merge from gcc
[binutils.git] / gold / symtab.cc
blob01e000d874e7da7bec5377cb2fb3881968427ee5
1 // symtab.cc -- the gold symbol table
3 #include "gold.h"
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
16 namespace gold
19 // Class Symbol.
21 // Initialize fields in Symbol. This initializes everything except u_
22 // and source_.
24 void
25 Symbol::init_fields(const char* name, const char* version,
26 elfcpp::STT type, elfcpp::STB binding,
27 elfcpp::STV visibility, unsigned char nonvis)
29 this->name_ = name;
30 this->version_ = version;
31 this->symtab_index_ = 0;
32 this->dynsym_index_ = 0;
33 this->got_offset_ = 0;
34 this->type_ = type;
35 this->binding_ = binding;
36 this->visibility_ = visibility;
37 this->nonvis_ = nonvis;
38 this->is_target_special_ = false;
39 this->is_def_ = false;
40 this->is_forwarder_ = false;
41 this->needs_dynsym_entry_ = false;
42 this->in_reg_ = false;
43 this->in_dyn_ = false;
44 this->has_got_offset_ = false;
45 this->has_warning_ = false;
48 // Initialize the fields in the base class Symbol for SYM in OBJECT.
50 template<int size, bool big_endian>
51 void
52 Symbol::init_base(const char* name, const char* version, Object* object,
53 const elfcpp::Sym<size, big_endian>& sym)
55 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
56 sym.get_st_visibility(), sym.get_st_nonvis());
57 this->u_.from_object.object = object;
58 // FIXME: Handle SHN_XINDEX.
59 this->u_.from_object.shndx = sym.get_st_shndx();
60 this->source_ = FROM_OBJECT;
61 this->in_reg_ = !object->is_dynamic();
62 this->in_dyn_ = object->is_dynamic();
65 // Initialize the fields in the base class Symbol for a symbol defined
66 // in an Output_data.
68 void
69 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
70 elfcpp::STB binding, elfcpp::STV visibility,
71 unsigned char nonvis, bool offset_is_from_end)
73 this->init_fields(name, NULL, type, binding, visibility, nonvis);
74 this->u_.in_output_data.output_data = od;
75 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
76 this->source_ = IN_OUTPUT_DATA;
77 this->in_reg_ = true;
80 // Initialize the fields in the base class Symbol for a symbol defined
81 // in an Output_segment.
83 void
84 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
85 elfcpp::STB binding, elfcpp::STV visibility,
86 unsigned char nonvis, Segment_offset_base offset_base)
88 this->init_fields(name, NULL, type, binding, visibility, nonvis);
89 this->u_.in_output_segment.output_segment = os;
90 this->u_.in_output_segment.offset_base = offset_base;
91 this->source_ = IN_OUTPUT_SEGMENT;
92 this->in_reg_ = true;
95 // Initialize the fields in the base class Symbol for a symbol defined
96 // as a constant.
98 void
99 Symbol::init_base(const char* name, elfcpp::STT type,
100 elfcpp::STB binding, elfcpp::STV visibility,
101 unsigned char nonvis)
103 this->init_fields(name, NULL, type, binding, visibility, nonvis);
104 this->source_ = CONSTANT;
105 this->in_reg_ = true;
108 // Initialize the fields in Sized_symbol for SYM in OBJECT.
110 template<int size>
111 template<bool big_endian>
112 void
113 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
114 const elfcpp::Sym<size, big_endian>& sym)
116 this->init_base(name, version, object, sym);
117 this->value_ = sym.get_st_value();
118 this->symsize_ = sym.get_st_size();
121 // Initialize the fields in Sized_symbol for a symbol defined in an
122 // Output_data.
124 template<int size>
125 void
126 Sized_symbol<size>::init(const char* name, Output_data* od,
127 Value_type value, Size_type symsize,
128 elfcpp::STT type, elfcpp::STB binding,
129 elfcpp::STV visibility, unsigned char nonvis,
130 bool offset_is_from_end)
132 this->init_base(name, od, type, binding, visibility, nonvis,
133 offset_is_from_end);
134 this->value_ = value;
135 this->symsize_ = symsize;
138 // Initialize the fields in Sized_symbol for a symbol defined in an
139 // Output_segment.
141 template<int size>
142 void
143 Sized_symbol<size>::init(const char* name, Output_segment* os,
144 Value_type value, Size_type symsize,
145 elfcpp::STT type, elfcpp::STB binding,
146 elfcpp::STV visibility, unsigned char nonvis,
147 Segment_offset_base offset_base)
149 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
150 this->value_ = value;
151 this->symsize_ = symsize;
154 // Initialize the fields in Sized_symbol for a symbol defined as a
155 // constant.
157 template<int size>
158 void
159 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
160 elfcpp::STT type, elfcpp::STB binding,
161 elfcpp::STV visibility, unsigned char nonvis)
163 this->init_base(name, type, binding, visibility, nonvis);
164 this->value_ = value;
165 this->symsize_ = symsize;
168 // Class Symbol_table.
170 Symbol_table::Symbol_table()
171 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
172 forwarders_(), commons_(), warnings_()
176 Symbol_table::~Symbol_table()
180 // The hash function. The key is always canonicalized, so we use a
181 // simple combination of the pointers.
183 size_t
184 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
186 return key.first ^ key.second;
189 // The symbol table key equality function. This is only called with
190 // canonicalized name and version strings, so we can use pointer
191 // comparison.
