* Possibly warn about common reference to defined symbol. */
1422 CDEF
, /* Define existing common symbol. */
1423 NOACT
, /* No action. */
1424 BIG
, /* Mark symbol common using largest size. */
1425 MDEF
, /* Multiple definition error. */
1426 MIND
, /* Multiple indirect symbols. */
1427 IND
, /* Make indirect symbol. */
1428 CIND
, /* Make indirect symbol from existing common symbol. */
1429 SET
, /* Add value to set. */
1430 MWARN
, /* Make warning symbol. */
1431 WARN
, /* Issue warning. */
1432 CWARN
, /* Warn if referenced, else MWARN. */
1433 CYCLE
, /* Repeat with symbol pointed to. */
1434 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1435 WARNC
/* Issue warning and then CYCLE. */
1438 /* The state table itself. The first index is a link_row and the
1439 second index is a bfd_link_hash_type. */
1441 static const enum link_action link_action
[8][8] =
1443 /* current\prev new undef undefw def defw com indr warn */
1444 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1445 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1446 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1447 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1448 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1449 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1450 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, NOACT
},
1451 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1454 /* Most of the entries in the LINK_ACTION table are straightforward,
1455 but a few are somewhat subtle.
1457 A reference to an indirect symbol (UNDEF_ROW/indr or
1458 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1459 symbol and to the symbol the indirect symbol points to.
1461 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1462 causes the warning to be issued.
1464 A common definition of an indirect symbol (COMMON_ROW/indr) is
1465 treated as a multiple definition error. Likewise for an indirect
1466 definition of a common symbol (INDR_ROW/com).
1468 An indirect definition of a warning (INDR_ROW/warn) does not cause
1469 the warning to be issued.
1471 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1472 warning is created for the symbol the indirect symbol points to.
1474 Adding an entry to a set does not count as a reference to a set,
1475 and no warning is issued (SET_ROW/warn). */
1477 /* Return the BFD in which a hash entry has been defined, if known. */
1480 hash_entry_bfd (struct bfd_link_hash_entry
*h
)
1482 while (h
->type
== bfd_link_hash_warning
)
1488 case bfd_link_hash_undefined
:
1489 case bfd_link_hash_undefweak
:
1490 return h
->u
.undef
.abfd
;
1491 case bfd_link_hash_defined
:
1492 case bfd_link_hash_defweak
:
1493 return h
->u
.def
.section
->owner
;
1494 case bfd_link_hash_common
:
1495 return h
->u
.c
.p
->section
->owner
;
1500 /* Add a symbol to the global hash table.
1501 ABFD is the BFD the symbol comes from.
1502 NAME is the name of the symbol.
1503 FLAGS is the BSF_* bits associated with the symbol.
1504 SECTION is the section in which the symbol is defined; this may be
1505 bfd_und_section_ptr or bfd_com_section_ptr.
1506 VALUE is the value of the symbol, relative to the section.
1507 STRING is used for either an indirect symbol, in which case it is
1508 the name of the symbol to indirect to, or a warning symbol, in
1509 which case it is the warning string.
1510 COPY is TRUE if NAME or STRING must be copied into locally
1511 allocated memory if they need to be saved.
1512 COLLECT is TRUE if we should automatically collect gcc constructor
1513 or destructor names as collect2 does.
1514 HASHP, if not NULL, is a place to store the created hash table
1515 entry; if *HASHP is not NULL, the caller has already looked up
1516 the hash table entry, and stored it in *HASHP. */
1519 _bfd_generic_link_add_one_symbol (struct bfd_link_info
*info
,
1527 bfd_boolean collect
,
1528 struct bfd_link_hash_entry
**hashp
)
1531 struct bfd_link_hash_entry
*h
;
1534 if (bfd_is_ind_section (section
)
1535 || (flags
& BSF_INDIRECT
) != 0)
1537 else if ((flags
& BSF_WARNING
) != 0)
1539 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1541 else if (bfd_is_und_section (section
))
1543 if ((flags
& BSF_WEAK
) != 0)
1548 else if ((flags
& BSF_WEAK
) != 0)
1550 else if (bfd_is_com_section (section
))
1555 if (hashp
!= NULL
&& *hashp
!= NULL
)
1559 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1560 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, copy
, FALSE
);
1562 h
= bfd_link_hash_lookup (info
->hash
, name
, TRUE
, copy
, FALSE
);
1571 if (info
->notice_all
1572 || (info
->notice_hash
!= NULL
1573 && bfd_hash_lookup (info
->notice_hash
, name
, FALSE
, FALSE
) != NULL
))
1575 if (! (*info
->callbacks
->notice
) (info
, h
->root
.string
, abfd
, section
,
1585 enum link_action action
;
1588 action
