1 // gold.cc -- main linker functions
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "libiberty.h"
34 #include "target-select.h"
35 #include "workqueue.h"
36 #include "dirsearch.h"
48 const char* program_name
;
51 gold_exit(bool status
)
53 if (!status
&& parameters
!= NULL
&& parameters
->options_valid())
54 unlink_if_ordinary(parameters
->output_file_name());
55 exit(status
? EXIT_SUCCESS
: EXIT_FAILURE
);
61 // We are out of memory, so try hard to print a reasonable message.
62 // Note that we don't try to translate this message, since the
63 // translation process itself will require memory.
64 write(2, program_name
, strlen(program_name
));
65 const char* const s
= ": out of memory\n";
66 write(2, s
, strlen(s
));
70 // Handle an unreachable case.
73 do_gold_unreachable(const char* filename
, int lineno
, const char* function
)
75 fprintf(stderr
, _("%s: internal error in %s, at %s:%d\n"),
76 program_name
, function
, filename
, lineno
);
80 // This class arranges to run the functions done in the middle of the
81 // link. It is just a closure.
83 class Middle_runner
: public Task_function_runner
86 Middle_runner(const General_options
& options
,
87 const Input_objects
* input_objects
,
90 : options_(options
), input_objects_(input_objects
), symtab_(symtab
),
95 run(Workqueue
*, const Task
*);
98 const General_options
& options_
;
99 const Input_objects
* input_objects_
;
100 Symbol_table
* symtab_
;
105 Middle_runner::run(Workqueue
* workqueue
, const Task
* task
)
107 queue_middle_tasks(this->options_
, task
, this->input_objects_
, this->symtab_
,
108 this->layout_
, workqueue
);
111 // Queue up the initial set of tasks for this link job.
114 queue_initial_tasks(const General_options
& options
,
115 Dirsearch
& search_path
,
116 const Command_line
& cmdline
,
117 Workqueue
* workqueue
, Input_objects
* input_objects
,
118 Symbol_table
* symtab
, Layout
* layout
)
120 if (cmdline
.begin() == cmdline
.end())
121 gold_fatal(_("no input files"));
123 int thread_count
= options
.thread_count_initial();
124 if (thread_count
== 0)
125 thread_count
= cmdline
.number_of_input_files();
126 workqueue
->set_thread_count(thread_count
);
128 // Read the input files. We have to add the symbols to the symbol
129 // table in order. We do this by creating a separate blocker for
130 // each input file. We associate the blocker with the following
131 // input file, to give us a convenient place to delete it.
132 Task_token
* this_blocker
= NULL
;
133 for (Command_line::const_iterator p
= cmdline
.begin();
137 Task_token
* next_blocker
= new Task_token(true);
138 next_blocker
->add_blocker();
139 workqueue
->queue(new Read_symbols(options
, input_objects
, symtab
, layout
,
140 &search_path
, &*p
, NULL
, this_blocker
,
142 this_blocker
= next_blocker
;
145 workqueue
->queue(new Task_function(new Middle_runner(options
,
150 "Task_function Middle_runner"));
153 // Queue up the middle set of tasks. These are the tasks which run
154 // after all the input objects have been found and all the symbols
155 // have been read, but before we lay out the output file.
158 queue_middle_tasks(const General_options
& options
,
160 const Input_objects
* input_objects
,
161 Symbol_table
* symtab
,
163 Workqueue
* workqueue
)
165 // We have to support the case of not seeing any input objects, and
166 // generate an empty file. Existing builds depend on being able to
167 // pass an empty archive to the linker and get an empty object file
168 // out. In order to do this we need to use a default target.
169 if (input_objects
->number_of_input_objects() == 0)
171 // The GOLD_xx macros are defined by the configure script.
172 Target
* target
= select_target(elfcpp::GOLD_DEFAULT_MACHINE
,
174 GOLD_DEFAULT_BIG_ENDIAN
,
176 gold_assert(target
!= NULL
);
177 set_parameters_target(target
);
180 int thread_count
= options
.thread_count_middle();
181 if (thread_count
== 0)
182 thread_count
= std::max(2, input_objects
->number_of_input_objects());
183 workqueue
->set_thread_count(thread_count
);
185 // Now we have seen all the input files.
186 const bool doing_static_link
= (!input_objects
->any_dynamic()
187 && !parameters
->output_is_shared());
188 set_parameters_doing_static_link(doing_static_link
);
189 if (!doing_static_link
&& options
.is_static())
191 // We print out just the first .so we see; there may be others.
192 gold_error(_("cannot mix -static with dynamic object %s"),
193 (*input_objects
->dynobj_begin())->name().c_str());
195 if (!doing_static_link
&& parameters
->output_is_object())
196 gold_error(_("cannot mix -r with dynamic object %s"),
197 (*input_objects
->dynobj_begin())->name().c_str());
198 if (!doing_static_link
199 && options
.output_format() != General_options::OBJECT_FORMAT_ELF
)
200 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
201 (*input_objects
->dynobj_begin())->name().c_str());
203 if (is_debugging_enabled(DEBUG_SCRIPT
))
204 layout
->script_options()->print(stderr
);
206 // For each dynamic object, record whether we've seen all the
207 // dynamic objects that it depends upon.