193 bool
194 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
195 const Symbol_table_key& k2) const
197 return k1.first == k2.first && k1.second == k2.second;
200 // Make TO a symbol which forwards to FROM.
202 void
203 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
205 gold_assert(from != to);
206 gold_assert(!from->is_forwarder() && !to->is_forwarder());
207 this->forwarders_[from] = to;
208 from->set_forwarder();
211 // Resolve the forwards from FROM, returning the real symbol.
213 Symbol*
214 Symbol_table::resolve_forwards(const Symbol* from) const
216 gold_assert(from->is_forwarder());
217 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
218 this->forwarders_.find(from);
219 gold_assert(p != this->forwarders_.end());
220 return p->second;
223 // Look up a symbol by name.
225 Symbol*
226 Symbol_table::lookup(const char* name, const char* version) const
228 Stringpool::Key name_key;
229 name = this->namepool_.find(name, &name_key);
230 if (name == NULL)
231 return NULL;
233 Stringpool::Key version_key = 0;
234 if (version != NULL)
236 version = this->namepool_.find(version, &version_key);
237 if (version == NULL)
238 return NULL;
241 Symbol_table_key key(name_key, version_key);
242 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
243 if (p == this->table_.end())
244 return NULL;
245 return p->second;
248 // Resolve a Symbol with another Symbol. This is only used in the
249 // unusual case where there are references to both an unversioned
250 // symbol and a symbol with a version, and we then discover that that
251 // version is the default version. Because this is unusual, we do
252 // this the slow way, by converting back to an ELF symbol.
254 template<int size, bool big_endian>
255 void
256 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
257 const char* version ACCEPT_SIZE_ENDIAN)
259 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
260 elfcpp::Sym_write<size, big_endian> esym(buf);
261 // We don't bother to set the st_name field.
262 esym.put_st_value(from->value());
263 esym.put_st_size(from->symsize());
264 esym.put_st_info(from->binding(), from->type());
265 esym.put_st_other(from->visibility(), from->nonvis());
266 esym.put_st_shndx(from->shndx());
267 Symbol_table::resolve(to, esym.sym(), from->object(), version);
270 // Add one symbol from OBJECT to the symbol table. NAME is symbol
271 // name and VERSION is the version; both are canonicalized. DEF is
272 // whether this is the default version.
274 // If DEF is true, then this is the definition of a default version of
275 // a symbol. That means that any lookup of NAME/NULL and any lookup
276 // of NAME/VERSION should always return the same symbol. This is
277 // obvious for references, but in particular we want to do this for
278 // definitions: overriding NAME/NULL should also override
279 // NAME/VERSION. If we don't do that, it would be very hard to
280 // override functions in a shared library which uses versioning.
282 // We implement this by simply making both entries in the hash table
283 // point to the same Symbol structure. That is easy enough if this is
284 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
285 // that we have seen both already, in which case they will both have
286 // independent entries in the symbol table. We can't simply change
287 // the symbol table entry, because we have pointers to the entries
288 // attached to the object files. So we mark the entry attached to the
289 // object file as a forwarder, and record it in the forwarders_ map.
290 // Note that entries in the hash table will never be marked as
291 // forwarders.
293 template<int size, bool big_endian>
294 Symbol*
295 Symbol_table::add_from_object(Object* object,
296 const char *name,
297 Stringpool::Key name_key,
298 const char *version,
299 Stringpool::Key version_key,
300 bool def,
301 const elfcpp::Sym<size, big_endian>& sym)
303 Symbol* const snull = NULL;
304 std::pair<typename Symbol_table_type::iterator, bool> ins =
305 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
306 snull));
308 std::pair<typename Symbol_table_type::iterator, bool> insdef =
309 std::make_pair(this->table_.end(), false);
310 if (def)
312 const Stringpool::Key vnull_key = 0;
313 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
314 vnull_key),
315 snull));
318 // ins.first: an iterator, which is a pointer to a pair.
319 // ins.first->first: the key (a pair of name and version).
320 // ins.first->second: the value (Symbol*).
321 // ins.second: true if new entry was inserted, false if not.
323 Sized_symbol<size>* ret;
324 bool was_undefined;
325 bool was_common;
326 if (!ins.second)
328 // We already have an entry for NAME/VERSION.
329 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
330 SELECT_SIZE(size));
331 gold_assert(ret != NULL);
333 was_undefined = ret->is_undefined();
334 was_common = ret->is_common();
336 Symbol_table::resolve(ret, sym, object, version);
338 if (def)
340 if (insdef.second)
342 // This is the first time we have seen NAME/NULL. Make
343 // NAME/NULL point to NAME/VERSION.
344 insdef.first->second = ret;
346 else if (insdef.first->second != ret)
348 // This is the unfortunate case where we already have
349 // entries for both NAME/VERSION and NAME/NULL.
350 const Sized_symbol<size>* sym2;
351 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
352 insdef.first->second
353 SELECT_SIZE(size));
354 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
355 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
356 this->make_forwarder(insdef.first->second, ret);
357 insdef.first->second = ret;
361 else
363 // This is the first time we have seen NAME/VERSION.
364 gold_assert(ins.first->second == NULL);
366 was_undefined = false;
367 was_common = false;
369 if (def && !insdef.second)
371 // We already have an entry for NAME/NULL. If we override
372 // it, then change it to NAME/VERSION.