= link_action
[(int) row
][(int) h
->type
];
1599 /* Make a new undefined symbol. */
1600 h
->type
= bfd_link_hash_undefined
;
1601 h
->u
.undef
.abfd
= abfd
;
1602 bfd_link_add_undef (info
->hash
, h
);
1606 /* Make a new weak undefined symbol. */
1607 h
->type
= bfd_link_hash_undefweak
;
1608 h
->u
.undef
.abfd
= abfd
;
1609 h
->u
.undef
.weak
= abfd
;
1613 /* We have found a definition for a symbol which was
1614 previously common. */
1615 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1616 if (! ((*info
->callbacks
->multiple_common
)
1617 (info
, h
->root
.string
,
1618 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1619 abfd
, bfd_link_hash_defined
, 0)))
1625 enum bfd_link_hash_type oldtype
;
1627 /* Define a symbol. */
1630 h
->type
= bfd_link_hash_defweak
;
1632 h
->type
= bfd_link_hash_defined
;
1633 h
->u
.def
.section
= section
;
1634 h
->u
.def
.value
= value
;
1636 /* If we have been asked to, we act like collect2 and
1637 identify all functions that might be global
1638 constructors and destructors and pass them up in a
1639 callback. We only do this for certain object file
1640 types, since many object file types can handle this
1642 if (collect
&& name
[0] == '_')
1646 /* A constructor or destructor name starts like this:
1647 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1648 the second are the same character (we accept any
1649 character there, in case a new object file format
1650 comes along with even worse naming restrictions). */
1652 #define CONS_PREFIX "GLOBAL_"
1653 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1659 && strncmp (s
, CONS_PREFIX
, CONS_PREFIX_LEN
- 1) == 0)
1663 c
= s
[CONS_PREFIX_LEN
+ 1];
1664 if ((c
== 'I' || c
== 'D')
1665 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1667 /* If this is a definition of a symbol which
1668 was previously weakly defined, we are in
1669 trouble. We have already added a
1670 constructor entry for the weak defined
1671 symbol, and now we are trying to add one
1672 for the new symbol. Fortunately, this case
1673 should never arise in practice. */
1674 if (oldtype
== bfd_link_hash_defweak
)
1677 if (! ((*info
->callbacks
->constructor
)
1679 h
->root
.string
, abfd
, section
, value
)))
1689 /* We have found a common definition for a symbol. */
1690 if (h
->type
== bfd_link_hash_new
)
1691 bfd_link_add_undef (info
->hash
, h
);
1692 h
->type
= bfd_link_hash_common
;
1694 bfd_hash_allocate (&info
->hash
->table
,
1695 sizeof (struct bfd_link_hash_common_entry
));
1696 if (h
->u
.c
.p
== NULL
)
1699 h
->u
.c
.size
= value
;
1701 /* Select a default alignment based on the size. This may
1702 be overridden by the caller. */
1706 power
= bfd_log2 (value
);
1709 h
->u
.c
.p
->alignment_power
= power
;
1712 /* The section of a common symbol is only used if the common
1713 symbol is actually allocated. It basically provides a
1714 hook for the linker script to decide which output section
1715 the common symbols should be put in. In most cases, the
1716 section of a common symbol will be bfd_com_section_ptr,
1717 the code here will choose a common symbol section named
1718 "COMMON", and the linker script will contain *(COMMON) in
1719 the appropriate place. A few targets use separate common
1720 sections for small symbols, and they require special
1722 if (section
== bfd_com_section_ptr
)
1724 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1725 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1727 else if (section
->owner
!= abfd
)
1729 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1731 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1734 h
->u
.c
.p
->section
= section
;
1738 /* A reference to a defined symbol. */
1739 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1740 h
->u
.undef
.next
= h
;
1744 /* We have found a common definition for a symbol which
1745 already had a common definition. Use the maximum of the
1746 two sizes, and use the section required by the larger symbol. */
1747 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1748 if (! ((*info
->callbacks
->multiple_common
)
1749 (info
, h
->root
.string
,
1750 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1751 abfd
, bfd_link_hash_common
, value
)))
1753 if (value
> h
->u
.c
.size
)
1757 h
->u
.c
.size
= value
;
1759 /* Select a default alignment based on the size. This may
1760 be overridden by the caller. */
1761 power
= bfd_log2 (value
);
1764 h
->u
.c
.p
->alignment_power
= power
;
1766 /* Some systems have special treatment for small commons,
1767 hence we want to select the section used by the larger
1768 symbol. This makes sure the symbol does not go in a
1769 small common section if it is now too large. */
1770 if (section
== bfd_com_section_ptr
)
1773 = bfd_make_section_old_way (abfd
, "COMMON");
