1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
32 #include "safe-ctype.h"
36 #include "opcode/arm.h"
40 #include "dw2gencfi.h"
43 #include "dwarf2dbg.h"
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
49 /* This structure holds the unwinding state. */
54 symbolS
* table_entry
;
55 symbolS
* personality_routine
;
56 int personality_index
;
57 /* The segment containing the function. */
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes
;
64 /* The number of bytes pushed to the stack. */
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset
;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
74 /* Nonzero if an unwind_setfp directive has been seen. */
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored
:1;
82 /* Results from operand parsing worker functions. */
86 PARSE_OPERAND_SUCCESS
,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result
;
98 /* Types of processor to assemble for. */
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
124 #endif /* ifndef FPU_DEFAULT */
126 #define streq(a, b) (strcmp (a, b) == 0)
128 static arm_feature_set cpu_variant
;
129 static arm_feature_set arm_arch_used
;
130 static arm_feature_set thumb_arch_used
;
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26
= FALSE
;
134 static int atpcs
= FALSE
;
135 static int support_interwork
= FALSE
;
136 static int uses_apcs_float
= FALSE
;
137 static int pic_code
= FALSE
;
138 static int fix_v4bx
= FALSE
;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated
= TRUE
;
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
146 static const arm_feature_set
*legacy_cpu
= NULL
;
147 static const arm_feature_set
*legacy_fpu
= NULL
;
149 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
150 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
151 static const arm_feature_set
*march_cpu_opt
= NULL
;
152 static const arm_feature_set
*march_fpu_opt
= NULL
;
153 static const arm_feature_set
*mfpu_opt
= NULL
;
154 static const arm_feature_set
*object_arch
= NULL
;
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
158 static const arm_feature_set fpu_arch_vfp_v1
= FPU_ARCH_VFP_V1
;
159 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
160 static const arm_feature_set fpu_arch_vfp_v3
= FPU_ARCH_VFP_V3
;
161 static const arm_feature_set fpu_arch_neon_v1
= FPU_ARCH_NEON_V1
;
162 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
163 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
164 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
165 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
168 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
171 static const arm_feature_set arm_ext_v1
= ARM_FEATURE (ARM_EXT_V1
, 0);
172 static const arm_feature_set arm_ext_v2
= ARM_FEATURE (ARM_EXT_V1
, 0);
173 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE (ARM_EXT_V2S
, 0);
174 static const arm_feature_set arm_ext_v3
= ARM_FEATURE (ARM_EXT_V3
, 0);
175 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE (ARM_EXT_V3M
, 0);
176 static const arm_feature_set arm_ext_v4
= ARM_FEATURE (ARM_EXT_V4
, 0);
177 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE (ARM_EXT_V4T
, 0);
178 static const arm_feature_set arm_ext_v5
= ARM_FEATURE (ARM_EXT_V5
, 0);
179 static const arm_feature_set arm_ext_v4t_5
=
180 ARM_FEATURE (ARM_EXT_V4T
| ARM_EXT_V5
, 0);
181 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE (ARM_EXT_V5T
, 0);
182 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE (ARM_EXT_V5E
, 0);
183 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE (ARM_EXT_V5ExP
, 0);
184 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE (ARM_EXT_V5J
, 0);
185 static const arm_feature_set arm_ext_v6
= ARM_FEATURE (ARM_EXT_V6
, 0);
186 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE (ARM_EXT_V6K
, 0);
187 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE (ARM_EXT_V6T2
, 0);
188 static const arm_feature_set arm_ext_v6m
= ARM_FEATURE (ARM_EXT_V6M
, 0);
189 static const arm_feature_set arm_ext_v6_notm
= ARM_FEATURE (ARM_EXT_V6_NOTM
, 0);
190 static const arm_feature_set arm_ext_v6_dsp
= ARM_FEATURE (ARM_EXT_V6_DSP
, 0);
191 static const arm_feature_set arm_ext_barrier
= ARM_FEATURE (ARM_EXT_BARRIER
, 0);
192 static const arm_feature_set arm_ext_msr
= ARM_FEATURE (ARM_EXT_THUMB_MSR
, 0);
193 static const arm_feature_set arm_ext_div
= ARM_FEATURE (ARM_EXT_DIV
, 0);
194 static const arm_feature_set arm_ext_v7
= ARM_FEATURE (ARM_EXT_V7
, 0);
195 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE (ARM_EXT_V7A
, 0);
196 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE (ARM_EXT_V7R
, 0);
197 static const arm_feature_set arm_ext_v7m
= ARM_FEATURE (ARM_EXT_V7M
, 0);
198 static const arm_feature_set arm_ext_m
=
199 ARM_FEATURE (ARM_EXT_V6M
| ARM_EXT_OS
| ARM_EXT_V7M
, 0);
200 static const arm_feature_set arm_ext_mp
= ARM_FEATURE (ARM_EXT_MP
, 0);
201 static const arm_feature_set arm_ext_sec
= ARM_FEATURE (ARM_EXT_SEC
, 0);
202 static const arm_feature_set arm_ext_os
= ARM_FEATURE (ARM_EXT_OS
, 0);
203 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE (ARM_EXT_ADIV
, 0);
204 static const arm_feature_set arm_ext_virt
= ARM_FEATURE (ARM_EXT_VIRT
, 0);
206 static const arm_feature_set arm_arch_any
= ARM_ANY
;
207 static const arm_feature_set arm_arch_full
= ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
209 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
210 static const arm_feature_set arm_arch_v6m_only
= ARM_ARCH_V6M_ONLY
;
212 static const arm_feature_set arm_cext_iwmmxt2
=
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2
);
214 static const arm_feature_set arm_cext_iwmmxt
=
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT
);
216 static const arm_feature_set arm_cext_xscale
=
217 ARM_FEATURE (0, ARM_CEXT_XSCALE
);
218 static const arm_feature_set arm_cext_maverick
=
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK
);
220 static const arm_feature_set fpu_fpa_ext_v1
= ARM_FEATURE (0, FPU_FPA_EXT_V1
);
221 static const arm_feature_set fpu_fpa_ext_v2
= ARM_FEATURE (0, FPU_FPA_EXT_V2
);
222 static const arm_feature_set fpu_vfp_ext_v1xd
=
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD
);
224 static const arm_feature_set fpu_vfp_ext_v1
= ARM_FEATURE (0, FPU_VFP_EXT_V1
);
225 static const arm_feature_set fpu_vfp_ext_v2
= ARM_FEATURE (0, FPU_VFP_EXT_V2
);
226 static const arm_feature_set fpu_vfp_ext_v3xd
= ARM_FEATURE (0, FPU_VFP_EXT_V3xD
);
227 static const arm_feature_set fpu_vfp_ext_v3
= ARM_FEATURE (0, FPU_VFP_EXT_V3
);
228 static const arm_feature_set fpu_vfp_ext_d32
=
229 ARM_FEATURE (0, FPU_VFP_EXT_D32
);
230 static const arm_feature_set fpu_neon_ext_v1
= ARM_FEATURE (0, FPU_NEON_EXT_V1
);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
232 ARM_FEATURE (0, FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
233 static const arm_feature_set fpu_vfp_fp16
= ARM_FEATURE (0, FPU_VFP_EXT_FP16
);
234 static const arm_feature_set fpu_neon_ext_fma
= ARM_FEATURE (0, FPU_NEON_EXT_FMA
);
235 static const arm_feature_set fpu_vfp_ext_fma
= ARM_FEATURE (0, FPU_VFP_EXT_FMA
);
237 static int mfloat_abi_opt
= -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name
[16];
243 /* Return if no cpu was selected on command-line. */
245 no_cpu_selected (void)
247 return selected_cpu
.core
== arm_arch_none
.core
248 && selected_cpu
.coproc
== arm_arch_none
.coproc
;
253 static int meabi_flags
= EABI_DEFAULT
;
255 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
258 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
263 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS
* GOT_symbol
;
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
276 static int thumb_mode
= 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
285 IMPLICIT_IT_MODE_NEVER
= 0x00,
286 IMPLICIT_IT_MODE_ARM
= 0x01,
287 IMPLICIT_IT_MODE_THUMB
= 0x02,
288 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
290 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
304 Important differences from the old Thumb mode:
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
315 static bfd_boolean unified_syntax
= FALSE
;
330 enum neon_el_type type
;
334 #define NEON_MAX_TYPE_ELS 4
338 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
342 enum it_instruction_type
347 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN
/* The IT insn has been parsed. */
357 unsigned long instruction
;
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
365 struct neon_type vectype
;
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
374 bfd_reloc_code_real_type type
;
379 enum it_instruction_type it_insn_type
;
385 struct neon_type_el vectype
;
386 unsigned present
: 1; /* Operand present. */
387 unsigned isreg
: 1; /* Operand was a register. */
388 unsigned immisreg
: 1; /* .imm field is a second register. */
389 unsigned isscalar
: 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
391 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
395 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
396 unsigned isquad
: 1; /* Operand is Neon quad-precision register. */
397 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
398 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
399 unsigned writeback
: 1; /* Operand has trailing ! */
400 unsigned preind
: 1; /* Preindexed address. */
401 unsigned postind
: 1; /* Postindexed address. */
402 unsigned negative
: 1; /* Index register was negated. */
403 unsigned shifted
: 1; /* Shift applied to operation. */
404 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
408 static struct arm_it inst
;
410 #define NUM_FLOAT_VALS 8
412 const char * fp_const
[] =
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
417 /* Number of littlenums required to hold an extended precision number. */
418 #define MAX_LITTLENUMS 6
420 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
430 #define CP_T_X 0x00008000
431 #define CP_T_Y 0x00400000
433 #define CONDS_BIT 0x00100000
434 #define LOAD_BIT 0x00100000
436 #define DOUBLE_LOAD_FLAG 0x00000001
440 const char * template_name
;
444 #define COND_ALWAYS 0xE
448 const char * template_name
;
452 struct asm_barrier_opt
454 const char * template_name
;
458 /* The bit that distinguishes CPSR and SPSR. */
459 #define SPSR_BIT (1 << 22)
461 /* The individual PSR flag bits. */
462 #define PSR_c (1 << 16)
463 #define PSR_x (1 << 17)
464 #define PSR_s (1 << 18)
465 #define PSR_f (1 << 19)
470 bfd_reloc_code_real_type reloc
;
475 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
476 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
481 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
484 /* Bits for DEFINED field in neon_typed_alias. */
485 #define NTA_HASTYPE 1
486 #define NTA_HASINDEX 2
488 struct neon_typed_alias
490 unsigned char defined
;
492 struct neon_type_el eltype
;
495 /* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
523 /* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
532 unsigned char builtin
;
533 struct neon_typed_alias
* neon
;
536 /* Diagnostics used when we don't get a register of the expected type. */
537 const char * const reg_expected_msgs
[] =
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
546 N_("VFP single or double precision register expected"),
547 N_("Neon double or quad precision register expected"),
548 N_("VFP single, double or Neon quad precision register expected"),
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
562 /* Some well known registers that we refer to directly elsewhere. */
567 /* ARM instructions take 4bytes in the object file, Thumb instructions
573 /* Basic string to match. */
574 const char * template_name
;
576 /* Parameters to instruction. */
577 unsigned int operands
[8];
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag
: 4;
582 /* Basic instruction code. */
583 unsigned int avalue
: 28;
585 /* Thumb-format instruction code. */
588 /* Which architecture variant provides this instruction. */
589 const arm_feature_set
* avariant
;
590 const arm_feature_set
* tvariant
;
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode
) (void);
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode
) (void);
599 /* Defines for various bits that we will want to toggle. */
600 #define INST_IMMEDIATE 0x02000000
601 #define OFFSET_REG 0x02000000
602 #define HWOFFSET_IMM 0x00400000
603 #define SHIFT_BY_REG 0x00000010
604 #define PRE_INDEX 0x01000000
605 #define INDEX_UP 0x00800000
606 #define WRITE_BACK 0x00200000
607 #define LDM_TYPE_2_OR_3 0x00400000
608 #define CPSI_MMOD 0x00020000
610 #define LITERAL_MASK 0xf000f000
611 #define OPCODE_MASK 0xfe1fffff
612 #define V4_STR_BIT 0x00000020
614 #define T2_SUBS_PC_LR 0xf3de8f00
616 #define DATA_OP_SHIFT 21
618 #define T2_OPCODE_MASK 0xfe1fffff
619 #define T2_DATA_OP_SHIFT 21
621 /* Codes to distinguish the arithmetic instructions. */
632 #define OPCODE_CMP 10
633 #define OPCODE_CMN 11
634 #define OPCODE_ORR 12
635 #define OPCODE_MOV 13
636 #define OPCODE_BIC 14
637 #define OPCODE_MVN 15
639 #define T2_OPCODE_AND 0
640 #define T2_OPCODE_BIC 1
641 #define T2_OPCODE_ORR 2
642 #define T2_OPCODE_ORN 3
643 #define T2_OPCODE_EOR 4
644 #define T2_OPCODE_ADD 8
645 #define T2_OPCODE_ADC 10
646 #define T2_OPCODE_SBC 11
647 #define T2_OPCODE_SUB 13
648 #define T2_OPCODE_RSB 14
650 #define T_OPCODE_MUL 0x4340
651 #define T_OPCODE_TST 0x4200
652 #define T_OPCODE_CMN 0x42c0
653 #define T_OPCODE_NEG 0x4240
654 #define T_OPCODE_MVN 0x43c0
656 #define T_OPCODE_ADD_R3 0x1800
657 #define T_OPCODE_SUB_R3 0x1a00
658 #define T_OPCODE_ADD_HI 0x4400
659 #define T_OPCODE_ADD_ST 0xb000
660 #define T_OPCODE_SUB_ST 0xb080
661 #define T_OPCODE_ADD_SP 0xa800
662 #define T_OPCODE_ADD_PC 0xa000
663 #define T_OPCODE_ADD_I8 0x3000
664 #define T_OPCODE_SUB_I8 0x3800
665 #define T_OPCODE_ADD_I3 0x1c00
666 #define T_OPCODE_SUB_I3 0x1e00
668 #define T_OPCODE_ASR_R 0x4100
669 #define T_OPCODE_LSL_R 0x4080
670 #define T_OPCODE_LSR_R 0x40c0
671 #define T_OPCODE_ROR_R 0x41c0
672 #define T_OPCODE_ASR_I 0x1000
673 #define T_OPCODE_LSL_I 0x0000
674 #define T_OPCODE_LSR_I 0x0800
676 #define T_OPCODE_MOV_I8 0x2000
677 #define T_OPCODE_CMP_I8 0x2800
678 #define T_OPCODE_CMP_LR 0x4280
679 #define T_OPCODE_MOV_HR 0x4600
680 #define T_OPCODE_CMP_HR 0x4500
682 #define T_OPCODE_LDR_PC 0x4800
683 #define T_OPCODE_LDR_SP 0x9800
684 #define T_OPCODE_STR_SP 0x9000
685 #define T_OPCODE_LDR_IW 0x6800
686 #define T_OPCODE_STR_IW 0x6000
687 #define T_OPCODE_LDR_IH 0x8800
688 #define T_OPCODE_STR_IH 0x8000
689 #define T_OPCODE_LDR_IB 0x7800
690 #define T_OPCODE_STR_IB 0x7000
691 #define T_OPCODE_LDR_RW 0x5800
692 #define T_OPCODE_STR_RW 0x5000
693 #define T_OPCODE_LDR_RH 0x5a00
694 #define T_OPCODE_STR_RH 0x5200
695 #define T_OPCODE_LDR_RB 0x5c00
696 #define T_OPCODE_STR_RB 0x5400
698 #define T_OPCODE_PUSH 0xb400
699 #define T_OPCODE_POP 0xbc00
701 #define T_OPCODE_BRANCH 0xe000
703 #define THUMB_SIZE 2 /* Size of thumb instruction. */
704 #define THUMB_PP_PC_LR 0x0100
705 #define THUMB_LOAD_BIT 0x0800
706 #define THUMB2_LOAD_BIT 0x00100000
708 #define BAD_ARGS _("bad arguments to instruction")
709 #define BAD_SP _("r13 not allowed here")
710 #define BAD_PC _("r15 not allowed here")
711 #define BAD_COND _("instruction cannot be conditional")
712 #define BAD_OVERLAP _("registers may not be the same")
713 #define BAD_HIREG _("lo register required")
714 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
715 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
716 #define BAD_BRANCH _("branch must be last instruction in IT block")
717 #define BAD_NOT_IT _("instruction not allowed in IT block")
718 #define BAD_FPU _("selected FPU does not support instruction")
719 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720 #define BAD_IT_COND _("incorrect condition in IT block")
721 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
722 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
723 #define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725 #define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
728 static struct hash_control
* arm_ops_hsh
;
729 static struct hash_control
* arm_cond_hsh
;
730 static struct hash_control
* arm_shift_hsh
;
731 static struct hash_control
* arm_psr_hsh
;
732 static struct hash_control
* arm_v7m_psr_hsh
;
733 static struct hash_control
* arm_reg_hsh
;
734 static struct hash_control
* arm_reloc_hsh
;
735 static struct hash_control
* arm_barrier_opt_hsh
;
737 /* Stuff needed to resolve the label ambiguity
746 symbolS
* last_label_seen
;
747 static int label_is_thumb_function_name
= FALSE
;
749 /* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
752 #define MAX_LITERAL_POOL_SIZE 1024
753 typedef struct literal_pool
755 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
756 unsigned int next_free_entry
;
761 struct literal_pool
* next
;
764 /* Pointer to a linked list of literal pools. */
765 literal_pool
* list_of_pools
= NULL
;
768 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
770 static struct current_it now_it
;
774 now_it_compatible (int cond
)
776 return (cond
& ~1) == (now_it
.cc
& ~1);
780 conditional_insn (void)
782 return inst
.cond
!= COND_ALWAYS
;
785 static int in_it_block (void);
787 static int handle_it_state (void);
789 static void force_automatic_it_block_close (void);
791 static void it_fsm_post_encode (void);
793 #define set_it_insn_type(type) \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
802 #define set_it_insn_type_nonvoid(type, failret) \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
811 #define set_it_insn_type_last() \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
823 /* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825 const char comment_chars
[] = "@";
827 /* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830 /* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833 /* Also note that comments like this one will always work. */
834 const char line_comment_chars
[] = "#";
836 const char line_separator_chars
[] = ";";
838 /* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840 const char EXP_CHARS
[] = "eE";
842 /* Chars that mean this number is a floating point constant. */
846 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
848 /* Prefix characters that indicate the start of an immediate
850 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
852 /* Separator character handling. */
854 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
857 skip_past_char (char ** str
, char c
)
868 #define skip_past_comma(str) skip_past_char (str, ',')
870 /* Arithmetic expressions (possibly involving symbols). */
872 /* Return TRUE if anything in the expression is a bignum. */
875 walk_no_bignums (symbolS
* sp
)
877 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
880 if (symbol_get_value_expression (sp
)->X_add_symbol
)
882 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
883 || (symbol_get_value_expression (sp
)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
890 static int in_my_get_expression
= 0;
892 /* Third argument to my_get_expression. */
893 #define GE_NO_PREFIX 0
894 #define GE_IMM_PREFIX 1
895 #define GE_OPT_PREFIX 2
896 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898 #define GE_OPT_PREFIX_BIG 3
901 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
906 /* In unified syntax, all prefixes are optional. */
908 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
913 case GE_NO_PREFIX
: break;
915 if (!is_immediate_prefix (**str
))
917 inst
.error
= _("immediate expression requires a # prefix");
923 case GE_OPT_PREFIX_BIG
:
924 if (is_immediate_prefix (**str
))
930 memset (ep
, 0, sizeof (expressionS
));
932 save_in
= input_line_pointer
;
933 input_line_pointer
= *str
;
934 in_my_get_expression
= 1;
935 seg
= expression (ep
);
936 in_my_get_expression
= 0;
938 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
940 /* We found a bad or missing expression in md_operand(). */
941 *str
= input_line_pointer
;
942 input_line_pointer
= save_in
;
943 if (inst
.error
== NULL
)
944 inst
.error
= (ep
->X_op
== O_absent
945 ? _("missing expression") :_("bad expression"));
950 if (seg
!= absolute_section
951 && seg
!= text_section
952 && seg
!= data_section
953 && seg
!= bss_section
954 && seg
!= undefined_section
)
956 inst
.error
= _("bad segment");
957 *str
= input_line_pointer
;
958 input_line_pointer
= save_in
;
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
968 if (prefix_mode
!= GE_OPT_PREFIX_BIG
969 && (ep
->X_op
== O_big
971 && (walk_no_bignums (ep
->X_add_symbol
)
973 && walk_no_bignums (ep
->X_op_symbol
))))))
975 inst
.error
= _("invalid constant");
976 *str
= input_line_pointer
;
977 input_line_pointer
= save_in
;
981 *str
= input_line_pointer
;
982 input_line_pointer
= save_in
;
986 /* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1001 md_atof (int type
, char * litP
, int * sizeP
)
1004 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1036 return _("Unrecognized or unsupported floating point constant");
1039 t
= atof_ieee (input_line_pointer
, type
, words
);
1041 input_line_pointer
= t
;
1042 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1044 if (target_big_endian
)
1046 for (i
= 0; i
< prec
; i
++)
1048 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1049 litP
+= sizeof (LITTLENUM_TYPE
);
1054 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1055 for (i
= prec
- 1; i
>= 0; i
--)
1057 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1058 litP
+= sizeof (LITTLENUM_TYPE
);
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i
= 0; i
< prec
; i
+= 2)
1065 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1066 sizeof (LITTLENUM_TYPE
));
1067 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1068 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1069 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1076 /* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1079 md_operand (expressionS
* exp
)
1081 if (in_my_get_expression
)
1082 exp
->X_op
= O_illegal
;
1085 /* Immediate values. */
1087 /* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1092 immediate_for_directive (int *val
)
1095 exp
.X_op
= O_illegal
;
1097 if (is_immediate_prefix (*input_line_pointer
))
1099 input_line_pointer
++;
1103 if (exp
.X_op
!= O_constant
)
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1109 *val
= exp
.X_add_number
;
1114 /* Register parsing. */
1116 /* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1121 static struct reg_entry
*
1122 arm_reg_parse_multi (char **ccp
)
1126 struct reg_entry
*reg
;
1128 #ifdef REGISTER_PREFIX
1129 if (*start
!= REGISTER_PREFIX
)
1133 #ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1139 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1144 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1146 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1156 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1157 enum arm_reg_type type
)
1159 /* Alternative syntaxes are accepted for a few register classes. */
1166 /* Generic coprocessor register names are allowed for these. */
1167 if (reg
&& reg
->type
== REG_TYPE_CN
)
1172 /* For backward compatibility, a bare number is valid here. */
1174 unsigned long processor
= strtoul (start
, ccp
, 10);
1175 if (*ccp
!= start
&& processor
<= 15)
1179 case REG_TYPE_MMXWC
:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
1182 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1193 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1197 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1200 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1207 if (reg
&& reg
->type
== type
)
1210 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1217 /* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1225 Can all be legally parsed by this function.
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1232 parse_neon_type (struct neon_type
*type
, char **str
)
1239 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1241 enum neon_el_type thistype
= NT_untyped
;
1242 unsigned thissize
= -1u;
1249 /* Just a size without an explicit type. */
1253 switch (TOLOWER (*ptr
))
1255 case 'i': thistype
= NT_integer
; break;
1256 case 'f': thistype
= NT_float
; break;
1257 case 'p': thistype
= NT_poly
; break;
1258 case 's': thistype
= NT_signed
; break;
1259 case 'u': thistype
= NT_unsigned
; break;
1261 thistype
= NT_float
;
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1278 thissize
= strtoul (ptr
, &ptr
, 10);
1280 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1283 as_bad (_("bad size %d in type specifier"), thissize
);
1291 type
->el
[type
->elems
].type
= thistype
;
1292 type
->el
[type
->elems
].size
= thissize
;
1297 /* Empty/missing type is not a successful parse. */
1298 if (type
->elems
== 0)
1306 /* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1312 first_error (const char *err
)
1318 /* Parse a single type, e.g. ".s32", leading period included. */
1320 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1323 struct neon_type optype
;
1327 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1329 if (optype
.elems
== 1)
1330 *vectype
= optype
.el
[0];
1333 first_error (_("only one type should be specified for operand"));
1339 first_error (_("vector type expected"));
1351 /* Special meanings for indices (which have a range of 0-7), which will fit into
1354 #define NEON_ALL_LANES 15
1355 #define NEON_INTERLEAVE_LANES 14
1357 /* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1363 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1364 enum arm_reg_type
*rtype
,
1365 struct neon_typed_alias
*typeinfo
)
1368 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1369 struct neon_typed_alias atype
;
1370 struct neon_type_el parsetype
;
1374 atype
.eltype
.type
= NT_invtype
;
1375 atype
.eltype
.size
= -1;
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1381 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type
== REG_TYPE_NDQ
1391 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1392 || (type
== REG_TYPE_VFSD
1393 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1394 || (type
== REG_TYPE_NSDQ
1395 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1396 || reg
->type
== REG_TYPE_NQ
))
1397 || (type
== REG_TYPE_MMXWC
1398 && (reg
->type
== REG_TYPE_MMXWCG
)))
1399 type
= (enum arm_reg_type
) reg
->type
;
1401 if (type
!= reg
->type
)
1407 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1409 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1411 first_error (_("can't redefine type for operand"));
1414 atype
.defined
|= NTA_HASTYPE
;
1415 atype
.eltype
= parsetype
;
1418 if (skip_past_char (&str
, '[') == SUCCESS
)
1420 if (type
!= REG_TYPE_VFD
)
1422 first_error (_("only D registers may be indexed"));
1426 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1428 first_error (_("can't change index for operand"));
1432 atype
.defined
|= NTA_HASINDEX
;
1434 if (skip_past_char (&str
, ']') == SUCCESS
)
1435 atype
.index
= NEON_ALL_LANES
;
1440 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1442 if (exp
.X_op
!= O_constant
)
1444 first_error (_("constant expression required"));
1448 if (skip_past_char (&str
, ']') == FAIL
)
1451 atype
.index
= exp
.X_add_number
;
1466 /* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
1471 This function will fault on encountering a scalar. */
1474 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1475 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1477 struct neon_typed_alias atype
;
1479 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1484 /* Do not allow regname(... to parse as a register. */
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1491 first_error (_("register operand expected, but got scalar"));
1496 *vectype
= atype
.eltype
;
1503 #define NEON_SCALAR_REG(X) ((X) >> 4)
1504 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1506 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1511 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
)
1515 struct neon_typed_alias atype
;
1517 reg
= parse_typed_reg_or_scalar (&str
, REG_TYPE_VFD
, NULL
, &atype
);
1519 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1522 if (atype
.index
== NEON_ALL_LANES
)
1524 first_error (_("scalar must have an index"));
1527 else if (atype
.index
>= 64 / elsize
)
1529 first_error (_("scalar index out of range"));
1534 *type
= atype
.eltype
;
1538 return reg
* 16 + atype
.index
;
1541 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1544 parse_reg_list (char ** strp
)
1546 char * str
= * strp
;
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1565 if ((reg
= arm_reg_parse (&str
, REG_TYPE_RN
)) == FAIL
)
1567 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
1577 first_error (_("bad range in register list"));
1581 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1583 if (range
& (1 << i
))
1585 (_("Warning: duplicated register (r%d) in register list"),
1593 if (range
& (1 << reg
))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1596 else if (reg
<= cur_reg
)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
1602 while (skip_past_comma (&str
) != FAIL
1603 || (in_range
= 1, *str
++ == '-'));
1608 first_error (_("missing `}'"));
1616 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1619 if (exp
.X_op
== O_constant
)
1621 if (exp
.X_add_number
1622 != (exp
.X_add_number
& 0x0000ffff))
1624 inst
.error
= _("invalid register mask");
1628 if ((range
& exp
.X_add_number
) != 0)
1630 int regno
= range
& exp
.X_add_number
;
1633 regno
= (1 << regno
) - 1;
1635 (_("Warning: duplicated register (r%d) in register list"),
1639 range
|= exp
.X_add_number
;
1643 if (inst
.reloc
.type
!= 0)
1645 inst
.error
= _("expression too complex");
1649 memcpy (&inst
.reloc
.exp
, &exp
, sizeof (expressionS
));
1650 inst
.reloc
.type
= BFD_RELOC_ARM_MULTI
;
1651 inst
.reloc
.pc_rel
= 0;
1655 if (*str
== '|' || *str
== '+')
1661 while (another_range
);
1667 /* Types of registers in a list. */
1676 /* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1692 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
)
1697 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1701 unsigned long mask
= 0;
1706 inst
.error
= _("expecting {");
1715 regtype
= REG_TYPE_VFS
;
1720 regtype
= REG_TYPE_VFD
;
1723 case REGLIST_NEON_D
:
1724 regtype
= REG_TYPE_NDQ
;
1728 if (etype
!= REGLIST_VFP_S
)
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
1745 base_reg
= max_regs
;
1749 int setmask
= 1, addregs
= 1;
1751 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
1753 if (new_base
== FAIL
)
1755 first_error (_(reg_expected_msgs
[regtype
]));
1759 if (new_base
>= max_regs
)
1761 first_error (_("register out of range in list"));
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype
== REG_TYPE_NQ
)
1772 if (new_base
< base_reg
)
1773 base_reg
= new_base
;
1775 if (mask
& (setmask
<< new_base
))
1777 first_error (_("invalid register list"));
1781 if ((mask
>> new_base
) != 0 && ! warned
)
1783 as_tsktsk (_("register list not in ascending order"));
1787 mask
|= setmask
<< new_base
;
1790 if (*str
== '-') /* We have the start of a range expression */
1796 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
1799 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
1803 if (high_range
>= max_regs
)
1805 first_error (_("register out of range in list"));
1809 if (regtype
== REG_TYPE_NQ
)
1810 high_range
= high_range
+ 1;
1812 if (high_range
<= new_base
)
1814 inst
.error
= _("register range not in ascending order");
1818 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
1820 if (mask
& (setmask
<< new_base
))
1822 inst
.error
= _("invalid register list");
1826 mask
|= setmask
<< new_base
;
1831 while (skip_past_comma (&str
) != FAIL
);
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count
== 0 || count
> max_regs
)
1841 /* Final test -- the registers must be consecutive. */
1843 for (i
= 0; i
< count
; i
++)
1845 if ((mask
& (1u << i
)) == 0)
1847 inst
.error
= _("non-contiguous register range");
1857 /* True if two alias types are the same. */
1860 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
1868 if (a
->defined
!= b
->defined
)
1871 if ((a
->defined
& NTA_HASTYPE
) != 0
1872 && (a
->eltype
.type
!= b
->eltype
.type
1873 || a
->eltype
.size
!= b
->eltype
.size
))
1876 if ((a
->defined
& NTA_HASINDEX
) != 0
1877 && (a
->index
!= b
->index
))
1883 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1887 The register stride (minus one) is put in bit 4 of the return value.
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
1891 #define NEON_LANE(X) ((X) & 0xf)
1892 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1893 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1896 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
1897 struct neon_type_el
*eltype
)
1904 int leading_brace
= 0;
1905 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
1906 const char *const incr_error
= _("register stride must be 1 or 2");
1907 const char *const type_error
= _("mismatched element/structure types in list");
1908 struct neon_typed_alias firsttype
;
1910 if (skip_past_char (&ptr
, '{') == SUCCESS
)
1915 struct neon_typed_alias atype
;
1916 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
1920 first_error (_(reg_expected_msgs
[rtype
]));
1927 if (rtype
== REG_TYPE_NQ
)
1933 else if (reg_incr
== -1)
1935 reg_incr
= getreg
- base_reg
;
1936 if (reg_incr
< 1 || reg_incr
> 2)
1938 first_error (_(incr_error
));
1942 else if (getreg
!= base_reg
+ reg_incr
* count
)
1944 first_error (_(incr_error
));
1948 if (! neon_alias_types_same (&atype
, &firsttype
))
1950 first_error (_(type_error
));
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1958 struct neon_typed_alias htype
;
1959 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
1961 lane
= NEON_INTERLEAVE_LANES
;
1962 else if (lane
!= NEON_INTERLEAVE_LANES
)
1964 first_error (_(type_error
));
1969 else if (reg_incr
!= 1)
1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1975 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
1978 first_error (_(reg_expected_msgs
[rtype
]));
1981 if (! neon_alias_types_same (&htype
, &firsttype
))
1983 first_error (_(type_error
));
1986 count
+= hireg
+ dregs
- getreg
;
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype
== REG_TYPE_NQ
)
1997 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2001 else if (lane
!= atype
.index
)
2003 first_error (_(type_error
));
2007 else if (lane
== -1)
2008 lane
= NEON_INTERLEAVE_LANES
;
2009 else if (lane
!= NEON_INTERLEAVE_LANES
)
2011 first_error (_(type_error
));
2016 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2018 /* No lane set by [x]. We must be interleaving structures. */
2020 lane
= NEON_INTERLEAVE_LANES
;
2023 if (lane
== -1 || base_reg
== -1 || count
< 1 || count
> 4
2024 || (count
> 1 && reg_incr
== -1))
2026 first_error (_("error parsing element/structure list"));
2030 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2032 first_error (_("expected }"));
2040 *eltype
= firsttype
.eltype
;
2045 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2048 /* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2054 parse_reloc (char **str
)
2056 struct reloc_entry
*r
;
2060 return BFD_RELOC_UNUSED
;
2065 while (*q
&& *q
!= ')' && *q
!= ',')
2070 if ((r
= (struct reloc_entry
*)
2071 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2078 /* Directives: register aliases. */
2080 static struct reg_entry
*
2081 insert_reg_alias (char *str
, unsigned number
, int type
)
2083 struct reg_entry
*new_reg
;
2086 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2088 if (new_reg
->builtin
)
2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2091 /* Only warn about a redefinition if it's not defined as the
2093 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2094 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2099 name
= xstrdup (str
);
2100 new_reg
= (struct reg_entry
*) xmalloc (sizeof (struct reg_entry
));
2102 new_reg
->name
= name
;
2103 new_reg
->number
= number
;
2104 new_reg
->type
= type
;
2105 new_reg
->builtin
= FALSE
;
2106 new_reg
->neon
= NULL
;
2108 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2115 insert_neon_reg_alias (char *str
, int number
, int type
,
2116 struct neon_typed_alias
*atype
)
2118 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2122 first_error (_("attempt to redefine typed alias"));
2128 reg
->neon
= (struct neon_typed_alias
*)
2129 xmalloc (sizeof (struct neon_typed_alias
));
2130 *reg
->neon
= *atype
;
2134 /* Look for the .req directive. This is of the form:
2136 new_register_name .req existing_register_name
2138 If we find one, or if it looks sufficiently like one that we want to
2139 handle any error here, return TRUE. Otherwise return FALSE. */
2142 create_register_alias (char * newname
, char *p
)
2144 struct reg_entry
*old
;
2145 char *oldname
, *nbuf
;
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2151 if (strncmp (oldname
, " .req ", 6) != 0)
2155 if (*oldname
== '\0')
2158 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168 #ifdef TC_CASE_SENSITIVE
2171 newname
= original_case_string
;
2172 nlen
= strlen (newname
);
2175 nbuf
= (char *) alloca (nlen
+ 1);
2176 memcpy (nbuf
, newname
, nlen
);
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2182 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2184 for (p
= nbuf
; *p
; p
++)
2187 if (strncmp (nbuf
, newname
, nlen
))
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2195 The second .req creates the "Foo" alias but then fails to create
2196 the artificial FOO alias because it has already been created by the
2198 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2202 for (p
= nbuf
; *p
; p
++)
2205 if (strncmp (nbuf
, newname
, nlen
))
2206 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2212 /* Create a Neon typed/indexed register alias using directives, e.g.:
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
2220 vadd d0.s32, d1.s32, d2.s32 */
2223 create_neon_reg_alias (char *newname
, char *p
)
2225 enum arm_reg_type basetype
;
2226 struct reg_entry
*basereg
;
2227 struct reg_entry mybasereg
;
2228 struct neon_type ntype
;
2229 struct neon_typed_alias typeinfo
;
2230 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2233 typeinfo
.defined
= 0;
2234 typeinfo
.eltype
.type
= NT_invtype
;
2235 typeinfo
.eltype
.size
= -1;
2236 typeinfo
.index
= -1;
2240 if (strncmp (p
, " .dn ", 5) == 0)
2241 basetype
= REG_TYPE_VFD
;
2242 else if (strncmp (p
, " .qn ", 5) == 0)
2243 basetype
= REG_TYPE_NQ
;
2252 basereg
= arm_reg_parse_multi (&p
);
2254 if (basereg
&& basereg
->type
!= basetype
)
2256 as_bad (_("bad type for register"));
2260 if (basereg
== NULL
)
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2265 if (exp
.X_op
!= O_constant
)
2267 as_bad (_("expression must be constant"));
2270 basereg
= &mybasereg
;
2271 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2277 typeinfo
= *basereg
->neon
;
2279 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2281 /* We got a type. */
2282 if (typeinfo
.defined
& NTA_HASTYPE
)
2284 as_bad (_("can't redefine the type of a register alias"));
2288 typeinfo
.defined
|= NTA_HASTYPE
;
2289 if (ntype
.elems
!= 1)
2291 as_bad (_("you must specify a single type only"));
2294 typeinfo
.eltype
= ntype
.el
[0];
2297 if (skip_past_char (&p
, '[') == SUCCESS
)
2300 /* We got a scalar index. */
2302 if (typeinfo
.defined
& NTA_HASINDEX
)
2304 as_bad (_("can't redefine the index of a scalar alias"));
2308 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2310 if (exp
.X_op
!= O_constant
)
2312 as_bad (_("scalar index must be constant"));
2316 typeinfo
.defined
|= NTA_HASINDEX
;
2317 typeinfo
.index
= exp
.X_add_number
;
2319 if (skip_past_char (&p
, ']') == FAIL
)
2321 as_bad (_("expecting ]"));
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329 #ifdef TC_CASE_SENSITIVE
2330 namelen
= nameend
- newname
;
2332 newname
= original_case_string
;
2333 namelen
= strlen (newname
);
2336 namebuf
= (char *) alloca (namelen
+ 1);
2337 strncpy (namebuf
, newname
, namelen
);
2338 namebuf
[namelen
] = '\0';
2340 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2341 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2343 /* Insert name in all uppercase. */
2344 for (p
= namebuf
; *p
; p
++)
2347 if (strncmp (namebuf
, newname
, namelen
))
2348 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2349 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2351 /* Insert name in all lowercase. */
2352 for (p
= namebuf
; *p
; p
++)
2355 if (strncmp (namebuf
, newname
, namelen
))
2356 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2357 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2362 /* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
2366 s_req (int a ATTRIBUTE_UNUSED
)
2368 as_bad (_("invalid syntax for .req directive"));
2372 s_dn (int a ATTRIBUTE_UNUSED
)
2374 as_bad (_("invalid syntax for .dn directive"));
2378 s_qn (int a ATTRIBUTE_UNUSED
)
2380 as_bad (_("invalid syntax for .qn directive"));
2383 /* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
2390 s_unreq (int a ATTRIBUTE_UNUSED
)
2395 name
= input_line_pointer
;
2397 while (*input_line_pointer
!= 0
2398 && *input_line_pointer
!= ' '
2399 && *input_line_pointer
!= '\n')
2400 ++input_line_pointer
;
2402 saved_char
= *input_line_pointer
;
2403 *input_line_pointer
= 0;
2406 as_bad (_("invalid syntax for .unreq directive"));
2409 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2413 as_bad (_("unknown register alias '%s'"), name
);
2414 else if (reg
->builtin
)
2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2422 hash_delete (arm_reg_hsh
, name
, FALSE
);
2423 free ((char *) reg
->name
);
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
2432 nbuf
= strdup (name
);
2433 for (p
= nbuf
; *p
; p
++)
2435 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2438 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2439 free ((char *) reg
->name
);
2445 for (p
= nbuf
; *p
; p
++)
2447 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2450 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2451 free ((char *) reg
->name
);
2461 *input_line_pointer
= saved_char
;
2462 demand_empty_rest_of_line ();
2465 /* Directives: Instruction set selection. */
2468 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2473 /* Create a new mapping symbol for the transition to STATE. */
2476 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2479 const char * symname
;
2486 type
= BSF_NO_FLAGS
;
2490 type
= BSF_NO_FLAGS
;
2494 type
= BSF_NO_FLAGS
;
2500 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2501 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2506 THUMB_SET_FUNC (symbolP
, 0);
2507 ARM_SET_THUMB (symbolP
, 0);
2508 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2512 THUMB_SET_FUNC (symbolP
, 1);
2513 ARM_SET_THUMB (symbolP
, 1);
2514 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2525 check_mapping_symbols.
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
2533 if (frag
->tc_frag_data
.first_map
!= NULL
)
2535 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
2536 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
2538 frag
->tc_frag_data
.first_map
= symbolP
;
2540 if (frag
->tc_frag_data
.last_map
!= NULL
)
2542 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
2543 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
2544 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
2546 frag
->tc_frag_data
.last_map
= symbolP
;
2549 /* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2554 insert_data_mapping_symbol (enum mstate state
,
2555 valueT value
, fragS
*frag
, offsetT bytes
)
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag
->tc_frag_data
.last_map
!= NULL
2559 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2561 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2565 know (frag
->tc_frag_data
.first_map
== symp
);
2566 frag
->tc_frag_data
.first_map
= NULL
;
2568 frag
->tc_frag_data
.last_map
= NULL
;
2569 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2572 make_mapping_symbol (MAP_DATA
, value
, frag
);
2573 make_mapping_symbol (state
, value
+ bytes
, frag
);
2576 static void mapping_state_2 (enum mstate state
, int max_chars
);
2578 /* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2582 mapping_state (enum mstate state
)
2584 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2586 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2588 if (mapstate
== state
)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2592 else if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2593 /* This case will be evaluated later in the next else. */
2595 else if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2596 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2603 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2606 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2609 mapping_state_2 (state
, 0);
2613 /* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2617 mapping_state_2 (enum mstate state
, int max_chars
)
2619 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2621 if (!SEG_NORMAL (now_seg
))
2624 if (mapstate
== state
)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2629 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2630 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
2633 #define mapping_state(x) ((void)0)
2634 #define mapping_state_2(x, y) ((void)0)
2637 /* Find the real, Thumb encoded start of a Thumb function. */
2641 find_real_start (symbolS
* symbolP
)
2644 const char * name
= S_GET_NAME (symbolP
);
2645 symbolS
* new_target
;
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648 #define STUB_NAME ".real_start_of"
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
2661 real_start
= ACONCAT ((STUB_NAME
, name
, NULL
));
2662 new_target
= symbol_find (real_start
);
2664 if (new_target
== NULL
)
2666 as_warn (_("Failed to find real start of function: %s\n"), name
);
2667 new_target
= symbolP
;
2675 opcode_select (int width
)
2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg
, 1);
2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
2696 as_bad (_("selected processor does not support ARM opcodes"));
2701 frag_align (2, 0, 0);
2703 record_alignment (now_seg
, 1);
2708 as_bad (_("invalid instruction size selected (%d)"), width
);
2713 s_arm (int ignore ATTRIBUTE_UNUSED
)
2716 demand_empty_rest_of_line ();
2720 s_thumb (int ignore ATTRIBUTE_UNUSED
)
2723 demand_empty_rest_of_line ();
2727 s_code (int unused ATTRIBUTE_UNUSED
)
2731 temp
= get_absolute_expression ();
2736 opcode_select (temp
);
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
2745 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2755 record_alignment (now_seg
, 1);
2758 demand_empty_rest_of_line ();
2762 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name
= TRUE
;
2771 /* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2775 s_thumb_set (int equiv
)
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2788 name
= input_line_pointer
;
2789 delim
= get_symbol_end ();
2790 end_name
= input_line_pointer
;
2793 if (*input_line_pointer
!= ',')
2796 as_bad (_("expected comma after name \"%s\""), name
);
2798 ignore_rest_of_line ();
2802 input_line_pointer
++;
2805 if (name
[0] == '.' && name
[1] == '\0')
2807 /* XXX - this should not happen to .thumb_set. */
2811 if ((symbolP
= symbol_find (name
)) == NULL
2812 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
2818 if (listing
& LISTING_SYMBOLS
)
2820 extern struct list_info_struct
* listing_tail
;
2821 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
2823 memset (dummy_frag
, 0, sizeof (fragS
));
2824 dummy_frag
->fr_type
= rs_fill
;
2825 dummy_frag
->line
= listing_tail
;
2826 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
2827 dummy_frag
->fr_symbol
= symbolP
;
2831 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP
);
2836 #endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2839 symbol_table_insert (symbolP
);
2844 && S_IS_DEFINED (symbolP
)
2845 && S_GET_SEGMENT (symbolP
) != reg_section
)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
2848 pseudo_set (symbolP
);
2850 demand_empty_rest_of_line ();
2852 /* XXX Now we come to the Thumb specific bit of code. */
2854 THUMB_SET_FUNC (symbolP
, 1);
2855 ARM_SET_THUMB (symbolP
, 1);
2856 #if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2861 /* Directives: Mode selection. */
2863 /* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
2867 s_syntax (int unused ATTRIBUTE_UNUSED
)
2871 name
= input_line_pointer
;
2872 delim
= get_symbol_end ();
2874 if (!strcasecmp (name
, "unified"))
2875 unified_syntax
= TRUE
;
2876 else if (!strcasecmp (name
, "divided"))
2877 unified_syntax
= FALSE
;
2880 as_bad (_("unrecognized syntax mode \"%s\""), name
);
2883 *input_line_pointer
= delim
;
2884 demand_empty_rest_of_line ();
2887 /* Directives: sectioning and alignment. */
2889 /* Same as s_align_ptwo but align 0 => align 2. */
2892 s_align (int unused ATTRIBUTE_UNUSED
)
2897 long max_alignment
= 15;
2899 temp
= get_absolute_expression ();
2900 if (temp
> max_alignment
)
2901 as_bad (_("alignment too large: %d assumed"), temp
= max_alignment
);
2904 as_bad (_("alignment negative. 0 assumed."));
2908 if (*input_line_pointer
== ',')
2910 input_line_pointer
++;
2911 temp_fill
= get_absolute_expression ();
2923 /* Only make a frag if we HAVE to. */
2924 if (temp
&& !need_pass_2
)
2926 if (!fill_p
&& subseg_text_p (now_seg
))
2927 frag_align_code (temp
, 0);
2929 frag_align (temp
, (int) temp_fill
, 0);
2931 demand_empty_rest_of_line ();
2933 record_alignment (now_seg
, temp
);
2937 s_bss (int ignore ATTRIBUTE_UNUSED
)
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section
, 0);
2942 demand_empty_rest_of_line ();
2944 #ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2950 s_even (int ignore ATTRIBUTE_UNUSED
)
2952 /* Never make frag if expect extra pass. */
2954 frag_align (1, 0, 0);
2956 record_alignment (now_seg
, 1);
2958 demand_empty_rest_of_line ();
2961 /* Directives: Literal pools. */
2963 static literal_pool
*
2964 find_literal_pool (void)
2966 literal_pool
* pool
;
2968 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
2970 if (pool
->section
== now_seg
2971 && pool
->sub_section
== now_subseg
)
2978 static literal_pool
*
2979 find_or_make_literal_pool (void)
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num
= 1;
2983 literal_pool
* pool
;
2985 pool
= find_literal_pool ();
2989 /* Create a new pool. */
2990 pool
= (literal_pool
*) xmalloc (sizeof (* pool
));
2994 pool
->next_free_entry
= 0;
2995 pool
->section
= now_seg
;
2996 pool
->sub_section
= now_subseg
;
2997 pool
->next
= list_of_pools
;
2998 pool
->symbol
= NULL
;
3000 /* Add it to the list. */
3001 list_of_pools
= pool
;
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool
->symbol
== NULL
)
3007 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3008 (valueT
) 0, &zero_address_frag
);
3009 pool
->id
= latest_pool_num
++;
3016 /* Add the literal in the global 'inst'
3017 structure to the relevant literal pool. */
3020 add_to_lit_pool (void)
3022 literal_pool
* pool
;
3025 pool
= find_or_make_literal_pool ();
3027 /* Check if this literal value is already in the pool. */
3028 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3030 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
3031 && (inst
.reloc
.exp
.X_op
== O_constant
)
3032 && (pool
->literals
[entry
].X_add_number
3033 == inst
.reloc
.exp
.X_add_number
)
3034 && (pool
->literals
[entry
].X_unsigned
3035 == inst
.reloc
.exp
.X_unsigned
))
3038 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
3039 && (inst
.reloc
.exp
.X_op
== O_symbol
)
3040 && (pool
->literals
[entry
].X_add_number
3041 == inst
.reloc
.exp
.X_add_number
)
3042 && (pool
->literals
[entry
].X_add_symbol
3043 == inst
.reloc
.exp
.X_add_symbol
)
3044 && (pool
->literals
[entry
].X_op_symbol
3045 == inst
.reloc
.exp
.X_op_symbol
))
3049 /* Do we need to create a new entry? */
3050 if (entry
== pool
->next_free_entry
)
3052 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3054 inst
.error
= _("literal pool overflow");
3058 pool
->literals
[entry
] = inst
.reloc
.exp
;
3059 pool
->next_free_entry
+= 1;
3062 inst
.reloc
.exp
.X_op
= O_symbol
;
3063 inst
.reloc
.exp
.X_add_number
= ((int) entry
) * 4;
3064 inst
.reloc
.exp
.X_add_symbol
= pool
->symbol
;
3069 /* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
3073 symbol_locate (symbolS
* symbolP
,
3074 const char * name
, /* It is copied, the caller can modify. */
3075 segT segment
, /* Segment identifier (SEG_<something>). */
3076 valueT valu
, /* Symbol value. */
3077 fragS
* frag
) /* Associated fragment. */
3079 unsigned int name_length
;
3080 char * preserved_copy_of_name
;
3082 name_length
= strlen (name
) + 1; /* +1 for \0. */
3083 obstack_grow (¬es
, name
, name_length
);
3084 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3086 #ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name
=
3088 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3091 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3093 S_SET_SEGMENT (symbolP
, segment
);
3094 S_SET_VALUE (symbolP
, valu
);
3095 symbol_clear_list_pointers (symbolP
);
3097 symbol_set_frag (symbolP
, frag
);
3099 /* Link to end of symbol chain. */
3101 extern int symbol_table_frozen
;
3103 if (symbol_table_frozen
)
3107 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3109 obj_symbol_new_hook (symbolP
);
3111 #ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP
);
3116 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3117 #endif /* DEBUG_SYMS */
3122 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3125 literal_pool
* pool
;
3128 pool
= find_literal_pool ();
3130 || pool
->symbol
== NULL
3131 || pool
->next_free_entry
== 0)
3134 mapping_state (MAP_DATA
);
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3139 frag_align (2, 0, 0);
3141 record_alignment (now_seg
, 2);
3143 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3145 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3146 (valueT
) frag_now_fix (), frag_now
);
3147 symbol_table_insert (pool
->symbol
);
3149 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3151 #if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3155 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool
->literals
[entry
]), 4); /* .word */
3159 /* Mark the pool as empty. */
3160 pool
->next_free_entry
= 0;
3161 pool
->symbol
= NULL
;
3165 /* Forward declarations for functions below, in the MD interface
3167 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3168 static valueT
create_unwind_entry (int);
3169 static void start_unwind_section (const segT
, int);
3170 static void add_unwind_opcode (valueT
, int);
3171 static void flush_pending_unwind (void);
3173 /* Directives: Data. */
3176 s_arm_elf_cons (int nbytes
)
3180 #ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3184 if (is_it_end_of_statement ())
3186 demand_empty_rest_of_line ();
3190 #ifdef md_cons_align
3191 md_cons_align (nbytes
);
3194 mapping_state (MAP_DATA
);
3198 char *base
= input_line_pointer
;
3202 if (exp
.X_op
!= O_symbol
)
3203 emit_expr (&exp
, (unsigned int) nbytes
);
3206 char *before_reloc
= input_line_pointer
;
3207 reloc
= parse_reloc (&input_line_pointer
);
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3214 else if (reloc
== BFD_RELOC_UNUSED
)
3215 emit_expr (&exp
, (unsigned int) nbytes
);
3218 reloc_howto_type
*howto
= (reloc_howto_type
*)
3219 bfd_reloc_type_lookup (stdoutput
,
3220 (bfd_reloc_code_real_type
) reloc
);
3221 int size
= bfd_get_reloc_size (howto
);
3223 if (reloc
== BFD_RELOC_ARM_PLT32
)
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc
= BFD_RELOC_UNUSED
;
3231 as_bad (_("%s relocations do not fit in %d bytes"),
3232 howto
->name
, nbytes
);
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p
= input_line_pointer
;
3241 char *save_buf
= (char *) alloca (input_line_pointer
- base
);
3242 memcpy (save_buf
, base
, input_line_pointer
- base
);
3243 memmove (base
+ (input_line_pointer
- before_reloc
),
3244 base
, before_reloc
- base
);
3246 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3248 memcpy (base
, save_buf
, p
- base
);
3250 offset
= nbytes
- size
;
3251 p
= frag_more ((int) nbytes
);
3252 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3253 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3258 while (*input_line_pointer
++ == ',');
3260 /* Put terminator back into stream. */
3261 input_line_pointer
--;
3262 demand_empty_rest_of_line ();
3265 /* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3269 emit_thumb32_expr (expressionS
* exp
)
3271 expressionS exp_high
= *exp
;
3273 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3274 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3275 exp
->X_add_number
&= 0xffff;
3276 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3279 /* Guess the instruction size based on the opcode. */
3282 thumb_insn_size (int opcode
)
3284 if ((unsigned int) opcode
< 0xe800u
)
3286 else if ((unsigned int) opcode
>= 0xe8000000u
)
3293 emit_insn (expressionS
*exp
, int nbytes
)
3297 if (exp
->X_op
== O_constant
)
3302 size
= thumb_insn_size (exp
->X_add_number
);
3306 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3314 if (now_it
.state
== AUTOMATIC_IT_BLOCK
)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN
, 0);
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3319 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3320 emit_thumb32_expr (exp
);
3322 emit_expr (exp
, (unsigned int) size
);
3324 it_fsm_post_encode ();
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3332 as_bad (_("constant expression required"));
3337 /* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3341 s_arm_elf_inst (int nbytes
)
3343 if (is_it_end_of_statement ())
3345 demand_empty_rest_of_line ();
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3353 mapping_state (MAP_THUMB
);
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3365 mapping_state (MAP_ARM
);
3374 if (! emit_insn (& exp
, nbytes
))
3376 ignore_rest_of_line ();
3380 while (*input_line_pointer
++ == ',');
3382 /* Put terminator back into stream. */
3383 input_line_pointer
--;
3384 demand_empty_rest_of_line ();
3387 /* Parse a .rel31 directive. */
3390 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3397 if (*input_line_pointer
== '1')
3398 highbit
= 0x80000000;
3399 else if (*input_line_pointer
!= '0')
3400 as_bad (_("expected 0 or 1"));
3402 input_line_pointer
++;
3403 if (*input_line_pointer
!= ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer
++;
3407 #ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3411 #ifdef md_cons_align
3415 mapping_state (MAP_DATA
);
3420 md_number_to_chars (p
, highbit
, 4);
3421 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3422 BFD_RELOC_ARM_PREL31
);
3424 demand_empty_rest_of_line ();
3427 /* Directives: AEABI stack-unwind tables. */
3429 /* Parse an unwind_fnstart directive. Simply records the current location. */
3432 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
3434 demand_empty_rest_of_line ();
3435 if (unwind
.proc_start
)
3437 as_bad (_("duplicate .fnstart directive"));
3441 /* Mark the start of the function. */
3442 unwind
.proc_start
= expr_build_dot ();
3444 /* Reset the rest of the unwind info. */
3445 unwind
.opcode_count
= 0;
3446 unwind
.table_entry
= NULL
;
3447 unwind
.personality_routine
= NULL
;
3448 unwind
.personality_index
= -1;
3449 unwind
.frame_size
= 0;
3450 unwind
.fp_offset
= 0;
3451 unwind
.fp_reg
= REG_SP
;
3453 unwind
.sp_restored
= 0;
3457 /* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
3461 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
3463 demand_empty_rest_of_line ();
3464 if (!unwind
.proc_start
)
3465 as_bad (MISSING_FNSTART
);
3467 if (unwind
.table_entry
)
3468 as_bad (_("duplicate .handlerdata directive"));
3470 create_unwind_entry (1);
3473 /* Parse an unwind_fnend directive. Generates the index table entry. */
3476 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
3481 unsigned int marked_pr_dependency
;
3483 demand_empty_rest_of_line ();
3485 if (!unwind
.proc_start
)
3487 as_bad (_(".fnend directive without .fnstart"));
3491 /* Add eh table entry. */
3492 if (unwind
.table_entry
== NULL
)
3493 val
= create_unwind_entry (0);
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind
.saved_seg
, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg
, 2);
3502 ptr
= frag_more (8);
3503 where
= frag_now_fix () - 8;
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
3507 BFD_RELOC_ARM_PREL31
);
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
3511 marked_pr_dependency
3512 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
3513 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
3514 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
3516 static const char *const name
[] =
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3522 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
3523 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
3524 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
3525 |= 1 << unwind
.personality_index
;
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr
+ 4, val
, 4);
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
3534 BFD_RELOC_ARM_PREL31
);
3536 /* Restore the original section. */
3537 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
3539 unwind
.proc_start
= NULL
;
3543 /* Parse an unwind_cantunwind directive. */
3546 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
3548 demand_empty_rest_of_line ();
3549 if (!unwind
.proc_start
)
3550 as_bad (MISSING_FNSTART
);
3552 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
3555 unwind
.personality_index
= -2;
3559 /* Parse a personalityindex directive. */
3562 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
3566 if (!unwind
.proc_start
)
3567 as_bad (MISSING_FNSTART
);
3569 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3570 as_bad (_("duplicate .personalityindex directive"));
3574 if (exp
.X_op
!= O_constant
3575 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3582 unwind
.personality_index
= exp
.X_add_number
;
3584 demand_empty_rest_of_line ();
3588 /* Parse a personality directive. */
3591 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
3595 if (!unwind
.proc_start
)
3596 as_bad (MISSING_FNSTART
);
3598 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3599 as_bad (_("duplicate .personality directive"));
3601 name
= input_line_pointer
;
3602 c
= get_symbol_end ();
3603 p
= input_line_pointer
;
3604 unwind
.personality_routine
= symbol_find_or_make (name
);
3606 demand_empty_rest_of_line ();
3610 /* Parse a directive saving core registers. */
3613 s_arm_unwind_save_core (void)
3619 range
= parse_reg_list (&input_line_pointer
);
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3627 demand_empty_rest_of_line ();
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
3633 && (range
& 0x3000) == 0x1000)
3635 unwind
.opcode_count
--;
3636 unwind
.sp_restored
= 0;
3637 range
= (range
| 0x2000) & ~0x1000;
3638 unwind
.pending_offset
= 0;
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n
= 0; n
< 8; n
++)
3648 /* Break at the first non-saved register. */
3649 if ((range
& (1 << (n
+ 4))) == 0)
3652 /* See if there are any other bits set. */
3653 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
3655 /* Use the long form. */
3656 op
= 0x8000 | ((range
>> 4) & 0xfff);
3657 add_unwind_opcode (op
, 2);
3661 /* Use the short form. */
3663 op
= 0xa8; /* Pop r14. */
3665 op
= 0xa0; /* Do not pop r14. */
3667 add_unwind_opcode (op
, 1);
3674 op
= 0xb100 | (range
& 0xf);
3675 add_unwind_opcode (op
, 2);
3678 /* Record the number of bytes pushed. */
3679 for (n
= 0; n
< 16; n
++)
3681 if (range
& (1 << n
))
3682 unwind
.frame_size
+= 4;
3687 /* Parse a directive saving FPA registers. */
3690 s_arm_unwind_save_fpa (int reg
)
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3700 exp
.X_op
= O_illegal
;
3702 if (exp
.X_op
!= O_constant
)
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
3709 num_regs
= exp
.X_add_number
;
3711 if (num_regs
< 1 || num_regs
> 4)
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
3718 demand_empty_rest_of_line ();
3723 op
= 0xb4 | (num_regs
- 1);
3724 add_unwind_opcode (op
, 1);
3729 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
3730 add_unwind_opcode (op
, 2);
3732 unwind
.frame_size
+= num_regs
* 12;
3736 /* Parse a directive saving VFP registers for ARMv6 and above. */