208 input_objects
->check_dynamic_dependencies();
210 // See if any of the input definitions violate the One Definition Rule.
211 // TODO: if this is too slow, do this as a task, rather than inline.
212 symtab
->detect_odr_violations(task
, options
.output_file_name());
214 // Define some sections and symbols needed for a dynamic link. This
215 // handles some cases we want to see before we read the relocs.
216 layout
->create_initial_dynamic_sections(symtab
);
218 // Define symbols from any linker scripts.
219 layout
->define_script_symbols(symtab
);
221 if (!parameters
->output_is_object())
223 // Predefine standard symbols.
224 define_standard_symbols(symtab
, layout
);
226 // Define __start and __stop symbols for output sections where
228 layout
->define_section_symbols(symtab
);
231 // Make sure we have symbols for any required group signatures.
232 layout
->define_group_signatures(symtab
);
234 // Read the relocations of the input files. We do this to find
235 // which symbols are used by relocations which require a GOT and/or
236 // a PLT entry, or a COPY reloc. When we implement garbage
237 // collection we will do it here by reading the relocations in a
238 // breadth first search by references.
240 // We could also read the relocations during the first pass, and
241 // mark symbols at that time. That is how the old GNU linker works.
242 // Doing that is more complex, since we may later decide to discard
243 // some of the sections, and thus change our minds about the types
244 // of references made to the symbols.
245 Task_token
* blocker
= new Task_token(true);
246 Task_token
* symtab_lock
= new Task_token(false);
247 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
248 p
!= input_objects
->relobj_end();
251 // We can read and process the relocations in any order. But we
252 // only want one task to write to the symbol table at a time.
253 // So we queue up a task for each object to read the
254 // relocations. That task will in turn queue a task to wait
255 // until it can write to the symbol table.
256 blocker
->add_blocker();
257 workqueue
->queue(new Read_relocs(options
, symtab
, layout
, *p
,
258 symtab_lock
, blocker
));
261 // Allocate common symbols. This requires write access to the
262 // symbol table, but is independent of the relocation processing.
263 // FIXME: We should have an option to do this even for a relocatable
265 if (!parameters
->output_is_object())
267 blocker
->add_blocker();
268 workqueue
->queue(new Allocate_commons_task(options
, symtab
, layout
,
269 symtab_lock
, blocker
));
272 // When all those tasks are complete, we can start laying out the
274 workqueue
->queue(new Task_function(new Layout_task_runner(options
,
279 "Task_function Layout_task_runner"));
282 // Queue up the final set of tasks. This is called at the end of
286 queue_final_tasks(const General_options
& options
,
287 const Input_objects
* input_objects
,
288 const Symbol_table
* symtab
,
290 Workqueue
* workqueue
,
293 int thread_count
= options
.thread_count_final();
294 if (thread_count
== 0)
295 thread_count
= std::max(2, input_objects
->number_of_input_objects());
296 workqueue
->set_thread_count(thread_count
);
298 bool any_postprocessing_sections
= layout
->any_postprocessing_sections();
300 // Use a blocker to wait until all the input sections have been
302 Task_token
* input_sections_blocker
= NULL
;
303 if (!any_postprocessing_sections
)
304 input_sections_blocker
= new Task_token(true);
306 // Use a blocker to block any objects which have to wait for the
307 // output sections to complete before they can apply relocations.
308 Task_token
* output_sections_blocker
= new Task_token(true);
310 // Use a blocker to block the final cleanup task.
311 Task_token
* final_blocker
= new Task_token(true);
313 // Queue a task to write out the symbol table.
314 final_blocker
->add_blocker();
315 workqueue
->queue(new Write_symbols_task(symtab
,
322 // Queue a task to write out the output sections.
323 output_sections_blocker
->add_blocker();
324 final_blocker
->add_blocker();
325 workqueue
->queue(new Write_sections_task(layout
, of
, output_sections_blocker
,
328 // Queue a task to write out everything else.
329 final_blocker
->add_blocker();
330 workqueue
->queue(new Write_data_task(layout
, symtab
, of
, final_blocker
));
332 // Queue a task for each input object to relocate the sections and
333 // write out the local symbols.
334 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
335 p
!= input_objects
->relobj_end();
338 if (input_sections_blocker
!= NULL
)
339 input_sections_blocker
->add_blocker();
340 final_blocker
->add_blocker();
341 workqueue
->queue(new Relocate_task(options
, symtab
, layout
, *p
, of
,
342 input_sections_blocker
,
343 output_sections_blocker
,
347 // Queue a task to write out the output sections which depend on
348 // input sections. If there are any sections which require
349 // postprocessing, then we need to do this last, since it may resize
351 if (!any_postprocessing_sections
)
353 final_blocker
->add_blocker();
354 Task
* t
= new Write_after_input_sections_task(layout
, of
,
355 input_sections_blocker
,
361 Task_token
*new_final_blocker
= new Task_token(true);
362 new_final_blocker
->add_blocker();
363 Task
* t
= new Write_after_input_sections_task(layout
, of
,
367 final_blocker
= new_final_blocker
;
370 // Queue a task to close the output file. This will be blocked by
372 workqueue
->queue(new Task_function(new Close_task_runner(&options
, layout
,
375 "Task_function Close_task_runner"));
378 } // End namespace gold.