1774 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1776 else if (section
->owner
!= abfd
)
1779 = bfd_make_section_old_way (abfd
, section
->name
);
1780 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1783 h
->u
.c
.p
->section
= section
;
1791 /* We have found a common definition for a symbol which
1792 was already defined. FIXME: It would nice if we could
1793 report the BFD which defined an indirect symbol, but we
1794 don't have anywhere to store the information. */
1795 if (h
->type
== bfd_link_hash_defined
1796 || h
->type
== bfd_link_hash_defweak
)
1797 obfd
= h
->u
.def
.section
->owner
;
1800 if (! ((*info
->callbacks
->multiple_common
)
1801 (info
, h
->root
.string
, obfd
, h
->type
, 0,
1802 abfd
, bfd_link_hash_common
, value
)))
1808 /* Multiple indirect symbols. This is OK if they both point
1809 to the same symbol. */
1810 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1814 /* Handle a multiple definition. */
1815 if (!info
->allow_multiple_definition
)
1817 asection
*msec
= NULL
;
1822 case bfd_link_hash_defined
:
1823 msec
= h
->u
.def
.section
;
1824 mval
= h
->u
.def
.value
;
1826 case bfd_link_hash_indirect
:
1827 msec
= bfd_ind_section_ptr
;
1834 /* Ignore a redefinition of an absolute symbol to the
1835 same value; it's harmless. */
1836 if (h
->type
== bfd_link_hash_defined
1837 && bfd_is_abs_section (msec
)
1838 && bfd_is_abs_section (section
)
1842 if (! ((*info
->callbacks
->multiple_definition
)
1843 (info
, h
->root
.string
, msec
->owner
, msec
, mval
,
1844 abfd
, section
, value
)))
1850 /* Create an indirect symbol from an existing common symbol. */
1851 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1852 if (! ((*info
->callbacks
->multiple_common
)
1853 (info
, h
->root
.string
,
1854 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1855 abfd
, bfd_link_hash_indirect
, 0)))
1859 /* Create an indirect symbol. */
1861 struct bfd_link_hash_entry
*inh
;
1863 /* STRING is the name of the symbol we want to indirect
1865 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, TRUE
,
1869 if (inh
->type
== bfd_link_hash_indirect
1870 && inh
->u
.i
.link
== h
)
1872 (*_bfd_error_handler
)
1873 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1874 abfd
, name
, string
);
1875 bfd_set_error (bfd_error_invalid_operation
);
1878 if (inh
->type
== bfd_link_hash_new
)
1880 inh
->type
= bfd_link_hash_undefined
;
1881 inh
->u
.undef
.abfd
= abfd
;
1882 bfd_link_add_undef (info
->hash
, inh
);
1885 /* If the indirect symbol has been referenced, we need to
1886 push the reference down to the symbol we are
1888 if (h
->type
!= bfd_link_hash_new
)
1894 h
->type
= bfd_link_hash_indirect
;
1900 /* Add an entry to a set. */
1901 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1902 abfd
, section
, value
))
1907 /* Issue a warning and cycle. */
1908 if (h
->u
.i
.warning
!= NULL
)
1910 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1911 h
->root
.string
, abfd
,
1914 /* Only issue a warning once. */
1915 h
->u
.i
.warning
= NULL
;
1919 /* Try again with the referenced symbol. */
1925 /* A reference to an indirect symbol. */
1926 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1927 h
->u
.undef
.next
= h
;
1933 /* Issue a warning. */
1934 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1935 hash_entry_bfd (h
), NULL
, 0))
1940 /* Warn if this symbol has been referenced already,
1941 otherwise add a warning. A symbol has been referenced if
1942 the u.undef.next field is not NULL, or it is the tail of the
1943 undefined symbol list. The REF case above helps to
1945 if (h
->u
.undef
.next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1947 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1948 hash_entry_bfd (h
), NULL
, 0))
1954 /* Make a warning symbol. */
1956 struct bfd_link_hash_entry
*sub
;
1958 /* STRING is the warning to give. */
1959 sub
= ((struct bfd_link_hash_entry
*)
1960 ((*info
->hash
->table
.newfunc
)
1961 (NULL
, &info
->hash
->table
, h
->root
.string
)));
1965 sub
->type
= bfd_link_hash_warning
;
1968 sub
->u
.i
.warning
= string
;
1972 size_t len
= strlen (string
) + 1;
1974 w
= bfd_hash_allocate (&info
->hash
->table
, len
);
1977 memcpy (w
, string
, len
);
1978 sub
->u
.i
.warning
= w
;
1981 bfd_hash_replace (&info
->hash
->table
,
1982 (struct bfd_hash_entry
*) h
,
1983 (struct bfd_hash_entry
*) sub
);
1995 /* Generic final link routine. */
1998 _bfd_generic_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2002 struct bfd_link_order
*p
;
2004 struct generic_write_global_symbol_info wginfo
;
2006 bfd_get_outsymbols (abfd
) = NULL
;
2007 bfd_get_symcount (abfd
) = 0;
2010 /* Mark all sections which will be included in the output file. */
2011 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2012 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
2013 if (p
->type