373 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
374 insdef.first->second
375 SELECT_SIZE(size));
376 Symbol_table::resolve(ret, sym, object, version);
377 ins.first->second = ret;
379 else
381 Sized_target<size, big_endian>* target =
382 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
383 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
384 if (!target->has_make_symbol())
385 ret = new Sized_symbol<size>();
386 else
388 ret = target->make_symbol();
389 if (ret == NULL)
391 // This means that we don't want a symbol table
392 // entry after all.
393 if (!def)
394 this->table_.erase(ins.first);
395 else
397 this->table_.erase(insdef.first);
398 // Inserting insdef invalidated ins.
399 this->table_.erase(std::make_pair(name_key,
400 version_key));
402 return NULL;
406 ret->init(name, version, object, sym);
408 ins.first->second = ret;
409 if (def)
411 // This is the first time we have seen NAME/NULL. Point
412 // it at the new entry for NAME/VERSION.
413 gold_assert(insdef.second);
414 insdef.first->second = ret;
419 // Record every time we see a new undefined symbol, to speed up
420 // archive groups.
421 if (!was_undefined && ret->is_undefined())
422 ++this->saw_undefined_;
424 // Keep track of common symbols, to speed up common symbol
425 // allocation.
426 if (!was_common && ret->is_common())
427 this->commons_.push_back(ret);
429 return ret;
432 // Add all the symbols in a relocatable object to the hash table.
434 template<int size, bool big_endian>
435 void
436 Symbol_table::add_from_relobj(
437 Sized_relobj<size, big_endian>* relobj,
438 const unsigned char* syms,
439 size_t count,
440 const char* sym_names,
441 size_t sym_name_size,
442 Symbol** sympointers)
444 // We take the size from the first object we see.
445 if (this->get_size() == 0)
446 this->set_size(size);
448 if (size != this->get_size() || size != relobj->target()->get_size())
450 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
451 program_name, relobj->name().c_str());
452 gold_exit(false);
455 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
457 const unsigned char* p = syms;
458 for (size_t i = 0; i < count; ++i, p += sym_size)
460 elfcpp::Sym<size, big_endian> sym(p);
461 elfcpp::Sym<size, big_endian>* psym = &sym;
463 unsigned int st_name = psym->get_st_name();
464 if (st_name >= sym_name_size)
466 fprintf(stderr,
467 _("%s: %s: bad global symbol name offset %u at %lu\n"),
468 program_name, relobj->name().c_str(), st_name,
469 static_cast<unsigned long>(i));
470 gold_exit(false);
473 const char* name = sym_names + st_name;
475 // A symbol defined in a section which we are not including must
476 // be treated as an undefined symbol.
477 unsigned char symbuf[sym_size];
478 elfcpp::Sym<size, big_endian> sym2(symbuf);
479 unsigned int st_shndx = psym->get_st_shndx();
480 if (st_shndx != elfcpp::SHN_UNDEF
481 && st_shndx < elfcpp::SHN_LORESERVE
482 && !relobj->is_section_included(st_shndx))
484 memcpy(symbuf, p, sym_size);
485 elfcpp::Sym_write<size, big_endian> sw(symbuf);
486 sw.put_st_shndx(elfcpp::SHN_UNDEF);
487 psym = &sym2;
490 // In an object file, an '@' in the name separates the symbol
491 // name from the version name. If there are two '@' characters,
492 // this is the default version.
493 const char* ver = strchr(name, '@');
495 Symbol* res;
496 if (ver == NULL)
498 Stringpool::Key name_key;
499 name = this->namepool_.add(name, &name_key);
500 res = this->add_from_object(relobj, name, name_key, NULL, 0,
501 false, *psym);
503 else
505 Stringpool::Key name_key;
506 name = this->namepool_.add(name, ver - name, &name_key);
508 bool def = false;
509 ++ver;
510 if (*ver == '@')
512 def = true;
513 ++ver;
516 Stringpool::Key ver_key;
517 ver = this->namepool_.add(ver, &ver_key);
519 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
520 def, *psym);
523 *sympointers++ = res;
527 // Add all the symbols in a dynamic object to the hash table.
529 template<int size, bool big_endian>
530 void
531 Symbol_table::add_from_dynobj(
532 Sized_dynobj<size, big_endian>* dynobj,
533 const unsigned char* syms,
534 size_t count,
535 const char* sym_names,
536 size_t sym_name_size,
537 const unsigned char* versym,
538 size_t versym_size,
539 const std::vector<const char*>* version_map)
541 // We take the size from the first object we see.
542 if (this->get_size() == 0)
543 this->set_size(size);
545 if (size != this->get_size() || size != dynobj->target()->get_size())
547 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
548 program_name, dynobj->name().c_str());
549 gold_exit(false);
552 if (versym != NULL && versym_size / 2 < count)
554 fprintf(stderr, _("%s: %s: too few symbol versions\n"),
555 program_name, dynobj->name().c_str());
556 gold_exit(false);
559 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
561 const unsigned char* p = syms;
562 const unsigned char* vs = versym;
563 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
565 elfcpp::Sym<size, big_endian> sym(p);
567 // Ignore symbols with local binding.
568 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
569 continue;
571 unsigned int st_name = sym.get_st_name();
572 if (st_name >= sym_name_size)
574 fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
575 program_name, dynobj->name().c_str(), st_name,
576 static_cast<unsigned long>(i));
577 gold_exit(false);
580 const char* name = sym_names + st_name;
582 if (versym == NULL)
584 Stringpool::Key name_key;
585 name = this->namepool_.add(name, &name_key);
586 this->add_from_object(dynobj, name, name_key, NULL, 0,
587 false, sym);
588 continue;
591 // Read the version information.