3739 s_arm_unwind_save_vfp_armv6 (void)
3744 int num_vfpv3_regs
= 0;
3745 int num_regs_below_16
;
3747 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
);
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3755 demand_empty_rest_of_line ();
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3762 num_vfpv3_regs
= count
;
3763 else if (start
+ count
> 16)
3764 num_vfpv3_regs
= start
+ count
- 16;
3766 if (num_vfpv3_regs
> 0)
3768 int start_offset
= start
> 16 ? start
- 16 : 0;
3769 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
3770 add_unwind_opcode (op
, 2);
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
3775 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
3776 if (num_regs_below_16
> 0)
3778 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
3779 add_unwind_opcode (op
, 2);
3782 unwind
.frame_size
+= count
* 8;
3786 /* Parse a directive saving VFP registers for pre-ARMv6. */
3789 s_arm_unwind_save_vfp (void)
3795 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
);
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
3803 demand_empty_rest_of_line ();
3808 op
= 0xb8 | (count
- 1);
3809 add_unwind_opcode (op
, 1);
3814 op
= 0xb300 | (reg
<< 4) | (count
- 1);
3815 add_unwind_opcode (op
, 2);
3817 unwind
.frame_size
+= count
* 8 + 4;
3821 /* Parse a directive saving iWMMXt data registers. */
3824 s_arm_unwind_save_mmxwr (void)
3832 if (*input_line_pointer
== '{')
3833 input_line_pointer
++;
3837 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3841 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3846 as_tsktsk (_("register list not in ascending order"));
3849 if (*input_line_pointer
== '-')
3851 input_line_pointer
++;
3852 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3855 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3858 else if (reg
>= hi_reg
)
3860 as_bad (_("bad register range"));
3863 for (; reg
< hi_reg
; reg
++)
3867 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3869 if (*input_line_pointer
== '}')
3870 input_line_pointer
++;
3872 demand_empty_rest_of_line ();
3874 /* Generate any deferred opcodes because we're going to be looking at
3876 flush_pending_unwind ();
3878 for (i
= 0; i
< 16; i
++)
3880 if (mask
& (1 << i
))
3881 unwind
.frame_size
+= 8;
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3887 if (unwind
.opcode_count
> 0)
3889 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
3890 if ((i
& 0xf8) == 0xc0)
3893 /* Only merge if the blocks are contiguous. */
3896 if ((mask
& 0xfe00) == (1 << 9))
3898 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
3899 unwind
.opcode_count
--;
3902 else if (i
== 6 && unwind
.opcode_count
>= 2)
3904 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
3908 op
= 0xffff << (reg
- 1);
3910 && ((mask
& op
) == (1u << (reg
- 1))))
3912 op
= (1 << (reg
+ i
+ 1)) - 1;
3913 op
&= ~((1 << reg
) - 1);
3915 unwind
.opcode_count
-= 2;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg
= 15; reg
>= -1; reg
--)
3926 /* Save registers in blocks. */
3928 || !(mask
& (1 << reg
)))
3930 /* We found an unsaved reg. Generate opcodes to save the
3937 op
= 0xc0 | (hi_reg
- 10);
3938 add_unwind_opcode (op
, 1);
3943 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
3944 add_unwind_opcode (op
, 2);
3953 ignore_rest_of_line ();
3957 s_arm_unwind_save_mmxwcg (void)
3964 if (*input_line_pointer
== '{')
3965 input_line_pointer
++;
3969 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3973 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3979 as_tsktsk (_("register list not in ascending order"));
3982 if (*input_line_pointer
== '-')
3984 input_line_pointer
++;
3985 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3988 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3991 else if (reg
>= hi_reg
)
3993 as_bad (_("bad register range"));
3996 for (; reg
< hi_reg
; reg
++)
4000 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4002 if (*input_line_pointer
== '}')
4003 input_line_pointer
++;
4005 demand_empty_rest_of_line ();
4007 /* Generate any deferred opcodes because we're going to be looking at
4009 flush_pending_unwind ();
4011 for (reg
= 0; reg
< 16; reg
++)
4013 if (mask
& (1 << reg
))
4014 unwind
.frame_size
+= 4;
4017 add_unwind_opcode (op
, 2);
4020 ignore_rest_of_line ();
4024 /* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
4028 s_arm_unwind_save (int arch_v6
)
4031 struct reg_entry
*reg
;
4032 bfd_boolean had_brace
= FALSE
;
4034 if (!unwind
.proc_start
)
4035 as_bad (MISSING_FNSTART
);
4037 /* Figure out what sort of save we have. */
4038 peek
= input_line_pointer
;
4046 reg
= arm_reg_parse_multi (&peek
);
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4064 input_line_pointer
= peek
;
4065 s_arm_unwind_save_fpa (reg
->number
);
4068 case REG_TYPE_RN
: s_arm_unwind_save_core (); return;
4071 s_arm_unwind_save_vfp_armv6 ();
4073 s_arm_unwind_save_vfp ();
4075 case REG_TYPE_MMXWR
: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG
: s_arm_unwind_save_mmxwcg (); return;
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
4085 /* Parse an unwind_movsp directive. */
4088 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4094 if (!unwind
.proc_start
)
4095 as_bad (MISSING_FNSTART
);
4097 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4100 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4101 ignore_rest_of_line ();
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4108 if (immediate_for_directive (&offset
) == FAIL
)
4114 demand_empty_rest_of_line ();
4116 if (reg
== REG_SP
|| reg
== REG_PC
)
4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4122 if (unwind
.fp_reg
!= REG_SP
)
4123 as_bad (_("unexpected .unwind_movsp directive"));
4125 /* Generate opcode to restore the value. */
4127 add_unwind_opcode (op
, 1);
4129 /* Record the information for later. */
4130 unwind
.fp_reg
= reg
;
4131 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4132 unwind
.sp_restored
= 1;
4135 /* Parse an unwind_pad directive. */
4138 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4142 if (!unwind
.proc_start
)
4143 as_bad (MISSING_FNSTART
);
4145 if (immediate_for_directive (&offset
) == FAIL
)
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind
.frame_size
+= offset
;
4157 unwind
.pending_offset
+= offset
;
4159 demand_empty_rest_of_line ();
4162 /* Parse an unwind_setfp directive. */
4165 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4171 if (!unwind
.proc_start
)
4172 as_bad (MISSING_FNSTART
);
4174 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4175 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4178 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4180 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4190 if (immediate_for_directive (&offset
) == FAIL
)
4196 demand_empty_rest_of_line ();
4198 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind
.fp_reg
= fp_reg
;
4208 if (sp_reg
== REG_SP
)
4209 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4211 unwind
.fp_offset
-= offset
;
4214 /* Parse an unwind_raw directive. */
4217 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4220 /* This is an arbitrary limit. */
4221 unsigned char op
[16];
4224 if (!unwind
.proc_start
)
4225 as_bad (MISSING_FNSTART
);
4228 if (exp
.X_op
== O_constant
4229 && skip_past_comma (&input_line_pointer
) != FAIL
)
4231 unwind
.frame_size
+= exp
.X_add_number
;
4235 exp
.X_op
= O_illegal
;
4237 if (exp
.X_op
!= O_constant
)
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4246 /* Parse the opcode. */
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
4254 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4260 op
[count
++] = exp
.X_add_number
;
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4269 /* Add the opcode bytes in reverse order. */
4271 add_unwind_opcode (op
[count
], 1);
4273 demand_empty_rest_of_line ();
4277 /* Parse a .eabi_attribute directive. */
4280 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4282 int tag
= s_vendor_attribute (OBJ_ATTR_PROC
);
4284 if (tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4285 attributes_set_explicitly
[tag
] = 1;
4288 /* Emit a tls fix for the symbol. */
4291 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
4295 #ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4299 #ifdef md_cons_align
4303 /* Since we're just labelling the code, there's no need to define a
4306 p
= obstack_next_free (&frchain_now
->frch_obstack
);
4307 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
4308 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ
);
4311 #endif /* OBJ_ELF */
4313 static void s_arm_arch (int);
4314 static void s_arm_object_arch (int);
4315 static void s_arm_cpu (int);
4316 static void s_arm_fpu (int);
4317 static void s_arm_arch_extension (int);
4322 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4329 if (exp
.X_op
== O_symbol
)
4330 exp
.X_op
= O_secrel
;
4332 emit_expr (&exp
, 4);
4334 while (*input_line_pointer
++ == ',');
4336 input_line_pointer
--;
4337 demand_empty_rest_of_line ();
4341 /* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
4347 const pseudo_typeS md_pseudo_table
[] =
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req
, 0 },
4351 /* Following two are likewise never called. */
4354 { "unreq", s_unreq
, 0 },
4355 { "bss", s_bss
, 0 },
4356 { "align", s_align
, 0 },
4357 { "arm", s_arm
, 0 },
4358 { "thumb", s_thumb
, 0 },
4359 { "code", s_code
, 0 },
4360 { "force_thumb", s_force_thumb
, 0 },
4361 { "thumb_func", s_thumb_func
, 0 },
4362 { "thumb_set", s_thumb_set
, 0 },
4363 { "even", s_even
, 0 },
4364 { "ltorg", s_ltorg
, 0 },
4365 { "pool", s_ltorg
, 0 },
4366 { "syntax", s_syntax
, 0 },
4367 { "cpu", s_arm_cpu
, 0 },
4368 { "arch", s_arm_arch
, 0 },
4369 { "object_arch", s_arm_object_arch
, 0 },
4370 { "fpu", s_arm_fpu
, 0 },
4371 { "arch_extension", s_arm_arch_extension
, 0 },
4373 { "word", s_arm_elf_cons
, 4 },
4374 { "long", s_arm_elf_cons
, 4 },
4375 { "inst.n", s_arm_elf_inst
, 2 },
4376 { "inst.w", s_arm_elf_inst
, 4 },
4377 { "inst", s_arm_elf_inst
, 0 },
4378 { "rel31", s_arm_rel31
, 0 },
4379 { "fnstart", s_arm_unwind_fnstart
, 0 },
4380 { "fnend", s_arm_unwind_fnend
, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4382 { "personality", s_arm_unwind_personality
, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4385 { "save", s_arm_unwind_save
, 0 },
4386 { "vsave", s_arm_unwind_save
, 1 },
4387 { "movsp", s_arm_unwind_movsp
, 0 },
4388 { "pad", s_arm_unwind_pad
, 0 },
4389 { "setfp", s_arm_unwind_setfp
, 0 },
4390 { "unwind_raw", s_arm_unwind_raw
, 0 },
4391 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4392 { "tlsdescseq", s_arm_tls_descseq
, 0 },
4396 /* These are used for dwarf. */
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file
, 0 },
4402 { "loc", dwarf2_directive_loc
, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4405 { "extend", float_cons
, 'x' },
4406 { "ldouble", float_cons
, 'x' },
4407 { "packed", float_cons
, 'p' },
4409 {"secrel32", pe_directive_secrel
, 0},
4414 /* Parser functions used exclusively in instruction operands. */
4416 /* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4423 parse_immediate (char **str
, int *val
, int min
, int max
,
4424 bfd_boolean prefix_opt
)
4427 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
4428 if (exp
.X_op
!= O_constant
)
4430 inst
.error
= _("constant expression required");
4434 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
4436 inst
.error
= _("immediate value out of range");
4440 *val
= exp
.X_add_number
;
4444 /* Less-generic immediate-value read function with the possibility of loading a
4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4446 instructions. Puts the result directly in inst.operands[i]. */
4449 parse_big_immediate (char **str
, int i
)
4454 my_get_expression (&exp
, &ptr
, GE_OPT_PREFIX_BIG
);
4456 if (exp
.X_op
== O_constant
)
4458 inst
.operands
[i
].imm
= exp
.X_add_number
& 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
4462 if ((exp
.X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst
.operands
[i
].reg
= ((exp
.X_add_number
>> 16) >> 16) & 0xffffffff;
4466 inst
.operands
[i
].regisimm
= 1;
4469 else if (exp
.X_op
== O_big
4470 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 32)
4472 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
4477 gas_assert (parts
!= 0);
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 64)
4485 LITTLENUM_TYPE m
= -1;
4487 if (generic_bignum
[parts
* 2] != 0
4488 && generic_bignum
[parts
* 2] != m
)
4491 for (j
= parts
* 2 + 1; j
< (unsigned) exp
.X_add_number
; j
++)
4492 if (generic_bignum
[j
] != generic_bignum
[j
-1])
4496 inst
.operands
[i
].imm
= 0;
4497 for (j
= 0; j
< parts
; j
++, idx
++)
4498 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
4499 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4500 inst
.operands
[i
].reg
= 0;
4501 for (j
= 0; j
< parts
; j
++, idx
++)
4502 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
4503 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4504 inst
.operands
[i
].regisimm
= 1;
4514 /* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
4518 parse_fpa_immediate (char ** str
)
4520 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
4529 for (i
= 0; fp_const
[i
]; i
++)
4531 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
4535 *str
+= strlen (fp_const
[i
]);
4536 if (is_end_of_line
[(unsigned char) **str
])
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
4547 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
4549 /* Look for a raw floating point number. */
4550 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
4551 && is_end_of_line
[(unsigned char) *save_in
])
4553 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4555 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4557 if (words
[j
] != fp_values
[i
][j
])
4561 if (j
== MAX_LITTLENUMS
)
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in
= input_line_pointer
;
4572 input_line_pointer
= *str
;
4573 if (expression (&exp
) == absolute_section
4574 && exp
.X_op
== O_big
4575 && exp
.X_add_number
< 0)
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4579 if (gen_to_words (words
, 5, (long) 15) == 0)
4581 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4583 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4585 if (words
[j
] != fp_values
[i
][j
])
4589 if (j
== MAX_LITTLENUMS
)
4591 *str
= input_line_pointer
;
4592 input_line_pointer
= save_in
;
4599 *str
= input_line_pointer
;
4600 input_line_pointer
= save_in
;
4601 inst
.error
= _("invalid FPA immediate expression");
4605 /* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4609 is_quarter_float (unsigned imm
)
4611 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
4615 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
4622 parse_qfloat_immediate (char **ccp
, int *immed
)
4626 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4627 int found_fpchar
= 0;
4629 skip_past_char (&str
, '#');
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4637 skip_whitespace (fpnum
);
4639 if (strncmp (fpnum
, "0x", 2) == 0)
4643 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
4644 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
4654 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
4656 unsigned fpword
= 0;
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
4662 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
4666 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
4679 /* Shift operands. */
4682 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
4685 struct asm_shift_name
4688 enum shift_kind kind
;
4691 /* Third argument to parse_shift. */
4692 enum parse_shift_mode
4694 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
4701 /* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
4712 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
4714 const struct asm_shift_name
*shift_name
;
4715 enum shift_kind shift
;
4720 for (p
= *str
; ISALPHA (*p
); p
++)
4725 inst
.error
= _("shift expression expected");
4729 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
4732 if (shift_name
== NULL
)
4734 inst
.error
= _("shift expression expected");
4738 shift
= shift_name
->kind
;
4742 case NO_SHIFT_RESTRICT
:
4743 case SHIFT_IMMEDIATE
: break;
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
4746 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
4748 inst
.error
= _("'LSL' or 'ASR' required");
4753 case SHIFT_LSL_IMMEDIATE
:
4754 if (shift
!= SHIFT_LSL
)
4756 inst
.error
= _("'LSL' required");
4761 case SHIFT_ASR_IMMEDIATE
:
4762 if (shift
!= SHIFT_ASR
)
4764 inst
.error
= _("'ASR' required");
4772 if (shift
!= SHIFT_RRX
)
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p
);
4777 if (mode
== NO_SHIFT_RESTRICT
4778 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4780 inst
.operands
[i
].imm
= reg
;
4781 inst
.operands
[i
].immisreg
= 1;
4783 else if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4786 inst
.operands
[i
].shift_kind
= shift
;
4787 inst
.operands
[i
].shifted
= 1;
4792 /* Parse a <shifter_operand> for an ARM data processing instruction:
4795 #<immediate>, <rotate>
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
4801 is deferred to md_apply_fix. */
4804 parse_shifter_operand (char **str
, int i
)
4809 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
4811 inst
.operands
[i
].reg
= value
;
4812 inst
.operands
[i
].isreg
= 1;
4814 /* parse_shift will override this if appropriate */
4815 inst
.reloc
.exp
.X_op
= O_constant
;
4816 inst
.reloc
.exp
.X_add_number
= 0;
4818 if (skip_past_comma (str
) == FAIL
)
4821 /* Shift operation on register. */
4822 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
4825 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_IMM_PREFIX
))
4828 if (skip_past_comma (str
) == SUCCESS
)
4830 /* #x, y -- ie explicit rotation by Y. */
4831 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
4834 if (exp
.X_op
!= O_constant
|| inst
.reloc
.exp
.X_op
!= O_constant
)
4836 inst
.error
= _("constant expression expected");
4840 value
= exp
.X_add_number
;
4841 if (value
< 0 || value
> 30 || value
% 2 != 0)
4843 inst
.error
= _("invalid rotation");
4846 if (inst
.reloc
.exp
.X_add_number
< 0 || inst
.reloc
.exp
.X_add_number
> 255)
4848 inst
.error
= _("invalid constant");
4852 /* Convert to decoded value. md_apply_fix will put it back. */
4853 inst
.reloc
.exp
.X_add_number
4854 = (((inst
.reloc
.exp
.X_add_number
<< (32 - value
))
4855 | (inst
.reloc
.exp
.X_add_number
>> value
)) & 0xffffffff);
4858 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
4859 inst
.reloc
.pc_rel
= 0;
4863 /* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4870 struct group_reloc_table_entry
4881 /* Varieties of non-ALU group relocation. */
4888 static struct group_reloc_table_entry group_reloc_table
[] =
4889 { /* Program counter relative: */
4891 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
4896 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
4901 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
4906 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
4911 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
4915 /* Section base relative */
4917 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
4922 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
4927 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
4932 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
4937 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2
} }; /* LDC */
4942 /* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4950 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
4953 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
4955 int length
= strlen (group_reloc_table
[i
].name
);
4957 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
4958 && (*str
)[length
] == ':')
4960 *out
= &group_reloc_table
[i
];
4961 *str
+= (length
+ 1);
4969 /* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4981 Everything else is as for parse_shifter_operand. */
4983 static parse_operand_result
4984 parse_shifter_operand_group_reloc (char **str
, int i
)
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4990 if (((*str
)[0] == '#' && (*str
)[1] == ':')
4991 || (*str
)[0] == ':')
4993 struct group_reloc_table_entry
*entry
;
4995 if ((*str
)[0] == '#')
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5003 inst
.error
= _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_NO_PREFIX
))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5012 /* Record the relocation type (always the ALU variant here). */
5013 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5014 gas_assert (inst
.reloc
.type
!= 0);
5016 return PARSE_OPERAND_SUCCESS
;
5019 return parse_shifter_operand (str
, i
) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5022 /* Never reached. */
5025 /* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029 static parse_operand_result
5030 parse_neon_alignment (char **str
, int i
)
5035 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5037 if (exp
.X_op
!= O_constant
)
5039 inst
.error
= _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL
;
5043 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5044 inst
.operands
[i
].immisalign
= 1;
5045 /* Alignments are not pre-indexes. */
5046 inst
.operands
[i
].preind
= 0;
5049 return PARSE_OPERAND_SUCCESS
;
5052 /* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
5055 Preindexed addressing (.preind=1):
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
5062 These three may have a trailing ! which causes .writeback to be set also.
5064 Postindexed addressing (.postind=1, .writeback=1):
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
5071 Unindexed addressing (.preind=0, .postind=0):
5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5084 static parse_operand_result
5085 parse_address_main (char **str
, int i
, int group_relocations
,
5086 group_reloc_type group_type
)
5091 if (skip_past_char (&p
, '[') == FAIL
)
5093 if (skip_past_char (&p
, '=') == FAIL
)
5095 /* Bare address - translate to PC-relative offset. */
5096 inst
.reloc
.pc_rel
= 1;
5097 inst
.operands
[i
].reg
= REG_PC
;
5098 inst
.operands
[i
].isreg
= 1;
5099 inst
.operands
[i
].preind
= 1;
5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5103 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5104 return PARSE_OPERAND_FAIL
;
5107 return PARSE_OPERAND_SUCCESS
;
5110 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5112 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5113 return PARSE_OPERAND_FAIL
;
5115 inst
.operands
[i
].reg
= reg
;
5116 inst
.operands
[i
].isreg
= 1;
5118 if (skip_past_comma (&p
) == SUCCESS
)
5120 inst
.operands
[i
].preind
= 1;
5123 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5125 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5127 inst
.operands
[i
].imm
= reg
;
5128 inst
.operands
[i
].immisreg
= 1;
5130 if (skip_past_comma (&p
) == SUCCESS
)
5131 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5132 return PARSE_OPERAND_FAIL
;
5134 else if (skip_past_char (&p
, ':') == SUCCESS
)
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5139 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5141 if (result
!= PARSE_OPERAND_SUCCESS
)
5146 if (inst
.operands
[i
].negative
)
5148 inst
.operands
[i
].negative
= 0;
5152 if (group_relocations
5153 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5155 struct group_reloc_table_entry
*entry
;
5157 /* Skip over the #: or : sequence. */
5163 /* Try to parse a group relocation. Anything else is an
5165 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5167 inst
.error
= _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5174 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5177 /* Record the relocation type. */
5181 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldr_code
;
5185 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5189 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldc_code
;
5196 if (inst
.reloc
.type
== 0)
5198 inst
.error
= _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5205 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
5206 return PARSE_OPERAND_FAIL
;
5207 /* If the offset is 0, find out if it's a +0 or -0. */
5208 if (inst
.reloc
.exp
.X_op
== O_constant
5209 && inst
.reloc
.exp
.X_add_number
== 0)
5211 skip_whitespace (q
);
5215 skip_whitespace (q
);
5218 inst
.operands
[i
].negative
= 1;
5223 else if (skip_past_char (&p
, ':') == SUCCESS
)
5225 /* FIXME: '@' should be used here, but it's filtered out by generic code
5226 before we get to see it here. This may be subject to change. */
5227 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5229 if (result
!= PARSE_OPERAND_SUCCESS
)
5233 if (skip_past_char (&p
, ']') == FAIL
)
5235 inst
.error
= _("']' expected");
5236 return PARSE_OPERAND_FAIL
;
5239 if (skip_past_char (&p
, '!') == SUCCESS
)
5240 inst
.operands
[i
].writeback
= 1;
5242 else if (skip_past_comma (&p
) == SUCCESS
)
5244 if (skip_past_char (&p
, '{') == SUCCESS
)
5246 /* [Rn], {expr} - unindexed, with option */
5247 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5248 0, 255, TRUE
) == FAIL
)
5249 return PARSE_OPERAND_FAIL
;
5251 if (skip_past_char (&p
, '}') == FAIL
)
5253 inst
.error
= _("'}' expected at end of 'option' field");
5254 return PARSE_OPERAND_FAIL
;
5256 if (inst
.operands
[i
].preind
)
5258 inst
.error
= _("cannot combine index with option");
5259 return PARSE_OPERAND_FAIL
;
5262 return PARSE_OPERAND_SUCCESS
;
5266 inst
.operands
[i
].postind
= 1;
5267 inst
.operands
[i
].writeback
= 1;
5269 if (inst
.operands
[i
].preind
)
5271 inst
.error
= _("cannot combine pre- and post-indexing");
5272 return PARSE_OPERAND_FAIL
;
5276 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5278 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5280 /* We might be using the immediate for alignment already. If we
5281 are, OR the register number into the low-order bits. */
5282 if (inst
.operands
[i
].immisalign
)
5283 inst
.operands
[i
].imm
|= reg
;
5285 inst
.operands
[i
].imm
= reg
;
5286 inst
.operands
[i
].immisreg
= 1;
5288 if (skip_past_comma (&p
) == SUCCESS
)
5289 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5290 return PARSE_OPERAND_FAIL
;
5295 if (inst
.operands
[i
].negative
)
5297 inst
.operands
[i
].negative
= 0;
5300 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
5301 return PARSE_OPERAND_FAIL
;
5302 /* If the offset is 0, find out if it's a +0 or -0. */
5303 if (inst
.reloc
.exp
.X_op
== O_constant
5304 && inst
.reloc
.exp
.X_add_number
== 0)
5306 skip_whitespace (q
);
5310 skip_whitespace (q
);
5313 inst
.operands
[i
].negative
= 1;
5319 /* If at this point neither .preind nor .postind is set, we have a
5320 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5321 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
5323 inst
.operands
[i
].preind
= 1;
5324 inst
.reloc
.exp
.X_op
= O_constant
;
5325 inst
.reloc
.exp
.X_add_number
= 0;
5328 return PARSE_OPERAND_SUCCESS
;
5332 parse_address (char **str
, int i
)
5334 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
5338 static parse_operand_result
5339 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
5341 return parse_address_main (str
, i
, 1, type
);
5344 /* Parse an operand for a MOVW or MOVT instruction. */
5346 parse_half (char **str
)
5351 skip_past_char (&p
, '#');
5352 if (strncasecmp (p
, ":lower16:", 9) == 0)
5353 inst
.reloc
.type
= BFD_RELOC_ARM_MOVW
;
5354 else if (strncasecmp (p
, ":upper16:", 9) == 0)
5355 inst
.reloc
.type
= BFD_RELOC_ARM_MOVT
;
5357 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
5360 skip_whitespace (p
);
5363 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5366 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
5368 if (inst
.reloc
.exp
.X_op
!= O_constant
)
5370 inst
.error
= _("constant expression expected");
5373 if (inst
.reloc
.exp
.X_add_number
< 0
5374 || inst
.reloc
.exp
.X_add_number
> 0xffff)
5376 inst
.error
= _("immediate value out of range");
5384 /* Miscellaneous. */
5386 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5387 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5389 parse_psr (char **str
, bfd_boolean lhs
)
5392 unsigned long psr_field
;
5393 const struct asm_psr
*psr
;
5395 bfd_boolean is_apsr
= FALSE
;
5396 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
5398 /* PR gas/12698: If the user has specified -march=all then m_profile will
5399 be TRUE, but we want to ignore it in this case as we are building for any
5400 CPU type, including non-m variants. */
5401 if (selected_cpu
.core
== arm_arch_any
.core
)
5404 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5405 feature for ease of use and backwards compatibility. */
5407 if (strncasecmp (p
, "SPSR", 4) == 0)
5410 goto unsupported_psr
;
5412 psr_field
= SPSR_BIT
;
5414 else if (strncasecmp (p
, "CPSR", 4) == 0)
5417 goto unsupported_psr
;
5421 else if (strncasecmp (p
, "APSR", 4) == 0)
5423 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5424 and ARMv7-R architecture CPUs. */
5433 while (ISALNUM (*p
) || *p
== '_');
5435 if (strncasecmp (start
, "iapsr", 5) == 0
5436 || strncasecmp (start
, "eapsr", 5) == 0
5437 || strncasecmp (start
, "xpsr", 4) == 0
5438 || strncasecmp (start
, "psr", 3) == 0)
5439 p
= start
+ strcspn (start
, "rR") + 1;
5441 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
5447 /* If APSR is being written, a bitfield may be specified. Note that
5448 APSR itself is handled above. */
5449 if (psr
->field
<= 3)
5451 psr_field
= psr
->field
;
5457 /* M-profile MSR instructions have the mask field set to "10", except
5458 *PSR variants which modify APSR, which may use a different mask (and
5459 have been handled already). Do that by setting the PSR_f field
5461 return psr
->field
| (lhs
? PSR_f
: 0);
5464 goto unsupported_psr
;
5470 /* A suffix follows. */
5476 while (ISALNUM (*p
) || *p
== '_');
5480 /* APSR uses a notation for bits, rather than fields. */
5481 unsigned int nzcvq_bits
= 0;
5482 unsigned int g_bit
= 0;
5485 for (bit
= start
; bit
!= p
; bit
++)
5487 switch (TOLOWER (*bit
))
5490 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
5494 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
5498 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
5502 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
5506 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
5510 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
5514 inst
.error
= _("unexpected bit specified after APSR");
5519 if (nzcvq_bits
== 0x1f)
5524 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
5526 inst
.error
= _("selected processor does not "
5527 "support DSP extension");
5534 if ((nzcvq_bits
& 0x20) != 0
5535 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
5536 || (g_bit
& 0x2) != 0)
5538 inst
.error
= _("bad bitmask specified after APSR");
5544 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
5549 psr_field
|= psr
->field
;
5555 goto error
; /* Garbage after "[CS]PSR". */
5557 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5558 is deprecated, but allow it anyway. */
5562 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5565 else if (!m_profile
)
5566 /* These bits are never right for M-profile devices: don't set them
5567 (only code paths which read/write APSR reach here). */
5568 psr_field
|= (PSR_c
| PSR_f
);
5574 inst
.error
= _("selected processor does not support requested special "
5575 "purpose register");
5579 inst
.error
= _("flag for {c}psr instruction expected");
5583 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5584 value suitable for splatting into the AIF field of the instruction. */
5587 parse_cps_flags (char **str
)
5596 case '\0': case ',':
5599 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
5600 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
5601 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
5604 inst
.error
= _("unrecognized CPS flag");
5609 if (saw_a_flag
== 0)
5611 inst
.error
= _("missing CPS flags");
5619 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5620 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5623 parse_endian_specifier (char **str
)
5628 if (strncasecmp (s
, "BE", 2))
5630 else if (strncasecmp (s
, "LE", 2))
5634 inst
.error
= _("valid endian specifiers are be or le");
5638 if (ISALNUM (s
[2]) || s
[2] == '_')
5640 inst
.error
= _("valid endian specifiers are be or le");
5645 return little_endian
;
5648 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5649 value suitable for poking into the rotate field of an sxt or sxta
5650 instruction, or FAIL on error. */
5653 parse_ror (char **str
)
5658 if (strncasecmp (s
, "ROR", 3) == 0)
5662 inst
.error
= _("missing rotation field after comma");
5666 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
5671 case 0: *str
= s
; return 0x0;
5672 case 8: *str
= s
; return 0x1;
5673 case 16: *str
= s
; return 0x2;
5674 case 24: *str
= s
; return 0x3;
5677 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
5682 /* Parse a conditional code (from conds[] below). The value returned is in the
5683 range 0 .. 14, or FAIL. */
5685 parse_cond (char **str
)
5688 const struct asm_cond
*c
;
5690 /* Condition codes are always 2 characters, so matching up to
5691 3 characters is sufficient. */
5696 while (ISALPHA (*q
) && n
< 3)
5698 cond
[n
] = TOLOWER (*q
);
5703 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
5706 inst
.error
= _("condition required");
5714 /* Parse an option for a barrier instruction. Returns the encoding for the
5717 parse_barrier (char **str
)
5720 const struct asm_barrier_opt
*o
;
5723 while (ISALPHA (*q
))
5726 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
5735 /* Parse the operands of a table branch instruction. Similar to a memory
5738 parse_tb (char **str
)
5743 if (skip_past_char (&p
, '[') == FAIL
)
5745 inst
.error
= _("'[' expected");
5749 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5751 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5754 inst
.operands
[0].reg
= reg
;
5756 if (skip_past_comma (&p
) == FAIL
)
5758 inst
.error
= _("',' expected");
5762 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5764 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5767 inst
.operands
[0].imm
= reg
;
5769 if (skip_past_comma (&p
) == SUCCESS
)
5771 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
5773 if (inst
.reloc
.exp
.X_add_number
!= 1)
5775 inst
.error
= _("invalid shift");
5778 inst
.operands
[0].shifted
= 1;
5781 if (skip_past_char (&p
, ']') == FAIL
)
5783 inst
.error
= _("']' expected");
5790 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5791 information on the types the operands can take and how they are encoded.
5792 Up to four operands may be read; this function handles setting the
5793 ".present" field for each read operand itself.
5794 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5795 else returns FAIL. */
5798 parse_neon_mov (char **str
, int *which_operand
)
5800 int i
= *which_operand
, val
;
5801 enum arm_reg_type rtype
;
5803 struct neon_type_el optype
;
5805 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5807 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5808 inst
.operands
[i
].reg
= val
;
5809 inst
.operands
[i
].isscalar
= 1;
5810 inst
.operands
[i
].vectype
= optype
;
5811 inst
.operands
[i
++].present
= 1;
5813 if (skip_past_comma (&ptr
) == FAIL
)
5816 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5819 inst
.operands
[i
].reg
= val
;
5820 inst
.operands
[i
].isreg
= 1;
5821 inst
.operands
[i
].present
= 1;
5823 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
5826 /* Cases 0, 1, 2, 3, 5 (D only). */
5827 if (skip_past_comma (&ptr
) == FAIL
)
5830 inst
.operands
[i
].reg
= val
;
5831 inst
.operands
[i
].isreg
= 1;
5832 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5833 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5834 inst
.operands
[i
].isvec
= 1;
5835 inst
.operands
[i
].vectype
= optype
;
5836 inst
.operands
[i
++].present
= 1;
5838 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5840 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5841 Case 13: VMOV <Sd>, <Rm> */
5842 inst
.operands
[i
].reg
= val
;
5843 inst
.operands
[i
].isreg
= 1;
5844 inst
.operands
[i
].present
= 1;
5846 if (rtype
== REG_TYPE_NQ
)
5848 first_error (_("can't use Neon quad register here"));
5851 else if (rtype
!= REG_TYPE_VFS
)
5854 if (skip_past_comma (&ptr
) == FAIL
)
5856 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5858 inst
.operands
[i
].reg
= val
;
5859 inst
.operands
[i
].isreg
= 1;
5860 inst
.operands
[i
].present
= 1;
5863 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
5866 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5867 Case 1: VMOV<c><q> <Dd>, <Dm>
5868 Case 8: VMOV.F32 <Sd>, <Sm>
5869 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5871 inst
.operands
[i
].reg
= val
;
5872 inst
.operands
[i
].isreg
= 1;
5873 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5874 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5875 inst
.operands
[i
].isvec
= 1;
5876 inst
.operands
[i
].vectype
= optype
;
5877 inst
.operands
[i
].present
= 1;
5879 if (skip_past_comma (&ptr
) == SUCCESS
)
5884 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5887 inst
.operands
[i
].reg
= val
;
5888 inst
.operands
[i
].isreg
= 1;
5889 inst
.operands
[i
++].present
= 1;
5891 if (skip_past_comma (&ptr
) == FAIL
)
5894 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5897 inst
.operands
[i
].reg
= val
;
5898 inst
.operands
[i
].isreg
= 1;
5899 inst
.operands
[i
++].present
= 1;
5902 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
5903 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5904 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5905 Case 10: VMOV.F32 <Sd>, #<imm>
5906 Case 11: VMOV.F64 <Dd>, #<imm> */
5907 inst
.operands
[i
].immisfloat
= 1;
5908 else if (parse_big_immediate (&ptr
, i
) == SUCCESS
)
5909 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5910 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5914 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5918 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5921 inst
.operands
[i
].reg
= val
;
5922 inst
.operands
[i
].isreg
= 1;
5923 inst
.operands
[i
++].present
= 1;
5925 if (skip_past_comma (&ptr
) == FAIL
)
5928 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5930 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5931 inst
.operands
[i
].reg
= val
;
5932 inst
.operands
[i
].isscalar
= 1;
5933 inst
.operands
[i
].present
= 1;
5934 inst
.operands
[i
].vectype
= optype
;
5936 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5938 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5939 inst
.operands
[i
].reg
= val
;
5940 inst
.operands
[i
].isreg
= 1;
5941 inst
.operands
[i
++].present
= 1;
5943 if (skip_past_comma (&ptr
) == FAIL
)
5946 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
5949 first_error (_(reg_expected_msgs
[REG_TYPE_VFSD
]));
5953 inst
.operands
[i
].reg
= val
;
5954 inst
.operands
[i
].isreg
= 1;
5955 inst
.operands
[i
].isvec
= 1;
5956 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5957 inst
.operands
[i
].vectype
= optype
;
5958 inst
.operands
[i
].present
= 1;
5960 if (rtype
== REG_TYPE_VFS
)
5964 if (skip_past_comma (&ptr
) == FAIL
)
5966 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
5969 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
5972 inst
.operands
[i
].reg
= val
;
5973 inst
.operands
[i
].isreg
= 1;
5974 inst
.operands
[i
].isvec
= 1;
5975 inst
.operands
[i
].issingle
= 1;
5976 inst
.operands
[i
].vectype
= optype
;
5977 inst
.operands
[i
].present
= 1;
5980 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
5984 inst
.operands
[i
].reg
= val
;
5985 inst
.operands
[i
].isreg
= 1;
5986 inst
.operands
[i
].isvec
= 1;
5987 inst
.operands
[i
].issingle
= 1;
5988 inst
.operands
[i
].vectype
= optype
;
5989 inst
.operands
[i
++].present
= 1;
5994 first_error (_("parse error"));
5998 /* Successfully parsed the operands. Update args. */
6004 first_error (_("expected comma"));
6008 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
6012 /* Use this macro when the operand constraints are different
6013 for ARM and THUMB (e.g. ldrd). */
6014 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6015 ((arm_operand) | ((thumb_operand) << 16))
6017 /* Matcher codes for parse_operands. */
6018 enum operand_parse_code
6020 OP_stop
, /* end of line */
6022 OP_RR
, /* ARM register */
6023 OP_RRnpc
, /* ARM register, not r15 */
6024 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6025 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
6026 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
6027 optional trailing ! */
6028 OP_RRw
, /* ARM register, not r15, optional trailing ! */
6029 OP_RCP
, /* Coprocessor number */
6030 OP_RCN
, /* Coprocessor register */
6031 OP_RF
, /* FPA register */
6032 OP_RVS
, /* VFP single precision register */
6033 OP_RVD
, /* VFP double precision register (0..15) */
6034 OP_RND
, /* Neon double precision register (0..31) */
6035 OP_RNQ
, /* Neon quad precision register */
6036 OP_RVSD
, /* VFP single or double precision register */
6037 OP_RNDQ
, /* Neon double or quad precision register */
6038 OP_RNSDQ
, /* Neon single, double or quad precision register */
6039 OP_RNSC
, /* Neon scalar D[X] */
6040 OP_RVC
, /* VFP control register */
6041 OP_RMF
, /* Maverick F register */
6042 OP_RMD
, /* Maverick D register */
6043 OP_RMFX
, /* Maverick FX register */
6044 OP_RMDX
, /* Maverick DX register */
6045 OP_RMAX
, /* Maverick AX register */
6046 OP_RMDS
, /* Maverick DSPSC register */
6047 OP_RIWR
, /* iWMMXt wR register */
6048 OP_RIWC
, /* iWMMXt wC register */
6049 OP_RIWG
, /* iWMMXt wCG register */
6050 OP_RXA
, /* XScale accumulator register */
6052 OP_REGLST
, /* ARM register list */
6053 OP_VRSLST
, /* VFP single-precision register list */
6054 OP_VRDLST
, /* VFP double-precision register list */
6055 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
6056 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
6057 OP_NSTRLST
, /* Neon element/structure list */
6059 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
6060 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
6061 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
6062 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
6063 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
6064 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
6065 OP_VMOV
, /* Neon VMOV operands. */
6066 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6067 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
6068 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6070 OP_I0
, /* immediate zero */
6071 OP_I7
, /* immediate value 0 .. 7 */
6072 OP_I15
, /* 0 .. 15 */
6073 OP_I16
, /* 1 .. 16 */
6074 OP_I16z
, /* 0 .. 16 */
6075 OP_I31
, /* 0 .. 31 */
6076 OP_I31w
, /* 0 .. 31, optional trailing ! */
6077 OP_I32
, /* 1 .. 32 */
6078 OP_I32z
, /* 0 .. 32 */
6079 OP_I63
, /* 0 .. 63 */
6080 OP_I63s
, /* -64 .. 63 */
6081 OP_I64
, /* 1 .. 64 */
6082 OP_I64z
, /* 0 .. 64 */
6083 OP_I255
, /* 0 .. 255 */
6085 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
6086 OP_I7b
, /* 0 .. 7 */
6087 OP_I15b
, /* 0 .. 15 */
6088 OP_I31b
, /* 0 .. 31 */
6090 OP_SH
, /* shifter operand */
6091 OP_SHG
, /* shifter operand with possible group relocation */
6092 OP_ADDR
, /* Memory address expression (any mode) */
6093 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
6094 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
6095 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
6096 OP_EXP
, /* arbitrary expression */
6097 OP_EXPi
, /* same, with optional immediate prefix */
6098 OP_EXPr
, /* same, with optional relocation suffix */
6099 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
6101 OP_CPSF
, /* CPS flags */
6102 OP_ENDI
, /* Endianness specifier */
6103 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
6104 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
6105 OP_COND
, /* conditional code */
6106 OP_TB
, /* Table branch. */
6108 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
6110 OP_RRnpc_I0
, /* ARM register or literal 0 */
6111 OP_RR_EXr
, /* ARM register or expression with opt. reloc suff. */
6112 OP_RR_EXi
, /* ARM register or expression with imm prefix */
6113 OP_RF_IF
, /* FPA register or immediate */
6114 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
6115 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
6117 /* Optional operands. */
6118 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
6119 OP_oI31b
, /* 0 .. 31 */
6120 OP_oI32b
, /* 1 .. 32 */
6121 OP_oIffffb
, /* 0 .. 65535 */
6122 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
6124 OP_oRR
, /* ARM register */
6125 OP_oRRnpc
, /* ARM register, not the PC */
6126 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6127 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
6128 OP_oRND
, /* Optional Neon double precision register */
6129 OP_oRNQ
, /* Optional Neon quad precision register */
6130 OP_oRNDQ
, /* Optional Neon double or quad precision register */
6131 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
6132 OP_oSHll
, /* LSL immediate */
6133 OP_oSHar
, /* ASR immediate */
6134 OP_oSHllar
, /* LSL or ASR immediate */
6135 OP_oROR
, /* ROR 0/8/16/24 */
6136 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
6138 /* Some pre-defined mixed (ARM/THUMB) operands. */
6139 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
6140 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
6141 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
6143 OP_FIRST_OPTIONAL
= OP_oI7b
6146 /* Generic instruction operand parser. This does no encoding and no
6147 semantic validation; it merely squirrels values away in the inst
6148 structure. Returns SUCCESS or FAIL depending on whether the
6149 specified grammar matched. */
6151 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
6153 unsigned const int *upat
= pattern
;
6154 char *backtrack_pos
= 0;
6155 const char *backtrack_error
= 0;
6156 int i
, val
, backtrack_index
= 0;
6157 enum arm_reg_type rtype
;
6158 parse_operand_result result
;
6159 unsigned int op_parse_code
;
6161 #define po_char_or_fail(chr) \
6164 if (skip_past_char (&str, chr) == FAIL) \
6169 #define po_reg_or_fail(regtype) \
6172 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6173 & inst.operands[i].vectype); \
6176 first_error (_(reg_expected_msgs[regtype])); \
6179 inst.operands[i].reg = val; \
6180 inst.operands[i].isreg = 1; \
6181 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6182 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6183 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6184 || rtype == REG_TYPE_VFD \
6185 || rtype == REG_TYPE_NQ); \
6189 #define po_reg_or_goto(regtype, label) \
6192 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6193 & inst.operands[i].vectype); \
6197 inst.operands[i].reg = val; \
6198 inst.operands[i].isreg = 1; \
6199 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6200 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6201 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6202 || rtype == REG_TYPE_VFD \
6203 || rtype == REG_TYPE_NQ); \
6207 #define po_imm_or_fail(min, max, popt) \
6210 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6212 inst.operands[i].imm = val; \
6216 #define po_scalar_or_goto(elsz, label) \
6219 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6222 inst.operands[i].reg = val; \
6223 inst.operands[i].isscalar = 1; \
6227 #define po_misc_or_fail(expr) \
6235 #define po_misc_or_fail_no_backtrack(expr) \
6239 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6240 backtrack_pos = 0; \
6241 if (result != PARSE_OPERAND_SUCCESS) \
6246 #define po_barrier_or_imm(str) \
6249 val = parse_barrier (&str); \
6252 if (ISALPHA (*str)) \
6259 if ((inst.instruction & 0xf0) == 0x60 \
6262 /* ISB can only take SY as an option. */ \
6263 inst.error = _("invalid barrier type"); \
6270 skip_whitespace (str
);
6272 for (i
= 0; upat
[i
] != OP_stop
; i
++)
6274 op_parse_code
= upat
[i
];
6275 if (op_parse_code
>= 1<<16)
6276 op_parse_code
= thumb
? (op_parse_code
>> 16)
6277 : (op_parse_code
& ((1<<16)-1));
6279 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
6281 /* Remember where we are in case we need to backtrack. */
6282 gas_assert (!backtrack_pos
);
6283 backtrack_pos
= str
;
6284 backtrack_error
= inst
.error
;
6285 backtrack_index
= i
;
6288 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
6289 po_char_or_fail (',');
6291 switch (op_parse_code
)
6299 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
6300 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
6301 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
6302 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
6303 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
6304 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
6306 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
6308 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
6310 /* Also accept generic coprocessor regs for unknown registers. */
6312 po_reg_or_fail (REG_TYPE_CN
);
6314 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
6315 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
6316 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
6317 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
6318 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
6319 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
6320 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
6321 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
6322 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
6323 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
6325 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
6327 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
6328 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
6330 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
6332 /* Neon scalar. Using an element size of 8 means that some invalid
6333 scalars are accepted here, so deal with those in later code. */
6334 case OP_RNSC
: po_scalar_or_goto (8, failure
); break;
6338 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
6341 po_imm_or_fail (0, 0, TRUE
);
6346 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
6351 po_scalar_or_goto (8, try_rr
);
6354 po_reg_or_fail (REG_TYPE_RN
);
6360 po_scalar_or_goto (8, try_nsdq
);
6363 po_reg_or_fail (REG_TYPE_NSDQ
);
6369 po_scalar_or_goto (8, try_ndq
);
6372 po_reg_or_fail (REG_TYPE_NDQ
);
6378 po_scalar_or_goto (8, try_vfd
);
6381 po_reg_or_fail (REG_TYPE_VFD
);
6386 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6387 not careful then bad things might happen. */
6388 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
6393 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
6396 /* There's a possibility of getting a 64-bit immediate here, so
6397 we need special handling. */
6398 if (parse_big_immediate (&str
, i
) == FAIL
)
6400 inst
.error
= _("immediate value is out of range");
6408 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
6411 po_imm_or_fail (0, 63, TRUE
);
6416 po_char_or_fail ('[');
6417 po_reg_or_fail (REG_TYPE_RN
);
6418 po_char_or_fail (']');
6424 po_reg_or_fail (REG_TYPE_RN
);
6425 if (skip_past_char (&str
, '!') == SUCCESS
)
6426 inst
.operands
[i
].writeback
= 1;
6430 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
6431 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
6432 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
6433 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
6434 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
6435 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
6436 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
6437 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
6438 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
6439 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
6440 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
6441 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
6443 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
6445 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
6446 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
6448 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
6449 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
6450 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
6452 /* Immediate variants */
6454 po_char_or_fail ('{');
6455 po_imm_or_fail (0, 255, TRUE
);
6456 po_char_or_fail ('}');
6460 /* The expression parser chokes on a trailing !, so we have
6461 to find it first and zap it. */
6464 while (*s
&& *s
!= ',')
6469 inst
.operands
[i
].writeback
= 1;
6471 po_imm_or_fail (0, 31, TRUE
);
6479 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6484 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6489 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6491 if (inst
.reloc
.exp
.X_op
== O_symbol
)
6493 val
= parse_reloc (&str
);
6496 inst
.error
= _("unrecognized relocation suffix");
6499 else if (val
!= BFD_RELOC_UNUSED
)
6501 inst
.operands
[i
].imm
= val
;
6502 inst
.operands
[i
].hasreloc
= 1;
6507 /* Operand for MOVW or MOVT. */
6509 po_misc_or_fail (parse_half (&str
));
6512 /* Register or expression. */
6513 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
6514 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
6516 /* Register or immediate. */
6517 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
6518 I0
: po_imm_or_fail (0, 0, FALSE
); break;
6520 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
6522 if (!is_immediate_prefix (*str
))
6525 val
= parse_fpa_immediate (&str
);
6528 /* FPA immediates are encoded as registers 8-15.
6529 parse_fpa_immediate has already applied the offset. */
6530 inst
.operands
[i
].reg
= val
;
6531 inst
.operands
[i
].isreg
= 1;
6534 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
6535 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
6537 /* Two kinds of register. */
6540 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
6542 || (rege
->type
!= REG_TYPE_MMXWR
6543 && rege
->type
!= REG_TYPE_MMXWC
6544 && rege
->type
!= REG_TYPE_MMXWCG
))
6546 inst
.error
= _("iWMMXt data or control register expected");
6549 inst
.operands
[i
].reg
= rege
->number
;
6550 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
6556 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
6558 || (rege
->type
!= REG_TYPE_MMXWC
6559 && rege
->type
!= REG_TYPE_MMXWCG
))
6561 inst
.error
= _("iWMMXt control register expected");
6564 inst
.operands
[i
].reg
= rege
->number
;
6565 inst
.operands
[i
].isreg
= 1;
6570 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
6571 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
6572 case OP_oROR
: val
= parse_ror (&str
); break;
6573 case OP_COND
: val
= parse_cond (&str
); break;
6574 case OP_oBARRIER_I15
:
6575 po_barrier_or_imm (str
); break;
6577 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
6583 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
6584 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
6586 inst
.error
= _("Banked registers are not available with this "
6592 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
6596 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
6599 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6601 if (strncasecmp (str
, "APSR_", 5) == 0)
6608 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
6609 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
6610 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
6611 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
6612 default: found
= 16;
6616 inst
.operands
[i
].isvec
= 1;
6617 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6618 inst
.operands
[i
].reg
= REG_PC
;
6625 po_misc_or_fail (parse_tb (&str
));
6628 /* Register lists. */
6630 val
= parse_reg_list (&str
);
6633 inst
.operands
[1].writeback
= 1;
6639 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
);
6643 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
);
6647 /* Allow Q registers too. */
6648 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6653 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6655 inst
.operands
[i
].issingle
= 1;
6660 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6665 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
6666 &inst
.operands
[i
].vectype
);
6669 /* Addressing modes */
6671 po_misc_or_fail (parse_address (&str
, i
));
6675 po_misc_or_fail_no_backtrack (
6676 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
6680 po_misc_or_fail_no_backtrack (
6681 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
6685 po_misc_or_fail_no_backtrack (
6686 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
6690 po_misc_or_fail (parse_shifter_operand (&str
, i
));
6694 po_misc_or_fail_no_backtrack (
6695 parse_shifter_operand_group_reloc (&str
, i
));
6699 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
6703 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
6707 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
6711 as_fatal (_("unhandled operand code %d"), op_parse_code
);
6714 /* Various value-based sanity checks and shared operations. We
6715 do not signal immediate failures for the register constraints;
6716 this allows a syntax error to take precedence. */
6717 switch (op_parse_code
)
6725 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
6726 inst
.error
= BAD_PC
;
6731 if (inst
.operands
[i
].isreg
)
6733 if (inst
.operands
[i
].reg
== REG_PC
)
6734 inst
.error
= BAD_PC
;
6735 else if (inst
.operands
[i
].reg
== REG_SP
)
6736 inst
.error
= BAD_SP
;
6741 if (inst
.operands
[i
].isreg
6742 && inst
.operands
[i
].reg
== REG_PC
6743 && (inst
.operands
[i
].writeback
|| thumb
))
6744 inst
.error
= BAD_PC
;
6753 case OP_oBARRIER_I15
:
6762 inst
.operands
[i
].imm
= val
;
6769 /* If we get here, this operand was successfully parsed. */
6770 inst
.operands
[i
].present
= 1;
6774 inst
.error
= BAD_ARGS
;
6779 /* The parse routine should already have set inst.error, but set a
6780 default here just in case. */
6782 inst
.error
= _("syntax error");
6786 /* Do not backtrack over a trailing optional argument that
6787 absorbed some text. We will only fail again, with the
6788 'garbage following instruction' error message, which is
6789 probably less helpful than the current one. */
6790 if (backtrack_index
== i
&& backtrack_pos
!= str
6791 && upat
[i
+1] == OP_stop
)
6794 inst
.error
= _("syntax error");
6798 /* Try again, skipping the optional argument at backtrack_pos. */
6799 str
= backtrack_pos
;
6800 inst
.error
= backtrack_error
;
6801 inst
.operands
[backtrack_index
].present
= 0;
6802 i
= backtrack_index
;
6806 /* Check that we have parsed all the arguments. */
6807 if (*str
!= '\0' && !inst
.error
)
6808 inst
.error
= _("garbage following instruction");
6810 return inst
.error
? FAIL
: SUCCESS
;
6813 #undef po_char_or_fail
6814 #undef po_reg_or_fail
6815 #undef po_reg_or_goto
6816 #undef po_imm_or_fail
6817 #undef po_scalar_or_fail
6818 #undef po_barrier_or_imm
6820 /* Shorthand macro for instruction encoding functions issuing errors. */
6821 #define constraint(expr, err) \
6832 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6833 instructions are unpredictable if these registers are used. This
6834 is the BadReg predicate in ARM's Thumb-2 documentation. */
6835 #define reject_bad_reg(reg) \
6837 if (reg == REG_SP || reg == REG_PC) \
6839 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6844 /* If REG is R13 (the stack pointer), warn that its use is
6846 #define warn_deprecated_sp(reg) \
6848 if (warn_on_deprecated && reg == REG_SP) \
6849 as_warn (_("use of r13 is deprecated")); \
6852 /* Functions for operand encoding. ARM, then Thumb. */
6854 #define rotate_left(v, n) (v << n | v >> (32 - n))
6856 /* If VAL can be encoded in the immediate field of an ARM instruction,
6857 return the encoded form. Otherwise, return FAIL. */
6860 encode_arm_immediate (unsigned int val
)
6864 for (i
= 0; i
< 32; i
+= 2)
6865 if ((a
= rotate_left (val
, i
)) <= 0xff)
6866 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
6871 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6872 return the encoded form. Otherwise, return FAIL. */
6874 encode_thumb32_immediate (unsigned int val
)
6881 for (i
= 1; i
<= 24; i
++)
6884 if ((val
& ~(0xff << i
)) == 0)
6885 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
6889 if (val
== ((a
<< 16) | a
))
6891 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
6895 if (val
== ((a
<< 16) | a
))
6896 return 0x200 | (a
>> 8);
6900 /* Encode a VFP SP or DP register number into inst.instruction. */
6903 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
6905 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
6908 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
6911 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
6914 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
6919 first_error (_("D register out of range for selected VFP version"));
6927 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
6931 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
6935 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
6939 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
6943 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
6947 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
6955 /* Encode a <shift> in an ARM-format instruction. The immediate,
6956 if any, is handled by md_apply_fix. */
6958 encode_arm_shift (int i
)
6960 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6961 inst
.instruction
|= SHIFT_ROR
<< 5;
6964 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6965 if (inst
.operands
[i
].immisreg
)
6967 inst
.instruction
|= SHIFT_BY_REG
;
6968 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
6971 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6976 encode_arm_shifter_operand (int i
)
6978 if (inst
.operands
[i
].isreg
)
6980 inst
.instruction
|= inst
.operands
[i
].reg
;
6981 encode_arm_shift (i
);
6984 inst
.instruction
|= INST_IMMEDIATE
;
6987 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6989 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
6991 gas_assert (inst
.operands
[i
].isreg
);
6992 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6994 if (inst
.operands
[i
].preind
)
6998 inst
.error
= _("instruction does not accept preindexed addressing");
7001 inst
.instruction
|= PRE_INDEX
;
7002 if (inst
.operands
[i
].writeback
)
7003 inst
.instruction
|= WRITE_BACK
;
7006 else if (inst
.operands
[i
].postind
)
7008 gas_assert (inst
.operands
[i
].writeback
);
7010 inst
.instruction
|= WRITE_BACK
;
7012 else /* unindexed - only for coprocessor */
7014 inst
.error
= _("instruction does not accept unindexed addressing");
7018 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
7019 && (((inst
.instruction
& 0x000f0000) >> 16)
7020 == ((inst
.instruction
& 0x0000f000) >> 12)))
7021 as_warn ((inst
.instruction
& LOAD_BIT
)
7022 ? _("destination register same as write-back base")
7023 : _("source register same as write-back base"));
7026 /* inst.operands[i] was set up by parse_address. Encode it into an
7027 ARM-format mode 2 load or store instruction. If is_t is true,
7028 reject forms that cannot be used with a T instruction (i.e. not
7031 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
7033 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
7035 encode_arm_addr_mode_common (i
, is_t
);
7037 if (inst
.operands
[i
].immisreg
)
7039 constraint ((inst
.operands
[i
].imm
== REG_PC
7040 || (is_pc
&& inst
.operands
[i
].writeback
)),
7042 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
7043 inst
.instruction
|= inst
.operands
[i
].imm
;
7044 if (!inst
.operands
[i
].negative
)
7045 inst
.instruction
|= INDEX_UP
;
7046 if (inst
.operands
[i
].shifted
)
7048 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
7049 inst
.instruction
|= SHIFT_ROR
<< 5;
7052 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
7053 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
7057 else /* immediate offset in inst.reloc */
7059 if (is_pc
&& !inst
.reloc
.pc_rel
)
7061 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
7063 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7064 cannot use PC in addressing.