== bfd_indirect_link_order
)
2014 p
->u
.indirect
.section
->linker_mark
= TRUE
;
2016 /* Build the output symbol table. */
2017 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
2018 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
2021 /* Accumulate the global symbols. */
2023 wginfo
.output_bfd
= abfd
;
2024 wginfo
.psymalloc
= &outsymalloc
;
2025 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
2026 _bfd_generic_link_write_global_symbol
,
2029 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2030 shouldn't really need one, since we have SYMCOUNT, but some old
2031 code still expects one. */
2032 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
2035 if (info
->relocatable
)
2037 /* Allocate space for the output relocs for each section. */
2038 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2041 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
2043 if (p
->type
== bfd_section_reloc_link_order
2044 || p
->type
== bfd_symbol_reloc_link_order
)
2046 else if (p
->type
== bfd_indirect_link_order
)
2048 asection
*input_section
;
2055 input_section
= p
->u
.indirect
.section
;
2056 input_bfd
= input_section
->owner
;
2057 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
2061 relocs
= bfd_malloc (relsize
);
2062 if (!relocs
&& relsize
!= 0)
2064 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2065 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2070 if (reloc_count
< 0)
2072 BFD_ASSERT ((unsigned long) reloc_count
2073 == input_section
->reloc_count
);
2074 o
->reloc_count
+= reloc_count
;
2077 if (o
->reloc_count
> 0)
2081 amt
= o
->reloc_count
;
2082 amt
*= sizeof (arelent
*);
2083 o
->orelocation
= bfd_alloc (abfd
, amt
);
2084 if (!o
->orelocation
)
2086 o
->flags
|= SEC_RELOC
;
2087 /* Reset the count so that it can be used as an index
2088 when putting in the output relocs. */
2094 /* Handle all the link order information for the sections. */
2095 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2097 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
2101 case bfd_section_reloc_link_order
:
2102 case bfd_symbol_reloc_link_order
:
2103 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2106 case bfd_indirect_link_order
:
2107 if (! default_indirect_link_order (abfd
, info
, o
, p
, TRUE
))
2111 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2121 /* Add an output symbol to the output BFD. */
2124 generic_add_output_symbol (bfd
*output_bfd
, size_t *psymalloc
, asymbol
*sym
)
2126 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2131 if (*psymalloc
== 0)
2136 amt
*= sizeof (asymbol
*);
2137 newsyms
= bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
2138 if (newsyms
== NULL
)
2140 bfd_get_outsymbols (output_bfd
) = newsyms
;
2143 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2145 ++ bfd_get_symcount (output_bfd
);
2150 /* Handle the symbols for an input BFD. */
2153 _bfd_generic_link_output_symbols (bfd
*output_bfd
,
2155 struct bfd_link_info
*info
,
2161 if (! generic_link_read_symbols (input_bfd
))
2164 /* Create a filename symbol if we are supposed to. */
2165 if (info
->create_object_symbols_section
!= NULL
)
2169 for (sec
= input_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2171 if (sec
->output_section
== info
->create_object_symbols_section
)
2175 newsym
= bfd_make_empty_symbol (input_bfd
);
2178 newsym
->name
= input_bfd
->filename
;
2180 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2181 newsym
->section
= sec
;
2183 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2192 /* Adjust the values of the globally visible symbols, and write out
2194 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2195 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2196 for (; sym_ptr
< sym_end
; sym_ptr
++)
2199 struct generic_link_hash_entry
*h
;
2204 if ((sym
->flags
& (BSF_INDIRECT
2209 || bfd_is_und_section (bfd_get_section (sym
))
2210 || bfd_is_com_section (bfd_get_section (sym
))
2211 || bfd_is_ind_section (bfd_get_section (sym
)))
2213 if (sym
->udata
.p
!= NULL
)
2215 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2217 /* This case normally means that the main linker code
2218 deliberately ignored this constructor symbol. We
2219 should just pass it through. This will screw up if
2220 the constructor symbol is from a different,
2221 non-generic, object file format, but the case will
2222 only arise when linking with -r, which will probably
2223 fail anyhow, since there will be no way to represent
2224 the relocs in the output format being used. */
2227 else if (bfd_is_und_section (bfd_get_section (sym
)))
2228 h
= ((struct generic_link_hash_entry
*)
2229 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2230 bfd_asymbol_name (sym
),
2231 FALSE
, FALSE
, TRUE
));
2233 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2234 bfd_asymbol_name (sym