593 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
595 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
596 v &= elfcpp::VERSYM_VERSION;
598 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
600 // This symbol should not be visible outside the object.
601 continue;
604 // At this point we are definitely going to add this symbol.
605 Stringpool::Key name_key;
606 name = this->namepool_.add(name, &name_key);
608 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
610 // This symbol does not have a version.
611 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
612 continue;
615 if (v >= version_map->size())
617 fprintf(stderr,
618 _("%s: %s: versym for symbol %zu out of range: %u\n"),
619 program_name, dynobj->name().c_str(), i, v);
620 gold_exit(false);
623 const char* version = (*version_map)[v];
624 if (version == NULL)
626 fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
627 program_name, dynobj->name().c_str(), i, v);
628 gold_exit(false);
631 Stringpool::Key version_key;
632 version = this->namepool_.add(version, &version_key);
634 // If this is an absolute symbol, and the version name and
635 // symbol name are the same, then this is the version definition
636 // symbol. These symbols exist to support using -u to pull in
637 // particular versions. We do not want to record a version for
638 // them.
639 if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
641 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
642 continue;
645 const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
647 this->add_from_object(dynobj, name, name_key, version, version_key,
648 def, sym);
652 // Create and return a specially defined symbol. If ONLY_IF_REF is
653 // true, then only create the symbol if there is a reference to it.
655 template<int size, bool big_endian>
656 Sized_symbol<size>*
657 Symbol_table::define_special_symbol(const Target* target, const char* name,
658 const char* version, bool only_if_ref
659 ACCEPT_SIZE_ENDIAN)
661 gold_assert(this->size_ == size);
663 Symbol* oldsym;
664 Sized_symbol<size>* sym;
666 if (only_if_ref)
668 oldsym = this->lookup(name, version);
669 if (oldsym == NULL || !oldsym->is_undefined())
670 return NULL;
671 sym = NULL;
673 // Canonicalize NAME and VERSION.
674 name = oldsym->name();
675 version = oldsym->version();
677 else
679 // Canonicalize NAME and VERSION.
680 Stringpool::Key name_key;
681 name = this->namepool_.add(name, &name_key);
683 Stringpool::Key version_key = 0;
684 if (version != NULL)
685 version = this->namepool_.add(version, &version_key);
687 Symbol* const snull = NULL;
688 std::pair<typename Symbol_table_type::iterator, bool> ins =
689 this->table_.insert(std::make_pair(std::make_pair(name_key,
690 version_key),
691 snull));
693 if (!ins.second)
695 // We already have a symbol table entry for NAME/VERSION.
696 oldsym = ins.first->second;
697 gold_assert(oldsym != NULL);
698 sym = NULL;
700 else
702 // We haven't seen this symbol before.
703 gold_assert(ins.first->second == NULL);
705 if (!target->has_make_symbol())
706 sym = new Sized_symbol<size>();
707 else
709 gold_assert(target->get_size() == size);
710 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
711 typedef Sized_target<size, big_endian> My_target;
712 const My_target* sized_target =
713 static_cast<const My_target*>(target);
714 sym = sized_target->make_symbol();
715 if (sym == NULL)
716 return NULL;
719 ins.first->second = sym;
720 oldsym = NULL;
724 if (oldsym != NULL)
726 gold_assert(sym == NULL);
728 sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
729 SELECT_SIZE(size));
730 gold_assert(sym->source() == Symbol::FROM_OBJECT);
731 const int old_shndx = sym->shndx();
732 if (old_shndx != elfcpp::SHN_UNDEF
733 && old_shndx != elfcpp::SHN_COMMON
734 && !sym->object()->is_dynamic())
736 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
737 program_name, name);
738 // FIXME: Report old location. Record that we have seen an
739 // error.
740 return NULL;
743 // Our new definition is going to override the old reference.
746 return sym;
749 // Define a symbol based on an Output_data.
751 Symbol*
752 Symbol_table::define_in_output_data(const Target* target, const char* name,
753 const char* version, Output_data* od,
754 uint64_t value, uint64_t symsize,
755 elfcpp::STT type, elfcpp::STB binding,
756 elfcpp::STV visibility,
757 unsigned char nonvis,
758 bool offset_is_from_end,
759 bool only_if_ref)
761 gold_assert(target->get_size() == this->size_);
762 if (this->size_ == 32)
763 return this->do_define_in_output_data<32>(target, name, version, od, value,
764 symsize, type, binding,
765 visibility, nonvis,
766 offset_is_from_end, only_if_ref);
767 else if (this->size_ == 64)
768 return this->do_define_in_output_data<64>(target, name, version, od, value,
769 symsize, type, binding,
770 visibility, nonvis,
771 offset_is_from_end, only_if_ref);
772 else
773 gold_unreachable();
776 // Define a symbol in an Output_data, sized version.