7065 PC cannot be used in writeback addressing, either. */
7066 constraint ((is_t
|| inst
.operands
[i
].writeback
),
7069 /* Use of PC in str is deprecated for ARMv7. */
7070 if (warn_on_deprecated
7072 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
7073 as_warn (_("use of PC in this instruction is deprecated"));
7076 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7078 /* Prefer + for zero encoded value. */
7079 if (!inst
.operands
[i
].negative
)
7080 inst
.instruction
|= INDEX_UP
;
7081 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM
;
7086 /* inst.operands[i] was set up by parse_address. Encode it into an
7087 ARM-format mode 3 load or store instruction. Reject forms that
7088 cannot be used with such instructions. If is_t is true, reject
7089 forms that cannot be used with a T instruction (i.e. not
7092 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
7094 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
7096 inst
.error
= _("instruction does not accept scaled register index");
7100 encode_arm_addr_mode_common (i
, is_t
);
7102 if (inst
.operands
[i
].immisreg
)
7104 constraint ((inst
.operands
[i
].imm
== REG_PC
7105 || inst
.operands
[i
].reg
== REG_PC
),
7107 inst
.instruction
|= inst
.operands
[i
].imm
;
7108 if (!inst
.operands
[i
].negative
)
7109 inst
.instruction
|= INDEX_UP
;
7111 else /* immediate offset in inst.reloc */
7113 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.reloc
.pc_rel
7114 && inst
.operands
[i
].writeback
),
7116 inst
.instruction
|= HWOFFSET_IMM
;
7117 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7119 /* Prefer + for zero encoded value. */
7120 if (!inst
.operands
[i
].negative
)
7121 inst
.instruction
|= INDEX_UP
;
7123 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM8
;
7128 /* inst.operands[i] was set up by parse_address. Encode it into an
7129 ARM-format instruction. Reject all forms which cannot be encoded
7130 into a coprocessor load/store instruction. If wb_ok is false,
7131 reject use of writeback; if unind_ok is false, reject use of
7132 unindexed addressing. If reloc_override is not 0, use it instead
7133 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7134 (in which case it is preserved). */
7137 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
7139 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
7141 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
7143 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
7145 gas_assert (!inst
.operands
[i
].writeback
);
7148 inst
.error
= _("instruction does not support unindexed addressing");
7151 inst
.instruction
|= inst
.operands
[i
].imm
;
7152 inst
.instruction
|= INDEX_UP
;
7156 if (inst
.operands
[i
].preind
)
7157 inst
.instruction
|= PRE_INDEX
;
7159 if (inst
.operands
[i
].writeback
)
7161 if (inst
.operands
[i
].reg
== REG_PC
)
7163 inst
.error
= _("pc may not be used with write-back");
7168 inst
.error
= _("instruction does not support writeback");
7171 inst
.instruction
|= WRITE_BACK
;
7175 inst
.reloc
.type
= (bfd_reloc_code_real_type
) reloc_override
;
7176 else if ((inst
.reloc
.type
< BFD_RELOC_ARM_ALU_PC_G0_NC
7177 || inst
.reloc
.type
> BFD_RELOC_ARM_LDC_SB_G2
)
7178 && inst
.reloc
.type
!= BFD_RELOC_ARM_LDR_PC_G0
)
7181 inst
.reloc
.type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
7183 inst
.reloc
.type
= BFD_RELOC_ARM_CP_OFF_IMM
;
7186 /* Prefer + for zero encoded value. */
7187 if (!inst
.operands
[i
].negative
)
7188 inst
.instruction
|= INDEX_UP
;
7193 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7194 Determine whether it can be performed with a move instruction; if
7195 it can, convert inst.instruction to that move instruction and
7196 return TRUE; if it can't, convert inst.instruction to a literal-pool
7197 load and return FALSE. If this is not a valid thing to do in the
7198 current context, set inst.error and return TRUE.
7200 inst.operands[i] describes the destination register. */
7203 move_or_literal_pool (int i
, bfd_boolean thumb_p
, bfd_boolean mode_3
)
7208 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
7212 if ((inst
.instruction
& tbit
) == 0)
7214 inst
.error
= _("invalid pseudo operation");
7217 if (inst
.reloc
.exp
.X_op
!= O_constant
&& inst
.reloc
.exp
.X_op
!= O_symbol
)
7219 inst
.error
= _("constant expression expected");
7222 if (inst
.reloc
.exp
.X_op
== O_constant
)
7226 if (!unified_syntax
&& (inst
.reloc
.exp
.X_add_number
& ~0xFF) == 0)
7228 /* This can be done with a mov(1) instruction. */
7229 inst
.instruction
= T_OPCODE_MOV_I8
| (inst
.operands
[i
].reg
<< 8);
7230 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
;
7236 int value
= encode_arm_immediate (inst
.reloc
.exp
.X_add_number
);
7239 /* This can be done with a mov instruction. */
7240 inst
.instruction
&= LITERAL_MASK
;
7241 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
7242 inst
.instruction
|= value
& 0xfff;
7246 value
= encode_arm_immediate (~inst
.reloc
.exp
.X_add_number
);
7249 /* This can be done with a mvn instruction. */
7250 inst
.instruction
&= LITERAL_MASK
;
7251 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
7252 inst
.instruction
|= value
& 0xfff;
7258 if (add_to_lit_pool () == FAIL
)
7260 inst
.error
= _("literal pool insertion failed");
7263 inst
.operands
[1].reg
= REG_PC
;
7264 inst
.operands
[1].isreg
= 1;
7265 inst
.operands
[1].preind
= 1;
7266 inst
.reloc
.pc_rel
= 1;
7267 inst
.reloc
.type
= (thumb_p
7268 ? BFD_RELOC_ARM_THUMB_OFFSET
7270 ? BFD_RELOC_ARM_HWLITERAL
7271 : BFD_RELOC_ARM_LITERAL
));
7275 /* Functions for instruction encoding, sorted by sub-architecture.
7276 First some generics; their names are taken from the conventional
7277 bit positions for register arguments in ARM format instructions. */
7287 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7293 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7294 inst
.instruction
|= inst
.operands
[1].reg
;
7300 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7301 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7307 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7308 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7314 unsigned Rn
= inst
.operands
[2].reg
;
7315 /* Enforce restrictions on SWP instruction. */
7316 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
7318 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
7319 _("Rn must not overlap other operands"));
7321 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7322 if (warn_on_deprecated
7323 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
7324 as_warn (_("swp{b} use is deprecated for this architecture"));
7327 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7328 inst
.instruction
|= inst
.operands
[1].reg
;
7329 inst
.instruction
|= Rn
<< 16;
7335 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7336 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7337 inst
.instruction
|= inst
.operands
[2].reg
;
7343 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
7344 constraint (((inst
.reloc
.exp
.X_op
!= O_constant
7345 && inst
.reloc
.exp
.X_op
!= O_illegal
)
7346 || inst
.reloc
.exp
.X_add_number
!= 0),
7348 inst
.instruction
|= inst
.operands
[0].reg
;
7349 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7350 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7356 inst
.instruction
|= inst
.operands
[0].imm
;
7362 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7363 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
7366 /* ARM instructions, in alphabetical order by function name (except
7367 that wrapper functions appear immediately after the function they
7370 /* This is a pseudo-op of the form "adr rd, label" to be converted
7371 into a relative address of the form "add rd, pc, #label-.-8". */
7376 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
7378 /* Frag hacking will turn this into a sub instruction if the offset turns
7379 out to be negative. */
7380 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
7381 inst
.reloc
.pc_rel
= 1;
7382 inst
.reloc
.exp
.X_add_number
-= 8;
7385 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7386 into a relative address of the form:
7387 add rd, pc, #low(label-.-8)"
7388 add rd, rd, #high(label-.-8)" */
7393 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
7395 /* Frag hacking will turn this into a sub instruction if the offset turns
7396 out to be negative. */
7397 inst
.reloc
.type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
7398 inst
.reloc
.pc_rel
= 1;
7399 inst
.size
= INSN_SIZE
* 2;
7400 inst
.reloc
.exp
.X_add_number
-= 8;
7406 if (!inst
.operands
[1].present
)
7407 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
7408 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7409 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7410 encode_arm_shifter_operand (2);
7416 if (inst
.operands
[0].present
)
7418 constraint ((inst
.instruction
& 0xf0) != 0x40
7419 && inst
.operands
[0].imm
> 0xf
7420 && inst
.operands
[0].imm
< 0x0,
7421 _("bad barrier type"));
7422 inst
.instruction
|= inst
.operands
[0].imm
;
7425 inst
.instruction
|= 0xf;
7431 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
7432 constraint (msb
> 32, _("bit-field extends past end of register"));
7433 /* The instruction encoding stores the LSB and MSB,
7434 not the LSB and width. */
7435 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7436 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
7437 inst
.instruction
|= (msb
- 1) << 16;
7445 /* #0 in second position is alternative syntax for bfc, which is
7446 the same instruction but with REG_PC in the Rm field. */
7447 if (!inst
.operands
[1].isreg
)
7448 inst
.operands
[1].reg
= REG_PC
;
7450 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
7451 constraint (msb
> 32, _("bit-field extends past end of register"));
7452 /* The instruction encoding stores the LSB and MSB,
7453 not the LSB and width. */
7454 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7455 inst
.instruction
|= inst
.operands
[1].reg
;
7456 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
7457 inst
.instruction
|= (msb
- 1) << 16;
7463 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
7464 _("bit-field extends past end of register"));
7465 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7466 inst
.instruction
|= inst
.operands
[1].reg
;
7467 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
7468 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
7471 /* ARM V5 breakpoint instruction (argument parse)
7472 BKPT <16 bit unsigned immediate>
7473 Instruction is not conditional.
7474 The bit pattern given in insns[] has the COND_ALWAYS condition,
7475 and it is an error if the caller tried to override that. */
7480 /* Top 12 of 16 bits to bits 19:8. */
7481 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
7483 /* Bottom 4 of 16 bits to bits 3:0. */
7484 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
7488 encode_branch (int default_reloc
)
7490 if (inst
.operands
[0].hasreloc
)
7492 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
7493 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
7494 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7495 inst
.reloc
.type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
7496 ? BFD_RELOC_ARM_PLT32
7497 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
7500 inst
.reloc
.type
= (bfd_reloc_code_real_type
) default_reloc
;
7501 inst
.reloc
.pc_rel
= 1;
7508 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
7509 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
7512 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
7519 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
7521 if (inst
.cond
== COND_ALWAYS
)
7522 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
7524 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
7528 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
7531 /* ARM V5 branch-link-exchange instruction (argument parse)
7532 BLX <target_addr> ie BLX(1)
7533 BLX{<condition>} <Rm> ie BLX(2)
7534 Unfortunately, there are two different opcodes for this mnemonic.
7535 So, the insns[].value is not used, and the code here zaps values
7536 into inst.instruction.
7537 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7542 if (inst
.operands
[0].isreg
)
7544 /* Arg is a register; the opcode provided by insns[] is correct.
7545 It is not illegal to do "blx pc", just useless. */
7546 if (inst
.operands
[0].reg
== REG_PC
)
7547 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7549 inst
.instruction
|= inst
.operands
[0].reg
;
7553 /* Arg is an address; this instruction cannot be executed
7554 conditionally, and the opcode must be adjusted.
7555 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7556 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7557 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
7558 inst
.instruction
= 0xfa000000;
7559 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
7566 bfd_boolean want_reloc
;
7568 if (inst
.operands
[0].reg
== REG_PC
)
7569 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7571 inst
.instruction
|= inst
.operands
[0].reg
;
7572 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7573 it is for ARMv4t or earlier. */
7574 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
7575 if (object_arch
&& !ARM_CPU_HAS_FEATURE (*object_arch
, arm_ext_v5
))
7579 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
7584 inst
.reloc
.type
= BFD_RELOC_ARM_V4BX
;
7588 /* ARM v5TEJ. Jump to Jazelle code. */
7593 if (inst
.operands
[0].reg
== REG_PC
)
7594 as_tsktsk (_("use of r15 in bxj is not really useful"));
7596 inst
.instruction
|= inst
.operands
[0].reg
;
7599 /* Co-processor data operation:
7600 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7601 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7605 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7606 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
7607 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7608 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7609 inst
.instruction
|= inst
.operands
[4].reg
;
7610 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
7616 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7617 encode_arm_shifter_operand (1);
7620 /* Transfer between coprocessor and ARM registers.
7621 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7626 No special properties. */
7633 Rd
= inst
.operands
[2].reg
;
7636 if (inst
.instruction
== 0xee000010
7637 || inst
.instruction
== 0xfe000010)
7639 reject_bad_reg (Rd
);
7642 constraint (Rd
== REG_SP
, BAD_SP
);
7647 if (inst
.instruction
== 0xe000010)
7648 constraint (Rd
== REG_PC
, BAD_PC
);
7652 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7653 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
7654 inst
.instruction
|= Rd
<< 12;
7655 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7656 inst
.instruction
|= inst
.operands
[4].reg
;
7657 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
7660 /* Transfer between coprocessor register and pair of ARM registers.
7661 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7666 Two XScale instructions are special cases of these:
7668 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7669 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7671 Result unpredictable if Rd or Rn is R15. */
7678 Rd
= inst
.operands
[2].reg
;
7679 Rn
= inst
.operands
[3].reg
;
7683 reject_bad_reg (Rd
);
7684 reject_bad_reg (Rn
);
7688 constraint (Rd
== REG_PC
, BAD_PC
);
7689 constraint (Rn
== REG_PC
, BAD_PC
);
7692 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7693 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
7694 inst
.instruction
|= Rd
<< 12;
7695 inst
.instruction
|= Rn
<< 16;
7696 inst
.instruction
|= inst
.operands
[4].reg
;
7702 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
7703 if (inst
.operands
[1].present
)
7705 inst
.instruction
|= CPSI_MMOD
;
7706 inst
.instruction
|= inst
.operands
[1].imm
;
7713 inst
.instruction
|= inst
.operands
[0].imm
;
7719 unsigned Rd
, Rn
, Rm
;
7721 Rd
= inst
.operands
[0].reg
;
7722 Rn
= (inst
.operands
[1].present
7723 ? inst
.operands
[1].reg
: Rd
);
7724 Rm
= inst
.operands
[2].reg
;
7726 constraint ((Rd
== REG_PC
), BAD_PC
);
7727 constraint ((Rn
== REG_PC
), BAD_PC
);
7728 constraint ((Rm
== REG_PC
), BAD_PC
);
7730 inst
.instruction
|= Rd
<< 16;
7731 inst
.instruction
|= Rn
<< 0;
7732 inst
.instruction
|= Rm
<< 8;
7738 /* There is no IT instruction in ARM mode. We
7739 process it to do the validation as if in
7740 thumb mode, just in case the code gets
7741 assembled for thumb using the unified syntax. */
7746 set_it_insn_type (IT_INSN
);
7747 now_it
.mask
= (inst
.instruction
& 0xf) | 0x10;
7748 now_it
.cc
= inst
.operands
[0].imm
;
7755 int base_reg
= inst
.operands
[0].reg
;
7756 int range
= inst
.operands
[1].imm
;
7758 inst
.instruction
|= base_reg
<< 16;
7759 inst
.instruction
|= range
;
7761 if (inst
.operands
[1].writeback
)
7762 inst
.instruction
|= LDM_TYPE_2_OR_3
;
7764 if (inst
.operands
[0].writeback
)
7766 inst
.instruction
|= WRITE_BACK
;
7767 /* Check for unpredictable uses of writeback. */
7768 if (inst
.instruction
& LOAD_BIT
)
7770 /* Not allowed in LDM type 2. */
7771 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
7772 && ((range
& (1 << REG_PC
)) == 0))
7773 as_warn (_("writeback of base register is UNPREDICTABLE"));
7774 /* Only allowed if base reg not in list for other types. */
7775 else if (range
& (1 << base_reg
))
7776 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7780 /* Not allowed for type 2. */
7781 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
7782 as_warn (_("writeback of base register is UNPREDICTABLE"));
7783 /* Only allowed if base reg not in list, or first in list. */
7784 else if ((range
& (1 << base_reg
))
7785 && (range
& ((1 << base_reg
) - 1)))
7786 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7791 /* ARMv5TE load-consecutive (argument parse)
7800 constraint (inst
.operands
[0].reg
% 2 != 0,
7801 _("first transfer register must be even"));
7802 constraint (inst
.operands
[1].present
7803 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
7804 _("can only transfer two consecutive registers"));
7805 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
7806 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
7808 if (!inst
.operands
[1].present
)
7809 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
7811 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7812 register and the first register written; we have to diagnose
7813 overlap between the base and the second register written here. */
7815 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
7816 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
7817 as_warn (_("base register written back, and overlaps "
7818 "second transfer register"));
7820 if (!(inst
.instruction
& V4_STR_BIT
))
7822 /* For an index-register load, the index register must not overlap the
7823 destination (even if not write-back). */
7824 if (inst
.operands
[2].immisreg
7825 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
7826 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
7827 as_warn (_("index register overlaps transfer register"));
7829 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7830 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
7836 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
7837 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
7838 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
7839 || inst
.operands
[1].negative
7840 /* This can arise if the programmer has written
7842 or if they have mistakenly used a register name as the last
7845 It is very difficult to distinguish between these two cases
7846 because "rX" might actually be a label. ie the register
7847 name has been occluded by a symbol of the same name. So we
7848 just generate a general 'bad addressing mode' type error
7849 message and leave it up to the programmer to discover the
7850 true cause and fix their mistake. */
7851 || (inst
.operands
[1].reg
== REG_PC
),
7854 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7855 || inst
.reloc
.exp
.X_add_number
!= 0,
7856 _("offset must be zero in ARM encoding"));
7858 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
7860 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7861 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7862 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
7868 constraint (inst
.operands
[0].reg
% 2 != 0,
7869 _("even register required"));
7870 constraint (inst
.operands
[1].present
7871 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
7872 _("can only load two consecutive registers"));
7873 /* If op 1 were present and equal to PC, this function wouldn't
7874 have been called in the first place. */
7875 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
7877 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7878 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7884 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7885 if (!inst
.operands
[1].isreg
)
7886 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/FALSE
))
7888 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
7894 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7896 if (inst
.operands
[1].preind
)
7898 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7899 || inst
.reloc
.exp
.X_add_number
!= 0,
7900 _("this instruction requires a post-indexed address"));
7902 inst
.operands
[1].preind
= 0;
7903 inst
.operands
[1].postind
= 1;
7904 inst
.operands
[1].writeback
= 1;
7906 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7907 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
7910 /* Halfword and signed-byte load/store operations. */
7915 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
7916 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7917 if (!inst
.operands
[1].isreg
)
7918 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/TRUE
))
7920 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
7926 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7928 if (inst
.operands
[1].preind
)
7930 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7931 || inst
.reloc
.exp
.X_add_number
!= 0,
7932 _("this instruction requires a post-indexed address"));
7934 inst
.operands
[1].preind
= 0;
7935 inst
.operands
[1].postind
= 1;
7936 inst
.operands
[1].writeback
= 1;
7938 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7939 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
7942 /* Co-processor register load/store.
7943 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7947 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7948 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7949 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
7955 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7956 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7957 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
7958 && !(inst
.instruction
& 0x00400000))
7959 as_tsktsk (_("Rd and Rm should be different in mla"));
7961 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7962 inst
.instruction
|= inst
.operands
[1].reg
;
7963 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7964 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
7970 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7971 encode_arm_shifter_operand (1);
7974 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7981 top
= (inst
.instruction
& 0x00400000) != 0;
7982 constraint (top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
,
7983 _(":lower16: not allowed this instruction"));
7984 constraint (!top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
,
7985 _(":upper16: not allowed instruction"));
7986 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7987 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7989 imm
= inst
.reloc
.exp
.X_add_number
;
7990 /* The value is in two pieces: 0:11, 16:19. */
7991 inst
.instruction
|= (imm
& 0x00000fff);
7992 inst
.instruction
|= (imm
& 0x0000f000) << 4;
7996 static void do_vfp_nsyn_opcode (const char *);
7999 do_vfp_nsyn_mrs (void)
8001 if (inst
.operands
[0].isvec
)
8003 if (inst
.operands
[1].reg
!= 1)
8004 first_error (_("operand 1 must be FPSCR"));
8005 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
8006 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
8007 do_vfp_nsyn_opcode ("fmstat");
8009 else if (inst
.operands
[1].isvec
)
8010 do_vfp_nsyn_opcode ("fmrx");
8018 do_vfp_nsyn_msr (void)
8020 if (inst
.operands
[0].isvec
)
8021 do_vfp_nsyn_opcode ("fmxr");
8031 unsigned Rt
= inst
.operands
[0].reg
;
8033 if (thumb_mode
&& inst
.operands
[0].reg
== REG_SP
)
8035 inst
.error
= BAD_SP
;
8039 /* APSR_ sets isvec. All other refs to PC are illegal. */
8040 if (!inst
.operands
[0].isvec
&& inst
.operands
[0].reg
== REG_PC
)
8042 inst
.error
= BAD_PC
;
8046 if (inst
.operands
[1].reg
!= 1)
8047 first_error (_("operand 1 must be FPSCR"));
8049 inst
.instruction
|= (Rt
<< 12);
8055 unsigned Rt
= inst
.operands
[1].reg
;
8058 reject_bad_reg (Rt
);
8059 else if (Rt
== REG_PC
)
8061 inst
.error
= BAD_PC
;
8065 if (inst
.operands
[0].reg
!= 1)
8066 first_error (_("operand 0 must be FPSCR"));
8068 inst
.instruction
|= (Rt
<< 12);
8076 if (do_vfp_nsyn_mrs () == SUCCESS
)
8079 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
8080 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8082 if (inst
.operands
[1].isreg
)
8084 br
= inst
.operands
[1].reg
;
8085 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf000))
8086 as_bad (_("bad register for mrs"));
8090 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8091 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
8093 _("'APSR', 'CPSR' or 'SPSR' expected"));
8094 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
8097 inst
.instruction
|= br
;
8100 /* Two possible forms:
8101 "{C|S}PSR_<field>, Rm",
8102 "{C|S}PSR_f, #expression". */
8107 if (do_vfp_nsyn_msr () == SUCCESS
)
8110 inst
.instruction
|= inst
.operands
[0].imm
;
8111 if (inst
.operands
[1].isreg
)
8112 inst
.instruction
|= inst
.operands
[1].reg
;
8115 inst
.instruction
|= INST_IMMEDIATE
;
8116 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
8117 inst
.reloc
.pc_rel
= 0;
8124 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
8126 if (!inst
.operands
[2].present
)
8127 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
8128 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8129 inst
.instruction
|= inst
.operands
[1].reg
;
8130 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8132 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
8133 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
8134 as_tsktsk (_("Rd and Rm should be different in mul"));
8137 /* Long Multiply Parser
8138 UMULL RdLo, RdHi, Rm, Rs
8139 SMULL RdLo, RdHi, Rm, Rs
8140 UMLAL RdLo, RdHi, Rm, Rs
8141 SMLAL RdLo, RdHi, Rm, Rs. */
8146 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8147 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8148 inst
.instruction
|= inst
.operands
[2].reg
;
8149 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
8151 /* rdhi and rdlo must be different. */
8152 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
8153 as_tsktsk (_("rdhi and rdlo must be different"));
8155 /* rdhi, rdlo and rm must all be different before armv6. */
8156 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
8157 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
8158 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
8159 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8165 if (inst
.operands
[0].present
8166 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
8168 /* Architectural NOP hints are CPSR sets with no bits selected. */
8169 inst
.instruction
&= 0xf0000000;
8170 inst
.instruction
|= 0x0320f000;
8171 if (inst
.operands
[0].present
)
8172 inst
.instruction
|= inst
.operands
[0].imm
;
8176 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8177 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8178 Condition defaults to COND_ALWAYS.
8179 Error if Rd, Rn or Rm are R15. */
8184 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8185 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8186 inst
.instruction
|= inst
.operands
[2].reg
;
8187 if (inst
.operands
[3].present
)
8188 encode_arm_shift (3);
8191 /* ARM V6 PKHTB (Argument Parse). */
8196 if (!inst
.operands
[3].present
)
8198 /* If the shift specifier is omitted, turn the instruction
8199 into pkhbt rd, rm, rn. */
8200 inst
.instruction
&= 0xfff00010;
8201 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8202 inst
.instruction
|= inst
.operands
[1].reg
;
8203 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8207 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8208 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8209 inst
.instruction
|= inst
.operands
[2].reg
;
8210 encode_arm_shift (3);
8214 /* ARMv5TE: Preload-Cache
8215 MP Extensions: Preload for write
8219 Syntactically, like LDR with B=1, W=0, L=1. */
8224 constraint (!inst
.operands
[0].isreg
,
8225 _("'[' expected after PLD mnemonic"));
8226 constraint (inst
.operands
[0].postind
,
8227 _("post-indexed expression used in preload instruction"));
8228 constraint (inst
.operands
[0].writeback
,
8229 _("writeback used in preload instruction"));
8230 constraint (!inst
.operands
[0].preind
,
8231 _("unindexed addressing used in preload instruction"));
8232 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
8235 /* ARMv7: PLI <addr_mode> */
8239 constraint (!inst
.operands
[0].isreg
,
8240 _("'[' expected after PLI mnemonic"));
8241 constraint (inst
.operands
[0].postind
,
8242 _("post-indexed expression used in preload instruction"));
8243 constraint (inst
.operands
[0].writeback
,
8244 _("writeback used in preload instruction"));
8245 constraint (!inst
.operands
[0].preind
,
8246 _("unindexed addressing used in preload instruction"));
8247 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
8248 inst
.instruction
&= ~PRE_INDEX
;
8254 inst
.operands
[1] = inst
.operands
[0];
8255 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
8256 inst
.operands
[0].isreg
= 1;
8257 inst
.operands
[0].writeback
= 1;
8258 inst
.operands
[0].reg
= REG_SP
;
8262 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8263 word at the specified address and the following word
8265 Unconditionally executed.
8266 Error if Rn is R15. */
8271 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8272 if (inst
.operands
[0].writeback
)
8273 inst
.instruction
|= WRITE_BACK
;
8276 /* ARM V6 ssat (argument parse). */
8281 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8282 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
8283 inst
.instruction
|= inst
.operands
[2].reg
;
8285 if (inst
.operands
[3].present
)
8286 encode_arm_shift (3);
8289 /* ARM V6 usat (argument parse). */
8294 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8295 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
8296 inst
.instruction
|= inst
.operands
[2].reg
;
8298 if (inst
.operands
[3].present
)
8299 encode_arm_shift (3);
8302 /* ARM V6 ssat16 (argument parse). */
8307 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8308 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
8309 inst
.instruction
|= inst
.operands
[2].reg
;
8315 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8316 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
8317 inst
.instruction
|= inst
.operands
[2].reg
;
8320 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8321 preserving the other bits.
8323 setend <endian_specifier>, where <endian_specifier> is either
8329 if (inst
.operands
[0].imm
)
8330 inst
.instruction
|= 0x200;
8336 unsigned int Rm
= (inst
.operands
[1].present
8337 ? inst
.operands
[1].reg
8338 : inst
.operands
[0].reg
);
8340 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8341 inst
.instruction
|= Rm
;
8342 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
8344 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8345 inst
.instruction
|= SHIFT_BY_REG
;
8348 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
8354 inst
.reloc
.type
= BFD_RELOC_ARM_SMC
;
8355 inst
.reloc
.pc_rel
= 0;
8361 inst
.reloc
.type
= BFD_RELOC_ARM_HVC
;
8362 inst
.reloc
.pc_rel
= 0;
8368 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
8369 inst
.reloc
.pc_rel
= 0;
8372 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8373 SMLAxy{cond} Rd,Rm,Rs,Rn
8374 SMLAWy{cond} Rd,Rm,Rs,Rn
8375 Error if any register is R15. */
8380 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8381 inst
.instruction
|= inst
.operands
[1].reg
;
8382 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8383 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
8386 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8387 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8388 Error if any register is R15.
8389 Warning if Rdlo == Rdhi. */
8394 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8395 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8396 inst
.instruction
|= inst
.operands
[2].reg
;
8397 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
8399 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
8400 as_tsktsk (_("rdhi and rdlo must be different"));
8403 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8404 SMULxy{cond} Rd,Rm,Rs
8405 Error if any register is R15. */
8410 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8411 inst
.instruction
|= inst
.operands
[1].reg
;
8412 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8415 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8416 the same for both ARM and Thumb-2. */
8423 if (inst
.operands
[0].present
)
8425 reg
= inst
.operands
[0].reg
;
8426 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
8431 inst
.instruction
|= reg
<< 16;
8432 inst
.instruction
|= inst
.operands
[1].imm
;
8433 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
8434 inst
.instruction
|= WRITE_BACK
;
8437 /* ARM V6 strex (argument parse). */
8442 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
8443 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
8444 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
8445 || inst
.operands
[2].negative
8446 /* See comment in do_ldrex(). */
8447 || (inst
.operands
[2].reg
== REG_PC
),
8450 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8451 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
8453 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8454 || inst
.reloc
.exp
.X_add_number
!= 0,
8455 _("offset must be zero in ARM encoding"));
8457 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8458 inst
.instruction
|= inst
.operands
[1].reg
;
8459 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8460 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8466 constraint (inst
.operands
[1].reg
% 2 != 0,
8467 _("even register required"));
8468 constraint (inst
.operands
[2].present
8469 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
8470 _("can only store two consecutive registers"));
8471 /* If op 2 were present and equal to PC, this function wouldn't
8472 have been called in the first place. */
8473 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
8475 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8476 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
8477 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
8480 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8481 inst
.instruction
|= inst
.operands
[1].reg
;
8482 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
8485 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8486 extends it to 32-bits, and adds the result to a value in another
8487 register. You can specify a rotation by 0, 8, 16, or 24 bits
8488 before extracting the 16-bit value.
8489 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8490 Condition defaults to COND_ALWAYS.
8491 Error if any register uses R15. */
8496 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8497 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8498 inst
.instruction
|= inst
.operands
[2].reg
;
8499 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
8504 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8505 Condition defaults to COND_ALWAYS.
8506 Error if any register uses R15. */
8511 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8512 inst
.instruction
|= inst
.operands
[1].reg
;
8513 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
8516 /* VFP instructions. In a logical order: SP variant first, monad
8517 before dyad, arithmetic then move then load/store. */
8520 do_vfp_sp_monadic (void)
8522 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8523 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
8527 do_vfp_sp_dyadic (void)
8529 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8530 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
8531 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
8535 do_vfp_sp_compare_z (void)
8537 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8541 do_vfp_dp_sp_cvt (void)
8543 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8544 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
8548 do_vfp_sp_dp_cvt (void)
8550 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8551 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
8555 do_vfp_reg_from_sp (void)
8557 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8558 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
8562 do_vfp_reg2_from_sp2 (void)
8564 constraint (inst
.operands
[2].imm
!= 2,
8565 _("only two consecutive VFP SP registers allowed here"));
8566 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8567 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8568 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
8572 do_vfp_sp_from_reg (void)
8574 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
8575 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8579 do_vfp_sp2_from_reg2 (void)
8581 constraint (inst
.operands
[0].imm
!= 2,
8582 _("only two consecutive VFP SP registers allowed here"));
8583 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
8584 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8585 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8589 do_vfp_sp_ldst (void)
8591 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8592 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
8596 do_vfp_dp_ldst (void)
8598 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8599 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
8604 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
8606 if (inst
.operands
[0].writeback
)
8607 inst
.instruction
|= WRITE_BACK
;
8609 constraint (ldstm_type
!= VFP_LDSTMIA
,
8610 _("this addressing mode requires base-register writeback"));
8611 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8612 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
8613 inst
.instruction
|= inst
.operands
[1].imm
;
8617 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
8621 if (inst
.operands
[0].writeback
)
8622 inst
.instruction
|= WRITE_BACK
;
8624 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
8625 _("this addressing mode requires base-register writeback"));
8627 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8628 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8630 count
= inst
.operands
[1].imm
<< 1;
8631 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
8634 inst
.instruction
|= count
;
8638 do_vfp_sp_ldstmia (void)
8640 vfp_sp_ldstm (VFP_LDSTMIA
);
8644 do_vfp_sp_ldstmdb (void)
8646 vfp_sp_ldstm (VFP_LDSTMDB
);
8650 do_vfp_dp_ldstmia (void)
8652 vfp_dp_ldstm (VFP_LDSTMIA
);
8656 do_vfp_dp_ldstmdb (void)
8658 vfp_dp_ldstm (VFP_LDSTMDB
);
8662 do_vfp_xp_ldstmia (void)
8664 vfp_dp_ldstm (VFP_LDSTMIAX
);
8668 do_vfp_xp_ldstmdb (void)
8670 vfp_dp_ldstm (VFP_LDSTMDBX
);
8674 do_vfp_dp_rd_rm (void)
8676 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8677 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
8681 do_vfp_dp_rn_rd (void)
8683 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
8684 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8688 do_vfp_dp_rd_rn (void)
8690 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8691 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
8695 do_vfp_dp_rd_rn_rm (void)
8697 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8698 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
8699 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
8705 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8709 do_vfp_dp_rm_rd_rn (void)
8711 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
8712 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8713 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
8716 /* VFPv3 instructions. */
8718 do_vfp_sp_const (void)
8720 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8721 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
8722 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
8726 do_vfp_dp_const (void)
8728 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8729 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
8730 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
8734 vfp_conv (int srcsize
)
8736 unsigned immbits
= srcsize
- inst
.operands
[1].imm
;
8737 inst
.instruction
|= (immbits
& 1) << 5;
8738 inst
.instruction
|= (immbits
>> 1);
8742 do_vfp_sp_conv_16 (void)
8744 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8749 do_vfp_dp_conv_16 (void)
8751 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8756 do_vfp_sp_conv_32 (void)
8758 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8763 do_vfp_dp_conv_32 (void)
8765 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8769 /* FPA instructions. Also in a logical order. */
8774 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8775 inst
.instruction
|= inst
.operands
[1].reg
;
8779 do_fpa_ldmstm (void)
8781 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8782 switch (inst
.operands
[1].imm
)
8784 case 1: inst
.instruction
|= CP_T_X
; break;
8785 case 2: inst
.instruction
|= CP_T_Y
; break;
8786 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
8791 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
8793 /* The instruction specified "ea" or "fd", so we can only accept
8794 [Rn]{!}. The instruction does not really support stacking or
8795 unstacking, so we have to emulate these by setting appropriate
8796 bits and offsets. */
8797 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8798 || inst
.reloc
.exp
.X_add_number
!= 0,
8799 _("this instruction does not support indexing"));
8801 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
8802 inst
.reloc
.exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
8804 if (!(inst
.instruction
& INDEX_UP
))
8805 inst
.reloc
.exp
.X_add_number
= -inst
.reloc
.exp
.X_add_number
;
8807 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
8809 inst
.operands
[2].preind
= 0;
8810 inst
.operands
[2].postind
= 1;
8814 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
8817 /* iWMMXt instructions: strictly in alphabetical order. */
8820 do_iwmmxt_tandorc (void)
8822 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
8826 do_iwmmxt_textrc (void)
8828 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8829 inst
.instruction
|= inst
.operands
[1].imm
;
8833 do_iwmmxt_textrm (void)
8835 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8836 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8837 inst
.instruction
|= inst
.operands
[2].imm
;
8841 do_iwmmxt_tinsr (void)
8843 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8844 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8845 inst
.instruction
|= inst
.operands
[2].imm
;
8849 do_iwmmxt_tmia (void)
8851 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
8852 inst
.instruction
|= inst
.operands
[1].reg
;
8853 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
8857 do_iwmmxt_waligni (void)
8859 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8860 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8861 inst
.instruction
|= inst
.operands
[2].reg
;
8862 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
8866 do_iwmmxt_wmerge (void)
8868 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8869 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8870 inst
.instruction
|= inst
.operands
[2].reg
;
8871 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
8875 do_iwmmxt_wmov (void)
8877 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8878 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8879 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8880 inst
.instruction
|= inst
.operands
[1].reg
;
8884 do_iwmmxt_wldstbh (void)
8887 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8889 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
8891 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
8892 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
8896 do_iwmmxt_wldstw (void)
8898 /* RIWR_RIWC clears .isreg for a control register. */
8899 if (!inst
.operands
[0].isreg
)
8901 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
8902 inst
.instruction
|= 0xf0000000;
8905 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8906 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
8910 do_iwmmxt_wldstd (void)
8912 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8913 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
8914 && inst
.operands
[1].immisreg
)
8916 inst
.instruction
&= ~0x1a000ff;
8917 inst
.instruction
|= (0xf << 28);
8918 if (inst
.operands
[1].preind
)
8919 inst
.instruction
|= PRE_INDEX
;
8920 if (!inst
.operands
[1].negative
)
8921 inst
.instruction
|= INDEX_UP
;
8922 if (inst
.operands
[1].writeback
)
8923 inst
.instruction
|= WRITE_BACK
;
8924 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8925 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
8926 inst
.instruction
|= inst
.operands
[1].imm
;
8929 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
8933 do_iwmmxt_wshufh (void)
8935 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8936 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8937 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
8938 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
8942 do_iwmmxt_wzero (void)
8944 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8945 inst
.instruction
|= inst
.operands
[0].reg
;
8946 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8947 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8951 do_iwmmxt_wrwrwr_or_imm5 (void)
8953 if (inst
.operands
[2].isreg
)
8956 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
8957 _("immediate operand requires iWMMXt2"));
8959 if (inst
.operands
[2].imm
== 0)
8961 switch ((inst
.instruction
>> 20) & 0xf)
8967 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8968 inst
.operands
[2].imm
= 16;
8969 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
8975 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8976 inst
.operands
[2].imm
= 32;
8977 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
8984 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8986 wrn
= (inst
.instruction
>> 16) & 0xf;
8987 inst
.instruction
&= 0xff0fff0f;
8988 inst
.instruction
|= wrn
;
8989 /* Bail out here; the instruction is now assembled. */
8994 /* Map 32 -> 0, etc. */
8995 inst
.operands
[2].imm
&= 0x1f;
8996 inst
.instruction
|= (0xf << 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
9000 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9001 operations first, then control, shift, and load/store. */
9003 /* Insns like "foo X,Y,Z". */
9006 do_mav_triple (void)
9008 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9009 inst
.instruction
|= inst
.operands
[1].reg
;
9010 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9013 /* Insns like "foo W,X,Y,Z".
9014 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9019 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
9020 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9021 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9022 inst
.instruction
|= inst
.operands
[3].reg
;
9025 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9029 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9032 /* Maverick shift immediate instructions.
9033 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9034 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9039 int imm
= inst
.operands
[2].imm
;
9041 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9042 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9044 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9045 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9046 Bit 4 should be 0. */
9047 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
9049 inst
.instruction
|= imm
;
9052 /* XScale instructions. Also sorted arithmetic before move. */
9054 /* Xscale multiply-accumulate (argument parse)
9057 MIAxycc acc0,Rm,Rs. */
9062 inst
.instruction
|= inst
.operands
[1].reg
;
9063 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9066 /* Xscale move-accumulator-register (argument parse)
9068 MARcc acc0,RdLo,RdHi. */
9073 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9074 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9077 /* Xscale move-register-accumulator (argument parse)
9079 MRAcc RdLo,RdHi,acc0. */
9084 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
9085 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9086 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9089 /* Encoding functions relevant only to Thumb. */
9091 /* inst.operands[i] is a shifted-register operand; encode
9092 it into inst.instruction in the format used by Thumb32. */
9095 encode_thumb32_shifted_operand (int i
)
9097 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
9098 unsigned int shift
= inst
.operands
[i
].shift_kind
;
9100 constraint (inst
.operands
[i
].immisreg
,
9101 _("shift by register not allowed in thumb mode"));
9102 inst
.instruction
|= inst
.operands
[i
].reg
;
9103 if (shift
== SHIFT_RRX
)
9104 inst
.instruction
|= SHIFT_ROR
<< 4;
9107 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9108 _("expression too complex"));
9110 constraint (value
> 32
9111 || (value
== 32 && (shift
== SHIFT_LSL
9112 || shift
== SHIFT_ROR
)),
9113 _("shift expression is too large"));
9117 else if (value
== 32)
9120 inst
.instruction
|= shift
<< 4;
9121 inst
.instruction
|= (value
& 0x1c) << 10;
9122 inst
.instruction
|= (value
& 0x03) << 6;
9127 /* inst.operands[i] was set up by parse_address. Encode it into a
9128 Thumb32 format load or store instruction. Reject forms that cannot
9129 be used with such instructions. If is_t is true, reject forms that
9130 cannot be used with a T instruction; if is_d is true, reject forms
9131 that cannot be used with a D instruction. If it is a store insn,
9135 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
9137 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
9139 constraint (!inst
.operands
[i
].isreg
,
9140 _("Instruction does not support =N addresses"));
9142 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
9143 if (inst
.operands
[i
].immisreg
)
9145 constraint (is_pc
, BAD_PC_ADDRESSING
);
9146 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
9147 constraint (inst
.operands
[i
].negative
,
9148 _("Thumb does not support negative register indexing"));
9149 constraint (inst
.operands
[i
].postind
,
9150 _("Thumb does not support register post-indexing"));
9151 constraint (inst
.operands
[i
].writeback
,
9152 _("Thumb does not support register indexing with writeback"));
9153 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
9154 _("Thumb supports only LSL in shifted register indexing"));
9156 inst
.instruction
|= inst
.operands
[i
].imm
;
9157 if (inst
.operands
[i
].shifted
)
9159 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9160 _("expression too complex"));
9161 constraint (inst
.reloc
.exp
.X_add_number
< 0
9162 || inst
.reloc
.exp
.X_add_number
> 3,
9163 _("shift out of range"));
9164 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
9166 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9168 else if (inst
.operands
[i
].preind
)
9170 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
9171 constraint (is_t
&& inst
.operands
[i
].writeback
,
9172 _("cannot use writeback with this instruction"));
9173 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0)
9174 && !inst
.reloc
.pc_rel
, BAD_PC_ADDRESSING
);
9178 inst
.instruction
|= 0x01000000;
9179 if (inst
.operands
[i
].writeback
)
9180 inst
.instruction
|= 0x00200000;
9184 inst
.instruction
|= 0x00000c00;
9185 if (inst
.operands
[i
].writeback
)
9186 inst
.instruction
|= 0x00000100;
9188 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
9190 else if (inst
.operands
[i
].postind
)
9192 gas_assert (inst
.operands
[i
].writeback
);
9193 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
9194 constraint (is_t
, _("cannot use post-indexing with this instruction"));
9197 inst
.instruction
|= 0x00200000;
9199 inst
.instruction
|= 0x00000900;
9200 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
9202 else /* unindexed - only for coprocessor */
9203 inst
.error
= _("instruction does not accept unindexed addressing");
9206 /* Table of Thumb instructions which exist in both 16- and 32-bit
9207 encodings (the latter only in post-V6T2 cores). The index is the
9208 value used in the insns table below. When there is more than one
9209 possible 16-bit encoding for the instruction, this table always
9211 Also contains several pseudo-instructions used during relaxation. */
9212 #define T16_32_TAB \
9213 X(_adc, 4140, eb400000), \
9214 X(_adcs, 4140, eb500000), \
9215 X(_add, 1c00, eb000000), \
9216 X(_adds, 1c00, eb100000), \
9217 X(_addi, 0000, f1000000), \
9218 X(_addis, 0000, f1100000), \
9219 X(_add_pc,000f, f20f0000), \
9220 X(_add_sp,000d, f10d0000), \
9221 X(_adr, 000f, f20f0000), \
9222 X(_and, 4000, ea000000), \
9223 X(_ands, 4000, ea100000), \
9224 X(_asr, 1000, fa40f000), \
9225 X(_asrs, 1000, fa50f000), \
9226 X(_b, e000, f000b000), \
9227 X(_bcond, d000, f0008000), \
9228 X(_bic, 4380, ea200000), \
9229 X(_bics, 4380, ea300000), \
9230 X(_cmn, 42c0, eb100f00), \
9231 X(_cmp, 2800, ebb00f00), \
9232 X(_cpsie, b660, f3af8400), \
9233 X(_cpsid, b670, f3af8600), \
9234 X(_cpy, 4600, ea4f0000), \
9235 X(_dec_sp,80dd, f1ad0d00), \
9236 X(_eor, 4040, ea800000), \
9237 X(_eors, 4040, ea900000), \
9238 X(_inc_sp,00dd, f10d0d00), \
9239 X(_ldmia, c800, e8900000), \
9240 X(_ldr, 6800, f8500000), \
9241 X(_ldrb, 7800, f8100000), \
9242 X(_ldrh, 8800, f8300000), \
9243 X(_ldrsb, 5600, f9100000), \
9244 X(_ldrsh, 5e00, f9300000), \
9245 X(_ldr_pc,4800, f85f0000), \
9246 X(_ldr_pc2,4800, f85f0000), \
9247 X(_ldr_sp,9800, f85d0000), \
9248 X(_lsl, 0000, fa00f000), \
9249 X(_lsls, 0000, fa10f000), \
9250 X(_lsr, 0800, fa20f000), \
9251 X(_lsrs, 0800, fa30f000), \
9252 X(_mov, 2000, ea4f0000), \
9253 X(_movs, 2000, ea5f0000), \
9254 X(_mul, 4340, fb00f000), \
9255 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9256 X(_mvn, 43c0, ea6f0000), \
9257 X(_mvns, 43c0, ea7f0000), \
9258 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9259 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9260 X(_orr, 4300, ea400000), \
9261 X(_orrs, 4300, ea500000), \
9262 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9263 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9264 X(_rev, ba00, fa90f080), \
9265 X(_rev16, ba40, fa90f090), \
9266 X(_revsh, bac0, fa90f0b0), \
9267 X(_ror, 41c0, fa60f000), \
9268 X(_rors, 41c0, fa70f000), \
9269 X(_sbc, 4180, eb600000), \
9270 X(_sbcs, 4180, eb700000), \
9271 X(_stmia, c000, e8800000), \
9272 X(_str, 6000, f8400000), \
9273 X(_strb, 7000, f8000000), \
9274 X(_strh, 8000, f8200000), \
9275 X(_str_sp,9000, f84d0000), \
9276 X(_sub, 1e00, eba00000), \
9277 X(_subs, 1e00, ebb00000), \
9278 X(_subi, 8000, f1a00000), \
9279 X(_subis, 8000, f1b00000), \
9280 X(_sxtb, b240, fa4ff080), \
9281 X(_sxth, b200, fa0ff080), \
9282 X(_tst, 4200, ea100f00), \
9283 X(_uxtb, b2c0, fa5ff080), \
9284 X(_uxth, b280, fa1ff080), \
9285 X(_nop, bf00, f3af8000), \
9286 X(_yield, bf10, f3af8001), \
9287 X(_wfe, bf20, f3af8002), \
9288 X(_wfi, bf30, f3af8003), \
9289 X(_sev, bf40, f3af8004),
9291 /* To catch errors in encoding functions, the codes are all offset by
9292 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9293 as 16-bit instructions. */
9294 #define X(a,b,c) T_MNEM##a
9295 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
9298 #define X(a,b,c) 0x##b
9299 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
9300 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9303 #define X(a,b,c) 0x##c
9304 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
9305 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9306 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9310 /* Thumb instruction encoders, in alphabetical order. */
9315 do_t_add_sub_w (void)
9319 Rd
= inst
.operands
[0].reg
;
9320 Rn
= inst
.operands
[1].reg
;
9322 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9323 is the SP-{plus,minus}-immediate form of the instruction. */
9325 constraint (Rd
== REG_PC
, BAD_PC
);
9327 reject_bad_reg (Rd
);
9329 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
9330 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
9333 /* Parse an add or subtract instruction. We get here with inst.instruction
9334 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9341 Rd
= inst
.operands
[0].reg
;
9342 Rs
= (inst
.operands
[1].present
9343 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9344 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9347 set_it_insn_type_last ();
9355 flags
= (inst
.instruction
== T_MNEM_adds
9356 || inst
.instruction
== T_MNEM_subs
);
9358 narrow
= !in_it_block ();
9360 narrow
= in_it_block ();
9361 if (!inst
.operands
[2].isreg
)
9365 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
9367 add
= (inst
.instruction
== T_MNEM_add
9368 || inst
.instruction
== T_MNEM_adds
);
9370 if (inst
.size_req
!= 4)
9372 /* Attempt to use a narrow opcode, with relaxation if
9374 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
9375 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
9376 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
9377 opcode
= T_MNEM_add_sp
;
9378 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
9379 opcode
= T_MNEM_add_pc
;
9380 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
9383 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
9385 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
9389 inst
.instruction
= THUMB_OP16(opcode
);
9390 inst
.instruction
|= (Rd
<< 4) | Rs
;
9391 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9392 if (inst
.size_req
!= 2)
9393 inst
.relax
= opcode
;
9396 constraint (inst
.size_req
== 2, BAD_HIREG
);
9398 if (inst
.size_req
== 4
9399 || (inst
.size_req
!= 2 && !opcode
))
9403 constraint (add
, BAD_PC
);
9404 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
9405 _("only SUBS PC, LR, #const allowed"));
9406 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9407 _("expression too complex"));
9408 constraint (inst
.reloc
.exp
.X_add_number
< 0
9409 || inst
.reloc
.exp
.X_add_number
> 0xff,
9410 _("immediate value out of range"));
9411 inst
.instruction
= T2_SUBS_PC_LR
9412 | inst
.reloc
.exp
.X_add_number
;
9413 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9416 else if (Rs
== REG_PC
)
9418 /* Always use addw/subw. */
9419 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
9420 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
9424 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9425 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
9428 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9430 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_IMM
;
9432 inst
.instruction
|= Rd
<< 8;
9433 inst
.instruction
|= Rs
<< 16;
9438 Rn
= inst
.operands
[2].reg
;
9439 /* See if we can do this with a 16-bit instruction. */
9440 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
9442 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
9447 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
9448 || inst
.instruction
== T_MNEM_add
)
9451 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
9455 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
9457 /* Thumb-1 cores (except v6-M) require at least one high
9458 register in a narrow non flag setting add. */
9459 if (Rd
> 7 || Rn
> 7
9460 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
9461 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
9468 inst
.instruction
= T_OPCODE_ADD_HI
;
9469 inst
.instruction
|= (Rd
& 8) << 4;
9470 inst
.instruction
|= (Rd
& 7);
9471 inst
.instruction
|= Rn
<< 3;
9477 constraint (Rd
== REG_PC
, BAD_PC
);
9478 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
9479 constraint (Rs
== REG_PC
, BAD_PC
);
9480 reject_bad_reg (Rn
);
9482 /* If we get here, it can't be done in 16 bits. */
9483 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
9484 _("shift must be constant"));
9485 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9486 inst
.instruction
|= Rd
<< 8;
9487 inst
.instruction
|= Rs
<< 16;
9488 encode_thumb32_shifted_operand (2);
9493 constraint (inst
.instruction
== T_MNEM_adds
9494 || inst
.instruction
== T_MNEM_subs
,
9497 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
9499 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
9500 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
9503 inst
.instruction
= (inst
.instruction
== T_MNEM_add
9505 inst
.instruction
|= (Rd
<< 4) | Rs
;
9506 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9510 Rn
= inst
.operands
[2].reg
;
9511 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
9513 /* We now have Rd, Rs, and Rn set to registers. */
9514 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
9516 /* Can't do this for SUB. */
9517 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
9518 inst
.instruction
= T_OPCODE_ADD_HI
;
9519 inst
.instruction
|= (Rd
& 8) << 4;
9520 inst
.instruction
|= (Rd
& 7);
9522 inst
.instruction
|= Rn
<< 3;
9524 inst
.instruction
|= Rs
<< 3;
9526 constraint (1, _("dest must overlap one source register"));
9530 inst
.instruction
= (inst
.instruction
== T_MNEM_add
9531 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
9532 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
9542 Rd
= inst
.operands
[0].reg
;
9543 reject_bad_reg (Rd
);
9545 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
9547 /* Defer to section relaxation. */
9548 inst
.relax
= inst
.instruction
;
9549 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9550 inst
.instruction
|= Rd
<< 4;
9552 else if (unified_syntax
&& inst
.size_req
!= 2)
9554 /* Generate a 32-bit opcode. */
9555 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9556 inst
.instruction
|= Rd
<< 8;
9557 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_PC12
;
9558 inst
.reloc
.pc_rel
= 1;
9562 /* Generate a 16-bit opcode. */
9563 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9564 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9565 inst
.reloc
.exp
.X_add_number
-= 4; /* PC relative adjust. */
9566 inst
.reloc
.pc_rel
= 1;
9568 inst
.instruction
|= Rd
<< 4;
9572 /* Arithmetic instructions for which there is just one 16-bit
9573 instruction encoding, and it allows only two low registers.
9574 For maximal compatibility with ARM syntax, we allow three register
9575 operands even when Thumb-32 instructions are not available, as long
9576 as the first two are identical. For instance, both "sbc r0,r1" and
9577 "sbc r0,r0,r1" are allowed. */
9583 Rd
= inst
.operands
[0].reg
;
9584 Rs
= (inst
.operands
[1].present
9585 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9586 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9587 Rn
= inst
.operands
[2].reg
;
9589 reject_bad_reg (Rd
);
9590 reject_bad_reg (Rs
);
9591 if (inst
.operands
[2].isreg
)
9592 reject_bad_reg (Rn
);
9596 if (!inst
.operands
[2].isreg
)
9598 /* For an immediate, we always generate a 32-bit opcode;
9599 section relaxation will shrink it later if possible. */
9600 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9601 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9602 inst
.instruction
|= Rd
<< 8;
9603 inst
.instruction
|= Rs
<< 16;
9604 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9610 /* See if we can do this with a 16-bit instruction. */
9611 if (THUMB_SETS_FLAGS (inst
.instruction
))
9612 narrow
= !in_it_block ();
9614 narrow
= in_it_block ();
9616 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
9618 if (inst
.operands
[2].shifted
)
9620 if (inst
.size_req
== 4)
9626 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9627 inst
.instruction
|= Rd
;
9628 inst
.instruction
|= Rn
<< 3;
9632 /* If we get here, it can't be done in 16 bits. */
9633 constraint (inst
.operands
[2].shifted
9634 && inst
.operands
[2].immisreg
,
9635 _("shift must be constant"));
9636 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9637 inst
.instruction
|= Rd
<< 8;
9638 inst
.instruction
|= Rs
<< 16;
9639 encode_thumb32_shifted_operand (2);
9644 /* On its face this is a lie - the instruction does set the
9645 flags. However, the only supported mnemonic in this mode
9647 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9649 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
9650 _("unshifted register required"));
9651 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
9652 constraint (Rd
!= Rs
,
9653 _("dest and source1 must be the same register"));
9655 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9656 inst
.instruction
|= Rd
;
9657 inst
.instruction
|= Rn
<< 3;
9661 /* Similarly, but for instructions where the arithmetic operation is
9662 commutative, so we can allow either of them to be different from
9663 the destination operand in a 16-bit instruction. For instance, all
9664 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9671 Rd
= inst
.operands
[0].reg
;
9672 Rs
= (inst
.operands
[1].present
9673 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9674 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9675 Rn
= inst
.operands
[2].reg
;
9677 reject_bad_reg (Rd
);
9678 reject_bad_reg (Rs
);
9679 if (inst
.operands
[2].isreg
)
9680 reject_bad_reg (Rn
);
9684 if (!inst
.operands
[2].isreg
)
9686 /* For an immediate, we always generate a 32-bit opcode;
9687 section relaxation will shrink it later if possible. */
9688 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9689 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9690 inst
.instruction
|= Rd
<< 8;
9691 inst
.instruction
|= Rs
<< 16;
9692 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9698 /* See if we can do this with a 16-bit instruction. */
9699 if (THUMB_SETS_FLAGS (inst
.instruction
))
9700 narrow
= !in_it_block ();
9702 narrow
= in_it_block ();
9704 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
9706 if (inst
.operands
[2].shifted
)
9708 if (inst
.size_req
== 4)
9715 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9716 inst
.instruction
|= Rd
;
9717 inst
.instruction
|= Rn
<< 3;
9722 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9723 inst
.instruction
|= Rd
;
9724 inst
.instruction
|= Rs
<< 3;
9729 /* If we get here, it can't be done in 16 bits. */
9730 constraint (inst
.operands
[2].shifted
9731 && inst
.operands
[2].immisreg
,
9732 _("shift must be constant"));
9733 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9734 inst
.instruction
|= Rd
<< 8;
9735 inst
.instruction
|= Rs
<< 16;
9736 encode_thumb32_shifted_operand (2);
9741 /* On its face this is a lie - the instruction does set the
9742 flags. However, the only supported mnemonic in this mode
9744 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9746 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
9747 _("unshifted register required"));
9748 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
9750 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9751 inst
.instruction
|= Rd
;
9754 inst
.instruction
|= Rn
<< 3;
9756 inst
.instruction
|= Rs
<< 3;
9758 constraint (1, _("dest must overlap one source register"));
9765 if (inst
.operands
[0].present
)
9767 constraint ((inst
.instruction
& 0xf0) != 0x40
9768 && inst
.operands
[0].imm
> 0xf
9769 && inst
.operands
[0].imm
< 0x0,
9770 _("bad barrier type"));
9771 inst
.instruction
|= inst
.operands
[0].imm
;
9774 inst
.instruction
|= 0xf;
9781 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9782 constraint (msb
> 32, _("bit-field extends past end of register"));
9783 /* The instruction encoding stores the LSB and MSB,
9784 not the LSB and width. */
9785 Rd
= inst
.operands
[0].reg
;
9786 reject_bad_reg (Rd
);
9787 inst
.instruction
|= Rd
<< 8;
9788 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
9789 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
9790 inst
.instruction
|= msb
- 1;
9799 Rd
= inst
.operands
[0].reg
;
9800 reject_bad_reg (Rd
);
9802 /* #0 in second position is alternative syntax for bfc, which is
9803 the same instruction but with REG_PC in the Rm field. */
9804 if (!inst
.operands
[1].isreg
)
9808 Rn
= inst
.operands
[1].reg
;
9809 reject_bad_reg (Rn
);
9812 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9813 constraint (msb
> 32, _("bit-field extends past end of register"));
9814 /* The instruction encoding stores the LSB and MSB,
9815 not the LSB and width. */
9816 inst
.instruction
|= Rd
<< 8;
9817 inst
.instruction
|= Rn
<< 16;
9818 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
9819 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
9820 inst
.instruction
|= msb
- 1;
9828 Rd
= inst
.operands
[0].reg
;
9829 Rn
= inst
.operands
[1].reg
;
9831 reject_bad_reg (Rd
);
9832 reject_bad_reg (Rn
);
9834 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9835 _("bit-field extends past end of register"));
9836 inst
.instruction
|= Rd
<< 8;
9837 inst
.instruction
|= Rn
<< 16;
9838 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
9839 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
9840 inst
.instruction
|= inst
.operands
[3].imm
- 1;
9843 /* ARM V5 Thumb BLX (argument parse)
9844 BLX <target_addr> which is BLX(1)
9845 BLX <Rm> which is BLX(2)
9846 Unfortunately, there are two different opcodes for this mnemonic.
9847 So, the insns[].value is not used, and the code here zaps values
9848 into inst.instruction.
9850 ??? How to take advantage of the additional two bits of displacement
9851 available in Thumb32 mode? Need new relocation? */
9856 set_it_insn_type_last ();
9858 if (inst
.operands
[0].isreg
)
9860 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9861 /* We have a register, so this is BLX(2). */
9862 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
9866 /* No register. This must be BLX(1). */
9867 inst
.instruction
= 0xf000e800;
9868 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
9880 set_it_insn_type (IF_INSIDE_IT_LAST_INSN
);
9884 /* Conditional branches inside IT blocks are encoded as unconditional
9891 if (cond
!= COND_ALWAYS
)
9892 opcode
= T_MNEM_bcond
;
9894 opcode
= inst
.instruction
;
9897 && (inst
.size_req
== 4
9898 || (inst
.size_req
!= 2
9899 && (inst
.operands
[0].hasreloc
9900 || inst
.reloc
.exp
.X_op
== O_constant
))))
9902 inst
.instruction
= THUMB_OP32(opcode
);
9903 if (cond
== COND_ALWAYS
)
9904 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
9907 gas_assert (cond
!= 0xF);
9908 inst
.instruction
|= cond
<< 22;
9909 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
9914 inst
.instruction
= THUMB_OP16(opcode
);
9915 if (cond
== COND_ALWAYS
)
9916 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
9919 inst
.instruction
|= cond
<< 8;
9920 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
9922 /* Allow section relaxation. */
9923 if (unified_syntax
&& inst
.size_req
!= 2)
9924 inst
.relax
= opcode
;
9926 inst
.reloc
.type
= reloc
;
9927 inst
.reloc
.pc_rel
= 1;
9933 constraint (inst
.cond
!= COND_ALWAYS
,
9934 _("instruction is always unconditional"));
9935 if (inst
.operands
[0].present
)
9937 constraint (inst
.operands
[0].imm
> 255,
9938 _("immediate value out of range"));
9939 inst
.instruction
|= inst
.operands
[0].imm
;
9940 set_it_insn_type (NEUTRAL_IT_INSN
);
9945 do_t_branch23 (void)
9947 set_it_insn_type_last ();
9948 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
9950 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9951 this file. We used to simply ignore the PLT reloc type here --
9952 the branch encoding is now needed to deal with TLSCALL relocs.