),
2235 FALSE
, FALSE
, TRUE
);
2239 /* Force all references to this symbol to point to
2240 the same area in memory. It is possible that
2241 this routine will be called with a hash table
2242 other than a generic hash table, so we double
2244 if (info
->hash
->creator
== input_bfd
->xvec
)
2247 *sym_ptr
= sym
= h
->sym
;
2250 switch (h
->root
.type
)
2253 case bfd_link_hash_new
:
2255 case bfd_link_hash_undefined
:
2257 case bfd_link_hash_undefweak
:
2258 sym
->flags
|= BSF_WEAK
;
2260 case bfd_link_hash_indirect
:
2261 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2263 case bfd_link_hash_defined
:
2264 sym
->flags
|= BSF_GLOBAL
;
2265 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2266 sym
->value
= h
->root
.u
.def
.value
;
2267 sym
->section
= h
->root
.u
.def
.section
;
2269 case bfd_link_hash_defweak
:
2270 sym
->flags
|= BSF_WEAK
;
2271 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2272 sym
->value
= h
->root
.u
.def
.value
;
2273 sym
->section
= h
->root
.u
.def
.section
;
2275 case bfd_link_hash_common
:
2276 sym
->value
= h
->root
.u
.c
.size
;
2277 sym
->flags
|= BSF_GLOBAL
;
2278 if (! bfd_is_com_section (sym
->section
))
2280 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2281 sym
->section
= bfd_com_section_ptr
;
2283 /* We do not set the section of the symbol to
2284 h->root.u.c.p->section. That value was saved so
2285 that we would know where to allocate the symbol
2286 if it was defined. In this case the type is
2287 still bfd_link_hash_common, so we did not define
2288 it, so we do not want to use that section. */
2294 /* This switch is straight from the old code in
2295 write_file_locals in ldsym.c. */
2296 if (info
->strip
== strip_all
2297 || (info
->strip
== strip_some
2298 && bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2299 FALSE
, FALSE
) == NULL
))
2301 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2303 /* If this symbol is marked as occurring now, rather
2304 than at the end, output it now. This is used for
2305 COFF C_EXT FCN symbols. FIXME: There must be a
2307 if (bfd_asymbol_bfd (sym
) == input_bfd
2308 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2313 else if (bfd_is_ind_section (sym
->section
))
2315 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2317 if (info
->strip
== strip_none
)
2322 else if (bfd_is_und_section (sym
->section
)
2323 || bfd_is_com_section (sym
->section
))
2325 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2327 if ((sym
->flags
& BSF_WARNING
) != 0)
2331 switch (info
->discard
)
2337 case discard_sec_merge
:
2339 if (info
->relocatable
2340 || ! (sym
->section
->flags
& SEC_MERGE
))
2344 if (bfd_is_local_label (input_bfd
, sym
))
2355 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2357 if (info
->strip
!= strip_all
)
2365 /* If this symbol is in a section which is not being included
2366 in the output file, then we don't want to output the
2367 symbol. .bss and similar sections won't have the linker_mark
2368 field set. We also check if its output section has been
2369 removed from the output file. */
2370 if (((sym
->section
->flags
& SEC_HAS_CONTENTS
) != 0
2371 && ! sym
->section
->linker_mark
)
2372 || bfd_section_removed_from_list (output_bfd
,
2373 sym
->section
->output_section
))
2378 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2388 /* Set the section and value of a generic BFD symbol based on a linker
2389 hash table entry. */
2392 set_symbol_from_hash (asymbol
*sym
, struct bfd_link_hash_entry
*h
)
2399 case bfd_link_hash_new
:
2400 /* This can happen when a constructor symbol is seen but we are
2401 not building constructors. */
2402 if (sym
->section
!= NULL
)
2404 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2408 sym
->flags
|= BSF_CONSTRUCTOR
;
2409 sym
->section
= bfd_abs_section_ptr
;
2413 case bfd_link_hash_undefined
:
2414 sym
->section
= bfd_und_section_ptr
;
2417 case bfd_link_hash_undefweak
:
2418 sym
->section
= bfd_und_section_ptr
;
2420 sym
->flags
|= BSF_WEAK
;
2422 case bfd_link_hash_defined
:
2423 sym
->section
= h
->u
.def
.section
;
2424 sym
->value
= h
->u
.def
.value
;
2426 case bfd_link_hash_defweak
:
2427 sym
->flags
|= BSF_WEAK
;
2428 sym
->section
= h
->u
.def
.section
;
2429 sym
->value
= h
->u
.def
.value
;
2431 case bfd_link_hash_common
:
2432 sym
->value
= h
->u
.c
.size
;
2433 if (sym
->section
== NULL
)
2434 sym
->section
= bfd_com_section_ptr
;
2435 else if (! bfd_is_com_section (sym
->section
))
2437 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2438 sym
->section
= bfd_com_section_ptr
;
2440 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2442 case bfd_link_hash_indirect
:
2443 case bfd_link_hash_warning
:
2444 /* FIXME: What should we do here? */
2449 /* Write out a global symbol, if it hasn't already been written out.