778 template<int size>
779 Sized_symbol<size>*
780 Symbol_table::do_define_in_output_data(
781 const Target* target,
782 const char* name,
783 const char* version,
784 Output_data* od,
785 typename elfcpp::Elf_types<size>::Elf_Addr value,
786 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
787 elfcpp::STT type,
788 elfcpp::STB binding,
789 elfcpp::STV visibility,
790 unsigned char nonvis,
791 bool offset_is_from_end,
792 bool only_if_ref)
794 Sized_symbol<size>* sym;
796 if (target->is_big_endian())
797 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
798 target, name, version, only_if_ref
799 SELECT_SIZE_ENDIAN(size, true));
800 else
801 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
802 target, name, version, only_if_ref
803 SELECT_SIZE_ENDIAN(size, false));
805 if (sym == NULL)
806 return NULL;
808 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
809 offset_is_from_end);
811 return sym;
814 // Define a symbol based on an Output_segment.
816 Symbol*
817 Symbol_table::define_in_output_segment(const Target* target, const char* name,
818 const char* version, Output_segment* os,
819 uint64_t value, uint64_t symsize,
820 elfcpp::STT type, elfcpp::STB binding,
821 elfcpp::STV visibility,
822 unsigned char nonvis,
823 Symbol::Segment_offset_base offset_base,
824 bool only_if_ref)
826 gold_assert(target->get_size() == this->size_);
827 if (this->size_ == 32)
828 return this->do_define_in_output_segment<32>(target, name, version, os,
829 value, symsize, type, binding,
830 visibility, nonvis,
831 offset_base, only_if_ref);
832 else if (this->size_ == 64)
833 return this->do_define_in_output_segment<64>(target, name, version, os,
834 value, symsize, type, binding,
835 visibility, nonvis,
836 offset_base, only_if_ref);
837 else
838 gold_unreachable();
841 // Define a symbol in an Output_segment, sized version.
843 template<int size>
844 Sized_symbol<size>*
845 Symbol_table::do_define_in_output_segment(
846 const Target* target,
847 const char* name,
848 const char* version,
849 Output_segment* os,
850 typename elfcpp::Elf_types<size>::Elf_Addr value,
851 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
852 elfcpp::STT type,
853 elfcpp::STB binding,
854 elfcpp::STV visibility,
855 unsigned char nonvis,
856 Symbol::Segment_offset_base offset_base,
857 bool only_if_ref)
859 Sized_symbol<size>* sym;
861 if (target->is_big_endian())
862 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
863 target, name, version, only_if_ref
864 SELECT_SIZE_ENDIAN(size, true));
865 else
866 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
867 target, name, version, only_if_ref
868 SELECT_SIZE_ENDIAN(size, false));
870 if (sym == NULL)
871 return NULL;
873 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
874 offset_base);
876 return sym;
879 // Define a special symbol with a constant value. It is a multiple
880 // definition error if this symbol is already defined.
882 Symbol*
883 Symbol_table::define_as_constant(const Target* target, const char* name,
884 const char* version, uint64_t value,
885 uint64_t symsize, elfcpp::STT type,
886 elfcpp::STB binding, elfcpp::STV visibility,
887 unsigned char nonvis, bool only_if_ref)
889 gold_assert(target->get_size() == this->size_);
890 if (this->size_ == 32)
891 return this->do_define_as_constant<32>(target, name, version, value,
892 symsize, type, binding, visibility,
893 nonvis, only_if_ref);
894 else if (this->size_ == 64)
895 return this->do_define_as_constant<64>(target, name, version, value,
896 symsize, type, binding, visibility,
897 nonvis, only_if_ref);
898 else
899 gold_unreachable();
902 // Define a symbol as a constant, sized version.
904 template<int size>
905 Sized_symbol<size>*
906 Symbol_table::do_define_as_constant(
907 const Target* target,
908 const char* name,
909 const char* version,
910 typename elfcpp::Elf_types<size>::Elf_Addr value,
911 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
912 elfcpp::STT type,
913 elfcpp::STB binding,
914 elfcpp::STV visibility,
915 unsigned char nonvis,
916 bool only_if_ref)
918 Sized_symbol<size>* sym;
920 if (target->is_big_endian())
921 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
922 target, name, version, only_if_ref
923 SELECT_SIZE_ENDIAN(size, true));
924 else
925 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
926 target, name, version, only_if_ref
927 SELECT_SIZE_ENDIAN(size, false));
929 if (sym == NULL)
930 return NULL;
932 sym->init(name, value, symsize, type, binding, visibility, nonvis);
934 return sym;
937 // Define a set of symbols in output sections.
939 void
940 Symbol_table::define_symbols(const Layout* layout, const Target* target,
941 int count, const Define_symbol_in_section* p)
943 for (int i = 0; i < count; ++i, ++p)
945 Output_section* os = layout->find_output_section(p->output_section);
946 if (os != NULL)
947 this->define_in_output_data(target, p->name, NULL, os, p->value,
948 p->size, p->type, p->binding,
949 p->visibility, p->nonvis,
950 p->offset_is_from_end, p->only_if_ref);
951 else
952 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
953 p->binding, p->visibility, p->nonvis,
954 p->only_if_ref);
958 // Define a set of symbols in output segments.
960 void
961 Symbol_table::define_symbols(const Layout* layout, const Target* target,
962 int count, const Define_symbol_in_segment* p)
964 for (int i = 0; i < count; ++i, ++p)
966 Output_segment* os = layout->find_output_segment(p->segment_type,
967 p->segment_flags_set,
968 p->segment_flags_clear);
969 if (os != NULL)
970 this->define_in_output_segment(target, p->name, NULL, os, p->value,
971 p->size, p->type, p->binding,
972 p->visibility, p->nonvis,
973 p->offset_base, p->only_if_ref);
974 else
975 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
976 p->binding, p->visibility, p->nonvis,
977 p->only_if_ref);
981 // Set the dynamic symbol indexes. INDEX is the index of the first
982 // global dynamic symbol. Pointers to the symbols are stored into the
983 // vector SYMS. The names are added to DYNPOOL. This returns an
984 // updated dynamic symbol index.