9953 So if we see a PLT reloc now, put it back to how it used to be to
9954 keep the preexisting behaviour. */
9955 if (inst
.reloc
.type
== BFD_RELOC_ARM_PLT32
)
9956 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
9958 #if defined(OBJ_COFF)
9959 /* If the destination of the branch is a defined symbol which does not have
9960 the THUMB_FUNC attribute, then we must be calling a function which has
9961 the (interfacearm) attribute. We look for the Thumb entry point to that
9962 function and change the branch to refer to that function instead. */
9963 if ( inst
.reloc
.exp
.X_op
== O_symbol
9964 && inst
.reloc
.exp
.X_add_symbol
!= NULL
9965 && S_IS_DEFINED (inst
.reloc
.exp
.X_add_symbol
)
9966 && ! THUMB_IS_FUNC (inst
.reloc
.exp
.X_add_symbol
))
9967 inst
.reloc
.exp
.X_add_symbol
=
9968 find_real_start (inst
.reloc
.exp
.X_add_symbol
);
9975 set_it_insn_type_last ();
9976 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
9977 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9978 should cause the alignment to be checked once it is known. This is
9979 because BX PC only works if the instruction is word aligned. */
9987 set_it_insn_type_last ();
9988 Rm
= inst
.operands
[0].reg
;
9989 reject_bad_reg (Rm
);
9990 inst
.instruction
|= Rm
<< 16;
9999 Rd
= inst
.operands
[0].reg
;
10000 Rm
= inst
.operands
[1].reg
;
10002 reject_bad_reg (Rd
);
10003 reject_bad_reg (Rm
);
10005 inst
.instruction
|= Rd
<< 8;
10006 inst
.instruction
|= Rm
<< 16;
10007 inst
.instruction
|= Rm
;
10013 set_it_insn_type (OUTSIDE_IT_INSN
);
10014 inst
.instruction
|= inst
.operands
[0].imm
;
10020 set_it_insn_type (OUTSIDE_IT_INSN
);
10022 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
10023 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
10025 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
10026 inst
.instruction
= 0xf3af8000;
10027 inst
.instruction
|= imod
<< 9;
10028 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
10029 if (inst
.operands
[1].present
)
10030 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
10034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
10035 && (inst
.operands
[0].imm
& 4),
10036 _("selected processor does not support 'A' form "
10037 "of this instruction"));
10038 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
10039 _("Thumb does not support the 2-argument "
10040 "form of this instruction"));
10041 inst
.instruction
|= inst
.operands
[0].imm
;
10045 /* THUMB CPY instruction (argument parse). */
10050 if (inst
.size_req
== 4)
10052 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
10053 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10054 inst
.instruction
|= inst
.operands
[1].reg
;
10058 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
10059 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
10060 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10067 set_it_insn_type (OUTSIDE_IT_INSN
);
10068 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
10069 inst
.instruction
|= inst
.operands
[0].reg
;
10070 inst
.reloc
.pc_rel
= 1;
10071 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
10077 inst
.instruction
|= inst
.operands
[0].imm
;
10083 unsigned Rd
, Rn
, Rm
;
10085 Rd
= inst
.operands
[0].reg
;
10086 Rn
= (inst
.operands
[1].present
10087 ? inst
.operands
[1].reg
: Rd
);
10088 Rm
= inst
.operands
[2].reg
;
10090 reject_bad_reg (Rd
);
10091 reject_bad_reg (Rn
);
10092 reject_bad_reg (Rm
);
10094 inst
.instruction
|= Rd
<< 8;
10095 inst
.instruction
|= Rn
<< 16;
10096 inst
.instruction
|= Rm
;
10102 if (unified_syntax
&& inst
.size_req
== 4)
10103 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10105 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10111 unsigned int cond
= inst
.operands
[0].imm
;
10113 set_it_insn_type (IT_INSN
);
10114 now_it
.mask
= (inst
.instruction
& 0xf) | 0x10;
10117 /* If the condition is a negative condition, invert the mask. */
10118 if ((cond
& 0x1) == 0x0)
10120 unsigned int mask
= inst
.instruction
& 0x000f;
10122 if ((mask
& 0x7) == 0)
10123 /* no conversion needed */;
10124 else if ((mask
& 0x3) == 0)
10126 else if ((mask
& 0x1) == 0)
10131 inst
.instruction
&= 0xfff0;
10132 inst
.instruction
|= mask
;
10135 inst
.instruction
|= cond
<< 4;
10138 /* Helper function used for both push/pop and ldm/stm. */
10140 encode_thumb2_ldmstm (int base
, unsigned mask
, bfd_boolean writeback
)
10144 load
= (inst
.instruction
& (1 << 20)) != 0;
10146 if (mask
& (1 << 13))
10147 inst
.error
= _("SP not allowed in register list");
10149 if ((mask
& (1 << base
)) != 0
10151 inst
.error
= _("having the base register in the register list when "
10152 "using write back is UNPREDICTABLE");
10156 if (mask
& (1 << 15))
10158 if (mask
& (1 << 14))
10159 inst
.error
= _("LR and PC should not both be in register list");
10161 set_it_insn_type_last ();
10166 if (mask
& (1 << 15))
10167 inst
.error
= _("PC not allowed in register list");
10170 if ((mask
& (mask
- 1)) == 0)
10172 /* Single register transfers implemented as str/ldr. */
10175 if (inst
.instruction
& (1 << 23))
10176 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
10178 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
10182 if (inst
.instruction
& (1 << 23))
10183 inst
.instruction
= 0x00800000; /* ia -> [base] */
10185 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
10188 inst
.instruction
|= 0xf8400000;
10190 inst
.instruction
|= 0x00100000;
10192 mask
= ffs (mask
) - 1;
10195 else if (writeback
)
10196 inst
.instruction
|= WRITE_BACK
;
10198 inst
.instruction
|= mask
;
10199 inst
.instruction
|= base
<< 16;
10205 /* This really doesn't seem worth it. */
10206 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
10207 _("expression too complex"));
10208 constraint (inst
.operands
[1].writeback
,
10209 _("Thumb load/store multiple does not support {reglist}^"));
10211 if (unified_syntax
)
10213 bfd_boolean narrow
;
10217 /* See if we can use a 16-bit instruction. */
10218 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
10219 && inst
.size_req
!= 4
10220 && !(inst
.operands
[1].imm
& ~0xff))
10222 mask
= 1 << inst
.operands
[0].reg
;
10224 if (inst
.operands
[0].reg
<= 7)
10226 if (inst
.instruction
== T_MNEM_stmia
10227 ? inst
.operands
[0].writeback
10228 : (inst
.operands
[0].writeback
10229 == !(inst
.operands
[1].imm
& mask
)))
10231 if (inst
.instruction
== T_MNEM_stmia
10232 && (inst
.operands
[1].imm
& mask
)
10233 && (inst
.operands
[1].imm
& (mask
- 1)))
10234 as_warn (_("value stored for r%d is UNKNOWN"),
10235 inst
.operands
[0].reg
);
10237 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10238 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10239 inst
.instruction
|= inst
.operands
[1].imm
;
10242 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
10244 /* This means 1 register in reg list one of 3 situations:
10245 1. Instruction is stmia, but without writeback.
10246 2. lmdia without writeback, but with Rn not in
10248 3. ldmia with writeback, but with Rn in reglist.
10249 Case 3 is UNPREDICTABLE behaviour, so we handle
10250 case 1 and 2 which can be converted into a 16-bit
10251 str or ldr. The SP cases are handled below. */
10252 unsigned long opcode
;
10253 /* First, record an error for Case 3. */
10254 if (inst
.operands
[1].imm
& mask
10255 && inst
.operands
[0].writeback
)
10257 _("having the base register in the register list when "
10258 "using write back is UNPREDICTABLE");
10260 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
10262 inst
.instruction
= THUMB_OP16 (opcode
);
10263 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
10264 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
10268 else if (inst
.operands
[0] .reg
== REG_SP
)
10270 if (inst
.operands
[0].writeback
)
10273 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
10274 ? T_MNEM_push
: T_MNEM_pop
);
10275 inst
.instruction
|= inst
.operands
[1].imm
;
10278 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
10281 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
10282 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
10283 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
10291 if (inst
.instruction
< 0xffff)
10292 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10294 encode_thumb2_ldmstm (inst
.operands
[0].reg
, inst
.operands
[1].imm
,
10295 inst
.operands
[0].writeback
);
10300 constraint (inst
.operands
[0].reg
> 7
10301 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
10302 constraint (inst
.instruction
!= T_MNEM_ldmia
10303 && inst
.instruction
!= T_MNEM_stmia
,
10304 _("Thumb-2 instruction only valid in unified syntax"));
10305 if (inst
.instruction
== T_MNEM_stmia
)
10307 if (!inst
.operands
[0].writeback
)
10308 as_warn (_("this instruction will write back the base register"));
10309 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
10310 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
10311 as_warn (_("value stored for r%d is UNKNOWN"),
10312 inst
.operands
[0].reg
);
10316 if (!inst
.operands
[0].writeback
10317 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
10318 as_warn (_("this instruction will write back the base register"));
10319 else if (inst
.operands
[0].writeback
10320 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
10321 as_warn (_("this instruction will not write back the base register"));
10324 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10325 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10326 inst
.instruction
|= inst
.operands
[1].imm
;
10333 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
10334 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
10335 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
10336 || inst
.operands
[1].negative
,
10339 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
10341 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10342 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10343 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
10349 if (!inst
.operands
[1].present
)
10351 constraint (inst
.operands
[0].reg
== REG_LR
,
10352 _("r14 not allowed as first register "
10353 "when second register is omitted"));
10354 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
10356 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
10359 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10360 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
10361 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10367 unsigned long opcode
;
10370 if (inst
.operands
[0].isreg
10371 && !inst
.operands
[0].preind
10372 && inst
.operands
[0].reg
== REG_PC
)
10373 set_it_insn_type_last ();
10375 opcode
= inst
.instruction
;
10376 if (unified_syntax
)
10378 if (!inst
.operands
[1].isreg
)
10380 if (opcode
<= 0xffff)
10381 inst
.instruction
= THUMB_OP32 (opcode
);
10382 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
10385 if (inst
.operands
[1].isreg
10386 && !inst
.operands
[1].writeback
10387 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
10388 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
10389 && opcode
<= 0xffff
10390 && inst
.size_req
!= 4)
10392 /* Insn may have a 16-bit form. */
10393 Rn
= inst
.operands
[1].reg
;
10394 if (inst
.operands
[1].immisreg
)
10396 inst
.instruction
= THUMB_OP16 (opcode
);
10398 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
10400 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
10401 reject_bad_reg (inst
.operands
[1].imm
);
10403 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
10404 && opcode
!= T_MNEM_ldrsb
)
10405 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
10406 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
10413 if (inst
.reloc
.pc_rel
)
10414 opcode
= T_MNEM_ldr_pc2
;
10416 opcode
= T_MNEM_ldr_pc
;
10420 if (opcode
== T_MNEM_ldr
)
10421 opcode
= T_MNEM_ldr_sp
;
10423 opcode
= T_MNEM_str_sp
;
10425 inst
.instruction
= inst
.operands
[0].reg
<< 8;
10429 inst
.instruction
= inst
.operands
[0].reg
;
10430 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10432 inst
.instruction
|= THUMB_OP16 (opcode
);
10433 if (inst
.size_req
== 2)
10434 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10436 inst
.relax
= opcode
;
10440 /* Definitely a 32-bit variant. */
10442 /* Warning for Erratum 752419. */
10443 if (opcode
== T_MNEM_ldr
10444 && inst
.operands
[0].reg
== REG_SP
10445 && inst
.operands
[1].writeback
== 1
10446 && !inst
.operands
[1].immisreg
)
10448 if (no_cpu_selected ()
10449 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
10450 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
10451 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
10452 as_warn (_("This instruction may be unpredictable "
10453 "if executed on M-profile cores "
10454 "with interrupts enabled."));
10457 /* Do some validations regarding addressing modes. */
10458 if (inst
.operands
[1].immisreg
&& opcode
!= T_MNEM_ldr
10459 && opcode
!= T_MNEM_str
)
10460 reject_bad_reg (inst
.operands
[1].imm
);
10462 inst
.instruction
= THUMB_OP32 (opcode
);
10463 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10464 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
10468 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
10470 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
10472 /* Only [Rn,Rm] is acceptable. */
10473 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
10474 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
10475 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
10476 || inst
.operands
[1].negative
,
10477 _("Thumb does not support this addressing mode"));
10478 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10482 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10483 if (!inst
.operands
[1].isreg
)
10484 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
10487 constraint (!inst
.operands
[1].preind
10488 || inst
.operands
[1].shifted
10489 || inst
.operands
[1].writeback
,
10490 _("Thumb does not support this addressing mode"));
10491 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
10493 constraint (inst
.instruction
& 0x0600,
10494 _("byte or halfword not valid for base register"));
10495 constraint (inst
.operands
[1].reg
== REG_PC
10496 && !(inst
.instruction
& THUMB_LOAD_BIT
),
10497 _("r15 based store not allowed"));
10498 constraint (inst
.operands
[1].immisreg
,
10499 _("invalid base register for register offset"));
10501 if (inst
.operands
[1].reg
== REG_PC
)
10502 inst
.instruction
= T_OPCODE_LDR_PC
;
10503 else if (inst
.instruction
& THUMB_LOAD_BIT
)
10504 inst
.instruction
= T_OPCODE_LDR_SP
;
10506 inst
.instruction
= T_OPCODE_STR_SP
;
10508 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10509 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10513 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
10514 if (!inst
.operands
[1].immisreg
)
10516 /* Immediate offset. */
10517 inst
.instruction
|= inst
.operands
[0].reg
;
10518 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10519 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10523 /* Register offset. */
10524 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
10525 constraint (inst
.operands
[1].negative
,
10526 _("Thumb does not support this addressing mode"));
10529 switch (inst
.instruction
)
10531 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
10532 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
10533 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
10534 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
10535 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
10536 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
10537 case 0x5600 /* ldrsb */:
10538 case 0x5e00 /* ldrsh */: break;
10542 inst
.instruction
|= inst
.operands
[0].reg
;
10543 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10544 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
10550 if (!inst
.operands
[1].present
)
10552 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
10553 constraint (inst
.operands
[0].reg
== REG_LR
,
10554 _("r14 not allowed here"));
10556 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10557 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
10558 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
10564 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10565 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
10571 unsigned Rd
, Rn
, Rm
, Ra
;
10573 Rd
= inst
.operands
[0].reg
;
10574 Rn
= inst
.operands
[1].reg
;
10575 Rm
= inst
.operands
[2].reg
;
10576 Ra
= inst
.operands
[3].reg
;
10578 reject_bad_reg (Rd
);
10579 reject_bad_reg (Rn
);
10580 reject_bad_reg (Rm
);
10581 reject_bad_reg (Ra
);
10583 inst
.instruction
|= Rd
<< 8;
10584 inst
.instruction
|= Rn
<< 16;
10585 inst
.instruction
|= Rm
;
10586 inst
.instruction
|= Ra
<< 12;
10592 unsigned RdLo
, RdHi
, Rn
, Rm
;
10594 RdLo
= inst
.operands
[0].reg
;
10595 RdHi
= inst
.operands
[1].reg
;
10596 Rn
= inst
.operands
[2].reg
;
10597 Rm
= inst
.operands
[3].reg
;
10599 reject_bad_reg (RdLo
);
10600 reject_bad_reg (RdHi
);
10601 reject_bad_reg (Rn
);
10602 reject_bad_reg (Rm
);
10604 inst
.instruction
|= RdLo
<< 12;
10605 inst
.instruction
|= RdHi
<< 8;
10606 inst
.instruction
|= Rn
<< 16;
10607 inst
.instruction
|= Rm
;
10611 do_t_mov_cmp (void)
10615 Rn
= inst
.operands
[0].reg
;
10616 Rm
= inst
.operands
[1].reg
;
10619 set_it_insn_type_last ();
10621 if (unified_syntax
)
10623 int r0off
= (inst
.instruction
== T_MNEM_mov
10624 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
10625 unsigned long opcode
;
10626 bfd_boolean narrow
;
10627 bfd_boolean low_regs
;
10629 low_regs
= (Rn
<= 7 && Rm
<= 7);
10630 opcode
= inst
.instruction
;
10631 if (in_it_block ())
10632 narrow
= opcode
!= T_MNEM_movs
;
10634 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
10635 if (inst
.size_req
== 4
10636 || inst
.operands
[1].shifted
)
10639 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10640 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
10641 && !inst
.operands
[1].shifted
10645 inst
.instruction
= T2_SUBS_PC_LR
;
10649 if (opcode
== T_MNEM_cmp
)
10651 constraint (Rn
== REG_PC
, BAD_PC
);
10654 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10656 warn_deprecated_sp (Rm
);
10657 /* R15 was documented as a valid choice for Rm in ARMv6,
10658 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10659 tools reject R15, so we do too. */
10660 constraint (Rm
== REG_PC
, BAD_PC
);
10663 reject_bad_reg (Rm
);
10665 else if (opcode
== T_MNEM_mov
10666 || opcode
== T_MNEM_movs
)
10668 if (inst
.operands
[1].isreg
)
10670 if (opcode
== T_MNEM_movs
)
10672 reject_bad_reg (Rn
);
10673 reject_bad_reg (Rm
);
10677 /* This is mov.n. */
10678 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
10679 && (Rm
== REG_SP
|| Rm
== REG_PC
))
10681 as_warn (_("Use of r%u as a source register is "
10682 "deprecated when r%u is the destination "
10683 "register."), Rm
, Rn
);
10688 /* This is mov.w. */
10689 constraint (Rn
== REG_PC
, BAD_PC
);
10690 constraint (Rm
== REG_PC
, BAD_PC
);
10691 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
10695 reject_bad_reg (Rn
);
10698 if (!inst
.operands
[1].isreg
)
10700 /* Immediate operand. */
10701 if (!in_it_block () && opcode
== T_MNEM_mov
)
10703 if (low_regs
&& narrow
)
10705 inst
.instruction
= THUMB_OP16 (opcode
);
10706 inst
.instruction
|= Rn
<< 8;
10707 if (inst
.size_req
== 2)
10708 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
10710 inst
.relax
= opcode
;
10714 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10715 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10716 inst
.instruction
|= Rn
<< r0off
;
10717 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10720 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
10721 && (inst
.instruction
== T_MNEM_mov
10722 || inst
.instruction
== T_MNEM_movs
))
10724 /* Register shifts are encoded as separate shift instructions. */
10725 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
10727 if (in_it_block ())
10732 if (inst
.size_req
== 4)
10735 if (!low_regs
|| inst
.operands
[1].imm
> 7)
10741 switch (inst
.operands
[1].shift_kind
)
10744 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
10747 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
10750 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
10753 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
10759 inst
.instruction
= opcode
;
10762 inst
.instruction
|= Rn
;
10763 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
10768 inst
.instruction
|= CONDS_BIT
;
10770 inst
.instruction
|= Rn
<< 8;
10771 inst
.instruction
|= Rm
<< 16;
10772 inst
.instruction
|= inst
.operands
[1].imm
;
10777 /* Some mov with immediate shift have narrow variants.
10778 Register shifts are handled above. */
10779 if (low_regs
&& inst
.operands
[1].shifted
10780 && (inst
.instruction
== T_MNEM_mov
10781 || inst
.instruction
== T_MNEM_movs
))
10783 if (in_it_block ())
10784 narrow
= (inst
.instruction
== T_MNEM_mov
);
10786 narrow
= (inst
.instruction
== T_MNEM_movs
);
10791 switch (inst
.operands
[1].shift_kind
)
10793 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
10794 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
10795 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
10796 default: narrow
= FALSE
; break;
10802 inst
.instruction
|= Rn
;
10803 inst
.instruction
|= Rm
<< 3;
10804 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
10808 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10809 inst
.instruction
|= Rn
<< r0off
;
10810 encode_thumb32_shifted_operand (1);
10814 switch (inst
.instruction
)
10817 inst
.instruction
= T_OPCODE_MOV_HR
;
10818 inst
.instruction
|= (Rn
& 0x8) << 4;
10819 inst
.instruction
|= (Rn
& 0x7);
10820 inst
.instruction
|= Rm
<< 3;
10824 /* We know we have low registers at this point.
10825 Generate LSLS Rd, Rs, #0. */
10826 inst
.instruction
= T_OPCODE_LSL_I
;
10827 inst
.instruction
|= Rn
;
10828 inst
.instruction
|= Rm
<< 3;
10834 inst
.instruction
= T_OPCODE_CMP_LR
;
10835 inst
.instruction
|= Rn
;
10836 inst
.instruction
|= Rm
<< 3;
10840 inst
.instruction
= T_OPCODE_CMP_HR
;
10841 inst
.instruction
|= (Rn
& 0x8) << 4;
10842 inst
.instruction
|= (Rn
& 0x7);
10843 inst
.instruction
|= Rm
<< 3;
10850 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10852 /* PR 10443: Do not silently ignore shifted operands. */
10853 constraint (inst
.operands
[1].shifted
,
10854 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10856 if (inst
.operands
[1].isreg
)
10858 if (Rn
< 8 && Rm
< 8)
10860 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10861 since a MOV instruction produces unpredictable results. */
10862 if (inst
.instruction
== T_OPCODE_MOV_I8
)
10863 inst
.instruction
= T_OPCODE_ADD_I3
;
10865 inst
.instruction
= T_OPCODE_CMP_LR
;
10867 inst
.instruction
|= Rn
;
10868 inst
.instruction
|= Rm
<< 3;
10872 if (inst
.instruction
== T_OPCODE_MOV_I8
)
10873 inst
.instruction
= T_OPCODE_MOV_HR
;
10875 inst
.instruction
= T_OPCODE_CMP_HR
;
10881 constraint (Rn
> 7,
10882 _("only lo regs allowed with immediate"));
10883 inst
.instruction
|= Rn
<< 8;
10884 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
10895 top
= (inst
.instruction
& 0x00800000) != 0;
10896 if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
)
10898 constraint (top
, _(":lower16: not allowed this instruction"));
10899 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVW
;
10901 else if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
)
10903 constraint (!top
, _(":upper16: not allowed this instruction"));
10904 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVT
;
10907 Rd
= inst
.operands
[0].reg
;
10908 reject_bad_reg (Rd
);
10910 inst
.instruction
|= Rd
<< 8;
10911 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
10913 imm
= inst
.reloc
.exp
.X_add_number
;
10914 inst
.instruction
|= (imm
& 0xf000) << 4;
10915 inst
.instruction
|= (imm
& 0x0800) << 15;
10916 inst
.instruction
|= (imm
& 0x0700) << 4;
10917 inst
.instruction
|= (imm
& 0x00ff);
10922 do_t_mvn_tst (void)
10926 Rn
= inst
.operands
[0].reg
;
10927 Rm
= inst
.operands
[1].reg
;
10929 if (inst
.instruction
== T_MNEM_cmp
10930 || inst
.instruction
== T_MNEM_cmn
)
10931 constraint (Rn
== REG_PC
, BAD_PC
);
10933 reject_bad_reg (Rn
);
10934 reject_bad_reg (Rm
);
10936 if (unified_syntax
)
10938 int r0off
= (inst
.instruction
== T_MNEM_mvn
10939 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
10940 bfd_boolean narrow
;
10942 if (inst
.size_req
== 4
10943 || inst
.instruction
> 0xffff
10944 || inst
.operands
[1].shifted
10945 || Rn
> 7 || Rm
> 7)
10947 else if (inst
.instruction
== T_MNEM_cmn
)
10949 else if (THUMB_SETS_FLAGS (inst
.instruction
))
10950 narrow
= !in_it_block ();
10952 narrow
= in_it_block ();
10954 if (!inst
.operands
[1].isreg
)
10956 /* For an immediate, we always generate a 32-bit opcode;
10957 section relaxation will shrink it later if possible. */
10958 if (inst
.instruction
< 0xffff)
10959 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10960 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10961 inst
.instruction
|= Rn
<< r0off
;
10962 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10966 /* See if we can do this with a 16-bit instruction. */
10969 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10970 inst
.instruction
|= Rn
;
10971 inst
.instruction
|= Rm
<< 3;
10975 constraint (inst
.operands
[1].shifted
10976 && inst
.operands
[1].immisreg
,
10977 _("shift must be constant"));
10978 if (inst
.instruction
< 0xffff)
10979 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10980 inst
.instruction
|= Rn
<< r0off
;
10981 encode_thumb32_shifted_operand (1);
10987 constraint (inst
.instruction
> 0xffff
10988 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
10989 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
10990 _("unshifted register required"));
10991 constraint (Rn
> 7 || Rm
> 7,
10994 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10995 inst
.instruction
|= Rn
;
10996 inst
.instruction
|= Rm
<< 3;
11005 if (do_vfp_nsyn_mrs () == SUCCESS
)
11008 Rd
= inst
.operands
[0].reg
;
11009 reject_bad_reg (Rd
);
11010 inst
.instruction
|= Rd
<< 8;
11012 if (inst
.operands
[1].isreg
)
11014 unsigned br
= inst
.operands
[1].reg
;
11015 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
11016 as_bad (_("bad register for mrs"));
11018 inst
.instruction
|= br
& (0xf << 16);
11019 inst
.instruction
|= (br
& 0x300) >> 4;
11020 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
11024 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
11026 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
11027 constraint (flags
!= 0, _("selected processor does not support "
11028 "requested special purpose register"));
11030 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11032 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
11033 _("'APSR', 'CPSR' or 'SPSR' expected"));
11035 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
11036 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
11037 inst
.instruction
|= 0xf0000;
11047 if (do_vfp_nsyn_msr () == SUCCESS
)
11050 constraint (!inst
.operands
[1].isreg
,
11051 _("Thumb encoding does not support an immediate here"));
11053 if (inst
.operands
[0].isreg
)
11054 flags
= (int)(inst
.operands
[0].reg
);
11056 flags
= inst
.operands
[0].imm
;
11058 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
11060 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
11062 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
11063 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
11064 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
11066 _("selected processor does not support requested special "
11067 "purpose register"));
11070 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
11071 "requested special purpose register"));
11073 Rn
= inst
.operands
[1].reg
;
11074 reject_bad_reg (Rn
);
11076 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
11077 inst
.instruction
|= (flags
& 0xf0000) >> 8;
11078 inst
.instruction
|= (flags
& 0x300) >> 4;
11079 inst
.instruction
|= (flags
& 0xff);
11080 inst
.instruction
|= Rn
<< 16;
11086 bfd_boolean narrow
;
11087 unsigned Rd
, Rn
, Rm
;
11089 if (!inst
.operands
[2].present
)
11090 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
11092 Rd
= inst
.operands
[0].reg
;
11093 Rn
= inst
.operands
[1].reg
;
11094 Rm
= inst
.operands
[2].reg
;
11096 if (unified_syntax
)
11098 if (inst
.size_req
== 4
11104 else if (inst
.instruction
== T_MNEM_muls
)
11105 narrow
= !in_it_block ();
11107 narrow
= in_it_block ();
11111 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
11112 constraint (Rn
> 7 || Rm
> 7,
11119 /* 16-bit MULS/Conditional MUL. */
11120 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11121 inst
.instruction
|= Rd
;
11124 inst
.instruction
|= Rm
<< 3;
11126 inst
.instruction
|= Rn
<< 3;
11128 constraint (1, _("dest must overlap one source register"));
11132 constraint (inst
.instruction
!= T_MNEM_mul
,
11133 _("Thumb-2 MUL must not set flags"));
11135 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11136 inst
.instruction
|= Rd
<< 8;
11137 inst
.instruction
|= Rn
<< 16;
11138 inst
.instruction
|= Rm
<< 0;
11140 reject_bad_reg (Rd
);
11141 reject_bad_reg (Rn
);
11142 reject_bad_reg (Rm
);
11149 unsigned RdLo
, RdHi
, Rn
, Rm
;
11151 RdLo
= inst
.operands
[0].reg
;
11152 RdHi
= inst
.operands
[1].reg
;
11153 Rn
= inst
.operands
[2].reg
;
11154 Rm
= inst
.operands
[3].reg
;
11156 reject_bad_reg (RdLo
);
11157 reject_bad_reg (RdHi
);
11158 reject_bad_reg (Rn
);
11159 reject_bad_reg (Rm
);
11161 inst
.instruction
|= RdLo
<< 12;
11162 inst
.instruction
|= RdHi
<< 8;
11163 inst
.instruction
|= Rn
<< 16;
11164 inst
.instruction
|= Rm
;
11167 as_tsktsk (_("rdhi and rdlo must be different"));
11173 set_it_insn_type (NEUTRAL_IT_INSN
);
11175 if (unified_syntax
)
11177 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
11179 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11180 inst
.instruction
|= inst
.operands
[0].imm
;
11184 /* PR9722: Check for Thumb2 availability before
11185 generating a thumb2 nop instruction. */
11186 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
11188 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11189 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
11192 inst
.instruction
= 0x46c0;
11197 constraint (inst
.operands
[0].present
,
11198 _("Thumb does not support NOP with hints"));
11199 inst
.instruction
= 0x46c0;
11206 if (unified_syntax
)
11208 bfd_boolean narrow
;
11210 if (THUMB_SETS_FLAGS (inst
.instruction
))
11211 narrow
= !in_it_block ();
11213 narrow
= in_it_block ();
11214 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
11216 if (inst
.size_req
== 4)
11221 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11222 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11223 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11227 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11228 inst
.instruction
|= inst
.operands
[0].reg
;
11229 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11234 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
11236 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11238 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11239 inst
.instruction
|= inst
.operands
[0].reg
;
11240 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11249 Rd
= inst
.operands
[0].reg
;
11250 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
11252 reject_bad_reg (Rd
);
11253 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11254 reject_bad_reg (Rn
);
11256 inst
.instruction
|= Rd
<< 8;
11257 inst
.instruction
|= Rn
<< 16;
11259 if (!inst
.operands
[2].isreg
)
11261 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11262 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11268 Rm
= inst
.operands
[2].reg
;
11269 reject_bad_reg (Rm
);
11271 constraint (inst
.operands
[2].shifted
11272 && inst
.operands
[2].immisreg
,
11273 _("shift must be constant"));
11274 encode_thumb32_shifted_operand (2);
11281 unsigned Rd
, Rn
, Rm
;
11283 Rd
= inst
.operands
[0].reg
;
11284 Rn
= inst
.operands
[1].reg
;
11285 Rm
= inst
.operands
[2].reg
;
11287 reject_bad_reg (Rd
);
11288 reject_bad_reg (Rn
);
11289 reject_bad_reg (Rm
);
11291 inst
.instruction
|= Rd
<< 8;
11292 inst
.instruction
|= Rn
<< 16;
11293 inst
.instruction
|= Rm
;
11294 if (inst
.operands
[3].present
)
11296 unsigned int val
= inst
.reloc
.exp
.X_add_number
;
11297 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
11298 _("expression too complex"));
11299 inst
.instruction
|= (val
& 0x1c) << 10;
11300 inst
.instruction
|= (val
& 0x03) << 6;
11307 if (!inst
.operands
[3].present
)
11311 inst
.instruction
&= ~0x00000020;
11313 /* PR 10168. Swap the Rm and Rn registers. */
11314 Rtmp
= inst
.operands
[1].reg
;
11315 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
11316 inst
.operands
[2].reg
= Rtmp
;
11324 if (inst
.operands
[0].immisreg
)
11325 reject_bad_reg (inst
.operands
[0].imm
);
11327 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
11331 do_t_push_pop (void)
11335 constraint (inst
.operands
[0].writeback
,
11336 _("push/pop do not support {reglist}^"));
11337 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
11338 _("expression too complex"));
11340 mask
= inst
.operands
[0].imm
;
11341 if ((mask
& ~0xff) == 0)
11342 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
11343 else if ((inst
.instruction
== T_MNEM_push
11344 && (mask
& ~0xff) == 1 << REG_LR
)
11345 || (inst
.instruction
== T_MNEM_pop
11346 && (mask
& ~0xff) == 1 << REG_PC
))
11348 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11349 inst
.instruction
|= THUMB_PP_PC_LR
;
11350 inst
.instruction
|= mask
& 0xff;
11352 else if (unified_syntax
)
11354 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11355 encode_thumb2_ldmstm (13, mask
, TRUE
);
11359 inst
.error
= _("invalid register list to push/pop instruction");
11369 Rd
= inst
.operands
[0].reg
;
11370 Rm
= inst
.operands
[1].reg
;
11372 reject_bad_reg (Rd
);
11373 reject_bad_reg (Rm
);
11375 inst
.instruction
|= Rd
<< 8;
11376 inst
.instruction
|= Rm
<< 16;
11377 inst
.instruction
|= Rm
;
11385 Rd
= inst
.operands
[0].reg
;
11386 Rm
= inst
.operands
[1].reg
;
11388 reject_bad_reg (Rd
);
11389 reject_bad_reg (Rm
);
11391 if (Rd
<= 7 && Rm
<= 7
11392 && inst
.size_req
!= 4)
11394 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11395 inst
.instruction
|= Rd
;
11396 inst
.instruction
|= Rm
<< 3;
11398 else if (unified_syntax
)
11400 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11401 inst
.instruction
|= Rd
<< 8;
11402 inst
.instruction
|= Rm
<< 16;
11403 inst
.instruction
|= Rm
;
11406 inst
.error
= BAD_HIREG
;
11414 Rd
= inst
.operands
[0].reg
;
11415 Rm
= inst
.operands
[1].reg
;
11417 reject_bad_reg (Rd
);
11418 reject_bad_reg (Rm
);
11420 inst
.instruction
|= Rd
<< 8;
11421 inst
.instruction
|= Rm
;
11429 Rd
= inst
.operands
[0].reg
;
11430 Rs
= (inst
.operands
[1].present
11431 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11432 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11434 reject_bad_reg (Rd
);
11435 reject_bad_reg (Rs
);
11436 if (inst
.operands
[2].isreg
)
11437 reject_bad_reg (inst
.operands
[2].reg
);
11439 inst
.instruction
|= Rd
<< 8;
11440 inst
.instruction
|= Rs
<< 16;
11441 if (!inst
.operands
[2].isreg
)
11443 bfd_boolean narrow
;
11445 if ((inst
.instruction
& 0x00100000) != 0)
11446 narrow
= !in_it_block ();
11448 narrow
= in_it_block ();
11450 if (Rd
> 7 || Rs
> 7)
11453 if (inst
.size_req
== 4 || !unified_syntax
)
11456 if (inst
.reloc
.exp
.X_op
!= O_constant
11457 || inst
.reloc
.exp
.X_add_number
!= 0)
11460 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11461 relaxation, but it doesn't seem worth the hassle. */
11464 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11465 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
11466 inst
.instruction
|= Rs
<< 3;
11467 inst
.instruction
|= Rd
;
11471 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11472 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11476 encode_thumb32_shifted_operand (2);
11482 set_it_insn_type (OUTSIDE_IT_INSN
);
11483 if (inst
.operands
[0].imm
)
11484 inst
.instruction
|= 0x8;
11490 if (!inst
.operands
[1].present
)
11491 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
11493 if (unified_syntax
)
11495 bfd_boolean narrow
;
11498 switch (inst
.instruction
)
11501 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
11503 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
11505 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
11507 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
11511 if (THUMB_SETS_FLAGS (inst
.instruction
))
11512 narrow
= !in_it_block ();
11514 narrow
= in_it_block ();
11515 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
11517 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
11519 if (inst
.operands
[2].isreg
11520 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
11521 || inst
.operands
[2].reg
> 7))
11523 if (inst
.size_req
== 4)
11526 reject_bad_reg (inst
.operands
[0].reg
);
11527 reject_bad_reg (inst
.operands
[1].reg
);
11531 if (inst
.operands
[2].isreg
)
11533 reject_bad_reg (inst
.operands
[2].reg
);
11534 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11535 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11536 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11537 inst
.instruction
|= inst
.operands
[2].reg
;
11541 inst
.operands
[1].shifted
= 1;
11542 inst
.operands
[1].shift_kind
= shift_kind
;
11543 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
11544 ? T_MNEM_movs
: T_MNEM_mov
);
11545 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11546 encode_thumb32_shifted_operand (1);
11547 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11548 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11553 if (inst
.operands
[2].isreg
)
11555 switch (shift_kind
)
11557 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
11558 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
11559 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
11560 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
11564 inst
.instruction
|= inst
.operands
[0].reg
;
11565 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
11569 switch (shift_kind
)
11571 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11572 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11573 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11576 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11577 inst
.instruction
|= inst
.operands
[0].reg
;
11578 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11584 constraint (inst
.operands
[0].reg
> 7
11585 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
11586 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11588 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
11590 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
11591 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
11592 _("source1 and dest must be same register"));
11594 switch (inst
.instruction
)
11596 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
11597 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
11598 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
11599 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
11603 inst
.instruction
|= inst
.operands
[0].reg
;
11604 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
11608 switch (inst
.instruction
)
11610 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11611 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11612 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11613 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
11616 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11617 inst
.instruction
|= inst
.operands
[0].reg
;
11618 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11626 unsigned Rd
, Rn
, Rm
;
11628 Rd
= inst
.operands
[0].reg
;
11629 Rn
= inst
.operands
[1].reg
;
11630 Rm
= inst
.operands
[2].reg
;
11632 reject_bad_reg (Rd
);
11633 reject_bad_reg (Rn
);
11634 reject_bad_reg (Rm
);
11636 inst
.instruction
|= Rd
<< 8;
11637 inst
.instruction
|= Rn
<< 16;
11638 inst
.instruction
|= Rm
;
11644 unsigned Rd
, Rn
, Rm
;
11646 Rd
= inst
.operands
[0].reg
;
11647 Rm
= inst
.operands
[1].reg
;
11648 Rn
= inst
.operands
[2].reg
;
11650 reject_bad_reg (Rd
);
11651 reject_bad_reg (Rn
);
11652 reject_bad_reg (Rm
);
11654 inst
.instruction
|= Rd
<< 8;
11655 inst
.instruction
|= Rn
<< 16;
11656 inst
.instruction
|= Rm
;
11662 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
11663 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
11664 _("SMC is not permitted on this architecture"));
11665 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
11666 _("expression too complex"));
11667 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11668 inst
.instruction
|= (value
& 0xf000) >> 12;
11669 inst
.instruction
|= (value
& 0x0ff0);
11670 inst
.instruction
|= (value
& 0x000f) << 16;
11676 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
11678 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11679 inst
.instruction
|= (value
& 0x0fff);
11680 inst
.instruction
|= (value
& 0xf000) << 4;
11684 do_t_ssat_usat (int bias
)
11688 Rd
= inst
.operands
[0].reg
;
11689 Rn
= inst
.operands
[2].reg
;
11691 reject_bad_reg (Rd
);
11692 reject_bad_reg (Rn
);
11694 inst
.instruction
|= Rd
<< 8;
11695 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
11696 inst
.instruction
|= Rn
<< 16;
11698 if (inst
.operands
[3].present
)
11700 offsetT shift_amount
= inst
.reloc
.exp
.X_add_number
;
11702 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11704 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
11705 _("expression too complex"));
11707 if (shift_amount
!= 0)
11709 constraint (shift_amount
> 31,
11710 _("shift expression is too large"));
11712 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
11713 inst
.instruction
|= 0x00200000; /* sh bit. */
11715 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
11716 inst
.instruction
|= (shift_amount
& 0x03) << 6;
11724 do_t_ssat_usat (1);
11732 Rd
= inst
.operands
[0].reg
;
11733 Rn
= inst
.operands
[2].reg
;
11735 reject_bad_reg (Rd
);
11736 reject_bad_reg (Rn
);
11738 inst
.instruction
|= Rd
<< 8;
11739 inst
.instruction
|= inst
.operands
[1].imm
- 1;
11740 inst
.instruction
|= Rn
<< 16;
11746 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
11747 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
11748 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
11749 || inst
.operands
[2].negative
,
11752 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
11754 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11755 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11756 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
11757 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
11763 if (!inst
.operands
[2].present
)
11764 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
11766 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
11767 || inst
.operands
[0].reg
== inst
.operands
[2].reg
11768 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
11771 inst
.instruction
|= inst
.operands
[0].reg
;
11772 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11773 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
11774 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
11780 unsigned Rd
, Rn
, Rm
;
11782 Rd
= inst
.operands
[0].reg
;
11783 Rn
= inst
.operands
[1].reg
;
11784 Rm
= inst
.operands
[2].reg
;
11786 reject_bad_reg (Rd
);
11787 reject_bad_reg (Rn
);
11788 reject_bad_reg (Rm
);
11790 inst
.instruction
|= Rd
<< 8;
11791 inst
.instruction
|= Rn
<< 16;
11792 inst
.instruction
|= Rm
;
11793 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
11801 Rd
= inst
.operands
[0].reg
;
11802 Rm
= inst
.operands
[1].reg
;
11804 reject_bad_reg (Rd
);
11805 reject_bad_reg (Rm
);
11807 if (inst
.instruction
<= 0xffff
11808 && inst
.size_req
!= 4
11809 && Rd
<= 7 && Rm
<= 7
11810 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
11812 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11813 inst
.instruction
|= Rd
;
11814 inst
.instruction
|= Rm
<< 3;
11816 else if (unified_syntax
)
11818 if (inst
.instruction
<= 0xffff)
11819 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11820 inst
.instruction
|= Rd
<< 8;
11821 inst
.instruction
|= Rm
;
11822 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
11826 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
11827 _("Thumb encoding does not support rotation"));
11828 constraint (1, BAD_HIREG
);
11835 /* We have to do the following check manually as ARM_EXT_OS only applies
11837 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6m
))
11839 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_os
)
11840 /* This only applies to the v6m howver, not later architectures. */
11841 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
))
11842 as_bad (_("SVC is not permitted on this architecture"));
11843 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, arm_ext_os
);
11846 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
11855 half
= (inst
.instruction
& 0x10) != 0;
11856 set_it_insn_type_last ();
11857 constraint (inst
.operands
[0].immisreg
,
11858 _("instruction requires register index"));
11860 Rn
= inst
.operands
[0].reg
;
11861 Rm
= inst
.operands
[0].imm
;
11863 constraint (Rn
== REG_SP
, BAD_SP
);
11864 reject_bad_reg (Rm
);
11866 constraint (!half
&& inst
.operands
[0].shifted
,
11867 _("instruction does not allow shifted index"));
11868 inst
.instruction
|= (Rn
<< 16) | Rm
;
11874 do_t_ssat_usat (0);
11882 Rd
= inst
.operands
[0].reg
;
11883 Rn
= inst
.operands
[2].reg
;
11885 reject_bad_reg (Rd
);
11886 reject_bad_reg (Rn
);
11888 inst
.instruction
|= Rd
<< 8;
11889 inst
.instruction
|= inst
.operands
[1].imm
;
11890 inst
.instruction
|= Rn
<< 16;
11893 /* Neon instruction encoder helpers. */
11895 /* Encodings for the different types for various Neon opcodes. */
11897 /* An "invalid" code for the following tables. */
11900 struct neon_tab_entry
11903 unsigned float_or_poly
;
11904 unsigned scalar_or_imm
;
11907 /* Map overloaded Neon opcodes to their respective encodings. */
11908 #define NEON_ENC_TAB \
11909 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11910 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11911 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11912 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11913 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11914 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11915 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11916 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11917 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11918 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11919 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11920 /* Register variants of the following two instructions are encoded as
11921 vcge / vcgt with the operands reversed. */ \
11922 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11923 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11924 X(vfma, N_INV, 0x0000c10, N_INV), \
11925 X(vfms, N_INV, 0x0200c10, N_INV), \
11926 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11927 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11928 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11929 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11930 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11931 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11932 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11933 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11934 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11935 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11936 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11937 X(vshl, 0x0000400, N_INV, 0x0800510), \
11938 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11939 X(vand, 0x0000110, N_INV, 0x0800030), \
11940 X(vbic, 0x0100110, N_INV, 0x0800030), \
11941 X(veor, 0x1000110, N_INV, N_INV), \
11942 X(vorn, 0x0300110, N_INV, 0x0800010), \
11943 X(vorr, 0x0200110, N_INV, 0x0800010), \
11944 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11945 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11946 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11947 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11948 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11949 X(vst1, 0x0000000, 0x0800000, N_INV), \
11950 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11951 X(vst2, 0x0000100, 0x0800100, N_INV), \
11952 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11953 X(vst3, 0x0000200, 0x0800200, N_INV), \
11954 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11955 X(vst4, 0x0000300, 0x0800300, N_INV), \
11956 X(vmovn, 0x1b20200, N_INV, N_INV), \
11957 X(vtrn, 0x1b20080, N_INV, N_INV), \
11958 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11959 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11960 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11961 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11962 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11963 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11964 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11965 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11966 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11967 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11968 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11972 #define X(OPC,I,F,S) N_MNEM_##OPC
11977 static const struct neon_tab_entry neon_enc_tab
[] =
11979 #define X(OPC,I,F,S) { (I), (F), (S) }
11984 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11985 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11986 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11987 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11988 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11989 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11990 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11991 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11992 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11993 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11994 #define NEON_ENC_SINGLE_(X) \
11995 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11996 #define NEON_ENC_DOUBLE_(X) \
11997 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11999 #define NEON_ENCODE(type, inst) \
12002 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12003 inst.is_neon = 1; \
12007 #define check_neon_suffixes \
12010 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12012 as_bad (_("invalid neon suffix for non neon instruction")); \
12018 /* Define shapes for instruction operands. The following mnemonic characters
12019 are used in this table:
12021 F - VFP S<n> register
12022 D - Neon D<n> register
12023 Q - Neon Q<n> register
12027 L - D<n> register list
12029 This table is used to generate various data:
12030 - enumerations of the form NS_DDR to be used as arguments to
12032 - a table classifying shapes into single, double, quad, mixed.
12033 - a table used to drive neon_select_shape. */
12035 #define NEON_SHAPE_DEF \
12036 X(3, (D, D, D), DOUBLE), \
12037 X(3, (Q, Q, Q), QUAD), \
12038 X(3, (D, D, I), DOUBLE), \
12039 X(3, (Q, Q, I), QUAD), \
12040 X(3, (D, D, S), DOUBLE), \
12041 X(3, (Q, Q, S), QUAD), \
12042 X(2, (D, D), DOUBLE), \
12043 X(2, (Q, Q), QUAD), \
12044 X(2, (D, S), DOUBLE), \
12045 X(2, (Q, S), QUAD), \
12046 X(2, (D, R), DOUBLE), \
12047 X(2, (Q, R), QUAD), \
12048 X(2, (D, I), DOUBLE), \
12049 X(2, (Q, I), QUAD), \
12050 X(3, (D, L, D), DOUBLE), \
12051 X(2, (D, Q), MIXED), \
12052 X(2, (Q, D), MIXED), \
12053 X(3, (D, Q, I), MIXED), \
12054 X(3, (Q, D, I), MIXED), \
12055 X(3, (Q, D, D), MIXED), \
12056 X(3, (D, Q, Q), MIXED), \
12057 X(3, (Q, Q, D), MIXED), \
12058 X(3, (Q, D, S), MIXED), \
12059 X(3, (D, Q, S), MIXED), \
12060 X(4, (D, D, D, I), DOUBLE), \
12061 X(4, (Q, Q, Q, I), QUAD), \
12062 X(2, (F, F), SINGLE), \
12063 X(3, (F, F, F), SINGLE), \
12064 X(2, (F, I), SINGLE), \
12065 X(2, (F, D), MIXED), \
12066 X(2, (D, F), MIXED), \
12067 X(3, (F, F, I), MIXED), \
12068 X(4, (R, R, F, F), SINGLE), \
12069 X(4, (F, F, R, R), SINGLE), \
12070 X(3, (D, R, R), DOUBLE), \
12071 X(3, (R, R, D), DOUBLE), \
12072 X(2, (S, R), SINGLE), \
12073 X(2, (R, S), SINGLE), \
12074 X(2, (F, R), SINGLE), \
12075 X(2, (R, F), SINGLE)
12077 #define S2(A,B) NS_##A##B
12078 #define S3(A,B,C) NS_##A##B##C
12079 #define S4(A,B,C,D) NS_##A##B##C##D
12081 #define X(N, L, C) S##N L
12094 enum neon_shape_class
12102 #define X(N, L, C) SC_##C
12104 static enum neon_shape_class neon_shape_class
[] =
12122 /* Register widths of above. */
12123 static unsigned neon_shape_el_size
[] =
12134 struct neon_shape_info
12137 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
12140 #define S2(A,B) { SE_##A, SE_##B }
12141 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12142 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12144 #define X(N, L, C) { N, S##N L }
12146 static struct neon_shape_info neon_shape_tab
[] =
12156 /* Bit masks used in type checking given instructions.
12157 'N_EQK' means the type must be the same as (or based on in some way) the key
12158 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12159 set, various other bits can be set as well in order to modify the meaning of
12160 the type constraint. */
12162 enum neon_type_mask
12185 N_KEY
= 0x1000000, /* Key element (main type specifier). */
12186 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
12187 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
12188 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
12189 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
12190 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12191 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12192 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12193 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
12194 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12196 N_MAX_NONSPECIAL
= N_F64
12199 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12201 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12202 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12203 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12204 #define N_SUF_32 (N_SU_32 | N_F32)
12205 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12206 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12208 /* Pass this as the first type argument to neon_check_type to ignore types
12210 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12212 /* Select a "shape" for the current instruction (describing register types or
12213 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12214 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12215 function of operand parsing, so this function doesn't need to be called.
12216 Shapes should be listed in order of decreasing length. */
12218 static enum neon_shape
12219 neon_select_shape (enum neon_shape shape
, ...)
12222 enum neon_shape first_shape
= shape
;
12224 /* Fix missing optional operands. FIXME: we don't know at this point how
12225 many arguments we should have, so this makes the assumption that we have
12226 > 1. This is true of all current Neon opcodes, I think, but may not be
12227 true in the future. */
12228 if (!inst
.operands
[1].present
)
12229 inst
.operands
[1] = inst
.operands
[0];
12231 va_start (ap
, shape
);
12233 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
12238 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
12240 if (!inst
.operands
[j
].present
)
12246 switch (neon_shape_tab
[shape
].el
[j
])
12249 if (!(inst
.operands
[j
].isreg
12250 && inst
.operands
[j
].isvec
12251 && inst
.operands
[j
].issingle
12252 && !inst
.operands
[j
].isquad
))
12257 if (!(inst
.operands
[j
].isreg
12258 && inst
.operands
[j
].isvec
12259 && !inst
.operands
[j
].isquad
12260 && !inst
.operands
[j
].issingle
))
12265 if (!(inst
.operands
[j
].isreg
12266 && !inst
.operands
[j
].isvec
))
12271 if (!(inst
.operands
[j
].isreg
12272 && inst
.operands
[j
].isvec
12273 && inst
.operands
[j
].isquad
12274 && !inst
.operands
[j
].issingle
))
12279 if (!(!inst
.operands
[j
].isreg
12280 && !inst
.operands
[j
].isscalar
))
12285 if (!(!inst
.operands
[j
].isreg
12286 && inst
.operands
[j
].isscalar
))
12302 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
12303 first_error (_("invalid instruction shape"));
12308 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12309 means the Q bit should be set). */
12312 neon_quad (enum neon_shape shape
)
12314 return neon_shape_class
[shape
] == SC_QUAD
;
12318 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
12321 /* Allow modification to be made to types which are constrained to be
12322 based on the key element, based on bits set alongside N_EQK. */
12323 if ((typebits
& N_EQK
) != 0)
12325 if ((typebits
& N_HLF
) != 0)
12327 else if ((typebits
& N_DBL
) != 0)
12329 if ((typebits
& N_SGN
) != 0)
12330 *g_type
= NT_signed
;
12331 else if ((typebits
& N_UNS
) != 0)
12332 *g_type
= NT_unsigned
;
12333 else if ((typebits
& N_INT
) != 0)
12334 *g_type
= NT_integer
;
12335 else if ((typebits
& N_FLT
) != 0)
12336 *g_type
= NT_float
;
12337 else if ((typebits
& N_SIZ
) != 0)
12338 *g_type
= NT_untyped
;
12342 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12343 operand type, i.e. the single type specified in a Neon instruction when it
12344 is the only one given. */
12346 static struct neon_type_el
12347 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
12349 struct neon_type_el dest
= *key
;
12351 gas_assert ((thisarg
& N_EQK
) != 0);
12353 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
12358 /* Convert Neon type and size into compact bitmask representation. */
12360 static enum neon_type_mask
12361 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
12368 case 8: return N_8
;
12369 case 16: return N_16
;
12370 case 32: return N_32
;
12371 case 64: return N_64
;
12379 case 8: return N_I8
;
12380 case 16: return N_I16
;
12381 case 32: return N_I32
;
12382 case 64: return N_I64
;
12390 case 16: return N_F16
;
12391 case 32: return N_F32
;
12392 case 64: return N_F64
;
12400 case 8: return N_P8
;
12401 case 16: return N_P16
;
12409 case 8: return N_S8
;
12410 case 16: return N_S16
;
12411 case 32: return N_S32
;
12412 case 64: return N_S64
;
12420 case 8: return N_U8
;
12421 case 16: return N_U16
;
12422 case 32: return N_U32
;
12423 case 64: return N_U64
;
12434 /* Convert compact Neon bitmask type representation to a type and size. Only
12435 handles the case where a single bit is set in the mask. */
12438 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
12439 enum neon_type_mask mask
)
12441 if ((mask
& N_EQK
) != 0)
12444 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
12446 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_P16
)) != 0)
12448 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
12450 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
)) != 0)
12455 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
12457 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
12458 *type
= NT_unsigned
;
12459 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
12460 *type
= NT_integer
;
12461 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
12462 *type
= NT_untyped
;
12463 else if ((mask
& (N_P8
| N_P16
)) != 0)
12465 else if ((mask
& (N_F32
| N_F64
)) != 0)
12473 /* Modify a bitmask of allowed types. This is only needed for type
12477 modify_types_allowed (unsigned allowed
, unsigned mods
)
12480 enum neon_el_type type
;
12486 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
12488 if (el_type_of_type_chk (&type
, &size
,
12489 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
12491 neon_modify_type_size (mods
, &type
, &size
);
12492 destmask
|= type_chk_of_el_type (type
, size
);
12499 /* Check type and return type classification.
12500 The manual states (paraphrase): If one datatype is given, it indicates the
12502 - the second operand, if there is one
12503 - the operand, if there is no second operand
12504 - the result, if there are no operands.
12505 This isn't quite good enough though, so we use a concept of a "key" datatype
12506 which is set on a per-instruction basis, which is the one which matters when
12507 only one data type is written.
12508 Note: this function has side-effects (e.g. filling in missing operands). All
12509 Neon instructions should call it before performing bit encoding. */
12511 static struct neon_type_el
12512 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
12515 unsigned i
, pass
, key_el
= 0;
12516 unsigned types
[NEON_MAX_TYPE_ELS
];
12517 enum neon_el_type k_type
= NT_invtype
;
12518 unsigned k_size
= -1u;
12519 struct neon_type_el badtype
= {NT_invtype
, -1};
12520 unsigned key_allowed
= 0;
12522 /* Optional registers in Neon instructions are always (not) in operand 1.
12523 Fill in the missing operand here, if it was omitted. */
12524 if (els
> 1 && !inst
.operands
[1].present
)
12525 inst
.operands
[1] = inst
.operands
[0];
12527 /* Suck up all the varargs. */
12529 for (i
= 0; i
< els
; i
++)
12531 unsigned thisarg
= va_arg (ap
, unsigned);
12532 if (thisarg
== N_IGNORE_TYPE
)
12537 types
[i
] = thisarg
;
12538 if ((thisarg
& N_KEY
) != 0)
12543 if (inst
.vectype
.elems
> 0)
12544 for (i
= 0; i
< els
; i
++)
12545 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
12547 first_error (_("types specified in both the mnemonic and operands"));
12551 /* Duplicate inst.vectype elements here as necessary.
12552 FIXME: No idea if this is exactly the same as the ARM assembler,
12553 particularly when an insn takes one register and one non-register
12555 if (inst
.vectype
.elems
== 1 && els
> 1)
12558 inst
.vectype
.elems
= els
;
12559 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
12560 for (j
= 0; j
< els
; j
++)
12562 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
12565 else if (inst
.vectype
.elems
== 0 && els
> 0)
12568 /* No types were given after the mnemonic, so look for types specified
12569 after each operand. We allow some flexibility here; as long as the
12570 "key" operand has a type, we can infer the others. */
12571 for (j
= 0; j
< els
; j
++)
12572 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
12573 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
12575 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
12577 for (j
= 0; j
< els
; j
++)
12578 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
12579 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
12584 first_error (_("operand types can't be inferred"));
12588 else if (inst
.vectype
.elems
!= els
)
12590 first_error (_("type specifier has the wrong number of parts"));
12594 for (pass
= 0; pass
< 2; pass
++)
12596 for (i
= 0; i
< els
; i
++)
12598 unsigned thisarg
= types
[i
];
12599 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
12600 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
12601 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
12602 unsigned g_size
= inst
.vectype
.el
[i
].size
;
12604 /* Decay more-specific signed & unsigned types to sign-insensitive
12605 integer types if sign-specific variants are unavailable. */
12606 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
12607 && (types_allowed
& N_SU_ALL
) == 0)
12608 g_type
= NT_integer
;
12610 /* If only untyped args are allowed, decay any more specific types to
12611 them. Some instructions only care about signs for some element
12612 sizes, so handle that properly. */
12613 if ((g_size
== 8 && (types_allowed
& N_8
) != 0)
12614 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
12615 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
12616 || (g_size
== 64 && (types_allowed
& N_64
) != 0))
12617 g_type
= NT_untyped
;
12621 if ((thisarg
& N_KEY
) != 0)
12625 key_allowed
= thisarg
& ~N_KEY
;
12630 if ((thisarg
& N_VFP
) != 0)
12632 enum neon_shape_el regshape
;
12633 unsigned regwidth
, match
;
12635 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12638 first_error (_("invalid instruction shape"));
12641 regshape
= neon_shape_tab
[ns
].el
[i
];
12642 regwidth
= neon_shape_el_size
[regshape
];
12644 /* In VFP mode, operands must match register widths. If we
12645 have a key operand, use its width, else use the width of
12646 the current operand. */
12652 if (regwidth
!= match
)
12654 first_error (_("operand size must match register width"));
12659 if ((thisarg
& N_EQK
) == 0)
12661 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
12663 if ((given_type
& types_allowed
) == 0)
12665 first_error (_("bad type in Neon instruction"));
12671 enum neon_el_type mod_k_type
= k_type
;
12672 unsigned mod_k_size
= k_size
;
12673 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
12674 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
12676 first_error (_("inconsistent types in Neon instruction"));
12684 return inst
.vectype
.el
[key_el
];
12687 /* Neon-style VFP instruction forwarding. */
12689 /* Thumb VFP instructions have 0xE in the condition field. */
12692 do_vfp_cond_or_thumb (void)
12697 inst
.instruction
|= 0xe0000000;
12699 inst
.instruction
|= inst
.cond
<< 28;
12702 /* Look up and encode a simple mnemonic, for use as a helper function for the
12703 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12704 etc. It is assumed that operand parsing has already been done, and that the
12705 operands are in the form expected by the given opcode (this isn't necessarily
12706 the same as the form in which they were parsed, hence some massaging must
12707 take place before this function is called).