2450 This is called for each symbol in the hash table. */
2453 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry
*h
,
2456 struct generic_write_global_symbol_info
*wginfo
= data
;
2459 if (h
->root
.type
== bfd_link_hash_warning
)
2460 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2467 if (wginfo
->info
->strip
== strip_all
2468 || (wginfo
->info
->strip
== strip_some
2469 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2470 FALSE
, FALSE
) == NULL
))
2477 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2480 sym
->name
= h
->root
.root
.string
;
2484 set_symbol_from_hash (sym
, &h
->root
);
2486 sym
->flags
|= BSF_GLOBAL
;
2488 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2491 /* FIXME: No way to return failure. */
2498 /* Create a relocation. */
2501 _bfd_generic_reloc_link_order (bfd
*abfd
,
2502 struct bfd_link_info
*info
,
2504 struct bfd_link_order
*link_order
)
2508 if (! info
->relocatable
)
2510 if (sec
->orelocation
== NULL
)
2513 r
= bfd_alloc (abfd
, sizeof (arelent
));
2517 r
->address
= link_order
->offset
;
2518 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2521 bfd_set_error (bfd_error_bad_value
);
2525 /* Get the symbol to use for the relocation. */
2526 if (link_order
->type
== bfd_section_reloc_link_order
)
2527 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2530 struct generic_link_hash_entry
*h
;
2532 h
= ((struct generic_link_hash_entry
*)
2533 bfd_wrapped_link_hash_lookup (abfd
, info
,
2534 link_order
->u
.reloc
.p
->u
.name
,
2535 FALSE
, FALSE
, TRUE
));
2539 if (! ((*info
->callbacks
->unattached_reloc
)
2540 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
2542 bfd_set_error (bfd_error_bad_value
);
2545 r
->sym_ptr_ptr
= &h
->sym
;
2548 /* If this is an inplace reloc, write the addend to the object file.
2549 Otherwise, store it in the reloc addend. */
2550 if (! r
->howto
->partial_inplace
)
2551 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2555 bfd_reloc_status_type rstat
;
2560 size
= bfd_get_reloc_size (r
->howto
);
2561 buf
= bfd_zmalloc (size
);
2564 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2565 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2572 case bfd_reloc_outofrange
:
2574 case bfd_reloc_overflow
:
2575 if (! ((*info
->callbacks
->reloc_overflow
)
2577 (link_order
->type
== bfd_section_reloc_link_order
2578 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2579 : link_order
->u
.reloc
.p
->u
.name
),
2580 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2588 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2589 ok
= bfd_set_section_contents (abfd
, sec
, buf
, loc
, size
);
2597 sec
->orelocation
[sec
->reloc_count
] = r
;
2603 /* Allocate a new link_order for a section. */
2605 struct bfd_link_order
*
2606 bfd_new_link_order (bfd
*abfd
, asection
*section
)
2608 bfd_size_type amt
= sizeof (struct bfd_link_order
);
2609 struct bfd_link_order
*new;
2611 new = bfd_zalloc (abfd
, amt
);
2615 new->type
= bfd_undefined_link_order
;
2617 if (section
->link_order_tail
!= NULL
)
2618 section
->link_order_tail
->next
= new;
2620 section
->link_order_head
= new;
2621 section
->link_order_tail
= new;
2626 /* Default link order processing routine. Note that we can not handle
2627 the reloc_link_order types here, since they depend upon the details
2628 of how the particular backends generates relocs. */
2631 _bfd_default_link_order (bfd
*abfd
,
2632 struct bfd_link_info
*info
,
2634 struct bfd_link_order
*link_order
)
2636 switch (link_order
->type
)
2638 case bfd_undefined_link_order
:
2639 case bfd_section_reloc_link_order
:
2640 case bfd_symbol_reloc_link_order
:
2643 case bfd_indirect_link_order
:
2644 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2646 case bfd_data_link_order
:
2647 return default_data_link_order (abfd
, info
, sec
, link_order
);
2651 /* Default routine to handle a bfd_data_link_order. */
2654 default_data_link_order (bfd
*abfd
,
2655 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2657 struct bfd_link_order
*link_order
)
2665 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2667 size
= link_order
->size
;
2671 fill
= link_order
->u
.data
.contents
;
2672 fill_size
= link_order
->u
.data
.size
;
2673 if (fill_size
!= 0 && fill_size
< size
)
2676 fill
= bfd_malloc (size
);
2681 memset (p
, (int) link_order
->u
.data
.contents
[0], (size_t) size
);
2686 memcpy (p
, link_order
->u
.data
.contents
, fill_size
);
2690 while (size
>= fill_size
);
2692 memcpy (p
, link_order
->u
.data
.contents
, (size_t) size
);
2693 size
= link_order
->size
;
2697 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2698 result
= bfd_set_section_contents (abfd
, sec
, fill
, loc
, size
);
2700 if (fill
!= link_order
->u
.data
.contents
)
2705 /* Default routine to handle a bfd_indirect_link_order. */
2708 default_indirect_link_order (bfd
*output_bfd
,
2709 struct bfd_link_info
*info
,
2710 asection
*output_section
,
2711 struct bfd_link_order
*link_order
,
2712 bfd_boolean generic_linker
)
2714 asection
*input_section
;
2716 bfd_byte
*contents
= NULL
;
2717 bfd_byte
*new_contents
;
2718 bfd_size_type sec_size
;
2721 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2723 if (link_order
->size
== 0)
2726 input_section
= link_order
->u
.indirect
.section
;
2727 input_bfd
= input_section
->owner
;
2729 BFD_ASSERT (input_section
->output_section
== output_section
);
2730 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2731 BFD_ASSERT (input_section
->size
== link_order
->size
);
2733 if (info
->relocatable
2734 && input_section
->reloc_count
> 0
2735 && output_section
->orelocation
== NULL
)
2737 /* Space has not been allocated for the output relocations.