986 unsigned int
987 Symbol_table::set_dynsym_indexes(const General_options* options,
988 const Target* target,
989 unsigned int index,
990 std::vector<Symbol*>* syms,
991 Stringpool* dynpool,
992 Versions* versions)
994 for (Symbol_table_type::iterator p = this->table_.begin();
995 p != this->table_.end();
996 ++p)
998 Symbol* sym = p->second;
1000 // Note that SYM may already have a dynamic symbol index, since
1001 // some symbols appear more than once in the symbol table, with
1002 // and without a version.
1004 if (!sym->needs_dynsym_entry())
1005 sym->set_dynsym_index(-1U);
1006 else if (!sym->has_dynsym_index())
1008 sym->set_dynsym_index(index);
1009 ++index;
1010 syms->push_back(sym);
1011 dynpool->add(sym->name(), NULL);
1013 // Record any version information.
1014 if (sym->version() != NULL)
1015 versions->record_version(options, dynpool, sym);
1019 // Finish up the versions. In some cases this may add new dynamic
1020 // symbols.
1021 index = versions->finalize(target, this, index, syms);
1023 return index;
1026 // Set the final values for all the symbols. The index of the first
1027 // global symbol in the output file is INDEX. Record the file offset
1028 // OFF. Add their names to POOL. Return the new file offset.
1030 off_t
1031 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1032 size_t dyn_global_index, size_t dyncount,
1033 Stringpool* pool)
1035 off_t ret;
1037 gold_assert(index != 0);
1038 this->first_global_index_ = index;
1040 this->dynamic_offset_ = dynoff;
1041 this->first_dynamic_global_index_ = dyn_global_index;
1042 this->dynamic_count_ = dyncount;
1044 if (this->size_ == 32)
1045 ret = this->sized_finalize<32>(index, off, pool);
1046 else if (this->size_ == 64)
1047 ret = this->sized_finalize<64>(index, off, pool);
1048 else
1049 gold_unreachable();
1051 // Now that we have the final symbol table, we can reliably note
1052 // which symbols should get warnings.
1053 this->warnings_.note_warnings(this);
1055 return ret;
1058 // Set the final value for all the symbols. This is called after
1059 // Layout::finalize, so all the output sections have their final
1060 // address.
1062 template<int size>
1063 off_t
1064 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1066 off = align_address(off, size >> 3);
1067 this->offset_ = off;
1069 size_t orig_index = index;
1071 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1072 for (Symbol_table_type::iterator p = this->table_.begin();
1073 p != this->table_.end();
1074 ++p)
1076 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1078 // FIXME: Here we need to decide which symbols should go into
1079 // the output file, based on --strip.
1081 // The default version of a symbol may appear twice in the
1082 // symbol table. We only need to finalize it once.
1083 if (sym->has_symtab_index())
1084 continue;
1086 if (!sym->in_reg())
1088 gold_assert(!sym->has_symtab_index());
1089 sym->set_symtab_index(-1U);
1090 gold_assert(sym->dynsym_index() == -1U);
1091 continue;
1094 typename Sized_symbol<size>::Value_type value;
1096 switch (sym->source())
1098 case Symbol::FROM_OBJECT:
1100 unsigned int shndx = sym->shndx();
1102 // FIXME: We need some target specific support here.
1103 if (shndx >= elfcpp::SHN_LORESERVE
1104 && shndx != elfcpp::SHN_ABS)
1106 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1107 program_name, sym->name(), shndx);
1108 gold_exit(false);
1111 Object* symobj = sym->object();
1112 if (symobj->is_dynamic())
1114 value = 0;
1115 shndx = elfcpp::SHN_UNDEF;
1117 else if (shndx == elfcpp::SHN_UNDEF)
1118 value = 0;
1119 else if (shndx == elfcpp::SHN_ABS)
1120 value = sym->value();
1121 else
1123 Relobj* relobj = static_cast<Relobj*>(symobj);
1124 off_t secoff;
1125 Output_section* os = relobj->output_section(shndx, &secoff);
1127 if (os == NULL)
1129 sym->set_symtab_index(-1U);
1130 gold_assert(sym->dynsym_index() == -1U);
1131 continue;
1134 value = sym->value() + os->address() + secoff;
1137 break;
1139 case Symbol::IN_OUTPUT_DATA:
1141 Output_data* od = sym->output_data();
1142 value = sym->value() + od->address();
1143 if (sym->offset_is_from_end())
1144 value += od->data_size();
1146 break;
1148 case Symbol::IN_OUTPUT_SEGMENT:
1150 Output_segment* os = sym->output_segment();
1151 value = sym->value() + os->vaddr();
1152 switch (sym->offset_base())
1154 case Symbol::SEGMENT_START:
1155 break;
1156 case Symbol::SEGMENT_END:
1157 value += os->memsz();
1158 break;
1159 case Symbol::SEGMENT_BSS:
1160 value += os->filesz();
1161 break;
1162 default:
1163 gold_unreachable();
1166 break;
1168 case Symbol::CONSTANT:
1169 value = sym->value();
1170 break;
1172 default:
1173 gold_unreachable();
1176 sym->set_value(value);
1177 sym->set_symtab_index(index);
1178 pool->add(sym->name(), NULL);
1179 ++index;
1180 off += sym_size;
1183 this->output_count_ = index - orig_index;
1185 return off;
1188 // Write out the global symbols.