12708 Checks current arch version against that in the looked-up opcode. */
12711 do_vfp_nsyn_opcode (const char *opname
)
12713 const struct asm_opcode
*opcode
;
12715 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
12720 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
12721 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
12728 inst
.instruction
= opcode
->tvalue
;
12729 opcode
->tencode ();
12733 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
12734 opcode
->aencode ();
12739 do_vfp_nsyn_add_sub (enum neon_shape rs
)
12741 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
12746 do_vfp_nsyn_opcode ("fadds");
12748 do_vfp_nsyn_opcode ("fsubs");
12753 do_vfp_nsyn_opcode ("faddd");
12755 do_vfp_nsyn_opcode ("fsubd");
12759 /* Check operand types to see if this is a VFP instruction, and if so call
12763 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
12765 enum neon_shape rs
;
12766 struct neon_type_el et
;
12771 rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
12772 et
= neon_check_type (2, rs
,
12773 N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12777 rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
12778 et
= neon_check_type (3, rs
,
12779 N_EQK
| N_VFP
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12786 if (et
.type
!= NT_invtype
)
12797 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
12799 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
12804 do_vfp_nsyn_opcode ("fmacs");
12806 do_vfp_nsyn_opcode ("fnmacs");
12811 do_vfp_nsyn_opcode ("fmacd");
12813 do_vfp_nsyn_opcode ("fnmacd");
12818 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
12820 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
12825 do_vfp_nsyn_opcode ("ffmas");
12827 do_vfp_nsyn_opcode ("ffnmas");
12832 do_vfp_nsyn_opcode ("ffmad");
12834 do_vfp_nsyn_opcode ("ffnmad");
12839 do_vfp_nsyn_mul (enum neon_shape rs
)
12842 do_vfp_nsyn_opcode ("fmuls");
12844 do_vfp_nsyn_opcode ("fmuld");
12848 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
12850 int is_neg
= (inst
.instruction
& 0x80) != 0;
12851 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_VFP
| N_KEY
);
12856 do_vfp_nsyn_opcode ("fnegs");
12858 do_vfp_nsyn_opcode ("fabss");
12863 do_vfp_nsyn_opcode ("fnegd");
12865 do_vfp_nsyn_opcode ("fabsd");
12869 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12870 insns belong to Neon, and are handled elsewhere. */
12873 do_vfp_nsyn_ldm_stm (int is_dbmode
)
12875 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
12879 do_vfp_nsyn_opcode ("fldmdbs");
12881 do_vfp_nsyn_opcode ("fldmias");
12886 do_vfp_nsyn_opcode ("fstmdbs");
12888 do_vfp_nsyn_opcode ("fstmias");
12893 do_vfp_nsyn_sqrt (void)
12895 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
12896 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12899 do_vfp_nsyn_opcode ("fsqrts");
12901 do_vfp_nsyn_opcode ("fsqrtd");
12905 do_vfp_nsyn_div (void)
12907 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
12908 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
12909 N_F32
| N_F64
| N_KEY
| N_VFP
);
12912 do_vfp_nsyn_opcode ("fdivs");
12914 do_vfp_nsyn_opcode ("fdivd");
12918 do_vfp_nsyn_nmul (void)
12920 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
12921 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
12922 N_F32
| N_F64
| N_KEY
| N_VFP
);
12926 NEON_ENCODE (SINGLE
, inst
);
12927 do_vfp_sp_dyadic ();
12931 NEON_ENCODE (DOUBLE
, inst
);
12932 do_vfp_dp_rd_rn_rm ();
12934 do_vfp_cond_or_thumb ();
12938 do_vfp_nsyn_cmp (void)
12940 if (inst
.operands
[1].isreg
)
12942 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
12943 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12947 NEON_ENCODE (SINGLE
, inst
);
12948 do_vfp_sp_monadic ();
12952 NEON_ENCODE (DOUBLE
, inst
);
12953 do_vfp_dp_rd_rm ();
12958 enum neon_shape rs
= neon_select_shape (NS_FI
, NS_DI
, NS_NULL
);
12959 neon_check_type (2, rs
, N_F32
| N_F64
| N_KEY
| N_VFP
, N_EQK
);
12961 switch (inst
.instruction
& 0x0fffffff)
12964 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
12967 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
12975 NEON_ENCODE (SINGLE
, inst
);
12976 do_vfp_sp_compare_z ();
12980 NEON_ENCODE (DOUBLE
, inst
);
12984 do_vfp_cond_or_thumb ();
12988 nsyn_insert_sp (void)
12990 inst
.operands
[1] = inst
.operands
[0];
12991 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
12992 inst
.operands
[0].reg
= REG_SP
;
12993 inst
.operands
[0].isreg
= 1;
12994 inst
.operands
[0].writeback
= 1;
12995 inst
.operands
[0].present
= 1;
12999 do_vfp_nsyn_push (void)
13002 if (inst
.operands
[1].issingle
)
13003 do_vfp_nsyn_opcode ("fstmdbs");
13005 do_vfp_nsyn_opcode ("fstmdbd");
13009 do_vfp_nsyn_pop (void)
13012 if (inst
.operands
[1].issingle
)
13013 do_vfp_nsyn_opcode ("fldmias");
13015 do_vfp_nsyn_opcode ("fldmiad");
13018 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13019 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13022 neon_dp_fixup (struct arm_it
* insn
)
13024 unsigned int i
= insn
->instruction
;
13029 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13040 insn
->instruction
= i
;
13043 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13047 neon_logbits (unsigned x
)
13049 return ffs (x
) - 4;
13052 #define LOW4(R) ((R) & 0xf)
13053 #define HI1(R) (((R) >> 4) & 1)
13055 /* Encode insns with bit pattern:
13057 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13058 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13060 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13061 different meaning for some instruction. */
13064 neon_three_same (int isquad
, int ubit
, int size
)
13066 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13067 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13068 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
13069 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
13070 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
13071 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
13072 inst
.instruction
|= (isquad
!= 0) << 6;
13073 inst
.instruction
|= (ubit
!= 0) << 24;
13075 inst
.instruction
|= neon_logbits (size
) << 20;
13077 neon_dp_fixup (&inst
);
13080 /* Encode instructions of the form:
13082 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13083 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13085 Don't write size if SIZE == -1. */
13088 neon_two_same (int qbit
, int ubit
, int size
)
13090 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13091 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13092 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13093 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13094 inst
.instruction
|= (qbit
!= 0) << 6;
13095 inst
.instruction
|= (ubit
!= 0) << 24;
13098 inst
.instruction
|= neon_logbits (size
) << 18;
13100 neon_dp_fixup (&inst
);
13103 /* Neon instruction encoders, in approximate order of appearance. */
13106 do_neon_dyadic_i_su (void)
13108 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13109 struct neon_type_el et
= neon_check_type (3, rs
,
13110 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
13111 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13115 do_neon_dyadic_i64_su (void)
13117 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13118 struct neon_type_el et
= neon_check_type (3, rs
,
13119 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
13120 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13124 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
13127 unsigned size
= et
.size
>> 3;
13128 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13129 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13130 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13131 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13132 inst
.instruction
|= (isquad
!= 0) << 6;
13133 inst
.instruction
|= immbits
<< 16;
13134 inst
.instruction
|= (size
>> 3) << 7;
13135 inst
.instruction
|= (size
& 0x7) << 19;
13137 inst
.instruction
|= (uval
!= 0) << 24;
13139 neon_dp_fixup (&inst
);
13143 do_neon_shl_imm (void)
13145 if (!inst
.operands
[2].isreg
)
13147 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13148 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
13149 NEON_ENCODE (IMMED
, inst
);
13150 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, inst
.operands
[2].imm
);
13154 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13155 struct neon_type_el et
= neon_check_type (3, rs
,
13156 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
13159 /* VSHL/VQSHL 3-register variants have syntax such as:
13161 whereas other 3-register operations encoded by neon_three_same have
13164 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13166 tmp
= inst
.operands
[2].reg
;
13167 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
13168 inst
.operands
[1].reg
= tmp
;
13169 NEON_ENCODE (INTEGER
, inst
);
13170 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13175 do_neon_qshl_imm (void)
13177 if (!inst
.operands
[2].isreg
)
13179 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13180 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
13182 NEON_ENCODE (IMMED
, inst
);
13183 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
13184 inst
.operands
[2].imm
);
13188 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13189 struct neon_type_el et
= neon_check_type (3, rs
,
13190 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
13193 /* See note in do_neon_shl_imm. */
13194 tmp
= inst
.operands
[2].reg
;
13195 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
13196 inst
.operands
[1].reg
= tmp
;
13197 NEON_ENCODE (INTEGER
, inst
);
13198 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13203 do_neon_rshl (void)
13205 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13206 struct neon_type_el et
= neon_check_type (3, rs
,
13207 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
13210 tmp
= inst
.operands
[2].reg
;
13211 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
13212 inst
.operands
[1].reg
= tmp
;
13213 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13217 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
13219 /* Handle .I8 pseudo-instructions. */
13222 /* Unfortunately, this will make everything apart from zero out-of-range.
13223 FIXME is this the intended semantics? There doesn't seem much point in
13224 accepting .I8 if so. */
13225 immediate
|= immediate
<< 8;
13231 if (immediate
== (immediate
& 0x000000ff))
13233 *immbits
= immediate
;
13236 else if (immediate
== (immediate
& 0x0000ff00))
13238 *immbits
= immediate
>> 8;
13241 else if (immediate
== (immediate
& 0x00ff0000))
13243 *immbits
= immediate
>> 16;
13246 else if (immediate
== (immediate
& 0xff000000))
13248 *immbits
= immediate
>> 24;
13251 if ((immediate
& 0xffff) != (immediate
>> 16))
13252 goto bad_immediate
;
13253 immediate
&= 0xffff;
13256 if (immediate
== (immediate
& 0x000000ff))
13258 *immbits
= immediate
;
13261 else if (immediate
== (immediate
& 0x0000ff00))
13263 *immbits
= immediate
>> 8;
13268 first_error (_("immediate value out of range"));
13272 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13276 neon_bits_same_in_bytes (unsigned imm
)
13278 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
13279 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
13280 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
13281 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
13284 /* For immediate of above form, return 0bABCD. */
13287 neon_squash_bits (unsigned imm
)
13289 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
13290 | ((imm
& 0x01000000) >> 21);
13293 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13296 neon_qfloat_bits (unsigned imm
)
13298 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
13301 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13302 the instruction. *OP is passed as the initial value of the op field, and
13303 may be set to a different value depending on the constant (i.e.
13304 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13305 MVN). If the immediate looks like a repeated pattern then also
13306 try smaller element sizes. */
13309 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
13310 unsigned *immbits
, int *op
, int size
,
13311 enum neon_el_type type
)
13313 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13315 if (type
== NT_float
&& !float_p
)
13318 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
13320 if (size
!= 32 || *op
== 1)
13322 *immbits
= neon_qfloat_bits (immlo
);
13328 if (neon_bits_same_in_bytes (immhi
)
13329 && neon_bits_same_in_bytes (immlo
))
13333 *immbits
= (neon_squash_bits (immhi
) << 4)
13334 | neon_squash_bits (immlo
);
13339 if (immhi
!= immlo
)
13345 if (immlo
== (immlo
& 0x000000ff))
13350 else if (immlo
== (immlo
& 0x0000ff00))
13352 *immbits
= immlo
>> 8;
13355 else if (immlo
== (immlo
& 0x00ff0000))
13357 *immbits
= immlo
>> 16;
13360 else if (immlo
== (immlo
& 0xff000000))
13362 *immbits
= immlo
>> 24;
13365 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
13367 *immbits
= (immlo
>> 8) & 0xff;
13370 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
13372 *immbits
= (immlo
>> 16) & 0xff;
13376 if ((immlo
& 0xffff) != (immlo
>> 16))
13383 if (immlo
== (immlo
& 0x000000ff))
13388 else if (immlo
== (immlo
& 0x0000ff00))
13390 *immbits
= immlo
>> 8;
13394 if ((immlo
& 0xff) != (immlo
>> 8))
13399 if (immlo
== (immlo
& 0x000000ff))
13401 /* Don't allow MVN with 8-bit immediate. */
13411 /* Write immediate bits [7:0] to the following locations:
13413 |28/24|23 19|18 16|15 4|3 0|
13414 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13416 This function is used by VMOV/VMVN/VORR/VBIC. */
13419 neon_write_immbits (unsigned immbits
)
13421 inst
.instruction
|= immbits
& 0xf;
13422 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
13423 inst
.instruction
|= ((immbits
>> 7) & 0x1) << 24;
13426 /* Invert low-order SIZE bits of XHI:XLO. */
13429 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
13431 unsigned immlo
= xlo
? *xlo
: 0;
13432 unsigned immhi
= xhi
? *xhi
: 0;
13437 immlo
= (~immlo
) & 0xff;
13441 immlo
= (~immlo
) & 0xffff;
13445 immhi
= (~immhi
) & 0xffffffff;
13446 /* fall through. */
13449 immlo
= (~immlo
) & 0xffffffff;
13464 do_neon_logic (void)
13466 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
13468 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13469 neon_check_type (3, rs
, N_IGNORE_TYPE
);
13470 /* U bit and size field were set as part of the bitmask. */
13471 NEON_ENCODE (INTEGER
, inst
);
13472 neon_three_same (neon_quad (rs
), 0, -1);
13476 const int three_ops_form
= (inst
.operands
[2].present
13477 && !inst
.operands
[2].isreg
);
13478 const int immoperand
= (three_ops_form
? 2 : 1);
13479 enum neon_shape rs
= (three_ops_form
13480 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
13481 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
13482 struct neon_type_el et
= neon_check_type (2, rs
,
13483 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
13484 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
13488 if (et
.type
== NT_invtype
)
13491 if (three_ops_form
)
13492 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13493 _("first and second operands shall be the same register"));
13495 NEON_ENCODE (IMMED
, inst
);
13497 immbits
= inst
.operands
[immoperand
].imm
;
13500 /* .i64 is a pseudo-op, so the immediate must be a repeating
13502 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
13503 inst
.operands
[immoperand
].reg
: 0))
13505 /* Set immbits to an invalid constant. */
13506 immbits
= 0xdeadbeef;
13513 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13517 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13521 /* Pseudo-instruction for VBIC. */
13522 neon_invert_size (&immbits
, 0, et
.size
);
13523 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13527 /* Pseudo-instruction for VORR. */
13528 neon_invert_size (&immbits
, 0, et
.size
);
13529 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13539 inst
.instruction
|= neon_quad (rs
) << 6;
13540 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13541 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13542 inst
.instruction
|= cmode
<< 8;
13543 neon_write_immbits (immbits
);
13545 neon_dp_fixup (&inst
);
13550 do_neon_bitfield (void)
13552 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13553 neon_check_type (3, rs
, N_IGNORE_TYPE
);
13554 neon_three_same (neon_quad (rs
), 0, -1);
13558 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
13561 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13562 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
13564 if (et
.type
== NT_float
)
13566 NEON_ENCODE (FLOAT
, inst
);
13567 neon_three_same (neon_quad (rs
), 0, -1);
13571 NEON_ENCODE (INTEGER
, inst
);
13572 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
13577 do_neon_dyadic_if_su (void)
13579 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
13583 do_neon_dyadic_if_su_d (void)
13585 /* This version only allow D registers, but that constraint is enforced during
13586 operand parsing so we don't need to do anything extra here. */
13587 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
13591 do_neon_dyadic_if_i_d (void)
13593 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13594 affected if we specify unsigned args. */
13595 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13598 enum vfp_or_neon_is_neon_bits
13601 NEON_CHECK_ARCH
= 2
13604 /* Call this function if an instruction which may have belonged to the VFP or
13605 Neon instruction sets, but turned out to be a Neon instruction (due to the
13606 operand types involved, etc.). We have to check and/or fix-up a couple of
13609 - Make sure the user hasn't attempted to make a Neon instruction
13611 - Alter the value in the condition code field if necessary.
13612 - Make sure that the arch supports Neon instructions.
13614 Which of these operations take place depends on bits from enum
13615 vfp_or_neon_is_neon_bits.
13617 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13618 current instruction's condition is COND_ALWAYS, the condition field is
13619 changed to inst.uncond_value. This is necessary because instructions shared
13620 between VFP and Neon may be conditional for the VFP variants only, and the
13621 unconditional Neon version must have, e.g., 0xF in the condition field. */
13624 vfp_or_neon_is_neon (unsigned check
)
13626 /* Conditions are always legal in Thumb mode (IT blocks). */
13627 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
13629 if (inst
.cond
!= COND_ALWAYS
)
13631 first_error (_(BAD_COND
));
13634 if (inst
.uncond_value
!= -1)
13635 inst
.instruction
|= inst
.uncond_value
<< 28;
13638 if ((check
& NEON_CHECK_ARCH
)
13639 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
13641 first_error (_(BAD_FPU
));
13649 do_neon_addsub_if_i (void)
13651 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
13654 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13657 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13658 affected if we specify unsigned args. */
13659 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
13662 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13664 V<op> A,B (A is operand 0, B is operand 2)
13669 so handle that case specially. */
13672 neon_exchange_operands (void)
13674 void *scratch
= alloca (sizeof (inst
.operands
[0]));
13675 if (inst
.operands
[1].present
)
13677 /* Swap operands[1] and operands[2]. */
13678 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
13679 inst
.operands
[1] = inst
.operands
[2];
13680 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
13684 inst
.operands
[1] = inst
.operands
[2];
13685 inst
.operands
[2] = inst
.operands
[0];
13690 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
13692 if (inst
.operands
[2].isreg
)
13695 neon_exchange_operands ();
13696 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
13700 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13701 struct neon_type_el et
= neon_check_type (2, rs
,
13702 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
13704 NEON_ENCODE (IMMED
, inst
);
13705 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13706 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13707 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13708 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13709 inst
.instruction
|= neon_quad (rs
) << 6;
13710 inst
.instruction
|= (et
.type
== NT_float
) << 10;
13711 inst
.instruction
|= neon_logbits (et
.size
) << 18;
13713 neon_dp_fixup (&inst
);
13720 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, FALSE
);
13724 do_neon_cmp_inv (void)
13726 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, TRUE
);
13732 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
13735 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13736 scalars, which are encoded in 5 bits, M : Rm.
13737 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13738 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13742 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
13744 unsigned regno
= NEON_SCALAR_REG (scalar
);
13745 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
13750 if (regno
> 7 || elno
> 3)
13752 return regno
| (elno
<< 3);
13755 if (regno
> 15 || elno
> 1)
13757 return regno
| (elno
<< 4);
13761 first_error (_("scalar out of range for multiply instruction"));
13767 /* Encode multiply / multiply-accumulate scalar instructions. */
13770 neon_mul_mac (struct neon_type_el et
, int ubit
)
13774 /* Give a more helpful error message if we have an invalid type. */
13775 if (et
.type
== NT_invtype
)
13778 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
13779 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13780 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13781 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
13782 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
13783 inst
.instruction
|= LOW4 (scalar
);
13784 inst
.instruction
|= HI1 (scalar
) << 5;
13785 inst
.instruction
|= (et
.type
== NT_float
) << 8;
13786 inst
.instruction
|= neon_logbits (et
.size
) << 20;
13787 inst
.instruction
|= (ubit
!= 0) << 24;
13789 neon_dp_fixup (&inst
);
13793 do_neon_mac_maybe_scalar (void)
13795 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
13798 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13801 if (inst
.operands
[2].isscalar
)
13803 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
13804 struct neon_type_el et
= neon_check_type (3, rs
,
13805 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F32
| N_KEY
);
13806 NEON_ENCODE (SCALAR
, inst
);
13807 neon_mul_mac (et
, neon_quad (rs
));
13811 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13812 affected if we specify unsigned args. */
13813 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13818 do_neon_fmac (void)
13820 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
13823 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13826 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13832 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13833 struct neon_type_el et
= neon_check_type (3, rs
,
13834 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
13835 neon_three_same (neon_quad (rs
), 0, et
.size
);
13838 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13839 same types as the MAC equivalents. The polynomial type for this instruction
13840 is encoded the same as the integer type. */
13845 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
13848 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13851 if (inst
.operands
[2].isscalar
)
13852 do_neon_mac_maybe_scalar ();
13854 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F32
| N_P8
, 0);
13858 do_neon_qdmulh (void)
13860 if (inst
.operands
[2].isscalar
)
13862 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
13863 struct neon_type_el et
= neon_check_type (3, rs
,
13864 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
13865 NEON_ENCODE (SCALAR
, inst
);
13866 neon_mul_mac (et
, neon_quad (rs
));
13870 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13871 struct neon_type_el et
= neon_check_type (3, rs
,
13872 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
13873 NEON_ENCODE (INTEGER
, inst
);
13874 /* The U bit (rounding) comes from bit mask. */
13875 neon_three_same (neon_quad (rs
), 0, et
.size
);
13880 do_neon_fcmp_absolute (void)
13882 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13883 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
13884 /* Size field comes from bit mask. */
13885 neon_three_same (neon_quad (rs
), 1, -1);
13889 do_neon_fcmp_absolute_inv (void)
13891 neon_exchange_operands ();
13892 do_neon_fcmp_absolute ();
13896 do_neon_step (void)
13898 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13899 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
13900 neon_three_same (neon_quad (rs
), 0, -1);
13904 do_neon_abs_neg (void)
13906 enum neon_shape rs
;
13907 struct neon_type_el et
;
13909 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
13912 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13915 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13916 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_F32
| N_KEY
);
13918 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13919 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13920 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13921 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13922 inst
.instruction
|= neon_quad (rs
) << 6;
13923 inst
.instruction
|= (et
.type
== NT_float
) << 10;
13924 inst
.instruction
|= neon_logbits (et
.size
) << 18;
13926 neon_dp_fixup (&inst
);
13932 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13933 struct neon_type_el et
= neon_check_type (2, rs
,
13934 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
13935 int imm
= inst
.operands
[2].imm
;
13936 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
13937 _("immediate out of range for insert"));
13938 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
13944 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13945 struct neon_type_el et
= neon_check_type (2, rs
,
13946 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
13947 int imm
= inst
.operands
[2].imm
;
13948 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
13949 _("immediate out of range for insert"));
13950 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
13954 do_neon_qshlu_imm (void)
13956 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13957 struct neon_type_el et
= neon_check_type (2, rs
,
13958 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
13959 int imm
= inst
.operands
[2].imm
;
13960 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
13961 _("immediate out of range for shift"));
13962 /* Only encodes the 'U present' variant of the instruction.
13963 In this case, signed types have OP (bit 8) set to 0.
13964 Unsigned types have OP set to 1. */
13965 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
13966 /* The rest of the bits are the same as other immediate shifts. */
13967 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
13971 do_neon_qmovn (void)
13973 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
13974 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
13975 /* Saturating move where operands can be signed or unsigned, and the
13976 destination has the same signedness. */
13977 NEON_ENCODE (INTEGER
, inst
);
13978 if (et
.type
== NT_unsigned
)
13979 inst
.instruction
|= 0xc0;
13981 inst
.instruction
|= 0x80;
13982 neon_two_same (0, 1, et
.size
/ 2);
13986 do_neon_qmovun (void)
13988 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
13989 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
13990 /* Saturating move with unsigned results. Operands must be signed. */
13991 NEON_ENCODE (INTEGER
, inst
);
13992 neon_two_same (0, 1, et
.size
/ 2);
13996 do_neon_rshift_sat_narrow (void)
13998 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13999 or unsigned. If operands are unsigned, results must also be unsigned. */
14000 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
14001 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
14002 int imm
= inst
.operands
[2].imm
;
14003 /* This gets the bounds check, size encoding and immediate bits calculation
14007 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14008 VQMOVN.I<size> <Dd>, <Qm>. */
14011 inst
.operands
[2].present
= 0;
14012 inst
.instruction
= N_MNEM_vqmovn
;
14017 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14018 _("immediate out of range"));
14019 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
14023 do_neon_rshift_sat_narrow_u (void)
14025 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14026 or unsigned. If operands are unsigned, results must also be unsigned. */
14027 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
14028 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
14029 int imm
= inst
.operands
[2].imm
;
14030 /* This gets the bounds check, size encoding and immediate bits calculation
14034 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14035 VQMOVUN.I<size> <Dd>, <Qm>. */
14038 inst
.operands
[2].present
= 0;
14039 inst
.instruction
= N_MNEM_vqmovun
;
14044 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14045 _("immediate out of range"));
14046 /* FIXME: The manual is kind of unclear about what value U should have in
14047 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14049 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
14053 do_neon_movn (void)
14055 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
14056 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
14057 NEON_ENCODE (INTEGER
, inst
);
14058 neon_two_same (0, 1, et
.size
/ 2);
14062 do_neon_rshift_narrow (void)
14064 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
14065 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
14066 int imm
= inst
.operands
[2].imm
;
14067 /* This gets the bounds check, size encoding and immediate bits calculation
14071 /* If immediate is zero then we are a pseudo-instruction for
14072 VMOVN.I<size> <Dd>, <Qm> */
14075 inst
.operands
[2].present
= 0;
14076 inst
.instruction
= N_MNEM_vmovn
;
14081 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14082 _("immediate out of range for narrowing operation"));
14083 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
14087 do_neon_shll (void)
14089 /* FIXME: Type checking when lengthening. */
14090 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
14091 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
14092 unsigned imm
= inst
.operands
[2].imm
;
14094 if (imm
== et
.size
)
14096 /* Maximum shift variant. */
14097 NEON_ENCODE (INTEGER
, inst
);
14098 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14099 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14100 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14101 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14102 inst
.instruction
|= neon_logbits (et
.size
) << 18;
14104 neon_dp_fixup (&inst
);
14108 /* A more-specific type check for non-max versions. */
14109 et
= neon_check_type (2, NS_QDI
,
14110 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14111 NEON_ENCODE (IMMED
, inst
);
14112 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
14116 /* Check the various types for the VCVT instruction, and return which version
14117 the current instruction is. */
14120 neon_cvt_flavour (enum neon_shape rs
)
14122 #define CVT_VAR(C,X,Y) \
14123 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14124 if (et.type != NT_invtype) \
14126 inst.error = NULL; \
14129 struct neon_type_el et
;
14130 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
14131 || rs
== NS_FF
) ? N_VFP
: 0;
14132 /* The instruction versions which take an immediate take one register
14133 argument, which is extended to the width of the full register. Thus the
14134 "source" and "destination" registers must have the same width. Hack that
14135 here by making the size equal to the key (wider, in this case) operand. */
14136 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
14138 CVT_VAR (0, N_S32
, N_F32
);
14139 CVT_VAR (1, N_U32
, N_F32
);
14140 CVT_VAR (2, N_F32
, N_S32
);
14141 CVT_VAR (3, N_F32
, N_U32
);
14142 /* Half-precision conversions. */
14143 CVT_VAR (4, N_F32
, N_F16
);
14144 CVT_VAR (5, N_F16
, N_F32
);
14148 /* VFP instructions. */
14149 CVT_VAR (6, N_F32
, N_F64
);
14150 CVT_VAR (7, N_F64
, N_F32
);
14151 CVT_VAR (8, N_S32
, N_F64
| key
);
14152 CVT_VAR (9, N_U32
, N_F64
| key
);
14153 CVT_VAR (10, N_F64
| key
, N_S32
);
14154 CVT_VAR (11, N_F64
| key
, N_U32
);
14155 /* VFP instructions with bitshift. */
14156 CVT_VAR (12, N_F32
| key
, N_S16
);
14157 CVT_VAR (13, N_F32
| key
, N_U16
);
14158 CVT_VAR (14, N_F64
| key
, N_S16
);
14159 CVT_VAR (15, N_F64
| key
, N_U16
);
14160 CVT_VAR (16, N_S16
, N_F32
| key
);
14161 CVT_VAR (17, N_U16
, N_F32
| key
);
14162 CVT_VAR (18, N_S16
, N_F64
| key
);
14163 CVT_VAR (19, N_U16
, N_F64
| key
);
14169 /* Neon-syntax VFP conversions. */
14172 do_vfp_nsyn_cvt (enum neon_shape rs
, int flavour
)
14174 const char *opname
= 0;
14176 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
)
14178 /* Conversions with immediate bitshift. */
14179 const char *enc
[] =
14203 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
14205 opname
= enc
[flavour
];
14206 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
14207 _("operands 0 and 1 must be the same register"));
14208 inst
.operands
[1] = inst
.operands
[2];
14209 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
14214 /* Conversions without bitshift. */
14215 const char *enc
[] =
14231 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
14232 opname
= enc
[flavour
];
14236 do_vfp_nsyn_opcode (opname
);
14240 do_vfp_nsyn_cvtz (void)
14242 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_FD
, NS_NULL
);
14243 int flavour
= neon_cvt_flavour (rs
);
14244 const char *enc
[] =
14258 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
14259 do_vfp_nsyn_opcode (enc
[flavour
]);
14263 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED
)
14265 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
14266 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
, NS_NULL
);
14267 int flavour
= neon_cvt_flavour (rs
);
14269 /* PR11109: Handle round-to-zero for VCVT conversions. */
14271 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
14272 && (flavour
== 0 || flavour
== 1 || flavour
== 8 || flavour
== 9)
14273 && (rs
== NS_FD
|| rs
== NS_FF
))
14275 do_vfp_nsyn_cvtz ();
14279 /* VFP rather than Neon conversions. */
14282 do_vfp_nsyn_cvt (rs
, flavour
);
14292 unsigned enctab
[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14294 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14297 /* Fixed-point conversion with #0 immediate is encoded as an
14298 integer conversion. */
14299 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
14301 immbits
= 32 - inst
.operands
[2].imm
;
14302 NEON_ENCODE (IMMED
, inst
);
14304 inst
.instruction
|= enctab
[flavour
];
14305 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14306 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14307 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14308 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14309 inst
.instruction
|= neon_quad (rs
) << 6;
14310 inst
.instruction
|= 1 << 21;
14311 inst
.instruction
|= immbits
<< 16;
14313 neon_dp_fixup (&inst
);
14321 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080 };
14323 NEON_ENCODE (INTEGER
, inst
);
14325 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14329 inst
.instruction
|= enctab
[flavour
];
14331 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14332 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14333 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14334 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14335 inst
.instruction
|= neon_quad (rs
) << 6;
14336 inst
.instruction
|= 2 << 18;
14338 neon_dp_fixup (&inst
);
14342 /* Half-precision conversions for Advanced SIMD -- neon. */
14347 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
14349 as_bad (_("operand size must match register width"));
14354 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
14356 as_bad (_("operand size must match register width"));
14361 inst
.instruction
= 0x3b60600;
14363 inst
.instruction
= 0x3b60700;
14365 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14366 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14367 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14368 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14369 neon_dp_fixup (&inst
);
14373 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14374 do_vfp_nsyn_cvt (rs
, flavour
);
14379 do_neon_cvtr (void)
14381 do_neon_cvt_1 (FALSE
);
14387 do_neon_cvt_1 (TRUE
);
14391 do_neon_cvtb (void)
14393 inst
.instruction
= 0xeb20a40;
14395 /* The sizes are attached to the mnemonic. */
14396 if (inst
.vectype
.el
[0].type
!= NT_invtype
14397 && inst
.vectype
.el
[0].size
== 16)
14398 inst
.instruction
|= 0x00010000;
14400 /* Programmer's syntax: the sizes are attached to the operands. */
14401 else if (inst
.operands
[0].vectype
.type
!= NT_invtype
14402 && inst
.operands
[0].vectype
.size
== 16)
14403 inst
.instruction
|= 0x00010000;
14405 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
14406 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
14407 do_vfp_cond_or_thumb ();
14412 do_neon_cvtt (void)
14415 inst
.instruction
|= 0x80;
14419 neon_move_immediate (void)
14421 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
14422 struct neon_type_el et
= neon_check_type (2, rs
,
14423 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
14424 unsigned immlo
, immhi
= 0, immbits
;
14425 int op
, cmode
, float_p
;
14427 constraint (et
.type
== NT_invtype
,
14428 _("operand size must be specified for immediate VMOV"));
14430 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14431 op
= (inst
.instruction
& (1 << 5)) != 0;
14433 immlo
= inst
.operands
[1].imm
;
14434 if (inst
.operands
[1].regisimm
)
14435 immhi
= inst
.operands
[1].reg
;
14437 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
14438 _("immediate has bits set outside the operand size"));
14440 float_p
= inst
.operands
[1].immisfloat
;
14442 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
14443 et
.size
, et
.type
)) == FAIL
)
14445 /* Invert relevant bits only. */
14446 neon_invert_size (&immlo
, &immhi
, et
.size
);
14447 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14448 with one or the other; those cases are caught by
14449 neon_cmode_for_move_imm. */
14451 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
14452 &op
, et
.size
, et
.type
)) == FAIL
)
14454 first_error (_("immediate out of range"));
14459 inst
.instruction
&= ~(1 << 5);
14460 inst
.instruction
|= op
<< 5;
14462 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14463 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14464 inst
.instruction
|= neon_quad (rs
) << 6;
14465 inst
.instruction
|= cmode
<< 8;
14467 neon_write_immbits (immbits
);
14473 if (inst
.operands
[1].isreg
)
14475 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14477 NEON_ENCODE (INTEGER
, inst
);
14478 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14479 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14480 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14481 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14482 inst
.instruction
|= neon_quad (rs
) << 6;
14486 NEON_ENCODE (IMMED
, inst
);
14487 neon_move_immediate ();
14490 neon_dp_fixup (&inst
);
14493 /* Encode instructions of form:
14495 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14496 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14499 neon_mixed_length (struct neon_type_el et
, unsigned size
)
14501 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14502 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14503 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14504 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14505 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14506 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14507 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
14508 inst
.instruction
|= neon_logbits (size
) << 20;
14510 neon_dp_fixup (&inst
);
14514 do_neon_dyadic_long (void)
14516 /* FIXME: Type checking for lengthening op. */
14517 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14518 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
14519 neon_mixed_length (et
, et
.size
);
14523 do_neon_abal (void)
14525 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14526 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
14527 neon_mixed_length (et
, et
.size
);
14531 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
14533 if (inst
.operands
[2].isscalar
)
14535 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
14536 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
14537 NEON_ENCODE (SCALAR
, inst
);
14538 neon_mul_mac (et
, et
.type
== NT_unsigned
);
14542 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14543 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
14544 NEON_ENCODE (INTEGER
, inst
);
14545 neon_mixed_length (et
, et
.size
);
14550 do_neon_mac_maybe_scalar_long (void)
14552 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
14556 do_neon_dyadic_wide (void)
14558 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
14559 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14560 neon_mixed_length (et
, et
.size
);
14564 do_neon_dyadic_narrow (void)
14566 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14567 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
14568 /* Operand sign is unimportant, and the U bit is part of the opcode,
14569 so force the operand type to integer. */
14570 et
.type
= NT_integer
;
14571 neon_mixed_length (et
, et
.size
/ 2);
14575 do_neon_mul_sat_scalar_long (void)
14577 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
14581 do_neon_vmull (void)
14583 if (inst
.operands
[2].isscalar
)
14584 do_neon_mac_maybe_scalar_long ();
14587 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14588 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_KEY
);
14589 if (et
.type
== NT_poly
)
14590 NEON_ENCODE (POLY
, inst
);
14592 NEON_ENCODE (INTEGER
, inst
);
14593 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14594 zero. Should be OK as-is. */
14595 neon_mixed_length (et
, et
.size
);
14602 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
14603 struct neon_type_el et
= neon_check_type (3, rs
,
14604 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
14605 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
14607 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
14608 _("shift out of range"));
14609 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14610 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14611 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14612 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14613 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14614 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14615 inst
.instruction
|= neon_quad (rs
) << 6;
14616 inst
.instruction
|= imm
<< 8;
14618 neon_dp_fixup (&inst
);
14624 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14625 struct neon_type_el et
= neon_check_type (2, rs
,
14626 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14627 unsigned op
= (inst
.instruction
>> 7) & 3;
14628 /* N (width of reversed regions) is encoded as part of the bitmask. We
14629 extract it here to check the elements to be reversed are smaller.
14630 Otherwise we'd get a reserved instruction. */
14631 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
14632 gas_assert (elsize
!= 0);
14633 constraint (et
.size
>= elsize
,
14634 _("elements must be smaller than reversal region"));
14635 neon_two_same (neon_quad (rs
), 1, et
.size
);
14641 if (inst
.operands
[1].isscalar
)
14643 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
14644 struct neon_type_el et
= neon_check_type (2, rs
,
14645 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14646 unsigned sizebits
= et
.size
>> 3;
14647 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
14648 int logsize
= neon_logbits (et
.size
);
14649 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
14651 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
14654 NEON_ENCODE (SCALAR
, inst
);
14655 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14656 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14657 inst
.instruction
|= LOW4 (dm
);
14658 inst
.instruction
|= HI1 (dm
) << 5;
14659 inst
.instruction
|= neon_quad (rs
) << 6;
14660 inst
.instruction
|= x
<< 17;
14661 inst
.instruction
|= sizebits
<< 16;
14663 neon_dp_fixup (&inst
);
14667 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
14668 struct neon_type_el et
= neon_check_type (2, rs
,
14669 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
14670 /* Duplicate ARM register to lanes of vector. */
14671 NEON_ENCODE (ARMREG
, inst
);
14674 case 8: inst
.instruction
|= 0x400000; break;
14675 case 16: inst
.instruction
|= 0x000020; break;
14676 case 32: inst
.instruction
|= 0x000000; break;
14679 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
14680 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
14681 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
14682 inst
.instruction
|= neon_quad (rs
) << 21;
14683 /* The encoding for this instruction is identical for the ARM and Thumb
14684 variants, except for the condition field. */
14685 do_vfp_cond_or_thumb ();
14689 /* VMOV has particularly many variations. It can be one of:
14690 0. VMOV<c><q> <Qd>, <Qm>
14691 1. VMOV<c><q> <Dd>, <Dm>
14692 (Register operations, which are VORR with Rm = Rn.)
14693 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14694 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14696 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14697 (ARM register to scalar.)
14698 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14699 (Two ARM registers to vector.)
14700 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14701 (Scalar to ARM register.)
14702 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14703 (Vector to two ARM registers.)
14704 8. VMOV.F32 <Sd>, <Sm>
14705 9. VMOV.F64 <Dd>, <Dm>
14706 (VFP register moves.)
14707 10. VMOV.F32 <Sd>, #imm
14708 11. VMOV.F64 <Dd>, #imm
14709 (VFP float immediate load.)
14710 12. VMOV <Rd>, <Sm>
14711 (VFP single to ARM reg.)
14712 13. VMOV <Sd>, <Rm>
14713 (ARM reg to VFP single.)
14714 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14715 (Two ARM regs to two VFP singles.)
14716 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14717 (Two VFP singles to two ARM regs.)
14719 These cases can be disambiguated using neon_select_shape, except cases 1/9
14720 and 3/11 which depend on the operand type too.
14722 All the encoded bits are hardcoded by this function.
14724 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14725 Cases 5, 7 may be used with VFPv2 and above.
14727 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14728 can specify a type where it doesn't make sense to, and is ignored). */
14733 enum neon_shape rs
= neon_select_shape (NS_RRFF
, NS_FFRR
, NS_DRR
, NS_RRD
,
14734 NS_QQ
, NS_DD
, NS_QI
, NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
, NS_RF
, NS_FR
,
14736 struct neon_type_el et
;
14737 const char *ldconst
= 0;
14741 case NS_DD
: /* case 1/9. */
14742 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
14743 /* It is not an error here if no type is given. */
14745 if (et
.type
== NT_float
&& et
.size
== 64)
14747 do_vfp_nsyn_opcode ("fcpyd");
14750 /* fall through. */
14752 case NS_QQ
: /* case 0/1. */
14754 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14756 /* The architecture manual I have doesn't explicitly state which
14757 value the U bit should have for register->register moves, but
14758 the equivalent VORR instruction has U = 0, so do that. */
14759 inst
.instruction
= 0x0200110;
14760 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14761 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14762 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14763 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14764 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14765 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14766 inst
.instruction
|= neon_quad (rs
) << 6;
14768 neon_dp_fixup (&inst
);
14772 case NS_DI
: /* case 3/11. */
14773 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
14775 if (et
.type
== NT_float
&& et
.size
== 64)
14777 /* case 11 (fconstd). */
14778 ldconst
= "fconstd";
14779 goto encode_fconstd
;
14781 /* fall through. */
14783 case NS_QI
: /* case 2/3. */
14784 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14786 inst
.instruction
= 0x0800010;
14787 neon_move_immediate ();
14788 neon_dp_fixup (&inst
);
14791 case NS_SR
: /* case 4. */
14793 unsigned bcdebits
= 0;
14795 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
14796 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
14798 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
14799 logsize
= neon_logbits (et
.size
);
14801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
14803 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
14804 && et
.size
!= 32, _(BAD_FPU
));
14805 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
14806 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
14810 case 8: bcdebits
= 0x8; break;
14811 case 16: bcdebits
= 0x1; break;
14812 case 32: bcdebits
= 0x0; break;
14816 bcdebits
|= x
<< logsize
;
14818 inst
.instruction
= 0xe000b10;
14819 do_vfp_cond_or_thumb ();
14820 inst
.instruction
|= LOW4 (dn
) << 16;
14821 inst
.instruction
|= HI1 (dn
) << 7;
14822 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
14823 inst
.instruction
|= (bcdebits
& 3) << 5;
14824 inst
.instruction
|= (bcdebits
>> 2) << 21;
14828 case NS_DRR
: /* case 5 (fmdrr). */
14829 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
14832 inst
.instruction
= 0xc400b10;
14833 do_vfp_cond_or_thumb ();
14834 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
14835 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
14836 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
14837 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
14840 case NS_RS
: /* case 6. */
14843 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
14844 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
14845 unsigned abcdebits
= 0;
14847 et
= neon_check_type (2, NS_NULL
,
14848 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
14849 logsize
= neon_logbits (et
.size
);
14851 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
14853 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
14854 && et
.size
!= 32, _(BAD_FPU
));
14855 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
14856 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
14860 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
14861 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
14862 case 32: abcdebits
= 0x00; break;
14866 abcdebits
|= x
<< logsize
;
14867 inst
.instruction
= 0xe100b10;
14868 do_vfp_cond_or_thumb ();
14869 inst
.instruction
|= LOW4 (dn
) << 16;
14870 inst
.instruction
|= HI1 (dn
) << 7;
14871 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
14872 inst
.instruction
|= (abcdebits
& 3) << 5;
14873 inst
.instruction
|= (abcdebits
>> 2) << 21;
14877 case NS_RRD
: /* case 7 (fmrrd). */
14878 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
14881 inst
.instruction
= 0xc500b10;
14882 do_vfp_cond_or_thumb ();
14883 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
14884 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14885 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14886 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14889 case NS_FF
: /* case 8 (fcpys). */
14890 do_vfp_nsyn_opcode ("fcpys");
14893 case NS_FI
: /* case 10 (fconsts). */
14894 ldconst
= "fconsts";
14896 if (is_quarter_float (inst
.operands
[1].imm
))
14898 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
14899 do_vfp_nsyn_opcode (ldconst
);
14902 first_error (_("immediate out of range"));
14905 case NS_RF
: /* case 12 (fmrs). */
14906 do_vfp_nsyn_opcode ("fmrs");
14909 case NS_FR
: /* case 13 (fmsr). */
14910 do_vfp_nsyn_opcode ("fmsr");
14913 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14914 (one of which is a list), but we have parsed four. Do some fiddling to
14915 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14917 case NS_RRFF
: /* case 14 (fmrrs). */
14918 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
14919 _("VFP registers must be adjacent"));
14920 inst
.operands
[2].imm
= 2;
14921 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
14922 do_vfp_nsyn_opcode ("fmrrs");
14925 case NS_FFRR
: /* case 15 (fmsrr). */
14926 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
14927 _("VFP registers must be adjacent"));
14928 inst
.operands
[1] = inst
.operands
[2];
14929 inst
.operands
[2] = inst
.operands
[3];
14930 inst
.operands
[0].imm
= 2;
14931 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
14932 do_vfp_nsyn_opcode ("fmsrr");
14941 do_neon_rshift_round_imm (void)
14943 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
14944 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
14945 int imm
= inst
.operands
[2].imm
;
14947 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14950 inst
.operands
[2].present
= 0;
14955 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14956 _("immediate out of range for shift"));
14957 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
14962 do_neon_movl (void)
14964 struct neon_type_el et
= neon_check_type (2, NS_QD
,
14965 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14966 unsigned sizebits
= et
.size
>> 3;
14967 inst
.instruction
|= sizebits
<< 19;
14968 neon_two_same (0, et
.type
== NT_unsigned
, -1);
14974 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14975 struct neon_type_el et
= neon_check_type (2, rs
,
14976 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14977 NEON_ENCODE (INTEGER
, inst
);
14978 neon_two_same (neon_quad (rs
), 1, et
.size
);
14982 do_neon_zip_uzp (void)
14984 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14985 struct neon_type_el et
= neon_check_type (2, rs
,
14986 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14987 if (rs
== NS_DD
&& et
.size
== 32)
14989 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14990 inst
.instruction
= N_MNEM_vtrn
;
14994 neon_two_same (neon_quad (rs
), 1, et
.size
);
14998 do_neon_sat_abs_neg (void)
15000 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15001 struct neon_type_el et
= neon_check_type (2, rs
,
15002 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
15003 neon_two_same (neon_quad (rs
), 1, et
.size
);
15007 do_neon_pair_long (void)
15009 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15010 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
15011 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15012 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
15013 neon_two_same (neon_quad (rs
), 1, et
.size
);
15017 do_neon_recip_est (void)
15019 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15020 struct neon_type_el et
= neon_check_type (2, rs
,
15021 N_EQK
| N_FLT
, N_F32
| N_U32
| N_KEY
);
15022 inst
.instruction
|= (et
.type
== NT_float
) << 8;
15023 neon_two_same (neon_quad (rs
), 1, et
.size
);
15029 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15030 struct neon_type_el et
= neon_check_type (2, rs
,
15031 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
15032 neon_two_same (neon_quad (rs
), 1, et
.size
);
15038 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15039 struct neon_type_el et
= neon_check_type (2, rs
,
15040 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
15041 neon_two_same (neon_quad (rs
), 1, et
.size
);
15047 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15048 struct neon_type_el et
= neon_check_type (2, rs
,
15049 N_EQK
| N_INT
, N_8
| N_KEY
);
15050 neon_two_same (neon_quad (rs
), 1, et
.size
);
15056 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15057 neon_two_same (neon_quad (rs
), 1, -1);
15061 do_neon_tbl_tbx (void)
15063 unsigned listlenbits
;
15064 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
15066 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
15068 first_error (_("bad list length for table lookup"));
15072 listlenbits
= inst
.operands
[1].imm
- 1;
15073 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15074 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15075 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15076 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15077 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15078 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15079 inst
.instruction
|= listlenbits
<< 8;
15081 neon_dp_fixup (&inst
);
15085 do_neon_ldm_stm (void)
15087 /* P, U and L bits are part of bitmask. */
15088 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
15089 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
15091 if (inst
.operands
[1].issingle
)
15093 do_vfp_nsyn_ldm_stm (is_dbmode
);
15097 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
15098 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15100 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15101 _("register list must contain at least 1 and at most 16 "
15104 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
15105 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
15106 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
15107 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
15109 inst
.instruction
|= offsetbits
;
15111 do_vfp_cond_or_thumb ();
15115 do_neon_ldr_str (void)
15117 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
15119 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15120 And is UNPREDICTABLE in thumb mode. */
15122 && inst
.operands
[1].reg
== REG_PC
15123 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
15125 if (!thumb_mode
&& warn_on_deprecated
)
15126 as_warn (_("Use of PC here is deprecated"));
15128 inst
.error
= _("Use of PC here is UNPREDICTABLE");
15131 if (inst
.operands
[0].issingle
)
15134 do_vfp_nsyn_opcode ("flds");
15136 do_vfp_nsyn_opcode ("fsts");
15141 do_vfp_nsyn_opcode ("fldd");
15143 do_vfp_nsyn_opcode ("fstd");
15147 /* "interleave" version also handles non-interleaving register VLD1/VST1
15151 do_neon_ld_st_interleave (void)
15153 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
15154 N_8
| N_16
| N_32
| N_64
);
15155 unsigned alignbits
= 0;
15157 /* The bits in this table go:
15158 0: register stride of one (0) or two (1)
15159 1,2: register list length, minus one (1, 2, 3, 4).
15160 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15161 We use -1 for invalid entries. */
15162 const int typetable
[] =
15164 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15165 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15166 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15167 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15171 if (et
.type
== NT_invtype
)
15174 if (inst
.operands
[1].immisalign
)
15175 switch (inst
.operands
[1].imm
>> 8)
15177 case 64: alignbits
= 1; break;
15179 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
15180 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
15181 goto bad_alignment
;
15185 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
15186 goto bad_alignment
;
15191 first_error (_("bad alignment"));
15195 inst
.instruction
|= alignbits
<< 4;
15196 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15198 /* Bits [4:6] of the immediate in a list specifier encode register stride
15199 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15200 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15201 up the right value for "type" in a table based on this value and the given
15202 list style, then stick it back. */
15203 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
15204 | (((inst
.instruction
>> 8) & 3) << 3);
15206 typebits
= typetable
[idx
];
15208 constraint (typebits
== -1, _("bad list type for instruction"));
15210 inst
.instruction
&= ~0xf00;
15211 inst
.instruction
|= typebits
<< 8;
15214 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15215 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15216 otherwise. The variable arguments are a list of pairs of legal (size, align)
15217 values, terminated with -1. */
15220 neon_alignment_bit (int size
, int align
, int *do_align
, ...)
15223 int result
= FAIL
, thissize
, thisalign
;
15225 if (!inst
.operands
[1].immisalign
)
15231 va_start (ap
, do_align
);
15235 thissize
= va_arg (ap
, int);
15236 if (thissize
== -1)
15238 thisalign
= va_arg (ap
, int);
15240 if (size
== thissize
&& align
== thisalign
)
15243 while (result
!= SUCCESS
);
15247 if (result
== SUCCESS
)
15250 first_error (_("unsupported alignment for instruction"));
15256 do_neon_ld_st_lane (void)
15258 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
15259 int align_good
, do_align
= 0;
15260 int logsize
= neon_logbits (et
.size
);
15261 int align
= inst
.operands
[1].imm
>> 8;
15262 int n
= (inst
.instruction
>> 8) & 3;
15263 int max_el
= 64 / et
.size
;
15265 if (et
.type
== NT_invtype
)
15268 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
15269 _("bad list length"));
15270 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
15271 _("scalar index out of range"));
15272 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
15274 _("stride of 2 unavailable when element size is 8"));
15278 case 0: /* VLD1 / VST1. */
15279 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 16, 16,
15281 if (align_good
== FAIL
)
15285 unsigned alignbits
= 0;
15288 case 16: alignbits
= 0x1; break;
15289 case 32: alignbits
= 0x3; break;
15292 inst
.instruction
|= alignbits
<< 4;
15296 case 1: /* VLD2 / VST2. */
15297 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 16, 16, 32,
15299 if (align_good
== FAIL
)
15302 inst
.instruction
|= 1 << 4;
15305 case 2: /* VLD3 / VST3. */
15306 constraint (inst
.operands
[1].immisalign
,
15307 _("can't use alignment with this instruction"));
15310 case 3: /* VLD4 / VST4. */
15311 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
15312 16, 64, 32, 64, 32, 128, -1);
15313 if (align_good
== FAIL
)
15317 unsigned alignbits
= 0;
15320 case 8: alignbits
= 0x1; break;
15321 case 16: alignbits
= 0x1; break;
15322 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
15325 inst
.instruction
|= alignbits
<< 4;
15332 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15333 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15334 inst
.instruction
|= 1 << (4 + logsize
);
15336 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
15337 inst
.instruction
|= logsize
<< 10;
15340 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15343 do_neon_ld_dup (void)
15345 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
15346 int align_good
, do_align
= 0;
15348 if (et
.type
== NT_invtype
)
15351 switch ((inst
.instruction
>> 8) & 3)
15353 case 0: /* VLD1. */
15354 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
15355 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
15356 &do_align
, 16, 16, 32, 32, -1);
15357 if (align_good
== FAIL
)
15359 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
15362 case 2: inst
.instruction
|= 1 << 5; break;
15363 default: first_error (_("bad list length")); return;
15365 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15368 case 1: /* VLD2. */
15369 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
15370 &do_align
, 8, 16, 16, 32, 32, 64, -1);
15371 if (align_good
== FAIL
)
15373 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
15374 _("bad list length"));
15375 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15376 inst
.instruction
|= 1 << 5;
15377 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15380 case 2: /* VLD3. */
15381 constraint (inst
.operands
[1].immisalign
,
15382 _("can't use alignment with this instruction"));
15383 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
15384 _("bad list length"));
15385 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15386 inst
.instruction
|= 1 << 5;
15387 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15390 case 3: /* VLD4. */
15392 int align
= inst
.operands
[1].imm
>> 8;
15393 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
15394 16, 64, 32, 64, 32, 128, -1);
15395 if (align_good
== FAIL
)
15397 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
15398 _("bad list length"));
15399 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15400 inst
.instruction
|= 1 << 5;
15401 if (et
.size
== 32 && align
== 128)
15402 inst
.instruction
|= 0x3 << 6;
15404 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15411 inst
.instruction
|= do_align
<< 4;
15414 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15415 apart from bits [11:4]. */
15418 do_neon_ldx_stx (void)
15420 if (inst
.operands
[1].isreg
)
15421 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
15423 switch (NEON_LANE (inst
.operands
[0].imm
))
15425 case NEON_INTERLEAVE_LANES
:
15426 NEON_ENCODE (INTERLV
, inst
);
15427 do_neon_ld_st_interleave ();
15430 case NEON_ALL_LANES
:
15431 NEON_ENCODE (DUP
, inst
);
15436 NEON_ENCODE (LANE
, inst
);
15437 do_neon_ld_st_lane ();
15440 /* L bit comes from bit mask. */
15441 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15442 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15443 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
15445 if (inst
.operands
[1].postind
)
15447 int postreg
= inst
.operands
[1].imm
& 0xf;
15448 constraint (!inst
.operands
[1].immisreg
,
15449 _("post-index must be a register"));
15450 constraint (postreg
== 0xd || postreg
== 0xf,
15451 _("bad register for post-index"));
15452 inst
.instruction
|= postreg
;
15454 else if (inst
.operands
[1].writeback
)
15456 inst
.instruction
|= 0xd;
15459 inst
.instruction
|= 0xf;
15462 inst
.instruction
|= 0xf9000000;
15464 inst
.instruction
|= 0xf4000000;
15467 /* Overall per-instruction processing. */
15469 /* We need to be able to fix up arbitrary expressions in some statements.
15470 This is so that we can handle symbols that are an arbitrary distance from
15471 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15472 which returns part of an address in a form which will be valid for
15473 a data instruction. We do this by pushing the expression into a symbol
15474 in the expr_section, and creating a fix for that. */
15477 fix_new_arm (fragS
* frag
,
15491 /* Create an absolute valued symbol, so we have something to
15492 refer to in the object file. Unfortunately for us, gas's
15493 generic expression parsing will already have folded out
15494 any use of .set foo/.type foo %function that may have
15495 been used to set type information of the target location,
15496 that's being specified symbolically. We have to presume
15497 the user knows what they are doing. */
15501 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
15503 symbol
= symbol_find_or_make (name
);
15504 S_SET_SEGMENT (symbol
, absolute_section
);
15505 symbol_set_frag (symbol
, &zero_address_frag
);
15506 S_SET_VALUE (symbol
, exp
->X_add_number
);
15507 exp
->X_op
= O_symbol
;
15508 exp
->X_add_symbol
= symbol
;
15509 exp
->X_add_number
= 0;
15515 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
15516 (enum bfd_reloc_code_real
) reloc
);
15520 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
15521 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
15525 /* Mark whether the fix is to a THUMB instruction, or an ARM
15527 new_fix
->tc_fix_data
= thumb_mode
;
15530 /* Create a frg for an instruction requiring relaxation. */
15532 output_relax_insn (void)
15538 /* The size of the instruction is unknown, so tie the debug info to the
15539 start of the instruction. */
15540 dwarf2_emit_insn (0);
15542 switch (inst
.reloc
.exp
.X_op
)
15545 sym
= inst
.reloc
.exp
.X_add_symbol
;
15546 offset
= inst
.reloc
.exp
.X_add_number
;
15550 offset
= inst
.reloc
.exp
.X_add_number
;
15553 sym
= make_expr_symbol (&inst
.reloc
.exp
);
15557 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
15558 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
15559 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
15562 /* Write a 32-bit thumb instruction to buf. */
15564 put_thumb32_insn (char * buf
, unsigned long insn
)
15566 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
15567 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
15571 output_inst (const char * str
)
15577 as_bad ("%s -- `%s'", inst
.error
, str
);
15582 output_relax_insn ();
15585 if (inst
.size
== 0)
15588 to
= frag_more (inst
.size
);
15589 /* PR 9814: Record the thumb mode into the current frag so that we know
15590 what type of NOP padding to use, if necessary. We override any previous
15591 setting so that if the mode has changed then the NOPS that we use will
15592 match the encoding of the last instruction in the frag. */
15593 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
15595 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
15597 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
15598 put_thumb32_insn (to
, inst
.instruction
);
15600 else if (inst
.size
> INSN_SIZE
)
15602 gas_assert (inst
.size
== (2 * INSN_SIZE
));
15603 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
15604 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
15607 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
15609 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
15610 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
15611 inst
.size
, & inst
.reloc
.exp
, inst
.reloc
.pc_rel
,
15614 dwarf2_emit_insn (inst
.size
);
15618 output_it_inst (int cond
, int mask
, char * to
)
15620 unsigned long instruction
= 0xbf00;
15623 instruction
|= mask
;
15624 instruction
|= cond
<< 4;
15628 to
= frag_more (2);
15630 dwarf2_emit_insn (2);
15634 md_number_to_chars (to
, instruction
, 2);
15639 /* Tag values used in struct asm_opcode's tag field. */
15642 OT_unconditional
, /* Instruction cannot be conditionalized.
15643 The ARM condition field is still 0xE. */
15644 OT_unconditionalF
, /* Instruction cannot be conditionalized
15645 and carries 0xF in its ARM condition field. */
15646 OT_csuffix
, /* Instruction takes a conditional suffix. */
15647 OT_csuffixF
, /* Some forms of the instruction take a conditional
15648 suffix, others place 0xF where the condition field
15650 OT_cinfix3
, /* Instruction takes a conditional infix,
15651 beginning at character index 3. (In
15652 unified mode, it becomes a suffix.) */
15653 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
15654 tsts, cmps, cmns, and teqs. */
15655 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
15656 character index 3, even in unified mode. Used for
15657 legacy instructions where suffix and infix forms
15658 may be ambiguous. */
15659 OT_csuf_or_in3
, /* Instruction takes either a conditional
15660 suffix or an infix at character index 3. */
15661 OT_odd_infix_unc
, /* This is the unconditional variant of an
15662 instruction that takes a conditional infix
15663 at an unusual position. In unified mode,
15664 this variant will accept a suffix. */
15665 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
15666 are the conditional variants of instructions that
15667 take conditional infixes in unusual positions.
15668 The infix appears at character index
15669 (tag - OT_odd_infix_0). These are not accepted
15670 in unified mode. */
15673 /* Subroutine of md_assemble, responsible for looking up the primary
15674 opcode from the mnemonic the user wrote. STR points to the
15675 beginning of the mnemonic.