2738 This can happen when we are called by a specific backend
2739 because somebody is attempting to link together different
2740 types of object files. Handling this case correctly is
2741 difficult, and sometimes impossible. */
2742 (*_bfd_error_handler
)
2743 (_("Attempt to do relocatable link with %s input and %s output"),
2744 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2745 bfd_set_error (bfd_error_wrong_format
);
2749 if (! generic_linker
)
2754 /* Get the canonical symbols. The generic linker will always
2755 have retrieved them by this point, but we are being called by
2756 a specific linker, presumably because we are linking
2757 different types of object files together. */
2758 if (! generic_link_read_symbols (input_bfd
))
2761 /* Since we have been called by a specific linker, rather than
2762 the generic linker, the values of the symbols will not be
2763 right. They will be the values as seen in the input file,
2764 not the values of the final link. We need to fix them up
2765 before we can relocate the section. */
2766 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2767 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2768 for (; sympp
< symppend
; sympp
++)
2771 struct bfd_link_hash_entry
*h
;
2775 if ((sym
->flags
& (BSF_INDIRECT
2780 || bfd_is_und_section (bfd_get_section (sym
))
2781 || bfd_is_com_section (bfd_get_section (sym
))
2782 || bfd_is_ind_section (bfd_get_section (sym
)))
2784 /* sym->udata may have been set by
2785 generic_link_add_symbol_list. */
2786 if (sym
->udata
.p
!= NULL
)
2788 else if (bfd_is_und_section (bfd_get_section (sym
)))
2789 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2790 bfd_asymbol_name (sym
),
2791 FALSE
, FALSE
, TRUE
);
2793 h
= bfd_link_hash_lookup (info
->hash
,
2794 bfd_asymbol_name (sym
),
2795 FALSE
, FALSE
, TRUE
);
2797 set_symbol_from_hash (sym
, h
);
2802 /* Get and relocate the section contents. */
2803 sec_size
= (input_section
->rawsize
> input_section
->size
2804 ? input_section
->rawsize
2805 : input_section
->size
);
2806 contents
= bfd_malloc (sec_size
);
2807 if (contents
== NULL
&& sec_size
!= 0)
2809 new_contents
= (bfd_get_relocated_section_contents
2810 (output_bfd
, info
, link_order
, contents
, info
->relocatable
,
2811 _bfd_generic_link_get_symbols (input_bfd
)));
2815 /* Output the section contents. */
2816 loc
= link_order
->offset
* bfd_octets_per_byte (output_bfd
);
2817 if (! bfd_set_section_contents (output_bfd
, output_section
,
2818 new_contents
, loc
, link_order
->size
))
2821 if (contents
!= NULL
)
2826 if (contents
!= NULL
)
2831 /* A little routine to count the number of relocs in a link_order
2835 _bfd_count_link_order_relocs (struct bfd_link_order
*link_order
)
2837 register unsigned int c
;
2838 register struct bfd_link_order
*l
;
2841 for (l
= link_order
; l
!= NULL
; l
= l
->next
)
2843 if (l
->type
== bfd_section_reloc_link_order
2844 || l
->type
== bfd_symbol_reloc_link_order
)
2853 bfd_link_split_section
2856 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2859 Return nonzero if @var{sec} should be split during a
2860 reloceatable or final link.