1190 void
1191 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1192 const Stringpool* dynpool, Output_file* of) const
1194 if (this->size_ == 32)
1196 if (target->is_big_endian())
1197 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1198 else
1199 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1201 else if (this->size_ == 64)
1203 if (target->is_big_endian())
1204 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1205 else
1206 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1208 else
1209 gold_unreachable();
1212 // Write out the global symbols.
1214 template<int size, bool big_endian>
1215 void
1216 Symbol_table::sized_write_globals(const Target*,
1217 const Stringpool* sympool,
1218 const Stringpool* dynpool,
1219 Output_file* of) const
1221 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1222 unsigned int index = this->first_global_index_;
1223 const off_t oview_size = this->output_count_ * sym_size;
1224 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1226 unsigned int dynamic_count = this->dynamic_count_;
1227 off_t dynamic_size = dynamic_count * sym_size;
1228 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1229 unsigned char* dynamic_view;
1230 if (this->dynamic_offset_ == 0)
1231 dynamic_view = NULL;
1232 else
1233 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1235 unsigned char* ps = psyms;
1236 for (Symbol_table_type::const_iterator p = this->table_.begin();
1237 p != this->table_.end();
1238 ++p)
1240 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1242 unsigned int sym_index = sym->symtab_index();
1243 unsigned int dynsym_index;
1244 if (dynamic_view == NULL)
1245 dynsym_index = -1U;
1246 else
1247 dynsym_index = sym->dynsym_index();
1249 if (sym_index == -1U && dynsym_index == -1U)
1251 // This symbol is not included in the output file.
1252 continue;
1255 if (sym_index == index)
1256 ++index;
1257 else if (sym_index != -1U)
1259 // We have already seen this symbol, because it has a
1260 // default version.
1261 gold_assert(sym_index < index);
1262 if (dynsym_index == -1U)
1263 continue;
1264 sym_index = -1U;
1267 unsigned int shndx;
1268 switch (sym->source())
1270 case Symbol::FROM_OBJECT:
1272 unsigned int in_shndx = sym->shndx();
1274 // FIXME: We need some target specific support here.
1275 if (in_shndx >= elfcpp::SHN_LORESERVE
1276 && in_shndx != elfcpp::SHN_ABS)
1278 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1279 program_name, sym->name(), in_shndx);
1280 gold_exit(false);
1283 Object* symobj = sym->object();
1284 if (symobj->is_dynamic())
1286 // FIXME.
1287 shndx = elfcpp::SHN_UNDEF;
1289 else if (in_shndx == elfcpp::SHN_UNDEF
1290 || in_shndx == elfcpp::SHN_ABS)
1291 shndx = in_shndx;
1292 else
1294 Relobj* relobj = static_cast<Relobj*>(symobj);
1295 off_t secoff;
1296 Output_section* os = relobj->output_section(in_shndx, &secoff);
1297 gold_assert(os != NULL);
1298 shndx = os->out_shndx();
1301 break;
1303 case Symbol::IN_OUTPUT_DATA:
1304 shndx = sym->output_data()->out_shndx();
1305 break;
1307 case Symbol::IN_OUTPUT_SEGMENT:
1308 shndx = elfcpp::SHN_ABS;
1309 break;
1311 case Symbol::CONSTANT:
1312 shndx = elfcpp::SHN_ABS;
1313 break;
1315 default:
1316 gold_unreachable();
1319 if (sym_index != -1U)
1321 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1322 sym, shndx, sympool, ps
1323 SELECT_SIZE_ENDIAN(size, big_endian));
1324 ps += sym_size;
1327 if (dynsym_index != -1U)
1329 dynsym_index -= first_dynamic_global_index;
1330 gold_assert(dynsym_index < dynamic_count);
1331 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1332 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1333 sym, shndx, dynpool, pd
1334 SELECT_SIZE_ENDIAN(size, big_endian));
1338 gold_assert(ps - psyms == oview_size);
1340 of->write_output_view(this->offset_, oview_size, psyms);
1341 if (dynamic_view != NULL)
1342 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1345 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1346 // strtab holding the name.
1348 template<int size, bool big_endian>
1349 void
1350 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1351 unsigned int shndx,
1352 const Stringpool* pool,
1353 unsigned char* p
1354 ACCEPT_SIZE_ENDIAN) const
1356 elfcpp::Sym_write<size, big_endian> osym(p);
1357 osym.put_st_name(pool->get_offset(sym->name()));
1358 osym.put_st_value(sym->value());
1359 osym.put_st_size(sym->symsize());
1360 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1361 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1362 osym.put_st_shndx(shndx);
1365 // Write out a section symbol. Return the update offset.
1367 void
1368 Symbol_table::write_section_symbol(const Target* target,
1369 const Output_section *os,
1370 Output_file* of,
1371 off_t offset) const
1373 if (this->size_ == 32)
1375 if (target->is_big_endian())
1376 this->sized_write_section_symbol<32, true>(os, of, offset);
1377 else
1378 this->sized_write_section_symbol<32, false>(os, of, offset);
1380 else if (this->size_ == 64)
1382 if (target->is_big_endian())
1383 this->sized_write_section_symbol<64, true>(os, of, offset);
1384 else
1385 this->sized_write_section_symbol<64, false>(os, of, offset);
1387 else
1388 gold_unreachable();
1391 // Write out a section symbol, specialized for size and endianness.