15677 This is not simply a hash table lookup, because of conditional
15678 variants. Most instructions have conditional variants, which are
15679 expressed with a _conditional affix_ to the mnemonic. If we were
15680 to encode each conditional variant as a literal string in the opcode
15681 table, it would have approximately 20,000 entries.
15683 Most mnemonics take this affix as a suffix, and in unified syntax,
15684 'most' is upgraded to 'all'. However, in the divided syntax, some
15685 instructions take the affix as an infix, notably the s-variants of
15686 the arithmetic instructions. Of those instructions, all but six
15687 have the infix appear after the third character of the mnemonic.
15689 Accordingly, the algorithm for looking up primary opcodes given
15692 1. Look up the identifier in the opcode table.
15693 If we find a match, go to step U.
15695 2. Look up the last two characters of the identifier in the
15696 conditions table. If we find a match, look up the first N-2
15697 characters of the identifier in the opcode table. If we
15698 find a match, go to step CE.
15700 3. Look up the fourth and fifth characters of the identifier in
15701 the conditions table. If we find a match, extract those
15702 characters from the identifier, and look up the remaining
15703 characters in the opcode table. If we find a match, go
15708 U. Examine the tag field of the opcode structure, in case this is
15709 one of the six instructions with its conditional infix in an
15710 unusual place. If it is, the tag tells us where to find the
15711 infix; look it up in the conditions table and set inst.cond
15712 accordingly. Otherwise, this is an unconditional instruction.
15713 Again set inst.cond accordingly. Return the opcode structure.
15715 CE. Examine the tag field to make sure this is an instruction that
15716 should receive a conditional suffix. If it is not, fail.
15717 Otherwise, set inst.cond from the suffix we already looked up,
15718 and return the opcode structure.
15720 CM. Examine the tag field to make sure this is an instruction that
15721 should receive a conditional infix after the third character.
15722 If it is not, fail. Otherwise, undo the edits to the current
15723 line of input and proceed as for case CE. */
15725 static const struct asm_opcode
*
15726 opcode_lookup (char **str
)
15730 const struct asm_opcode
*opcode
;
15731 const struct asm_cond
*cond
;
15734 /* Scan up to the end of the mnemonic, which must end in white space,
15735 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15736 for (base
= end
= *str
; *end
!= '\0'; end
++)
15737 if (*end
== ' ' || *end
== '.')
15743 /* Handle a possible width suffix and/or Neon type suffix. */
15748 /* The .w and .n suffixes are only valid if the unified syntax is in
15750 if (unified_syntax
&& end
[1] == 'w')
15752 else if (unified_syntax
&& end
[1] == 'n')
15757 inst
.vectype
.elems
= 0;
15759 *str
= end
+ offset
;
15761 if (end
[offset
] == '.')
15763 /* See if we have a Neon type suffix (possible in either unified or
15764 non-unified ARM syntax mode). */
15765 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
15768 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
15774 /* Look for unaffixed or special-case affixed mnemonic. */
15775 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
15780 if (opcode
->tag
< OT_odd_infix_0
)
15782 inst
.cond
= COND_ALWAYS
;
15786 if (warn_on_deprecated
&& unified_syntax
)
15787 as_warn (_("conditional infixes are deprecated in unified syntax"));
15788 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
15789 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
15792 inst
.cond
= cond
->value
;
15796 /* Cannot have a conditional suffix on a mnemonic of less than two
15798 if (end
- base
< 3)
15801 /* Look for suffixed mnemonic. */
15803 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
15804 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
15806 if (opcode
&& cond
)
15809 switch (opcode
->tag
)
15811 case OT_cinfix3_legacy
:
15812 /* Ignore conditional suffixes matched on infix only mnemonics. */
15816 case OT_cinfix3_deprecated
:
15817 case OT_odd_infix_unc
:
15818 if (!unified_syntax
)
15820 /* else fall through */
15824 case OT_csuf_or_in3
:
15825 inst
.cond
= cond
->value
;
15828 case OT_unconditional
:
15829 case OT_unconditionalF
:
15831 inst
.cond
= cond
->value
;
15834 /* Delayed diagnostic. */
15835 inst
.error
= BAD_COND
;
15836 inst
.cond
= COND_ALWAYS
;
15845 /* Cannot have a usual-position infix on a mnemonic of less than
15846 six characters (five would be a suffix). */
15847 if (end
- base
< 6)
15850 /* Look for infixed mnemonic in the usual position. */
15852 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
15856 memcpy (save
, affix
, 2);
15857 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
15858 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
15860 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
15861 memcpy (affix
, save
, 2);
15864 && (opcode
->tag
== OT_cinfix3
15865 || opcode
->tag
== OT_cinfix3_deprecated
15866 || opcode
->tag
== OT_csuf_or_in3
15867 || opcode
->tag
== OT_cinfix3_legacy
))
15870 if (warn_on_deprecated
&& unified_syntax
15871 && (opcode
->tag
== OT_cinfix3
15872 || opcode
->tag
== OT_cinfix3_deprecated
))
15873 as_warn (_("conditional infixes are deprecated in unified syntax"));
15875 inst
.cond
= cond
->value
;
15882 /* This function generates an initial IT instruction, leaving its block
15883 virtually open for the new instructions. Eventually,
15884 the mask will be updated by now_it_add_mask () each time
15885 a new instruction needs to be included in the IT block.
15886 Finally, the block is closed with close_automatic_it_block ().
15887 The block closure can be requested either from md_assemble (),
15888 a tencode (), or due to a label hook. */
15891 new_automatic_it_block (int cond
)
15893 now_it
.state
= AUTOMATIC_IT_BLOCK
;
15894 now_it
.mask
= 0x18;
15896 now_it
.block_length
= 1;
15897 mapping_state (MAP_THUMB
);
15898 now_it
.insn
= output_it_inst (cond
, now_it
.mask
, NULL
);
15901 /* Close an automatic IT block.
15902 See comments in new_automatic_it_block (). */
15905 close_automatic_it_block (void)
15907 now_it
.mask
= 0x10;
15908 now_it
.block_length
= 0;
15911 /* Update the mask of the current automatically-generated IT
15912 instruction. See comments in new_automatic_it_block (). */
15915 now_it_add_mask (int cond
)
15917 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15918 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15919 | ((bitvalue) << (nbit)))
15920 const int resulting_bit
= (cond
& 1);
15922 now_it
.mask
&= 0xf;
15923 now_it
.mask
= SET_BIT_VALUE (now_it
.mask
,
15925 (5 - now_it
.block_length
));
15926 now_it
.mask
= SET_BIT_VALUE (now_it
.mask
,
15928 ((5 - now_it
.block_length
) - 1) );
15929 output_it_inst (now_it
.cc
, now_it
.mask
, now_it
.insn
);
15932 #undef SET_BIT_VALUE
15935 /* The IT blocks handling machinery is accessed through the these functions:
15936 it_fsm_pre_encode () from md_assemble ()
15937 set_it_insn_type () optional, from the tencode functions
15938 set_it_insn_type_last () ditto
15939 in_it_block () ditto
15940 it_fsm_post_encode () from md_assemble ()
15941 force_automatic_it_block_close () from label habdling functions
15944 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15945 initializing the IT insn type with a generic initial value depending
15946 on the inst.condition.
15947 2) During the tencode function, two things may happen:
15948 a) The tencode function overrides the IT insn type by
15949 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15950 b) The tencode function queries the IT block state by
15951 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15953 Both set_it_insn_type and in_it_block run the internal FSM state
15954 handling function (handle_it_state), because: a) setting the IT insn
15955 type may incur in an invalid state (exiting the function),
15956 and b) querying the state requires the FSM to be updated.
15957 Specifically we want to avoid creating an IT block for conditional
15958 branches, so it_fsm_pre_encode is actually a guess and we can't
15959 determine whether an IT block is required until the tencode () routine
15960 has decided what type of instruction this actually it.
15961 Because of this, if set_it_insn_type and in_it_block have to be used,
15962 set_it_insn_type has to be called first.
15964 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15965 determines the insn IT type depending on the inst.cond code.
15966 When a tencode () routine encodes an instruction that can be
15967 either outside an IT block, or, in the case of being inside, has to be
15968 the last one, set_it_insn_type_last () will determine the proper
15969 IT instruction type based on the inst.cond code. Otherwise,
15970 set_it_insn_type can be called for overriding that logic or
15971 for covering other cases.
15973 Calling handle_it_state () may not transition the IT block state to
15974 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15975 still queried. Instead, if the FSM determines that the state should
15976 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15977 after the tencode () function: that's what it_fsm_post_encode () does.
15979 Since in_it_block () calls the state handling function to get an
15980 updated state, an error may occur (due to invalid insns combination).
15981 In that case, inst.error is set.
15982 Therefore, inst.error has to be checked after the execution of
15983 the tencode () routine.
15985 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15986 any pending state change (if any) that didn't take place in
15987 handle_it_state () as explained above. */
15990 it_fsm_pre_encode (void)
15992 if (inst
.cond
!= COND_ALWAYS
)
15993 inst
.it_insn_type
= INSIDE_IT_INSN
;
15995 inst
.it_insn_type
= OUTSIDE_IT_INSN
;
15997 now_it
.state_handled
= 0;
16000 /* IT state FSM handling function. */
16003 handle_it_state (void)
16005 now_it
.state_handled
= 1;
16007 switch (now_it
.state
)
16009 case OUTSIDE_IT_BLOCK
:
16010 switch (inst
.it_insn_type
)
16012 case OUTSIDE_IT_INSN
:
16015 case INSIDE_IT_INSN
:
16016 case INSIDE_IT_LAST_INSN
:
16017 if (thumb_mode
== 0)
16020 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
16021 as_tsktsk (_("Warning: conditional outside an IT block"\
16026 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
16027 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_arch_t2
))
16029 /* Automatically generate the IT instruction. */
16030 new_automatic_it_block (inst
.cond
);
16031 if (inst
.it_insn_type
== INSIDE_IT_LAST_INSN
)
16032 close_automatic_it_block ();
16036 inst
.error
= BAD_OUT_IT
;
16042 case IF_INSIDE_IT_LAST_INSN
:
16043 case NEUTRAL_IT_INSN
:
16047 now_it
.state
= MANUAL_IT_BLOCK
;
16048 now_it
.block_length
= 0;
16053 case AUTOMATIC_IT_BLOCK
:
16054 /* Three things may happen now:
16055 a) We should increment current it block size;
16056 b) We should close current it block (closing insn or 4 insns);
16057 c) We should close current it block and start a new one (due
16058 to incompatible conditions or
16059 4 insns-length block reached). */
16061 switch (inst
.it_insn_type
)
16063 case OUTSIDE_IT_INSN
:
16064 /* The closure of the block shall happen immediatelly,
16065 so any in_it_block () call reports the block as closed. */
16066 force_automatic_it_block_close ();
16069 case INSIDE_IT_INSN
:
16070 case INSIDE_IT_LAST_INSN
:
16071 case IF_INSIDE_IT_LAST_INSN
:
16072 now_it
.block_length
++;
16074 if (now_it
.block_length
> 4
16075 || !now_it_compatible (inst
.cond
))
16077 force_automatic_it_block_close ();
16078 if (inst
.it_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
16079 new_automatic_it_block (inst
.cond
);
16083 now_it_add_mask (inst
.cond
);
16086 if (now_it
.state
== AUTOMATIC_IT_BLOCK
16087 && (inst
.it_insn_type
== INSIDE_IT_LAST_INSN
16088 || inst
.it_insn_type
== IF_INSIDE_IT_LAST_INSN
))
16089 close_automatic_it_block ();
16092 case NEUTRAL_IT_INSN
:
16093 now_it
.block_length
++;
16095 if (now_it
.block_length
> 4)
16096 force_automatic_it_block_close ();
16098 now_it_add_mask (now_it
.cc
& 1);
16102 close_automatic_it_block ();
16103 now_it
.state
= MANUAL_IT_BLOCK
;
16108 case MANUAL_IT_BLOCK
:
16110 /* Check conditional suffixes. */
16111 const int cond
= now_it
.cc
^ ((now_it
.mask
>> 4) & 1) ^ 1;
16114 now_it
.mask
&= 0x1f;
16115 is_last
= (now_it
.mask
== 0x10);
16117 switch (inst
.it_insn_type
)
16119 case OUTSIDE_IT_INSN
:
16120 inst
.error
= BAD_NOT_IT
;
16123 case INSIDE_IT_INSN
:
16124 if (cond
!= inst
.cond
)
16126 inst
.error
= BAD_IT_COND
;
16131 case INSIDE_IT_LAST_INSN
:
16132 case IF_INSIDE_IT_LAST_INSN
:
16133 if (cond
!= inst
.cond
)
16135 inst
.error
= BAD_IT_COND
;
16140 inst
.error
= BAD_BRANCH
;
16145 case NEUTRAL_IT_INSN
:
16146 /* The BKPT instruction is unconditional even in an IT block. */
16150 inst
.error
= BAD_IT_IT
;
16161 it_fsm_post_encode (void)
16165 if (!now_it
.state_handled
)
16166 handle_it_state ();
16168 is_last
= (now_it
.mask
== 0x10);
16171 now_it
.state
= OUTSIDE_IT_BLOCK
;
16177 force_automatic_it_block_close (void)
16179 if (now_it
.state
== AUTOMATIC_IT_BLOCK
)
16181 close_automatic_it_block ();
16182 now_it
.state
= OUTSIDE_IT_BLOCK
;
16190 if (!now_it
.state_handled
)
16191 handle_it_state ();
16193 return now_it
.state
!= OUTSIDE_IT_BLOCK
;
16197 md_assemble (char *str
)
16200 const struct asm_opcode
* opcode
;
16202 /* Align the previous label if needed. */
16203 if (last_label_seen
!= NULL
)
16205 symbol_set_frag (last_label_seen
, frag_now
);
16206 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
16207 S_SET_SEGMENT (last_label_seen
, now_seg
);
16210 memset (&inst
, '\0', sizeof (inst
));
16211 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
16213 opcode
= opcode_lookup (&p
);
16216 /* It wasn't an instruction, but it might be a register alias of
16217 the form alias .req reg, or a Neon .dn/.qn directive. */
16218 if (! create_register_alias (str
, p
)
16219 && ! create_neon_reg_alias (str
, p
))
16220 as_bad (_("bad instruction `%s'"), str
);
16225 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
16226 as_warn (_("s suffix on comparison instruction is deprecated"));
16228 /* The value which unconditional instructions should have in place of the
16229 condition field. */
16230 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
16234 arm_feature_set variant
;
16236 variant
= cpu_variant
;
16237 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16238 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
16239 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
16240 /* Check that this instruction is supported for this CPU. */
16241 if (!opcode
->tvariant
16242 || (thumb_mode
== 1
16243 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
16245 as_bad (_("selected processor does not support Thumb mode `%s'"), str
);
16248 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
16249 && opcode
->tencode
!= do_t_branch
)
16251 as_bad (_("Thumb does not support conditional execution"));
16255 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
))
16257 if (opcode
->tencode
!= do_t_blx
&& opcode
->tencode
!= do_t_branch23
16258 && !(ARM_CPU_HAS_FEATURE(*opcode
->tvariant
, arm_ext_msr
)
16259 || ARM_CPU_HAS_FEATURE(*opcode
->tvariant
, arm_ext_barrier
)))
16261 /* Two things are addressed here.
16262 1) Implicit require narrow instructions on Thumb-1.
16263 This avoids relaxation accidentally introducing Thumb-2
16265 2) Reject wide instructions in non Thumb-2 cores. */
16266 if (inst
.size_req
== 0)
16268 else if (inst
.size_req
== 4)
16270 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str
);
16276 inst
.instruction
= opcode
->tvalue
;
16278 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
16280 /* Prepare the it_insn_type for those encodings that don't set
16282 it_fsm_pre_encode ();
16284 opcode
->tencode ();
16286 it_fsm_post_encode ();
16289 if (!(inst
.error
|| inst
.relax
))
16291 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
16292 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
16293 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
16295 as_bad (_("cannot honor width suffix -- `%s'"), str
);
16300 /* Something has gone badly wrong if we try to relax a fixed size
16302 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
16304 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
16305 *opcode
->tvariant
);
16306 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16307 set those bits when Thumb-2 32-bit instructions are seen. ie.
16308 anything other than bl/blx and v6-M instructions.
16309 This is overly pessimistic for relaxable instructions. */
16310 if (((inst
.size
== 4 && (inst
.instruction
& 0xf800e800) != 0xf000e800)
16312 && !(ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
16313 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
)))
16314 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
16317 check_neon_suffixes
;
16321 mapping_state (MAP_THUMB
);
16324 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
16328 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16329 is_bx
= (opcode
->aencode
== do_bx
);
16331 /* Check that this instruction is supported for this CPU. */
16332 if (!(is_bx
&& fix_v4bx
)
16333 && !(opcode
->avariant
&&
16334 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
16336 as_bad (_("selected processor does not support ARM mode `%s'"), str
);
16341 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
16345 inst
.instruction
= opcode
->avalue
;
16346 if (opcode
->tag
== OT_unconditionalF
)
16347 inst
.instruction
|= 0xF << 28;
16349 inst
.instruction
|= inst
.cond
<< 28;
16350 inst
.size
= INSN_SIZE
;
16351 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
16353 it_fsm_pre_encode ();
16354 opcode
->aencode ();
16355 it_fsm_post_encode ();
16357 /* Arm mode bx is marked as both v4T and v5 because it's still required
16358 on a hypothetical non-thumb v5 core. */
16360 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
16362 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
16363 *opcode
->avariant
);
16365 check_neon_suffixes
;
16369 mapping_state (MAP_ARM
);
16374 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16382 check_it_blocks_finished (void)
16387 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
16388 if (seg_info (sect
)->tc_segment_info_data
.current_it
.state
16389 == MANUAL_IT_BLOCK
)
16391 as_warn (_("section '%s' finished with an open IT block."),
16395 if (now_it
.state
== MANUAL_IT_BLOCK
)
16396 as_warn (_("file finished with an open IT block."));
16400 /* Various frobbings of labels and their addresses. */
16403 arm_start_line_hook (void)
16405 last_label_seen
= NULL
;
16409 arm_frob_label (symbolS
* sym
)
16411 last_label_seen
= sym
;
16413 ARM_SET_THUMB (sym
, thumb_mode
);
16415 #if defined OBJ_COFF || defined OBJ_ELF
16416 ARM_SET_INTERWORK (sym
, support_interwork
);
16419 force_automatic_it_block_close ();
16421 /* Note - do not allow local symbols (.Lxxx) to be labelled
16422 as Thumb functions. This is because these labels, whilst
16423 they exist inside Thumb code, are not the entry points for
16424 possible ARM->Thumb calls. Also, these labels can be used
16425 as part of a computed goto or switch statement. eg gcc
16426 can generate code that looks like this:
16428 ldr r2, [pc, .Laaa]
16438 The first instruction loads the address of the jump table.
16439 The second instruction converts a table index into a byte offset.
16440 The third instruction gets the jump address out of the table.
16441 The fourth instruction performs the jump.
16443 If the address stored at .Laaa is that of a symbol which has the
16444 Thumb_Func bit set, then the linker will arrange for this address
16445 to have the bottom bit set, which in turn would mean that the
16446 address computation performed by the third instruction would end
16447 up with the bottom bit set. Since the ARM is capable of unaligned
16448 word loads, the instruction would then load the incorrect address
16449 out of the jump table, and chaos would ensue. */
16450 if (label_is_thumb_function_name
16451 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
16452 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
16454 /* When the address of a Thumb function is taken the bottom
16455 bit of that address should be set. This will allow
16456 interworking between Arm and Thumb functions to work
16459 THUMB_SET_FUNC (sym
, 1);
16461 label_is_thumb_function_name
= FALSE
;
16464 dwarf2_emit_label (sym
);
16468 arm_data_in_code (void)
16470 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
16472 *input_line_pointer
= '/';
16473 input_line_pointer
+= 5;
16474 *input_line_pointer
= 0;
16482 arm_canonicalize_symbol_name (char * name
)
16486 if (thumb_mode
&& (len
= strlen (name
)) > 5
16487 && streq (name
+ len
- 5, "/data"))
16488 *(name
+ len
- 5) = 0;
16493 /* Table of all register names defined by default. The user can
16494 define additional names with .req. Note that all register names
16495 should appear in both upper and lowercase variants. Some registers
16496 also have mixed-case names. */
16498 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16499 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16500 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16501 #define REGSET(p,t) \
16502 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16503 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16504 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16505 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16506 #define REGSETH(p,t) \
16507 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16508 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16509 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16510 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16511 #define REGSET2(p,t) \
16512 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16513 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16514 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16515 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16516 #define SPLRBANK(base,bank,t) \
16517 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16518 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16519 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16520 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16521 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16522 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16524 static const struct reg_entry reg_names
[] =
16526 /* ARM integer registers. */
16527 REGSET(r
, RN
), REGSET(R
, RN
),
16529 /* ATPCS synonyms. */
16530 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
16531 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
16532 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
16534 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
16535 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
16536 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
16538 /* Well-known aliases. */
16539 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
16540 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
16542 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
16543 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
16545 /* Coprocessor numbers. */
16546 REGSET(p
, CP
), REGSET(P
, CP
),
16548 /* Coprocessor register numbers. The "cr" variants are for backward
16550 REGSET(c
, CN
), REGSET(C
, CN
),
16551 REGSET(cr
, CN
), REGSET(CR
, CN
),
16553 /* ARM banked registers. */
16554 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
16555 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
16556 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
16557 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
16558 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
16559 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
16560 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
16562 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
16563 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
16564 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
16565 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
16566 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
16567 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(SP_fiq
,512|(13<<16),RNB
),
16568 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
16569 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
16571 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
16572 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
16573 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
16574 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
16575 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
16576 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
16577 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
16578 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
16579 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
16581 /* FPA registers. */
16582 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
16583 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
16585 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
16586 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
16588 /* VFP SP registers. */
16589 REGSET(s
,VFS
), REGSET(S
,VFS
),
16590 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
16592 /* VFP DP Registers. */
16593 REGSET(d
,VFD
), REGSET(D
,VFD
),
16594 /* Extra Neon DP registers. */
16595 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
16597 /* Neon QP registers. */
16598 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
16600 /* VFP control registers. */
16601 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
16602 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
16603 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
16604 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
16605 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
16606 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
16608 /* Maverick DSP coprocessor registers. */
16609 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
16610 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
16612 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
16613 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
16614 REGDEF(dspsc
,0,DSPSC
),
16616 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
16617 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
16618 REGDEF(DSPSC
,0,DSPSC
),
16620 /* iWMMXt data registers - p0, c0-15. */
16621 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
16623 /* iWMMXt control registers - p1, c0-3. */
16624 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
16625 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
16626 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
16627 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
16629 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16630 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
16631 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
16632 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
16633 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
16635 /* XScale accumulator registers. */
16636 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
16642 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16643 within psr_required_here. */
16644 static const struct asm_psr psrs
[] =
16646 /* Backward compatibility notation. Note that "all" is no longer
16647 truly all possible PSR bits. */
16648 {"all", PSR_c
| PSR_f
},
16652 /* Individual flags. */
16658 /* Combinations of flags. */
16659 {"fs", PSR_f
| PSR_s
},
16660 {"fx", PSR_f
| PSR_x
},
16661 {"fc", PSR_f
| PSR_c
},
16662 {"sf", PSR_s
| PSR_f
},
16663 {"sx", PSR_s
| PSR_x
},
16664 {"sc", PSR_s
| PSR_c
},
16665 {"xf", PSR_x
| PSR_f
},
16666 {"xs", PSR_x
| PSR_s
},
16667 {"xc", PSR_x
| PSR_c
},
16668 {"cf", PSR_c
| PSR_f
},
16669 {"cs", PSR_c
| PSR_s
},
16670 {"cx", PSR_c
| PSR_x
},
16671 {"fsx", PSR_f
| PSR_s
| PSR_x
},
16672 {"fsc", PSR_f
| PSR_s
| PSR_c
},
16673 {"fxs", PSR_f
| PSR_x
| PSR_s
},
16674 {"fxc", PSR_f
| PSR_x
| PSR_c
},
16675 {"fcs", PSR_f
| PSR_c
| PSR_s
},
16676 {"fcx", PSR_f
| PSR_c
| PSR_x
},
16677 {"sfx", PSR_s
| PSR_f
| PSR_x
},
16678 {"sfc", PSR_s
| PSR_f
| PSR_c
},
16679 {"sxf", PSR_s
| PSR_x
| PSR_f
},
16680 {"sxc", PSR_s
| PSR_x
| PSR_c
},
16681 {"scf", PSR_s
| PSR_c
| PSR_f
},
16682 {"scx", PSR_s
| PSR_c
| PSR_x
},
16683 {"xfs", PSR_x
| PSR_f
| PSR_s
},
16684 {"xfc", PSR_x
| PSR_f
| PSR_c
},
16685 {"xsf", PSR_x
| PSR_s
| PSR_f
},
16686 {"xsc", PSR_x
| PSR_s
| PSR_c
},
16687 {"xcf", PSR_x
| PSR_c
| PSR_f
},
16688 {"xcs", PSR_x
| PSR_c
| PSR_s
},
16689 {"cfs", PSR_c
| PSR_f
| PSR_s
},
16690 {"cfx", PSR_c
| PSR_f
| PSR_x
},
16691 {"csf", PSR_c
| PSR_s
| PSR_f
},
16692 {"csx", PSR_c
| PSR_s
| PSR_x
},
16693 {"cxf", PSR_c
| PSR_x
| PSR_f
},
16694 {"cxs", PSR_c
| PSR_x
| PSR_s
},
16695 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
16696 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
16697 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
16698 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
16699 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
16700 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
16701 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
16702 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
16703 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
16704 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
16705 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
16706 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
16707 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
16708 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
16709 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
16710 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
16711 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
16712 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
16713 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
16714 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
16715 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
16716 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
16717 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
16718 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
16721 /* Table of V7M psr names. */
16722 static const struct asm_psr v7m_psrs
[] =
16724 {"apsr", 0 }, {"APSR", 0 },
16725 {"iapsr", 1 }, {"IAPSR", 1 },
16726 {"eapsr", 2 }, {"EAPSR", 2 },
16727 {"psr", 3 }, {"PSR", 3 },
16728 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16729 {"ipsr", 5 }, {"IPSR", 5 },
16730 {"epsr", 6 }, {"EPSR", 6 },
16731 {"iepsr", 7 }, {"IEPSR", 7 },
16732 {"msp", 8 }, {"MSP", 8 },
16733 {"psp", 9 }, {"PSP", 9 },
16734 {"primask", 16}, {"PRIMASK", 16},
16735 {"basepri", 17}, {"BASEPRI", 17},
16736 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16737 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16738 {"faultmask", 19}, {"FAULTMASK", 19},
16739 {"control", 20}, {"CONTROL", 20}
16742 /* Table of all shift-in-operand names. */
16743 static const struct asm_shift_name shift_names
[] =
16745 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
16746 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
16747 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
16748 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
16749 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
16750 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
}
16753 /* Table of all explicit relocation names. */
16755 static struct reloc_entry reloc_names
[] =
16757 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
16758 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
16759 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
16760 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
16761 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
16762 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
16763 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
16764 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
16765 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
16766 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
16767 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
16768 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
16769 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
16770 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
16771 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
16772 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
16773 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
16774 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
}
16778 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16779 static const struct asm_cond conds
[] =
16783 {"cs", 0x2}, {"hs", 0x2},
16784 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16798 static struct asm_barrier_opt barrier_opt_names
[] =
16800 { "sy", 0xf }, { "SY", 0xf },
16801 { "un", 0x7 }, { "UN", 0x7 },
16802 { "st", 0xe }, { "ST", 0xe },
16803 { "unst", 0x6 }, { "UNST", 0x6 },
16804 { "ish", 0xb }, { "ISH", 0xb },
16805 { "sh", 0xb }, { "SH", 0xb },
16806 { "ishst", 0xa }, { "ISHST", 0xa },
16807 { "shst", 0xa }, { "SHST", 0xa },
16808 { "nsh", 0x7 }, { "NSH", 0x7 },
16809 { "nshst", 0x6 }, { "NSHST", 0x6 },
16810 { "osh", 0x3 }, { "OSH", 0x3 },
16811 { "oshst", 0x2 }, { "OSHST", 0x2 }
16814 /* Table of ARM-format instructions. */
16816 /* Macros for gluing together operand strings. N.B. In all cases
16817 other than OPS0, the trailing OP_stop comes from default
16818 zero-initialization of the unspecified elements of the array. */
16819 #define OPS0() { OP_stop, }
16820 #define OPS1(a) { OP_##a, }
16821 #define OPS2(a,b) { OP_##a,OP_##b, }
16822 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16823 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16824 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16825 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16827 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16828 This is useful when mixing operands for ARM and THUMB, i.e. using the
16829 MIX_ARM_THUMB_OPERANDS macro.
16830 In order to use these macros, prefix the number of operands with _
16832 #define OPS_1(a) { a, }
16833 #define OPS_2(a,b) { a,b, }
16834 #define OPS_3(a,b,c) { a,b,c, }
16835 #define OPS_4(a,b,c,d) { a,b,c,d, }
16836 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16837 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16839 /* These macros abstract out the exact format of the mnemonic table and
16840 save some repeated characters. */
16842 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16843 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16844 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16845 THUMB_VARIANT, do_##ae, do_##te }
16847 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16848 a T_MNEM_xyz enumerator. */
16849 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16850 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16851 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16852 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16854 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16855 infix after the third character. */
16856 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16857 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16858 THUMB_VARIANT, do_##ae, do_##te }
16859 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16860 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16861 THUMB_VARIANT, do_##ae, do_##te }
16862 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16863 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16864 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16865 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16866 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16867 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16868 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16869 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16871 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16872 appear in the condition table. */
16873 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16874 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16875 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16877 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16878 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16879 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16880 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16881 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16882 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16883 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16884 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16885 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16886 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16887 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16888 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16889 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16890 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16891 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16892 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16893 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16894 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16895 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16896 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16898 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16899 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16900 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16901 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16903 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16904 field is still 0xE. Many of the Thumb variants can be executed
16905 conditionally, so this is checked separately. */
16906 #define TUE(mnem, op, top, nops, ops, ae, te) \
16907 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16908 THUMB_VARIANT, do_##ae, do_##te }
16910 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16911 condition code field. */
16912 #define TUF(mnem, op, top, nops, ops, ae, te) \
16913 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16914 THUMB_VARIANT, do_##ae, do_##te }
16916 /* ARM-only variants of all the above. */
16917 #define CE(mnem, op, nops, ops, ae) \
16918 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16920 #define C3(mnem, op, nops, ops, ae) \
16921 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16923 /* Legacy mnemonics that always have conditional infix after the third
16925 #define CL(mnem, op, nops, ops, ae) \
16926 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16927 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16929 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16930 #define cCE(mnem, op, nops, ops, ae) \
16931 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16933 /* Legacy coprocessor instructions where conditional infix and conditional
16934 suffix are ambiguous. For consistency this includes all FPA instructions,
16935 not just the potentially ambiguous ones. */
16936 #define cCL(mnem, op, nops, ops, ae) \
16937 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16938 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16940 /* Coprocessor, takes either a suffix or a position-3 infix
16941 (for an FPA corner case). */
16942 #define C3E(mnem, op, nops, ops, ae) \
16943 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16944 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16946 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16947 { m1 #m2 m3, OPS##nops ops, \
16948 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16949 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16951 #define CM(m1, m2, op, nops, ops, ae) \
16952 xCM_ (m1, , m2, op, nops, ops, ae), \
16953 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16954 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16955 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16956 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16957 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16958 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16959 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16960 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16961 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16962 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16963 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16964 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16965 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16966 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16967 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16968 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16969 xCM_ (m1, le, m2, op, nops, ops, ae), \
16970 xCM_ (m1, al, m2, op, nops, ops, ae)
16972 #define UE(mnem, op, nops, ops, ae) \
16973 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16975 #define UF(mnem, op, nops, ops, ae) \
16976 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16978 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16979 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16980 use the same encoding function for each. */
16981 #define NUF(mnem, op, nops, ops, enc) \
16982 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16983 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16985 /* Neon data processing, version which indirects through neon_enc_tab for
16986 the various overloaded versions of opcodes. */
16987 #define nUF(mnem, op, nops, ops, enc) \
16988 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16989 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16991 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16993 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16994 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16995 THUMB_VARIANT, do_##enc, do_##enc }
16997 #define NCE(mnem, op, nops, ops, enc) \
16998 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17000 #define NCEF(mnem, op, nops, ops, enc) \
17001 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17003 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17004 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17005 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17006 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17008 #define nCE(mnem, op, nops, ops, enc) \
17009 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17011 #define nCEF(mnem, op, nops, ops, enc) \
17012 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17016 static const struct asm_opcode insns
[] =
17018 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17019 #define THUMB_VARIANT &arm_ext_v4t
17020 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17021 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17022 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17023 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17024 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
17025 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
17026 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
17027 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
17028 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17029 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17030 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17031 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17032 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17033 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17034 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17035 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17037 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17038 for setting PSR flag bits. They are obsolete in V6 and do not
17039 have Thumb equivalents. */
17040 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17041 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17042 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
17043 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
17044 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
17045 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
17046 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17047 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17048 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
17050 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
17051 tC3("movs", 1b00000
, _movs
, 2, (RR
, SH
), mov
, t_mov_cmp
),
17052 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
17053 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
17055 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
17056 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
17057 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
17059 OP_ADDRGLDR
),ldst
, t_ldst
),
17060 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
17062 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17063 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17064 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17065 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17066 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17067 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17069 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
17070 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
17071 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
17072 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
17075 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
17076 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
17077 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
17079 /* Thumb-compatibility pseudo ops. */
17080 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17081 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17082 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17083 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17084 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17085 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17086 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17087 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17088 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
17089 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
17090 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
17091 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
17093 /* These may simplify to neg. */
17094 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
17095 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
17097 #undef THUMB_VARIANT
17098 #define THUMB_VARIANT & arm_ext_v6
17100 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
17102 /* V1 instructions with no Thumb analogue prior to V6T2. */
17103 #undef THUMB_VARIANT
17104 #define THUMB_VARIANT & arm_ext_v6t2
17106 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17107 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17108 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
17110 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
17111 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
17112 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
17113 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
17115 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17116 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17118 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17119 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17121 /* V1 instructions with no Thumb analogue at all. */
17122 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
17123 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
17125 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
17126 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
17127 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
17128 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
17129 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
17130 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
17131 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
17132 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
17135 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17136 #undef THUMB_VARIANT
17137 #define THUMB_VARIANT & arm_ext_v4t
17139 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
17140 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
17142 #undef THUMB_VARIANT
17143 #define THUMB_VARIANT & arm_ext_v6t2
17145 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
17146 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
17148 /* Generic coprocessor instructions. */
17149 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
17150 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17151 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17152 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17153 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17154 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17155 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17158 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17160 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
17161 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
17164 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17165 #undef THUMB_VARIANT
17166 #define THUMB_VARIANT & arm_ext_msr
17168 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
17169 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
17172 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17173 #undef THUMB_VARIANT
17174 #define THUMB_VARIANT & arm_ext_v6t2
17176 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17177 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17178 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17179 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17180 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17181 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17182 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17183 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17186 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17187 #undef THUMB_VARIANT
17188 #define THUMB_VARIANT & arm_ext_v4t
17190 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17191 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17192 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17193 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17194 tCM("ld","sh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17195 tCM("ld","sb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17198 #define ARM_VARIANT & arm_ext_v4t_5
17200 /* ARM Architecture 4T. */
17201 /* Note: bx (and blx) are required on V5, even if the processor does
17202 not support Thumb. */
17203 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
17206 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17207 #undef THUMB_VARIANT
17208 #define THUMB_VARIANT & arm_ext_v5t
17210 /* Note: blx has 2 variants; the .value coded here is for
17211 BLX(2). Only this variant has conditional execution. */
17212 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
17213 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
17215 #undef THUMB_VARIANT
17216 #define THUMB_VARIANT & arm_ext_v6t2
17218 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
17219 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17220 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17221 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17222 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17223 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
17224 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17225 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17228 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17229 #undef THUMB_VARIANT
17230 #define THUMB_VARIANT &arm_ext_v5exp
17232 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17233 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17234 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17235 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17237 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17238 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17240 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17241 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17242 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17243 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17245 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17246 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17247 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17248 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17250 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17251 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17253 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17254 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17255 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17256 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17259 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17260 #undef THUMB_VARIANT
17261 #define THUMB_VARIANT &arm_ext_v6t2
17263 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
17264 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
17266 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
17267 ADDRGLDRS
), ldrd
, t_ldstd
),
17269 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17270 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17273 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17275 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
17278 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17279 #undef THUMB_VARIANT
17280 #define THUMB_VARIANT & arm_ext_v6
17282 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
17283 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
17284 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
17285 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
17286 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
17287 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17288 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17289 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17290 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17291 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
17293 #undef THUMB_VARIANT
17294 #define THUMB_VARIANT & arm_ext_v6t2
17296 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
17297 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
17299 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17300 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17302 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
17303 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
17305 /* ARM V6 not included in V7M. */
17306 #undef THUMB_VARIANT
17307 #define THUMB_VARIANT & arm_ext_v6_notm
17308 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
17309 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
17310 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
17311 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
17312 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
17313 UF(rfefa
, 9900a00
, 1, (RRw
), rfe
),
17314 UF(rfeea
, 8100a00
, 1, (RRw
), rfe
),
17315 TUF("rfeed", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
17316 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
17317 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
17318 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
17319 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
17321 /* ARM V6 not included in V7M (eg. integer SIMD). */
17322 #undef THUMB_VARIANT
17323 #define THUMB_VARIANT & arm_ext_v6_dsp
17324 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
17325 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
17326 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
17327 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17328 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17329 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17330 /* Old name for QASX. */
17331 TCE("qaddsubx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17332 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17333 /* Old name for QSAX. */
17334 TCE("qsubaddx", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17335 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17336 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17337 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17338 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17339 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17340 /* Old name for SASX. */
17341 TCE("saddsubx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17342 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17343 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17344 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17345 /* Old name for SHASX. */
17346 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17347 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17348 /* Old name for SHSAX. */
17349 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17350 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17351 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17352 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17353 /* Old name for SSAX. */
17354 TCE("ssubaddx", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17355 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17356 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17357 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17358 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17359 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17360 /* Old name for UASX. */
17361 TCE("uaddsubx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17362 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17363 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17364 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17365 /* Old name for UHASX. */
17366 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17367 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17368 /* Old name for UHSAX. */
17369 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17370 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17371 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17372 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17373 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17374 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17375 /* Old name for UQASX. */
17376 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17377 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17378 /* Old name for UQSAX. */
17379 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17380 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17381 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17382 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17383 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17384 /* Old name for USAX. */
17385 TCE("usubaddx", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17386 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17387 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17388 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17389 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17390 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17391 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17392 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17393 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17394 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17395 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17396 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17397 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17398 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17399 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17400 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17401 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17402 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17403 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17404 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17405 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17406 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17407 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17408 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17409 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17410 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17411 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17412 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17413 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17414 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
17415 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
17416 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17417 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17418 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
17421 #define ARM_VARIANT & arm_ext_v6k
17422 #undef THUMB_VARIANT
17423 #define THUMB_VARIANT & arm_ext_v6k
17425 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
17426 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
17427 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
17428 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
17430 #undef THUMB_VARIANT
17431 #define THUMB_VARIANT & arm_ext_v6_notm
17432 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
17434 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
17435 RRnpcb
), strexd
, t_strexd
),
17437 #undef THUMB_VARIANT
17438 #define THUMB_VARIANT & arm_ext_v6t2
17439 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
17441 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
17443 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
17445 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
17447 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
17450 #define ARM_VARIANT & arm_ext_sec
17451 #undef THUMB_VARIANT
17452 #define THUMB_VARIANT & arm_ext_sec
17454 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
17457 #define ARM_VARIANT & arm_ext_virt
17458 #undef THUMB_VARIANT
17459 #define THUMB_VARIANT & arm_ext_virt
17461 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
17462 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
17465 #define ARM_VARIANT & arm_ext_v6t2
17466 #undef THUMB_VARIANT
17467 #define THUMB_VARIANT & arm_ext_v6t2
17469 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
17470 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
17471 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
17472 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
17474 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
17475 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
17476 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
17477 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
17479 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17480 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17481 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17482 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17484 /* Thumb-only instructions. */
17486 #define ARM_VARIANT NULL
17487 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
17488 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
17490 /* ARM does not really have an IT instruction, so always allow it.
17491 The opcode is copied from Thumb in order to allow warnings in
17492 -mimplicit-it=[never | arm] modes. */
17494 #define ARM_VARIANT & arm_ext_v1
17496 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
17497 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
17498 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
17499 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
17500 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
17501 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
17502 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
17503 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
17504 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
17505 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
17506 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
17507 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
17508 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
17509 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
17510 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
17511 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17512 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
17513 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
17515 /* Thumb2 only instructions. */
17517 #define ARM_VARIANT NULL
17519 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
17520 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
17521 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
17522 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
17523 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
17524 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
17526 /* Hardware division instructions. */
17528 #define ARM_VARIANT & arm_ext_adiv
17529 #undef THUMB_VARIANT
17530 #define THUMB_VARIANT & arm_ext_div
17532 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
17533 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
17535 /* ARM V6M/V7 instructions. */
17537 #define ARM_VARIANT & arm_ext_barrier
17538 #undef THUMB_VARIANT
17539 #define THUMB_VARIANT & arm_ext_barrier
17541 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, t_barrier
),
17542 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, t_barrier
),
17543 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, t_barrier
),
17545 /* ARM V7 instructions. */
17547 #define ARM_VARIANT & arm_ext_v7
17548 #undef THUMB_VARIANT
17549 #define THUMB_VARIANT & arm_ext_v7
17551 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
17552 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
17555 #define ARM_VARIANT & arm_ext_mp
17556 #undef THUMB_VARIANT
17557 #define THUMB_VARIANT & arm_ext_mp
17559 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
17562 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17564 cCE("wfs", e200110
, 1, (RR
), rd
),
17565 cCE("rfs", e300110
, 1, (RR
), rd
),
17566 cCE("wfc", e400110
, 1, (RR
), rd
),
17567 cCE("rfc", e500110
, 1, (RR
), rd
),
17569 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17570 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17571 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17572 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17574 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17575 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17576 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17577 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
17579 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
17580 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
17581 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
17582 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
17583 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
17584 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
17585 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
17586 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
17587 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
17588 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
17589 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
17590 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
17592 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
17593 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
17594 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
17595 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
17596 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
17597 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
17598 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
17599 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
17600 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
17601 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
17602 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
17603 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
17605 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
17606 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
17607 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
17608 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
17609 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
17610 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
17611 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
17612 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
17613 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
17614 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
17615 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
17616 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
17618 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
17619 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
17620 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
17621 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
17622 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
17623 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
17624 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
17625 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
17626 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
17627 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
17628 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
17629 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
17631 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
17632 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
17633 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
17634 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
17635 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
17636 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
17637 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
17638 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
17639 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
17640 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
17641 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
17642 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
17644 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
17645 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
17646 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
17647 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
17648 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
17649 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
17650 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
17651 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
17652 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
17653 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
17654 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
17655 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
17657 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
17658 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
17659 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
17660 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
17661 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
17662 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
17663 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
17664 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
17665 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
17666 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
17667 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
17668 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
17670 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
17671 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
17672 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
17673 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
17674 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
17675 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
17676 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
17677 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
17678 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
17679 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
17680 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
17681 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
17683 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
17684 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
17685 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
17686 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
17687 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
17688 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
17689 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
17690 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
17691 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
17692 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
17693 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
17694 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
17696 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
17697 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
17698 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
17699 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
17700 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
17701 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
17702 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
17703 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
17704 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
17705 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
17706 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
17707 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
17709 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
17710 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
17711 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
17712 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
17713 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
17714 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
17715 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
17716 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
17717 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
17718 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
17719 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
17720 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
17722 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
17723 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
17724 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
17725 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
17726 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
17727 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
17728 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
17729 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
17730 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
17731 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
17732 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
17733 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
17735 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
17736 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
17737 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
17738 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
17739 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
17740 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
17741 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
17742 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
17743 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
17744 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
17745 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
17746 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
17748 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
17749 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
17750 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
17751 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
17752 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
17753 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
17754 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
17755 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
17756 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
17757 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
17758 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
17759 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
17761 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
17762 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
17763 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
17764 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
17765 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
17766 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
17767 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
17768 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
17769 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
17770 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
17771 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
17772 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
17774 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
17775 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
17776 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
17777 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
17778 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
17779 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
17780 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
17781 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
17782 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
17783 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
17784 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
17785 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
17787 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17788 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17789 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17790 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17791 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17792 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17793 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17794 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17795 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17796 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17797 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17798 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17800 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17801 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17802 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17803 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17804 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17805 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17806 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17807 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17808 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17809 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17810 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17811 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17813 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17814 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17815 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17816 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17817 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17818 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17819 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17820 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17821 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17822 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17823 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17824 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17826 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17827 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17828 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17829 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17830 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17831 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17832 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17833 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17834 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17835 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17836 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17837 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17839 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17840 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17841 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17842 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17843 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17844 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17845 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17846 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17847 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17848 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17849 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17850 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17852 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17853 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17854 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17855 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17856 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17857 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17858 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17859 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17860 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17861 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17862 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17863 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17865 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17866 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17867 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17868 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17869 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17870 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17871 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17872 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17873 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17874 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17875 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17876 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17878 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17879 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17880 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17881 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17882 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17883 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17884 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17885 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17886 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17887 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17888 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17889 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17891 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17892 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17893 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17894 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17895 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17896 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17897 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17898 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17899 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17900 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17901 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17902 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17904 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17905 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17906 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17907 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17908 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17909 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17910 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17911 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17912 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17913 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17914 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17915 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17917 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17918 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17919 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17920 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17921 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17922 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17923 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17924 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17925 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17926 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17927 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17928 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17930 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17931 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17932 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17933 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17934 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17935 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17936 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17937 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17938 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17939 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17940 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17941 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17943 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17944 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17945 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17946 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17947 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17948 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17949 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17950 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17951 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17952 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17953 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17954 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17956 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17957 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17958 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17959 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17961 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
17962 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
17963 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
17964 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
17965 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
17966 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
17967 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
17968 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
17969 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
17970 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
17971 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
17972 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
17974 /* The implementation of the FIX instruction is broken on some
17975 assemblers, in that it accepts a precision specifier as well as a
17976 rounding specifier, despite the fact that this is meaningless.
17977 To be more compatible, we accept it as well, though of course it
17978 does not set any bits. */
17979 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
17980 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
17981 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
17982 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
17983 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
17984 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
17985 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
17986 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
17987 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
17988 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
17989 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
17990 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
17991 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
17993 /* Instructions that were new with the real FPA, call them V2. */
17995 #define ARM_VARIANT & fpu_fpa_ext_v2
17997 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17998 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17999 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18000 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18001 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18002 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18005 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18007 /* Moves and type conversions. */
18008 cCE("fcpys", eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18009 cCE("fmrs", e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
18010 cCE("fmsr", e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
18011 cCE("fmstat", ef1fa10
, 0, (), noargs
),
18012 cCE("vmrs", ef10a10
, 2, (APSR_RR
, RVC
), vmrs
),
18013 cCE("vmsr", ee10a10
, 2, (RVC
, RR
), vmsr
),
18014 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18015 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18016 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18017 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18018 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18019 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18020 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
18021 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
18023 /* Memory operations. */
18024 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
18025 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
18026 cCE("fldmias", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18027 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18028 cCE("fldmdbs", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18029 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18030 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18031 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18032 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18033 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18034 cCE("fstmias", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18035 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18036 cCE("fstmdbs", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18037 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18038 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18039 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18040 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18041 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18043 /* Monadic operations. */
18044 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18045 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18046 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18048 /* Dyadic operations. */
18049 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18050 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18051 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18052 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18053 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18054 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18055 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18056 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18057 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18060 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18061 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
18062 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18063 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
18065 /* Double precision load/store are still present on single precision
18066 implementations. */
18067 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
18068 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
18069 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18070 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18071 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18072 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18073 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18074 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18075 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18076 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18079 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18081 /* Moves and type conversions. */
18082 cCE("fcpyd", eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18083 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
18084 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18085 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
18086 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
18087 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
18088 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
18089 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
18090 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
18091 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18092 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18093 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18094 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18096 /* Monadic operations. */
18097 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18098 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18099 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18101 /* Dyadic operations. */
18102 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18103 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18104 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18105 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18106 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18107 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18108 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18109 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18110 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18113 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18114 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
18115 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18116 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
18119 #define ARM_VARIANT & fpu_vfp_ext_v2
18121 cCE("fmsrr", c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
18122 cCE("fmrrs", c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
18123 cCE("fmdrr", c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
18124 cCE("fmrrd", c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
18126 /* Instructions which may belong to either the Neon or VFP instruction sets.
18127 Individual encoder functions perform additional architecture checks. */
18129 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18130 #undef THUMB_VARIANT
18131 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18133 /* These mnemonics are unique to VFP. */
18134 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
18135 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
18136 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18137 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18138 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18139 nCE(vcmp
, _vcmp
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
18140 nCE(vcmpe
, _vcmpe
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
18141 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
18142 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
18143 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
18145 /* Mnemonics shared by Neon and VFP. */
18146 nCEF(vmul
, _vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
18147 nCEF(vmla
, _vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
18148 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
18150 nCEF(vadd
, _vadd
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
18151 nCEF(vsub
, _vsub
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
18153 NCEF(vabs
, 1b10300
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
18154 NCEF(vneg
, 1b10380
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
18156 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18157 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18158 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18159 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18160 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18161 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18162 NCE(vldr
, d100b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
18163 NCE(vstr
, d000b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
18165 nCEF(vcvt
, _vcvt
, 3, (RNSDQ
, RNSDQ
, oI32b
), neon_cvt
),
18166 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
18167 nCEF(vcvtb
, _vcvt
, 2, (RVS
, RVS
), neon_cvtb
),
18168 nCEF(vcvtt
, _vcvt
, 2, (RVS
, RVS
), neon_cvtt
),
18171 /* NOTE: All VMOV encoding is special-cased! */
18172 NCE(vmov
, 0, 1, (VMOV
), neon_mov
),
18173 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
18175 #undef THUMB_VARIANT
18176 #define THUMB_VARIANT & fpu_neon_ext_v1
18178 #define ARM_VARIANT & fpu_neon_ext_v1
18180 /* Data processing with three registers of the same length. */
18181 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18182 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
18183 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
18184 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
18185 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
18186 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
18187 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
18188 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
18189 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
18190 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18191 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
18192 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
18193 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
18194 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
18195 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
18196 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
18197 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
18198 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
18199 /* If not immediate, fall back to neon_dyadic_i64_su.
18200 shl_imm should accept I8 I16 I32 I64,
18201 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18202 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
18203 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
18204 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
18205 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
18206 /* Logic ops, types optional & ignored. */
18207 nUF(vand
, _vand
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18208 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18209 nUF(vbic
, _vbic
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18210 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18211 nUF(vorr
, _vorr
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18212 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18213 nUF(vorn
, _vorn
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18214 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18215 nUF(veor
, _veor
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_logic
),
18216 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
18217 /* Bitfield ops, untyped. */
18218 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
18219 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
18220 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
18221 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
18222 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
18223 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
18224 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18225 nUF(vabd
, _vabd
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
18226 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
18227 nUF(vmax
, _vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
18228 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
18229 nUF(vmin
, _vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
18230 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
18231 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18232 back to neon_dyadic_if_su. */
18233 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
18234 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
18235 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
18236 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
18237 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
18238 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
18239 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
18240 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
18241 /* Comparison. Type I8 I16 I32 F32. */
18242 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
18243 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
18244 /* As above, D registers only. */
18245 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
18246 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
18247 /* Int and float variants, signedness unimportant. */
18248 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
18249 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
18250 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
18251 /* Add/sub take types I8 I16 I32 I64 F32. */
18252 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
18253 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
18254 /* vtst takes sizes 8, 16, 32. */
18255 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
18256 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
18257 /* VMUL takes I8 I16 I32 F32 P8. */
18258 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
18259 /* VQD{R}MULH takes S16 S32. */
18260 nUF(vqdmulh
, _vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
18261 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
18262 nUF(vqrdmulh
, _vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
18263 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
18264 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
18265 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
18266 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
18267 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
18268 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
18269 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
18270 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
18271 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
18272 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
18273 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
18274 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
18275 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
18277 /* Two address, int/float. Types S8 S16 S32 F32. */
18278 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
18279 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
18281 /* Data processing with two registers and a shift amount. */
18282 /* Right shifts, and variants with rounding.
18283 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18284 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
18285 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
18286 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
18287 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
18288 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
18289 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
18290 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
18291 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
18292 /* Shift and insert. Sizes accepted 8 16 32 64. */
18293 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
18294 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
18295 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
18296 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
18297 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18298 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
18299 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
18300 /* Right shift immediate, saturating & narrowing, with rounding variants.
18301 Types accepted S16 S32 S64 U16 U32 U64. */
18302 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
18303 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
18304 /* As above, unsigned. Types accepted S16 S32 S64. */
18305 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
18306 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
18307 /* Right shift narrowing. Types accepted I16 I32 I64. */
18308 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
18309 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
18310 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18311 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
18312 /* CVT with optional immediate for fixed-point variant. */
18313 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
18315 nUF(vmvn
, _vmvn
, 2, (RNDQ
, RNDQ_Ibig
), neon_mvn
),
18316 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
18318 /* Data processing, three registers of different lengths. */
18319 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18320 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
18321 NUF(vabdl
, 0800700, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
18322 NUF(vaddl
, 0800000, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
18323 NUF(vsubl
, 0800200, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
18324 /* If not scalar, fall back to neon_dyadic_long.
18325 Vector types as above, scalar types S16 S32 U16 U32. */
18326 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
18327 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
18328 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18329 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
18330 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
18331 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18332 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18333 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18334 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18335 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18336 /* Saturating doubling multiplies. Types S16 S32. */
18337 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
18338 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
18339 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
18340 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18341 S16 S32 U16 U32. */
18342 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
18344 /* Extract. Size 8. */
18345 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
18346 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
18348 /* Two registers, miscellaneous. */
18349 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18350 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
18351 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
18352 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
18353 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
18354 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
18355 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
18356 /* Vector replicate. Sizes 8 16 32. */
18357 nCE(vdup
, _vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
18358 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
18359 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18360 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
18361 /* VMOVN. Types I16 I32 I64. */
18362 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
18363 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18364 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
18365 /* VQMOVUN. Types S16 S32 S64. */
18366 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
18367 /* VZIP / VUZP. Sizes 8 16 32. */
18368 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
18369 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
18370 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
18371 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
18372 /* VQABS / VQNEG. Types S8 S16 S32. */
18373 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
18374 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
18375 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
18376 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
18377 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18378 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
18379 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
18380 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
18381 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
18382 /* Reciprocal estimates. Types U32 F32. */
18383 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
18384 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
18385 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
18386 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
18387 /* VCLS. Types S8 S16 S32. */
18388 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
18389 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
18390 /* VCLZ. Types I8 I16 I32. */
18391 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
18392 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
18393 /* VCNT. Size 8. */
18394 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
18395 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
18396 /* Two address, untyped. */
18397 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
18398 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
18399 /* VTRN. Sizes 8 16 32. */
18400 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
18401 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
18403 /* Table lookup. Size 8. */
18404 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
18405 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
18407 #undef THUMB_VARIANT
18408 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18410 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18412 /* Neon element/structure load/store. */
18413 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18414 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18415 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18416 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18417 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18418 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18419 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18420 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18422 #undef THUMB_VARIANT
18423 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18425 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18426 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
18427 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18428 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18429 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18430 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18431 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18432 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18433 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18434 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18436 #undef THUMB_VARIANT
18437 #define THUMB_VARIANT & fpu_vfp_ext_v3
18439 #define ARM_VARIANT & fpu_vfp_ext_v3
18441 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
18442 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18443 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18444 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18445 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18446 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18447 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18448 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18449 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18452 #define ARM_VARIANT &fpu_vfp_ext_fma
18453 #undef THUMB_VARIANT
18454 #define THUMB_VARIANT &fpu_vfp_ext_fma
18455 /* Mnemonics shared by Neon and VFP. These are included in the
18456 VFP FMA variant; NEON and VFP FMA always includes the NEON
18457 FMA instructions. */
18458 nCEF(vfma
, _vfma
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
18459 nCEF(vfms
, _vfms
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
18460 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18461 the v form should always be used. */
18462 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18463 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18464 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18465 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18466 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18467 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18469 #undef THUMB_VARIANT
18471 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18473 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18474 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18475 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18476 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18477 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18478 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18479 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
18480 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
18483 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18485 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
18486 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
18487 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
18488 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
18489 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
18490 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
18491 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
18492 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
18493 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
18494 cCE("textrmub", e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18495 cCE("textrmuh", e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18496 cCE("textrmuw", e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18497 cCE("textrmsb", e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18498 cCE("textrmsh", e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18499 cCE("textrmsw", e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18500 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
18501 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
18502 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
18503 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
18504 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
18505 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18506 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18507 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18508 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18509 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18510 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18511 cCE("tmovmskb", e100030
, 2, (RR
, RIWR
), rd_rn
),
18512 cCE("tmovmskh", e500030
, 2, (RR
, RIWR
), rd_rn
),
18513 cCE("tmovmskw", e900030
, 2, (RR
, RIWR
), rd_rn
),
18514 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
18515 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
18516 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
18517 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
18518 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
18519 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18520 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18521 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18522 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18523 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18524 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18525 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18526 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18527 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18528 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18529 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18530 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18531 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
18532 cCE("walignr0", e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18533 cCE("walignr1", e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18534 cCE("walignr2", ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18535 cCE("walignr3", eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18536 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18537 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18538 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18539 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18540 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18541 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18542 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18543 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18544 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18545 cCE("wcmpgtub", e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18546 cCE("wcmpgtuh", e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18547 cCE("wcmpgtuw", e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18548 cCE("wcmpgtsb", e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18549 cCE("wcmpgtsh", e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18550 cCE("wcmpgtsw", eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18551 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
18552 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
18553 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
18554 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
18555 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18556 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18557 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18558 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18559 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18560 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18561 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18562 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18563 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18564 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18565 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18566 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18567 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18568 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18569 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18570 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18571 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18572 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18573 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
18574 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18575 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18576 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18577 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18578 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18579 cCE("wpackhss", e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18580 cCE("wpackhus", e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18581 cCE("wpackwss", eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18582 cCE("wpackwus", e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18583 cCE("wpackdss", ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18584 cCE("wpackdus", ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18585 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18586 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18587 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18588 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18589 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18590 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18591 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18592 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18593 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18594 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18595 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
18596 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18597 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18598 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18599 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18600 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18601 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18602 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18603 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18604 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18605 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18606 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18607 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18608 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18609 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18610 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18611 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18612 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18613 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18614 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
18615 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
18616 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
18617 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
18618 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18619 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18620 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18621 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18622 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18623 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18624 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18625 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18626 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18627 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18628 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18629 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18630 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18631 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18632 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18633 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18634 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18635 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18636 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18637 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18638 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18639 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18640 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18641 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18642 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18643 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18644 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18645 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18646 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
18649 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18651 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
18652 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
18653 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
18654 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18655 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18656 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18657 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18658 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18659 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18660 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18661 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18662 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18663 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18664 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18665 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18666 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18667 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18668 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18669 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18670 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18671 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
18672 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18673 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18674 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18675 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18676 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18677 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18678 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18679 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18680 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18681 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18682 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18683 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18684 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18685 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18686 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18687 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18688 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18689 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18690 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18691 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18692 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18693 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18694 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18695 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18696 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18697 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18698 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18699 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18700 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18701 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18702 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18703 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18704 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18705 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18706 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18707 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18710 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18712 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
18713 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
18714 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
18715 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
18716 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
18717 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
18718 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
18719 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
18720 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
18721 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
18722 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
18723 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
18724 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
18725 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
18726 cCE("cfmv64lr", e000510
, 2, (RMDX
, RR
), rn_rd
),
18727 cCE("cfmvr64l", e100510
, 2, (RR
, RMDX
), rd_rn
),
18728 cCE("cfmv64hr", e000530
, 2, (RMDX
, RR
), rn_rd
),
18729 cCE("cfmvr64h", e100530
, 2, (RR
, RMDX
), rd_rn
),
18730 cCE("cfmval32", e200440
, 2, (RMAX
, RMFX
), rd_rn
),
18731 cCE("cfmv32al", e100440
, 2, (RMFX
, RMAX
), rd_rn
),
18732 cCE("cfmvam32", e200460
, 2, (RMAX
, RMFX
), rd_rn
),
18733 cCE("cfmv32am", e100460
, 2, (RMFX
, RMAX
), rd_rn
),
18734 cCE("cfmvah32", e200480
, 2, (RMAX
, RMFX
), rd_rn
),
18735 cCE("cfmv32ah", e100480
, 2, (RMFX
, RMAX
), rd_rn
),
18736 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
18737 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
18738 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
18739 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
18740 cCE("cfmvsc32", e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
18741 cCE("cfmv32sc", e1004e0
, 2, (RMDX
, RMDS
), rd
),
18742 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
18743 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
18744 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
18745 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
18746 cCE("cfcvt32s", e000480
, 2, (RMF
, RMFX
), rd_rn
),
18747 cCE("cfcvt32d", e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
18748 cCE("cfcvt64s", e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
18749 cCE("cfcvt64d", e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
18750 cCE("cfcvts32", e100580
, 2, (RMFX
, RMF
), rd_rn
),
18751 cCE("cfcvtd32", e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
18752 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
18753 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
18754 cCE("cfrshl32", e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
18755 cCE("cfrshl64", e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
18756 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
18757 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
18758 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
18759 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
18760 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
18761 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
18762 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
18763 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
18764 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
18765 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
18766 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
18767 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
18768 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
18769 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
18770 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
18771 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
18772 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
18773 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
18774 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
18775 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
18776 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18777 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
18778 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18779 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
18780 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18781 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
18782 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18783 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18784 cCE("cfmadd32", e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
18785 cCE("cfmsub32", e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
18786 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
18787 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
18790 #undef THUMB_VARIANT
18817 /* MD interface: bits in the object file. */
18819 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18820 for use in the a.out file, and stores them in the array pointed to by buf.