2862 .#define bfd_link_split_section(abfd, sec) \
2863 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2869 _bfd_generic_link_split_section (bfd
*abfd ATTRIBUTE_UNUSED
,
2870 asection
*sec ATTRIBUTE_UNUSED
)
2877 bfd_section_already_linked
2880 void bfd_section_already_linked (bfd *abfd, asection *sec);
2883 Check if @var{sec} has been already linked during a reloceatable
2886 .#define bfd_section_already_linked(abfd, sec) \
2887 . BFD_SEND (abfd, _section_already_linked, (abfd, sec))
2892 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2893 once into the output. This routine checks each section, and
2894 arrange to discard it if a section of the same name has already
2895 been linked. This code assumes that all relevant sections have the
2896 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2897 section name. bfd_section_already_linked is called via
2898 bfd_map_over_sections. */
2900 /* The hash table. */
2902 static struct bfd_hash_table _bfd_section_already_linked_table
;
2904 /* Support routines for the hash table used by section_already_linked,
2905 initialize the table, traverse, lookup, fill in an entry and remove
2909 bfd_section_already_linked_table_traverse
2910 (bfd_boolean (*func
) (struct bfd_section_already_linked_hash_entry
*,
2911 void *), void *info
)
2913 bfd_hash_traverse (&_bfd_section_already_linked_table
,
2914 (bfd_boolean (*) (struct bfd_hash_entry
*,
2919 struct bfd_section_already_linked_hash_entry
*
2920 bfd_section_already_linked_table_lookup (const char *name
)
2922 return ((struct bfd_section_already_linked_hash_entry
*)
2923 bfd_hash_lookup (&_bfd_section_already_linked_table
, name
,
2928 bfd_section_already_linked_table_insert
2929 (struct bfd_section_already_linked_hash_entry
*already_linked_list
,
2932 struct bfd_section_already_linked
*l
;
2934 /* Allocate the memory from the same obstack as the hash table is
2936 l
= bfd_hash_allocate (&_bfd_section_already_linked_table
, sizeof *l
);
2938 l
->next
= already_linked_list
->entry
;
2939 already_linked_list
->entry
= l
;
2942 static struct bfd_hash_entry
*
2943 already_linked_newfunc (struct bfd_hash_entry
*entry ATTRIBUTE_UNUSED
,
2944 struct bfd_hash_table
*table
,
2945 const char *string ATTRIBUTE_UNUSED
)
2947 struct bfd_section_already_linked_hash_entry
*ret
=
2948 bfd_hash_allocate (table
, sizeof *ret
);
2956 bfd_section_already_linked_table_init (void)
2958 return bfd_hash_table_init_n (&_bfd_section_already_linked_table
,
2959 already_linked_newfunc
, 42);
2963 bfd_section_already_linked_table_free (void)
2965 bfd_hash_table_free (&_bfd_section_already_linked_table
);
2968 /* This is used on non-ELF inputs. */
2971 _bfd_generic_section_already_linked (bfd
*abfd
, asection
*sec
)
2975 struct bfd_section_already_linked
*l
;
2976 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
2979 if ((flags
& SEC_LINK_ONCE
) == 0)
2982 /* FIXME: When doing a relocatable link, we may have trouble
2983 copying relocations in other sections that refer to local symbols
2984 in the section being discarded. Those relocations will have to
2985 be converted somehow; as of this writing I'm not sure that any of
2986 the backends handle that correctly.
2988 It is tempting to instead not discard link once sections when
2989 doing a relocatable link (technically, they should be discarded
2990 whenever we are building constructors). However, that fails,
2991 because the linker winds up combining all the link once sections
2992 into a single large link once section, which defeats the purpose
2993 of having link once sections in the first place. */
2995 name
= bfd_get_section_name (abfd
, sec
);
2997 already_linked_list
= bfd_section_already_linked_table_lookup (name
);
2999 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
3001 bfd_boolean skip
= FALSE
;
3002 struct coff_comdat_info
*s_comdat
3003 = bfd_coff_get_comdat_section (abfd
, sec
);
3004 struct coff_comdat_info
*l_comdat
3005 = bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
);
3007 /* We may have 3 different sections on the list: group section,
3008 comdat section and linkonce section. SEC may be a linkonce or
3009 comdat section. We always ignore group section. For non-COFF
3010 inputs, we also ignore comdat section.
3012 FIXME: Is that safe to match a linkonce section with a comdat
3013 section for COFF inputs? */
3014 if ((l
->sec
->flags
& SEC_GROUP
) != 0)
3016 else if (bfd_get_flavour (abfd
) == bfd_target_coff_flavour
)
3018 if (s_comdat
!= NULL
3020 && strcmp (s_comdat
->name
, l_comdat
->name
) != 0)
3023 else if (l_comdat
!= NULL
)
3028 /* The section has already been linked. See if we should
3030 switch (flags
& SEC_LINK_DUPLICATES
)
3035 case SEC_LINK_DUPLICATES_DISCARD
:
3038 case SEC_LINK_DUPLICATES_ONE_ONLY
:
3039 (*_bfd_error_handler
)
3040 (_("%B: warning: ignoring duplicate section `%A'\n"),
3044 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
3045 /* FIXME: We should really dig out the contents of both
3046 sections and memcmp them. The COFF/PE spec says that
3047 the Microsoft linker does not implement this
3048 correctly, so I'm not going to bother doing it
3051 case SEC_LINK_DUPLICATES_SAME_SIZE
:
3052 if (sec
->size
!= l
->sec
->size
)
3053 (*_bfd_error_handler
)
3054 (_("%B: warning: duplicate section `%A' has different size\n"),
3059 /* Set the output_section field so that lang_add_section
3060 does not create a lang_input_section structure for this
3061 section. Since there might be a symbol in the section
3062 being discarded, we must retain a pointer to the section
3063 which we are really going to use. */
3064 sec
->output_section
= bfd_abs_section_ptr
;
3065 sec
->kept_section
= l
->sec
;
3071 /* This is the first section with this name. Record it. */
3072 bfd_section_already_linked_table_insert (already_linked_list
, sec
);