1393 template<int size, bool big_endian>
1394 void
1395 Symbol_table::sized_write_section_symbol(const Output_section* os,
1396 Output_file* of,
1397 off_t offset) const
1399 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1401 unsigned char* pov = of->get_output_view(offset, sym_size);
1403 elfcpp::Sym_write<size, big_endian> osym(pov);
1404 osym.put_st_name(0);
1405 osym.put_st_value(os->address());
1406 osym.put_st_size(0);
1407 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1408 elfcpp::STT_SECTION));
1409 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1410 osym.put_st_shndx(os->out_shndx());
1412 of->write_output_view(offset, sym_size, pov);
1415 // Warnings functions.
1417 // Add a new warning.
1419 void
1420 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1421 unsigned int shndx)
1423 name = symtab->canonicalize_name(name);
1424 this->warnings_[name].set(obj, shndx);
1427 // Look through the warnings and mark the symbols for which we should
1428 // warn. This is called during Layout::finalize when we know the
1429 // sources for all the symbols.
1431 void
1432 Warnings::note_warnings(Symbol_table* symtab)
1434 for (Warning_table::iterator p = this->warnings_.begin();
1435 p != this->warnings_.end();
1436 ++p)
1438 Symbol* sym = symtab->lookup(p->first, NULL);
1439 if (sym != NULL
1440 && sym->source() == Symbol::FROM_OBJECT
1441 && sym->object() == p->second.object)
1443 sym->set_has_warning();
1445 // Read the section contents to get the warning text. It
1446 // would be nicer if we only did this if we have to actually
1447 // issue a warning. Unfortunately, warnings are issued as
1448 // we relocate sections. That means that we can not lock
1449 // the object then, as we might try to issue the same
1450 // warning multiple times simultaneously.
1452 Task_locker_obj<Object> tl(*p->second.object);
1453 const unsigned char* c;
1454 off_t len;
1455 c = p->second.object->section_contents(p->second.shndx, &len);
1456 p->second.set_text(reinterpret_cast<const char*>(c), len);
1462 // Issue a warning. This is called when we see a relocation against a
1463 // symbol for which has a warning.
1465 void
1466 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1468 gold_assert(sym->has_warning());
1469 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1470 gold_assert(p != this->warnings_.end());
1471 fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1472 p->second.text.c_str());
1475 // Instantiate the templates we need. We could use the configure
1476 // script to restrict this to only the ones needed for implemented
1477 // targets.
1479 template
1480 void
1481 Symbol_table::add_from_relobj<32, true>(
1482 Sized_relobj<32, true>* relobj,
1483 const unsigned char* syms,
1484 size_t count,
1485 const char* sym_names,
1486 size_t sym_name_size,
1487 Symbol** sympointers);
1489 template
1490 void
1491 Symbol_table::add_from_relobj<32, false>(
1492 Sized_relobj<32, false>* relobj,
1493 const unsigned char* syms,
1494 size_t count,
1495 const char* sym_names,
1496 size_t sym_name_size,
1497 Symbol** sympointers);
1499 template
1500 void
1501 Symbol_table::add_from_relobj<64, true>(
1502 Sized_relobj<64, true>* relobj,
1503 const unsigned char* syms,
1504 size_t count,
1505 const char* sym_names,
1506 size_t sym_name_size,
1507 Symbol** sympointers);
1509 template
1510 void
1511 Symbol_table::add_from_relobj<64, false>(
1512 Sized_relobj<64, false>* relobj,
1513 const unsigned char* syms,
1514 size_t count,
1515 const char* sym_names,
1516 size_t sym_name_size,
1517 Symbol** sympointers);
1519 template
1520 void
1521 Symbol_table::add_from_dynobj<32, true>(
1522 Sized_dynobj<32, true>* dynobj,
1523 const unsigned char* syms,
1524 size_t count,
1525 const char* sym_names,
1526 size_t sym_name_size,
1527 const unsigned char* versym,
1528 size_t versym_size,
1529 const std::vector<const char*>* version_map);
1531 template
1532 void
1533 Symbol_table::add_from_dynobj<32, false>(
1534 Sized_dynobj<32, false>* dynobj,
1535 const unsigned char* syms,
1536 size_t count,
1537 const char* sym_names,
1538 size_t sym_name_size,
1539 const unsigned char* versym,
1540 size_t versym_size,
1541 const std::vector<const char*>* version_map);
1543 template
1544 void
1545 Symbol_table::add_from_dynobj<64, true>(
1546 Sized_dynobj<64, true>* dynobj,
1547 const unsigned char* syms,
1548 size_t count,
1549 const char* sym_names,
1550 size_t sym_name_size,
1551 const unsigned char* versym,
1552 size_t versym_size,
1553 const std::vector<const char*>* version_map);
1555 template
1556 void
1557 Symbol_table::add_from_dynobj<64, false>(
1558 Sized_dynobj<64, false>* dynobj,
1559 const unsigned char* syms,
1560 size_t count,
1561 const char* sym_names,
1562 size_t sym_name_size,
1563 const unsigned char* versym,
1564 size_t versym_size,
1565 const std::vector<const char*>* version_map);
1567 } // End namespace gold.