18821 This knows about the endian-ness of the target machine and does
18822 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18823 2 (short) and 4 (long) Floating numbers are put out as a series of
18824 LITTLENUMS (shorts, here at least). */
18827 md_number_to_chars (char * buf
, valueT val
, int n
)
18829 if (target_big_endian
)
18830 number_to_chars_bigendian (buf
, val
, n
);
18832 number_to_chars_littleendian (buf
, val
, n
);
18836 md_chars_to_number (char * buf
, int n
)
18839 unsigned char * where
= (unsigned char *) buf
;
18841 if (target_big_endian
)
18846 result
|= (*where
++ & 255);
18854 result
|= (where
[n
] & 255);
18861 /* MD interface: Sections. */
18863 /* Estimate the size of a frag before relaxing. Assume everything fits in
18867 md_estimate_size_before_relax (fragS
* fragp
,
18868 segT segtype ATTRIBUTE_UNUSED
)
18874 /* Convert a machine dependent frag. */
18877 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
18879 unsigned long insn
;
18880 unsigned long old_op
;
18888 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
18890 old_op
= bfd_get_16(abfd
, buf
);
18891 if (fragp
->fr_symbol
)
18893 exp
.X_op
= O_symbol
;
18894 exp
.X_add_symbol
= fragp
->fr_symbol
;
18898 exp
.X_op
= O_constant
;
18900 exp
.X_add_number
= fragp
->fr_offset
;
18901 opcode
= fragp
->fr_subtype
;
18904 case T_MNEM_ldr_pc
:
18905 case T_MNEM_ldr_pc2
:
18906 case T_MNEM_ldr_sp
:
18907 case T_MNEM_str_sp
:
18914 if (fragp
->fr_var
== 4)
18916 insn
= THUMB_OP32 (opcode
);
18917 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
18919 insn
|= (old_op
& 0x700) << 4;
18923 insn
|= (old_op
& 7) << 12;
18924 insn
|= (old_op
& 0x38) << 13;
18926 insn
|= 0x00000c00;
18927 put_thumb32_insn (buf
, insn
);
18928 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
18932 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
18934 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
18937 if (fragp
->fr_var
== 4)
18939 insn
= THUMB_OP32 (opcode
);
18940 insn
|= (old_op
& 0xf0) << 4;
18941 put_thumb32_insn (buf
, insn
);
18942 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
18946 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
18947 exp
.X_add_number
-= 4;
18955 if (fragp
->fr_var
== 4)
18957 int r0off
= (opcode
== T_MNEM_mov
18958 || opcode
== T_MNEM_movs
) ? 0 : 8;
18959 insn
= THUMB_OP32 (opcode
);
18960 insn
= (insn
& 0xe1ffffff) | 0x10000000;
18961 insn
|= (old_op
& 0x700) << r0off
;
18962 put_thumb32_insn (buf
, insn
);
18963 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
18967 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
18972 if (fragp
->fr_var
== 4)
18974 insn
= THUMB_OP32(opcode
);
18975 put_thumb32_insn (buf
, insn
);
18976 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
18979 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
18983 if (fragp
->fr_var
== 4)
18985 insn
= THUMB_OP32(opcode
);
18986 insn
|= (old_op
& 0xf00) << 14;
18987 put_thumb32_insn (buf
, insn
);
18988 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
18991 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
18994 case T_MNEM_add_sp
:
18995 case T_MNEM_add_pc
:
18996 case T_MNEM_inc_sp
:
18997 case T_MNEM_dec_sp
:
18998 if (fragp
->fr_var
== 4)
19000 /* ??? Choose between add and addw. */
19001 insn
= THUMB_OP32 (opcode
);
19002 insn
|= (old_op
& 0xf0) << 4;
19003 put_thumb32_insn (buf
, insn
);
19004 if (opcode
== T_MNEM_add_pc
)
19005 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
19007 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
19010 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
19018 if (fragp
->fr_var
== 4)
19020 insn
= THUMB_OP32 (opcode
);
19021 insn
|= (old_op
& 0xf0) << 4;
19022 insn
|= (old_op
& 0xf) << 16;
19023 put_thumb32_insn (buf
, insn
);
19024 if (insn
& (1 << 20))
19025 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
19027 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
19030 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
19036 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
19037 (enum bfd_reloc_code_real
) reloc_type
);
19038 fixp
->fx_file
= fragp
->fr_file
;
19039 fixp
->fx_line
= fragp
->fr_line
;
19040 fragp
->fr_fix
+= fragp
->fr_var
;
19043 /* Return the size of a relaxable immediate operand instruction.
19044 SHIFT and SIZE specify the form of the allowable immediate. */
19046 relax_immediate (fragS
*fragp
, int size
, int shift
)
19052 /* ??? Should be able to do better than this. */
19053 if (fragp
->fr_symbol
)
19056 low
= (1 << shift
) - 1;
19057 mask
= (1 << (shift
+ size
)) - (1 << shift
);
19058 offset
= fragp
->fr_offset
;
19059 /* Force misaligned offsets to 32-bit variant. */
19062 if (offset
& ~mask
)
19067 /* Get the address of a symbol during relaxation. */
19069 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
19075 sym
= fragp
->fr_symbol
;
19076 sym_frag
= symbol_get_frag (sym
);
19077 know (S_GET_SEGMENT (sym
) != absolute_section
19078 || sym_frag
== &zero_address_frag
);
19079 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
19081 /* If frag has yet to be reached on this pass, assume it will
19082 move by STRETCH just as we did. If this is not so, it will
19083 be because some frag between grows, and that will force
19087 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
19091 /* Adjust stretch for any alignment frag. Note that if have
19092 been expanding the earlier code, the symbol may be
19093 defined in what appears to be an earlier frag. FIXME:
19094 This doesn't handle the fr_subtype field, which specifies
19095 a maximum number of bytes to skip when doing an
19097 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
19099 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
19102 stretch
= - ((- stretch
)
19103 & ~ ((1 << (int) f
->fr_offset
) - 1));
19105 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
19117 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19120 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
19125 /* Assume worst case for symbols not known to be in the same section. */
19126 if (fragp
->fr_symbol
== NULL
19127 || !S_IS_DEFINED (fragp
->fr_symbol
)
19128 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
19129 || S_IS_WEAK (fragp
->fr_symbol
))
19132 val
= relaxed_symbol_addr (fragp
, stretch
);
19133 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
19134 addr
= (addr
+ 4) & ~3;
19135 /* Force misaligned targets to 32-bit variant. */
19139 if (val
< 0 || val
> 1020)
19144 /* Return the size of a relaxable add/sub immediate instruction. */
19146 relax_addsub (fragS
*fragp
, asection
*sec
)
19151 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
19152 op
= bfd_get_16(sec
->owner
, buf
);
19153 if ((op
& 0xf) == ((op
>> 4) & 0xf))
19154 return relax_immediate (fragp
, 8, 0);
19156 return relax_immediate (fragp
, 3, 0);
19160 /* Return the size of a relaxable branch instruction. BITS is the
19161 size of the offset field in the narrow instruction. */
19164 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
19170 /* Assume worst case for symbols not known to be in the same section. */
19171 if (!S_IS_DEFINED (fragp
->fr_symbol
)
19172 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
19173 || S_IS_WEAK (fragp
->fr_symbol
))
19177 if (S_IS_DEFINED (fragp
->fr_symbol
)
19178 && ARM_IS_FUNC (fragp
->fr_symbol
))
19181 /* PR 12532. Global symbols with default visibility might
19182 be preempted, so do not relax relocations to them. */
19183 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp
->fr_symbol
)) == STV_DEFAULT
)
19184 && (! S_IS_LOCAL (fragp
->fr_symbol
)))
19188 val
= relaxed_symbol_addr (fragp
, stretch
);
19189 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
19192 /* Offset is a signed value *2 */
19194 if (val
>= limit
|| val
< -limit
)
19200 /* Relax a machine dependent frag. This returns the amount by which
19201 the current size of the frag should change. */
19204 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
19209 oldsize
= fragp
->fr_var
;
19210 switch (fragp
->fr_subtype
)
19212 case T_MNEM_ldr_pc2
:
19213 newsize
= relax_adr (fragp
, sec
, stretch
);
19215 case T_MNEM_ldr_pc
:
19216 case T_MNEM_ldr_sp
:
19217 case T_MNEM_str_sp
:
19218 newsize
= relax_immediate (fragp
, 8, 2);
19222 newsize
= relax_immediate (fragp
, 5, 2);
19226 newsize
= relax_immediate (fragp
, 5, 1);
19230 newsize
= relax_immediate (fragp
, 5, 0);
19233 newsize
= relax_adr (fragp
, sec
, stretch
);
19239 newsize
= relax_immediate (fragp
, 8, 0);
19242 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
19245 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
19247 case T_MNEM_add_sp
:
19248 case T_MNEM_add_pc
:
19249 newsize
= relax_immediate (fragp
, 8, 2);
19251 case T_MNEM_inc_sp
:
19252 case T_MNEM_dec_sp
:
19253 newsize
= relax_immediate (fragp
, 7, 2);
19259 newsize
= relax_addsub (fragp
, sec
);
19265 fragp
->fr_var
= newsize
;
19266 /* Freeze wide instructions that are at or before the same location as
19267 in the previous pass. This avoids infinite loops.
19268 Don't freeze them unconditionally because targets may be artificially
19269 misaligned by the expansion of preceding frags. */
19270 if (stretch
<= 0 && newsize
> 2)
19272 md_convert_frag (sec
->owner
, sec
, fragp
);
19276 return newsize
- oldsize
;
19279 /* Round up a section size to the appropriate boundary. */
19282 md_section_align (segT segment ATTRIBUTE_UNUSED
,
19285 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19286 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
19288 /* For a.out, force the section size to be aligned. If we don't do
19289 this, BFD will align it for us, but it will not write out the
19290 final bytes of the section. This may be a bug in BFD, but it is
19291 easier to fix it here since that is how the other a.out targets
19295 align
= bfd_get_section_alignment (stdoutput
, segment
);
19296 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
19303 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19304 of an rs_align_code fragment. */
19307 arm_handle_align (fragS
* fragP
)
19309 static char const arm_noop
[2][2][4] =
19312 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19313 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19316 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19317 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19320 static char const thumb_noop
[2][2][2] =
19323 {0xc0, 0x46}, /* LE */
19324 {0x46, 0xc0}, /* BE */
19327 {0x00, 0xbf}, /* LE */
19328 {0xbf, 0x00} /* BE */
19331 static char const wide_thumb_noop
[2][4] =
19332 { /* Wide Thumb-2 */
19333 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19334 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19337 unsigned bytes
, fix
, noop_size
;
19340 const char *narrow_noop
= NULL
;
19345 if (fragP
->fr_type
!= rs_align_code
)
19348 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
19349 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
19352 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
19353 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
19355 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
19357 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
19359 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
19361 narrow_noop
= thumb_noop
[1][target_big_endian
];
19362 noop
= wide_thumb_noop
[target_big_endian
];
19365 noop
= thumb_noop
[0][target_big_endian
];
19373 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
) != 0]
19374 [target_big_endian
];
19381 fragP
->fr_var
= noop_size
;
19383 if (bytes
& (noop_size
- 1))
19385 fix
= bytes
& (noop_size
- 1);
19387 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
19389 memset (p
, 0, fix
);
19396 if (bytes
& noop_size
)
19398 /* Insert a narrow noop. */
19399 memcpy (p
, narrow_noop
, noop_size
);
19401 bytes
-= noop_size
;
19405 /* Use wide noops for the remainder */
19409 while (bytes
>= noop_size
)
19411 memcpy (p
, noop
, noop_size
);
19413 bytes
-= noop_size
;
19417 fragP
->fr_fix
+= fix
;
19420 /* Called from md_do_align. Used to create an alignment
19421 frag in a code section. */
19424 arm_frag_align_code (int n
, int max
)
19428 /* We assume that there will never be a requirement
19429 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19430 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
19435 _("alignments greater than %d bytes not supported in .text sections."),
19436 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
19437 as_fatal ("%s", err_msg
);
19440 p
= frag_var (rs_align_code
,
19441 MAX_MEM_FOR_RS_ALIGN_CODE
,
19443 (relax_substateT
) max
,
19450 /* Perform target specific initialisation of a frag.
19451 Note - despite the name this initialisation is not done when the frag
19452 is created, but only when its type is assigned. A frag can be created
19453 and used a long time before its type is set, so beware of assuming that
19454 this initialisationis performed first. */
19458 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
19460 /* Record whether this frag is in an ARM or a THUMB area. */
19461 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
19464 #else /* OBJ_ELF is defined. */
19466 arm_init_frag (fragS
* fragP
, int max_chars
)
19468 /* If the current ARM vs THUMB mode has not already
19469 been recorded into this frag then do so now. */
19470 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
19472 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
19474 /* Record a mapping symbol for alignment frags. We will delete this
19475 later if the alignment ends up empty. */
19476 switch (fragP
->fr_type
)
19479 case rs_align_test
:
19481 mapping_state_2 (MAP_DATA
, max_chars
);
19483 case rs_align_code
:
19484 mapping_state_2 (thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
19492 /* When we change sections we need to issue a new mapping symbol. */
19495 arm_elf_change_section (void)
19497 /* Link an unlinked unwind index table section to the .text section. */
19498 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
19499 && elf_linked_to_section (now_seg
) == NULL
)
19500 elf_linked_to_section (now_seg
) = text_section
;
19504 arm_elf_section_type (const char * str
, size_t len
)
19506 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
19507 return SHT_ARM_EXIDX
;
19512 /* Code to deal with unwinding tables. */
19514 static void add_unwind_adjustsp (offsetT
);
19516 /* Generate any deferred unwind frame offset. */
19519 flush_pending_unwind (void)
19523 offset
= unwind
.pending_offset
;
19524 unwind
.pending_offset
= 0;
19526 add_unwind_adjustsp (offset
);
19529 /* Add an opcode to this list for this function. Two-byte opcodes should
19530 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19534 add_unwind_opcode (valueT op
, int length
)
19536 /* Add any deferred stack adjustment. */
19537 if (unwind
.pending_offset
)
19538 flush_pending_unwind ();
19540 unwind
.sp_restored
= 0;
19542 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
19544 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
19545 if (unwind
.opcodes
)
19546 unwind
.opcodes
= (unsigned char *) xrealloc (unwind
.opcodes
,
19547 unwind
.opcode_alloc
);
19549 unwind
.opcodes
= (unsigned char *) xmalloc (unwind
.opcode_alloc
);
19554 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
19556 unwind
.opcode_count
++;
19560 /* Add unwind opcodes to adjust the stack pointer. */
19563 add_unwind_adjustsp (offsetT offset
)
19567 if (offset
> 0x200)
19569 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19574 /* Long form: 0xb2, uleb128. */
19575 /* This might not fit in a word so add the individual bytes,
19576 remembering the list is built in reverse order. */
19577 o
= (valueT
) ((offset
- 0x204) >> 2);
19579 add_unwind_opcode (0, 1);
19581 /* Calculate the uleb128 encoding of the offset. */
19585 bytes
[n
] = o
& 0x7f;
19591 /* Add the insn. */
19593 add_unwind_opcode (bytes
[n
- 1], 1);
19594 add_unwind_opcode (0xb2, 1);
19596 else if (offset
> 0x100)
19598 /* Two short opcodes. */
19599 add_unwind_opcode (0x3f, 1);
19600 op
= (offset
- 0x104) >> 2;
19601 add_unwind_opcode (op
, 1);
19603 else if (offset
> 0)
19605 /* Short opcode. */
19606 op
= (offset
- 4) >> 2;
19607 add_unwind_opcode (op
, 1);
19609 else if (offset
< 0)
19612 while (offset
> 0x100)
19614 add_unwind_opcode (0x7f, 1);
19617 op
= ((offset
- 4) >> 2) | 0x40;
19618 add_unwind_opcode (op
, 1);
19622 /* Finish the list of unwind opcodes for this function. */
19624 finish_unwind_opcodes (void)
19628 if (unwind
.fp_used
)
19630 /* Adjust sp as necessary. */
19631 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
19632 flush_pending_unwind ();
19634 /* After restoring sp from the frame pointer. */
19635 op
= 0x90 | unwind
.fp_reg
;
19636 add_unwind_opcode (op
, 1);
19639 flush_pending_unwind ();
19643 /* Start an exception table entry. If idx is nonzero this is an index table
19647 start_unwind_section (const segT text_seg
, int idx
)
19649 const char * text_name
;
19650 const char * prefix
;
19651 const char * prefix_once
;
19652 const char * group_name
;
19656 size_t sec_name_len
;
19663 prefix
= ELF_STRING_ARM_unwind
;
19664 prefix_once
= ELF_STRING_ARM_unwind_once
;
19665 type
= SHT_ARM_EXIDX
;
19669 prefix
= ELF_STRING_ARM_unwind_info
;
19670 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
19671 type
= SHT_PROGBITS
;
19674 text_name
= segment_name (text_seg
);
19675 if (streq (text_name
, ".text"))
19678 if (strncmp (text_name
, ".gnu.linkonce.t.",
19679 strlen (".gnu.linkonce.t.")) == 0)
19681 prefix
= prefix_once
;
19682 text_name
+= strlen (".gnu.linkonce.t.");
19685 prefix_len
= strlen (prefix
);
19686 text_len
= strlen (text_name
);
19687 sec_name_len
= prefix_len
+ text_len
;
19688 sec_name
= (char *) xmalloc (sec_name_len
+ 1);
19689 memcpy (sec_name
, prefix
, prefix_len
);
19690 memcpy (sec_name
+ prefix_len
, text_name
, text_len
);
19691 sec_name
[prefix_len
+ text_len
] = '\0';
19697 /* Handle COMDAT group. */
19698 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
19700 group_name
= elf_group_name (text_seg
);
19701 if (group_name
== NULL
)
19703 as_bad (_("Group section `%s' has no group signature"),
19704 segment_name (text_seg
));
19705 ignore_rest_of_line ();
19708 flags
|= SHF_GROUP
;
19712 obj_elf_change_section (sec_name
, type
, flags
, 0, group_name
, linkonce
, 0);
19714 /* Set the section link for index tables. */
19716 elf_linked_to_section (now_seg
) = text_seg
;
19720 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19721 personality routine data. Returns zero, or the index table value for
19722 and inline entry. */
19725 create_unwind_entry (int have_data
)
19730 /* The current word of data. */
19732 /* The number of bytes left in this word. */
19735 finish_unwind_opcodes ();
19737 /* Remember the current text section. */
19738 unwind
.saved_seg
= now_seg
;
19739 unwind
.saved_subseg
= now_subseg
;
19741 start_unwind_section (now_seg
, 0);
19743 if (unwind
.personality_routine
== NULL
)
19745 if (unwind
.personality_index
== -2)
19748 as_bad (_("handlerdata in cantunwind frame"));
19749 return 1; /* EXIDX_CANTUNWIND. */
19752 /* Use a default personality routine if none is specified. */
19753 if (unwind
.personality_index
== -1)
19755 if (unwind
.opcode_count
> 3)
19756 unwind
.personality_index
= 1;
19758 unwind
.personality_index
= 0;
19761 /* Space for the personality routine entry. */
19762 if (unwind
.personality_index
== 0)
19764 if (unwind
.opcode_count
> 3)
19765 as_bad (_("too many unwind opcodes for personality routine 0"));
19769 /* All the data is inline in the index table. */
19772 while (unwind
.opcode_count
> 0)
19774 unwind
.opcode_count
--;
19775 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
19779 /* Pad with "finish" opcodes. */
19781 data
= (data
<< 8) | 0xb0;
19788 /* We get two opcodes "free" in the first word. */
19789 size
= unwind
.opcode_count
- 2;
19792 /* An extra byte is required for the opcode count. */
19793 size
= unwind
.opcode_count
+ 1;
19795 size
= (size
+ 3) >> 2;
19797 as_bad (_("too many unwind opcodes"));
19799 frag_align (2, 0, 0);
19800 record_alignment (now_seg
, 2);
19801 unwind
.table_entry
= expr_build_dot ();
19803 /* Allocate the table entry. */
19804 ptr
= frag_more ((size
<< 2) + 4);
19805 where
= frag_now_fix () - ((size
<< 2) + 4);
19807 switch (unwind
.personality_index
)
19810 /* ??? Should this be a PLT generating relocation? */
19811 /* Custom personality routine. */
19812 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
19813 BFD_RELOC_ARM_PREL31
);
19818 /* Set the first byte to the number of additional words. */
19823 /* ABI defined personality routines. */
19825 /* Three opcodes bytes are packed into the first word. */
19832 /* The size and first two opcode bytes go in the first word. */
19833 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
19838 /* Should never happen. */
19842 /* Pack the opcodes into words (MSB first), reversing the list at the same
19844 while (unwind
.opcode_count
> 0)
19848 md_number_to_chars (ptr
, data
, 4);
19853 unwind
.opcode_count
--;
19855 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
19858 /* Finish off the last word. */
19861 /* Pad with "finish" opcodes. */
19863 data
= (data
<< 8) | 0xb0;
19865 md_number_to_chars (ptr
, data
, 4);
19870 /* Add an empty descriptor if there is no user-specified data. */
19871 ptr
= frag_more (4);
19872 md_number_to_chars (ptr
, 0, 4);
19879 /* Initialize the DWARF-2 unwind information for this procedure. */
19882 tc_arm_frame_initial_instructions (void)
19884 cfi_add_CFA_def_cfa (REG_SP
, 0);
19886 #endif /* OBJ_ELF */
19888 /* Convert REGNAME to a DWARF-2 register number. */
19891 tc_arm_regname_to_dw2regnum (char *regname
)
19893 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
19903 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
19907 exp
.X_op
= O_secrel
;
19908 exp
.X_add_symbol
= symbol
;
19909 exp
.X_add_number
= 0;
19910 emit_expr (&exp
, size
);
19914 /* MD interface: Symbol and relocation handling. */
19916 /* Return the address within the segment that a PC-relative fixup is
19917 relative to. For ARM, PC-relative fixups applied to instructions
19918 are generally relative to the location of the fixup plus 8 bytes.
19919 Thumb branches are offset by 4, and Thumb loads relative to PC
19920 require special handling. */
19923 md_pcrel_from_section (fixS
* fixP
, segT seg
)
19925 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19927 /* If this is pc-relative and we are going to emit a relocation
19928 then we just want to put out any pipeline compensation that the linker
19929 will need. Otherwise we want to use the calculated base.
19930 For WinCE we skip the bias for externals as well, since this
19931 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19933 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
19934 || (arm_force_relocation (fixP
)
19936 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
19942 switch (fixP
->fx_r_type
)
19944 /* PC relative addressing on the Thumb is slightly odd as the
19945 bottom two bits of the PC are forced to zero for the
19946 calculation. This happens *after* application of the
19947 pipeline offset. However, Thumb adrl already adjusts for
19948 this, so we need not do it again. */
19949 case BFD_RELOC_ARM_THUMB_ADD
:
19952 case BFD_RELOC_ARM_THUMB_OFFSET
:
19953 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
19954 case BFD_RELOC_ARM_T32_ADD_PC12
:
19955 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
19956 return (base
+ 4) & ~3;
19958 /* Thumb branches are simply offset by +4. */
19959 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
19960 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
19961 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
19962 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
19963 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
19966 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
19968 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19969 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
19970 && ARM_IS_FUNC (fixP
->fx_addsy
)
19971 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19972 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19975 /* BLX is like branches above, but forces the low two bits of PC to
19977 case BFD_RELOC_THUMB_PCREL_BLX
:
19979 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19980 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
19981 && THUMB_IS_FUNC (fixP
->fx_addsy
)
19982 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19983 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19984 return (base
+ 4) & ~3;
19986 /* ARM mode branches are offset by +8. However, the Windows CE
19987 loader expects the relocation not to take this into account. */
19988 case BFD_RELOC_ARM_PCREL_BLX
:
19990 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19991 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
19992 && ARM_IS_FUNC (fixP
->fx_addsy
)
19993 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19994 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19997 case BFD_RELOC_ARM_PCREL_CALL
:
19999 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20000 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20001 && THUMB_IS_FUNC (fixP
->fx_addsy
)
20002 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20003 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
20006 case BFD_RELOC_ARM_PCREL_BRANCH
:
20007 case BFD_RELOC_ARM_PCREL_JUMP
:
20008 case BFD_RELOC_ARM_PLT32
:
20010 /* When handling fixups immediately, because we have already
20011 discovered the value of a symbol, or the address of the frag involved
20012 we must account for the offset by +8, as the OS loader will never see the reloc.
20013 see fixup_segment() in write.c
20014 The S_IS_EXTERNAL test handles the case of global symbols.
20015 Those need the calculated base, not just the pipe compensation the linker will need. */
20017 && fixP
->fx_addsy
!= NULL
20018 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20019 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
20027 /* ARM mode loads relative to PC are also offset by +8. Unlike
20028 branches, the Windows CE loader *does* expect the relocation
20029 to take this into account. */
20030 case BFD_RELOC_ARM_OFFSET_IMM
:
20031 case BFD_RELOC_ARM_OFFSET_IMM8
:
20032 case BFD_RELOC_ARM_HWLITERAL
:
20033 case BFD_RELOC_ARM_LITERAL
:
20034 case BFD_RELOC_ARM_CP_OFF_IMM
:
20038 /* Other PC-relative relocations are un-offset. */
20044 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20045 Otherwise we have no need to default values of symbols. */
20048 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
20051 if (name
[0] == '_' && name
[1] == 'G'
20052 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
20056 if (symbol_find (name
))
20057 as_bad (_("GOT already in the symbol table"));
20059 GOT_symbol
= symbol_new (name
, undefined_section
,
20060 (valueT
) 0, & zero_address_frag
);
20070 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20071 computed as two separate immediate values, added together. We
20072 already know that this value cannot be computed by just one ARM
20075 static unsigned int
20076 validate_immediate_twopart (unsigned int val
,
20077 unsigned int * highpart
)
20082 for (i
= 0; i
< 32; i
+= 2)
20083 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
20089 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
20091 else if (a
& 0xff0000)
20093 if (a
& 0xff000000)
20095 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
20099 gas_assert (a
& 0xff000000);
20100 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
20103 return (a
& 0xff) | (i
<< 7);
20110 validate_offset_imm (unsigned int val
, int hwse
)
20112 if ((hwse
&& val
> 255) || val
> 4095)
20117 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20118 negative immediate constant by altering the instruction. A bit of
20123 by inverting the second operand, and
20126 by negating the second operand. */
20129 negate_data_op (unsigned long * instruction
,
20130 unsigned long value
)
20133 unsigned long negated
, inverted
;
20135 negated
= encode_arm_immediate (-value
);
20136 inverted
= encode_arm_immediate (~value
);
20138 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
20141 /* First negates. */
20142 case OPCODE_SUB
: /* ADD <-> SUB */
20143 new_inst
= OPCODE_ADD
;
20148 new_inst
= OPCODE_SUB
;
20152 case OPCODE_CMP
: /* CMP <-> CMN */
20153 new_inst
= OPCODE_CMN
;
20158 new_inst
= OPCODE_CMP
;
20162 /* Now Inverted ops. */
20163 case OPCODE_MOV
: /* MOV <-> MVN */
20164 new_inst
= OPCODE_MVN
;
20169 new_inst
= OPCODE_MOV
;
20173 case OPCODE_AND
: /* AND <-> BIC */
20174 new_inst
= OPCODE_BIC
;
20179 new_inst
= OPCODE_AND
;
20183 case OPCODE_ADC
: /* ADC <-> SBC */
20184 new_inst
= OPCODE_SBC
;
20189 new_inst
= OPCODE_ADC
;
20193 /* We cannot do anything. */
20198 if (value
== (unsigned) FAIL
)
20201 *instruction
&= OPCODE_MASK
;
20202 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
20206 /* Like negate_data_op, but for Thumb-2. */
20208 static unsigned int
20209 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
20213 unsigned int negated
, inverted
;
20215 negated
= encode_thumb32_immediate (-value
);
20216 inverted
= encode_thumb32_immediate (~value
);
20218 rd
= (*instruction
>> 8) & 0xf;
20219 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
20222 /* ADD <-> SUB. Includes CMP <-> CMN. */
20223 case T2_OPCODE_SUB
:
20224 new_inst
= T2_OPCODE_ADD
;
20228 case T2_OPCODE_ADD
:
20229 new_inst
= T2_OPCODE_SUB
;
20233 /* ORR <-> ORN. Includes MOV <-> MVN. */
20234 case T2_OPCODE_ORR
:
20235 new_inst
= T2_OPCODE_ORN
;
20239 case T2_OPCODE_ORN
:
20240 new_inst
= T2_OPCODE_ORR
;
20244 /* AND <-> BIC. TST has no inverted equivalent. */
20245 case T2_OPCODE_AND
:
20246 new_inst
= T2_OPCODE_BIC
;
20253 case T2_OPCODE_BIC
:
20254 new_inst
= T2_OPCODE_AND
;
20259 case T2_OPCODE_ADC
:
20260 new_inst
= T2_OPCODE_SBC
;
20264 case T2_OPCODE_SBC
:
20265 new_inst
= T2_OPCODE_ADC
;
20269 /* We cannot do anything. */
20274 if (value
== (unsigned int)FAIL
)
20277 *instruction
&= T2_OPCODE_MASK
;
20278 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
20282 /* Read a 32-bit thumb instruction from buf. */
20283 static unsigned long
20284 get_thumb32_insn (char * buf
)
20286 unsigned long insn
;
20287 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
20288 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20294 /* We usually want to set the low bit on the address of thumb function
20295 symbols. In particular .word foo - . should have the low bit set.
20296 Generic code tries to fold the difference of two symbols to
20297 a constant. Prevent this and force a relocation when the first symbols
20298 is a thumb function. */
20301 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
20303 if (op
== O_subtract
20304 && l
->X_op
== O_symbol
20305 && r
->X_op
== O_symbol
20306 && THUMB_IS_FUNC (l
->X_add_symbol
))
20308 l
->X_op
= O_subtract
;
20309 l
->X_op_symbol
= r
->X_add_symbol
;
20310 l
->X_add_number
-= r
->X_add_number
;
20314 /* Process as normal. */
20318 /* Encode Thumb2 unconditional branches and calls. The encoding
20319 for the 2 are identical for the immediate values. */
20322 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
20324 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20327 addressT S
, I1
, I2
, lo
, hi
;
20329 S
= (value
>> 24) & 0x01;
20330 I1
= (value
>> 23) & 0x01;
20331 I2
= (value
>> 22) & 0x01;
20332 hi
= (value
>> 12) & 0x3ff;
20333 lo
= (value
>> 1) & 0x7ff;
20334 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20335 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20336 newval
|= (S
<< 10) | hi
;
20337 newval2
&= ~T2I1I2MASK
;
20338 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
20339 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20340 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
20344 md_apply_fix (fixS
* fixP
,
20348 offsetT value
= * valP
;
20350 unsigned int newimm
;
20351 unsigned long temp
;
20353 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
20355 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
20357 /* Note whether this will delete the relocation. */
20359 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
20362 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20363 consistency with the behaviour on 32-bit hosts. Remember value
20365 value
&= 0xffffffff;
20366 value
^= 0x80000000;
20367 value
-= 0x80000000;
20370 fixP
->fx_addnumber
= value
;
20372 /* Same treatment for fixP->fx_offset. */
20373 fixP
->fx_offset
&= 0xffffffff;
20374 fixP
->fx_offset
^= 0x80000000;
20375 fixP
->fx_offset
-= 0x80000000;
20377 switch (fixP
->fx_r_type
)
20379 case BFD_RELOC_NONE
:
20380 /* This will need to go in the object file. */
20384 case BFD_RELOC_ARM_IMMEDIATE
:
20385 /* We claim that this fixup has been processed here,
20386 even if in fact we generate an error because we do
20387 not have a reloc for it, so tc_gen_reloc will reject it. */
20390 if (fixP
->fx_addsy
)
20392 const char *msg
= 0;
20394 if (! S_IS_DEFINED (fixP
->fx_addsy
))
20395 msg
= _("undefined symbol %s used as an immediate value");
20396 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
20397 msg
= _("symbol %s is in a different section");
20398 else if (S_IS_WEAK (fixP
->fx_addsy
))
20399 msg
= _("symbol %s is weak and may be overridden later");
20403 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20404 msg
, S_GET_NAME (fixP
->fx_addsy
));
20409 newimm
= encode_arm_immediate (value
);
20410 temp
= md_chars_to_number (buf
, INSN_SIZE
);
20412 /* If the instruction will fail, see if we can fix things up by
20413 changing the opcode. */
20414 if (newimm
== (unsigned int) FAIL
20415 && (newimm
= negate_data_op (&temp
, value
)) == (unsigned int) FAIL
)
20417 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20418 _("invalid constant (%lx) after fixup"),
20419 (unsigned long) value
);
20423 newimm
|= (temp
& 0xfffff000);
20424 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
20427 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
20429 unsigned int highpart
= 0;
20430 unsigned int newinsn
= 0xe1a00000; /* nop. */
20432 if (fixP
->fx_addsy
)
20434 const char *msg
= 0;
20436 if (! S_IS_DEFINED (fixP
->fx_addsy
))
20437 msg
= _("undefined symbol %s used as an immediate value");
20438 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
20439 msg
= _("symbol %s is in a different section");
20440 else if (S_IS_WEAK (fixP
->fx_addsy
))
20441 msg
= _("symbol %s is weak and may be overridden later");
20445 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20446 msg
, S_GET_NAME (fixP
->fx_addsy
));
20451 newimm
= encode_arm_immediate (value
);
20452 temp
= md_chars_to_number (buf
, INSN_SIZE
);
20454 /* If the instruction will fail, see if we can fix things up by
20455 changing the opcode. */
20456 if (newimm
== (unsigned int) FAIL
20457 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
20459 /* No ? OK - try using two ADD instructions to generate
20461 newimm
= validate_immediate_twopart (value
, & highpart
);
20463 /* Yes - then make sure that the second instruction is
20465 if (newimm
!= (unsigned int) FAIL
)
20467 /* Still No ? Try using a negated value. */
20468 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
20469 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
20470 /* Otherwise - give up. */
20473 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20474 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20479 /* Replace the first operand in the 2nd instruction (which
20480 is the PC) with the destination register. We have
20481 already added in the PC in the first instruction and we
20482 do not want to do it again. */
20483 newinsn
&= ~ 0xf0000;
20484 newinsn
|= ((newinsn
& 0x0f000) << 4);
20487 newimm
|= (temp
& 0xfffff000);
20488 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
20490 highpart
|= (newinsn
& 0xfffff000);
20491 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
20495 case BFD_RELOC_ARM_OFFSET_IMM
:
20496 if (!fixP
->fx_done
&& seg
->use_rela_p
)
20499 case BFD_RELOC_ARM_LITERAL
:
20505 if (validate_offset_imm (value
, 0) == FAIL
)
20507 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
20508 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20509 _("invalid literal constant: pool needs to be closer"));
20511 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20512 _("bad immediate value for offset (%ld)"),
20517 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20519 newval
&= 0xfffff000;
20522 newval
&= 0xff7ff000;
20523 newval
|= value
| (sign
? INDEX_UP
: 0);
20525 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20528 case BFD_RELOC_ARM_OFFSET_IMM8
:
20529 case BFD_RELOC_ARM_HWLITERAL
:
20535 if (validate_offset_imm (value
, 1) == FAIL
)
20537 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
20538 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20539 _("invalid literal constant: pool needs to be closer"));
20541 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20546 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20548 newval
&= 0xfffff0f0;
20551 newval
&= 0xff7ff0f0;
20552 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
20554 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20557 case BFD_RELOC_ARM_T32_OFFSET_U8
:
20558 if (value
< 0 || value
> 1020 || value
% 4 != 0)
20559 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20560 _("bad immediate value for offset (%ld)"), (long) value
);
20563 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
20565 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
20568 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
20569 /* This is a complicated relocation used for all varieties of Thumb32
20570 load/store instruction with immediate offset:
20572 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20573 *4, optional writeback(W)
20574 (doubleword load/store)
20576 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20577 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20578 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20579 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20580 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20582 Uppercase letters indicate bits that are already encoded at
20583 this point. Lowercase letters are our problem. For the
20584 second block of instructions, the secondary opcode nybble
20585 (bits 8..11) is present, and bit 23 is zero, even if this is
20586 a PC-relative operation. */
20587 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20589 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
20591 if ((newval
& 0xf0000000) == 0xe0000000)
20593 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20595 newval
|= (1 << 23);
20598 if (value
% 4 != 0)
20600 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20601 _("offset not a multiple of 4"));
20607 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20608 _("offset out of range"));
20613 else if ((newval
& 0x000f0000) == 0x000f0000)
20615 /* PC-relative, 12-bit offset. */
20617 newval
|= (1 << 23);
20622 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20623 _("offset out of range"));
20628 else if ((newval
& 0x00000100) == 0x00000100)
20630 /* Writeback: 8-bit, +/- offset. */
20632 newval
|= (1 << 9);
20637 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20638 _("offset out of range"));
20643 else if ((newval
& 0x00000f00) == 0x00000e00)
20645 /* T-instruction: positive 8-bit offset. */
20646 if (value
< 0 || value
> 0xff)
20648 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20649 _("offset out of range"));
20657 /* Positive 12-bit or negative 8-bit offset. */
20661 newval
|= (1 << 23);
20671 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20672 _("offset out of range"));
20679 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
20680 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
20683 case BFD_RELOC_ARM_SHIFT_IMM
:
20684 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20685 if (((unsigned long) value
) > 32
20687 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
20689 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20690 _("shift expression is too large"));
20695 /* Shifts of zero must be done as lsl. */
20697 else if (value
== 32)
20699 newval
&= 0xfffff07f;
20700 newval
|= (value
& 0x1f) << 7;
20701 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20704 case BFD_RELOC_ARM_T32_IMMEDIATE
:
20705 case BFD_RELOC_ARM_T32_ADD_IMM
:
20706 case BFD_RELOC_ARM_T32_IMM12
:
20707 case BFD_RELOC_ARM_T32_ADD_PC12
:
20708 /* We claim that this fixup has been processed here,
20709 even if in fact we generate an error because we do
20710 not have a reloc for it, so tc_gen_reloc will reject it. */
20714 && ! S_IS_DEFINED (fixP
->fx_addsy
))
20716 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20717 _("undefined symbol %s used as an immediate value"),
20718 S_GET_NAME (fixP
->fx_addsy
));
20722 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20724 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
20727 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
20728 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
20730 newimm
= encode_thumb32_immediate (value
);
20731 if (newimm
== (unsigned int) FAIL
)
20732 newimm
= thumb32_negate_data_op (&newval
, value
);
20734 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
20735 && newimm
== (unsigned int) FAIL
)
20737 /* Turn add/sum into addw/subw. */
20738 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
20739 newval
= (newval
& 0xfeffffff) | 0x02000000;
20740 /* No flat 12-bit imm encoding for addsw/subsw. */
20741 if ((newval
& 0x00100000) == 0)
20743 /* 12 bit immediate for addw/subw. */
20747 newval
^= 0x00a00000;
20750 newimm
= (unsigned int) FAIL
;
20756 if (newimm
== (unsigned int)FAIL
)
20758 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20759 _("invalid constant (%lx) after fixup"),
20760 (unsigned long) value
);
20764 newval
|= (newimm
& 0x800) << 15;
20765 newval
|= (newimm
& 0x700) << 4;
20766 newval
|= (newimm
& 0x0ff);
20768 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
20769 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
20772 case BFD_RELOC_ARM_SMC
:
20773 if (((unsigned long) value
) > 0xffff)
20774 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20775 _("invalid smc expression"));
20776 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20777 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
20778 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20781 case BFD_RELOC_ARM_HVC
:
20782 if (((unsigned long) value
) > 0xffff)
20783 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20784 _("invalid hvc expression"));
20785 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20786 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
20787 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20790 case BFD_RELOC_ARM_SWI
:
20791 if (fixP
->tc_fix_data
!= 0)
20793 if (((unsigned long) value
) > 0xff)
20794 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20795 _("invalid swi expression"));
20796 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20798 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20802 if (((unsigned long) value
) > 0x00ffffff)
20803 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20804 _("invalid swi expression"));
20805 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20807 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20811 case BFD_RELOC_ARM_MULTI
:
20812 if (((unsigned long) value
) > 0xffff)
20813 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20814 _("invalid expression in load/store multiple"));
20815 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
20816 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20820 case BFD_RELOC_ARM_PCREL_CALL
:
20822 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
20824 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20825 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20826 && THUMB_IS_FUNC (fixP
->fx_addsy
))
20827 /* Flip the bl to blx. This is a simple flip
20828 bit here because we generate PCREL_CALL for
20829 unconditional bls. */
20831 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20832 newval
= newval
| 0x10000000;
20833 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20839 goto arm_branch_common
;
20841 case BFD_RELOC_ARM_PCREL_JUMP
:
20842 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
20844 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20845 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20846 && THUMB_IS_FUNC (fixP
->fx_addsy
))
20848 /* This would map to a bl<cond>, b<cond>,
20849 b<always> to a Thumb function. We
20850 need to force a relocation for this particular
20852 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20856 case BFD_RELOC_ARM_PLT32
:
20858 case BFD_RELOC_ARM_PCREL_BRANCH
:
20860 goto arm_branch_common
;
20862 case BFD_RELOC_ARM_PCREL_BLX
:
20865 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
20867 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20868 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20869 && ARM_IS_FUNC (fixP
->fx_addsy
))
20871 /* Flip the blx to a bl and warn. */
20872 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
20873 newval
= 0xeb000000;
20874 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
20875 _("blx to '%s' an ARM ISA state function changed to bl"),
20877 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20883 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
20884 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
20888 /* We are going to store value (shifted right by two) in the
20889 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20890 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20891 also be be clear. */
20893 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20894 _("misaligned branch destination"));
20895 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
20896 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
20897 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20898 _("branch out of range"));
20900 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20902 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20903 newval
|= (value
>> 2) & 0x00ffffff;
20904 /* Set the H bit on BLX instructions. */
20908 newval
|= 0x01000000;
20910 newval
&= ~0x01000000;
20912 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20916 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
20917 /* CBZ can only branch forward. */
20919 /* Attempts to use CBZ to branch to the next instruction
20920 (which, strictly speaking, are prohibited) will be turned into
20923 FIXME: It may be better to remove the instruction completely and
20924 perform relaxation. */
20927 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20928 newval
= 0xbf00; /* NOP encoding T1 */
20929 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20934 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20935 _("branch out of range"));
20937 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20939 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20940 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
20941 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20946 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
20947 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
20948 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20949 _("branch out of range"));
20951 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20953 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20954 newval
|= (value
& 0x1ff) >> 1;
20955 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20959 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
20960 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
20961 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20962 _("branch out of range"));
20964 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20966 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20967 newval
|= (value
& 0xfff) >> 1;
20968 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20972 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
20974 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20975 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20976 && ARM_IS_FUNC (fixP
->fx_addsy
)
20977 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20979 /* Force a relocation for a branch 20 bits wide. */
20982 if ((value
& ~0x1fffff) && ((value
& ~0x1fffff) != ~0x1fffff))
20983 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20984 _("conditional branch out of range"));
20986 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20989 addressT S
, J1
, J2
, lo
, hi
;
20991 S
= (value
& 0x00100000) >> 20;
20992 J2
= (value
& 0x00080000) >> 19;
20993 J1
= (value
& 0x00040000) >> 18;
20994 hi
= (value
& 0x0003f000) >> 12;
20995 lo
= (value
& 0x00000ffe) >> 1;
20997 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20998 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20999 newval
|= (S
<< 10) | hi
;
21000 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
21001 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21002 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
21006 case BFD_RELOC_THUMB_PCREL_BLX
:
21008 /* If there is a blx from a thumb state function to
21009 another thumb function flip this to a bl and warn
21013 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21014 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21015 && THUMB_IS_FUNC (fixP
->fx_addsy
))
21017 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
21018 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
21019 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21021 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
21022 newval
= newval
| 0x1000;
21023 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
21024 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
21029 goto thumb_bl_common
;
21031 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
21033 /* A bl from Thumb state ISA to an internal ARM state function
21034 is converted to a blx. */
21036 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21037 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21038 && ARM_IS_FUNC (fixP
->fx_addsy
)
21039 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
21041 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
21042 newval
= newval
& ~0x1000;
21043 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
21044 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
21051 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
&&
21052 fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
21053 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
21056 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
21057 /* For a BLX instruction, make sure that the relocation is rounded up
21058 to a word boundary. This follows the semantics of the instruction
21059 which specifies that bit 1 of the target address will come from bit
21060 1 of the base address. */
21061 value
= (value
+ 1) & ~ 1;
21064 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
21066 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_arch_t2
)))
21068 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21069 _("branch out of range"));
21071 else if ((value
& ~0x1ffffff)
21072 && ((value
& ~0x1ffffff) != ~0x1ffffff))
21074 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21075 _("Thumb2 branch out of range"));
21079 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21080 encode_thumb2_b_bl_offset (buf
, value
);
21084 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
21085 if ((value
& ~0x1ffffff) && ((value
& ~0x1ffffff) != ~0x1ffffff))
21086 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21087 _("branch out of range"));
21089 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21090 encode_thumb2_b_bl_offset (buf
, value
);
21095 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21096 md_number_to_chars (buf
, value
, 1);
21100 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21101 md_number_to_chars (buf
, value
, 2);
21105 case BFD_RELOC_ARM_TLS_CALL
:
21106 case BFD_RELOC_ARM_THM_TLS_CALL
:
21107 case BFD_RELOC_ARM_TLS_DESCSEQ
:
21108 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
21109 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
21112 case BFD_RELOC_ARM_TLS_GOTDESC
:
21113 case BFD_RELOC_ARM_TLS_GD32
:
21114 case BFD_RELOC_ARM_TLS_LE32
:
21115 case BFD_RELOC_ARM_TLS_IE32
:
21116 case BFD_RELOC_ARM_TLS_LDM32
:
21117 case BFD_RELOC_ARM_TLS_LDO32
:
21118 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
21121 case BFD_RELOC_ARM_GOT32
:
21122 case BFD_RELOC_ARM_GOTOFF
:
21123 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21124 md_number_to_chars (buf
, 0, 4);
21127 case BFD_RELOC_ARM_GOT_PREL
:
21128 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21129 md_number_to_chars (buf
, value
, 4);
21132 case BFD_RELOC_ARM_TARGET2
:
21133 /* TARGET2 is not partial-inplace, so we need to write the
21134 addend here for REL targets, because it won't be written out
21135 during reloc processing later. */
21136 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21137 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
21141 case BFD_RELOC_RVA
:
21143 case BFD_RELOC_ARM_TARGET1
:
21144 case BFD_RELOC_ARM_ROSEGREL32
:
21145 case BFD_RELOC_ARM_SBREL32
:
21146 case BFD_RELOC_32_PCREL
:
21148 case BFD_RELOC_32_SECREL
:
21150 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21152 /* For WinCE we only do this for pcrel fixups. */
21153 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
21155 md_number_to_chars (buf
, value
, 4);
21159 case BFD_RELOC_ARM_PREL31
:
21160 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21162 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
21163 if ((value
^ (value
>> 1)) & 0x40000000)
21165 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21166 _("rel31 relocation overflow"));
21168 newval
|= value
& 0x7fffffff;
21169 md_number_to_chars (buf
, newval
, 4);
21174 case BFD_RELOC_ARM_CP_OFF_IMM
:
21175 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
21176 if (value
< -1023 || value
> 1023 || (value
& 3))
21177 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21178 _("co-processor offset out of range"));
21183 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
21184 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
21185 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21187 newval
= get_thumb32_insn (buf
);
21189 newval
&= 0xffffff00;
21192 newval
&= 0xff7fff00;
21193 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
21195 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
21196 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
21197 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21199 put_thumb32_insn (buf
, newval
);
21202 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
21203 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
21204 if (value
< -255 || value
> 255)
21205 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21206 _("co-processor offset out of range"));
21208 goto cp_off_common
;
21210 case BFD_RELOC_ARM_THUMB_OFFSET
:
21211 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21212 /* Exactly what ranges, and where the offset is inserted depends
21213 on the type of instruction, we can establish this from the
21215 switch (newval
>> 12)
21217 case 4: /* PC load. */
21218 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21219 forced to zero for these loads; md_pcrel_from has already
21220 compensated for this. */
21222 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21223 _("invalid offset, target not word aligned (0x%08lX)"),
21224 (((unsigned long) fixP
->fx_frag
->fr_address
21225 + (unsigned long) fixP
->fx_where
) & ~3)
21226 + (unsigned long) value
);
21228 if (value
& ~0x3fc)
21229 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21230 _("invalid offset, value too big (0x%08lX)"),
21233 newval
|= value
>> 2;
21236 case 9: /* SP load/store. */
21237 if (value
& ~0x3fc)
21238 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21239 _("invalid offset, value too big (0x%08lX)"),
21241 newval
|= value
>> 2;
21244 case 6: /* Word load/store. */
21246 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21247 _("invalid offset, value too big (0x%08lX)"),
21249 newval
|= value
<< 4; /* 6 - 2. */
21252 case 7: /* Byte load/store. */
21254 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21255 _("invalid offset, value too big (0x%08lX)"),
21257 newval
|= value
<< 6;
21260 case 8: /* Halfword load/store. */
21262 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21263 _("invalid offset, value too big (0x%08lX)"),
21265 newval
|= value
<< 5; /* 6 - 1. */
21269 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21270 "Unable to process relocation for thumb opcode: %lx",
21271 (unsigned long) newval
);
21274 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21277 case BFD_RELOC_ARM_THUMB_ADD
:
21278 /* This is a complicated relocation, since we use it for all of
21279 the following immediate relocations:
21283 9bit ADD/SUB SP word-aligned
21284 10bit ADD PC/SP word-aligned
21286 The type of instruction being processed is encoded in the
21293 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21295 int rd
= (newval
>> 4) & 0xf;
21296 int rs
= newval
& 0xf;
21297 int subtract
= !!(newval
& 0x8000);
21299 /* Check for HI regs, only very restricted cases allowed:
21300 Adjusting SP, and using PC or SP to get an address. */
21301 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
21302 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
21303 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21304 _("invalid Hi register with immediate"));
21306 /* If value is negative, choose the opposite instruction. */
21310 subtract
= !subtract
;
21312 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21313 _("immediate value out of range"));
21318 if (value
& ~0x1fc)
21319 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21320 _("invalid immediate for stack address calculation"));
21321 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
21322 newval
|= value
>> 2;
21324 else if (rs
== REG_PC
|| rs
== REG_SP
)
21326 if (subtract
|| value
& ~0x3fc)
21327 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21328 _("invalid immediate for address calculation (value = 0x%08lX)"),
21329 (unsigned long) value
);
21330 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
21332 newval
|= value
>> 2;
21337 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21338 _("immediate value out of range"));
21339 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
21340 newval
|= (rd
<< 8) | value
;
21345 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21346 _("immediate value out of range"));
21347 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
21348 newval
|= rd
| (rs
<< 3) | (value
<< 6);
21351 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21354 case BFD_RELOC_ARM_THUMB_IMM
:
21355 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21356 if (value
< 0 || value
> 255)
21357 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21358 _("invalid immediate: %ld is out of range"),
21361 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21364 case BFD_RELOC_ARM_THUMB_SHIFT
:
21365 /* 5bit shift value (0..32). LSL cannot take 32. */
21366 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
21367 temp
= newval
& 0xf800;
21368 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
21369 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21370 _("invalid shift value: %ld"), (long) value
);
21371 /* Shifts of zero must be encoded as LSL. */
21373 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
21374 /* Shifts of 32 are encoded as zero. */
21375 else if (value
== 32)
21377 newval
|= value
<< 6;
21378 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21381 case BFD_RELOC_VTABLE_INHERIT
:
21382 case BFD_RELOC_VTABLE_ENTRY
:
21386 case BFD_RELOC_ARM_MOVW
:
21387 case BFD_RELOC_ARM_MOVT
:
21388 case BFD_RELOC_ARM_THUMB_MOVW
:
21389 case BFD_RELOC_ARM_THUMB_MOVT
:
21390 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21392 /* REL format relocations are limited to a 16-bit addend. */
21393 if (!fixP
->fx_done
)
21395 if (value
< -0x8000 || value
> 0x7fff)
21396 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21397 _("offset out of range"));
21399 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
21400 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
21405 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
21406 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
21408 newval
= get_thumb32_insn (buf
);
21409 newval
&= 0xfbf08f00;
21410 newval
|= (value
& 0xf000) << 4;
21411 newval
|= (value
& 0x0800) << 15;
21412 newval
|= (value
& 0x0700) << 4;
21413 newval
|= (value
& 0x00ff);
21414 put_thumb32_insn (buf
, newval
);
21418 newval
= md_chars_to_number (buf
, 4);
21419 newval
&= 0xfff0f000;
21420 newval
|= value
& 0x0fff;
21421 newval
|= (value
& 0xf000) << 4;
21422 md_number_to_chars (buf
, newval
, 4);
21427 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
21428 case BFD_RELOC_ARM_ALU_PC_G0
:
21429 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
21430 case BFD_RELOC_ARM_ALU_PC_G1
:
21431 case BFD_RELOC_ARM_ALU_PC_G2
:
21432 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
21433 case BFD_RELOC_ARM_ALU_SB_G0
:
21434 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
21435 case BFD_RELOC_ARM_ALU_SB_G1
:
21436 case BFD_RELOC_ARM_ALU_SB_G2
:
21437 gas_assert (!fixP
->fx_done
);
21438 if (!seg
->use_rela_p
)
21441 bfd_vma encoded_addend
;
21442 bfd_vma addend_abs
= abs (value
);
21444 /* Check that the absolute value of the addend can be
21445 expressed as an 8-bit constant plus a rotation. */
21446 encoded_addend
= encode_arm_immediate (addend_abs
);
21447 if (encoded_addend
== (unsigned int) FAIL
)
21448 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21449 _("the offset 0x%08lX is not representable"),
21450 (unsigned long) addend_abs
);
21452 /* Extract the instruction. */
21453 insn
= md_chars_to_number (buf
, INSN_SIZE
);
21455 /* If the addend is positive, use an ADD instruction.
21456 Otherwise use a SUB. Take care not to destroy the S bit. */
21457 insn
&= 0xff1fffff;
21463 /* Place the encoded addend into the first 12 bits of the
21465 insn
&= 0xfffff000;
21466 insn
|= encoded_addend
;
21468 /* Update the instruction. */
21469 md_number_to_chars (buf
, insn
, INSN_SIZE
);
21473 case BFD_RELOC_ARM_LDR_PC_G0
:
21474 case BFD_RELOC_ARM_LDR_PC_G1
:
21475 case BFD_RELOC_ARM_LDR_PC_G2
:
21476 case BFD_RELOC_ARM_LDR_SB_G0
:
21477 case BFD_RELOC_ARM_LDR_SB_G1
:
21478 case BFD_RELOC_ARM_LDR_SB_G2
:
21479 gas_assert (!fixP
->fx_done
);
21480 if (!seg
->use_rela_p
)
21483 bfd_vma addend_abs
= abs (value
);
21485 /* Check that the absolute value of the addend can be
21486 encoded in 12 bits. */
21487 if (addend_abs
>= 0x1000)
21488 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21489 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21490 (unsigned long) addend_abs
);
21492 /* Extract the instruction. */
21493 insn
= md_chars_to_number (buf
, INSN_SIZE
);
21495 /* If the addend is negative, clear bit 23 of the instruction.
21496 Otherwise set it. */
21498 insn
&= ~(1 << 23);
21502 /* Place the absolute value of the addend into the first 12 bits
21503 of the instruction. */
21504 insn
&= 0xfffff000;
21505 insn
|= addend_abs
;
21507 /* Update the instruction. */
21508 md_number_to_chars (buf
, insn
, INSN_SIZE
);
21512 case BFD_RELOC_ARM_LDRS_PC_G0
:
21513 case BFD_RELOC_ARM_LDRS_PC_G1
:
21514 case BFD_RELOC_ARM_LDRS_PC_G2
:
21515 case BFD_RELOC_ARM_LDRS_SB_G0
:
21516 case BFD_RELOC_ARM_LDRS_SB_G1
:
21517 case BFD_RELOC_ARM_LDRS_SB_G2
:
21518 gas_assert (!fixP
->fx_done
);
21519 if (!seg
->use_rela_p
)
21522 bfd_vma addend_abs
= abs (value
);
21524 /* Check that the absolute value of the addend can be
21525 encoded in 8 bits. */
21526 if (addend_abs
>= 0x100)
21527 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21528 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21529 (unsigned long) addend_abs
);
21531 /* Extract the instruction. */
21532 insn
= md_chars_to_number (buf
, INSN_SIZE
);
21534 /* If the addend is negative, clear bit 23 of the instruction.
21535 Otherwise set it. */
21537 insn
&= ~(1 << 23);
21541 /* Place the first four bits of the absolute value of the addend
21542 into the first 4 bits of the instruction, and the remaining
21543 four into bits 8 .. 11. */
21544 insn
&= 0xfffff0f0;
21545 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
21547 /* Update the instruction. */
21548 md_number_to_chars (buf
, insn
, INSN_SIZE
);
21552 case BFD_RELOC_ARM_LDC_PC_G0
:
21553 case BFD_RELOC_ARM_LDC_PC_G1
:
21554 case BFD_RELOC_ARM_LDC_PC_G2
:
21555 case BFD_RELOC_ARM_LDC_SB_G0
:
21556 case BFD_RELOC_ARM_LDC_SB_G1
:
21557 case BFD_RELOC_ARM_LDC_SB_G2
:
21558 gas_assert (!fixP
->fx_done
);
21559 if (!seg
->use_rela_p
)
21562 bfd_vma addend_abs
= abs (value
);
21564 /* Check that the absolute value of the addend is a multiple of
21565 four and, when divided by four, fits in 8 bits. */
21566 if (addend_abs
& 0x3)
21567 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21568 _("bad offset 0x%08lX (must be word-aligned)"),
21569 (unsigned long) addend_abs
);
21571 if ((addend_abs
>> 2) > 0xff)
21572 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21573 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21574 (unsigned long) addend_abs
);
21576 /* Extract the instruction. */
21577 insn
= md_chars_to_number (buf
, INSN_SIZE
);
21579 /* If the addend is negative, clear bit 23 of the instruction.
21580 Otherwise set it. */
21582 insn
&= ~(1 << 23);
21586 /* Place the addend (divided by four) into the first eight
21587 bits of the instruction. */
21588 insn
&= 0xfffffff0;
21589 insn
|= addend_abs
>> 2;
21591 /* Update the instruction. */
21592 md_number_to_chars (buf
, insn
, INSN_SIZE
);
21596 case BFD_RELOC_ARM_V4BX
:
21597 /* This will need to go in the object file. */
21601 case BFD_RELOC_UNUSED
:
21603 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21604 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
21608 /* Translate internal representation of relocation info to BFD target
21612 tc_gen_reloc (asection
*section
, fixS
*fixp
)
21615 bfd_reloc_code_real_type code
;
21617 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
21619 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
21620 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
21621 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
21623 if (fixp
->fx_pcrel
)
21625 if (section
->use_rela_p
)
21626 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
21628 fixp
->fx_offset
= reloc
->address
;
21630 reloc
->addend
= fixp
->fx_offset
;
21632 switch (fixp
->fx_r_type
)
21635 if (fixp
->fx_pcrel
)
21637 code
= BFD_RELOC_8_PCREL
;
21642 if (fixp
->fx_pcrel
)
21644 code
= BFD_RELOC_16_PCREL
;
21649 if (fixp
->fx_pcrel
)
21651 code
= BFD_RELOC_32_PCREL
;
21655 case BFD_RELOC_ARM_MOVW
:
21656 if (fixp
->fx_pcrel
)
21658 code
= BFD_RELOC_ARM_MOVW_PCREL
;
21662 case BFD_RELOC_ARM_MOVT
:
21663 if (fixp
->fx_pcrel
)
21665 code
= BFD_RELOC_ARM_MOVT_PCREL
;
21669 case BFD_RELOC_ARM_THUMB_MOVW
:
21670 if (fixp
->fx_pcrel
)
21672 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
21676 case BFD_RELOC_ARM_THUMB_MOVT
:
21677 if (fixp
->fx_pcrel
)
21679 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
21683 case BFD_RELOC_NONE
:
21684 case BFD_RELOC_ARM_PCREL_BRANCH
:
21685 case BFD_RELOC_ARM_PCREL_BLX
:
21686 case BFD_RELOC_RVA
:
21687 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
21688 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
21689 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
21690 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
21691 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
21692 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
21693 case BFD_RELOC_VTABLE_ENTRY
:
21694 case BFD_RELOC_VTABLE_INHERIT
:
21696 case BFD_RELOC_32_SECREL
:
21698 code
= fixp
->fx_r_type
;
21701 case BFD_RELOC_THUMB_PCREL_BLX
:
21703 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
21704 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
21707 code
= BFD_RELOC_THUMB_PCREL_BLX
;
21710 case BFD_RELOC_ARM_LITERAL
:
21711 case BFD_RELOC_ARM_HWLITERAL
:
21712 /* If this is called then the a literal has
21713 been referenced across a section boundary. */
21714 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21715 _("literal referenced across section boundary"));
21719 case BFD_RELOC_ARM_TLS_CALL
:
21720 case BFD_RELOC_ARM_THM_TLS_CALL
:
21721 case BFD_RELOC_ARM_TLS_DESCSEQ
:
21722 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
21723 case BFD_RELOC_ARM_GOT32
:
21724 case BFD_RELOC_ARM_GOTOFF
:
21725 case BFD_RELOC_ARM_GOT_PREL
:
21726 case BFD_RELOC_ARM_PLT32
:
21727 case BFD_RELOC_ARM_TARGET1
:
21728 case BFD_RELOC_ARM_ROSEGREL32
:
21729 case BFD_RELOC_ARM_SBREL32
:
21730 case BFD_RELOC_ARM_PREL31
:
21731 case BFD_RELOC_ARM_TARGET2
:
21732 case BFD_RELOC_ARM_TLS_LE32
:
21733 case BFD_RELOC_ARM_TLS_LDO32
:
21734 case BFD_RELOC_ARM_PCREL_CALL
:
21735 case BFD_RELOC_ARM_PCREL_JUMP
:
21736 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
21737 case BFD_RELOC_ARM_ALU_PC_G0
:
21738 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
21739 case BFD_RELOC_ARM_ALU_PC_G1
:
21740 case BFD_RELOC_ARM_ALU_PC_G2
:
21741 case BFD_RELOC_ARM_LDR_PC_G0
:
21742 case BFD_RELOC_ARM_LDR_PC_G1
:
21743 case BFD_RELOC_ARM_LDR_PC_G2
:
21744 case BFD_RELOC_ARM_LDRS_PC_G0
:
21745 case BFD_RELOC_ARM_LDRS_PC_G1
:
21746 case BFD_RELOC_ARM_LDRS_PC_G2
:
21747 case BFD_RELOC_ARM_LDC_PC_G0
:
21748 case BFD_RELOC_ARM_LDC_PC_G1
:
21749 case BFD_RELOC_ARM_LDC_PC_G2
:
21750 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
21751 case BFD_RELOC_ARM_ALU_SB_G0
:
21752 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
21753 case BFD_RELOC_ARM_ALU_SB_G1
:
21754 case BFD_RELOC_ARM_ALU_SB_G2
:
21755 case BFD_RELOC_ARM_LDR_SB_G0
:
21756 case BFD_RELOC_ARM_LDR_SB_G1
:
21757 case BFD_RELOC_ARM_LDR_SB_G2
:
21758 case BFD_RELOC_ARM_LDRS_SB_G0
:
21759 case BFD_RELOC_ARM_LDRS_SB_G1
:
21760 case BFD_RELOC_ARM_LDRS_SB_G2
:
21761 case BFD_RELOC_ARM_LDC_SB_G0
:
21762 case BFD_RELOC_ARM_LDC_SB_G1
:
21763 case BFD_RELOC_ARM_LDC_SB_G2
:
21764 case BFD_RELOC_ARM_V4BX
:
21765 code
= fixp
->fx_r_type
;
21768 case BFD_RELOC_ARM_TLS_GOTDESC
:
21769 case BFD_RELOC_ARM_TLS_GD32
:
21770 case BFD_RELOC_ARM_TLS_IE32
:
21771 case BFD_RELOC_ARM_TLS_LDM32
:
21772 /* BFD will include the symbol's address in the addend.
21773 But we don't want that, so subtract it out again here. */
21774 if (!S_IS_COMMON (fixp
->fx_addsy
))
21775 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
21776 code
= fixp
->fx_r_type
;
21780 case BFD_RELOC_ARM_IMMEDIATE
:
21781 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21782 _("internal relocation (type: IMMEDIATE) not fixed up"));
21785 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
21786 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21787 _("ADRL used for a symbol not defined in the same file"));
21790 case BFD_RELOC_ARM_OFFSET_IMM
:
21791 if (section
->use_rela_p
)
21793 code
= fixp
->fx_r_type
;
21797 if (fixp
->fx_addsy
!= NULL
21798 && !S_IS_DEFINED (fixp
->fx_addsy
)
21799 && S_IS_LOCAL (fixp
->fx_addsy
))
21801 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21802 _("undefined local label `%s'"),
21803 S_GET_NAME (fixp
->fx_addsy
));
21807 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21808 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21815 switch (fixp
->fx_r_type
)
21817 case BFD_RELOC_NONE
: type
= "NONE"; break;
21818 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
21819 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
21820 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
21821 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
21822 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
21823 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
21824 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
21825 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
21826 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
21827 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
21828 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
21829 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
21830 default: type
= _("<unknown>"); break;
21832 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21833 _("cannot represent %s relocation in this object file format"),
21840 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
21842 && fixp
->fx_addsy
== GOT_symbol
)
21844 code
= BFD_RELOC_ARM_GOTPC
;
21845 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
21849 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
21851 if (reloc
->howto
== NULL
)
21853 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21854 _("cannot represent %s relocation in this object file format"),
21855 bfd_get_reloc_code_name (code
));
21859 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21860 vtable entry to be used in the relocation's section offset. */
21861 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
21862 reloc
->address
= fixp
->fx_offset
;
21867 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21870 cons_fix_new_arm (fragS
* frag
,
21875 bfd_reloc_code_real_type type
;
21879 FIXME: @@ Should look at CPU word size. */
21883 type
= BFD_RELOC_8
;
21886 type
= BFD_RELOC_16
;
21890 type
= BFD_RELOC_32
;
21893 type
= BFD_RELOC_64
;
21898 if (exp
->X_op
== O_secrel
)
21900 exp
->X_op
= O_symbol
;
21901 type
= BFD_RELOC_32_SECREL
;
21905 fix_new_exp (frag
, where
, (int) size
, exp
, pcrel
, type
);
21908 #if defined (OBJ_COFF)
21910 arm_validate_fix (fixS
* fixP
)
21912 /* If the destination of the branch is a defined symbol which does not have
21913 the THUMB_FUNC attribute, then we must be calling a function which has
21914 the (interfacearm) attribute. We look for the Thumb entry point to that
21915 function and change the branch to refer to that function instead. */
21916 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
21917 && fixP
->fx_addsy
!= NULL
21918 && S_IS_DEFINED (fixP
->fx_addsy
)
21919 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
21921 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
21928 arm_force_relocation (struct fix
* fixp
)
21930 #if defined (OBJ_COFF) && defined (TE_PE)
21931 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
21935 /* In case we have a call or a branch to a function in ARM ISA mode from
21936 a thumb function or vice-versa force the relocation. These relocations
21937 are cleared off for some cores that might have blx and simple transformations
21941 switch (fixp
->fx_r_type
)
21943 case BFD_RELOC_ARM_PCREL_JUMP
:
21944 case BFD_RELOC_ARM_PCREL_CALL
:
21945 case BFD_RELOC_THUMB_PCREL_BLX
:
21946 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
21950 case BFD_RELOC_ARM_PCREL_BLX
:
21951 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
21952 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
21953 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
21954 if (ARM_IS_FUNC (fixp
->fx_addsy
))
21963 /* Resolve these relocations even if the symbol is extern or weak.
21964 Technically this is probably wrong due to symbol preemption.
21965 In practice these relocations do not have enough range to be useful
21966 at dynamic link time, and some code (e.g. in the Linux kernel)
21967 expects these references to be resolved. */
21968 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
21969 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
21970 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
21971 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
21972 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
21973 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
21974 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
21975 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
21976 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
21977 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
21978 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
21979 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
21980 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
21981 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
21984 /* Always leave these relocations for the linker. */
21985 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
21986 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
21987 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
21990 /* Always generate relocations against function symbols. */
21991 if (fixp
->fx_r_type
== BFD_RELOC_32
21993 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
21996 return generic_force_reloc (fixp
);
21999 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22000 /* Relocations against function names must be left unadjusted,
22001 so that the linker can use this information to generate interworking
22002 stubs. The MIPS version of this function
22003 also prevents relocations that are mips-16 specific, but I do not
22004 know why it does this.
22007 There is one other problem that ought to be addressed here, but
22008 which currently is not: Taking the address of a label (rather
22009 than a function) and then later jumping to that address. Such
22010 addresses also ought to have their bottom bit set (assuming that
22011 they reside in Thumb code), but at the moment they will not. */
22014 arm_fix_adjustable (fixS
* fixP
)
22016 if (fixP
->fx_addsy
== NULL
)
22019 /* Preserve relocations against symbols with function type. */
22020 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
22023 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
22024 && fixP
->fx_subsy
== NULL
)
22027 /* We need the symbol name for the VTABLE entries. */
22028 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
22029 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
22032 /* Don't allow symbols to be discarded on GOT related relocs. */
22033 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
22034 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
22035 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
22036 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
22037 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
22038 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
22039 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
22040 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
22041 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
22042 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
22043 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
22044 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
22045 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
22046 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
22049 /* Similarly for group relocations. */
22050 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
22051 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
22052 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
22055 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22056 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
22057 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
22058 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
22059 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
22060 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
22061 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
22062 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
22063 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
22068 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22073 elf32_arm_target_format (void)
22076 return (target_big_endian
22077 ? "elf32-bigarm-symbian"
22078 : "elf32-littlearm-symbian");
22079 #elif defined (TE_VXWORKS)
22080 return (target_big_endian
22081 ? "elf32-bigarm-vxworks"
22082 : "elf32-littlearm-vxworks");
22084 if (target_big_endian
)
22085 return "elf32-bigarm";
22087 return "elf32-littlearm";
22092 armelf_frob_symbol (symbolS
* symp
,
22095 elf_frob_symbol (symp
, puntp
);
22099 /* MD interface: Finalization. */
22104 literal_pool
* pool
;
22106 /* Ensure that all the IT blocks are properly closed. */
22107 check_it_blocks_finished ();
22109 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
22111 /* Put it at the end of the relevant section. */
22112 subseg_set (pool
->section
, pool
->sub_section
);
22114 arm_elf_change_section ();
22121 /* Remove any excess mapping symbols generated for alignment frags in
22122 SEC. We may have created a mapping symbol before a zero byte
22123 alignment; remove it if there's a mapping symbol after the
22126 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
22127 void *dummy ATTRIBUTE_UNUSED
)
22129 segment_info_type
*seginfo
= seg_info (sec
);
22132 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
22135 for (fragp
= seginfo
->frchainP
->frch_root
;
22137 fragp
= fragp
->fr_next
)
22139 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
22140 fragS
*next
= fragp
->fr_next
;
22142 /* Variable-sized frags have been converted to fixed size by
22143 this point. But if this was variable-sized to start with,
22144 there will be a fixed-size frag after it. So don't handle
22146 if (sym
== NULL
|| next
== NULL
)
22149 if (S_GET_VALUE (sym
) < next
->fr_address
)
22150 /* Not at the end of this frag. */
22152 know (S_GET_VALUE (sym
) == next
->fr_address
);
22156 if (next
->tc_frag_data
.first_map
!= NULL
)
22158 /* Next frag starts with a mapping symbol. Discard this
22160 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
22164 if (next
->fr_next
== NULL
)
22166 /* This mapping symbol is at the end of the section. Discard
22168 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
22169 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
22173 /* As long as we have empty frags without any mapping symbols,
22175 /* If the next frag is non-empty and does not start with a
22176 mapping symbol, then this mapping symbol is required. */
22177 if (next
->fr_address
!= next
->fr_next
->fr_address
)
22180 next
= next
->fr_next
;
22182 while (next
!= NULL
);
22187 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22191 arm_adjust_symtab (void)
22196 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
22198 if (ARM_IS_THUMB (sym
))
22200 if (THUMB_IS_FUNC (sym
))
22202 /* Mark the symbol as a Thumb function. */
22203 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
22204 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
22205 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
22207 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
22208 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
22210 as_bad (_("%s: unexpected function type: %d"),
22211 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
22213 else switch (S_GET_STORAGE_CLASS (sym
))
22216 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
22219 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
22222 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
22230 if (ARM_IS_INTERWORK (sym
))
22231 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
22238 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
22240 if (ARM_IS_THUMB (sym
))
22242 elf_symbol_type
* elf_sym
;
22244 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
22245 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
22247 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
22248 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
22250 /* If it's a .thumb_func, declare it as so,
22251 otherwise tag label as .code 16. */
22252 if (THUMB_IS_FUNC (sym
))
22253 elf_sym
->internal_elf_sym
.st_target_internal
22254 = ST_BRANCH_TO_THUMB
;
22255 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
22256 elf_sym
->internal_elf_sym
.st_info
=
22257 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
22262 /* Remove any overlapping mapping symbols generated by alignment frags. */
22263 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
22264 /* Now do generic ELF adjustments. */
22265 elf_adjust_symtab ();
22269 /* MD interface: Initialization. */
22272 set_constant_flonums (void)
22276 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
22277 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
22281 /* Auto-select Thumb mode if it's the only available instruction set for the
22282 given architecture. */
22285 autoselect_thumb_from_cpu_variant (void)
22287 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
22288 opcode_select (16);
22297 if ( (arm_ops_hsh
= hash_new ()) == NULL
22298 || (arm_cond_hsh
= hash_new ()) == NULL
22299 || (arm_shift_hsh
= hash_new ()) == NULL
22300 || (arm_psr_hsh
= hash_new ()) == NULL
22301 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
22302 || (arm_reg_hsh
= hash_new ()) == NULL
22303 || (arm_reloc_hsh
= hash_new ()) == NULL
22304 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
22305 as_fatal (_("virtual memory exhausted"));
22307 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
22308 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
22309 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
22310 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
22311 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
22312 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
22313 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
22314 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
22315 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
22316 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
22317 (void *) (v7m_psrs
+ i
));
22318 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
22319 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
22321 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
22323 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
22324 (void *) (barrier_opt_names
+ i
));
22326 for (i
= 0; i
< sizeof (reloc_names
) / sizeof (struct reloc_entry
); i
++)
22327 hash_insert (arm_reloc_hsh
, reloc_names
[i
].name
, (void *) (reloc_names
+ i
));
22330 set_constant_flonums ();
22332 /* Set the cpu variant based on the command-line options. We prefer
22333 -mcpu= over -march= if both are set (as for GCC); and we prefer
22334 -mfpu= over any other way of setting the floating point unit.
22335 Use of legacy options with new options are faulted. */
22338 if (mcpu_cpu_opt
|| march_cpu_opt
)
22339 as_bad (_("use of old and new-style options to set CPU type"));
22341 mcpu_cpu_opt
= legacy_cpu
;
22343 else if (!mcpu_cpu_opt
)
22344 mcpu_cpu_opt
= march_cpu_opt
;
22349 as_bad (_("use of old and new-style options to set FPU type"));
22351 mfpu_opt
= legacy_fpu
;
22353 else if (!mfpu_opt
)
22355 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22356 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22357 /* Some environments specify a default FPU. If they don't, infer it
22358 from the processor. */
22360 mfpu_opt
= mcpu_fpu_opt
;
22362 mfpu_opt
= march_fpu_opt
;
22364 mfpu_opt
= &fpu_default
;
22370 if (mcpu_cpu_opt
!= NULL
)
22371 mfpu_opt
= &fpu_default
;
22372 else if (mcpu_fpu_opt
!= NULL
&& ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt
, arm_ext_v5
))
22373 mfpu_opt
= &fpu_arch_vfp_v2
;
22375 mfpu_opt
= &fpu_arch_fpa
;
22381 mcpu_cpu_opt
= &cpu_default
;
22382 selected_cpu
= cpu_default
;
22386 selected_cpu
= *mcpu_cpu_opt
;
22388 mcpu_cpu_opt
= &arm_arch_any
;
22391 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
22393 autoselect_thumb_from_cpu_variant ();
22395 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
22397 #if defined OBJ_COFF || defined OBJ_ELF
22399 unsigned int flags
= 0;
22401 #if defined OBJ_ELF
22402 flags
= meabi_flags
;
22404 switch (meabi_flags
)
22406 case EF_ARM_EABI_UNKNOWN
:
22408 /* Set the flags in the private structure. */
22409 if (uses_apcs_26
) flags
|= F_APCS26
;
22410 if (support_interwork
) flags
|= F_INTERWORK
;
22411 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
22412 if (pic_code
) flags
|= F_PIC
;
22413 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
22414 flags
|= F_SOFT_FLOAT
;
22416 switch (mfloat_abi_opt
)
22418 case ARM_FLOAT_ABI_SOFT
:
22419 case ARM_FLOAT_ABI_SOFTFP
:
22420 flags
|= F_SOFT_FLOAT
;
22423 case ARM_FLOAT_ABI_HARD
:
22424 if (flags
& F_SOFT_FLOAT
)
22425 as_bad (_("hard-float conflicts with specified fpu"));
22429 /* Using pure-endian doubles (even if soft-float). */
22430 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
22431 flags
|= F_VFP_FLOAT
;
22433 #if defined OBJ_ELF
22434 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
22435 flags
|= EF_ARM_MAVERICK_FLOAT
;
22438 case EF_ARM_EABI_VER4
:
22439 case EF_ARM_EABI_VER5
:
22440 /* No additional flags to set. */
22447 bfd_set_private_flags (stdoutput
, flags
);
22449 /* We have run out flags in the COFF header to encode the
22450 status of ATPCS support, so instead we create a dummy,
22451 empty, debug section called .arm.atpcs. */
22456 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
22460 bfd_set_section_flags
22461 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
22462 bfd_set_section_size (stdoutput
, sec
, 0);
22463 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
22469 /* Record the CPU type as well. */
22470 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
22471 mach
= bfd_mach_arm_iWMMXt2
;
22472 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
22473 mach
= bfd_mach_arm_iWMMXt
;
22474 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
22475 mach
= bfd_mach_arm_XScale
;
22476 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
22477 mach
= bfd_mach_arm_ep9312
;
22478 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
22479 mach
= bfd_mach_arm_5TE
;
22480 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
22482 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
22483 mach
= bfd_mach_arm_5T
;
22485 mach
= bfd_mach_arm_5
;
22487 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
22489 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
22490 mach
= bfd_mach_arm_4T
;
22492 mach
= bfd_mach_arm_4
;
22494 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
22495 mach
= bfd_mach_arm_3M
;
22496 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
22497 mach
= bfd_mach_arm_3
;
22498 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
22499 mach
= bfd_mach_arm_2a
;
22500 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
22501 mach
= bfd_mach_arm_2
;
22503 mach
= bfd_mach_arm_unknown
;
22505 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
22508 /* Command line processing. */
22511 Invocation line includes a switch not recognized by the base assembler.
22512 See if it's a processor-specific option.
22514 This routine is somewhat complicated by the need for backwards
22515 compatibility (since older releases of gcc can't be changed).
22516 The new options try to make the interface as compatible as
22519 New options (supported) are:
22521 -mcpu=<cpu name> Assemble for selected processor
22522 -march=<architecture name> Assemble for selected architecture
22523 -mfpu=<fpu architecture> Assemble for selected FPU.
22524 -EB/-mbig-endian Big-endian
22525 -EL/-mlittle-endian Little-endian
22526 -k Generate PIC code
22527 -mthumb Start in Thumb mode
22528 -mthumb-interwork Code supports ARM/Thumb interworking
22530 -m[no-]warn-deprecated Warn about deprecated features
22532 For now we will also provide support for:
22534 -mapcs-32 32-bit Program counter
22535 -mapcs-26 26-bit Program counter
22536 -macps-float Floats passed in FP registers
22537 -mapcs-reentrant Reentrant code
22539 (sometime these will probably be replaced with -mapcs=<list of options>
22540 and -matpcs=<list of options>)
22542 The remaining options are only supported for back-wards compatibility.
22543 Cpu variants, the arm part is optional:
22544 -m[arm]1 Currently not supported.
22545 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22546 -m[arm]3 Arm 3 processor
22547 -m[arm]6[xx], Arm 6 processors
22548 -m[arm]7[xx][t][[d]m] Arm 7 processors
22549 -m[arm]8[10] Arm 8 processors
22550 -m[arm]9[20][tdmi] Arm 9 processors
22551 -mstrongarm[110[0]] StrongARM processors
22552 -mxscale XScale processors
22553 -m[arm]v[2345[t[e]]] Arm architectures
22554 -mall All (except the ARM1)
22556 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22557 -mfpe-old (No float load/store multiples)
22558 -mvfpxd VFP Single precision
22560 -mno-fpu Disable all floating point instructions
22562 The following CPU names are recognized:
22563 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22564 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22565 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22566 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22567 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22568 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22569 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22573 const char * md_shortopts
= "m:k";
22575 #ifdef ARM_BI_ENDIAN
22576 #define OPTION_EB (OPTION_MD_BASE + 0)
22577 #define OPTION_EL (OPTION_MD_BASE + 1)
22579 #if TARGET_BYTES_BIG_ENDIAN
22580 #define OPTION_EB (OPTION_MD_BASE + 0)
22582 #define OPTION_EL (OPTION_MD_BASE + 1)
22585 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22587 struct option md_longopts
[] =
22590 {"EB", no_argument
, NULL
, OPTION_EB
},
22593 {"EL", no_argument
, NULL
, OPTION_EL
},
22595 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
22596 {NULL
, no_argument
, NULL
, 0}
22599 size_t md_longopts_size
= sizeof (md_longopts
);
22601 struct arm_option_table
22603 char *option
; /* Option name to match. */
22604 char *help
; /* Help information. */
22605 int *var
; /* Variable to change. */
22606 int value
; /* What to change it to. */
22607 char *deprecated
; /* If non-null, print this message. */
22610 struct arm_option_table arm_opts
[] =
22612 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
22613 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
22614 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22615 &support_interwork
, 1, NULL
},
22616 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
22617 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
22618 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
22620 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
22621 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
22622 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
22623 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
22626 /* These are recognized by the assembler, but have no affect on code. */
22627 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
22628 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
22630 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
22631 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22632 &warn_on_deprecated
, 0, NULL
},
22633 {NULL
, NULL
, NULL
, 0, NULL
}
22636 struct arm_legacy_option_table
22638 char *option
; /* Option name to match. */
22639 const arm_feature_set
**var
; /* Variable to change. */
22640 const arm_feature_set value
; /* What to change it to. */
22641 char *deprecated
; /* If non-null, print this message. */
22644 const struct arm_legacy_option_table arm_legacy_opts
[] =
22646 /* DON'T add any new processors to this list -- we want the whole list
22647 to go away... Add them to the processors table instead. */
22648 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
22649 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
22650 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
22651 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
22652 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
22653 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
22654 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
22655 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
22656 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
22657 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
22658 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
22659 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
22660 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
22661 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
22662 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
22663 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
22664 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
22665 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
22666 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
22667 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
22668 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
22669 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
22670 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
22671 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
22672 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
22673 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
22674 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
22675 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
22676 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
22677 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
22678 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
22679 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
22680 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
22681 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
22682 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
22683 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
22684 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
22685 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
22686 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
22687 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
22688 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
22689 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
22690 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
22691 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
22692 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
22693 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
22694 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22695 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22696 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22697 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22698 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
22699 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
22700 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
22701 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
22702 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
22703 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
22704 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
22705 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
22706 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
22707 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
22708 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
22709 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
22710 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
22711 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
22712 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
22713 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
22714 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
22715 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
22716 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
22717 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
22718 N_("use -mcpu=strongarm110")},
22719 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
22720 N_("use -mcpu=strongarm1100")},
22721 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
22722 N_("use -mcpu=strongarm1110")},
22723 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
22724 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
22725 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
22727 /* Architecture variants -- don't add any more to this list either. */
22728 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
22729 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
22730 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
22731 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
22732 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
22733 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
22734 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
22735 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
22736 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
22737 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
22738 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
22739 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
22740 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
22741 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
22742 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
22743 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
22744 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
22745 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
22747 /* Floating point variants -- don't add any more to this list either. */
22748 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
22749 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
22750 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
22751 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
22752 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22754 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
22757 struct arm_cpu_option_table
22760 const arm_feature_set value
;
22761 /* For some CPUs we assume an FPU unless the user explicitly sets
22763 const arm_feature_set default_fpu
;
22764 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22766 const char *canonical_name
;
22769 /* This list should, at a minimum, contain all the cpu names
22770 recognized by GCC. */
22771 static const struct arm_cpu_option_table arm_cpus
[] =
22773 {"all", ARM_ANY
, FPU_ARCH_FPA
, NULL
},
22774 {"arm1", ARM_ARCH_V1
, FPU_ARCH_FPA
, NULL
},
22775 {"arm2", ARM_ARCH_V2
, FPU_ARCH_FPA
, NULL
},
22776 {"arm250", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
22777 {"arm3", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
22778 {"arm6", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22779 {"arm60", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22780 {"arm600", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22781 {"arm610", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22782 {"arm620", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22783 {"arm7", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22784 {"arm7m", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
22785 {"arm7d", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22786 {"arm7dm", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
22787 {"arm7di", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22788 {"arm7dmi", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
22789 {"arm70", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22790 {"arm700", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22791 {"arm700i", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22792 {"arm710", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22793 {"arm710t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22794 {"arm720", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22795 {"arm720t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22796 {"arm740t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22797 {"arm710c", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22798 {"arm7100", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22799 {"arm7500", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22800 {"arm7500fe", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22801 {"arm7t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22802 {"arm7tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22803 {"arm7tdmi-s", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22804 {"arm8", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22805 {"arm810", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22806 {"strongarm", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22807 {"strongarm1", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22808 {"strongarm110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22809 {"strongarm1100", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22810 {"strongarm1110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22811 {"arm9", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22812 {"arm920", ARM_ARCH_V4T
, FPU_ARCH_FPA
, "ARM920T"},
22813 {"arm920t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22814 {"arm922t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22815 {"arm940t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22816 {"arm9tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22817 {"fa526", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22818 {"fa626", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22819 /* For V5 or later processors we default to using VFP; but the user
22820 should really set the FPU type explicitly. */
22821 {"arm9e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
22822 {"arm9e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22823 {"arm926ej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
22824 {"arm926ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
22825 {"arm926ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
22826 {"arm946e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
22827 {"arm946e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM946E-S"},
22828 {"arm946e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22829 {"arm966e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
22830 {"arm966e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM966E-S"},
22831 {"arm966e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22832 {"arm968e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22833 {"arm10t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
22834 {"arm10tdmi", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
22835 {"arm10e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22836 {"arm1020", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM1020E"},
22837 {"arm1020t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
22838 {"arm1020e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22839 {"arm1022e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22840 {"arm1026ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM1026EJ-S"},
22841 {"arm1026ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
22842 {"fa606te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22843 {"fa616te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22844 {"fa626te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22845 {"fmp626", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22846 {"fa726te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22847 {"arm1136js", ARM_ARCH_V6
, FPU_NONE
, "ARM1136J-S"},
22848 {"arm1136j-s", ARM_ARCH_V6
, FPU_NONE
, NULL
},
22849 {"arm1136jfs", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, "ARM1136JF-S"},
22850 {"arm1136jf-s", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, NULL
},
22851 {"mpcore", ARM_ARCH_V6K
, FPU_ARCH_VFP_V2
, "MPCore"},
22852 {"mpcorenovfp", ARM_ARCH_V6K
, FPU_NONE
, "MPCore"},
22853 {"arm1156t2-s", ARM_ARCH_V6T2
, FPU_NONE
, NULL
},
22854 {"arm1156t2f-s", ARM_ARCH_V6T2
, FPU_ARCH_VFP_V2
, NULL
},
22855 {"arm1176jz-s", ARM_ARCH_V6ZK
, FPU_NONE
, NULL
},
22856 {"arm1176jzf-s", ARM_ARCH_V6ZK
, FPU_ARCH_VFP_V2
, NULL
},
22857 {"cortex-a5", ARM_ARCH_V7A_MP_SEC
,
22858 FPU_NONE
, "Cortex-A5"},
22859 {"cortex-a8", ARM_ARCH_V7A_SEC
,
22860 ARM_FEATURE (0, FPU_VFP_V3
22861 | FPU_NEON_EXT_V1
),
22863 {"cortex-a9", ARM_ARCH_V7A_MP_SEC
,
22864 ARM_FEATURE (0, FPU_VFP_V3
22865 | FPU_NEON_EXT_V1
),
22867 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT
,
22868 FPU_ARCH_NEON_VFP_V4
,
22870 {"cortex-r4", ARM_ARCH_V7R
, FPU_NONE
, "Cortex-R4"},
22871 {"cortex-r4f", ARM_ARCH_V7R
, FPU_ARCH_VFP_V3D16
,
22873 {"cortex-r5", ARM_ARCH_V7R_IDIV
,
22874 FPU_NONE
, "Cortex-R5"},
22875 {"cortex-m4", ARM_ARCH_V7EM
, FPU_NONE
, "Cortex-M4"},
22876 {"cortex-m3", ARM_ARCH_V7M
, FPU_NONE
, "Cortex-M3"},
22877 {"cortex-m1", ARM_ARCH_V6SM
, FPU_NONE
, "Cortex-M1"},
22878 {"cortex-m0", ARM_ARCH_V6SM
, FPU_NONE
, "Cortex-M0"},
22879 /* ??? XSCALE is really an architecture. */
22880 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
22881 /* ??? iwmmxt is not a processor. */
22882 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP_V2
, NULL
},
22883 {"iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP_V2
, NULL
},
22884 {"i80200", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
22886 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
), FPU_ARCH_MAVERICK
, "ARM920T"},
22887 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
22890 struct arm_arch_option_table
22893 const arm_feature_set value
;
22894 const arm_feature_set default_fpu
;
22897 /* This list should, at a minimum, contain all the architecture names
22898 recognized by GCC. */
22899 static const struct arm_arch_option_table arm_archs
[] =
22901 {"all", ARM_ANY
, FPU_ARCH_FPA
},
22902 {"armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
},
22903 {"armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
},
22904 {"armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
22905 {"armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
22906 {"armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
},
22907 {"armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
},
22908 {"armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
},
22909 {"armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
},
22910 {"armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
},
22911 {"armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
},
22912 {"armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
},
22913 {"armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
},
22914 {"armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
},
22915 {"armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
},
22916 {"armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
},
22917 {"armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
},
22918 {"armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
},
22919 {"armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
},
22920 {"armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
},
22921 {"armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
},
22922 {"armv6zk", ARM_ARCH_V6ZK
, FPU_ARCH_VFP
},
22923 {"armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
},
22924 {"armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
},
22925 {"armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
},
22926 {"armv6zkt2", ARM_ARCH_V6ZKT2
, FPU_ARCH_VFP
},
22927 {"armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
},
22928 {"armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
},
22929 {"armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
},
22930 /* The official spelling of the ARMv7 profile variants is the dashed form.
22931 Accept the non-dashed form for compatibility with old toolchains. */
22932 {"armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
22933 {"armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
22934 {"armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
22935 {"armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
22936 {"armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
22937 {"armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
22938 {"armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
},
22939 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
},
22940 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
},
22941 {"iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP
},
22942 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
22945 /* ISA extensions in the co-processor and main instruction set space. */
22946 struct arm_option_extension_value_table
22949 const arm_feature_set value
;
22950 const arm_feature_set allowed_archs
;
22953 /* The following table must be in alphabetical order with a NULL last entry.
22955 static const struct arm_option_extension_value_table arm_extensions
[] =
22957 {"idiv", ARM_FEATURE (ARM_EXT_ADIV
| ARM_EXT_DIV
, 0),
22958 ARM_FEATURE (ARM_EXT_V7A
| ARM_EXT_V7R
, 0)},
22959 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT
), ARM_ANY
},
22960 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2
), ARM_ANY
},
22961 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK
), ARM_ANY
},
22962 {"mp", ARM_FEATURE (ARM_EXT_MP
, 0),
22963 ARM_FEATURE (ARM_EXT_V7A
| ARM_EXT_V7R
, 0)},
22964 {"os", ARM_FEATURE (ARM_EXT_OS
, 0),
22965 ARM_FEATURE (ARM_EXT_V6M
, 0)},
22966 {"sec", ARM_FEATURE (ARM_EXT_SEC
, 0),
22967 ARM_FEATURE (ARM_EXT_V6K
| ARM_EXT_V7A
, 0)},
22968 {"virt", ARM_FEATURE (ARM_EXT_VIRT
| ARM_EXT_ADIV
| ARM_EXT_DIV
, 0),
22969 ARM_FEATURE (ARM_EXT_V7A
, 0)},
22970 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE
), ARM_ANY
},
22971 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
22974 /* ISA floating-point and Advanced SIMD extensions. */
22975 struct arm_option_fpu_value_table
22978 const arm_feature_set value
;
22981 /* This list should, at a minimum, contain all the fpu names
22982 recognized by GCC. */
22983 static const struct arm_option_fpu_value_table arm_fpus
[] =
22985 {"softfpa", FPU_NONE
},
22986 {"fpe", FPU_ARCH_FPE
},
22987 {"fpe2", FPU_ARCH_FPE
},
22988 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
22989 {"fpa", FPU_ARCH_FPA
},
22990 {"fpa10", FPU_ARCH_FPA
},
22991 {"fpa11", FPU_ARCH_FPA
},
22992 {"arm7500fe", FPU_ARCH_FPA
},
22993 {"softvfp", FPU_ARCH_VFP
},
22994 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
22995 {"vfp", FPU_ARCH_VFP_V2
},
22996 {"vfp9", FPU_ARCH_VFP_V2
},
22997 {"vfp3", FPU_ARCH_VFP_V3
}, /* For backwards compatbility. */
22998 {"vfp10", FPU_ARCH_VFP_V2
},
22999 {"vfp10-r0", FPU_ARCH_VFP_V1
},
23000 {"vfpxd", FPU_ARCH_VFP_V1xD
},
23001 {"vfpv2", FPU_ARCH_VFP_V2
},
23002 {"vfpv3", FPU_ARCH_VFP_V3
},
23003 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
23004 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
23005 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
23006 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
23007 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
23008 {"arm1020t", FPU_ARCH_VFP_V1
},
23009 {"arm1020e", FPU_ARCH_VFP_V2
},
23010 {"arm1136jfs", FPU_ARCH_VFP_V2
},
23011 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
23012 {"maverick", FPU_ARCH_MAVERICK
},
23013 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
23014 {"neon-fp16", FPU_ARCH_NEON_FP16
},
23015 {"vfpv4", FPU_ARCH_VFP_V4
},
23016 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
23017 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
23018 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
23019 {NULL
, ARM_ARCH_NONE
}
23022 struct arm_option_value_table
23028 static const struct arm_option_value_table arm_float_abis
[] =
23030 {"hard", ARM_FLOAT_ABI_HARD
},
23031 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
23032 {"soft", ARM_FLOAT_ABI_SOFT
},
23037 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23038 static const struct arm_option_value_table arm_eabis
[] =
23040 {"gnu", EF_ARM_EABI_UNKNOWN
},
23041 {"4", EF_ARM_EABI_VER4
},
23042 {"5", EF_ARM_EABI_VER5
},
23047 struct arm_long_option_table
23049 char * option
; /* Substring to match. */
23050 char * help
; /* Help information. */
23051 int (* func
) (char * subopt
); /* Function to decode sub-option. */
23052 char * deprecated
; /* If non-null, print this message. */
23056 arm_parse_extension (char * str
, const arm_feature_set
**opt_p
)
23058 arm_feature_set
*ext_set
= (arm_feature_set
*)
23059 xmalloc (sizeof (arm_feature_set
));
23061 /* We insist on extensions being specified in alphabetical order, and with
23062 extensions being added before being removed. We achieve this by having
23063 the global ARM_EXTENSIONS table in alphabetical order, and using the
23064 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23065 or removing it (0) and only allowing it to change in the order
23067 const struct arm_option_extension_value_table
* opt
= NULL
;
23068 int adding_value
= -1;
23070 /* Copy the feature set, so that we can modify it. */
23071 *ext_set
= **opt_p
;
23074 while (str
!= NULL
&& *str
!= 0)
23081 as_bad (_("invalid architectural extension"));
23086 ext
= strchr (str
, '+');
23089 optlen
= ext
- str
;
23091 optlen
= strlen (str
);
23094 && strncmp (str
, "no", 2) == 0)
23096 if (adding_value
!= 0)
23099 opt
= arm_extensions
;
23105 else if (optlen
> 0)
23107 if (adding_value
== -1)
23110 opt
= arm_extensions
;
23112 else if (adding_value
!= 1)
23114 as_bad (_("must specify extensions to add before specifying "
23115 "those to remove"));
23122 as_bad (_("missing architectural extension"));
23126 gas_assert (adding_value
!= -1);
23127 gas_assert (opt
!= NULL
);
23129 /* Scan over the options table trying to find an exact match. */
23130 for (; opt
->name
!= NULL
; opt
++)
23131 if (strncmp (opt
->name
, str
, optlen
) == 0
23132 && strlen (opt
->name
) == optlen
)
23134 /* Check we can apply the extension to this architecture. */
23135 if (!ARM_CPU_HAS_FEATURE (*ext_set
, opt
->allowed_archs
))
23137 as_bad (_("extension does not apply to the base architecture"));
23141 /* Add or remove the extension. */
23143 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->value
);
23145 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->value
);
23150 if (opt
->name
== NULL
)
23152 /* Did we fail to find an extension because it wasn't specified in
23153 alphabetical order, or because it does not exist? */
23155 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
23156 if (strncmp (opt
->name
, str
, optlen
) == 0)
23159 if (opt
->name
== NULL
)
23160 as_bad (_("unknown architectural extension `%s'"), str
);
23162 as_bad (_("architectural extensions must be specified in "
23163 "alphabetical order"));
23169 /* We should skip the extension we've just matched the next time
23181 arm_parse_cpu (char * str
)
23183 const struct arm_cpu_option_table
* opt
;
23184 char * ext
= strchr (str
, '+');
23188 optlen
= ext
- str
;
23190 optlen
= strlen (str
);
23194 as_bad (_("missing cpu name `%s'"), str
);
23198 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
23199 if (strncmp (opt
->name
, str
, optlen
) == 0)
23201 mcpu_cpu_opt
= &opt
->value
;
23202 mcpu_fpu_opt
= &opt
->default_fpu
;
23203 if (opt
->canonical_name
)
23204 strcpy (selected_cpu_name
, opt
->canonical_name
);
23209 for (i
= 0; i
< optlen
; i
++)
23210 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
23211 selected_cpu_name
[i
] = 0;
23215 return arm_parse_extension (ext
, &mcpu_cpu_opt
);
23220 as_bad (_("unknown cpu `%s'"), str
);
23225 arm_parse_arch (char * str
)
23227 const struct arm_arch_option_table
*opt
;
23228 char *ext
= strchr (str
, '+');
23232 optlen
= ext
- str
;
23234 optlen
= strlen (str
);
23238 as_bad (_("missing architecture name `%s'"), str
);
23242 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
23243 if (strncmp (opt
->name
, str
, optlen
) == 0)
23245 march_cpu_opt
= &opt
->value
;
23246 march_fpu_opt
= &opt
->default_fpu
;
23247 strcpy (selected_cpu_name
, opt
->name
);
23250 return arm_parse_extension (ext
, &march_cpu_opt
);
23255 as_bad (_("unknown architecture `%s'\n"), str
);
23260 arm_parse_fpu (char * str
)
23262 const struct arm_option_fpu_value_table
* opt
;
23264 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
23265 if (streq (opt
->name
, str
))
23267 mfpu_opt
= &opt
->value
;
23271 as_bad (_("unknown floating point format `%s'\n"), str
);
23276 arm_parse_float_abi (char * str
)
23278 const struct arm_option_value_table
* opt
;
23280 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
23281 if (streq (opt
->name
, str
))
23283 mfloat_abi_opt
= opt
->value
;
23287 as_bad (_("unknown floating point abi `%s'\n"), str
);
23293 arm_parse_eabi (char * str
)
23295 const struct arm_option_value_table
*opt
;
23297 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
23298 if (streq (opt
->name
, str
))
23300 meabi_flags
= opt
->value
;
23303 as_bad (_("unknown EABI `%s'\n"), str
);
23309 arm_parse_it_mode (char * str
)
23311 bfd_boolean ret
= TRUE
;
23313 if (streq ("arm", str
))
23314 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
23315 else if (streq ("thumb", str
))
23316 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
23317 else if (streq ("always", str
))
23318 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
23319 else if (streq ("never", str
))
23320 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
23323 as_bad (_("unknown implicit IT mode `%s', should be "\
23324 "arm, thumb, always, or never."), str
);
23331 struct arm_long_option_table arm_long_opts
[] =
23333 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23334 arm_parse_cpu
, NULL
},
23335 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23336 arm_parse_arch
, NULL
},
23337 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23338 arm_parse_fpu
, NULL
},
23339 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23340 arm_parse_float_abi
, NULL
},
23342 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23343 arm_parse_eabi
, NULL
},
23345 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23346 arm_parse_it_mode
, NULL
},
23347 {NULL
, NULL
, 0, NULL
}
23351 md_parse_option (int c
, char * arg
)
23353 struct arm_option_table
*opt
;
23354 const struct arm_legacy_option_table
*fopt
;
23355 struct arm_long_option_table
*lopt
;
23361 target_big_endian
= 1;
23367 target_big_endian
= 0;
23371 case OPTION_FIX_V4BX
:
23376 /* Listing option. Just ignore these, we don't support additional
23381 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
23383 if (c
== opt
->option
[0]
23384 && ((arg
== NULL
&& opt
->option
[1] == 0)
23385 || streq (arg
, opt
->option
+ 1)))
23387 /* If the option is deprecated, tell the user. */
23388 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
23389 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
23390 arg
? arg
: "", _(opt
->deprecated
));
23392 if (opt
->var
!= NULL
)
23393 *opt
->var
= opt
->value
;
23399 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
23401 if (c
== fopt
->option
[0]
23402 && ((arg
== NULL
&& fopt
->option
[1] == 0)
23403 || streq (arg
, fopt
->option
+ 1)))
23405 /* If the option is deprecated, tell the user. */
23406 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
23407 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
23408 arg
? arg
: "", _(fopt
->deprecated
));
23410 if (fopt
->var
!= NULL
)
23411 *fopt
->var
= &fopt
->value
;
23417 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
23419 /* These options are expected to have an argument. */
23420 if (c
== lopt
->option
[0]
23422 && strncmp (arg
, lopt
->option
+ 1,
23423 strlen (lopt
->option
+ 1)) == 0)
23425 /* If the option is deprecated, tell the user. */
23426 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
23427 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
23428 _(lopt
->deprecated
));
23430 /* Call the sup-option parser. */
23431 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
23442 md_show_usage (FILE * fp
)
23444 struct arm_option_table
*opt
;
23445 struct arm_long_option_table
*lopt
;
23447 fprintf (fp
, _(" ARM-specific assembler options:\n"));
23449 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
23450 if (opt
->help
!= NULL
)
23451 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
23453 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
23454 if (lopt
->help
!= NULL
)
23455 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
23459 -EB assemble code for a big-endian cpu\n"));
23464 -EL assemble code for a little-endian cpu\n"));
23468 --fix-v4bx Allow BX in ARMv4 code\n"));
23476 arm_feature_set flags
;
23477 } cpu_arch_ver_table
;
23479 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23480 least features first. */
23481 static const cpu_arch_ver_table cpu_arch_ver
[] =
23487 {4, ARM_ARCH_V5TE
},
23488 {5, ARM_ARCH_V5TEJ
},
23492 {11, ARM_ARCH_V6M
},
23493 {12, ARM_ARCH_V6SM
},
23494 {8, ARM_ARCH_V6T2
},
23495 {10, ARM_ARCH_V7A
},
23496 {10, ARM_ARCH_V7R
},
23497 {10, ARM_ARCH_V7M
},
23501 /* Set an attribute if it has not already been set by the user. */
23503 aeabi_set_attribute_int (int tag
, int value
)
23506 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
23507 || !attributes_set_explicitly
[tag
])
23508 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
23512 aeabi_set_attribute_string (int tag
, const char *value
)
23515 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
23516 || !attributes_set_explicitly
[tag
])
23517 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
23520 /* Set the public EABI object attributes. */
23522 aeabi_set_public_attributes (void)
23526 arm_feature_set flags
;
23527 arm_feature_set tmp
;
23528 const cpu_arch_ver_table
*p
;
23530 /* Choose the architecture based on the capabilities of the requested cpu
23531 (if any) and/or the instructions actually used. */
23532 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
23533 ARM_MERGE_FEATURE_SETS (flags
, flags
, *mfpu_opt
);
23534 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_cpu
);
23535 /*Allow the user to override the reported architecture. */
23538 ARM_CLEAR_FEATURE (flags
, flags
, arm_arch_any
);
23539 ARM_MERGE_FEATURE_SETS (flags
, flags
, *object_arch
);
23542 /* We need to make sure that the attributes do not identify us as v6S-M
23543 when the only v6S-M feature in use is the Operating System Extensions. */
23544 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_os
))
23545 if (!ARM_CPU_HAS_FEATURE (flags
, arm_arch_v6m_only
))
23546 ARM_CLEAR_FEATURE (flags
, flags
, arm_ext_os
);
23550 for (p
= cpu_arch_ver
; p
->val
; p
++)
23552 if (ARM_CPU_HAS_FEATURE (tmp
, p
->flags
))
23555 ARM_CLEAR_FEATURE (tmp
, tmp
, p
->flags
);
23559 /* The table lookup above finds the last architecture to contribute
23560 a new feature. Unfortunately, Tag13 is a subset of the union of
23561 v6T2 and v7-M, so it is never seen as contributing a new feature.
23562 We can not search for the last entry which is entirely used,
23563 because if no CPU is specified we build up only those flags
23564 actually used. Perhaps we should separate out the specified
23565 and implicit cases. Avoid taking this path for -march=all by
23566 checking for contradictory v7-A / v7-M features. */
23568 && !ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
)
23569 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7m
)
23570 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v6_dsp
))
23573 /* Tag_CPU_name. */
23574 if (selected_cpu_name
[0])
23578 q
= selected_cpu_name
;
23579 if (strncmp (q
, "armv", 4) == 0)
23584 for (i
= 0; q
[i
]; i
++)
23585 q
[i
] = TOUPPER (q
[i
]);
23587 aeabi_set_attribute_string (Tag_CPU_name
, q
);
23590 /* Tag_CPU_arch. */
23591 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
23593 /* Tag_CPU_arch_profile. */
23594 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
))
23595 aeabi_set_attribute_int (Tag_CPU_arch_profile
, 'A');
23596 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7r
))
23597 aeabi_set_attribute_int (Tag_CPU_arch_profile
, 'R');
23598 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_m
))
23599 aeabi_set_attribute_int (Tag_CPU_arch_profile
, 'M');
23601 /* Tag_ARM_ISA_use. */
23602 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
23604 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
23606 /* Tag_THUMB_ISA_use. */
23607 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
23609 aeabi_set_attribute_int (Tag_THUMB_ISA_use
,
23610 ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
) ? 2 : 1);
23612 /* Tag_VFP_arch. */
23613 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
23614 aeabi_set_attribute_int (Tag_VFP_arch
,
23615 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
23617 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
23618 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
23619 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
23620 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
23621 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
23622 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
23623 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
23624 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
23625 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
23627 /* Tag_ABI_HardFP_use. */
23628 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
23629 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
23630 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
23632 /* Tag_WMMX_arch. */
23633 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
23634 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
23635 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
23636 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
23638 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23639 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
23640 aeabi_set_attribute_int
23641 (Tag_Advanced_SIMD_arch
, (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
)
23644 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23645 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
))
23646 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
23649 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
))
23650 aeabi_set_attribute_int (Tag_DIV_use
, 2);
23651 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
))
23652 aeabi_set_attribute_int (Tag_DIV_use
, 0);
23654 aeabi_set_attribute_int (Tag_DIV_use
, 1);
23656 /* Tag_MP_extension_use. */
23657 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
23658 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
23660 /* Tag Virtualization_use. */
23661 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
23663 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
23666 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
23669 /* Add the default contents for the .ARM.attributes section. */
23673 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
23676 aeabi_set_public_attributes ();
23678 #endif /* OBJ_ELF */
23681 /* Parse a .cpu directive. */
23684 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
23686 const struct arm_cpu_option_table
*opt
;
23690 name
= input_line_pointer
;
23691 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
23692 input_line_pointer
++;
23693 saved_char
= *input_line_pointer
;
23694 *input_line_pointer
= 0;
23696 /* Skip the first "all" entry. */
23697 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
23698 if (streq (opt
->name
, name
))
23700 mcpu_cpu_opt
= &opt
->value
;
23701 selected_cpu
= opt
->value
;
23702 if (opt
->canonical_name
)
23703 strcpy (selected_cpu_name
, opt
->canonical_name
);
23707 for (i
= 0; opt
->name
[i
]; i
++)
23708 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
23709 selected_cpu_name
[i
] = 0;
23711 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
23712 *input_line_pointer
= saved_char
;
23713 demand_empty_rest_of_line ();
23716 as_bad (_("unknown cpu `%s'"), name
);
23717 *input_line_pointer
= saved_char
;
23718 ignore_rest_of_line ();
23722 /* Parse a .arch directive. */
23725 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
23727 const struct arm_arch_option_table
*opt
;
23731 name
= input_line_pointer
;
23732 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
23733 input_line_pointer
++;
23734 saved_char
= *input_line_pointer
;
23735 *input_line_pointer
= 0;
23737 /* Skip the first "all" entry. */
23738 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
23739 if (streq (opt
->name
, name
))
23741 mcpu_cpu_opt
= &opt
->value
;
23742 selected_cpu
= opt
->value
;
23743 strcpy (selected_cpu_name
, opt
->name
);
23744 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
23745 *input_line_pointer
= saved_char
;
23746 demand_empty_rest_of_line ();
23750 as_bad (_("unknown architecture `%s'\n"), name
);
23751 *input_line_pointer
= saved_char
;
23752 ignore_rest_of_line ();
23756 /* Parse a .object_arch directive. */
23759 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
23761 const struct arm_arch_option_table
*opt
;
23765 name
= input_line_pointer
;
23766 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
23767 input_line_pointer
++;
23768 saved_char
= *input_line_pointer
;
23769 *input_line_pointer
= 0;
23771 /* Skip the first "all" entry. */
23772 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
23773 if (streq (opt
->name
, name
))
23775 object_arch
= &opt
->value
;
23776 *input_line_pointer
= saved_char
;
23777 demand_empty_rest_of_line ();
23781 as_bad (_("unknown architecture `%s'\n"), name
);
23782 *input_line_pointer
= saved_char
;
23783 ignore_rest_of_line ();
23786 /* Parse a .arch_extension directive. */
23789 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
23791 const struct arm_option_extension_value_table
*opt
;
23794 int adding_value
= 1;
23796 name
= input_line_pointer
;
23797 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
23798 input_line_pointer
++;
23799 saved_char
= *input_line_pointer
;
23800 *input_line_pointer
= 0;
23802 if (strlen (name
) >= 2
23803 && strncmp (name
, "no", 2) == 0)
23809 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
23810 if (streq (opt
->name
, name
))
23812 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt
, opt
->allowed_archs
))
23814 as_bad (_("architectural extension `%s' is not allowed for the "
23815 "current base architecture"), name
);
23820 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_cpu
, opt
->value
);
23822 ARM_CLEAR_FEATURE (selected_cpu
, selected_cpu
, opt
->value
);
23824 mcpu_cpu_opt
= &selected_cpu
;
23825 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
23826 *input_line_pointer
= saved_char
;
23827 demand_empty_rest_of_line ();
23831 if (opt
->name
== NULL
)
23832 as_bad (_("unknown architecture `%s'\n"), name
);
23834 *input_line_pointer
= saved_char
;
23835 ignore_rest_of_line ();
23838 /* Parse a .fpu directive. */
23841 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
23843 const struct arm_option_fpu_value_table
*opt
;
23847 name
= input_line_pointer
;
23848 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
23849 input_line_pointer
++;
23850 saved_char
= *input_line_pointer
;
23851 *input_line_pointer
= 0;
23853 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
23854 if (streq (opt
->name
, name
))
23856 mfpu_opt
= &opt
->value
;
23857 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
23858 *input_line_pointer
= saved_char
;
23859 demand_empty_rest_of_line ();
23863 as_bad (_("unknown floating point format `%s'\n"), name
);
23864 *input_line_pointer
= saved_char
;
23865 ignore_rest_of_line ();
23868 /* Copy symbol information. */
23871 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
23873 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
23877 /* Given a symbolic attribute NAME, return the proper integer value.
23878 Returns -1 if the attribute is not known. */
23881 arm_convert_symbolic_attribute (const char *name
)
23883 static const struct
23888 attribute_table
[] =
23890 /* When you modify this table you should
23891 also modify the list in doc/c-arm.texi. */
23892 #define T(tag) {#tag, tag}
23893 T (Tag_CPU_raw_name
),
23896 T (Tag_CPU_arch_profile
),
23897 T (Tag_ARM_ISA_use
),
23898 T (Tag_THUMB_ISA_use
),
23902 T (Tag_Advanced_SIMD_arch
),
23903 T (Tag_PCS_config
),
23904 T (Tag_ABI_PCS_R9_use
),
23905 T (Tag_ABI_PCS_RW_data
),
23906 T (Tag_ABI_PCS_RO_data
),
23907 T (Tag_ABI_PCS_GOT_use
),
23908 T (Tag_ABI_PCS_wchar_t
),
23909 T (Tag_ABI_FP_rounding
),
23910 T (Tag_ABI_FP_denormal
),
23911 T (Tag_ABI_FP_exceptions
),
23912 T (Tag_ABI_FP_user_exceptions
),
23913 T (Tag_ABI_FP_number_model
),
23914 T (Tag_ABI_align_needed
),
23915 T (Tag_ABI_align8_needed
),
23916 T (Tag_ABI_align_preserved
),
23917 T (Tag_ABI_align8_preserved
),
23918 T (Tag_ABI_enum_size
),
23919 T (Tag_ABI_HardFP_use
),
23920 T (Tag_ABI_VFP_args
),
23921 T (Tag_ABI_WMMX_args
),
23922 T (Tag_ABI_optimization_goals
),
23923 T (Tag_ABI_FP_optimization_goals
),
23924 T (Tag_compatibility
),
23925 T (Tag_CPU_unaligned_access
),
23926 T (Tag_FP_HP_extension
),
23927 T (Tag_VFP_HP_extension
),
23928 T (Tag_ABI_FP_16bit_format
),
23929 T (Tag_MPextension_use
),
23931 T (Tag_nodefaults
),
23932 T (Tag_also_compatible_with
),
23933 T (Tag_conformance
),
23935 T (Tag_Virtualization_use
),
23936 /* We deliberately do not include Tag_MPextension_use_legacy. */
23944 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
23945 if (streq (name
, attribute_table
[i
].name
))
23946 return attribute_table
[i
].tag
;
23952 /* Apply sym value for relocations only in the case that
23953 they are for local symbols and you have the respective
23954 architectural feature for blx and simple switches. */
23956 arm_apply_sym_value (struct fix
* fixP
)
23959 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
23960 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
23962 switch (fixP
->fx_r_type
)
23964 case BFD_RELOC_ARM_PCREL_BLX
:
23965 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
23966 if (ARM_IS_FUNC (fixP
->fx_addsy
))
23970 case BFD_RELOC_ARM_PCREL_CALL
:
23971 case BFD_RELOC_THUMB_PCREL_BLX
:
23972 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
23983 #endif /* OBJ_ELF */